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Abstract 

Nitrate is an important nutrient and signalling molecule to plants. As it is taken 

up and assimilated, reduced forms of N accumulate and the expression of many 

genes associated with nitrate assimilation are repressed. Little is known about the 

mechanisms involved in this N repression. This project, for the first time, adopts a 

chemical genetics approach to investigate the feedback regulatory pathway that links 

the plant’s N status to expression of the NRT2.1 nitrate transporter gene. A novel 

chemical screening platform was developed that was designed to be used in 

conjunction with Arabidopsis lines expressing luciferase reporter genes in roots. This 

semi-hydroponic platform allows roots to be exposed to a variety of nutrient treatments 

in a 96-well plate format suitable for chemical genetic screens. This was combined 

with a newly developed ‘ice capture’ method that provided a rapid and efficient way to 

harvest root material for the luciferase assay. Using this screening platform in 

conjunction with a nitrate-inducible luciferase reporter line, pNRT2.1::LUC, three 

chemical libraries, containing 7420 bioactive molecules were screened in duplicate for 

compounds that antagonise N repression of luminescence. The screen identified a 

plant-derived alkaloid, camptothecin, that enhanced pNRT2.1::LUC expression 

under N-repressive conditions. The positive effect of camptothecin on expression of 

the endogenous NRT2.1 gene was confirmed using real-time PCR and shown to 

extend to other N-repressed genes of the nitrate assimilatory pathway.  Camptothecin 

is known to target topoisomerase I, an enzyme that is increasingly being linked to a 

role in chromatin re-modelling, in addition to its more familiar roles in DNA replication 

and repair. The possible epigenetic role of topoisomerase I in repression of 

NRT2.1 and other genes of the nitrate assimilatory pathway is discussed. It was 

also observed that an arginine treatment strongly stimulated pNRT2.1::LUC in the 

luciferase assay, in a nitrate-dependent manner. Since this effect was not observed 

at the mRNA level, it is hypothesised that arginine was acting on pNRT2.1 expression 

at a post-transcriptional level. 
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Chapter 1. Literature review 

1.1 Introduction 

In the year 2000 global starvation rates were at an all-time high, with 900 million 

people around the world undernourished (FAO, 2017). By 2050 the human 

population is predicted to reach nearly 10 billion people (FAO, 2009). This 

increased population will require more food and space, increasing pressure on 

land already used for agriculture and limiting its geographical expansion (FAO, 

2017). This presents a rapidly approaching food security challenge which must 

be tackled urgently.  

This food security challenge has been recognised for some time now. So 

far humanity has taken a plethora of different approaches to try and reduce the 

number of people currently starving. Advancements in agricultural output have 

helped to tackle this issue, contributing to reduction of the 900 million starving 

people in 2000 down to 777 million in 2015 (FAO, 2017). However, since then 

the number of starving people has increased, with 815 million people being 

recorded as undernourished in 2016 (FAO, 2017). This number is currently rising 

with each passing year and if the human race is to be sustained an effective 

solution to food production must be found and implemented.  

With each coming year farmers are applying larger amounts of 

nitrogenous-rich fertiliser to their soils to support major crops, such as wheat and 

rice, in an effort to meet the ever growing demands (Lu and Tian, 2017). To put 

this into perspective, the application of nitrogen (N) fertiliser has increased 

roughly 10-fold between 1950 and 2008 (Stuart et al., 2013). At present in 2018, 

N fertilizer application is calculated to be above 200 million tonnes per year, with 

a predicted annual growth rate of roughly 1.8% in the future (FAO, 2018). The 

volume of N fertiliser applied around the world varies greatly, with countries such 

as China, the United States and India accounting for over 50% of all fertiliser used 

globally (Lu and Tian, 2017) A major factor for these countries is their large 

population sizes which exert high demands on agricultural land to meet their food 

requirments. The supply from farmers is considerably lower than the growing 

demands for food which has led to the excessive use of N fertiliser in the field in 

order to close the gap (Lu and Tian, 2017). This over-application is being 

employed by farmers specifically in an attempt to alleviate any N-limiting 
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conditions in the field. Of all N fertiliser currently applied it is believed that only 

50% is recovered by agricultural crops, while the rest is either left in the soil or 

transferred away from the site of application (Stuart et al., 2013, Stuart et al., 

2014). 

Fertiliser can leave the agricultural site of application via air, ground water 

and surface water pathways (Stuart et al., 2014, Robertson and Groffman, 2015). 

In places such as the United Kingdom, which have a wet climate for large portions 

of the year most of the N fertiliser is predominantly leeched from the soil via the 

water pathways. The predominant form of N in agricultural fertilisers is nitrate, an 

essential macronutrient for plants which also acts as a powerful signalling 

molecule, rapidly reprogramming many genes in the N signalling pathway of 

plants (Li et al., 2017, Masclaux-Daubresse et al., 2010). Nitrate as a charged ion 

is readily mobile in the soil, with leaching accounting for up to 70% of nitrate loss 

from the targeted field site (Hodge et al., 2000). Consequently, this provides a 

transient window in which the crops can absorb and utilise this N source. One 

solution to this issue is improve the N use-efficiency of the crops, enabling them 

to maximise use of the available nitrate at a given time (Hirel et al., 2007, Li et 

al., 2017). This excessive use of fertiliser in combination with leeching is proven 

to have a great number of environmental and ecological issues (e.g. causing soil 

acidification and degradation, producing algae blooms in water sources) (Lu and 

Tian, 2017). While an increased application of N to the fields is being used as a 

solution for farmers a greater presence of N is not necessarily the best solution. 

Research has shown that excessive fertiliser use can also have a negative impact 

on crop yield. This is the case as the uptake, transport and assimilation of nitrate 

within plants is tightly regulated by their N signalling pathway, which is both 

induced and repressed by a variety of conditions and internal regulatory factors 

(Li et al., 2017, Masclaux-Daubresse et al., 2010). 

This thesis sets out to explore and learn more about the N signalling 

pathway in plants. By further dissection of N signalling in plants and its regulatory 

components the aim is to offer a novel insight into its regulatory mechanisms, 

helping to inform the world on how plants respond to nitrate in the soil. This would 

provide an opportunity to tailor N fertiliser application to crops in the field providing 

an alternative to excessive methods of application that are currently used, which 

are insufficient for both now and the future. This will help alleviate the number of 
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undernourished people currently in the world and reduce the number to come as 

the human race continues to expand. Additionally, alternatives to the excessive 

application of N fertiliser will have beneficial knock-on effects for both the 

environment (e.g. reduce the large carbon foot-print associated with fertiliser 

production) and its ecosystems (e.g. favourable conditions in agronomic soils, 

less pollution of aquatic ecosystems) (Lu and Tian, 2017). 

In this chapter a literature review is presented, providing an in-depth 

overview of the current understanding of N signalling. It also establishes the 

foundations of the research reported in this thesis, justifying the approach taken 

to learn more about the N signalling pathway in plants. 

 

1.2 The Rothamsted experiments 

Rothamsted Research (UK) is a science research institute in the UK.  It is home 

to one of the oldest and arguably one of the most important long term experiments 

in agronomic sciences. This experiment began in 1843 when two scientists, John 

Lawes and Joseph Gilbert planted winter wheat (Triticum aestivum L.) and turnips 

(Beta vulgaris L.) at the Broadbalk and Barnfield locations, respectively (Johnston 

and Poulton, 2018). The initial goal was to investigate the crops’ response to 

different forms of N, along with other inorganic elements (including N, P, K, Na 

and Mg) in a systematic manner. Crop tissue material and soil samples were 

collected to determine the response to different N treatments consisting of 

organic manure and inorganic fertiliser. The two main outcomes of early 

experimentation were: 1. Plant responses to available N were dependent on 

available on availability of phosphorus (P). Observations showed that under P 

deficiency conditions crops were unable to respond to changes in N treatments. 

2. Plants responded differently to inorganic fertilisers compared to the application 

of organic N. It was observed that a small application of inorganic fertiliser, 

containing a suitable concentration of N would result in the same yields as when 

large amounts of organic manure were applied (up to 35 tonnes per hectare) 

(Johnston and Poulton, 2018). Of these two discoveries, the latter observation 

was monitored over the years into the 1970s where it was noted that despite an 

organic N accumulation in the soil of up to two and a half times more than when 

the first observations were made (this increase was due to an annual application 
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of organic manure), inorganic fertilisers were still able to produce similar yields at 

lower application volumes. The conclusion derived from this work at the time was 

that inorganic forms of N were more important than the supposed ‘non-essential’ 

organic N (Johnston and Poulton, 2018). However, in recent years the 

continuation of the experiment has contradicted this initial finding, with organic N 

producing higher yields, believed to be the case as organic N improves the soil 

pH and soil structure in favour of crops establishing good root systems that allow 

them to access more of the available nutrients and water available, which in turn 

resulted in higher yields (Johnston and Poulton, 2018).  

 Microplots within the Broadbalk fields have been isolated for the purposes 

of studying N cycling. These studies, using an N isotope (N15) reported that of all 

the fertiliser applied, approximately 50% was taken up by the crops. Of the 

remaining 50%, half remained in the soil and the other half was believed to either 

have been leeched out or been converted into other forms by soil bacteria 

(Powlson et al., 1986; Johnston and Poulton, 2018). Another study confirmed that 

the loss of N15 was predominately due to it being converted by denitrifying 

bacteria (Jenkinson and Parry, 1989), which was backed up by a model analysing 

the turnover of N through the soil microbial biomass (Shen et al., 1989). This 

highlights the role of bacteria in the conversion of forms of N in the soil and more 

importantly draws attention to the variety of different forms and its availability 

within soils of both a natural and agronomic context. 

1.3 The processes of the N cycle 

In the environment N is present in various forms, being converted from one to 

another by a variety of microorganisms, a process which is encompassed under 

the concept of the N cycle (Fig. 1.1). The N cycle can be separated into four main 

processes: ammonification; nitrification; denitrification; annamox (Stein and Klotz, 

2016; Berg et al., 2002).  
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  Ammonification is a process performed in bacteria and archea which 

contain a nitrogenase complex made up of molybdenum–iron protein 

dinitrogenase and vanadium or an iron protein dinitrogenase reductase in the 

presence of oxygen.  This process allows these organisms to obtained N from 

the atmosphere through a process known as N fixation in which ammonium is 

produced (Stein and Klotz, 2016; Berg et al., 2002). These bacteria and archea 

can then assimilate this ammonium into biomass through respiration. 

Alternatively, this ammonium can respired by other microbes in an aerobic or 

anaerobic depend manner. Some bacteria and fungi are responsible for another 

type of ammonium production, where nitrate is taken up and reduced to 

ammonium through either aerobic or anaerobic assimilation (Stein and Klotz, 

2016).   

 Nitrification is performed by three main groups of microorganisms. The first 

group concerns microorganisms which oxidise ammonia to produce nitrite. These 

organisms are known as ammonia oxidisers and include chemolithotrophs, 

Figure 1.1 Processes involved in the N cycle showing the biological activity of 

N-cycling microorganisms to convert N into the various forms found in the 

environment. Figure adapted from Stein and Klotz (2016). 



 
 

6 

heterotrophic and methanotrophic microorganisms (Stein and Klotz, 2016; Berg 

et al., 2002). The second group concerns microorganisms which oxidise nitrite to 

produce nitrate. These organisms are known as nitrite oxidisers and consist of 

only chemolithotrophs, which utilise nitrite as their lone source of energy for 

cellular growth. The third group concerns microorganisms that oxidise ammonia 

to nitrate.  These microorganisms are known as complete ammonia oxidisers and 

only include chemolithotrophs which use ammonia as their lone source of energy 

to support cellular growth. Unlike the chemolithotrophs, heterotrophic and 

methanotrophic microorganisms do not utilise energy from the conversion of N to 

sustain cellular growth and development (Stein and Klotz, 2016).  

 Denitrification is performed by classical or canonical denitrifiers under 

anaerobic conditions. These microorganisms use respiration to convert nitrite 

(N2O-) to nitric oxide (NO) and nitrous oxide (N2O) and in turn into nitrogen gas 

(N2). However, not all microorganisms in this group, such as the ammonia-

oxidising chemolithotrophs encode the necessary enzymes required to make the 

full conversion from nitrite to N2, resulting in the release of NO and N2O into the 

environment (Stein and Klotz, 2016).  

Annamox is a term used to describe anaerobic ammonium oxiders. This 

is a process which is only performed by Brocadiaceae bacteria as they contain 

annamoxosomes. The presence of this specialised organelle allows them to 

convert NO2
- and NH4

+, first into an NO and hydrazine intermediate and then into 

N2. During this conversion there is no production of N2O (Stein and Klotz, 2016).   

There is also another instance in which bacteria play a role in N cycle, 

however this process occurs symbiotically with plants. Legumes, such as 

soybeans and alfalfa contain root nodules containing Rhizobium bacteria. In this 

relationship the bacteria converts N2 into mineral forms of N which are utilised by 

the plant, while the bacteria benefit from the energy obtained in the conversion to 

support growth and development (Mokhele et al., 2012; Berg et al., 2002). 

This description of the N cycle serves as an opportunity to reflect on the 

multiple forms of N that exist within soil. Bacteria nitrification accounts for the 

reduction of a significant amount of N fertiliser applied by farmers, presenting the 
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crops with a soil environment containing multiple different forms of mineral N. The 

response of plants to different forms of N is varied, as will be discussed later on. 

1.4 Nitrate uptake, transport and regulation 

N is an essential macronutrient for plants, it is found at the most fundamental 

level of biology, in DNA, making up nitrogenous bases which form nucleotides, 

all the way up to proteins which are used as cell materials and plant tissues 

(Mokhele et al., 2012). N in both natural and agronomic contexts is usually the 

main limiting factor for growth and development in plants (Geisseler et al., 2010; 

Vitousek and Howarth, 1991). In an agronomic context the predominant form of 

N available to plants is nitrate (Li et al., 2017, Masclaux-Daubresse et al., 2010). 

In the following section the physiology of nitrate uptake and transport around the 

plant will be described. As the important role of NRT2.1 in relation to nitrate 

becomes clear the literature will focus on the N-dependent regulation of both this 

gene and its transporter’s function.  

1.4.1 Physiology of nitrate uptake 

As sessile organisms, higher plants have adapted a root system architecture with 

a high degree of plasticity in response to nutrient availability to overcome their 

immobility (Smith and De Smet, 2012). Early physiological studies reported that 

net influx of nitrate into the roots was determined by three uptake systems. The 

first is a constitutive low-affinity transport system (cLATS), where the presence of 

nitrate stimulates the transporter function, but only to a small degree. The second 

is a nitrate-inducible high-affinity transport system (iHATS), where the presence 

of nitrate strongly stimulates the transporter function. The third is a constitutive 

high-affinity transport system (cHATS), where the presence of nitrate stimulates 

the transporter function, but only to a small degree.  (Aslam et al., 1992, Glass 

and Siddiqi, 1995, Forde and Clarkson, 1999).  

1.4.1.1 Physiology of the cLATS The LATS play a major role in nitrate uptake 

at concentrations ≥ 1 mM and its activity in barley has been reported to be non-

saturable up to 100 mM in nitrate media depletion experiments (Glass et al., 

1990, Siddiqi et al., 1990). Electrophysiological evidence from barley reported 

that the mechanism of LAT uptake was similar to the mechanism described for 

the iHATS, with a charge-coupling stoichiometry of 2 H+ ions taken up for every 
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NO3
-
 molecule imported (Glass et al., 1992). The same research also reported 

that the LATS were expressed in the absence of nitrate, and were only stimulated 

by 80% upon nitrate supply (Glass et al., 1992, Forde and Clarkson, 1999). 

Experiments in barley also showed that, like the iHATS the LATS are subject to 

repression by reduced forms of N, such as glutamine (Gln), a major end product 

of N assimilation (Siddiqi et al., 1990). 

 

1.4.1.2 Physiology of the iHATS The iHATS were first observed in barley nitrate 

depletion experiments, using 13NO3
- and 15NO3

- (Clarkson, 1996, Lee and Drew, 

1986), showing that nitrate is taken up at low concentrations for the first few hours 

of exposure and their activity was inducible up to 50-fold (Glass et al., 1992). 

Similarly this was also shown in Brassicaceae and other catch crop species 

reporting that the larger the shoot : root ratio the more rapid the uptake rate of 

nitrate over this time (Laine et al., 1993). After the first few hours of exposure 

nitrate pooling in the cytosol increased efflux of nitrate from the roots, therefore 

this method of studying nitrate influx of the iHATS was only suitable in the early 

stages of study (Forde and Clarkson, 1999). Electrophysiology experiments in 

barley roots and Lemna gibba (duckweed) fronds reported that the fresh supply 

of nitrate to N starved plants resulted in a transient depolarisation of the 

membrane potential across the plasma membrane (Glass et al., 1992, Ullrich and 

Novacky, 1981). In Arabidopsis, similar findings were observed, with increased 

uptake activity when the roots were in an acidic environment. This observation 

helped unveil a charge-coupling stoichiometry of two H+ ions for every NO3
- 

molecule imported by the iHATS in the root cells (Meharg and Blatt, 1995). This 

H+ ion importation with nitrate into the cells was hypothesised to lower the pH of 

the cytoplasm. To investigate this, the cytosolic pH of Limnobium stoloniferum 

root cells were monitored with intracellular electrodes (Ullrich and Novacky, 

1990). Instead of acidifying, the pH of the cell cytosol was alkalinised. However, 

this increase in pH was thought to be the result of nitrate reductase activity (NR) 

(Forde and Clarkson, 1999). To gain a further insight the pH close to the root 

surface was measured, it was hypothesised that as the roots took up nitrate, and 

consequently H+ ions, the media immediately surrounding the roots would 

alkalise. However unexpectedly they did not observe alkalisation, this was 

thought to arise from the pH measurement underestimating the removal of H+ 
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ions from the media by 50% (Mistrik and Ullrich, 1996). This understanding of 

nitrate uptake and its charge-coupling stoichiometry was consolidated in 

Arabidopsis by using all the described measurement techniques in unison, 

leading to the production of a kinetic cycle model of the transport system in roots 

(Meharg and Blatt, 1995). In this model the charge-coupling stoichiometry was 

confirmed, with 2 H+ taken up for every NO3
-
 molecule imported and the rate of 

nitrate uptake was shown to be limited by the rate at which negatively charged 

sites on the newly unloaded nitrate transporter could transition from the inside to 

the outside of the cell, to access fresh nitrate in the external media (Meharg and 

Blatt, 1995, Forde and Clarkson, 1999). As well as being nitrate inducible iHATS 

activity has also been shown to be repressed by reduced amino acids, end 

products of N assimilation (Lee and Drew, 1986).  

 

 

1.4.1.3 Physiology of the cHATS In barley the application of nitrate allowed the 

functioning of iHATS to be observed, but not the cHATs. The cHATS were initially 

only observed in the absence of nitrate, possessing a higher affinity for nitrate 

than the iHATS, but with a minimal nitrate uptake capacity (Aslam et al., 1992, 

Siddiqi et al., 1990, Lee and Drew, 1986, Forde and Clarkson, 1999). In barley 

and spruce the cHATS activity was shown to be nitrate inducible, however this 

induction was approximately 3-fold, a small proportion of the stimulated activity 

in the iHATS and the cLATS (Aslam et al., 1992). It was hypothesized that as the 

cHATS are expressed in the absence of N application their passive uptake of 

nitrate could be simply to absorb a significant concentration of nitrate to induce 

the iHATS and other N-signalling genes in the N assimilation pathway (Forde and 

Clarkson, 1999). 

 

1.4.2 The NRT 1 and NRT2 families of nitrate transporters 

In Arabidopsis there are nine low-affinity nitrate transporter (NRT1) and seven 

high affinity nitrate transporter (NRT2) gene homologues that encode proteins 

involved in nitrate uptake and transport around the plant (Okamoto et al., 2003). 

NRT1.1/CHL1, now designated NPF6.3 as a member of the NPF (NITRATE 

TRANSPORTER 1/PEPTIDE TRANSPORTER) family is a known dual-affinity 

nitrate transporter, which also has an important role as a nitrate sensor (Leran et 
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al., 2014). AtNRT1.1 is located on the plasma membrane of root tip cells (Fig.1.2), 

with the gene expressed in the epidermis of root tips and in more mature parts of 

the root (Huang et al., 1996). AtNRT1.2 is constitutively expressed in root cells 

on the plasma membrane and contributes to nitrate uptake as part of the LATS 

system (Huang et al., 1996). Once nitrate is taken up into the roots, the AtNRT1.5 

transporter, located on the plasma membrane of root pericycle cells near to xylem 

vessels is responsible for delivering nitrate from the root to the shoot (Lin et al., 

2008). Other functions of NRT1 transporters include transporting nitrate into leaf 

petioles (AtNRT1.4), developing tissues, such as the embryo (AtNRT1.6) (Chiu 

et al., 2004, Almagro et al., 2008, Masclaux-Daubresse et al., 2010), nitrate 

transport into parenchymal tissues (AtNRT1.3) (Tong et al., 2016), nitrate 

remobilisation around the plant (AtNRT1.7) (Fan et al., 2009) and the downward 

transport of nitrate to the roots (AtNRT1.8 and AtNRT1.9) (Wang and Tsay, 2011; 

Masclaux-Daubresse et al., 2010).  

Regarding the NRT2 family, AtNRT2.1 is of particular importance as it 

makes up the nitrate inducible element of the HATS. AtNRT2.1 encoding the 

NRT2.1 protein which is situated on the plasma membrane of roots cells (Fig. 

1.2) is responsible for approximately 75% of total root nitrate uptake (Li et al., 

2007, Nazoa et al., 2003, Gansel et al., 2001). AtNRT2.2 is another important 

inducible nitrate transporter involved in the uptake of exogenous nitrate into the 

roots, paired with NRT2.1 they contribute up to 80% of total nitrate uptake into 

the roots. NRT2.4 is located on plasma membranes in the root epidermis and 

near to shoot phloem contributing to nitrate uptake and transport around the plant, 

but only in the very high-affinity range under N starvation conditions (Kiba et al., 

2012). Other functions of NRT2 transporters include transporting nitrate into the 

vacuole of cells and into seed (AtNRT2.7) (Chopin et al., 2007) and transporting 

nitrate into the phloem (AtNRT2.5) (Lezhneva et al., 2014). The genes encoding 

AtNRT2.3 and AtNRT2.6 share a 91% nucleotide identity, yet the specific 

functioning within plants is yet to be determined (Dechorgnat et al., 2012). 

 

When nitrate is taken up by the roots it is reduced in the N assimilation 

pathway. First, inorganic nitrate is reduced to nitrite, by nitrate reductase (NR), 

then nitrite is reduced to ammonium by nitrite reductase (NiR). Ammonium is 

converted into organic N compounds by the glutamine synthetase-glutamate 
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synthase (GS-GOGAT) pathway, producing Gln and Glu and allowing N to be 

incorporated into other amino acids (Crawford and Glass, 1998, Forde, 2000). 

 

 

 

Figure 1.2 NRT1 and NRT2 transporters in Arabidopsis showing uptake of 

nitrate into the roots and its transportation around the plant. Figure adapted from 

Wang et al. (2012).   
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1.4.3 The transcriptional control of NRT2.1 

The first higher plant NRT2.1 cDNA sequence was cloned in barley (Trueman et 

al., 1996). The barley root library yielded two sequences, BCH1 and BCH2 which 

were homologous to nitrate transporter genes previously found in other 

organisms, specifically Aspergillus nidulans and Chlamydomonas reinhardtii. 

Analysis by Northern and Southern blots demonstrated that the genes were 

nitrate inducible and were part of a bigger gene family in barley. These findings 

suggested that the BCH sequences belonged to a gene family responsible for 

nitrate transport (Trueman et al., 1996). Filleur and Daniel-Vedele (1999) were 

among the first to isolate and characterise, at the transcriptional level an NRT2.1 

cDNA in an Arabidopsis background. It was reported that nitrate positively 

regulated AtNRT2.1 gene transcription, which caused the AtNRT2.1 protein to 

actively transport nitrate into the plant’s roots. This showed that AtNRT2.1 was 

under the transcriptional control of its encoding gene, AtNRT2.1 (Krapp et al., 

1998, Orsel et al., 2002). In the presence of prolonged nitrate treatments 

AtNRT2.1 was repressed, which was not present in plants that were also nitrate 

treated, but then transferred to N free media. It was hypothesised that this 

repression of AtNRT2.1 was due to the accumulation of amino acids, produced 

as end products of the N assimilation pathway (Filleur and Daniel-Vedele, 1999). 

The presence of N repression of NRT2.1 was observed early on, but only partially 

understood. Experiments using Lemna documented this induction and repression 

pattern explaining that the rate of nitrate influx into the roots is negatively 

correlated to the accumulation of internal nitrate (Ingemarsson, 1987, Doddema 

et al., 1976). This relationship was clarified when the exogenous application of 

amino acids was used to raise the concentration of internal amino acid pools, 

resulting in the down-regulation of NRT2.1, and subsequently a decrease of 

nitrate uptake (Krapp et al., 1998, Muller and Touraine, 1992). This suggests that 

it is the internal high nitrate concentration being reduced into amino acids which 

causes repression of NRT2.1. These finding were further supported through the 

use of NR mutants which, when supplied with nitrate, showed NRT2.1 induction, 

in the absence of repression. It was hypothesised that, as nitrate could not be 

reduced NRT2.1 expression remained high, with amino acid accumulation not 

occurring to cause feedback repression (Filleur and Daniel-Vedele, 1999). 

Additionally, the use of AtNrt2.1 mutants, under nitrate inducible conditions did 
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not display an upregulation of HATS activity, yet they showed no difference in the 

LATS response to the nitrate treatment (Filleur et al., 2001).  

Zhuo et al. (1999) also reported that amino acids are effective at 

repressing AtNRT2.1 expression, using various inhibitors of N assimilation to 

promote the accumulation of amino acids in Arabidopsis. Inhibitors used in this 

study included L-methionine sulfoximine, tungstate and a combination of 

aminooxyacetate and azaserine, to prevent the conversion of ammonium to Gln, 

inhibit NR activity and inhibit aspartate aminotransferase and GOGAT, 

respectively. The use of each inhibitor resulted in a significant repression of 

AtNRT2.1 expression, suggesting that amino acids produced in the N 

assimilation pathway are involved in N repression (Zhuo et al., 1999, Lejay et al., 

1999). A study in barley also reported similar inductive effects for nitrate and 

repressive effects of amino acids applied in the presence of a nitrate induction 

treatment on HvNRT2.1 expression (Vidmar et al., 2000). The exogeneous 

application of nitrate induced HvNRT2.1 expression, while separate amino acids 

(Asn, Asp, Gln, Glu) applied in the presence of a nitrate induction treatment 

resulted in the significant repression of HvNRT2.1 expression. In addition, the 

study also used chemical inhibitors of N assimilation to increase internal 

concentrations of specific amino acids. These inhibitors were tungstate, 

methionine sulfoximine, and azaserine, applied separately to inhibit nitrate 

reductase, glutamine synthetase, and glutamate synthase, respectively. All 

inhibitors caused a significant repression of the HvNRT2.1 transcript, showing 

that Gln is among the most influential amino acids in down regulating HvNRT2.1 

(Vidmar et al., 2000a). Northern blot analysis of Arabidopsis seedlings treated 

individually with major amino acids involved in the N assimilation pathway (Asn, 

Asp, Gln, Ala, Glu) also showed that Gln was the most effective at repressing 

AtNRT2.1 (Nazoa et al., 2003). Additionally, levels of each amino acid in the 

phloem, after exogenously applying these amino acids to Arabidopsis roots were 

measured. Gln application not only produced the highest concentrations of the 

different amino acids in the phloem, but it was also the amino acid in the greatest 

abundance, regardless of the amino acid treatment (Nazoa et al., 2003). It is 

possible that the application of Gln has such a strong repressive effect on NRT2.1 

as it promotes an increased concentration of other amino acids in internal N 
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pools. However, its high abundance in all treatments suggests it has a major role 

in the N signalling pathway.  

Growing Arabidopsis seedlings in the presence of high concentrations of 

N (10 mM nitrate) was reported to repress NRT2.1 in Arabidopsis seedlings 

(Cerezo et al., 2001). However, when these seedlings were transferred to N–free 

media, a period of N starvation resulted in the derepression of NRT2.1, 

consequently restoring activity of the HATS. It is hypothesised that as the internal 

amino acid pools are utilised and as no additional nitrate can be reduced, NRT2.1 

is no longer repressed (Cerezo et al., 2001, Filleur and Daniel-Vedele, 1999). 

This supports the role of amino acids in the repression of NRT2.1. To highlight 

the importance of NRT2.1 on HATS activity an Atnrt2.1 Arabidopsis mutant was 

subjected to an N starvation treatment, showing that remaining HATS activity was 

not nitrate inducible, or repressible by ammonium nitrate (Cerezo et al., 2001). 

This helped to demonstrate the important role of NRT2.1 as the inducible 

regulator of the HATS.  

While, in general, low concentrations of nitrate and high concentrations of 

amino acids induce and repress NRT2.1 expression, respectively, certain 

conditions were reported to alter this response. The application of ammonium or 

Gln ≥1 mM, in the presence of ≤0.5 mM nitrate did not repress NRT2.1 expression 

(Krouk et al., 2006). It was suggested that the ammonium used in this experiment 

repressed NRT1.1 function, a known upstream regulator of NRT2.1 expression 

allowing it to be induced by the low concentration of nitrate. Additionally, it was 

proposed that this upregulation of NRT2.1, and in turn nitrate transport could be 

to counter the high intake of ammonium, known to be toxic to the plant (Krouk et 

al., 2006). However, increasing the ammonium concentration resulted in the 

repression of NRT2.1 despite the presence of low concentrations of nitrate (Krouk 

et al., 2006). These results suggest that NRT1.1 has a powerful regulatory effect 

upon NRT2.1 expression. 

A sequence upstream of the TATA box within the promoter region, 

specifically 150 bp long was identified which is required for positive and negative 

regulation of NRT2.1 by nitrate and amino acids, respectively (Girin et al. 2007). 

This was reported in an Arabidopsis reporter line containing a 1201 bp fragment 

corresponding to the sequence located upstream of the initiating codon 

of AtNRT2, fused to a β-glucuronidase (GUS) reporter gene 
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(pAtNRT2.1(1201)::GUS). GUS activity was shown to be repressed under high N 

conditions, separately with 5 – 20 mM nitrate and 10 mM ammonium nitrate. The 

application of 10 mM ammonium and 10 mM amino acids treatments, including 

Gln and Asn was also shown to drastically lower GUS expression in 

pAtNRT2.1(1201)::GUS. It was also observed that sucrose upregulated both the 

NRT2.1 transcript and GUS activity, in conjunction with the findings of Lejay et 

al. (1999). This confirms that in addition to being regulated by N sources NRT2.1 

expression is also influenced at the transcriptional level by the carbon status of 

the plant (Girin et al., 2007). The Arabidopsis pAtNRT2.1(1201)::GUS line was 

also used to show that the location of NRT2.1 expression was both tissue specific 

and dependant on the plant’s developmental stage (Nazoa et al., 2003). 

Predominantly NRT2.1, when induced is expressed in the roots, but some 

expression is present in the shoots. Mature Arabidopsis plants (3-4 weeks old) 

express NRT2.1 strongly in older parts of the root, lesser in the younger tissue 

and possibly not at all in the tips of both the primary and lateral roots based on 

the GUS expression results. Younger and older plants displayed much reduced 

levels of GUS expression (Nazoa et al., 2003), which coincided with nitrate 

uptake patterns for cowpea, green gram and soybean seedlings in a separate 

study (Imsande and Edwards, 1988). GUS expression in the shoots showed 

some spotting at the base of the rosette and on some of the leaves, including the 

leaf tip areas (Nazoa et al., 2003). Cross sections of roots showed that NRT2.1 

expression was on the outer cell layer, (e.g. the epidermis and the outer layer of 

the root hairs) (Trueman et al., 1996), but not on inner cells of the roots, 

corresponding with what is known about its role in uptake of nitrate from its 

surrounds into the roots. This experiment also reported that NRT2.1 expression 

was successfully repressed with the use of amino acids, including Gln. Together 

the results demonstrate that NRT2.1 is localised effectively for root nitrate uptake. 

NRT2.1 not being expressed at the root tips has led to the hypothesis that another 

transporter is responsible for mineral N uptake at that location (Nazoa et al., 

2003). 

An Arabidopsis luciferase reporter line (pNRT2.1::LUC) containing a 1201 

bp fragment corresponding to the sequence located upstream of the initiating 

codon of AtNRT2.1, fused to a firefly luciferase gene (LUC) was also used to 

investigate the NRT2.1 response to different forms of N (Girin et al., 2010).  The 
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pNRT2.1::LUC line, grown continuously under low nitrate (0.3 mM KNO3) and 

high nitrate conditions (10 mM NH4NO3) showed that luminescence expression 

and endogenous NRT2.1 expression was strongly induced and repressed, 

respectively. This reporter line was then subjected to an ethyl methanesulfonate 

mutagenisis screen in the presence of high N conditions, screening for an 

increase luminescence phenotype. Three mutants were identified and termed 

High Nitrogen Insensitive (HNI) mutants (hni140-1, hni48-1, hni9-1). These novel 

signalling mutants have been shown to be impaired in the systemic control of 

NRT2.1 expression by the Arabidopsis plant’s N status (Girin et al 2010). The 

study demonstrated that the mutants, each defective in different and new parts 

of the NRT2.1 promoter sequence were largely insensitive to high N repression. 

Each mutant was analysed for total N content and no significant differences were 

noted, suggesting the phenotype is a signalling impairment, rather than a nutrient 

uptake impairment. However, the HNI mutants did contain different ratios of 

internal amino acids and sugars. This suggests that the modification of NRT2.1 

as a regulator gene could be responsible for the alterations in internal amino acid 

pool composition, as seen for different regulator genes in other studies (Girin et 

al., 2007, Peng et al., 2007, Gao et al., 2008). Girin et al. (2010) proposed that 

as the composition of metabolite pools was altered with the alteration of the 

regulatory gene then maybe the composition of amino acids and sugars itself are 

involved in regulating the pathway (Girin et al., 2007).  

 

1.4.4 Post-transcriptional control of NRT2.1 

Regulation at the post-transcriptional level was suggested by early studies on 

NRT2.1, but provided little evidence. Initially, it was thought that reduced forms 

of N could affect NRT2.1 at the protein level. Fraisier et al. (2000) was the first 

study to truly demonstrate that the transcript level was not a limiting factor. They 

showed that, even when NRT2.1 is overexpressed under the control of a 35-S 

promoter, ammonium applied exogenously reduced nitrate uptake despite a high 

NRT2.1 transcript accumulation (Fraisier et al., 2000). It was hypothesised that 

ammonium may cause changes in NRT2.1 protein activity through 

phosphorylation/ dephosphorylation, however this was not conclusively 

established (Rawat et al., 1999, Fraisier et al., 2000, Orsel et al., 2002, Forde, 

2000). Ammonium post-transcriptionally regulating NRT2.1 was also proposed in 
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experiments where plants exposed to ammonium displayed a decrease in nitrate 

transport independent of the NRT2.1 transcript (Vidmar et al., 2000). Given that 

the function of the protein and the transcript of NRT2.1 are no longer correlated 

it suggests that a post-transcriptional factor is regulating NRT2.1. Another study 

of the NRT2.1 protein found numerous conserved protein kinase C recognition 

motifs in the C terminal domain of NRT2.1 transporter proteins, which could be 

the target of ammonium post-transcriptional regulation (Forde, 2000). These 

motifs could be used to post-transcriptionally regulate NRT2.1 via 

phosphorylation/ dephosphorylation, similarly to NRT1.1 which could explain the 

sudden change in transporter activity observed when plants are exposed to 

ammonium (Forde, 2000, Orsel et al., 2002, Glass et al., 2002). Other studies 

suggested that nitrate itself was regulating NRT2.1 post-transcriptionally. 

Observations in barley reported the upregulation of NRT2.1 transcript levels 

when the reduction of nitrate to nitrite was inhibited using tungstate (Vidmar et 

al., 2000). However, it is more likely that in the absence of reduced forms of 

nitrate, there is no repressive signal to downregulate the inductive effect of 

accumulated nitrate.   

Further studies in barley showed evidence of post-transcriptional 

regulation of NRT2.1. Tong et al. (2005) found that the transcription of the Nar2 

gene was essential for the N regulation of the NRT2.1 transporter. This was 

confirmed by Orsel et al. (2006) who reported in Arabidopsis that the Nar2 gene 

encodes a partner protein to the NRT2.1 transporter (Nar2), and was required for 

NRT2.1 regulation. Using knockout mutants of one or both Nar2 partner protein 

genes they demonstrated its necessity for the regulation of the HATS functionality 

of uptake at low nitrate concentrations (Orsel et al., 2006). Ishikawa et al. (2009), 

using immunochemical techniques showed that both the Nar2 and NRT2.1 

proteins were localised at the same points in the cells. The use of recombinant 

proteins in an affinity binding column allowed them to identify a potential binding 

site for Nar2 on the NRT2.1 protein. The assay indicated that the Ser463 on the 

C-terminus of the NRT2.1 protein has a major role in the binding with Nar2 

(Ishikawa et al., 2009). Shortly after, Yong et al (2010) suggested that Nar2.1 

post-transcriptionally regulates NRT2.1 function by forming a heterooligomer 

complex together by presenting an increase and decrease in the molecular 

masses of the NRT2.1 complex at different stages of regulation (Yong et al., 
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2010). These findings strongly suggest a post-transcriptional interplay between 

the NRT2.1 and Nar2 proteins. 

Post-transcriptional regulation was further supported by Laugier et al. (2012) 

using a transgenic Arabidopsis 35-S::NRT2.1 line they reported that function of 

NRT2.1 is down-regulated under N repression conditions, despite the mutant 

having a high level of NRT2.1 expression (Laugier et al., 2012). This change was 

also accompanied by a decrease in NRT2.1 protein abundance. It was also 

observed that NAR2.1 abundance was closely correlated with that of NRT2.1 

(Laugier et al., 2012), suggesting that NAR2.1 was not the candidate producing 

this post-transcription modification. Other research suggests that NRT2.1 exists 

in various forms due to post-transcriptional regulation. Using an Arabidopsis 

NRT2.1::GFP reporter line, Wirth et al. (2007) reported that a variation of NRT2.1 

protein forms existed, showing that inductive and repressive treatments had an 

immediate effect at the transcriptional level, but a much delayed one at the protein 

level. This lag in enzyme activity suggests that regulation of NRT2.1 is occurring 

post-transcriptionally at the protein level (Wirth et al., 2007). It was observed that 

free GFP within the plant cells, which was confirmed not to be the NRT2.1 protein 

was being transported to the vacuole for deconstruction (Wirth et al., 2007). This 

suggests that post-translational modification taking place could be involved in the 

partial proteolysis of NRT2.1 at the C terminal end of the protein. 

The Ynt1 protein in yeast (Hansenula polymorpha), which is homologous 

to NRT2.1, was shown to undergo ubiquitinylation upon the exogenous 

application of Gln to the cells. Ynt1 is then mobilised to the vacuole and degraded 

by enzymes (Navarro et al., 2006). This post-transcriptional mechanism supports 

a similar interaction that could occur for NRT2.1. It was subsequently shown that 

Ynt1 is supressed by reduced forms of N and that a partner protein plays a key 

role in its functionality (Navarro et al., 2008). This partner protein, the nitrogen 

permease reactivator 1 kinase (Npr1) targets the Ser-246 on the intracellular loop 

of the Ynt1 transporter and phosphorylates it. Phosphorylation of Ynt1 was 

reported to occur under N limiting conditions and it was shown that when 

phosphorylation could not occur the supply of nitrate no longer triggered a rapid 

induction of NRT2.1 transport (Navarro et al., 2008). This post-transcriptional 

control is so important as it is responsible for the Ynt1 promotor accumulating at 

the plasma membrane of the cell. Without it the Ynt1 protein was reported to 
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undergo increased amounts of ubiquitinoylation which leads to it being trafficked 

to the vacuole, for degradation (Navarro et al., 2008). These findings for Ynt1 

suggest a similar mechanism may be present for the homologuous protein 

NRT2.1 in plants. 

Widiez et al. (2011) also reported evidence of post-transcriptional 

regulation. Using the hni9-1 Arabidopsis signalling mutant, which is impaired in 

the high N response found that the genomic mutation was allelic to a sequence 

involved in feedback repression of NRT2.1. This sequence, termed Interact With 

SPT6 (AtIWSI) regulates hundreds of genes in the plant and produces a protein 

involved in the makeup of RNA polymerase II (Widiez et al., 2011). In yeast, IWS1 

was shown to influence chromatin remodelling at a specific gene locus under 

various sucrose conditions (Fischbeck et al., 2002, McDonald et al., 2010). 

Arabidopsis contains a conserved homolog of STP6, which interacts with IWSI, 

suggesting a possible interaction that could be affecting NRT2.1 post-

transcriptionally. In a hni9/AtIWS1 mutant NRT2.1 was not repressed under high 

N conditions, reportedly due to a failure to repress the cis-acting elements of the 

NRT2.1 promoter. It was proposed that post-transcriptional histone modifications 

and chromatin remodelling, mediated by IWS1, known to regulate nutrient 

signalling related gene expression could be the cause of this response (Widiez 

et al., 2011). Their results show in the absence of AtIWS, shown to promote 

methylation of a histone (H3K27me3) found on specific N-responsive loci, that 

H3K27me3 abundance was correlated with the plants insensitive NRT2.1 

response to high N (Widiez et al., 2011). These finding suggests yet another 

method of regulation at the post-transcriptional level, shedding more light on the 

complexity of N-signalling. 

 

1.4.5 Long distance signalling involving NRT2.1 

Whilst local signalling has been shown to be important, research on long distance 

signalling has revealed regulation also occurs systemically. Cooper and Clarkson 

(1989), using split root experiments in barley demonstrated that nitrate uptake 

into the roots was markedly increased in roots on N-sufficient media when the 

rest of the plant’s root system was N-deprived. This was rationalised as a method 

of compensation based on the overall N status of the plant (Cooper and Clarkson, 

1989). This concept was linked to a similar model proposed for potassium uptake 
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and regulation in plants, with the notion that cycling of N between the shoots and 

the roots could effectively form a single pool of amino acids in the plant that 

regulates NRT2.1 function (Cooper and Clarkson, 1989, Siddiqi and Glass, 1987, 

Drew and Saker, 1984) 

Tillard et al. (1998) using split-root experiments in Ricinus communis 

reported that roots in N-free conditions could increase nitrate uptake of roots in 

N-sufficient conditions. This suggests that a shoot-derived signal, produced by 

the N-starved portion of the root system was able to override the N-sufficiency 

signal in the nitrate treated roots. It was also reported that phloem amino acids 

were preferentially directed to the portion of the split root system in nitrate 

sufficient conditions (Tillard et al., 1998). While amino acids are associated with 

the repression of nitrate uptake, this suggests a long distance signalling 

mechanism associated with the phloem transfer of N-assimilates.  

NRT2.1 was the first gene confirmed to be subject to regulation by long 

distance N signalling (Gansel et al., 2001). This was reported in Arabidopsis split 

root experiments where the NRT2.1 transcript was increased, along with nitrate 

influx in roots treated with nitrate, in response to the rest of the root system being 

N-starved. This response suggests that long distance signals are being sent from 

other parts of the root system stimulating uptake activity to compensate for the 

roots system’s spatially dependent N-deprivation (Gansel et al., 2001). Other split 

root research in Arabidopsis using an Atnrt2.1 mutant showed that roots, in nitrate 

sufficient conditions no longer increased nitrate uptake in response to the rest of 

the root system being subject to N-starvation. Additionally, the application of 

reduced N metabolites also did not reduce nitrate uptake, respectively (Cerezo 

et al., 2001). While it is known that NRT2.1 is in the major inducible component 

of the NRT2 genes, these results suggest that the internal pool of amino acids in 

the plant could be communicating with NRT2.1 to alter its uptake functioning.  

Long distance signalling has also been reported in split root experiments using 

Medicago truncatula where roots treated with nitrate displayed an increased 

uptake rate in response to the rest of the root system being N-starved. This 

response was correlated to an upregulation of NRT2.1 expression in the treated 

roots. However, when the experiment was performed using ammonium nitrate an 

increase in N uptake was not observed, and NRT2.1 expression was not 

upregulated. While these amino acids have different uptake systems this 
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demonstrates that long distance signalling is not simply one pathway dependent 

on the N status of the plant, it is rather a number of pathways each of which are 

N-source specific (Ruffel et al., 2008, Liu et al., 2009). Evidence for other 

macronutrient sources regulating NRT2.1 and nitrate uptake has also emerged, 

with shoot-derived carbohydrate signals behaving in a similar manner to that of 

phosphorus long distance signalling (Hammond and White, 2008). It was shown 

that the expression of the nitrate transporters, NRT1.1 and NRT2.1 were both 

diurnally regulated and strongly stimulated by sugar sources (Lejay et al., 2003), 

suggesting that the carbohydrates produced via photosynthesis in the leaves and 

transported to the roots in the phloem are also influential. 

Studies have reported that Glu could have an important role as a long-

distance signalling molecule in plants (Forde et al., 2013, Miller et al., 2007, Forde 

and Lea, 2007). In Arabidopsis there are 20 Glutamate-Like Receptor (GLR) 

genes that encode amino acid gated calcium ion channels shown to contain all 

the essential genetic domains as iGluRs in mammalian cells (Davenport, 2002). 

In mammals these channels interact with L-Glu and form an important signalling 

aspect of the central nervous system (Forde and Lea, 2007, Davenport, 2002). A 

range of amino acids, including Glu are known to interact with GLRs and play a 

role in the signalling response of plant defence (Kwaaitaal et al., 2011). However, 

the relationship between amino acids and GLRs has yet to be implicated in N 

signalling (Forde and Lea, 2007, Lam et al., 2006). 

Using the pNRT2.1(1201)::GUS reporter line in a split root experiment 

Girin et al. (2007) showed that a strong nitrate induction of NRT2.1 in low nitrate 

conditions could be repressed by exposing the rest of the root system to a high 

ammonium nitrate concentration (Girin et al 2007). This provides further support 

for the evidence of long distance signalling regulating NRT2.1. Girin et al. (2010) 

with the Arabidopsis high nitrogen insensitive (HNI) mutants (hni9-1, hni48-1, 

hni140-1) presented a new class of signalling mutant which is not regulated by N 

long distance signalling. This was demonstrated in split root experiments where 

the mutants roots in low nitrate conditions displayed increased NRT2.1 

expression in response to the rest of the root system being exposed to high N 

conditions (Girin et al., 2010). Comparatively, in the wild-type plants no increase 

in NRT2.1 expression was present, showing that the mutants are insensitive to 

long distance signalling, potentially elicited by reduced amino acids. Further 
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analysis has shown that in the hni9-1 and hni48-1 lines displayed lower 

concentrations of internal Gln, compared to wild-type Arabidopsis (Girin et al., 

2010), suggesting that the regulation of NRT2.1 and other stages in the N 

assimilation pathway are altered in the mutants.   

 Recent developments in long distance signalling of N acquisition in 

Arabidopsis reported that a bZIP transcription factor involved in the regulation of 

shoot growth in response to light, Elongated Hypocotyl 5 (HY5) were observed to 

regulate AtNRT2.1 induction in response to nitrate (Chen et al., 2016). HY5 in the 

shoots promotes the production of carbohydrates and sugars from 

photosynthesis and increases their transport to the roots, which in turn 

upregulates AtNRT2.1. However, using a HY5-GFP line it was reported that HY5 

was translocated to the shoots in response to nitrate, suggesting that HY5 itself 

is a signalling molecule. In hy5 Arabidopsis mutants the light and sugar induction 

of NRT2.1 expression did not occur, demonstrating its important role in NRT2.1 

regulation. Conclusively, they reported that HY5 directly interacts with NRT2.1, 

using ChIP and EMSA to show that HY5 binds to the NRT2.1 promoter, allowing 

positive regulation of NRT2.1 (Chen et al., 2016). 

Recent research has reported that a mobile hormone in Arabidopsis, C - 

terminally encoded peptide (CEP) has a role in root to shoot signalling of NRT2.1 

regulation (Ohkubo et al., 2017). Split root Arabidopsis experiments reported that 

N-starved roots induced the production of CEP, which is detected by a leucine-

rich repeat receptor kinase, CEP Receptor 1 (CEPR1) found in the leaves. 

CEPR1 induces the production of CEP Downstream 1 (CEPD1) and CEP 

Downstream 2 (CEPD2) which are transported to the roots in the phloem and 

reported to regulate the induction of NRT2.1 by nitrate. This was shown using a 

cepr1-1 mutant in the presence of nitrate which failed to upregulate NRT2.1. 

Additionally, they overexpressed CEPR1, fusing it to a 35-S promoter and 

reported that NRT2.1 induction in the presence of nitrate was increased up to 7-

fold, compared to the wild-type (Ohkubo et al., 2017). These findings suggest an 

important role for CEP in regulating NRT2.1 expression. 

 

1.4.6 Summary of NRT2.1 and NRT2.1 regulation 

As described in this literature review there are many regulatory factors that 

influence the expression of NRT2.1 and the activity levels of NRT2.1. These 
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regulatory factors have been shown to be responsive to the N status of the plant 

and are under the influence of local and long distance signalling. The NRT2.1 

gene, and consequently the NRT2.1 transporter responses to nitrate can be 

categorised in a number of stages for Arabidopsis (Fig. 1.3): 1. Nitrate available 

to the plant roots is passively imported by members of the NRT1 and NRT2 

families. 2. Imported nitrate in the root upregulates AtNRT2.1 expression. 3. 

NRT2.1 transporter activity increases, as its activity is under the transcriptional 

control of its gene, causing nitrate to be actively imported into the roots. 4. Internal 

nitrate is reduced in the N assimilation pathway, resulting in the production of 

reduced forms of N (i.e. amino acids, such as Gln and Glu). 5. As internal nitrate 

concentrations are progressively reduced end products of assimilation 

accumulate inside the plant. 6. This accumulation of amino acids results in the 

repression of AtNRT2.1 expression. 7. Repression of AtNRT2.1 results in the 

reduction of NRT2.1 activity, causing a strong decrease in the transporter’s 

activity. 8. Over time the plant utilises internal N stores causing the concentration 

of amino acids to decrease. 9. The depletion of internal amino acids pools results 

in the alleviation of AtNRT2.1 repression. 

 

 

 

1.5 The importance of chemical biology  

The use of chemical genetics has emerged in recent years as a powerful new 

tool to probe plant signalling pathways, more specifically their corresponding 

Figure 1.3 Overview of AtNRT2.1 and NRT2.1 regulation in response to nitrate 

in Arabidopsis Gene expression or protein activity is either upregulated (green) or 

repressed (red) based on the N status of the plant. 
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genes in a high-throughput manner (Dejonghe and Russinova, 2017, 

Norambuena et al., 2009, McCourt and Desveaux, 2010). The premise behind 

this approach is to target a process or gene of interest, with a readily measurable 

signal or plant trait and challenge it with bioactive chemicals, screening for an 

interaction. These libraries can contain a wide range of natural and synthetically 

produced compounds, selected for bioactivity in specific species or targeting 

certain signalling pathways. The identification of novel compound interactions 

allows poorly understood processes to be characterised and mechanisms 

associated with the targeted process to be uncovered (Serrano et al., 2015, 

McCourt and Desveaux, 2010, Dejonghe and Russinova, 2017).  

A chemical genetics approach presents certain advantages over 

traditional genetics. Applied chemicals can have a transient and reversible effect 

on a process of interest, which can temporarily produce the same effect as a loss 

or gain of function allele in a mutant plant line (McCourt and Desveaux, 2010). 

This avoids the issue of functional gene redundancy and lethal gene alterations 

that are associated with the production of mutant lines for a traditional genetics 

approach. However, it is important to note that the use of mutant lines is still 

prevalent in the field of chemical genetics to both validate screening assays and 

help confirm the target of identified chemicals of interest (Dejonghe and 

Russinova, 2017, McCourt and Desveaux, 2010). 

Today chemical libraries contain molecules that are new to the scientific 

community due to novel developments in chemical synthesis techniques. These 

advances have given academics worldwide access to libraries that before would 

have only been available to industrial companies (McCourt and Desveaux, 2010). 

Typically, chemical libraries are distributed in small concentrated quantities in a 

microtiter assay plate containing 96 or 384 wells. This not only allows for easy 

distribution of the libraries, but a compact way to store them in a non-industrial 

laboratory context (McCourt and Desveaux, 2010, Norambuena et al., 2009, 

Dejonghe and Russinova, 2017). 

 

1.6 Aims and objectives 

The overall aim of this thesis was to adopt a chemical genetics approach to 

investigate the mechanism of N feedback repression on the nitrate transporter 
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gene NRT2.1 in Arabidopsis. This involved: 1. Identifying a suitable Arabidopsis 

reporter line to monitor NRT2.1 expression; 2. Developing a screening platform 

that would both accommodate the relevant reporter line assay and allow the 

screening of chemical libraries in a high-throughput manner. 3. Optimising the 

procedures associated with the developed screening platform to determine that 

it was statistically viable. 4. Screening thousands of small bioactive molecules in 

the search for antagonists of NRT2.1 N-repression; 5. Perform a detailed analysis 

of small molecules identified in this screen to determine the mode of action in 

relation to NRT2.1.  

This is the first report of a chemical genetics approach being used to 

investigate the mechanisms of N-repression. Until now the specific mechanisms 

of NRT2.1 N-repression have remained undetected despite much investigation. 

This research moves beyond the previous studies described in the literature 

review as it employs thousands of bioactive chemicals, known to have targets in 

plants while focusing on NRT2.1 N-repression. This provides the possibility to 

observe NRT2.1 N-repression under novel conditions as, for the first time, 

thousands of previously untested interactions were employed to challenge the 

poorly understood process of N-repression. 

1.7  Hypothesis 

This research hypothesises that the expression of NRT2.1 is responsive to 

external sources of N as they influence the N-signalling status of the plant, which 

in turn regulates the expression of NRT2.1. Through screening multiple chemical 

libraries containing a vast and diverse array of small bioactive molecules it is 

hypothesised that the broad range of interactions within the plant will yield some 

molecules that influence the regulatory mechanisms associated with NRT2.1 N-

repression. These chemicals are hypothesised to antagonise NRT2.1 N-

repression by interfering with the regulatory components under the influence of 

the N-signalling status of the plant.  
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Chapter 2. Materials and Methods 

 

2.1 Plant materials 

2.1.1 Wild type Arabidopsis thaliana 

Wild type plants, Arabidopsis thaliana L. accession, (Columbia ecotype, Col-0) 

were obtained from the European Arabidopsis Stock Centre (catalogue no. 

N60000, http://arabidopsis.info/). 

 

2.1.2 Arabidopsis nitrogen signalling reporter lines  

The NRP-YFP Arabidopsis line (Columbia ecotype, Col-0) contained a synthetic 

promoter with fragments from NIA1 and NiR joined onto a 35-S minimal promoter 

(Wang et al., 2009) and were obtained from Dr Nigel Crawford, University of 

California. The YFP signal produced by this line was used to investigate the N 

status of the plant. 

The pAtNRT2.1(1201)::GUS and pAtNRT2.1(546)::GUS (Columbia 

ecotype, Col-0) Arabidopsis line contained a fused 1201 bp and 456 bp fragment 

corresponding to the sequence located upstream of the AtNRT2.1 initiation codon 

to the β-glucuronidase (GUS) coding sequence (Girin et al., 2007). Promoter 

fragments were originally inserted at the Nco1 restriction site, at the initiation 

codon of the GUS/3’ NOS reporter gene of the pBin19 binary vector (Bevan 

1984).  The pAt35-S::GUS Arabidopsis line contained a CaMV 35S promoter 

fused to the GUS coding sequence (Columbia ecotype, Col-0). Seeds for both 

lines were obtained from Dr Marc Lepetit, French National Institute for Agricultural 

Research. The GUS signal produced by these lines was to investigate the 

expression of NRT2.1. 

The pAtNRT2.1∷LUC line (Columbia ecotype, Col-0) contained a 1,202 bp 

promoter DNA fragment, located upstream of the NRT2.1 translation initiation 

codon (HindIII-NcoI fragment; Nazoa et al., 2003) fused to the promoterless 

cassette LUC::tNOS (derived from pSP-luc+, Promega). This cassette was 

inserted as a HindIII-EcoRI fragment into the pBIB-HYG binary vector (Becker, 

1990; Girin et al., 2010). Seeds were obtained from Dr Marc Lepetit, French 

National Institute for Agricultural Research. The luminescence signal produced 

by this line was used to investigate the expression of NRT2.1. 
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2.1.3 Arabidopsis topoisomerase mutant lines  

The AtTop1α-1 mutant was identified in T-DNA–tagged lines, in the Arabidopsis 

Columbia background (Takahashi et al., 2002). 

 The AtTop1α-2 mutant was identified in an ethyl methylsulfonate 

mutagenizing screen of an Arabidopsis ag-10 mutant line, in the Arabidopsis 

Columbia background. AtTop1α-2 contained a C-to-T mutation present in the 

second exon of TOP1 α (Liu et al., 2014). 

 The Atmgo1-7 mutant line containing an insertion allele mgo1-7 

(SALK_112625) originally identified from a SALK collection of T-DNA– tagged 

lines, in the Arabidopsis Columbia background (Graf et al., 2010; Alonso, 2003). 

 All topoisomerase mutant lines were obtained from Dr Yoshibumi Komeda, 

The University of Tokyo and were used to investigate the primary root growth 

response compared to the wild-type in the presence of camptothecin.  

 

2.1.4 High nitrogen insensitive (HNI) Arabidopsis signalling lines 

The hni140-1 and hni48-1 lines were originally identified from an ethyl 

methylsulfonate mutagenizing screen performed on the pAtNRT2.1∷LUC line in 

the Arabidopsis Columbia background. The mutations were mapped, the hni140 

mutant was linked to the nga1280 marker (approx. 11 cM from the mutations) 

and the hni48-1 was linked to the nga111 marker (approx. 11cM from the 

mutation) (Girin et al., 2010). Seeds for both lines were obtained from Dr Marc 

Lepetit, French National Institute for Agricultural Research and were used to 

investigate the effect of N-repression in comparison to wild-type under this study’s 

conditions. 

 

2.2 Chemical libraries 

2.2.1 The ‘Library of AcTive Compounds on Arabidopsis’ (LATCA library)  

The LATCA Library (Zhao et al., 2007) consists of 3,580 compounds and was a 

kind gift of Dr Sean Cutler (University of California, Riverside). The chemicals 

were supplied in dimethyl sulphoxide (DMSO) at 2.5 mM in 96-well plates. When 

used for the primary screen 1.5 µl of each stock chemical was added to the liquid 

medium in the assay plate well (final volume 150 µl), giving an initial concentration 

of 25 µM of the chemical and 1% (v/v) DMSO in the well. Additional information 

can be found at http://www.thecutlerlab.org/2008/05/latca.html 
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2.2.2 The ‘Library of Pharmacologically Active Compounds’ (LOPAC 

library)  

The LOPAC Library (Sigma-Aldrich, UK) consisted of 1280 compounds at 10 mM. 

When used for the primary screen, 1.5 µl of each stock chemical was added to 

150 µl liquid medium in the assay plate well, giving an initial concentration of 100 

µM of the chemical and 1% (v/v) DMSO. The composition of the LOPAC library 

is available from the supplier’s website (http://www.sigmaaldrich.com/life-

science/cell-biology/bioactive-small-molecules/lopac1280-navigator.html). 

 

2.2.3 ‘The Spectrum Collection’ chemical library  

The Spectrum Collection (MicroSource, Discovery Systems, Inc, USA.) consisted 

of 2560 bioactive compounds and natural products at 10 mM in DMSO. When 

used for the primary screen, 1.5 µl of each stock chemical was added to 150 µl 

liquid medium in the assay plate well, giving an initial concentration of 100 µM of 

the chemical and 1% (v/v) DMSO in the well. The composition of the Spectrum 

Collection is available from the supplier’s website 

(http://www.msdiscovery.com/spectrum.html). 

2.3 Nutrient media  

All growth media were based on Gamborg’s B5 nutrient medium (Gamborg et al., 

1968). 

2.3.1 Concentrated Stock Solutions. The compositions of the 10 x 

Macronutrient and 100 x Micronutrient stock solutions are shown in Tables 2.1 

and 2.2, respectively. Stock solutions were stored in the dark at 4°C for up to 

several months. 

 

 

 



 
 

29 

 

Chemical Concentration in stock solution 
Final concentration in 
B5/50 

KCl 50 mM 0.1 mM 

MgSO4 20 mM 0.04 mM 

CaCl2 10 mM 0.02 mM 

NaHPO4 11 mM 0.022 mM 

MnSO4 450 µM 0.9 µM 

 

Chemical Concentration in stock solution 
Final concentration in 
B5/50 

KI 450 µM 90 nM 

H3BO3 4.85 µM 0.97 nM 

ZnSO4 0.7 µM 0.14 nM 

CuSO4 10 µM 2 nM 

Na2MoO4 103 µM 20.6 nM 

CoCl2 10.5 µM 2.1 nM 

 

These stock solutions were used to prepare a 20x basal medium that did not 

contain N or sucrose. To make the 20 x basal medium approximately 900ml of 

dH2O was added to a 1 L measuring cylinder. To this the following was added (in 

order): 

1) 40 ml 10 x Macronutrient stock solution  

2) 4 ml 100 x Micronutrient stock solution  

3) 0.8 ml 90 mM Fe-Na-EDTA (final concentration 3.6 mM in B5/50 

solution) 

4) 10 g 2-(N-Morpholino)ethanesulfonic acid, 4-Morpholineethanesulfonic 

acid (final concentration 2.56 mM in B5/50 solution) 

 

Table 2.1 Composition of the 10 x macronutrient stock solution and final 

concentrations. 

 

Table 2.2 Composition of the 100 x micronutrient stock solution, and final 

concentrations. 
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The pH of the 20 x basal medium was adjusted to 5.7 using potassium hydroxide. 

 

2.4 Seed preparation 

2.4.1 Seed sterilisation  

Arabidopsis seed were washed for 1 min in absolute EtOH, then 10 min in a 20% 

(v/v) bleach solution containing 0.01% (v/v) Triton X-100, followed by five washes 

with sterile dH2O. Seed was allowed to air dry in the flow bench, except when it 

was to be sown wet on the screening platform, in which case it was kept in water 

in the dark at 4°C for 48 h for stratification.   

 

 

2.5 Arabidopsis growth on vertical agar plates  

Vertical agar plates (90 mm diameter, triple vented, Starstedt, www.sarstedt.com) 

contained 24 ml of nutrient medium (B5/50 basal medium, 20 µM Gln, 0.5% 

sucrose, 1% (w/v) agar). 20 seeds were sown in a line at the top of the plate using 

a sterile toothpick. Plates were placed in the growth room at 22°C, 16 h light/ 8 h 

dark photoperiod with a light intensity of 70 µmol m-2 s-1).  
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2.6 Screening platform  

2.6.1 The FrameStrip method This setup (Figs. 2.1 and 2.2) was based on a 

previously described microphenotyping platform (Forde et al., 2013). It consisted 

of twelve sterile FrameStrips (4titude, http://www.4ti.co.uk) each containing eight 

0.3 ml growth tubes. Each tube was filled, under sterile conditions with 250 µl of 

nutrient medium (B5/50 basal medium with 25 µM NH4NO3, 1 mM MgCl2, 1 mM 

CaCl2, 0.5% (w/v) sucrose, 0.8% (w/v) Phytagel). The bases of the tubes were 

excised approximately 2 mm from the base and the FrameStrips were placed in 

a 96- well microtiter plate (Costar, Fisher Scientific), each well containing 150 µl 

liquid nutrient medium (B5/50 basal medium with 25 µM NH4NO3, 1 mM MgCl2, 

1 mM CaCl2, 0.5% (w/v) sucrose). A suspension of sterile Arabidopsis seeds were 

pipetted onto the surface of the agar in each tube (five to six seeds per tube) and 

the platform was placed in a growth box (Fig. 2.3). The growth box was 

transferred to the growth room and seeds were allowed to germinate. Typically, 

after 7 days of growth the primary root would have reached the bottom of the 

tubes.   

 

 

Figure 2.1 The set-up of the FrameStrip method. The typical platform set-up 

is shown, with twelve FrameStrips, each comprising of eight growth tubes, placed 

in a 96-well assay plate. Each tube contains about 300 µl nutrient medium and 

has been sown with five to six Arabidopsis seed. 
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Figure 2.3 Growth box housing the FrameStrip platform. Plastic 

packaging from the assay plates was used to create a growth box. One end 

is secured with tape to form a hinge, the other is secured with a paper clip. 

The overall dimensions are 13 cm x 9.5 cm x 5 cm. 

 

A 

B 

Figure 2.2 A closer look at the FrameStrip method setup: A. side view of 

the growth tubes filled with solid media in which the Arabidopsis seedlings 

were grown; B. a side view of the Framestrip set-up, showing growth tubes 

sitting in the 96-well assay plate. 
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2.6.2 The luciferase screening platform. For screens involving the 

pNRT2.1::LUC reporter line the FrameStrip method was used with some 

modifications to allow sufficient root material to be harvested from each tube for 

luciferase assays. The NH4NO3 concentration was increased to 50 µM and the 

Phytagel concentration was reduced to 0.7% (w/v). For consistency solid growth 

medium in growth tubes was standardised at 250 µl. Additionally, the surface of 

the growth tube solid nutrient media was broken up with a pipette tip prior to seed 

sowing to aid penetration of the roots. The size of the growth box was also 

increased to 14 cm x 11 cm x 11cm to increase humidity. Additionally, the number 

of seeds sown per well was optimised to ensure the sufficient and consistent 

production of root material between growth tubes. 5 seeds per growth tube 

resulted in the insufficient production of root material and more than 6 seeds per 

growth tube produced variation in the amount of root material that was able to 

protrude from the root base due to seedling competition (identified visually). As a 

result 5 – 6 seed were sown per well for experimentation. On day 7, when the 

roots had reached the base of the growth tubes, the FrameStrips were raised 

vertically by 1.6 mm using bespoke acrylic supports, placed either side of the 96-

well assay plate and secured using 3M micropore tape (Fig. 2.4). At the same 

time the remaining liquid medium in the wells was replaced with a fresh aliquot of 

150 µl liquid nutrient medium. The platform was then returned to the growth room 

for an additional 5 days to allow the roots to grow out of the base of the growth 

tubes and into the liquid medium. By day 12 sufficient root material for 

experimental treatments had emerged from the base of the growth tubes (Fig. 

2.5). According to the experiment, N and chemical treatments were applied over 

the subsequent days. On day 14 roots were harvest using the ‘ice capture’ 

method (Section 2.6.3) and analysed for luminescence via a luciferase assay 

(Section 2.7). 

 

2.6.3 Harvesting root material using the ‘ice capture’ method. A method for 

harvesting roots for the luciferase assay was developed that was based on the 

Ice-cap method (Krysan, 2004) that was originally developed for capturing root 

material for genotype analysis. FrameStrips with seedlings and extended root 

systems were transferred to a flat-bottomed black 96-well assay plate (Thermo 

Scientific, UK), containing 150 µl 100 mM K+ phosphate buffer, pH 7 per well. 
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Acrylic supports were installed on the new assay plate (Fig. 2.4) to ensure only 

the emerging roots were bathed in the buffer. The set-up was then left at -30°C 

overnight, allowing the buffer to freeze, capturing the roots in ice (Fig. 2.5B). 

While the ice was still frozen Framestrips were removed, leaving the root material 

behind (Fig. 2.5C) and discarded, leaving the crude root extracts captured in ice 

in the assay plate (Fig. 2.5D). Once solutions had thawed and reached ambient 

temperature the luciferase assay was performed (Section 2.7). 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Increasing the height of the FrameStrips to allow roots to 

develop in the space below the growth tubes A) Each support consisted 

of two acrylic strips fused together: a base piece (120 mm x 3 mm x 13 mm) 

and a second piece (120mm x 8mm x 3mm) on top that provided a protruding 

lip for the FrameStrips to rest on. B) and C) Supports were installed 

lengthways along the assay plate. D) FrameStrips resting on the supports to 

raise the height of the growth tubes. 
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Figure 2.5 Using ‘ice capture’ to harvest root samples for analysis via 

enzymatic assay A. FrameStrips were transferred to a black 96-well assay 

plate where emerging root material was submerged in 100 mM K+ phosphate 

buffer pH 7. B. The plate setup was frozen overnight, capturing the emerging 

root samples in ice. C. FrameStrips were broken off leaving root samples in 

the assay plate. D. Once the samples were thawed the crude root extracts 

were ready for the luciferase assay. 
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2.7 Assaying luciferase activity 

2.7.1 Firefly luciferase bioluminescence 

The luciferase assay is a favourable method for detecting interactions with a 

known target in the field of drug discovery (Lundin, 2000; Fan and Wood, 2007). 

The reaction between the luciferase enzyme, its substrate (luciferin) and ATP 

produces a detectable burst of light that can be used to measure gene expression 

in luciferase reporter plant lines, where the luciferase gene is under the 

transcriptional control of the gene of interest (Lundin, 2000; Baldwin, 1996; Fan 

and Wood, 2007). This bioluminescence reaction is used in this research to 

monitor the expression of NRT2.1, where firefly luciferase production was under 

the transcriptional control of the NRT2.1 promoter.  

Firefly luciferase is a 61 kDa monomeric enzyme that initially combines 

with luciferin to form an enzyme bound intermediate, luciferyl-AMP (a by-product 

of this interaction is inorganic pyrophosphate (PPI)) (Lundin, 2000; Fan and 

Wood, 2007). This intermediate reacts with molecular oxygen to create a high 

energy enzyme bound intermediate known as oxyluciferin (by-products of this 

interaction are H+, CO2 and adenosine monophosphate (AMP)) (Lundin, 2000; 

Fan and Wood, 2007). As the high energy intermediate oxyluciferin transitions to 

the ground state photons are emitted, producing a burst of light with a maximum 

spectral range of 560 nm (Figure 2.6) (Fan and Wood, 2007). 

 

 

Figure 2.6 Firefly luciferase bioluminescence Molecular interactions of the 

firefly luciferase enzyme, the luciferin substrate and ATP in the presence of 

oxygen to produce bioluminescence. Diagram adapted from Fan and Wood 

(2007).  
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2.7.2 Luciferase assay  

Black opaque assay plates containing crude pNRT2.1::LUC root extracts 

(produced using the FrameStrip method), 150 µl 100 mM K+ phosphate buffer pH 

7, 1 mM D-Luciferin, Sodium Salt (BioVision, BioVision Incoporated) and 4mM 

ATP (Sigma-Aldrich, St. Louis, USA), were analysed for luminescence in a 

dedicated luminescence microplate reader.  

 

2.7.3 Preliminary testing for the luciferase assay 

2.7.3.1 Root mass determination using propidium iodide 

To ascertain that an equivalent mass of root material was being produced from 

each growth tube in a single luciferase screening platform setup a preliminary 

experiment was conducted. The screening platform was set up 8 times, using the 

FrameStrip method, each plate yielding 96 root samples per setup. Using the ‘ice 

capture’ method the samples were harvested into black opaque plates. Propidium 

iodide (10 ug/ml) was pipetted into each well manually before the plate was  

inserted into a microplate reader (LUMIstar Omega (BMG LABTECH)). The plate 

was immediately shaken (double orbital rotation, 500 rpm, 2 sec) and the 

fluorescence was recorded using the following settings: top down optic, emission: 

excitation: 535 nm, emission: 617 nm, lens height: 1 mm, measurement value: 

fluorescence intensity (%) using the ‘Fluorescence Endpoint’ read mode (read 

duration 5 sec). The process was repeated for each well until all the wells were 

processed. The microplate reader temperature was set at 30°C. Data was 

retrieved using MARS Data Analysis Software (BMG Labtech, UK) and 

transferred to Excel (data not shown). This experiment showed that there was an 

equivalent mass of root material between each individual sample in a single 

luciferase screening platform setup. 

2.7.3.2 Testing the efficacy of the ‘ice capture’ method to release the 

luciferase enzyme from root material 

Preliminary testing was performed to determine the effectiveness of the ‘ice 

capture’ method in releasing the luciferase enzyme from the root samples’ cells. 

The screening platform was set up 8 times, using the FrameStrip method, with 

samples in columns 1-11 being induced (0.3 mM KNO3, 24 hrs), while samples 

in column 12 were the uninduced (background N only, 200 µM NH4NO3). Using 

the ‘ice capture’ method the samples were harvested into black opaque plates. 
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The ATP was pipetted into the wells manually before inserting the plate into the 

luminometer. Luciferin was applied to a single well using a reagent injection 

system, the plate was immediately shaken (double orbital rotation, 500 rpm, 2 

sec) and the luminescence recorded using the following settings: top down optic, 

emission: UV lens, gain: 4000 units, lens height: 1 mm, measurement value: 

relative light units (counts/sec) using the ‘Luminescence Endpoint’ read mode 

(read duration 5 sec). The process was repeated for each well until all the wells 

were processed. The luminometer temperature was set at 30°C. Data was 

retrieved using MARS Data Analysis Software (BMG Labtech, UK) and 

transferred to Excel. The experiment showed that the luminescence output was 

consistent within a microplate for all the induced samples, demonstrating a 

consistency in the ‘ice capture’ method’s freeze-thaw process to lyse root 

samples’ cells and release an equivalent amount of the luciferase enzyme for 

each sample (data not shown).  

Further experimentation was conducted to determine the effectiveness of 

the ‘ice capture’ method. Repeating the same methodology, 4 screening 

platforms were setup, however after the ‘ice capture’ method, once the solutions 

had thawed the crude root samples were removed from the microplates (leaving 

only the reaction buffer the root material had been frozen in). This experiment 

showed a similar luminescence output to all the experiments that had included 

the crude root material in each well. Additionally, there was an equivalent 

luminescence signal produced from the well of each induced sample per plate. 

This demonstrated that the freeze-thaw process was effective at lysing cells of 

the crude root extracts, allowing the luciferase enzyme leave the root material 

and react during the luciferase assay in the reaction solution of each well. 

 

2.7.4 Luminescence microplate readers  

Three different microplate readers were used in the course of the project and 

these are described in the following sections. 

 

2.7.5 PerkinElmer Victor II microplate reader  

The ATP and luciferin were pipetted manually into the wells before inserting the 

plate into the luminometer. The plate was immediately shaken (double orbital 

rotation, 500 rpm, 2 sec) and the luminescence recorded. The settings used were: 
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top down optic, read mode: linear, sensitivity: extra high, measurement value: 

relative light units (counts/sec) using the ‘Luminometry Endpoint’ read mode 

(read duration 5 sec) for each well until all the wells were processed. The 

luminometer temperature was set at 30°C. Data was saved and transferred to 

Excel (Microsoft Office, MS).  

 

2.7.6 LUMIstar Omega, BMG LABTECH  

The ATP was pipetted into the wells manually before inserting the plate into the 

luminometer. Luciferin was applied using a reagent injection system to a single 

well, the plate was immediately shaken (double orbital rotation, 500 rpm, 2 sec) 

and the luminescence recorded using the following settings: top down optic, 

emission: UV lens, gain: 4000 units, lens height: 1 mm, measurement value: 

relative light units (counts/sec) using the ‘Luminescence Endpoint’ read mode 

(read duration 5 sec). The process was repeated for each well until all the wells 

were processed. The luminometer temperature was set at 30°C. Data was 

retrieved using MARS Data Analysis Software (BMG Labtech, UK) and 

transferred to Excel. 

 

2.7.7 SpectraMaxi3x Multi-Mode Detection 

The ATP and luciferin were pipetted into the wells manually, with the addition of 

coenzyme A (5 µM) before inserting the plate into the luminometer. The plate was 

immediately shaken (double orbital rotation, 500 rpm, 2 sec) and the 

luminescence recorded using the following settings: top down optic, emission: UV 

lens, gain: 4000 units, lens height: 1 mm, measurement value: relative light units 

(counts/sec) using the ‘Luminescence Endpoint’ read mode (read duration 5 sec). 

The process was repeated for each well until all the wells were processed. The 

luminometer temperature was set at 30°C. Data was saved and transferred to 

Excel. 

 

2.7.8 Differences between the microplate readers  

The use of different microplate readers throughout the course of this research 

revealed that the raw luminescence output measured for a single sample varied 

between each luminometer. Luminescence values were recorded highest with 

the LUMIstar Omega, BMG LABTECH microplate reader, as the on-board liquid 
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injection system allowed the luciferin to be applied directly to each well and read 

instantaneously by the machine. This allowed the luminescence reading to take 

at the beginning of the enzyme reaction, when activity, and subsequently 

luminescence output were greatest. Where the luciferin substrate was added 

manually (PerkinElmer Victor II microplate reader and SpectraMaxi3x Multi-Mode 

Detection) and then the plate was inserted into the luminometer this initial phase 

of the reaction was missed. After this point the luminescence output does decline 

over time, but it was still sufficiently strong for recording experimental data for this 

research (Lembert and Idahl, 1995). To control for differences between the 

luminometers each experiment only uses a single luminescence plate reader and 

the machine is specified with the data for each experiment presented in this 

thesis. 

 

2.8 Treatment of pNRT2.1::GUS seedlings for the GUS histochemical assay 

Seven day old pNRT2.1::GUS seedlings, grown on nursery plates (Section 2.5) 

were nitrate induced by pipetting 1 mM KNO3 solution over their entire root 

system (2 ml) for a 24 h treatment period. Seedlings were then transferred to a 

12-well plate (Corning®, Sigma-Aldrich), each well contained a 1 ml 5-bromo-4-

chloro-3-indolyl glucuronide (X-Gluc) solution (1 mM X-Gluc, 0.5 mM K+ 

ferrocyanide, 0.5 mM K+ ferricyanide, 50 mM NaPO4 pH 7, 10 mM EDTA, 0.1% 

Triton X-100). The plate was sealed with electrical insulation tape, wrapped in the 

tin foil and left at 22°C, in darkness for 16 h. Plants were analysed visually using 

a light microscope (Leica MZFL III, Leica Biosystems) and images were captured 

using a CCD camera (Brunel Microscopes Ltd, UK) and transferred to the 

accompanying Leica software (LAS X, Leica Microsystems). 

 

2.9 Treatment of NRP-YFP seedlings and fluorescence imaging 

Seven day old NRP-YFP seedlings, grown on vertical agar plates (Section 2.5) 

were transferred to 12-well assay plates for a 24 h treatment with different 

combinations of inorganic N and Gln. Seedlings were then transferred to a glass 

slide and YFP expression was visualised using a fluorescence binocular 

microscope (Leica MZFL III, Leica Biosystems) equipped with a YFP filter (Leica 

Biosystems, UK) and a wide light spectrum lamp (Osram 100 W HBO mercury 
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short arc lamp). Excitation of YFP was via a 510 nm (20 nm band width) filter and 

emission was through a 560 nm (40 band pass) barrier filter. Images were 

acquired using ScopePhoto V3.1.475 (Brunel Microscopes Ltd). 

 

2.10 RNA extraction and real-time PCR 

2.10.1 Deep-well method for generating root material for RNA extraction  

A modification of the FrameStrip method was developed to allow more root 

material to be generated for RNA extraction (Fig. 2.7). Experimental differences 

included the use of 2.5 ml deep-well V-shaped assay plates (Thermo Fisher 

Scientific, UK), an increase in the background N supply to 100 µM NH4NO3 and 

an increase in the volume of liquid nutrient medium to 2.3 ml per well. Seedlings 

were grown for 14 days, with fresh aliquots of liquid nutrient medium being 

supplied on day 7 and 12. Chemical treatments and N treatments were applied 

on days 12 and 13, respectively.  

 

 

Figure 2.7 Deep-well culture of Arabidopsis seedlings for RNA extraction 

from roots The image shows FrameStrips in position on a deep-well plate. 

 

2.10.2 Harvesting roots from deep-well culture  

FrameStrips were removed from the assay plate, excess nutrient solution on the 

roots was removed with a paper towel and roots were rapidly frozen in liquid 
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nitrogen, in a pre-cooled mortar. Using a pre-cooled spatula, the frozen root 

material was severed from the FrameStrips and ground to a fine powder using a 

pre-cooled pestle. The frozen powder was transferred to pre-frozen 2 ml 

Eppendorf tubes (Sigma Aldrich, UK) and stored at -80°C. 

 

2.10.3 RNA extraction  

Total RNA was extracted and isolated from approximately 500 mg frozen root 

material using a modified protocol based on Verwoerd et al. (1989). The 

extraction was performed by adding 1 ml hot (80°C) phenol extraction and 

vortexing for about 30 sec until completely homogenized. The phenol extraction 

buffer was prepared by mixing 1 volume of phenol with 1 volume of extraction 

buffer [extraction buffer: 0.1 M LiCl, 1% (w/v) sodium dodecyl sulphate, 10 mM 

EDTA, 0.1 M Tris/HCl pH 8]. After addition of 500 µl chloroform: isoamyl alcohol 

(24:1) the mixture was vortexed for a further 30 sec and centrifuged at 6200 g for 

5 min at 4°C. The aqueous phase was transferred to a fresh 2 ml Eppendorf tube 

and a second extraction performed by adding 1 ml chloroform/ isoamyl alcohol 

(24:1) and repeating the vortexing and centrifugation steps. The aqueous phase 

was transferred to a fresh 2 ml Eppendorf tube and 1 volume 4 M LiCl was added 

and mixed.  

After allowing precipitation to occur overnight at 4°C, RNA was collected 

by centrifugation at 6200 g for 20 min at 4°C. Pellets were washed with 70% (v/v) 

ethanol and then recovered by centrifugation at 6200 g for 5 min at 4°C and 

allowed to air-dry. A DNase treatment was then applied by adding 7 µl of 1unit/µl 

RNase-free DNase, (Promega, USA), 15 µl DNase buffer (Promega, Madison, 

USA) and 128 µl diethyl pyrocarbonate (DEPC)-treated water. After leaving the 

mixture on ice for about an hour to dissolve samples were incubated for 30 min 

at 37°C. The volume was increased to 300 µl with DEPC-treated water and then 

another extraction was performed by adding 300 µl 1:1 

phenol:chloroform/isoamyl alcohol, vortexing and centrifuging at 6200 g for 5 min 

at 4°C. The aqueous phase was transferred to a fresh 2 ml Eppendorf tube and 

a further extraction performed by adding 300 µl chloroform/isoamyl alcohol, 

vortexing and centrifuging again. The aqueous phase was transferred to a fresh 

1.5 ml tube with the addition of one tenth volume 3 M NaOAc (pH 5.2) and 2.5 
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volumes ethanol. RNA was precipitated overnight at -30°C and collected by 

centrifugation at 6200 g for 20 min at 4°C. The pellet was washed with 70% (v/v) 

ethanol and allowed to air-dry. Finally, the RNA was dissolved in 40 to 60 µl 

DEPC-treated water on ice. 

Total RNA concentration was measured using 1 µl of each sample using 

a NanoDrop™ spectrophotometer (Thermo Scientific, Wilmington, USA). 

 

2.10.4 Gel electrophoresis  

RNA quality was assessed by electrophoresis on Tris Acetate EDTA (TAE) gels 

containing 1% (w/v) agarose, 40 mM Tris acetate pH 8.0 and 1 mM EDTA). For 

loading, each sample contained 0.5 µg RNA, 2 µl 5x DNA loading buffer (Bioline, 

USA) in a volume of 10 µl. Gels were run at 80 V for 40 min in 1x TAE buffer and 

RNA staining was performed using 10 µl of SYBR Safe (Thermo Fisher Scientific, 

UK) per 100 ml of gel. Gel images were captured using a Gel-Doc UV viewer 

(Bio-Rad, CA, USA). 

 

2.10.5 cDNA synthesis 

cDNA was synthesized from total RNA using Superscript III Reverse 

Transcriptase (Invitrogen, Carlsbad, USA). In a 0.5 ml PCR tube (Starlab Ltd, UK) 

each reaction contained 2 µg RNA, 1 µl 10 mM dT-Adapter primer (Invitrogen, 

UK) to a final volume of 13 µl. Samples were incubated at 70°C for 7 min to 

denature the RNA template and then placed on ice. To each reaction, 4 µl 5 x 

first strand buffer, 1 µl 0.1 M DTT, 1 µl 10 mM dNTP mix and 1 µl Superscript III 

Reverse Transcriptase as a mix was added, mixed and incubated in a peqSTAR 

96-well Universal Gradient PCR machine (peqLAB.DE) for 5 min at 20°C followed 

by 2 h at 50°C. A final cycle of 15 min at 70°C terminated the reverse transcription 

and the synthesized cDNA was stored at -30°C. 

2.10.6 Real-time PCR 

In a 1.5 ml Eppendorf tube, 1.1 µl of a 1:5 dilution of cDNA sample was added to 

0.6 µl 10 µM forward primer, 0.6 µl 10µM reverse primer, 0.02 µl ROX reference 

dye (Sigma Aldrich, USA), 8.9 µl DEPC-treated water and 11.75 µl SYBR Green 

Jumpstart Taq ReadyMix (Sigma Aldrich, USA). Details of the primers used are 
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in Table 2.3. The solution was mixed and 20 µl loaded onto a white, semi-skirted 

96 well-plate (4titude, Surrey, UK).  An Applied Biosystems 7500 Real Time PCR 

system (Life Technologies, Paisley, UK) was used to run the plates on a standard 

7500 run mode (2 min at 50°C, 10 min at 95°C and 40 cycles of 1 min at 60°C) 

with a dissociation stage added (15 sec at 95°C, 1 min at 60°C, 15 sec at 95°C, 

15 sec at 60°C). Results were visualised and analysed using the associated 7500 

software, version 2.0.5. Rn values were exported and mean primer efficiencies 

calculated by analysing the linear phase of reaction amplification curves using 

LinregPCR software (Ruijter et al., 2009). 

 The Normalized Relative Quantification (NRQ) method (Rieu and Powers, 

2009) was used to analyse the data.  It was decided that the NRQ calculations 

were most suitable due to the use of individual primers efficiencies and 

normalizations within the fold change calculations. The NRQ expression was 

calculated in relation to the Ct values and the primer efficiency (E) of the gene 

target (X) and the normalizing reference gene (N): NRQ = (Ex)-Ct, X / (En)-Ct, N
. The 

Ct results from the Real-time PCR analysis of genes related to N signalling under 

different N conditions and in the presence of camptothecin (Section 6.2.2) were 

normalized to Ct averages from two housekeeping genes, AtActin2 and an 

uncharacterized gene (At4g26410), which were run for each batch of cDNA. 

 

2.10.7 Real-time PCR Primers.  

Table 2.3 contains information on oligonucleotide primers used in real-time PCR 

analysis.
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Table: 2.3 Oligonucleotide primers used for real-time PCR analysis 

Gene 
Gene ID/ 
accession 

Primer 
name 

Forward primer Reverse primer 
Amplicon 
size 

Amplification 
efficiency 

AtActin2 At3g18780 AtActin2 CATGTTCACCACAACAGCAGAG ATCTCCTGCTCGTAGTCAACAG 87 bp 97% 
Uncharacterized 
protein            
(Kudo et al., 
2016) 

At4g26410 AtUKCONT TGATTCGGCTCCAGCGATTGAG TGGCTCCTTCCACCGATTCAAC 89 bp 95% 

Nitrate 
transporter 
AtNRT2.1 

At1g08090 AtNRT2.1 TGATTCGGCTCCAGCGATTGAG TGGCTCCTTCCACCGATTCAAC 97 bp 92% 

Nitrate 
transporter 
AtNRT2.2 

At1g08100 AtNRT2.2 GTAAGGAGGAGCAGCAGATTGG TTCCCTTTGTGGACGCTGCTG 99 bp 97% 

Nitrate 
transporter 
AtNPF6.3 
(NRT1.1) 

At1g12110 AtNRT1.1 TCGGCAGGTACCTAACGATTGC TGCATCTTGGTGGTCGAAGTCC 105 bp 98% 

Nitrate 
reductase 
AtNIA1 

At1g77760 AtNIA1 CATCCATTCAACGCCGAAGCAC TGCGGACGTAATGGAGTGGAAC 82 bp 94% 

Nitrate 
reductase 
AtNIA2 

At1g37130 AtNIA2 GGTCACGTTGAGTATCTCGGC TATTCCGGTTCCACCTGCCAAC 96 bp 97% 

Glutamine 
synthetase 
AtGLN1-1 

At5g37600 AtGLN1-1 TGACTGACCCTTCGCAGCTAC GATGACTTCACTGTCTTCACCAG 84 bp 99% 

Glutamine 
synthetase 
AtGLN1-2 

At1g66200 AtGLN1-2 CTGTGACCGATCCATCAAAACTTC AGATCACTTCACTGTCTTGACCAG 99 bp 94% 

Firefly 
Luciferase 
(Becker, 1990) 

U47123.2 
LUC GAGCACGGAAAGACGATGACGG TCCACAAACACAACTCCTCCGC 100 bp 

 

 98% 
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2.11 Statistical analysis 

2.11.1 Analysis of Variance.  

Analysis of Variance (ANOVA) was performed using GenStat 18th Edition 

Software (64-bit, VSN International Ltd). Calculations were performed to a 95% 

confidence of significance (F-test p value ≤0.05). Normally distributed data was 

analysed as it was. Data that was not normally distributed was log transformed 

to satisfy the assumptions of constant variance across treatment, the additivity of 

effects and to achieve a normal distribution. The least significant differences 

(LSD) of the means were calculated to a 5% level. 

 

2.11.2 Z FACTOR.  

The acceptability of the screening platform was assessed using the Z factor 

statistical parameter (Zhang et al., 1999) calculated using the following formula: 

 

Z factor =     1  -    3(σp + σn) 

                                 ǀµp -  µnǀ 

where 

σp  = standard deviation for the positive control being compared 

σn = standard deviation for the negative control being compared 

µp  = mean for the positive control being compared  

µn = mean for the negative control being compared 

Z factor values greater than 0.5 are interpreted as indicating that the assay is well 

suited to high-throughput screening and values between 0 and 0.5 as indicating 

that the assay is acceptable for high-throughput screening and values below 0 as 

indicating the assay is unsuitable for high-throughput screening. 
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Chapter 3. Developing a platform for use in a chemical genetics 

screen for antagonists of N repression  

 

 

Chemical genetics is an approach in which small bioactive molecules can be used 

to probe poorly understood biological processes. Chemical libraries of relevance 

to plant research contain compounds that can widely be grouped into plant 

hormones, growth regulators, herbicides and molecules of potential interest 

based on known biological activity in animals or yeast (e.g. pharmaceutical 

chemicals) (Kaschani and van der Hoorn, 2007, McCourt and Desveaux, 2010). 

To use a chemical genetics approach a high-throughput screening platform is 

required to efficiently test and identify compounds that perturb the process of 

interest. Plant reporter lines are a powerful tool when looking for easy ways to 

screen large numbers of chemicals for an interaction with a gene of interest 

(Burrell et al., 2017, Dejonghe and Russinova, 2017). 

 Like many other plant chemical genetics screens, this research will use 

Arabidopsis thaliana as the organism to screen the chemical libraries. 

Arabidopsis has many advantages for this approach given the many resources 

that are available, not least its genome sequence, the number of well-

characterized mutants and reporter lines, many of which are directly related to N 

signalling. Additionally, Arabidopsis has a short life cycle, grows in a wide array 

of conditions and is relatively small in size, characteristics that favour a chemical 

genetics screening platform (Dejonghe and Russinova, 2017, Serrano et al., 

2015, Burrell et al., 2017).  

 The primary objective of the work described in this chapter was to identify 

an Arabidopsis reporter line that would be suitable for use in a screening 

programme aimed at identifying chemical antagonists of N repression. Once 

identified, the second objective was to develop a screening platform that would 

be suitable for conducting large numbers of assays of the reporter line in 

conjunction with the application of libraries of small molecules.  

The NRP-YFP Arabidopsis reporter line developed by Wang et al. (2009) 

was the first candidate identified for potential use in this research. It contains a 

synthetic nitrate-inducible promoter (NRP), composed of fragments of the NIA1 
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(nitrate reductase) and NiR (nitrite reductase) genes fused to a CaMV 35-S 

minimal promoter. Wang et al. (2009) showed that NRP was nitrate-inducible 

(when treated with 20 mM KNO3), producing a significantly stronger fluorescence 

signal compared to uninduced seedlings (treated with 20 mM ammonium 

succinate). The NRP-YFP line was screened for individuals displaying reduced 

fluorescence under conditions of nitrate induction. Two mutants, Mut21 (nrg1) 

and Mut164 were found to contain mutations in the NRT1.1 and NLP7 genes, 

respectively. Comparison of Mut21 to a well-characterised nrt1.1 (chl1-5) mutant 

by Wang et al. (2009) showed that the expression of three nitrate-inducible genes 

(NIA1, NiR1 and NRT2.1) was reduced by more than 80% in both. Mut21 had a 

decreased nitrate uptake compared to the wild type, however the influx of nitrate 

and internal concentrations were high enough to cause NRT1.1 induction. This 

showed that low fluorescence of NRP-YFP seedlings was due to regulatory 

changes, not a disruption of nitrate uptake (Wang et al., 2009). NRP-YFP was 

therefore suitable for investigating N signalling in Arabidopsis in this project.  

Arabidopsis NRT2.1 GUS fusion reporter lines, containing a fused 1201 

bp or 456 bp fragment corresponding to the sequence located upstream of the 

AtNRT2.1 initiation codon to the β-glucuronidase (GUS) coding sequence 

(pAtNRT2.1(1201)::GUS and pAtNRT2.1(546)::GUS ) were identified as other  

candidate reporter lines. NRT2.1 has been shown to be a major target of N 

repression, which is strongly believed to be elicited by reduced forms of N (Filleur 

et al., 2001, Zhuo et al., 1999, Nazoa et al., 2003).  Studies using both 

pNRT2.1::GUS lines have shown that the GUS expression was induced in low 

nitrate conditions (0.3 mM KNO3), repressed in high N conditions (10 mM 

NH4NO3) and correlated closely to the plants’ endogenous NRT2.1 transcriptional 

state (Girin et al., 2007).  

An Arabidopsis NRT2.1 luciferase fusion reporter line (pNRT2.1::LUC) 

was identified as a suitable candidate for this research. Studies using the 

pNRT2.1::LUC line demonstrated that luciferase expression was inducible under 

low N conditions (0.3 mM KNO3) and was repressed under high N conditions (10 

mM NH4NO3) (Girin et al., 2010). Luciferase expression was also strongly 

correlated to the endogenous expression of NRT2.1 under these conditions (Girin 

et al., 2010). The study also performed a mutagenesis screen, selecting 

seedlings displaying increased luciferase expression under high N conditions, 
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termed High Nitrogen Insensitive (HNI) mutants (hni140-1, hni48-1 and hni9-1). 

It was shown that these mutants had no mutations in the NRT2.1 promoter 

sequence of the LUC transgene, thus the increase in luminescence was due to 

an impairment in N signalling (Girin et al., 2010).  

In summary, the aim of this chapter was to outline the preliminary research 

that was conducted in order to establish the foundations of this research project: 

1) Identifying an Arabidopsis reporter line suitable for monitoring the N signalling 

status of the plant. 2) Establishing a physical system for growing the Arabidopsis 

reporter line which would be both compatible with the specific assay associated 

with the reporter line and was suited to the high-throughput requirements 

associated with chemical genetics. This was achieved by testing a range of 

Arabidopsis lines with reporter genes associated with the N signalling status of 

the plant under different N regimes. Once a suitable reporter line was selected a 

novel screening platform was developed around the requirements of the reporter 

line’s screening assay that was compliant with the requirements of a chemical 

genetics screen. 
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3.1 Results  

3.1.1 Investigating the Arabidopsis NRP-YFP reporter line 

The NRP-YFP reporter line was first grown on vertical agar plates and induced 

for 24 h using 1 mM KNO3. A strong YFP fluorescence signal was detected in 

roots of all induced seedlings (Fig. 3.1C), compared to the uninduced (Fig. 3.1A). 

NRP-YFP was then tested to see if the signal could be N repressed. When 

seedlings were simultaneously exposed to 1 mM KNO3 and 5 mM Gln the YFP 

signal in roots was significantly reduced (Fig. 3.1B) and was visually 

indistinguishable from the uninduced (Fig. 3.1A).  

Figure 3.1 Fluorescence imaging of roots of NRP-YFP seedlings under 

different N regimes. Seven day old NRP-YFP seedlings, grown on vertical agar 

plates (see Section 2.5), were transferred to a 12-well plate and subjected to a 

24 h N treatment in liquid medium (see Section 2.9). A. Uninduced (background 

N only, 20 µM NH4NO3). B. N-repressed (1 mM KNO3 + 5 mM Gln). C. Induced 

(1 mM KNO3). Seedlings were then placed on glass slides and imaged for YFP 

fluorescence using a Leica MZFL III microscope (see Section 2.9). 

 

    A 
Uninduced 

      B 
N-repressed 

   C 
Induced 
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3.1.2 Investigating the Arabidopsis pNRT2.1::GUS reporter line  

Seedlings of the two pNRT2.1::GUS lines, pNRT2.1(546)::GUS and 

pNRT2.1(1201)::GUS, were grown on vertical agar plates for 7 days then 

transferred to 12-well assay plates for treatment. Nitrate induction with 1 mM 

KNO3 for 24 h produced a strong clear blue colour, predominately in the mature 

section of the root system (Fig. 3.2 A). To try to repress GUS expression a low (2 

mM) and high (10 mM) Gln treatment were applied simultaneously with 1 mM 

KNO3. Under both conditions, seedlings developed a clear blue colour 

predominately in the mature section of the root system (Fig. 3.2B and C). 

Compared to the 35S-GUS seedlings expression was slightly less under these 

repressive conditions. GUS expression for all three lines was near identical when 

nitrate treated alone (Fig. 3.2D). When all lines were uninduced only the 35S-

GUS line developed a blue colour (Fig. 3.2A) and the Col-8 showed an absence 

of GUS expression under all treatments (Fig. 3.2).  Of the two NRT2.1 reporter 

line variants, pNRT2.1(1201)::GUS seedlings displayed a slightly lower level of 

GUS expression under N repression conditions, compared to 

pNRT2.1(546)::GUS. However, in neither case was there a very clear distinction 

between the degree of staining in induced or N repressed conditions. 

Attempting to reduce GUS expression under N repressive conditions to a 

greater degree, the histochemical assay was performed for different times and at 

different temperatures. However, no significant improvements were produced. 

Additionally, a 3 h pre-treatment with Gln at both low and high concentrations 

before nitrate induction was tested. However no significant improvements were 

obtained.  
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Figure 3.2 Histochemical staining of two pNRT2.1::GUS lines under 

different N regimes. Seedlings of the pNRT2.1(546)::GUS and 

pNRT2.1(1201)::GUS lines, along with Col-8 and a 35S-GUS line as controls, 

grown on vertical agar plates were transferred to 12-well assay plates and 

subjected to different 24 h N treatments in the liquid medium. A. Uninduced 

(50 µM Gln, background N). B. N repressed, low Gln (1 mM KNO3 + 2 mM 

Gln). C. N repressed, high Gln (1 mM KNO3 + 10 mM Gln). D. Induced (1 mM 

KNO3). The histochemical GUS assay (Section 2.8) was performed for 16 h 

at 22°C in darkness. Seedlings in each image are ordered from left to right: 

Col-8, pNRT2.1(546)::GUS, pNRT2.1(1201)::GUS, 35S-GUS.  

A 
B 

C D 
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   N-repressed    

(NO3

-
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    N-repressed   

(NO3

-
 + high Gln) 

    Induced    

(NO3

-
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Col-8     546bp     1201bp      35-S Col-8      546bp       1201bp       35-S 
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3.1.3 Investigating the pNRT2.1::LUC reporter line 

pNRT2.1::LUC seedlings were grown on vertical agar plates for 7 days, then 

transferred to 96-well assay plates for treatment. Seedlings were induced for 24 

h with 1 mM KNO3 and N-repressed for 24 h with 1 mM KNO3 + 2 mM Gln. A 44-

fold increase in luciferase expression was detected in the induced samples, 

compared to the uninduced (Fig. 3.3), whereas when 2 mM Gln was present 

during the NO3
- induction the increase was only 8-fold. This indicates a very high 

degree of N-repression was achieved with this line under these conditions.  
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Figure 3.3 Luminescence response of pNRT2.1::LUC seedlings under 

different N regimes.  Seven day old pNRT2.1::LUC seedlings, which had 

been grown on vertical agar plates containing a background level of N (50 

µM Gln), were transferred to a 96- well assay plate and subjected to a 24 h 

N treatment: uninduced (50 µM Gln), N-repressed (1 mM KNO3 + 2 mM 

Gln), Induced (1 mM KNO3). Results are the mean of 8 (uninduced), 36 (N 

repressed) and 36 (induced) individual seedlings (± SE). The LUC assay 

contained 1 mM LUC and 4 mM ATP (Section 2.7.2) and was performed in 

a VictorII PerkinElmer dedicated luminometer (Section 2.7.5). Different 

letters denote statistically significant differences (ANOVA, p<0.05, 79 

degrees of freedom, LSD (5%) = 108.1). 

 

14 day old seedling material was excised from the base of the growth tubes in (1 per 

well), treated for 24 hours with 1mM KNO and assayed for luminescence (1mM luciferin, 

4mM ATP).Stats here and show 
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3.1.4 Developing an ‘ice capture’ method to make the luciferase assay 

compatible with a high-throughput screening platform 

Inspiration for developing a high-throughput screen came from an Arabidopsis 

microphenotyping platform previously described for observing changes in root 

architecture in a 96-well plate format (Forde et al., 2013). This platform used 

commercially available FrameStrips, consisting of strips of 0.3 ml PCR tubes, 

filled with solid nutrient medium and open at the bottom. The tubes rested in a 

96-well assay plate that contained liquid nutrient medium. This allowed chemical 

treatments to be applied from below while root development could be observed 

through the clear walls of the growth tubes. The experiments described in this 

section were aimed at adapting this approach to allow quantitative luciferase 

assays to be performed on roots of the pNRT2.1::LUC line in a similar 96-well 

format, something not previously done. 

The first task was to adapt the FrameStrip method to allow root tissue to 

be harvested from each of the growth tubes and in quantities sufficient for the 

luciferase assay. It was known that roots would continue to grow even after they 

had reached the bottoms of the FrameStrip tubes (Forde et al., 2013), raising the 

possibility that the protruding roots could be harvested for the luciferase assay. 

However, the space below the tubes in the 96-well plate was very restricted, 

severely limiting the amount of root material that could develop. Therefore, the 

FrameStrip platform was modified so that the FrameStrips could be raised by 1.6 

mm once the roots had begun emerging from the tubes (after about 7 days). This 

was done by resting the ends of the FrameStrips on custom-made acrylic strips 

placed at either side of the 96-well plate. This provided an enlarged volume under 

the growth tubes where seedling roots could grow down into the liquid medium 

and accumulate (see Fig. 3.4). To accommodate the prolonged growth of 

seedlings in the FrameStrip method the background concentration of N was 

increased form 50 µM to 100 µM NH4NO3 and the growth medium concentration 

of Phytagel was reduced from 0.8% to 0.7%. By day 14 there was a sufficient 

mass of root material emerging from the base of the tubes to perform the 

luciferase assay. 

 The next challenge was to find a way to harvest the emerging roots 

separately and rapidly from each well of the assay plate. The protocol that was 

developed was based on the ‘Ice-cap’ method, which was devised as a method 
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for harvesting Arabidopsis root material for genotyping (Krysan, 2004). In this 

project, once sufficient root material had emerged from the base of the growth 

tubes, the FrameStrips were transferred to an assay plate containing a luciferase 

assay buffer. Acrylic supports were installed, raising the base of the growth tubes 

above the level of the buffer solution and the entire platform was left overnight at 

-30°C. The FrameStrips could then be broken off from the assay plate, leaving 

the emerging roots captured in the frozen buffer (hence the term ‘ice capture’). 

The plate was then thawed and was ready to perform the luciferase assay. 

 

 

Figure 3.4 Root mass accumulation emerging from the base of the growth 

tubes after raising the FrameStrips The image shows how a mass of roots 

developed below the growth tubes that was easily accessible for harvesting 

samples for use in the luciferase assay. 
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3.2 Discussion 

 

In order to establish the foundations of a project employing a chemical genetics 

approach a suitable plant reporter line needed to be identified and a screening 

platform designed, which was both complimentary to the plant reporter line’s 

assay and the high-throughput principles of a chemical genetics screen. In this 

chapter both these criteria have been met, with the pNRT2.1::LUC Arabidopsis 

reporter line being identified and the development of the FrameStrip and ‘ice 

capture’ methods. pNRT2.1::LUC is suitable candidate to investigate the N 

signalling status of plants as the LUC reporter gene is under the transcriptional 

control of the NRT2.1 promoter, which is under the influence of the N status of 

the plant. Additionally, the developed platform allows both the efficient production 

of root material from pNRT2.1::LUC seedlings which can be treated with different 

forms of N and efficiently harvested for a luciferase assay. In this section these 

achievements will discussed in further depth. 

3.2.1 Identification of a suitable Arabidopsis reporter line 

A screening platform must have the ability to survey thousands of bioactive 

compounds for an interaction with a targeted process, in a high-throughput 

manner. It is therefore essential that when an interaction occurs, the result is clear 

and definitive. The NRP-YFP reporter line displayed a clear distinction between 

the induced and N-repressed samples (Fig. 3.1). The intention had been to use 

this reporter line in conjunction with the FrameStrip method and visualise the YFP 

signal through the walls of the growth tubes, much like analysis of root 

architecture in the microphenotyping platform. However, when tested the YFP 

signal was undetectable through the walls of the growth tubes, even in the 

induced samples (data not shown). In a similar manner, had the pNRT2.1::GUS 

reporter lines been more responsive to the N-repression conditions than they 

proved to be (Fig. 3.2), the roots were to be stained histochemically and GUS 

expression was to be visualised through the sides of the growth tubes. 

Interestingly, a study using the pNRT2.1(1201)::GUS and the 

pNRT2.1(546)::GUS reporter line also could not completely repress GUS 

expression under high N conditions (10 mM NH4NO3) (Girin et al., 2007).   
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 The results obtained with the pNRT2.1::LUC reporter line in this project 

(Fig. 3.3) were similar to the findings of Girin et al. (2010) who also demonstrated 

that luciferase expression was both strongly nitrate-inducible and N-repressible. 

However, while showing a similar repressive effect, this was achieved using 10 

mM NH4NO3, instead of the 2 mM Gln used here (Girin et al., 2010). Our results 

show that despite the presence of KNO3, Gln can strongly repress the 

luminescence response (Fig. 3.3), supporting the theory that end products of 

assimilation are major players in N-repression (Filleur et al., 2001).  

Based on the very strong difference seen in luciferase activity between 

nitrate-induced pNRT2.1::LUC roots in the presence and absence of 2 mM Gln 

(Fig. 3.3), it was decided that this was the most suitable reporter line for the 

proposed chemical genetic screen. This was supported by a study showing that 

luciferase expression of this reporter line, analysed via enzyme assay was tightly 

correlated to the endogenous expression of NRT2.1 (Girin et al., 2010). 

 

3.2.2 Developing the FrameStrip method for high-throughput root luciferase 

assay analysis 

Using the FrameStrip method, root growth for the first 7 days was taking place 

within the solid medium contained in the growth tubes. To maintain the platform’s 

high-throughput capacity it was not feasible to access this material for the 

luciferase assay. Instead, bespoke supports for the Framestrips were installed to 

create space underneath the growth tubes that roots could grow into and 

accumulate in the liquid medium contained in the wells of the microtiter plate. The 

‘ice capture’ method described in this chapter was developed to allow this root 

material to be harvested. The advantages of the ice capture method were that: 1. 

it allowed the roots growing in each well to be harvested and kept separate in the 

same 96-well format; 2. the rapid freezing reduced the opportunity for losing 

luciferase activity due to protease activity; 3. all roots on an individual plate were 

frozen and harvested simultaneously, which was both time-efficient and ideal for 

maintaining consistency across the plate. This relatively simple protocol was a 

key step in creating a screening platform that was compatible for use with the 

pNRT2.1::LUC reporter line. 
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3.2.3 Summary 

In this chapter a suitable Arabidopsis reporter line (pNRT2.1::LUC) was identified 

and selected to monitor the N signalling status of the plant. pNRT2.1::LUC, under 

N- repressed conditions showed a strong reduction in luminescence (similar to 

the uninduced), compared to the induced. The statistically significant 8-fold 

change in luminescence between N-repressed and induced treatments presents 

an Arabidopsis line suitable for the purposes of this study. With this reporter line 

a novel method of culturing root material from the pNRT2.1::LUC seedlings was 

designed. This use of the FrameStrip method and bespoke ‘ice capture’ system 

designed for this research allowed root material from the pNRT2.1::LUC reporter 

line to cultured and harvested ready for analysis in a high-throughput manner. 

The next step was to use this novel screening platform in conjunction with 

pNRT2.1::LUC to optimise N treatment conditions, optimise the luciferase assay 

and statistically validate the luminescence outputs from different N treatments for 

the screening platform, so it may be used for the purposes of chemical genetics 

in this research project. 
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Chapter 4. Establishing the conditions for use of the 

pNRT2.1::LUC reporter line in a screen for 

antagonists of N-repression 

 

  

In Chapter 3 it was established that of the three Arabidopsis reporter lines tested, 

the pNRT2.1::LUC line was the most suitable for the purposes of developing a 

chemical screen for small molecules that could interfere with N-repression of 

gene expression. In addition, the development of a 96-well plate system suitable 

for combining quantitative assays of luciferase activity in roots with the application 

of large numbers of small molecules was described. However, to turn this into a 

reliable protocol for the desired chemical genetics screen it was necessary to 

optimise each step in the procedure. 

As described in Chapter 3, a novel ‘ice capture’ method was developed for 

frozen root material from the pNRT2.1::LUC line for the luciferase assay. The 

next objective was therefore to find the most appropriate conditions for 

conducting the luciferase assay using this material. Further objectives were to 

optimise the timing and concentrations of the reagents required to induce and 

repress the pNRT2.1::LUC gene and to identify the reduced form of N that was 

most effective at repression of this reporter gene.  

The overall aim of this chapter was therefore to develop a protocol in which 

there was the clearest and most reproducible distinction between the luciferase 

activity measured in nitrate-induced roots and that measured in N-repressed 

roots. A statistical test (the Z factor statistical parameter) was therefore employed 

to establish that conditions for applying a chemical screen had been met (Halder 

and Kombrink, 2015). 

 

4.1 Results 

4.1.1 Optimising the luciferase assay  

The conditions used as the starting point for optimising the luciferase assay were 

from a previous study using the pNRT2.1::LUC Arabidopsis reporter line (Girin et 
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al., 2010). The effects of varying the concentration of the substrates, luciferin and 

ATP, were investigated as well as the potential for using bovine serum albumin 

(BSA) to stabilise the luciferase activity in the roots during the freezing and 

thawing process. 

4.1.1.1 Luciferin concentration A dose response curve for the luciferin 

substrate in the luciferase assay is shown in Fig. 4.1. As expected, increasing 

concentrations of luciferin were accompanied by an increasing amount of 

luminescence, up to a concentration of 0.5 mM. Above 1 mM there was no 

statistically significant increase in luminescence. Based on this result it was 

decided to use 1 mM as the standard for subsequent assays, as there was no 

added value in using higher concentrations.  

Figure 4.1 Effect on luciferase assay of varying the luciferin 

concentration. Seedlings of the pNRT2.1::LUC line (5 seedlings per tube) 

were grown for 14 days using FrameStrip method and then induced by 

treatment with 1mM KNO3. Roots were harvested after 24 h by the ice capture 

method and the luciferase assay conducted on crude extracts with 5 mM ATP 

at a range of luciferin concentrations. Luminescence measurements were 

made using a Perkin Elmer Victor II dedicated luminescence microplate 

reader (Section 2.7.5) and background adjustments were made by subtracting 

mean values from wild-type samples (15 Relative light units) Values are 

means ± SE (n=16), Different letters denote statistically significant differences 

(ANOVA, p<0.05, 79 degrees of freedom, LSD (5%) = 136.7). 
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4.1.1.2 ATP concentration A dose response curve for ATP in the luciferase 

assay is shown in Fig. 4.2. Increasing ATP concentrations above 1 mM produced 

no statistically significant increase in luminescence. Whilst there is no statically 

significant highest value, there is an apparent peak in mean luminescence at 4 

mM ATP, which was not enhanced by increasing the concentration to 6 mM.  

Based on this result a concentration of 4 mM ATP was chosen as the standard 

for subsequent assays. 

  

 

 

4.1.1.3 Bovine serum albumen as a stabilising agent The process of freezing 

and thawing the roots in the ice capture method was an effective way to both 

harvest the root material and to disrupt root tissue. However, there was concern 
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Figure 4.2 Effect on the luciferase assay of varying the ATP 

concentration. Root extracts were prepared as for Fig 4.1 and the luciferase 

assay was performed using 1 mM luciferin at a range of ATP concentrations. 

Luminescence measurements were made using a PerkinElmer Victor II 

dedicated luminescence microplate reader (Section 2.7.5) and background 

adjustments were made by subtracting mean values from wild-type samples 

(128 Relative light units). Error bars are means ± SE (n=16) and different 

letters denote statistically significant differences (ANOVA, p<0.05, 79 degrees 

of freedom, LSD (5%) = 94.8).  
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that the freeze-thaw process might lead to denaturation of the luciferase protein 

and/or to its degradation by proteases released from the vacuole or other cellular 

compartments. Bovine serum albumen (BSA) is a well-known stabiliser of 

enzyme activities (Tomoyasu et al., 2013) and in sufficient quantities it could also 

potentially act as a sacrificial protein to mop up excess proteolytic activity in the 

crude root extract.  

Fig. 4.3 shows that addition of BSA to the phosphate buffer in which the 

roots were frozen, over the range of concentrations tested (from 0 to 2 mg/ml), 

had no more than a minor effect on the measured luciferase activity, and 

statistical analysis indicated that the small positive effect at 2 mg/ml was not 

significant compared to the control. There was a significant difference between 

0.5 and 2 mM BSA, however given the overall findings of Fig. 4.3 and what is 

known about BSA the reduction in luminescence at 0.5 mM BSA, which led to the 

significant difference when compared to 2 mM BSA was thought to be artefactual. 
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Figure 4.3 The effect on the luciferase assay of including BSA at a range of 

concentrations in the extraction buffer. Root extracts were prepared as for Fig. 4.1 

and the luciferase assay was performed using 1 mM luciferin and 4 mM ATP in a 

Perkin Elmer Victor II dedicated luminescence microplate reader (Section 2.7.5). BSA 

was added at the indicated concentration to the phosphate buffer prior to freezing the 

roots. Values are means ± SE (n=16) and different letters denote statistically 

significant differences (ANOVA, p<0.05, 79 degrees of freedom, LSD (5%) = 118.8). 
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4.1.2 Effect of varying the concentration and duration of KNO3 treatment on 

induction of pNRT2.1::LUC expression 

Fig. 4.4 shows a time course for induction of pNRT2.1::LUC expression after 

addition of 1 mM KNO3 to roots of 14 day old seedlings. At time zero, prior to 

nitrate treatment, the background level of pNRT2.1::LUC expression was very 

low. The highest level of expression was found after 24 h, the end-point of the 

experiment, but with most of the increase occurring during the first 12 h. An 

apparent decrease in activity between 3 h and 6 h was not statistically significant 

and was not seen in other experiments (e.g. Fig. 4.6), so is thought to be 

artefactual.   

 

Figure 4.4 Time course of induction of pNRT2.1::LUC expression in roots. 

Seedlings of the pNRT2.1::LUC line were cultured for 14 days using the 

FrameStrip method in medium containing 50 µM NH4NO3. At Time 0, 1 mM KNO3 

was added to the solution in which the roots were bathed and roots were frozen 

at intervals up to 24 h after the start of the treatment. Luciferase activity was 

measured in root extracts using 4 mM ATP and 1 mM luciferin in a Perkin Elmer 

Victor II dedicated luminescence microplate reader (Section 2.7.5).  Values are 

means ± S.E. (n = 16) and different letters denote statistically significant 

differences (ANOVA, p<0.05, 75 degrees of freedom, LSD (5%) = 84.5). 

 

0

50

100

150

200

250

300

0 5 10 15 20 25

R
el

at
iv

e 
lig

h
t 

u
n

it
s 

(c
o

u
n

ts
/s

ec
)

Time (hours)

a

b

a/b

b/c

c



 

64 
 

Based on these results, a second experiment was performed to investigate 

the effect of varying the nitrate concentration on luciferase activity at two time 

points, 3 h and 24 h. As shown in Fig. 4.5, maximum luciferase expression was 

seen after 24 h in 0.3 mM KNO3, with higher concentrations (1 mM and 5 mM) 

producing slightly lower expression levels at this time point. At the earlier time 

point (3 h), the activities were much more variable, and were consistently much 

lower than at 24 h at all concentrations. In this case the highest values were seen 

at the highest nitrate concentration (5 mM). 

Figure 4.5 Effect of a range of concentrations of KNO3 on pNRT2.1::LUC 

expression at two time points after induction. Seedlings of the 

pNRT2.1::LUC line were cultured for 14 days using the FrameStrip method in 

medium containing 50 µM NH4NO3. At Time 0, KNO3 (at 0, 0.1, 0.3, 1 or 5 mM) 

was added to the solution in which the roots were bathed and roots were frozen 

at either 3 h (open circles) or 24 h (closed circles) after the start of the treatment. 

Luciferase activity was measured in root extracts using 4 mM ATP and 1 mM 

luciferin in a Perkin Elmer Victor II dedicated luminescence microplate reader 

(Section 2.7.5).  Values are means ± SE (n = 16) and different letters denote 

statistically significant differences (ANOVA, p<0.05, 152 degrees of freedom, 

LSD (5%) = 37.29). 
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Based on these results it was decided to select the two concentrations of 

KNO3 that gave the highest luciferase activities at 3 h and 24 h, respectively and 

to perform a more detailed time course with each. The results in Fig. 4.6 show 

that over the 24 h period after the start of treatment with 0.3 mM KNO3, there was 

a linear increase in luciferase activity. While the 5 mM treatment produced a much 

stronger linear increase in luciferase activity (a rate of increase that was 

approximately twice that seen at 0.3 mM), this peaked at 12 h, after which the 

activity had declined significantly by the 24 h time point. Thus, the maximum 

activity obtained with the two concentrations of nitrate was similar, but in the case 

of the 0.3 mM treatment this was seen at 24 h, while in the case of the 5 mM 

treatment it was seen at 12 h. In subsequent experiments 0.3 mM KNO3 and 24 

h was used for induction on the basis that the positive effects of the lower 

Figure 4.6 Comparison of the effects of two different concentrations of KNO3 

on the time course of induction of pNRT2.1::LUC expression. Seedlings of the 

pNRT2.1::LUC line were cultured for 14 days using the FrameStrip method in 

medium containing 50 µM NH4NO3. At Time 0, KNO3 (at 0.3 mM (open circles) or 

5 mM (closed circles)) was added to the solution in which the roots were bathed 

and roots were frozen at intervals up to 24 h after the start of the treatment. 

Luciferase activity was measured in root extracts using 4 mM ATP and 1 mM 

luciferin in a LUMIstar Omega, BMG dedicated plate reader (Section 2.7.6).  

Values are means ± SE (n = 16) and different letters denote statistically significant 

differences (ANOVA, p<0.05, 142 degrees of freedom, LSD (5%) = 94.6). 
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concentration of nitrate would be uncomplicated by the negative effects seen after 

24 h with 5 mM KNO3.   

4.1.3 Investigating the effect of the timing and concentration of Gln 

treatment on repression of nitrate-induced pNRT2.1::LUC expression  

A Gln treatment was initially chosen as the means to generate N-repression, 

based on previous evidence of Gln’s effectiveness as a N source for plants and 

its ability to down-regulate expression of NRT2.1 (Nazoa et al., 2003, Zhuo et al., 

1999). For the purposes of the chemical screen it was important that any 

repressive effect was sufficiently strong to produce levels of expression that were 

clearly distinguishable from those seen in the absence of Gln (nitrate alone). It  

was therefore decided to investigate the concentration of Gln necessary to 

achieve the highest level of N-repression and to determine whether the strength 

of the effect could be increased by applying the Gln in advance of the nitrate 

treatment. The idea of a Gln pre-treatment was that it would allow additional time 

for the Gln to enhance the N status of the plant and thereby strengthen its 

repressive effect. 

The results presented in Fig. 4.7 show that applying Gln at a concentration 

of 0.2 mM simultaneously with the inductive nitrate treatment had a strong 

repressive effect on pNRT2.1::LUC expression. At 2 mM Gln, luciferase activity 

in root extracts was slightly lower than at 0.2 mM Gln and approximately one third 

of that seen in the absence of Gln. Applying Gln 3 h before nitrate induction led 

to no significant increase in its repressive effect at any of the concentrations 

tested. Furthermore, supplying Gln 72 h in advance greatly diminished its 

repressive effect, such that significant repression was only seen at the highest 

Gln concentration (2 mM).  

  

C 

B 
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Figure 4.7 Investigating the effect of the timing and concentration of Gln 

treatment on repression of nitrate-induced pNRT2.1::LUC expression. 

Seedlings of the pNRT2.1::LUC line were cultured using the FrameStrip method 

in medium containing 50 µM NH4NO3 and nitrate induction was performed on 14 

day old seedlings using 0.3 mM KNO3. Gln treatments were applied at a range of 

concentrations either at the same time as the nitrate treatment (closed squares), 

3 h in advance of the nitrate treatment (closed circles) or 72 h in advance of the 

nitrate treatment (open circles).  Roots were harvested and frozen 24 h after the 

start of the nitrate treatments. Luciferase activity was measured in root extracts 

using 4 mM ATP and 1 mM luciferin in a LUMIstar Omega, BMG dedicated plate 

reader (Section 2.7.6).  Values are log transformed means ± LSD (n = 16) and 

different letters denote statistically significant differences (ANOVA, p<0.05, 145 

degrees of freedom, LSD (5%) = 0.14). 
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4.1.4 Comparing the effectiveness of a range of different amino acids in 

repressing nitrate-induced pNRT2.1::LUC expression.  

As Gln, even at the highest concentration tested, did not fully repress 

pNRT2.1::LUC expression (Fig. 4.7), it was decided to investigate whether 

stronger effects could be achieved with other proteinogenic amino acids. Based 

on the results of the previous experiment, each of  the 19 amino acids (including 

Gln) were applied to seedlings simultaneously with the nitrate treatment at two 

concentrations, corresponding to 0.4 mM N and 4 mM N, and luciferase activity 

was assayed after 24 h. 

 The results presented in Fig. 4.8 show that there was considerable 

variation in the degree to which different amino acids affected pNRT2.1::LUC 

expression. Two amino acids (Arg and His) had no significant repressive effect, 

even at 4 mM compared to the nitrate treatment alone. Indeed, Arg treatment had 

a strong stimulatory effect on expression of the reporter gene that was greater at 

4mM than at 0.4 mM: at 4 mM Arg there was a 3-fold increase in pNRT2.1::LUC 

expression compared to the nitrate treatment alone. A large group of amino acids 

(Ala, Asn, Asp, Cys, Glu, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp and Val) 

produced effects that were similar, not significantly different to those seen with 

Gln (i.e. reducing luciferase activity by 3-fold when compared to the nitrate 

treatment alone). The only amino acids that produced a repressive effect that was 

markedly stronger than that produced by 2 mM Gln were Cys (at 4 mM), Glu (at 

4 mM), Thr (at 4 mM) and Val (at 4 mM). 
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Figure 4.8 Comparison of the effectiveness of 19 different proteinogenic amino acids at repressing expression of nitrate-

induced pNRT2.1::LUC. Seedlings of the pNRT2.1::LUC line were cultured using the FrameStrip method in medium containing 

100 µM NH4NO3 and nitrate induction was performed on 13 day old seedlings using 0.3 mM KNO3. Individual amino acid treatments 

were applied simultaneously with the nitrate treatment for all amino acids (A) except Arg (B) and root material was frozen after 24 

h. Luciferase activity was measured in root extracts using 4 mM ATP and 1mM luciferin in a LUMIstar Omega, BMG dedicated 

plate reader (Section 2.7.6).  Values are log transformed means ± LSD (n = 8) and different letters denote statistically significant 

differences (ANOVA, p<0.05, 281 degrees of freedom, LSD (5%) = 0.37). 
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In a follow-up experiment, the response to selected amino acids was investigated 

in more detail, in particular the unexpected stimulation of pNRT2.1::LUC 

expression by Arg. Two questions were addressed: would Arg on its own, in the 

absence of nitrate, stimulate pNRT2.1::LUC expression and would the presence 

of Arg block the ability of other amino acids to repress pNRT2.1::LUC 

expression? As shown in Fig. 4.9, neither Arg on its own, nor any other amino 

acid tested (Gln, Met and Cys) had any significant effect on pNRT2.1::LUC 

expression in the absence of nitrate. In this experiment Arg at both 4 mM and 8 

mM stimulated pNRT2.1::LUC expression approximately 2-fold in the presence 

of nitrate, with 0.4 mM having a slightly smaller, yet still statistically significant 

effect. When other amino acids were included alongside Arg it was found that the 

ability of Cys and Met to repress pNRT2.1::LUC expression (compared to the 

nitrate + Arg treatments) was as strong as in the absence of Arg. The same 

observation was made for Gln in the presence of 0.4 mM Arg, while treatments 

in the presence of 4 mM and 8 mM Arg were slightly less effective, but still 

significantly under that of the nitrate + Arg treatment. Thus the stimulatory effect 

of Arg in the presence of nitrate does not appear to be due to any interference 

with the normal processes that lead to N-repression of pNRT2.1::LUC expression 

as in all cases the signal could be significantly repressed. 
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Figure 4.9 Investigating the stimulatory effect of Arg on pNRT2.1::LUC expression. Treatments were performed on 14 day 

old seedlings of the pNRT2.1::LUC line as for Fig. 4.8. Treatments with nitrate or amino acids alone, or combinations of nitrate 

and one or more amino acids as indicated in the Fig. 4.8, were applied simultaneously and roots frozen 24 h later.  Luciferase 

activity was measured in root extracts using 4 mM ATP and 1 mM luciferin in a LUMIstar Omega, BMG dedicated plate reader 

(Section 2.7.6).  Values are log transformed means ± LSD (n = 8) and different letters denote statistically significant differences 

(ANOVA, p<0.05, 149 degrees of freedom, LSD (5%) = 0.36). 
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4.1.5 Applying the Z factor test 

The Z factor test is a statistical method that was developed to assess the quality 

of an assay to be used in a high-throughput screen, as a more rigorous alternative 

to simply looking at the signal to noise ratio (Zhang et al. 2009). It is a method for 

assessing how reliable the differences are between the positive controls and the 

negative controls. Negative values indicate an unacceptable assay, while positive 

values are acceptable (with a value of 1.0 being the theoretical maximum). 

In a preliminary experiment with the pNRT2.1::LUC line, 96-well plates 

were set up in which the luciferase activities in eight nitrate-induced positive 

control samples (and eight negative control samples, containing background N 

only) were compared with 80 nitrate-induced samples treated with 2 mM Gln (N-

repressed; Fig. 4.10A). The value obtained for the Z factor for this experiment 

was -0.20, indicating an unacceptable assay. To try to improve the quantitative 

difference between the induced and N-repressed samples, the experiment was 

repeated using 10 mM Gln (Fig. 4.10B) and a Z factor of 0.04 was obtained, 

indicating that the assay was just acceptable. In an attempt to improve the quality 

of the assay further, an additional amino acid in the form of Arg was included 

alongside Gln (2 mM Gln + 4 mM Arg) and 4 mM Arg was also included alongside 

the nitrate in the induction treatment, on the basis that Arg was previously found 

to have a positive effect on nitrate induction (as seen in Fig. 4.8 and 4.9). 

However, this experiment produced a Z factor of -0.29 (Fig. 4.10C). In a fourth 

experiment an alternative high N-repression treatment was investigated (10 mM 

NH4NO3) (Fig. 4.10D). However, there was no improvement on the previous 

conditions, producing the lowest Z factor of -0.92. In a fifth experiment the 

concentration of amino acids in the N-repression treatments was increased 

further (10 mM Gln + 4 mM Arg) and 4 mM Arg was again included in the nitrate 

induction treatment (Fig. 4.10E). In this case the Z factor was increased to 0.27, 

indicating an improved level of acceptability for the assay. 
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Figure 4.10. Optimising treatments to obtain acceptable Z factor values for the N-repression screen.  Treatments were 

performed on 14 day old seedlings of the pNRT2.1::LUC line in 96-well plates as for Fig. 4.8 and root samples were frozen after 

24 h. Luciferase assays were performed on root extracts in a LUMIstar Omega, BMG dedicated plate reader (Section 2.7.6) and 

Z factors calculated as described in Section 2.11.2. 
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4.2 Discussion 

 

Building on the preliminary experiments reported in the previous chapter, Chapter 

4 presents experimental data which optimised each step of the protocol required 

for the chemical genetics approach. The aim of this optimisation was to produce 

a reliable protocol which would allow the most suitable conditions for the 

luciferase assay and N treatment conditions to be established. Optimisation of 

the luciferase assay reagent composition and concentration was performed over 

different time periods to produce the most suitable conditions for the assay. The 

optimised luciferase assay was then used to investigate the most suitable 

induction and repression N treatment conditions. After optimising N treatment 

conditions, including an investigation of the potential for 19 different amino acids 

at two concentrations to repress NRT2.1 expression in the presence of nitrate the 

platform was validated using the Z factor statistical parameter. In this section 

these achievements will be further discussed. 

4.2.1 Optimisation of the luciferase assay 

Firefly luciferase, produced by pNRT2.1::LUC catalyses an oxidative reaction 

between luciferin, ATP and molecular oxygen to create an excited oxyluciferin 

species (Baldwin, 1996). This species produces photons that are measured as 

luminescence. If the luciferin substrate or ATP are insufficient in concentration 

the reaction is limited. The concentrations required for any luciferase assay using 

a plant luciferase reporter line are dependent on the amount of biological tissue 

present and the effectiveness of the luciferase enzyme extraction from that tissue, 

hence the importance for optimisation in this project. Here we established that, at 

1 mM luciferin and 4 mM ATP these reagents were near saturating the luciferase 

assay, therefore neither were a limiting factor. The assay did not contain a 

detergent, it relied on the freeze-thaw ‘ice capture’ method to lyse cells for 

luciferase enzyme release (preliminary experiments without the freeze-thaw step 

produced undetectable levels of luciferase expression, data not shown).  

Detergents, as hydrophobic substances are known to non-specifically bind to the 

luciferase enzyme, stimulating catalytic activity and interfering with luciferase 

enzyme detection (Lembert and Idahl, 1995, Kricka and Deluca, 1982). BSA is 
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also known to stimulate light promotion (Kricka and Deluca, 1982), however given 

that the freeze-thaw cycle could have damaged the intracellular luciferase 

enzyme its properties as a cryoprotectant were investigated. As there was no 

statistical benefit observed from the luminescence output of luciferase assays 

containing BSA it was omitted from further testing. 

High combinations of luciferin and ATP have been shown to produce a 

strong initial burst of light followed by a state of inactivity (Lembert and Idahl, 

1995). To account for this, the luciferase assays described in this chapter were 

performed in a luminometer with a reagent injection system (LUMIstar Omega, 

BMG LABTECH). The injection system allowed delivery of the luciferin, mixing 

and detection to occur immediately so this initial burst which occurs within a 

matter of seconds could be measured. An alternative method would have been 

be to pre-incubate the luciferin with the crude root samples prior to ‘ice capture’ 

freezing, which has been shown to stabilise luminescence output (Lembert and 

Idahl, 1995). Alternatively, the use of coenzyme-A, acting as a substrate has been 

shown to reduce luminescence half-life (Fraga et al., 2005). However, once the 

luminometer with a reagent injection system became available it was not 

necessary to pursue these alternative strategies. 

4.2.2 Optimisation of nitrate induction 

In this chapter 0.3 mM KNO3 has been shown to produce the strongest induction 

of pNRT2.1::LUC luminescence over a 24 h period (Figs. 4.5 and 4.6). Girin et 

al. (2010) used the same nitrate concentration to produce a similarly strong 

luciferase induction in this line, with induction closely correlated to the NRT2.1 

transcript. In an earlier publication, Girin et al. (2007) used the same promoter 

sequence for a GUS transgene, where induction of GUS expression was highest 

between 0.3-0.5 mM KNO3. In agreement with Fig. 4.5 (24 h treatment), their 

findings show GUS expression was positively correlated to increases in KNO3, at 

low concentrations (0-0.5 mM) and repressed at higher concentrations (5-20 mM 

KNO3) (Girin et al., 2007). The previous studies differed from the present 

research by seedlings being grown at the treatment concentration of KNO3 for six 

to seven days (from the start of germination), rather than applying a short-term 

(24 h) treatment to N-depleted seedlings. Zhou et al. (1999) found that when 
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Arabidopsis seedlings were grown on 1 mM ammonium citrate, before being 

transferred to 1 mM KNO3, the induction peak was reached after only 3 h 

incubation. This differs from the results shown in Fig 4.5 where induction after 24 

h was much stronger than after 3 h at all KNO3 concentrations tested (0.1 – 5 

mM). It seems likely that the explanation for the difference lies in the higher N 

status of the ammonium citrate-grown seedlings which could lead to more rapid 

feedback repression of the NRT2.1 gene. Nazoa et al. (2003), working with the 

pNRT2.1(1201)::GUS line, imposed a 3 h N-free period before performing a time 

course assay with 2 mM KNO3. Increasing the time of exposure to nitrate, up to 

24 h produced increasingly higher levels of GUS expression, similar to the results 

of Fig. 4.4. In agreement with Fig. 4.6 they showed that lower nitrate 

concentrations (0.2 mM) stimulated NRT2.1- dependent reporter activity, while 

higher concentrations (2 - 10 mM) repressed the signal. 

 Studies on NRT2.1 nitrate response in other higher plants show similar 

findings. Amarasinghe et al. (1998) report that NRT2.1 transcript levels in 

soybean were most strongly increased when plants were N-starved prior to a 1 

mM KNO3 application, compared to being continually grown at 1 mM KNO3. 

Additionally, they found that incubation with nitrate up to 6 h resulted in an 

accumulation of the NRT2.1 transcript. However it was repressed at 24 h 

(Amarasinghe et al., 1998), similar to the 5 mM KNO3 treatment in Fig. 4.6. Such 

a trend was also shown in barley, where low concentrations of nitrate (1 mM 

KNO3) increased NRT2.1 expression up to 9 h, after which transcript levels 

declined, with higher concentrations (10 mM). It would seem that increasing  the 

concentration of nitrate results in an increased rate at which peak luminescence 

is reached, followed by the subsequent decline as expression is repressed 

(Vidmar et al., 2000b). This effect, seen in Fig. 4.6 is further supported by studies 

on spring wheat, where a low nitrate concentration (0.2 mM) does not produce 

this repression over 24 h (Zhao et al., 2004). 

 The discussed literature, in conjunction with Figs. 4.4 – 4.6 show that the 

rate at which induction of NRT2.1 is achieved is clearly dependent on the KNO3 

concentration and incubation time. Low and high KNO3 concentrations cause 

induction of NRT2.1, with higher concentrations producing peak induction earlier 

than lower concentrations. In turn, higher concentrations then result in earlier and 

stronger N-repression of NRT2.1. In agreement, Filleur and Daniel (1999) 
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demonstrated a similar NRT2.1 expression pattern in response to a low and high 

concentration of KNO3, using 50 µM and 50 mM. Additionally, the background N 

concentration is influential, with NRT2.1 being more responsive to KNO3 with a 

N-free pre-treatment. Hence the reason that the background N concentration in 

the period before nitrate induction was kept low (50 µM NH4NO3), to ensure the 

seedlings were depleted of N before induction was initiated. 

 

4.2.3 Optimisation of the timing and concentration of Gln treatment 

High nitrate concentrations repress NRT2.1 expression (Girin et al., 2007, Girin 

et al., 2010, Nazoa et al., 2003), however the mechanism for this is still unclear. 

Previous research suggests that there are several interactions that occur to elicit 

N-repression. A well supported theory is that reduced forms of N play a major 

role in repressing NRT2.1 expression. The strong negative effect of Gln was 

demonstrated, repressing NRT2.1 in the presence of inductive concentrations of 

nitrate. In agreement, Nazoa et al. (2003), using the pNRT2.1::GUS Arabidopsis 

line showed that Gln (10 mM) had a strong repressive effect on GUS expression, 

stronger than ammonium nitrate. They also reported that the endogenous 

application of ammonium or amino acids (Gln, Ala, Arg, Asp, Asn) reduced 

NRT2.1 expression. Interestingly, it was observed that regardless of the amino 

acid applied, internal concentrations of Gln increased, consistent with the notion 

that Gln is one of the main elicitors of N-repression (Nazoa et al., 2003). Zhou et 

al. (1999) reported that the application of 1 mM KNO3 with inhibitors 

Aminooxyacetate (AOA) and Azaserine (AZA), resulting in a higher internal Gln 

and Glu concentration, displayed a reduced NRT2.1 transcript. Interestingly, 

using 1 mM Gln application they did not see a repression of the NRT2.1 transcript 

which conflicted with their own data on Gln-repression (using AOA and AZA) and 

Fig. 4.7 in this research. 

 Figure 4.7 shows that the exogenous application of Gln (2 mM) represses 

NRT2.1 expression. Interestingly, a 3 h pre-treatment with Gln did not enhance 

NRT2.1 repression, when compared to its simultaneous application with KNO3. 

This unexpected result suggests that at the time of root harvest both treatment 

groups had a similar N status. One explanation could be that Gln altered the N 

status of the plants to its maximum extent for the specific N concentration within 
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24 h, therefore regardless of pre-treatment the results would be the same. 

Another possible, somewhat controversial explanation could be that the current 

external Gln conditions or the fluctuations of Gln through the plants, rather than 

its N status were more influential on the expression of NRT2.1.

 Interestingly, a 72 h pre-treatment only had a significant effect at the 

highest concentration of Gln (5 mM), lower concentrations had a greatly 

diminished effected compared to the 3 h pre-treatment and simultaneous 

application (Fig. 4.7). It is most likely that external Gln at <5 mM was depleted 

before KNO3 induction, which would happen more quickly at lower 

concentrations, hence why only 5 mM Gln produced an effect. In relation to the 

theory proposed to support the 3 h pre-treatment results, if Gln was depleted it 

would support the idea that the external concentration of Gln or its fluctuation 

through the plant was more influential than the N status itself. This being the case 

as it was expected that seedlings, exposed to those Gln treatments would have 

had sufficient time to develop an improved N status. This raises questions about 

what is meant by the N status of plants and what mechanisms are most important 

in triggering N-repression. To help answer this question the experiment in Fig. 

4.7 could be repeated, but with analysis of different N source concentrations in 

the external conditions, rate of N uptake, plant internal amino acid pool 

compositions and expression of NRT2.1.  

Other research using the pNRT2.1::LUC and GUS reporter lines showed 

that alternative sources of high N (10 mM  NH4NO3) were effective in repressing 

NRT2.1 (Girin et al., 2010, Girin et al., 2007). Experimentation with the GUS line 

showed that the application of NH4NO3 was much more effective at repressing 

NRT2.1- dependent GUS expression than an equal concentration of Gln (Girin et 

al., 2007). Zhuo et al. (1999) reported that separate KNO3 and NH4NO3 

treatments used to induce NRT2.1 were strongly repressed in the presence of L-

methionine sulphoximine, which inhibits the conversion of NH4
+ to Gln. These 

results suggest that NH4
+

 also plays a strong role in NRT2.1 repression. 

 

4.2.4 Effectiveness of other amino acids at exerting N-repression 

As expected, the application of amino acids in the presence of nitrate represses 

NRT2.1 expression in general, compared to the nitrate induced. As shown in Fig. 
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4.8A most amino acids are as effective at repressing NRT2.1 as Gln, however 

most notably 4 mM Cys was significantly more powerful. Interestingly we 

observed that His had little to no effect, while the higher concentration of Lys 

promoted NRT2.1 expression. Nazoa et al. (2003) in agreement with Fig. 4.8A 

reported that Gln, NH4
+, Ala and Glu all had inhibitory effects on NRT2.1 

expression. The result from these studies, an application of reduced forms of N 

resulting in the down-regulation of NRT2.1 was expected, particularly for Asn, 

Asp, Gln and Glu as they are involved in the initial steps of the N assimilation 

pathway. Interestingly, Nazoa et al. (2003) also reported that of the amino acids 

tested, all resulted in an increase in internal Gln concentrations within the plants. 

Other research similarly reported that NH4
+, NH4NO3, Asn and Gln repress 

NRT2.1 in Arabidopsis (Girin et al., 2007, Zhuo et al., 1999). A study on barley 

also showed that in the presence of KNO3, Asn and Gln repressed NRT2.1, as 

well as Asp and Glu which had a significantly stronger effect (Vidmar et al., 

2000b), similar to the findings of Fig. 4.8A. Together these findings suggest that 

reduced forms of N, particularly Gln have a major negative influence on NRT2.1 

expression. 

Most counter-intuitively, it was found that Arg strongly promoted 

pNRT2.1::LUC expression, increasing the luminescence signal by up to 3.2-fold 

(Fig. 4.8B). This contrasts with the results of a previous study by Zhuo et al. 

(1999) in which it was found that that Arg strongly repressed NRT2.1 expression. 

There were a number of differences between the earlier study and the present 

one that might account for this discrepancy. Firstly, they were studying the 

expression of the endogenous NRT2.1 gene, so that they could have detected 

effects that required sequences within the transcribed region of the gene or that 

acted at the post-transcriptional level. Secondly, there were significant 

differences in the culture conditions between the two studies, notably their use of 

hydroponics and their choice to pre-culture the seedlings in a relatively high 

concentration of ammonium succinate (Zhuo et al., 1999). The latter differences 

in growth conditions might also account for why they also found that Gln did not 

repress nitrate induction of NRT2.1. A comparison of the setup reveals that they 

observed gene expression after a 3 h treatment period, which we reported to 

have a much reduced effect on nitrate induction compared to a 24 h treatment 

(Fig. 4.5). While Zhuo et al. (1999) were able to demonstrate a strong nitrate 
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induction in 3 h, they acknowledge that the results, using L-methionine 

sulfoximine and aminooxyacetate with azaserine to increase amino acid content 

contradict the lack of repression reported for Gln which contradicts not only the 

findings here, but also those of most other published studies (Girin et al., 2007, 

Nazoa et al., 2003, Vidmar et al., 2000b).  

 

4.2.5 How does Arg stimulate expression of pNRT2.1::LUC 

An initial hypothesis from Fig. 4.8 was that Arg itself was stimulating expression 

of pNRT2.1::LUC, independently of KNO3. It is known that a plant pathway for the 

biosynthesis of nitric oxide (NO), an important signalling molecule (Gupta et al., 

2011, Domingos et al., 2015, Thalineau et al., 2016) uses Arg as a substrate. In 

the N assimilation pathway the reduction of nitrate and nitrite produces NO as a 

by-product (Gupta et al., 2011). It is possible that the supply of Arg, produced by 

the discussed methods promoted an accumulation of NO, which somehow 

stimulated pNRT2.1::LUC expression. Previous studies with green algae, 

Chlamydomonas reinhardtii, reported that NO inhibited the high-affinity uptake of 

nitrate, nitrite and ammonium as well as reducing nitrate reductase activity (Sanz-

Luque et al., 2013). This inhibition could suggest that in this research NO, 

reducing the further uptake of N into the roots and inhibiting N assimilation allows 

the already imported nitrate to persist for longer in the plant with a lower 

accumulation of reduced forms of N. This combination could be responsible for 

the stimulated expression of pNRT2.1::LUC, as the persisting nitrate stimulates 

NRT2.1 in the absence of repression exerted by accumulated amino acid pools. 

To test the hypothesis that Arg-dependent NO signalling might be 

responsible for super-induction of pNRT2.1::LUC, independently of nitrate, the 

effect of Arg on pNRT2.1::LUC expression in the absence of nitrate was tested 

(Fig. 4.9). However, it was found that Arg on its own had no significant effect on 

the expression of the pNRT2.1::LUC construct and that to see a stimulation a low 

concentration of KNO3 was additionally required.  A new hypothesis could be that 

the presence of Arg, by stimulating NO production has an indirect nitrate-

dependent effect on pNRT2.1::LUC expression by inhibiting  NR activity and 

thereby causing imported nitrate in the roots to persist at higher concentrations 

for longer. This could be tested by applying an inhibitor of NR, such tungstate and 
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then analysing the endogenous gene expression of NRT2.1, NIA1, NIA2 and NIR. 

A previous study using an NR-deficient G’ 4-3 Arabidopsis mutant showed that in 

this plant reporter line NRT2.1 induction was nitrate-induced nearly 2.5-fold more 

strongly than the wild-type (Filleur and Daniel-Vedele, 1999). Thus, any treatment 

that inhibits NR activity would be expected to have the same effect.  

 

4.2.6 Assessment of the robustness of the screen for antagonists of N-

repression 

The Z factor statistical parameter (Zhang et al., 1999) was designed for the 

evaluation of high-throughput screening assays. Specifically it judges the signal’s 

dynamic range and measurement variation, allowing the assay to be quantatively 

optimised and validated. In this research it was used to judge whether the 

luminescence output of the two treatment groups (N-repressed and Induced) was 

large enough to be statistically difference, while accounting for the variation within 

each group. By satisfying the Z factor statistical parameter it demontrates: 1) 

Each treatment groups’ luminescence output is consistent and sufficiently 

different from the other group to allow the clear identification of an antagonist of 

N-repression when screening chemical libraries. 2) The variation within and the 

difference between each treatment group does not mask or exacerbate the effect 

of chemicals applied whilst screening the chemical libraries. 

The use of 2 mM Gln to N repress the luminescence signal  (Fig. 4.10A) 

returned a Z factor value that was too low (Z = -0.2), indicating that there was not 

a sufficient difference between the N-repressed group and the induced group. By 

increasing the concentration to 10 mM Gln (Fig. 4.10B) the N-repressed sample 

group had a reduced average luminescence, along with less variation allowing 

the assay to be sucessfully validated (Z = 0.04). Attempting to improve the 

statistical validation of the assay other conditions for N-repression were 

investigated. In one experiment, 10 mM NH4NO3 was used to N-repress samples, 

as other studies using the pNRT2.1::LUC and pNRT2.1::GUS lines had reported 

a strong effect (Girin et al., 2007, Girin et al., 2010). However, using 10 mM 

NH4NO3 returned the Z factor to an unsatisfactory value (Z= -0.92) (Fig. 4.10D), 

being less suitable as a means to N-repress the samples than 2 mM Gln. Nazoa 
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et al. (2003) similarly found that Gln was more effective at repressing NRT2.1 

than NH4NO3 when both were used at 10 mM. 

 In an attempt to improve the Z-factor further, Arg was included in two 

further trials, based on its ability to super-induce pNRT2.1::LUC and for Gln to 

still be able to repress this signal. Arg was included with both the low and high 

concentration of Gln (2mM and 10mM) in separate plates. The plate containing 

10 mM Gln for N repression also had 4 mM Arg to stimulate N induction and an 

improved Z value of 0.27 was obtained (Fig. 4.10E). However, the plate that 

contained 4 mM Arg and 2 mM Gln (Fig. 4.10 C) returned an unsatisfactory value 

(Z= -0.29).  

Validation of the screening platform using 4 mM Arg and 10 mM Gln with 

the Z factor statistical parameter showed that the screening platform was 

statically viable and functionally suitbale for the purposes of screening chemical 

libraries in the search for anatagonists of N-repression. The Z factor statistical 

parameter, unlike other statical tools was able to confirm that under the specified 

conditions, each data point within a treatment groups was suitably similar, yet 

significantly different than those in the other treatment group (i.e. N-repressed 

and Induced).  

Considering the preliminary experiments that informed the N treatment 

regimes used untill this full run of the screening platform and its  validation it 

seems that while the fold difference between the N-repressed and induced 

luminesecence values was statistically significant (when analysed via an 

ANOVA), for the purposes of screening chemical libraries the difference was 

insufficent. The reason the ANOVA test validated conditions that failed to satisfy 

the Z factor statistical parameter was due to differences in the nature of the 

testing methods. Both statisitcal tests take account for range and variation of data 

within treatment groups and then the difference between the groups being 

compared, however the Z factor statistical parameter is more stringent when 

classifying these statistical differences – a single outlier in a treatment group can 

have a strong negative effect on the Z factor regardless of the number of 

replicates involved (Zhang et al., 1999) . This is a desired trait in a statistical test 

when validating a screening platform as a chemical treatment is usually only 

applied once in a single setup and any background interference could mask the 

appropriate identification of an interaction. For this purpose the Z factor statistical 
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parameter has been used here to confirm that the N-regime conditions are 

sufficient in order to adequately screen chemical libaries for antagonists of N-

repression.  

This  validation provides statistical assurance that  whilst screening the 

chemical libraries for antagonists of N repression any positive influence on the 

luminescence output from N repressed samples is a result of the chemical 

treatment being applied and not influenced by the N treatment regime.  The Z 

factor statistical parameter, as used in this research has been shown by other 

studies to be a suitable tool to assess a chemical genetics screen (Zhang et al., 

1999; Serrano et al., 2015). The inclusion of Arg was deemed acceptable as 

pNRT2.1::LUC in the presence of low and high N conditions was both stimulated 

and repressed in the presence of Arg, respectively. As Arg results in the 

enhanced stimulation of the luminescence signal, yet does not interfere with its 

Gln repression it provides an opportunity to investigate chemical anatagonists of 

pNRT2.1::LUC in a statistically viable manner,  as its inclusion allowed statistical 

validation by the Z factor statistical parameter. In addition, no exogenous Arg was 

present in the luciferase assay as the seedlings were placed in a fresh solution 

containing reaction buffer. This and a lack evidence from an extended literature 

search ruled out the possibility that Arg might be having a direct effect on the 

luciferase enzyme in the luciferase reaction to produce the enhanced 

luminescence signal.  

 

4.2.7 Summary 

In this chapter the individual steps of the protocol for the chemical genetics 

screening platform were successfully optimised to provide the most suitable 

conditions to perform the chemical screen. For the luciferase assay it was 

concluded that  the combination of 1 mM  luciferin and 4 mM ATP over a 24 h 

period provided the maximum luciferase output, with additional increases in 

reagent concentrations providing not further statistical improvement.  

Additionally, despite evidence provided in the literature on the beneficial 

properties of BSA  in the luciferase assay it was concluded that its inclusion 

provided no statistical benefit for the luminescence output, and so was 

consequently ommited. Using the optimised luciferase assay, nitrate induction of 

pNRT2.1::LUC luminescence was optimised. These experiments concluded that 
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under the experimental conditions of this study 0.3 mM KNO3 over a 24 h period 

resulted in the maximum induction of luminescence.  

Initial experimentation on N-repression conditions concluded that 2 mM 

Gln applied simultaneously with 0.3 mM KNO3 resulted in the lowest 

luminescence output. When the repressive effect of Gln (0.3 mM KNO3 + 2 mM 

Gln) was compared to that of 19 other amino acids it was shown that overall Gln 

is as effective at repressing luminescence as the majority of other amino acids 

(Ala, Asn, Asp, Cys, Glu, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp and Val). 

During this investigation, the application of Arg (at 4 mM) had a strong stimulatory 

affect on luminescence when in the presence of nitrate only.  

The final experiments in this chapter used the Z factor statistical parameter 

to statistically validate the screening platform. Using the optimised N conditions 

ascertained from previous experiments (Figs. 4.4 – 4.7) it was concluded that the 

differences between the N-repressed and induced values, along with the variation 

within each treatment group were unsutiable to satisfy the Z  factor statistical 

parameter. The test was sucessfully validated once a combination of 0.3 mM 

KNO3  + 4 mM Arg was used to induce pNRT2.1::LUC luminescence and an 

increased Gln concentration (10 mM) (in the presence of  0.3 mM KNO3  + 4 mM 

Arg) was used for N-repression of pNRT2.1::LUC luminescence. With the 

protocol optimised and the screening platform validated the next step was to 

screen the chemical  libraries in search of chemical anatagonists of NRT2.1 N-

repression. 
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Chapter 5. Screening the chemical libraries for antagonists of    

 N-repression 

 

 

In Chapter 4, having optimised the luciferase assay and determined appropriate 

N treatments, it was established that a statistically viable screening platform had 

been developed. With the Z factor statistical parameter satisfied, screening for 

antagonists of N-repression could commence. In this chapter, the use of the 

screening platform to screen the chemical libraries for antagonists of N-

repression is described. 

The first chemical library selection was the ‘Library of AcTive Compounds on 

Arabidopsis’ (LATCA) compiled of compounds in the LOPAC, Spectrum and 

Chembridge libraries that displayed pharmacological interactions with 

Arabidopsis seedling development, compounds in the Maybridge library with 

known bioactivity in S.cerevisiae and an additional selection of herbicides, 

common inhibitors, plant hormones, research chemicals and bioactive 

compounds. The second chemical library selection was the LOPAC library 

containing pharmacologically active compounds, focused on bioactivity in 

mammals, including pharma-developed tools, inhibitors, receptor ligands, 

approved drugs with known bioactivity in most signalling pathways and a 

combination of all major drug target classes. The third chemical library selection 

was the Spectrum collection containing the MicroSource Natural Product and 

Discovery libraries and compounds from the US and International Drug 

collections; containing a wide variety of biologically active and structurally diverse 

compounds it is intended for use with target specific assays.  

 

5.1 Results 

5.1.1 Screening the ‘Library of AcTive Compounds on Arabidopsis’ 

(LATCA) for antagonists of N-repression  

The screening platform layout was designed so that 80 individual chemicals could 

be screened per plate (assigned to columns 2-11 of a 96-well plate). Samples 
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that were chemically treated were also N-repressed with 10 mM Gln, in the 

presence of 4 mM Arg and 0.3 mM KNO3. The remaining samples at the ends of 

the plate (columns 1 and 12) were positive and negative controls for the 

experiment, induced (0.3 mM KNO3 and 4 mM Arg) and uninduced (background 

N, 50 µM NH4NO3), respectively. Chemical compounds were tested in duplicate 

plates, screening for an interaction in both replicates, however if an interaction 

was present in one replicate only, the chemical would be recorded.  

 Screening of the LATCA chemical library yielded no chemicals that 

antagonised N-repression of luminescence, in either one or both of the replicates 

(data not shown). The presence of chemical compounds from the LATCA library 

did increase the variation within N-repressed samples, in comparison to 

observations where no chemicals were applied previously. This variation was 

relatively low and is not likely to have masked a chemical interaction.  

 

5.1.2 Screening the ‘Library of Pharmacologically Active Compounds’ 

LOPAC for antagonists of N-repression 

In the next phase of the screening programme, the 1280 pharmacologically active 

compounds from the LOPAC collection were tested using the same methodology 

as described above. In this case, one of the 1280 small molecules was found to 

be associated with an increased luminescence signal in both replicate plates (Fig. 

4.1). In both replicates the signal was significantly greater than the other N-

repressed samples on the same plate based on an ANOVA test (p<0.05). The 

small molecule responsible for this effect was identified as camptothecin (CPT). 

CPT is a plant derived cytotoxic alkaloid that targets topoisomerase I (Vos et al., 

2011, Shafiq et al., 2017). 

A second chemical on the same plate, 2-chloroadenosine triphosphate 

tetrasodium also gave a significantly increased luminescence signal above the 

other N-repressed samples in one replicate (Fig 4.1A), but this effect was not 

reproduced in the other replicate (Fig 4.1B).  
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5.1.3 Screening the ‘Spectrum collection’ chemical library for antagonists 

of N-repression 

Screening the Spectrum collection yielded two chemicals that antagonised N-

repression of luminescence, however for both chemicals an effect was seen in 

only one of the duplicate plates. Aristolochic acid was identified in one of the 

replicates to have a significant interaction, antagonising N-repression (Fig. 4.2A). 

In the second replicate however, luminescence was not significantly different 

from the other N-repressed samples (Fig. 4.2B) 

Aminocyclopropanecarboxylic acid (ACC) was the second chemical 

identified in the Spectrum collection. It had a significant interaction, antagonising 

N-repression in only one replicate (Figure 4.3A), However, again no significant 

effect was seen in the replicate plate (Fig. 4.3B). 
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5.2 Discussion 

 

As reported in the literature review previous research is yet to uncover many of 

the regulatory mechanisms behind N-repression of NRT2.1. So far studies in the 

field of genetics have employed traditional approaches to identify potential 

regulatory factors of NRT2.1 N-repression. This chapter presents the first 

recorded use of a chemical genetics approach to dissect the N signalling pathway 

in plants. Screening three well known chemical libraries (the LATCA, the LOPAC 

and the Spectrum collection) containing molecules with known bioactivity in 

plants it is reported that one chemical (Camptothecin) acts as an antagonist of 

NRT2.1 repression. This result was identified in both replicates and presents a 

novel discovery for what is known about N signalling and N-repression of NRT2.1. 

In addition, two other chemicals (2- chloroadenosine triphosphate tetrasodium 

and ACC) were reported as potential antagonists of N-repression, as the 

antagonist effect was only observed in one of the replicate plates for both 

chemicals. In this section these results will be discussed in greater detail in 

relation to the current understanding of N signalling in plants.  

5.2.1 Identification of camptothecin as an antagonist of N-repression 

A total of 7420 molecules were screened in duplicate from three different libraries 

using the screening protocol developed in the previous two chapters of this thesis. 

Out of those 7420 molecules only one firm hit was identified based on a strong 

signal from both replicate plates. This indicates a hit rate of only 0.013%, although 

this is a slight underestimate of the hit rate because there is an overlap between 

the LATCA library and the other two. One strong hit was identified, its presence 

enhanced the luminescence signal in roots growing under N-repressed 

conditions in both replicate plates. This compound from the LOPAC library was 

identified as (S)-(+)-camptothecin (CPT), a plant derived cytotoxic alkaloid that 

targets topoisomerase I. Topoisomerase I is known for relieving torsional stress 

created during the replication and translation of DNA (Vos et al., 2011, Shafiq et 

al., 2017). During these processes the rotation of DNA before the replication fork 

creates a positive supercoil, where the DNA is wound tightly and a negative 

supercoil before it, as the DNA is loosely wound together. It is the job of 
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topoisomerase enzymes in eukaryotic organisms to cut and re-ligate DNA in this 

supercoiled regions, to relieve the torsional stress created. The extent to which 

supercoiling takes place influences the organism’s ability to regulate gene 

expression in those region for cells affected. Topoisomerase I is an essential 

enzyme in genetic replication and is evolutionarily conserved between 

Arabidopsis, rice, yeast and some mammals (i.e. humans and mice) (Shafiq et 

al., 2017, Champoux, 2001).  

CPT targets the topoisomerase I-DNA transient complex, stabilising this 

intermediate and so blocking DNA regulation. In human topoisomerase-I the 

sensitivity of the CPT interaction is influenced by Arg364, Asp533 and Asn722, 

amino acids that are also highly conserved in plants (Shafiq et al., 2017). 

Observations of mutant topoisomerase-I Arabidopsis lines report that specific 

developmental phenotypes occur when the Top1α paralog is disrupted (e.g. 

malfunction of the meristem). However, when both paralogs are mutated the 

combination is lethal (Liu et al., 2014). Topoisomerase I has been shown to play 

an essential role in DNA replication, recombination and repair and chromatin 

remodelling (Vos et al., 2011, Pikaard and Scheid, 2014, Liu et al., 2014, Durand-

Dubief et al., 2010). The involvement in chromatin remodelling provides an 

exciting development of our understanding of the role of topoisomerase I in the 

epigenetic processes that regulate gene expression.  

 

5.2.2 Assessment of partially identified compounds that might antagonise 

N-repression 

Partially identified compounds, where only one of the replicates showed an 

enhanced signal were also reviewed for potential interest. While it is highly 

unlikely a chemical interaction would only occur in one, not both replicate plates, 

it is possible that very occasionally there might be a complication that interferes 

with the interaction or signal detection. For this reason the identity and properties 

of the three molecules were examined in case some common features were 

found that would encourage further study. 

The first partial identification was 2- chloroadenosine triphosphate 

tetrasodium, which is a purinergic G protein-coupled (P2Y) receptor agonist. 

Numerous P2Y receptors have been identified in mammalian tissues. However, 
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extensive searches have not identified any homologues in plant organisms (Roux 

et al., 2006, Ralevic and Burnstock, 1998). Additional research in the future would 

benefit from checking this result, in order to confirm whether an interaction is 

present or not. The second partial identification was aristolochic acid, a 

phospholipase A2 inhibitor in neutrophils and a carcinogen, specifically targeting 

kidney cells in animal models (Chen et al., 2006, Gokmen et al., 2013). The third 

partial identification was ACC, which is an intermediate in the biosynthesis of the 

plant hormone ethylene (Van de Poel and Van Der Straeten, 2014). Given that 

there is a relationship between ethylene and N signalling in plants (Van de Poel 

and Van Der Straeten, 2014) this molecule could be of interest. Zheng et al. 

(2013) in Arabidopsis have shown that the up-regulation of NRT2.1 in response 

to low N conditions stimulated ethylene biosynthesis. This stimulation of ethylene 

production in turn resulted in the repression of NRT2.1, and consequently the 

transporter function of NRT2.1. This implicates the ethylene signalling pathway 

in the tightly regulated NRT2.1 response to high N conditions (Zheng et al., 2013). 

This interaction between the N and ethylene signalling pathways should be 

confirmed by future studies, under the same conditions used in this research to 

confirm this partial identification. However, in this research project, as the 

interaction was only identified in one of the replicate plates it was not prioritised 

for investigation.  

 

5.2.3 Summary 

Chapter 5 reports the first documented use of a chemical genetics approach to 

dissect the nitrogen signalling pathway in plants. Using the developed FrameStrip 

screening platform and ‘ice capture’ method in conjunction with the 

pNRT2.1::LUC Arabidopsis reporter line three chemical libraries (the LATCA, 

LOPAC, Spectrum collection) were screened for chemical antagonists of NRT2.1 

N-repression. Camptothecin, a molecule from the LOPAC library was identified 

in both screening platform replicates as a chemical antagonist of NRT2.1 N-

repression. The known target of camptothecin is Topoisomerase I, which has 

been shown to play an essential role in DNA replication, recombination and repair 

and chromatin remodelling (Vos et al., 2011, Pikaard and Scheid, 2014, Liu et al., 

2014, Durand-Dubief et al., 2010). The involvement of topoisomerase I in 

chromatin remodelling provides an exciting development of our understanding of 
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the role of topoisomerase I in the epigenetic processes that regulate gene 

expression, in particular the regulation of NRT2.1 in relation to the N status of the 

plant.  

There were two other molecules which were partially identified as chemical 

antagonists of NRT2.1 N-repression in the chemical screen. The first was 2- 

chloroadenosine triphosphate tetrasodium, a P2Y receptor agonist from the 

Spectrum collection which was partially identified as an antagonist of N-

repression. However, as an effect was only seen in one of the screening 

replicates and there are no known homologues targets in plants no further 

investigation was undertaken for this molecule. The second partially identified 

chemical antagonist was ACC, a precursor to the plant signalling hormone 

ethylene. This molecule is of relevance to N signalling, as has been shown by 

studies such as Zheng et al. (2013) who demonstrated that the production of 

ethylene results in the repression of NRT2.1. Given its partial identification in this 

screen, ACC was not prioritised for investigation, however given additional time 

for further research it would be worth while running this chemical screen again 

under these experimental conditions to the interaction. 
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Chapter 6. Investigation of camptothecin (CPT) as an antagonist 

of N-repression 

 

 

In Chapter 5, the LATCA, LOPAC and Spectrum Collection chemical libraries 

were screened for antagonists of N-repression, with a strong interaction being 

identified for camptothecin (CPT) in the primary screen. CPT is known to target 

topoisomerase I in both plants and mammals, but there were no previous reports 

of topoisomerase I being involved in N signalling in plants.  

The first objective in this chapter was to confirm CPT’s activity as an 

antagonist of N-repression using the pNRT2.1::LUC reporter line in a dose-

response experiment. The second objective was to use real-time PCR to study 

the expression of the endogenous NRT2.1 gene, and other N-regulated genes, 

as a means to rule out the possibility that the effect was specific to the 

pNRT2.1::LUC construct. A further objective was comparing the sensitivity of 

primary root growth to CPT in wild-type and three topoisomerase I mutant lines. 

 

6.1 Results 

6.1.1 Confirmation of CPT’s ability to relieve N-repression of pNRT2.1::LUC 

expression   

The effect of a range of CPT concentrations on pNRT2.1::LUC expression in the 

N-repression assay is shown in Fig. 6.1. As identified in the primary screen, CPT 

is able to antagonise N-repression, significantly increasing luciferase activity 

above the N-repressed samples without CPT. The antagonistic effect was not 

significantly different over the entire range of concentrations tested (from 25 nM 

to 50 µM), showing that CPT, even at very low concentrations has a significant 

antagonistic effect on N-repression. However, even at the highest CPT 

concentrations, expression of the pNRT2.1::LUC construct was not as high as 

in the nitrate-induced controls. 
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Figure 6.1 The effect of a range of concentrations of CPT on pNRT2.1::LUC 

expression under conditions of N repression Thirteen day-old pNRT2.1::LUC 

seedlings, grown in the luciferase screening platform (Chapter 4) were subjected 

to different N treatments: uninduced (background N, 100 µM NH4NO3); N-

repressed (NR) (0.3 mM KNO3 + 4 mM Arg, 10 mM Gln); induced (0.3 mM KNO3 

+ 4 mM Arg). In the case of the ‘N-repressed’ treatments, a range of 

concentrations of CPT (0 to 50 µM) were applied 24 h before the N treatments 

were initiated. Luciferase assay performed in SpectraMaxi3 luminometer (Section 

2.7.7). Values are log transformed means ± LSD (n = 32, 5-6 seedlings per tube) 

and different letters denote statistically significant differences by ANOVA 

(P<0.05, 340 degrees of freedom, LSD (5%) = 0.68).   

 

6.1.2 Investigating the endogenous expression of NRT2.1 and other N-related 

genes under different N-conditions and with CPT. 

NRT2.1, NRT2.2, NIA1, NIA2, NRT1.1, GS1-1 and GS1-2 genes were selected 

for real-time PCR experiments as they are major components in the N uptake, 

assimilation and signalling pathways in Arabidopsis. Additionally, pNRT2.1::LUC 

was included so as to correlate the findings with the luciferase assays. 

Normalised relative quantification was calculated by normalising the targeted 

genes to two housekeeping candidates, actin and an uncharacterised protein 

(Kudo et al., 2016). These housekeeping genes have been shown to be more 
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stable under a broad range of conditions compared to other commonly used 

reference genes utilised in real-time PCR analyses (Kudo et al., 2016). 

 The results of the real-time PCR experiment are shown in Fig. 6.2. Nitrate 

strongly induced the expression of pNRT2.1::LUC, NRT2.1, NRT2.2, NIA1, 

NRT1.1 and GS1-2 genes, significantly increasing transcript levels. In particular, 

pNRT2.1::LUC, NRT2.1, NRT2.2 and NIA1 were most strongly stimulated. 

Conversely, GS1-1 and NIA2 showed no significant differences in transcript 

levels between the uninduced and nitrate induced conditions. Using Gln in the 

presence of nitrate to elicit N-repression showed a strong significant reduction in 

pNRT2.1::LUC, NRT2.1, NRT2.2 and NIA1 transcripts, compared to the solely 

nitrate induced. Conversely, the presence of Gln did not significantly alter 

NRT1.1, NIA2, GS1-1 or GS1-2 expression.  

 Analysis of gene expression in the presence of CPT confirmed that CPT 

had the effect of at least partially alleviating Gln-mediated N-repression in all four 

genes that were nitrate-induced and Gln-repressed (NRT2.1, pNRT2.1::LUC, 

NRT2.2 and NIA1). Surprisingly, CPT also stimulated the expression of NIA2 in 

the presence of nitrate and Gln, even though NIA2 was neither nitrate-induced 

nor Gln-repressed in this experiment. NRT1.1 was repressed only when both Arg 

and Gln were present and CPT also alleviated this repression. GS1-1 was not 

repressed by any of the amino acid treatments and CPT had no significant effect 

on expression. However, in the presence of nitrate, Gln and Gln with Arg resulted 

in the stimulated expression of GS1-1 which was only significantly different 

compared to the uninduced. GS1-2 was repressed by all treatments, including 

the nitrate-induction and amino acid treatments with CPT.  

It was unexpected that the addition of Arg to nitrate induction resulted in 

the repression of pNRT2.1::LUC as it strongly stimulated the luciferase signal in 

the luciferase screening platform. NRT2.2 was also shown to be strongly 

repressed by the presence of Arg in nitrate induction conditions. Analysis of 

NRT2.1 showed no significant difference in transcript levels between induction 

with and without Arg, yet the Log2(1/NRQ) value was slightly lower than nitrate 

alone, however this reduction was not to the extent of pNRT2.1::LUC or NRT2.2. 

No significant changes were seen for NIA1, GS1-1 or GS1-2, but a strong 

stimulatory effect was observed for the NRT1.1 expression in nitrate conditions 

including Arg. In agreement with the observations of Chapter 4, the addition of 
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Arg to Gln-repressed samples did not alter N-repression of pNRT2.1::LUC and 

NRT2.1 expression significantly. Similarly, this effect was the same for NIA1, 

NIA2, GS1-1 and GS1-2. Interestingly, the addition of Arg significantly reduced 

NRT1.1 repression, when Gln-repression alone failed to alter expression 

compared to the nitrate induced. NRT2.2 displayed a significantly increased 

expression with the addition of Arg, this was unexpected as Arg did not enhance 

the NRT2.2 transcript, rather it significantly repressed it when included in nitrate 

induction conditions. Interestingly, while both show that the addition of Arg did 

not significantly affect the antagonistic effect of CPT, the mean Log2(1/NRQ) 

values were lower in the presence of Arg, following the trend observed for nitrate 

induction including Arg. 

  



 

99 
 

 

  

Figure 6.2. Real-time PCR analysis of expression of genes related to N signalling under various N treatments and in the 

presence of CPT. pNRT2.1::LUC seedlings were cultured using the FrameStrip deep-well method with a background concentration 

of 100 µM NH4NO3. Where used, CPT was applied at 100 µM to the wells, to 12 day old seedlings and N treatments were applied a 

day later. Treatments were: N-ind (induced, 0.3 mM KNO3); N-ind + Arg (0.3 mM KNO3 + 4 mM Arg); N-ind + Gln (0.3 mM KNO3 + 

10 mM Gln); N-ind + Arg + Gln (0.3 mM KNO3 + 4 mM Arg + 10 mM Gln); N-ind + Gln + CPT (0.3 mM KNO3 + 10 mM Gln + 100 µM 

CPT); N-ind + Gln + Arg + CPT (0.3 mM KNO3 + 4 mM Arg + 10 mM Gln + 100 µM CPT). Mean Normalised Relative Quantification 

(Log2 (1/NRQ)) values shown ±SE (n= 3 independent replicates, root material for each was from a separate deep-well plate) where 

negative fold changes represent upregulation and positive fold changes represent downregulation of the gene. Different letters 

denote statistically significant differences identified by ANOVA (p<0.05, 20 degrees of freedom, LSD (5%) = 1.15 (NRT2.1), 1.51 

(NRT2.1::LUC), 0.55 (NRT1.1), 1.35 (NRT2.2), 0.75 (NIA1), 0.94 (NIA2), 1 (GS1-1), 0.72(GS1-2)) on Log2(1/NRQ) log transformed 

data. 
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6.1.3 Using root growth of topoisomerase I Arabidopsis mutants as a proxy  

         for CPT inhibition sensitivity 

CPT is known to act as an inhibitor of seedling growth, with root growth being 

particularly sensitive (Tao and Buta, 1986). If this effect is due to CPT’s targetting 

of topoisomerase I, then it would be expected that topoisomerase I mutants would 

show reduced sensitivity to the inhibitor. To determine the effect of CPT on 

primary root growth, wild-type and three topoisomerase I mutant Arabidopsis 

lines were grown on vertical agar plates containing a range of CPT concentrations 

(Fig. 6.3). The top1α-1, top1α-2 and mgo1-7 lines contained mutations in genes 

encoding topoisomerase type I, enzyme subtype A.  

Primary root growth in the wild-type was sensitive to CPT application at 25 

µM and 50 µM significantly inhibiting growth by 25% and 50% respectively. At 75 

µM and above CPT reached a maximum effect, with no significant increase in 

root growth inhibition over 68%. The top1α-1 and top1α-2 mutant lines were less 

sensitive to CPT, with lower percentage root growth inhibition for each 

concentration, compared to the wild-type. Both mutants up to 75 µM CPT 

displayed approximately half the percentage of primary root growth inhibition of 

the wild-type. Even at 100 µM CPT, top1α-1 and top1α-2 displayed 49% and 63% 

root growth inhibition, respectively, compared to the 73% of the wild-type. 

Unexpectedly, at the highest concentration tested (100 µM) the mgo1-7 mutant 

was almost as sensitive to CPT as the wild-type.  
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Figure 6.3 Using root growth of topoisomerase I Arabidopsis mutants as a 

proxy for CPT inhibition sensitivity Seedlings of wild-type and three 

topoisomerase I mutants (mgo1-7, top1α-1, top1α-2) were grown for 5 days on 

vertical agar plates (Section 2.5). Eight seedlings were selected for uniformity of 

primary root growth and transferred to new vertical agar plates containing 1 mM 

KNO3 and CPT at the specified concentrations. The increase in primary root 

length over the following 7 days was measured. Values are log transformed 

means of primary root length (cm) ±SE (n = 8 individual seedlings). Different 

letters denote statistically significant differences identified within each seed line 

by ANOVA (P<0.05, 157 degrees of freedom, LSD (5%) = 0.08 (wild-type), 0.05 

(mgo1-7), 0.05 (top1α-1), 0.06 (top1α-2).    
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6.2 Discussion 

 

The identification of CPT as a chemical antagonist of NRT2.1 N-repression in the 

chemical genetics screening platform was further investigated in this chapter. The 

first step was to confirm the effect of CPT on N-repressed NRT2.1-dependent 

luminescence in the pNRT2.1::LUC Arabidopsis reporter line. This was 

performed through a dose-response experiment to further validate the initial 

findings from the screen and to give an indication of the CPT dose effect. The 

next step was to confirm the interaction of CPT at the gene level, demonstrating 

that the results obtained from using the pNRT2.1::LUC reporter line and 

luciferase assay were representative of the endogenous expression of NRT2.1. 

The final step was to investigate the detrimental effects of CPT on Arabidopsis 

root growth, as CPT is known to be poisonous to plants, inducing apoptosis (Vos 

et al., 2011, Shafiq et al., 2017). In this section these results will be discussed in 

greater detail in relation to the current understanding of N signalling in plants. 

6.2.1 CPT is confirmed to antagonise N-repression in the pNRT2.1::LUC line 

CPT was shown in Fig. 6.1 to antagonise N-repression in the luciferase assay. 

This confirms the interaction observed in the primary screen, with CPT 

antagonising N-repression of luminescence significantly above the other N-

repressed samples in both plates. Despite a range of concentrations being 

investigated, there was no significant difference in the antagonistic response, 

suggesting that even at the lower CPT concentrations investigated the effect on 

NRT2.1 N-repression was at its greatest. Remarkably the antagonistic effect of 

CPT was seen even at very low concentrations. Extrapolating the data from the 

primary root growth response to CPT experiment in Fig. 6.1 suggests that 

concentrations as low as 25 - 75 nM would be below the threshold at which plant 

growth is inhibited. This powerful growth inhibition effect even at low 

concentrations has been seen in mammalian cells, where nM concentrations of 

CPT are cytotoxic for various tumour cell lines (Luzzio et al., 1995). 

CPT is known as an inhibitor of topoisomerase I, specifically the B subtype 

which intercalates between the DNA cleaved ends in the enzyme active site 

during DNA replication. This results in the stabilization of the DNA-cleavage 
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complex leading to the ubiquitinylation and SUMOylation of topoisomerase I 

(Staker et al., 2002, Vos et al., 2011). Topoisomerase IB is associated with 

relieving torsional stresses of positively and negatively supercoiled DNA, 

whereas topoisomerase IA is only associated with the latter.  At present no small 

molecules have been identified to target topoisomerase I A (Vos et al., 2011). 

This suggests that topoisomerase IB is the component, or is related to a 

mechanism responsible for eliciting N-repression. In other Arabidopsis research, 

antagonising topoisomerase I with CPT in this fairly general manner has been 

shown to disrupt specific elements of plant development, such as meristem 

development and phylotaxis   (Liu et al., 2014, Takahashi et al., 2002). Fig. 6.1 

suggests that CPT, even at low concentrations is effective at antagonising 

topoisomerase I, likely causing changes in gene regulation that led to the 

antagonism of N-repression.  

 

6.2.2 Investigating the endogenous expression of NRT2.1 and other N-

related genes under different N-conditions and with CPT 

Real-time PCR experiments (Fig. 6.2) confirmed previous reports that high 

external N concentrations (in the organic or inorganic form) lead to repression of 

both the NRT2.1 gene and the pNRT2.1::LUC transgene (Nazoa et al., 2003, 

Girin et al., 2007, Girin et al., 2010). These experiments were used to confirm 

that CPT was able to antagonise N-repression of NRT2.1::LUC as well as the 

endogenous NRT2.1 gene, leading to increased accumulation of the respective 

mRNAs . Furthermore, CPT treatment also has a wider effect on N-repression in 

roots by enhancing the expression of two other genes in the nitrate assimilatory 

pathway that are regulated in a similar way to NRT2.1, NRT2.2 and NIA1. 

Significantly, CPT had no positive effect on two genes whose expression is not 

N-repressed, GS1-1 and GS1-2. However, surprisingly, CPT did stimulate the 

expression of NIA2, even though NIA2 was not significantly repressed under high 

N conditions, suggesting that its expression is under negative control by a 

separate CPT-sensitive regulatory pathway.  

Since CPT is best known for its ability to disrupt the activity of 

topoisomerase I (Vos et al., 2011, Staker et al., 2002, Liu et al., 2014), these 
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results suggest a role for topoisomerase I in the process of N-repression of genes 

of the N assimilatory pathway. Topoisomerase I is a key enzyme in DNA 

replication and transcription (hence the use of CPT as anti-tumour drug) and is 

responsible for relieving torsional stresses. These torsional stresses are 

produced by supercoiling of the DNA which occurs as the DNA is wound and 

unwound during replication and transcription (Staker et al., 2002). The 

topoisomerase I enzyme binds to the DNA double strand to form a topoisomerase 

I-DNA complex. Through transesterification it then ligates a single DNA strand, 

creating a break where one end is bound to the topoisomerase I-DNA complex 

and the other is free. The free end of the broken strand then rotates around the 

complimenting intact DNA strand, releasing the torsional stress on the DNA 

double helix. Once a single rotation of the broken strand has been made the 

topoisomerase I-DNA complex then relegates the two ends back together 

through transesterification. The topoisomerase I enzyme then dissociates from 

the DNA, ending the regulatory interaction (Fig. 6.4) (Staker et al., 2002; Liu et 

al., 2014).  

 

Figure 6.4 The regulatory role of topoisomerase I in relieving torsional 

stress on DNA Topoisomerase I (TopoI) is shown to bind to the DNA and relieve 

torsional stress from supercoiling via transesterification. Figure adapted from 

Lodish et al. (2000). 

 

CPT is known to interact with topoisomerase I by binding to the 

topoisomerase I-DNA complex and preventing the relegation of the broken ends. 

This results in the topoisomerase I-DNA complex persisting on the stationary 
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broken strand of DNA. When DNA replication occurs, as the replication fork 

advances along the DNA molecule it collides with the topoisomerase I-DNA 

complex. This results in both strands of the DNA breaking apart and so the cell 

undergoes apoptosis (Staker et al., 2002; Liu et al., 2014). 

As topoisomerase I is responsible for relieving torsional stresses, the 

findings from Fig 6.2 seem at first counter-intuitive. However, there are a number 

of recent studies indicating that topoisomerase I plays an important role in the 

epigenetic control of transcription in plants (Cao et al., 2015, Liu et al., 2014, 

Pikaard and Scheid, 2014, Sun et al., 2014). Nucleosomal spacing in gene 

regulatory regions has been shown to be regulated by TOP1α, with 

TOP1α/MGO1 and subunits of Polycomb Group Protein (PcG) interacting to 

deposit an epigenetic marker, H3K27me3 at target genes  (Liu et al., 2014, Graf 

et al., 2010). Specifically, the Polycomb Repressor Complex 2 (PRC2) deposits 

the H3K27me3 histone marker which is identified by LIKE HETEROCHROMATIN 

PROTEIN1 (LHP1) in the Polycomb Repressor Complex 1 (PCR1) to establish 

repressive chromatin (Turck et al., 2007, Exner et al., 2009) occluding binding 

factors from the genes (Liu et al., 2014). Mutations in the hni9 line were shown to 

be allelic to INTERACT WITH SPT6 (AtIWS1), which encodes a protein in the 

RNA polymerase II complex. HNI9/AtIWS1 was found to regulate several 

hundred N-responsive genes in Arabidopsis, including NRT2.1 where repression 

of this gene by high N supply is associated with the accumulation of the 

H3K27me3 marker histone at the gene (Widiez et al., 2011). These studies and 

the present findings show that CPT is involved in regulating gene expression in 

relation to N-repression of NRT2.1. 

 

6.2.3 Using root growth of topoisomerase I Arabidopsis mutants as a proxy  

         for CPT inhibition sensitivity 

It was expected that CPT would have a detrimental effect on root growth in the 

wild-type given its classification as a poison, targeting topoisomerase I as seen 

in Fig. 6.3 and ultimately leading to cell death. Primary root growth in all the 

investigated topoisomerase I mutants displayed reduced sensitivity to CPT 

although the mgo1-7 mutant appeared to be more sensitive. Takahashi et al. 

(2002) reported a similar response for the top1-α lines when grown continuously 
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on the same range of CPT concentrations. They observed that roots were more 

sensitive to CPT exposure than in Fig. 6.3, with root inhibition being 

indistinguishable from the wild-type at 75 µM CPT. A key difference in 

experimental approach could account for this change, as Takahashi et al. (2002) 

germinated seed in the presence of CPT, rather than exposing established 

seedlings to the poison. This differentiates the experiments significantly as one 

is a CPT germination sensitivity assay, while the experiment in Fig. 6.3 is solely 

a root growth sensitivity assay. 

 The effect of CPT in the wild type was expected to be stronger than in the 

topoisomerase I mutants as the latter were disrupted in the Top1α paralog. This 

paralog, encodes TOP1α which has been shown to regulate specific 

development functions in plants, in both the root and the shoot (Zhang et al., 

2016). It is thought that as CPT could not target this key regulatory enzyme and 

turn it into a DNA damaging agent the negative effect of CPT on root growth in 

the mutants was less than the wild type. The lack of the TOP1α paralog is not 

lethal in the Arabidopsis and seedlings can still grow and develop, even if stunted 

as TOP1β and topoisomerase II are still present to help relieve torsional stresses 

on the DNA. Topoisomerase II functions much the same as topoisomerase I, 

however instead of ligating and religating a single strand of DNA it is able to 

perform the same interaction on both strands of the DNA (Staker et al., 2002; Liu 

et al., 2014). Future research from this experiment could investigate the 

differences in DNA damage between the wild-type and mutant seed lines in the 

presence of CPT. A comet electrophoresis assay could be used to investigate 

DNA damage by looking for DNA double strand breaks and whether there is a 

difference between the wild-type and mutant seedlings after treatment with CPT. 

6.2.4 Summary 

In this chapter CPT’s activity as an antagonist of N-repression in the 

pNRT2.1::LUC reporter line was confirmed. The dose-response experiment 

reported that CPT, even at very low concentrations has a significant antagonistic 

effect on N-repression. To investigate this further the effect of CPT was 

investigated at the gene level via qPCR, along with the different N treatment 

regimes used in this research. This experiment confirmed previous reports that 
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high external N concentrations (in the organic or inorganic form) lead to 

repression of both the NRT2.1 gene and the pNRT2.1::LUC transgene (Nazoa et 

al., 2003, Girin et al., 2007, Girin et al., 2010). In addition, two other genes that 

were responsive to the N-repression were also antagonised by CPT, NRT2.2 and 

NIA2. This experiment also showed that the presence of Arg resulted in the 

repression of all genes, expect for NRT1.1 where it stimulated expression. Given 

the stimulation of luminescence in the luciferase assay in the presence of Arg 

treatments, the repression of pNRT2.1::LUC was unexpected. In a final 

experiment root growth of topoisomerase I Arabidopsis mutants was used as a 

proxy CPT for CPT inhibition sensitivity. This experiment reported that CPT was 

detrimental to root growth in the WT, as was expected from it being a poison, 

targeting topoisomerase I. The higher the concentration of CPT applied, the 

stronger the inhibitory effect on root growth. Detrimental observations were made 

for root growth in the topoisomerase I mutants (mgo1-7, top1α-1, top1α-2), 

however they displayed a reduced sensitivity compared to the WT (namely mgo1-

7), as expected. The differences in sensitivity between the WT and the 

topoisomerase I mutant lines provides further support for CPT targeting 

topoisomerase I and demonstrates that higher concentrations produce a stronger 

inhibitory effect. This experiment suggests that even at low concentrations of 

CPT, such as those being used in the chemical screen, the inhibitory effect on 

root growth is minimal, whilst the other experiments in this chapter have shown 

that such concentrations have a strong statistical effect on NRT2.1 gene 

expression.  

  



 

108 
 

Chapter 7. General discussion 

 

 

This research has for the first time adopted a chemical genetics approach to 

dissect the N signalling pathway in plants. The preliminary experiments detailed 

in Chapter 3 identified a suitable Arabidopsis reporter line, pNRT2.1::LUC, 

around which the FrameStrip and ‘ice capture’ methods were developed to 

establish a functional screening platform for this research. In Chapter 4 the 

protocols associated with this screening platform were then optimised, in order 

for the most suitable conditions for the luciferase assay and the N-treatment 

conditions to be established. These conditions were statistically validated by an 

appropriate test, the Z factor statistical parameter, providing a validation step to 

ensure that all aspects of the platform were viable for its use in a chemical 

genetics screen.  

In Chapter 5 three libraries (LATCA, LOPAC, Spectrum collection) were 

then screened for chemical antagonists of NRT2.1 N-repression, yielding one 

chemical, CPT which acted as a chemical antagonist in both screening platform 

replicates. CPT is known to target topoisomerase I in plants, which has been 

shown to play an essential role in DNA replication, recombination and repair and 

chromatin remodelling (Vos et al., 2011, Pikaard and Scheid, 2014, Liu et al., 

2014, Durand-Dubief et al., 2010). The experiments detailed in Chapter 6 

confirmed the antagonist effect of CPT in pNRT::LUC via a dose-reponse 

experiment, showing a strong statisitcal effect even at low concentrations. This 

antagonist effect was then confirmed at the gene level, using qPCR to investigate 

endogenous gene expression. This experiment reported that CPT indeed was an 

antagonist of NRT2.1 expression under N-repression conditions. In addition, this 

experiment confirmed that the results from the luciferase assay in relation to 

different N treatments was indicative of the endogenous gene expression for 

NRT2.1. By also investigating additional genes associated with the N assimiltion 

and signalling pathways in plants a further insight into the regulation of NRT2.1 

under N-repression was produced. In a final experiment the detrimental effects 

of CPT on root growth were investigated using topoisomerase I mutants. The 

application of CPT was shown to inhibit root growht in a dose-dependent manner, 
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however the topoisomerase I mutants displayed a decreased sensitivity 

compared to the WT. 

Given the findings of this research and the current understanding of N 

signalling in plants, N-repression of NRT2.1, the main topics and outcomes from 

this research will now be discussed in the following sections.  

7.1 Evaluating the luciferase screening platform  

This research established a novel chemical screening platform that identified 

camptothecin as a chemical antagonist of N-repression of NRT2.1 and related 

genes. The FrameStrip method adopted here was designed for Arabidopsis, as 

is the case for many other screening platforms (Armstrong et al., 2004, Dejonghe 

and Russinova, 2017, Jan et al., 2004, Forde et al., 2013). However, the method 

is compatible with other seed types, providing they adhere to the ‘minimum space’ 

ethics of a screening platform. Characteristics that help determine suitability 

include: small seed size, ideally < 2 mm; seed that develop a root system 

gradually; seed that have a high germination percentage; seed populations that 

display uniformity of growth. As an example, a new screening platform, based on 

the FrameStrip method has demonstrated this using Eragrostis tef (Burrell et al., 

2017).   

By using a gene-based luciferase reporter system it is possible to perform 

a simple assay to gain a real-time quantitative insight into the transient expression 

of NRT2.1 (Millar et al., 1992, Baldwin, 1996). This maintains the high-throughput 

principles of the screening platform, whilst allowing for many diverse 

classifications of molecules to be tested (Raikhel and Pirrung, 2005). Additionally, 

it means that the input of time and resources is only invested into chemicals that 

are influencing a specified gene, instead of a broader phenotype, such as 

changes in root architecture that is governed by multiple regulatory pathways. A 

recent investigation into the use of reporter lines within chemical genetics studies 

shows that almost 38% of the 40 studies selected used a reporter line for these 

reasons (Serrano et al., 2015, Burrell et al., 2017). 

The luciferase screening platform maintained the setup simplicity 

associated with the FrameStrip method. Once assembled the platform is also 

self-sufficient until treatment application, except on day 7 when FrameStrips are 

raised up and assay plate nutrient solutions are replenished. The ‘ice capture’ 
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method maintains this principle, requiring no additional materials or equipment to 

generate and harvest root mass. A comparison with other platforms provides 

further support for these claims. The ‘ice cap’ genotyping platform (Su et al., 

2011) requires a multiple stage setup procedure incorporating specialised growth 

plates, a pump-driven water hydroponics system and custom built racks to 

generate harvestable root material in a 96-well format. Another setup, using a 

plant chip for Arabidopsis phenotyping (Jiang et al., 2014) requires a highly 

specialised PDMS bespoke growth unit, employing a microfluidic system driven 

by syringe pumps and a hydroponic trapping method to sow seed to phenotype 

root architecture. Comparatively, the luciferase screening platform is made up of 

everyday lab consumables, except for the FrameStrip supports which were made 

on-site, simply by cutting sheets of acrylic (Fig. 2.4).  

The luciferase screening platform could be used to investigate any suitable 

plant species with a luciferase reporter gene expressed in the root. It could also 

be used to investigate other aspects of N signalling, such as systematic N 

regulation. By applying different N treatments to the shoot and the roots and 

isolating the growth tube media from the assay plate media (by raising the 

FrameStrips up further) long distance signalling interactions could be 

investigated. In principle, this is similar to traditional split root experiments, where 

treatments are isolated to observe systemic regulation, however this would look 

at shoot to root derived signals. Other uses of the  platform could be to generate 

root mass for genotyping, as a simplified, cost effective alternative to the ‘ice cap’ 

system (Su et al., 2011) or to investigate longer term root growth and 

development phenotypes in a semi-hydroponics context, using the deep-well 

plate setup (Fig. 2.7). 

 

7.2 The effect of Arg on NRT2.1 expression 

Observations with the pNRT2.1::LUC reporter line showed that Arg, in the 

presence of nitrate induction conditions strongly stimulated the luminescence 

signal. This increase was 3-fold higher than when nitrate alone was applied. An 

initial hypothesis for Arg stimulating pNRT2.1::LUC luminescence in the presence 

of low nitrate was a possible repression of NR activity, facilitated by a proposed 

increase in NO production. Luminescence observations also showed that the 
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stimulatory effect of Arg only occurred in the presence of nitrate, Arg alone did 

not stimulate luminescence. Based on this it was hypothesised that Arg, in the 

presence of nitrate was having a transcriptional effect on pNRT2.1::LUC, as the 

addition of Gln was able to repress luminescence, similarly to Gln-repression in 

the absence of Arg. Analysis of endogenous gene expression revealed that both 

pNRT2.1::LUC and NRT2.1 expression were reduced by Arg in the presence of 

low nitrate conditions, however NIA1 and NIA2 expression were unresponsive. A 

study in barley reported that the exogenous application of Arg downregulated 

NRT2.1 in the presence of nitrate (Zhuo et al., 1999) and decreased nitrate 

uptake in soybean and wheat (Muller and Touraine, 1992, Rodgers and Barneix, 

1993). These findings show that the application of Arg, like many amino acids, is 

associated with N-repression of NRT2.1. However, interpretation of amino acid 

data must be treated with caution, as different amino acids are taken up and 

assimilated at different rates in the plant (Zhuo et al., 1999). Internal amino acid 

concentration analysis was performed in soybean, reporting that the endogenous 

application of Arg to roots led to a strong increase in Arg concentrations in planta 

(Muller and Touraine, 1992). A possible hypothesis for Arg stimulating 

luminescence in the presence of nitrate could be that Arg somehow enhances 

translation of the NRT2.1 and pNRT2.1::LUC mRNA in this reporter line. This is 

supported by evidence in Arabidopsis that shows glucose stimulates NRT2.1 

protein levels, independently of an effect on the NRT2.1 expression (de Jong et 

al., 2014). Metabolites from the oxidative pentose phosphate pathway, along with 

glucose are known to directly stimulate NRT2.1 expression, mediated by 

HEXOKINASE-1. It was reported that glucose was able to stimulate NRT2.1 

protein abundance and activity independently of HEXOKINASE-1 mediated 

NRT2.1 expression (de Jong et al., 2014). This provides a possible explanation 

for the stimulated luciferase output in the presence of low nitrate conditions and 

Arg. If Arg was able to stimulate luciferase protein abundance independent of the 

pNRT2.1::LUC transcript levels this would explain the results reported in this 

thesis.  

7.3 Camptothecin as an antagonist of N-repression 

Camptothecin is a plant alkaloid that binds to the DNA topoisomerase I-DNA 

complex, forming a transient intermediate that inhibits its activity (Hertzberg et 
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al., 1989). As discussed, topoisomerase I is involved in correcting torsional 

stresses of negative supercoiling created by RNA polymerase (Fig.6.4). This 

function is involved in DNA replication, recombination, repair and has also been 

shown to be involved in chromatin remodelling (Kieber et al., 1992, Vos et al., 

2011, Pikaard and Scheid, 2014). There are number of recent studies indicating 

that topoisomerase I plays an important role in the epigenetic control of 

transcription in plants (Cao et al., 2015). For example, evidence has been 

reported that the Arabidopsis TOP1α/MGO1 gene acts as a regulator of genome-

wide nucleosomal spacing in gene regulatory regions (Liu et al., 2014), leading 

to a change in chromatin structure that could make promoters more accessible 

to transcription factors. It has been reported that TOP1α function reduces 

nucleosome density in most, if not all Arabidopsis genes, allowing binding factors 

access to them (Zhang et al., 2007, Liu et al., 2014). This suggests that the 

function of TOP1α might have a much larger role in all aspects of signalling and 

development than have been revealed. Supporting genetic evidence has shown 

that there are interactions between TOP1α/MGO1 and subunits of the Polycomb 

Group Protein (PcG) (Graf et al., 2010). Of the complexes that make up PcGs, 

the Polycomb Repressor Complex 2 (PRC2) is known to deposit a repressive 

mark histone (H3K27me3) at target genes. This is identified by the Polycomb 

Repressor Complex 1 (PRC1) which interacts at the site to establish repressive 

chromatin (Sun et al., 2009, Sun et al., 2014). PcG target genes have been shown 

to have essential roles in plant development and are thought to be targeted due 

to the lack of a 5’ nucleosome-free region, as seen in yeast, drosophila and the 

human genome (Lee et al., 2007, Mavrich et al., 2008, Schones et al., 2008). 

Furthermore, TOP1α appears to be important in floral meristems for promoting 

PcG-mediated histone 3 lysine 27 trimethylation (H3K27m3) at the WUSCHEL 

(WUS) gene (Liu et al., 2014). Thus, a picture is emerging of the importance of 

topoisomerase in chromatin remodelling and the regulation of the deposition of 

epigenetic marks. Against this background, the identification of topoisomerase I 

as a component in N repression of gene expression no longer appears surprising. 

Indeed, there is a clear link between this finding and the previous identification of 

the HNI9 gene as corresponding to the Arabidopsis INTERACT WITH SPT6 

(AtIWS1) gene, which encodes a component of the RNA polymerase II complex 

(Widiez et al., 2011). Importantly repression of the NRT2.1 transcription by high 
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N supply was shown to be associated with an HNI9/AtIWS1-dependent increase 

in histone H3K27m3 methylation at the NRT2.1 locus (Widiez et al., 2011).  

 To further this research, expression of NRT2.1 and other related genes 

should be investigated, using Arabidopsis topoisomerase I mutants (top1α-1, 

top1α-2, top1β-1,mgo1-7), under the treatment conditions used in this project. It 

is hypothesised that topoisomerase I mutants will display a desensitised 

response to high N-supply, based on the findings in the hni9-1 mutant (Widiez et 

al., 2011) and the NRT2.1 response to CPT (Fig. 6.2). Considering all the results, 

the exclusion of Arg may be relevant as, except for the luciferase data it was not 

reported to have a stimulatory effect on gene expression (except for NRT1.1 in 

the presence of nitrate), as shown in other studies (Girin et al., 2007, Zhuo et al., 

1999). Additionally, activity at the H3K27m3 histone should be investigated at the 

NRT2.1 locus in these experiments and results should be compared to the 

reported findings of the hni9-1 mutant (Widiez et al., 2011) to further our 

mechanistic understanding of N-repression. It would also be interesting to 

observe the effects of CPT in the absence of N treatments. Here we have shown 

that CPT antagonises N-repression of Gln alone and in the presence of Arg, 

however the effect of CPT alone was not investigated. It is hypothesised that CPT 

application could up-regulate NRT2.1 expression alone, in the absence of N 

treatments. This is supported by recent evidence showing that CPT in 

Arabidopsis and mouse de-repressed RNA-directed DNA methylation of loci 

under transcriptional silencing by H3K9 or DNA methylation (Dinh et al., 2014, 

Huang et al., 2012). The increase in expression of these endogenous genes 

suggests that NRT2.1 could also be affected in the same way. 

 

7.4 Conclusions 

This research documents for the first time a chemical genetics approach to 

investigate the N signalling pathway in Arabidopsis. The development of the 

FrameStrip platform and the ‘ice capture’ method provides a novel tool for the 

current field of plant science to further investigate signalling and regulatory 

components of the N signalling pathway. In this research the pNRT2.1::LUC 

reporter line, in conjunction with the screening platform was used to screen three 

chemical libraries containing molecules compiled for bioactivity and potential 

targets in plants. From this, CPT was identified as a novel chemical antagonist of 
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NRT2.1 N-repression. This discovery was validated at the gene level and was 

shown to influence a number of genes in the N signalling pathway which were 

sensitive to the N status of the plant (i.e. NRT2.1, NRT2.2 and NIA2). CPT is 

classified as a poison, which targets and binds to topoisomerase I to form DNA 

topoisomerase I-DNA complex, forming a transient intermediate that inhibits its 

activity (Hertzberg et al., 1989). The proposed inhibition of topoisomerase I by 

CPT, resulting in the antagonistic response of NRT2.1 N-repression suggests 

that its role as an epigenetic regulatory factor of gene transcription within plants 

is essential to the N signalling pathway in plants. This discovery enhances what 

is currently known about N signalling in plants, providing a new regulatory 

component in a complex and poorly characterised pathway. Topoisomerase I can 

now be targeted in future research in order to better understand its complete role 

in N signalling and to aid the search for other regulatory components of the N 

signalling pathway that have eluded research thus far. 

7.5 Future research  

The field of plant science would benefit from using the achievements and 

discoveries made in this research project to drive future research. Concerning the 

screening platform developed in this project, this novel tool provides an effective 

and convenient method to employ a chemical genetics approach in the study of 

any signalling pathway in plants, provided a suitable plant reporter line can be 

acquired. In terms of further N signalling research, it could be used to identify 

other chemical antagonists of N-repression in a similar manner to this project, in 

an effort to uncover yet more regulatory components of the pathway. 

Alternatively, the platform could be modified to investigate specific aspects of the 

pathway. By raising the base of the FrameStrip growth tubes up above the 

solution of the assay plate’s wells the root material in each section could be 

isolated for individual N treatments. This approach could be used to further 

investigate shoot to root long distance N signalling in plants, which could be 

further challenged with a chemical genetics approach to dissect the pathway 

further. 

 Future research could also investigate the strongly stimulated 

luminescence signal from the pNRT2.1::LUC reporter line when Arg, in the 

presence of nitrate was applied for NRT2.1 induction. Given that the qPCR data 



 

115 
 

showed that the addition of Arg did not stimulate NRT2.1 expression at the gene 

level an experiment using isolated samples of luciferin substrate and luciferase 

enzyme could be set up with and without Arg in an attempt to replicate the 

stimulatory effect. This would help to determine if Arg influenced the luciferase 

assay itself, if not it could provide further support for the theory that it was a post-

translational effect in planta, as proposed in the general discussion. Additional 

future experimentation would benefit from looking at the endogenous gene 

expression of NRT2.1 under N-repressed conditions, in the presence of CPT, but 

without the presence of Arg. In this research the effect of CPT was only observed 

at the gene level in the presence of nitrate. Given that the inclusion of Arg had no 

effect on the NRT2.1 transcript under N-repressed conditions it is unlikely to have 

contributed to the stimulatory response observed when CPT was included. 

However, further experiments would allow this to be confirmed.  

 Concerning the discovery of CPT as an antagonist of NRT2.1, a key future 

experiment would be to investigate the activity of the NRT2.1 transporter in the 

presence of CPT. As known from the literature, the function of the NRT2.1 

transporter is under the transcriptional control of the NRT2.1 gene (Krapp et al., 

1998, Muller and Touraine, 1992). Given the results from the endogenous gene 

expression in this research, it is hypothesised that under N-repressed conditions 

in the presence of CPT, the repression of the NRT2.1 transporter function would 

also be antagonised. This could be observed by performing a N media depletion 

experiment, however given that the NRT2.1 transporter is responsible for both 

the influx and efflux of nitrate from the root experiments using N13 would be more 

suited. By using N13 NRT2.1 nitrate influx into the roots could be easily visualised 

in a much more reliable manner. A final recommendation for future research 

would be to investigate the endogenous expression of genes that were both N 

responsive and antagonised by CPT in this research, but only in the presence of 

CPT. It is hypothesised that CPT, in the absence of N-repression would still be 

able to stimulate NRT2.1 expression given our current understanding of the 

regulatory component it targets, topoisomerase I.  
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Appendix I. Investigating the effect of the timing and concentration of Gln 

treatment on repression of nitrate-induced pNRT2.1::LUC expression (non-

transformed data) 

 

Figure 8.1 Investigating the effect of the timing and concentration of Gln 

treatment on repression of nitrate-induced pNRT2.1::LUC expression. 

Seedlings of the pNRT2.1::LUC line were cultured using the FrameStrip method 

in medium containing 50 µM NH4NO3 and nitrate induction was performed on 14 

day old seedlings using 0.3 mM KNO3. Gln treatments were applied at a range of 

concentrations either at the same time as the nitrate treatment (closed squares), 

3 h in advance of the nitrate treatment (closed circles) or 72 h in advance of the 

nitrate treatment (open circles).  Roots were harvested and frozen 24 h after the 

start of the nitrate treatments. Luciferase activity was measured in root extracts 

using 4 mM ATP and 1 mM luciferin in a LUMIstar Omega, BMG dedicated plate 

reader (Section 2.7.6).  Values means ± SE (n = 16) and different letters denote 

statistically significant differences (ANOVA, p<0.05, 145 degrees of freedom, 

LSD 5%) identified from log transformed values. 
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Appendix II. Comparison of the effectiveness of 19 different proteinogenic amino acids at repressing expression of nitrate-

induced pNRT2.1::LUC (non-transformed data).  

 

 

Figure 9.1 Comparison of the effectiveness of 19 different proteinogenic amino acids at repressing expression of nitrate-

induced pNRT2.1::LUC. Seedlings of the pNRT2.1::LUC line were cultured using the FrameStrip method in medium containing 100 

µM NH4NO3 and nitrate induction was performed on 13 day old seedlings using 0.3 mM KNO3. Individual amino acid treatments 

were applied simultaneously with the nitrate treatment for all amino acids (A) except Arg (B) and root material was frozen after 24 h. 

Luciferase activity was measured in root extracts using 4 mM ATP and 1mM luciferin in a LUMIstar Omega, BMG dedicated plate 

reader (Section 2.7.6).  Values are means ± SE (n = 8) and different letters denote statistically significant differences (ANOVA, p<0.05, 

281 degrees of freedom, LSD 5%) identified from log transformed data.  
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Appendix III. Investigating the stimulatory effect of Arg on pNRT2.1::LUC expression (non-transformed data). 

Figure 10.1 Investigating the stimulatory effect of Arg on pNRT2.1::LUC expression. Treatments were performed on 14 day 

old seedlings of the pNRT2.1::LUC line as for Fig. 4.8. Treatments with nitrate or amino acids alone, or combinations of nitrate and 

one or more amino acids as indicated in the Fig. 4.8, were applied simultaneously and roots frozen 24 h later.  Luciferase activity 

was measured in root extracts using 4 mM ATP and 1 mM luciferin in a LUMIstar Omega, BMG dedicated plate reader (Section 

2.7.6).  Values are means ± SE (n = 8) and different letters denote statistically significant differences (ANOVA, p<0.05, 149 degrees 

of freedom, LSD 5%) identified from log transformed data. 
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Appendix IV. The effect of a range of concentrations of CPT on 

pNRT2.1::LUC expression under conditions of N repression (non-

transformed data) 

 

 

Figure 11.1 The effect of a range of concentrations of CPT on pNRT2.1::LUC 

expression under conditions of N repression Thirteen day-old pNRT2.1::LUC 

seedlings, grown in the luciferase screening platform (Chapter 4) were subjected 

to different N treatments: uninduced (background N, 100 µM NH4NO3); N-

repressed (NR) (0.3 mM KNO3 + 4 mM Arg, 10 mM Gln); induced (0.3 mM KNO3 

+ 4 mM Arg). In the case of the ‘N-repressed’ treatments, a range of 

concentrations of CPT (0 to 50 µM) were applied 24 h before the N treatments 

were initiated. Luciferase assay performed in SpectraMaxi3 luminometer (Section 

2.7.7). Values are ± SE (n = 32, 5-6 seedlings per tube) and different letters 

denote statistically significant differences by ANOVA (P<0.05, 340 degrees of 

freedom, LSD 5%) from log transformed data.   
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Appendix V. Real-time PCR analysis of expression of genes related to N 

signalling under various N treatments and in the presence of CPT (non-

transformed data) 

12.1 Results 

Real-time PCR analysis of expression of genes related to N signalling under 

various N treatments and in the presence of CPT is presented graphically using 

non-transformed mean NRQ values. Different letters denote statistically 

significant differences identified by ANOVA (p<0.05, 20 degrees of freedom, LSD 

5%) on Log2(1/NRQ) log transformed data. 
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Figure 12.1 Real-time PCR analysis of expression of genes related to N signalling under 

various N treatments and in the presence of CPT pNRT2.1::LUC seedlings were cultured 

using the FrameStrip deep-well method with a background concentration of 100 µM NH4NO3. 

Where used, CPT was applied at 100 µM to the wells, to 12 day old seedlings and N treatments 

were applied a day later. Treatments were: N-ind (induced, 0.3 mM KNO3); N-ind + Arg (0.3 mM 

KNO3 + 4 mM Arg); N-ind + Gln (0.3 mM KNO3 + 10 mM Gln); N-ind + Arg + Gln (0.3 mM KNO3 

+ 4 mM Arg + 10 mM Gln); N-ind + Gln + CPT (0.3 mM KNO3 + 10 mM Gln + 100 µM CPT); N-

ind + Gln + Arg + CPT (0.3 mM KNO3 + 4 mM Arg + 10 mM Gln + 100 µM CPT). Mean 

Normalised Relative Quantification (NRQ) values shown ±SE (n= 3 independent replicates, root 

material for each was from a separate deep-well plate), non-transformed data are shown. 

Different letters denote statistically significant differences identified by ANOVA (p<0.05, 20 

degrees of freedom, LSD 5%) on Log2(1/NRQ) log transformed data. 



 

137 
 

Appendix VI. Using root growth of topoisomerase I Arabidopsis mutants as 

a proxy for CPT inhibition sensitivity (non-transformed data) 

 

 

Figure 13.1 Using root growth of topoisomerase I Arabidopsis mutants as 

a proxy for CPT inhibition sensitivity Seedlings of wild-type and three 

topoisomerase I mutants (mgo1-7, top1α-1, top1α-2) were grown for 5 days on 

vertical agar plates (Section 2.5). Eight seedlings were selected for uniformity of 

primary root growth and transferred to new vertical agar plates containing 1 mM 

KNO3 and CPT at the specified concentrations. The increase in primary root 

length over the following 7 days was measured. Values are means of primary root 

length (cm) ±SE (n = 8 individual seedlings). Different letters denote statistically 

significant differences identified within each seed line by ANOVA (P<0.05, 157 

degrees of freedom, LSD 5%) for log transformed data.    
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Appendix VII. Investigating conditions that elicit N-repression using high 

nitrogen insensitive (hni) mutants 

14.1 Results 

Girin et al. (2010) previously used the pNRT2.1::LUC reporter line in a screen to 

identify mutants that displayed enhanced luminescence in the presence of 10 mM 

NH4NO3. Two of these high nitrogen insensitive mutants (hni140-1 and hni48-1) 

have been used to determine whether they are also insensitive to the conditions 

of N-repression that have been used in the present study. (Unfortunately seed of 

a third line, hni9-1, was found to be non-viable and so it could not be included in 

this experiment).  Seedlings were grown in the FrameStrip platform for 13 days 

and then the roots treated with 0.3 mM nitrate + 4 mM Arg to induce 

pNRT2.1::LUC expression. One batch of nitrate-induced seedlings was treated 

in addition with 10 mM Gln and another batch with 10 mM NH4NO3. The results 

in Fig. 8.1 show that nitrate induction occurred in all three lines, as expected, 

although much more strongly in hni48-1 than in the wild-type. However, the 

NH4NO3 treatment strongly repressed pNRT2.1::LUC expression in both mutant 

lines, such that luminescence was not significantly different from the wild-type. 

Similarly, the 10 mM Gln treatment was equally or more effective in repressing 

expression of the pNRT2.1::LUC gene in the hni mutants than in the wild-type. 

Unexpectedly, the use of 10 mM NH4NO4 significantly repressed luminescence 

in both hni mutants, to a similar degree as in the wild-type background 
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Figure 14.1 Investigating the effect of different N-repression conditions on 

two hni mutants pNRT2.1::LUC and hni mutant lines (hni140-1, hni48-1) were 

cultured using the luciferase screening platform containing 100 µM NH4NO3. N 

treatments were applied to 13 day old seedlings and conditions were: uninduced, 

(background N only); Gln-repressed (0.3 mM KNO3 + 4 mM Arg + 10 mM Gln; 

Ammonium nitrate repressed (10 mM NH4NO3 + 4 mM Arg); Induced (0.3 mM 

KNO3 + 4 mM Arg). Luciferase assay performed in SpectraMaxi3 luminometer 

(Section 2.7.7). Values are means ±SE (16 individual seedlings). Different letters 

denote statistically significant differences identified by ANOVA (P<0.05, 192 

degrees of freedom, LSD 5%).   

 

14.2 Discussion 

14.2.1 Investigating different conditions that elicit N-repression using hni 

Arabidopsis mutants 

Given that the hni mutants have been shown to be insensitive to high ammonium 

nitrate conditions (Girin et al., 2010) their response to N-repression using Gln in 

the presence of nitrate was investigated. Fig. 8.1 shows that pNRT2.1::LUC 

expression in both the hni140-1 and hni48-1 mutants was significantly repressed 

by Gln-repression conditions. However unexpectedly they were also repressed 

under the ammonium nitrate concentrations used by Girin et al. (2010). Both 

studies also used the same nitrate induction concentrations, yet hni48-1 was 

strongly stimulated above the pNRT2.1::LUC and hni140-1 lines only here. A 

hypothesis to explain the altered luciferase expression in Fig. 6.4 is that Arg, 
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given its repressive effect on N signalling genes in Fig. 6.3, contributed to the 

repression of luciferase expression in these lines when added with ammonium 

nitrate. This could also explain the strongly stimulated response of luminescence 

in the induced hni48-1 mutant in the presence of Arg. Repeating this experiment 

without Arg could provide useful information to determine if Gln-repression is 

elicited in the same manner in the mutants and determine if Arg, in the presence 

of ammonium nitrate alters their response to high N. Girin et al. (2010) using the 

same hni mutants in this research reported that NRT2.1 expression insensitive to 

high N conditions (10 mM NH4NO3) and when placed in low nitrate induction 

conditions luminescence was indistinguishable from the wild-type. They used an 

additional mutant line, hni9-1, which showed the greatest insensitivity to high N-

repression, while this seed line was sourced for investigation here it was not 

included due to seed viability issues.  

 


