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ABSTRACT We argue that the success of the Internet of Things (IoT) vision will greatly depend on how its 
main ingredient—the “thing”—is architected and prepared to engage. The IoT’s fragmented and wide-
varying nature introduces the need for additional effort to homogenize these things so they may blend together 
with the surrounding space to create opportunities for powerful and unprecedented IoT applications. We 
introduce the IoT Device Description Language (IoT-DDL), a machine- and human-readable descriptive 
language for things, seeking to achieve such integration and homogenization. IoT-DDL explicitly tools things 
to self-discover and securely share their own capabilities, entities, and services, including the various cloud-
based accessories that may be attached to them. We also present the Atlas thing architecture—a lightweight 
architecture for things that fully exploits IoT-DDL and its specifications. Our architecture provides new OS 
layers, services, and capabilities we believe a thing must have in order to be prepared to engage in IoT 
scenarios and applications. The architecture and IoT-DDL enable things to generate their offered services 
and self-formulate APIs for such services, on the fly, at power-on or whenever a thing description changes. 
The architecture takes advantage of widely used device management, micro-services, security, and 
communication standards and protocols. We present details of IoT-DDL and corresponding parts of the thing 
architecture. We demonstrate some features of IoT-DDL and the architecture through proof-of-concept 
implementations. Finally, we present a benchmarking study to measure and assess time performance and 
energy consumption characteristics of our architecture and IoT-DDL on real hardware platforms. 

INDEX TERMS Internet of Things Architecture, Thing Description, Microservices, OMA, IPSO, CoAP, 
MQTT.

I. INTRODUCTION 
The spaces around us are getting full of things! Things are 
the basic building blocks and the main ingredient of the 
emerging and revolutionary Internet of Things (IoT) 
technology [1][2]. IoT actively brings more informative and 
interactive flavors to our lives, enabled by the evolution of 
low-power wireless technologies and embedded computing 
and intelligence. Empowered by the fact that now almost all 
devices are Internet-connected [3][4], IoT is transforming 
the standard view of the Web as a set of digital documents 
and links into a fully integrated Internet that includes 
physical devices as well as cyber elements. This new Web, 
combining the cyber and physical worlds, creates a new 
ecosystem with new programmability opportunities through 
the various interactions and interconnections of the two 
realms [5][6]. While the IoT is perceived as a generic and a 

generalized concept, in practice, it is not. Its various 
specializations and full taxonomy are yet to shape up and be 
fully learnt. A simple categorization of the IoT that captures 
its scale and applicable domains de jour is illustrated in Fig. 
1.  

 

FIGURE 1.  A simple IoT domain classification. 
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According to the scale and place of deployment we classify 
IoT into personal IoT (e.g., in smart homes or connected 
cars), industrial IoT (e.g., a smart factory floor or a physical 
plant), and at-scale IoT (e.g., a smart city deployment). 
Classifying IoT in this simple manner at this stage in the 
evolution of IoT is surely missing many important 
parameters. However, the classification helps us state the 
focus and applicability of our work in this paper, which is on 
the personal IoT, where the set of things is located in a 
bounded personal space. 
The highly fragmented nature of IoT and the wide 
heterogeneity in types, capabilities, and technologies raise 
thing integration as a significant challenge. Integrating such a 
wide spectrum of things in the ecosystem requires 
considerable effort and limits programming opportunities for 
smart spaces. Such challenges introduce further questions: 
How can space users (e.g., developer, vendor, and space 
owner) manage and configure such wide heterogeneity? How 
can such fragmented things securely interoperate and interact 
not only with cloud platforms and space users but also with 
other things in the space? These challenges introduce, as a first 
step, a requirement for a uniform way of describing things in 
smart spaces in terms of what a particular thing is (e.g., its 
components), what it does (e.g., its offered services) and how 
it communicates (e.g., what it can speak or which protocols it 
understands). Such a description paves the way to solve thing 
integration, configuration, and management challenges, while 
also enabling interactions. Such an approach requires an 
architecture for things in IoT, as a second step, that fully 
exploits thing description specifications (the first step) and 
supports the promising vision of IoT.  
Different approaches in the literature target these challenges 
by describing things in a space in terms of metadata, 
resources, and access methods. These approaches link the 
access of things to a central point (e.g., cloud platform, or 
edge), through which space users can access resources and 
collect data. Such a restricted paradigm ignores the 
distributed nature of IoT, which should also allow things to 
communicate with one another in a space, forming thing-to-
thing as well as thing-to-cloud or thing-to-edge 
communication paradigms. To enable such communication 
paradigms, a thing should be fueled by an additional set of 
attributes and properties that describe its various aspects as 
well as how it can engage in smart spaces. This set of 
attributes should not only describe the thing and its 
components, but also how it can be managed and configured, 
the different communication languages it supports, and 
eventually the important IoT semantics of how a thing can 
be used by other things or utilized within an IoT application. 
We argue that a description language for things that covers 
these aspects can enable various secure, meaningful 
interactions between things and thing mates. Thing mates 
include cloud platforms, edges, space users, and other things. 
In this paper, we present the IoT Device Description 
Language (IoT-DDL), a machine- and human-readable 

XML-based descriptive language for things in smart spaces. 
IoT-DDL explicitly tools a thing to self-discover its own 
onboard capabilities, resources, entities, and services, as well 
as cloud-based thing accessories. A thing’s resources are the 
components that describe the basic services it needs to be 
part of the IoT ecosystem (e.g., network module or memory 
unit). A thing’s entities are the physical devices, software 
functions, and hybrid (virtual) devices that can be attached 
to, built in, or embedded inside the thing. Each entity 
provides a set of services to thing mates through a set of well-
defined interfaces. In addition, external accessories, which 
are entities external to the thing that could be added to 
augment the thing capabilities over time, can provide a 
cloud-based expansion of the thing (e.g., a database, drivers, 
convertors, or specific add-on interfaces) through named 
attachments. Enabling the thing to self-discover what it is, 
what it does, and how it communicates can empower 
meaningful interactions and interconnections that support 
the distributed nature of IoT. Such enablement will be 
required before any useful programming models can be 
defined within the IoT ecosystem. Atlas IoT-DDL builder is 
a web service tool that allows a thing’s creator (e.g., the 
original equipment manufacturer (OEM)) or owner to create, 
update, or upload an IoT-DDL to a thing. The OEM of a 
thing could be the source of the IoT-DDL; a developer who 
utilizes space things’ services and resources might also be 
the source. Such flexibility facilitates further adoption of 
IoT-DDL with changes, and supports thing innovation, in 
which makers or hobbyists may be assembling new things 
not established by an OEM. We developed an initial version 
of the web tool [46] that enables space users to develop an 
IoT-DDL that reflects the thing’s metadata and attachments, 
as well as its inner entities, resources, and services; as will 
be discussed later.    
The IoT-DDL is proposed within the lightweight Atlas thing 
architecture, which fully utilizes the specifications of IoT-
DDL. The Atlas thing architecture takes advantage of a 
thing’s OS services to provide new layers and functionalities 
that introduce the novel capabilities a thing needs to engage 
in ad-hoc interactions and interconnections, as well as IoT 
scenarios and applications. The architecture enables a thing 
to self-discover its resources, attachments, components, and 
services from the uploaded IoT-DDL. The architecture 
extends the Apache licensed Micro Services project [51] to 
enable the thing to generate the services it wishes to offer to 
the smart space. Based on the inputs, outputs, and platform-
agnostic actions specified in the IoT-DDL, the architecture 
dynamically generates and manages a bundle (single 
executable microservice) that fulfills a specified thing 
service at the runtime of the thing. The thing can then 
formulate APIs of the services it offers and enable service-
oriented meaningful interactions to take place between the 
thing and its thing mates.  
This paper focuses on IoT-DDL concepts, requirements, and 
specifications. It also focuses on the details of parts of the 
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Atlas thing architecture that implement and take advantage 
of the IoT-DDL. The paper is organized as follows. Section 
II highlights related work, followed by a description of a 
proposed structure of things and the IoT-DDL specifications 
in section III. The overall Atlas thing architecture is 
described in section IV with focus on the architecture layers 
that implement IoT-DDL. In section V we present our 
implementation and a proof-of-concept, and in section VI we 
present a benchmarking study in which we measure and 
assess memory footprint, latency and energy characteristics 
of the IoT-DDL and Atlas thing architecture on real 
hardware platforms. Finally, a discussion and a conclusion 
are presented in section VII. 
 
II. RELATED WORK 
Although there is not much in the literature on explicit 
architectures for things, quite a bit of work exists on device 
descriptions. The Device Description Language (DDL) is a 
machine- and human-readable XML-based device description 
approach developed by the Mobile and Pervasive Computing 
Lab at the University of Florida [16][17]. DDL is a schema for 
the seamless integration of devices into a smart space, service 
registration, and discovery. DDL describes the metadata of the 
physical device and how to access the offered services. DDL 
was used to develop the Cloud-Edge-Beneath (CEB) 
architecture [14][15][29]. CEB opens access links to devices 
from the cloud through the use of the Atlas sensor platform 
and middleware. Atlas middleware, hosted by the Edge (e.g., 
standalone server), uses the Open Services Gateway initiative 
(OSGi) for service discovery and configuration of Atlas sensor 
platforms. The middleware, when contacted by an Atlas 
sensor platform, retrieves information from the DDL 
descriptor and creates a Java bundle for that sensor. Sensors 
are abstracted into sensor service interfaces in the cloud 
through interlayer collaboration between the Atlas 
middleware bundles at the Cloud, the Edge, and beneath.  
To enable thing-to-thing, thing-to-cloud and thing-to-edge 
communication paradigms, IoT-DDL extends the descriptive 
power of Atlas DDL to address a thing’s self-discovery.  IoT-
DDL, as a self-description tool uploaded to a thing, explicitly 
powers the thing to discover its inner resources, 
characteristics, services, communication languages, and 
cloud-based attachments. IoT-DDL and the Atlas thing 
architecture enable the thing to identify itself to thing mates 
and formulate APIs for the offered services. The IoT-DDL 
enables the seamless integration of things into the ecosystem, 
and equips the thing with a set of attributes that enable thing 
management and configuration with minimal human 
intervention.  
The Web of Things (WoT) framework by the World Wide 
Web Consortium (W3C) [32][33] is an active research field 
that explores access to and handling of things’ digital 
representations through a set of web services. These services 
are based on event-condition-action rules that involve these 
virtual representations as proxies for physical entities. Such 

objects are modeled in terms of metadata, events, and 
actions, along with the RESTful protocol. Servers provide an 
interface for instantiating and registering such proxies for the 
things along with their descriptions. A client script interacts 
with these proxies exported by the server, where applications 
can register callbacks for events. Darko et. al. [49] utilize 
Thing Description (TD) to describe the different things in the 
WoT, in terms of their metadata, how to access them, and 
their different events and corresponding actions. The TD 
relies on the Resource Description Framework (RDF) [50] as 
an underlying data model that can be extended to involve 
domain specific information.  
The Constrained RESTful Environments (CoRE) [47] 
realizes the Representational State Transfer (REST) 
architecture for the discovery of resources hosted by 
constrained nodes to build M2M applications. CoRE extends 
the universal resource identifiers (URI) for such resources 
with a set of attributes and descriptions of relations between 
such resources. A client, for his application, utilizes such 
resource discovery architecture with the appropriate resource 
description, along with possible application-specific 
attributes. Datta et. al. [8][48] highlights an evolution in 
Thing Description (TD) from the CoRE Link Format to 
describe physical things in the IoT. TD represents the 
different sensors and actuators in terms of events and actions. 
The authors proposed a thing management framework that 
resides in an M2M gateway. 
Google’s Weave [18][19] is a communication platform that 
allows smartphones and cloud services to interact with things 
through mobile devices and the Web. Weave supports cloud 
services such as device discovery, provisioning, state 
subscription, remote access, and push notifications. Weave 
introduces two main ideas of device description schema: 1) 
trait, which describes device functions, commands, and state 
definitions, and 2) component, which describes the 
relationships between traits. Weave is provided in 
conjunction with Brillo, Google’s new Android-based OS 
for embedded development. Brillo offers device 
management, a hardware abstraction layer, and a 
development kit. Several Brillo-compatible boards can be 
accessed and managed through a Linux developer machine. 
IoT applications can be developed directly over Brillo, with 
development taking place on the developer machine and the 
resulting image is flashed on the target hardware.  
A related approach to IoT-DDL is Amazon Web Services 
IoT (AWS-IoT) [20][21], a cloud-based platform that 
provides bidirectional communication between the AWS 
cloud platform and things in a space (sensors, actuators, and 
embedded devices). AWS’s primary focus is collecting and 
analyzing data reported by multiple devices. A thing-registry 
module stores and organizes thing-related information and 
resources, while users can associate up to three custom 
attributes with each thing. On the other side, each thing has 
a thing-shadow that stores thing-state and metadata in 
response to application requests. 
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The aforementioned approaches link the access of things to a 
central point (e.g., cloud platforms or edge) where space users 
can access resources and collect data. Such a restricted 
paradigm ignores the distributed nature of IoT, which requires 
things to communicate with other things as well as with cloud 
platforms and edge. To enable secure ad-hoc interactions 
between a thing and its thing mates in a space, a thing should 
be fueled by an additional set of attributes and properties. In 
the absence of a device description language that supports 
basic thing requirements for a smart space, significant effort is 
required to interact with and manage the wide heterogeneity 
of things. At the same time, the thing description should be 
part of the thing itself to facilitate a thing’s smooth migration 
from one space to another. In the next section, as a first step 
toward describing a thing, we define the essential 
requirements that must be met for a thing to be part of the IoT 
ecosystem. We also introduce a structural definition for things. 
 
III. IoT-DDL SPECIFICATIONS 
The first step in describing a thing in a smart space is 
identifying the different parts that make up its structure. The 
thing, as illustrated in Fig. 2, is composed of a set of resources, 
entities, and attachments and engages with thing mates 
through some interactions. Resources are the components that 
shape the OS services a thing needs to be part of the IoT (e.g., 
network module, memory unit, etc). Each resource is shaped 
through a set of properties that configures such operating 
services. Moreover, thing entities are the physical devices, 
software functions, and hybrid devices that can be attached to, 
built in, or embedded inside the thing. Each entity provides a 
set of services to the smart space through a set of well-defined 
interfaces (APIs). Furthermore, a thing can have one or more 
external accessories or attachments. Thing attachment is a 
cloud-based expansion of the thing that provides further 
representations (e.g., thing virtualization) and services (e.g., 
log server, database, or dashboard) that are considered too 
heavyweight to be hosted on the thing or require additional 
resources that are not available on such constrained devices. 
Thing mates include cloud platforms, edges, humans (e.g., 
space users or developers), and other things. 
A thing in a smart space engages with thing mates in the IoT 
ecosystem through a set of information- and action-based 
interactions. Information-based interactions (referred to in this 
paper as tweets) enable a thing to announce its identity, 
capabilities, and APIs to thing mates. A thing uses a tweet to 
describe what it is, what it does, and what it knows to the other 
thing mates. Action-based interactions include management 
commands, lifetime updates, and configurations from 
authorized parties as well as the applications that target the 
thing’s capabilities and services.  
Consider a smartphone as an example of a thing in smart 
space. To be part of the smart space, a smartphone must be 
equipped with an internal memory and Wi-Fi network 
module. It also contains a set of sensors (e.g., proximity, 
accelerometer) as embedded entities that can offer services 

to the smart space. The phone can also be connected to a 
cloud attachment for lifetime OS updates provided by the 
vendor. The three requirements and the proposed structure 
for the thing shape the specifications required to describe 
things in smart spaces and highlight the design aspects of the 
architecture that can fully utilize such specifications.  
 

 

FIGURE 2.  Thing structure. 
 
 
Based on the thing structure outlined above, we now present 
our IoT-DDL specifications that describe the different parts 
and accessories of a thing through a set of attributes, 
parameters, and properties. IoT-DDL is based on Atlas DDL 
[16], which uses an XML-based schema to describe devices 
to facilitate their integration in a smart space. It has been used 
to develop the Atlas Cloud-Edge-Beneath (Atlas-CEB) 
architecture [14], which uses DLL to generate Java bundles 
that represent the devices and that can be deployed on an 
edge and/or cloud to connect back and interact with the 
devices the DDL describes. DDL is used to describe a single 
device (sensor, actuator, or hybrid) through the device's 
metadata, functions, and operations. Atlas IoT-DDL extends 
Atlas DDL to address additional thing requirements and to 
match the thing structure outlined above. The IoT-DDL 
structure is divided into the Atlas thing, thing entities, and 
thing attachments sections, as illustrated in Fig. 3. These 
three main sections are described below.  

A. Atlas Thing Section 
The Atlas thing section of IoT-DDL characterizes the thing as 
a whole, describing the different resources and components on 
board. It is further structured into the following subsections:  
1) The descriptive metadata section holds the thing’s 

identification, including its name, model, short 
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description, type (e.g., software, hardware, hybrid), 
vendor, and owner.  

2) The structural metadata section highlights the structure 
of IoT-DDL file as a short description of the thing's 
resources, entities, and attachments. 

3) The resources section holds the attributes and properties 
of the underlying OS services the thing needs to be part 
of the IoT. The Atlas thing section holds a separate 
section for each resource. In this paper, we support both 
network module and memory unit as the two main 
resources a thing needs to engage with a smart space. 
• The network properties subsection describes the 

network connection capabilities of a thing in terms of 
the mounted network module (e.g., Wi-Fi, Bluetooth), 
network access information, and preferences. The 
subsection covers the attributes and properties of the 
supported communication protocols (e.g., MQTT, 
CoAP). 

• The memory properties subsection highlights the 
various memory units available to process 
applications, generate APIs, and archive information 
in a specific format. 
 

 
FIGURE 3. IoT-DDL specifications. 

B. Thing Entities Section 
The thing entities section describes the different types of 
entities (hardware, software, or hybrid) that can be embedded, 

built in, or connected to the thing. Each entity is detailed in 
terms of its descriptive information, the services and functions 
it offers, and the different types of interactions it can engage 
in. Each entity is further divided into components as follows: 
1) The descriptive metadata section holds an entity’s 

identification, including name, model, short description, 
type (e.g., software, hardware, hybrid), category (built-in, 
embedded, attached), vendor, and owner. 

2) The service section holds descriptive information about 
the different services offered by the entity in terms of 
functional descriptions, inputs, and outputs. Each service 
input or output is characterized in terms of a short 
description, data types, units, and the acceptable range of 
values. 

C. Thing Attachments Section 
The thing attachments section describes the different cloud-
based expansions of the thing. Each attachment is described 
in terms of the type (e.g., data-log server, repository, device 
management server), the access information (e.g., URI, key), 
and the protocols used (e.g., REST). 

D. Example IoT-DDL 
To illustrate IoT-DDL, we use the example of a coffee 
maker, which is part of the proof of concept presented in the 
implementation section (Section V). In this example, a 
coffee maker entity and a web-logging attachment are part of 
a Beaglebone Black Atlas thing. The overall IoT-DDL in this 
example consists of three parts: The Beaglebone Black Atlas 
thing description, the coffee maker description, and the web-
logging attachment description, just as outlined in Fig. 3. 
The Beaglebone Black Atlas thing section is shown in Fig. 
4. The descriptive metadata section describes the thing in 
terms of the owner, name, and operating system. The 
structural metadata section summarizes information about 
thing’s resources, entities and attachments. The resources 
section shows the overall properties of both network and 
memory resources of the underlying operating system. The 
Beaglebone Black thing utilizes the MQTT protocol to 
communicate with thing mates and to set up a TCP 
connection with an online MQTT broker as will be shown in 
section V. The broker domain name and port number are part 
of the Network Properties sub-section that describes the 
Beaglebone Black Atlas thing.  
The coffee maker entity section is illustrated in Fig. 5. The 
coffee maker is described in the descriptive metadata section 
as a hardware device attached to the Atlas thing and offers 
two services: to turn the coffee maker on for a maximum 
amount of time, and to turn the maker off. Each of these 
services is described in a separate service section within the 
Services section of the entity in terms of function description, 
inputs and outputs. The Web-log service attachment 
section—as Fig. 6 shows—is a NodeJS-based server that 
allows the Atlas thing to send status updates to the server 
periodically (every two minutes in this example) through an 
HTTP “PUT” method. 

<Atlas_ IoT-DDL> 
<Atlas_ Thing> 

<Descriptive_ Metadata> </Descriptive_ Metadata> 
<Structural_ Metadata> </Structural_ Metadata> 
 
<Resources> 

<Network_ Properties > </Network_ Properties > 
<Memory_ Properties> </Memory_ Properties > 

</Resources> 
</Atlas_ Thing> 
 
<Thing_ Entities> 

<Entity_ 1> 
          < Descriptive_ Metadata> </Descriptive_ Metadata> 

< Services >                      </ Services > 
</Entity_ 1> 
….. 
<Entity_ n> 
 
</Entity_ n> 

</Thing_ Entities> 
 
<Thing_ Attachments> 

< Attachment_ 1> 
 
</Attachment_ 1> 
….. 
<Attachment_ n> 
 
</Attachment_ n> 

</Thing_ Attachments> 
 

</Atlas_ IoT-DDL>!
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FIGURE 4. Beaglebone Atlas thing section. 
 

 

FIGURE 5. Coffee maker entity section. 

 
FIGURE 6. Web-Log server thing attachments section. 

 
As noted earlier, the IoT-DDL is proposed within the Atlas 
thing architecture, which takes advantage of a thing’s OS 
services to provide new layers and functionalities that 
introduce novel and necessary capabilities. The Atlas 
architecture is briefly discussed in the next section. We do 
not attempt to fully present the details of the architecture, and 
keep our focus on device descriptive layers that reflect IoT-
DDL specifications. 
The difference between the original DDL [16] [17] and the 
proposed IoT-DDL can be summarized as follows: 1) The 
focus of the DDL is to generate a run-time representation of 
the thing’s service on the edge or the cloud for service 
discovery, whereas the focus of the IoT-DDL is to generate 
a run-time representation of the thing on the thing itself to 
enable ad-hoc interactions and interconnections. 2) The DDL 
focuses on describing the services offered by the thing, while 
the IoT-DDL focuses on additional attributes to describe the 
thing in the smart space by the thing’s entities, resources, 
services, attachments, and device management and 
communication protocols. 3) The focus of the DDL is to 
enable the thing-to-cloud communication paradigm, whereas 
the focus of the IoT-DDL is to enable both thing-to-thing and 
thing-to-cloud communication paradigms for the seamless 
building of IoT scenarios that involve different things.  
 

IV. OVERVIEW OF THE ATLAS THING ARCHITECTURE 
In this section, we present a brief overview of the Atlas thing 
architecture, which fully exploits the specifications and design 
principles of IoT-DDL. The Atlas thing architecture is 
designed to meet the requirements for a thing to be part of the 
IoT ecosystem.  Its goals are to make the thing capable of 1) 
self-discovering its characteristics, resources, and entities 
through the uploaded IoT-DDL, and generating APIs for the 
available services; 2) opening a channel with a device 
management server for provisioning, management, and 
configuration purposes, and 3) enabling secure interactions 
with thing mates, The architecture also takes advantage of 

<Atlas_Thing> 
<Descriptive_Metadata> 

<Owner> Mobile and Pervasive Computing Lab </Owner> 
<Name> Beaglebone </Name> 
<Model> Black </Model> 
<Short_Description> Sensor Platform </Short_Description> 
<Operating_System> Linux Angstrom </Operating_System> 
…. 

</Descriptive_Metadata> 
<Structural_Metadata> 

<Hardware_Entities> 1 </Hardware_Entities> 
<Attachments> 1 </Attachments> 
…. 

</Structural_Metadata> 
<Resources> 

<Network_Properties> 
<Module> Wifi </Module> 
<Type> External USB </Type> 
<UUID> Lab Network </UUID> 
<Protocol> MQTT </Protocol> 
<Broker_URL> broker.hivemq.com </ Broker_URL> 
<Broker_Port> 1883 </ Broker_Port> 
<Broker_Port_Type> TCP </ Broker_Port_Type> 
…. 

</Network_Properties> 
<Memory_Properties> 

<Received_Interactions> RAM </Received_Interactions> 
<Received_Tweets> RAM </Received_Tweets> 
…. 

</Memory_Properties> 
</Resources> 

</Atlas_Thing> 

<Entity_1> 
<Descriptive_Metadata> 

< Name>Coffee Maker</ Name> 
< Category>Hardware</ Category> 
< Owner>Bosch</ Owner> 
< Type>Attached</ Type> 
< Description>Prepare Coffee</ Description> 
…. 

</Descriptive_Metadata> 
< Services> 

<Service_1> 
< Description>Turn On For Duration </ Description> 
< InputTypes>Integer </ InputTypes> 
< InputDescription>Duration in Minutes </ InputDescription> 
< InputRange> [0:59] </ InputRange> 
< OutputTypes>NULL</ OutputTypes> 
< FunctionMap>HighVolt_GPIO_Duration</ FunctionMap> 
…. 

</Service_1> 
<Service_2> 

< Description>Turn Off </ Description> 
< InputTypes>NULL </ InputTypes> 
< OutputTypes>NULL</ OutputTypes> 
< FunctionMap>LowVolt_GPIO</ FunctionMap> 
…. 

</Service_2> 
< /Services> 

</ Entity_1>!

<Thing_Attachments> 
<Attachment_1> 

  < Type>Log_Server </ Type> 
  <Description> HTTP1.1 Server </ Description> 
  <URI>192.168.0.4</ URI> 
  <Port>8080</ Port> 
  <REST_Method>PUT</ REST_Method > 
  <Access_Type>Public</ Access_Type> 
  <API_Key>NULL</ API_Key> 
  <Message_Format>Plain</ Message_Format> 
  <Update_Duration_Value>2</ Update_Duration_value> 
  < Update_Duration_Unit>minute</ Update_Duration_Unit> 
  <Backend_Technology>NodeJS</ Backend_Technology>  

…. 
…. 

</ Attachment_1> 
</ Thing_Attachment> 
!
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lightweight device management standard OMA-LwM2M [9] 
[10][11][13], object modeling standard IPSO [7][12], IoT 
communication standards CoAP [34][35] and MQTT 
[28][30], and the AES [39] security standard to enable thing 
management and configuration with minimal human 
intervention, and to empower secure ad-hoc interactions 
between things and thing mates.  
The architecture can be developed into a set of software 
layers or firmware that can be flashed into the thing using the 
vendor’s provided IDE or OS (e.g., C/C++ for Linux OS-
based platforms such as Beaglebone and Raspberry Pi, 
Java/C++ for Android smartphones, or Arduino IDE for 
Arduino Things). The Atlas thing architecture, as illustrated 
in Fig. 7, consists of three main layers: Atlas IoT platform, 
host interface, and IoT OS services. IoT OS services are the 
basic functionalities provided by the thing’s operating engine 
and represent a thing’s resources according to the proposed 
thing structure. Such services enable the thing to be part of 
the IoT through its network module, memory units, I/O ports 
and interfaces (e.g., I/O, ADC, etc.), and its process manager. 
Services may also include hardware-based security if 
available, such as embedded secure elements [42][43]. The 
process manager is responsible for offering services for 
command execution and threading for concurrency if 
supported by the IoT OS services.  

The Atlas IoT platform represents the logical layer of the 
architecture that runs on heterogeneous things to provide 

new needed services not currently provided by embedded 
OS’s. Such new services focus on descriptive and semantic 
aspects of things to better enable thing engagement, 
interaction, and programmability into an IoT. The host 
interface layer shields the platform and gives it the 
portability and interoperability features it needs. This layer 
also maintains the platform’s lightweight nature by 
maximally relying on lower-level services provided by the 
underlying IoT OS. The host interface layer manages the 
internal interactions between the Atlas IoT platform and the 
set of services provided by the underlying OS. However, the 
host layer assumes the responsibility of providing any 
services that the underlying OS does not provide. An extreme 
case is when there is no underlying OS in a given platform 
(e.g., Arduino sensor platform); in this case, the host layer 
must implement all required services.  
Next, we present the details of the DDL sublayer within the 
Atlas IoT Platform layer of the architecture that is 
responsible for mapping and managing the IoT-DDL 
specifications. We also briefly summarize the other 
sublayers of the architecture. 

A. DDL Sublayer 
The DDL sublayer allows a thing to discover its own 
resources, entities, and capabilities through the uploaded IoT-

DDL configuration file. It is composed of the following 
modules: 

 

FIGURE 7. Atlas thing architecture. 
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• The IoT-DDL manager opens a gate to access the uploaded 
IoT-DDL configuration file, parses the various sections 
and subsections, and regulates access to the IoT-DDL from 
the other modules. 

• The identity parser models the identification and 
descriptive information of the thing and its entities. This 
module interacts with the IoT-DDL manager to parse a 
thing’s metadata for how uniquely the thing can be viewed 
through the smart space. 

• The attachment manager parses the information that 
models the thing’s cloud-based attachments and its entities 
and builds the required interactions with these 
attachments.  

• The device manager opens a communication channel with 
a device management server that either resides on the edge 
or cloud. This module interacts with the IoT-DDL 
manager module to access information about the 
management server (e.g., server IP address and access 
parameters). The Atlas thing then registers itself as a client 
at the server side for provisioning, managing, and 
configuring different attributes during the thing’s lifetime 
as well as authorized management commands. 

• The API engine formulates descriptive interfaces for the 
services offered by the thing’s entities. As Fig. 8 shows, 
the API engine consists of four sub-modules: 1) the Bundle 
& API generator interacts with the IoT-DDL manager to 
parse services’ information (inputs, outputs, types, ranges, 
descriptions, and functionality) stored in the IoT-DDL and 
builds a descriptive API for each service, after generating 
a bundle that fulfills the specifications of the service; 2) 
service execution oversees packaging the relevant input 
values, sending them to the running bundle, and retrieving 
the result values before handing them off; 3) the API 
parser and validator parses the received applications (API 
calls) from thing mates, checks their validity, and hands 
them to the bundle repository; 4) the bundle repository 
stores and manages the generated bundles and handles 
bundle execution through the service execution sub-
module. Each API, as Fig. 9 illustrates, has three parts: 1) 
the function name as a short description of the offered 
service; 2) a list of inputs to the service, where each input 
is represented in a tuple that holds an input description, 
data type, and value range; and 3) the expected output of 
executing the service, where the output is represented in a 
tuple that also holds the description, data type, and value 
range. The generated API is announced to the thing mates 
through tweets. On the other hand, an application (API 
call) is captured and parsed in the architecture’s tweeting 
sublayer. This API call holds the function name followed 
by a list of values representing the corresponding inputs to 
the service.  

 

 

 
FIGURE 8. API engine structure. 
 
 
 
 

 
FIGURE 9. API structure. 

B.  Summary of other sublayers 
The tweeting sublayer tools the thing with an explicit 
capability to uniquely define itself in the smart space, in 
addition to discovering thing mates and securely interacting 
with them. The tweeting sublayer represents the gateway that 
regulates the communication and queries between the 
interface and DDL sublayers, and is further composed of the 
following modules: 
• The interactions and tweeting engine models a thing’s 

descriptive information about its identity and generated 
APIs into sets of identity and API tweets, respectively. 
Identity tweets hold metadata about a thing's identity, 
description, entities, and capabilities. API tweets hold 
metadata about the generated APIs and the corresponding 
APIs. Such tweets are forwarded to the interface sublayer 
to be announced to thing mates. At the same time, the 
engine parses the received tweets (information-based 
interactions) as well as action-based interactions (e.g., 
applications, management commands, and configurations) 
from thing mates. The engine then forwards the interaction 
to the DDL sublayer modules according to the parsed 
content. 

• The security engine and application runtime decodes 
received interactions from thing mates to ensure 
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authorization and authentication, and encodes interactions 
from the thing to its thing mates. The security engine and 
application runtime interacts with the interactions and 
tweeting engine to build certified interactions from one 
side, and with the architecture’s host interface layer from 
the other side.  

The interface sublayer holds the different communication 
protocols (e.g., MQTT, CoAP, etc) that allow the thing to 
engage with its thing mates. The sublayer announces the built 
tweets to the smart space and captures others’ tweets and 
action-based interactions to be forwarded to the tweeting 
sublayer for processing. 

V. IMPLEMENTATION 
In this section, we describe the implementation details of the 
parts of the Atlas thing architecture that address the various 
aspects of IoT-DDL and thing requirements. The Atlas thing 
architecture takes advantage of: 1) OMA-LwM2M, which is 
lightweight device management standard that targets low-
power and constrained devices with the low-overhead REST 
data model and point-to-point communication in a client-
server fashion, 2) IP Smart Object (IPSO) that provides a 
common design pattern and semantic interoperability across 
IoT devices that support LwM2M for a more reusable design 
to composite modular objects, 3) CoAP, which is a 
client/server protocol that provides a request/report paradigm 
model over UDP and interoperates with HTTP and the 
RESTful Web through simple proxies, 4) MQTT, which is one 
of the most widely-used communications protocols that uses a 
publish/subscribe architecture on top of the TCP/IP protocol. 
The implementation demonstrates the feasibility of the 
architecture’s deployment on a variety of real platforms. 
Finally, we provide a proof-of-concept implementation of an 
IoT application using the architecture implementation and 
IoT-DDL to show the interaction between things on the one 
hand, and between the thing and the device management 
server and log server attachments on the other hand. As 
mentioned earlier, our focus in this paper is the device 
descriptive layers that reflect the different parts of IoT-DDL.  

A. Thing Provisioning and Management 
The first requirement for a thing to be part of the IoT 
ecosystem is that it must be seamlessly integrated into the 
ecosystem, so it can be managed and configured with minimal 
human intervention. In this section, we target this essential 
requirement using two widely used standards for device 
management and object modeling: the Open Mobile Alliance 
Lightweight M2M (OMA-LwM2M) and the IP Smart Object 
(IPSO) Alliance, respectively.  
Liblwm2m is an open source implementation for OMA-
LwM2M developed by the Wakaama project in Eclipse 
[22][23]. The Atlas architecture extends Liblwm2m to allow 
device management [24][25] not only for OMA standard 
objects but also for the different aspects of IoT-DDL. The 
architecture translates the different sections and subsections 

of IoT-DDL into a set of dynamic objects, called Atlas 
objects. Atlas objects, as shown in Fig. 10, represent the 
different entities, services, resources, and attachments of an 
Atlas thing. Atlas objects are based on the object resource 
data representation model proposed by OMA-LwM2M and 
utilize the IPSO idea of composite objects for higher modular 
object design. Extending the broad standard for OMA with 
Atlas objects allows seamless engagement of Atlas things 
with OMA-LwM2M/IPSO-powered entities in a smart 
space.  
The device manager module of the DDL sublayer in the 
architecture communicates with the IoT-DDL manager 
module to access information about the OMA management 
server (e.g., server IP address and access parameters). The 
Atlas thing registers itself with the server as an OMA client, 
where the registration process requires a thing to register a 
tree of its programmed objects at the server side. Such a tree 
is a hierarchal structure of both OMA-standard objects and 
Atlas objects generated by the thing. The device manager 
module, as shown in Fig. 11, creates and manages both OMA 
standard objects and Atlas objects through an object engine. 
Atlas object creation and management occur on demand 
when IoT-DDL is uploaded to the thing during lifetime 
updates. At the same time, authorized lifetime management 
and updates from the management server trigger the device 
manager’s object engine module to maintain the 
corresponding objects and enables authorized dynamic 
updates to the IoT-DDL parameters and attributes during the 
lifetime of the thing.  
 

 
FIGURE 10. Atlas objects’tree.  
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FIGURE 11. Device manager and OMA objects. 

B. Atlas Thing Communication 
To enable thing-to-thing and thing-to-edge or thing-to-cloud 
information- and action-based interactions, the architecture 
exploits widely used communication protocols for IoT and 
constrained environments: Message Queuing Telemetry 
Transport (MQTT) and the Constrained Application Protocol 
(CoAP). In this section, we give an overview of the protocols 
and describe how their implementation within the Atlas thing 
architecture goes beyond just enabling communication to 
support other thing requirements and IoT-DDL design 
choices. The interface and communication engine of the Atlas 
thing architecture adopts the open-source C/C++ 
implementation of MQTT developed by the Paho project in 
Eclipse [30]. The implementation allows Atlas things to 
connect to an MQTT broker, subscribe, and publish with 
respect to a predefined set of topics. As a proof of concept, the 
architecture utilizes a connection with the cloud-based MQTT 
broker HiveMQ dashboard [31] to publish and subscribe to the 
different topics.  
As discussed earlier, an Atlas thing tweets identity information 
about itself, thing entities, and generated APIs to its thing 
mates, and similarly receives other things’ tweets. Things can 
also interact (e.g., through issuing an API call) with each other. 
The network manager subsection of the administrative thing 
metadata of the IoT-DDL specification lists the required 
configuration of MQTT. The configuration includes the URL 
to the MQTT broker, the listening port, and a list of topics to 
subscribe to and publish accordingly. Table I lists the different 
topics the Atlas thing publishes and subscribes to in order to 
announce its own and receive others’ tweets, respectively. 
Furthermore, Atlas things interact using another set of topics 
that include the things’ IDs. For an Atlas thing to receive 
interactions, it must subscribe to an interaction topic that holds 
its own ID. To forward an interaction to another thing mate, it 
must publish a topic that includes the thing mate’s ID. 

 
The interface and communication engine of the Atlas thing 
architecture adopts the open-source C++ implementation of 
CoAP developed by Noisy Atom [40]. This implementation 
allows Atlas things to tweet and interact with respect to a 
predefined set of resources. The Atlas architecture uses 
CoAP protocol support for multicasting, which allows the 
thing to broadcast tweets to all listening things. We extend 
the imported library with Unix multicast sockets to enable 
the CoAP multicast feature. 
The network manager subsection of the thing Resources 
metadata of the IoT-DDL specification lists the required 
configuration of CoAP. The configuration includes the 
listening port, a list of RESTful methods, and the 
corresponding resources. Table II lists the resources an Atlas 
thing uses to announce its own tweets and ask for others’ 
tweets. At the same time, Atlas things interact using another 
set of resources that include the thing mates’ IDs.  
We are currently working on enabling Atlas thing 
communication between thing mates that speak different 
protocols (currently limited to REST, CoAP and MQTT). By 
developing protocol adaptors as thing attachments, two 
things will be able to communicate despite their protocol 
differences. 

 

C. Atlas Thing Bundles 
To best facilitate the creation and modification of arbitrary 
thing services, the architecture adopts the Apache licensed 
C++ Mircro Services project [51] for dynamic service-
oriented API functionality. Each thing service is represented 
as an independent microservice, and can be executed through 
a single call to the corresponding API taking inputs and 
returning outputs as specified by the IoT-DDL. In this 
section, we describe the steps taken to convert the textual 
service description of the IoT-DDL into a compiled 
microservice capable of running on an Atlas thing and 
discuss how the architecture is expanded to allow for 
generation of services on the fly. 
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The C++ Micro Services project aims to allow for the 
creation of service-based applications based on the dynamic 
module system of OSGi [52]. Each microservice, called a 
bundle, is a specially packaged shared library object that runs 
in its own context within the microservices framework. The 
state of these bundles can be managed dynamically during 
the lifetime of the Atlas thing. The Atlas architecture uses 
C++ Micro Services to allow loading, running, and 
destroying its service bundles throughout execution, and to 
access the running bundles’ functionalities through a generic 
interface. Before a thing’s services can be ran, their bundles 
are dynamically generated by the API Engine of the 
architecture from the specification of the uploaded IoT-
DDL. Once the architecture has parsed the IoT-DDL, the 
inputs and outputs are mapped to their corresponding native 
types and the generic actions are mapped to platform-
specific function calls. The API Engine handles the 
execution of the bundle upon receiving the corresponding 
API call from other things in the smart space. 

D. Atlas Thing Security 
As mentioned earlier, the third essential requirement for 
things to be part of the ecosystem is the capability to interact 
with thing mates in a secure way that enables both the 
authorization and authentication aspects of communication. 
The architecture exploits the lightweight symmetric key [38] 
encryption of AES to create secure dynamic communication 
channels between things and thing mates. 
AES is a widely used symmetric lightweight block cipher 
security protocol [36][37][39]. For AES, the default block 
size is 128 bits or 16 bytes. A mode of operation describes 
how to repeatedly apply a cipher's single block operation to 
securely transform amounts of data larger than a block. Each 
mode requires an initialization vector (IV) to ensure distinct 
ciphertexts are produced even when the same plaintext is 
independently encrypted multiple times with the same key. 
In the cipher block-chaining (CBC) mode of operation, each 
block of plaintext is XORed with the previous ciphertext 
block before it is encrypted. This way, each ciphertext block 
depends on all plaintext blocks processed up to that point. 
CBC is the most commonly used mode of operation.  
The Atlas thing architecture utilizes AES with CBC as the 
mode of operation using the Crypto++ library [41]. The 
security engine of the tweeting sublayer assumes a master 
secret key and IV, and encryption/decryption methods are 
securely stored within the device secure elements of the OS 
services. These security elements are unique to Atlas things 
in smart spaces, where the space owner can generate a new 
master key and IV to be securely deployed to the things 
through the device management server. The security engine 
generates dynamic session keys from the symmetric 
predefined master key. Atlas thing A and Atlas thing B can 
establish a session key as follows: 
1. Thing A generates a random number (R1) and encrypts a 

message holding its own ID and R1 using the master key.  

2. Thing B decrypts the message using the predefined master 
key, saves R1, and generates a new random number (R2). 

3. Thing B encrypts a message holding its own ID and R2 
using the master key. 

4. Thing A and thing B each encrypt a concatenated value of 
R1 and R2 using the master key and generate a session key. 

E. Atlas Thing Architecture and IoT-DDL Proof-of-
Concept 
Our proof of concept utilizes two things in a smart space, a 
Raspberry Pi model B sensor platform running Raspbian OS, 
and a Beaglebone Black sensor platform running Angstrom 
OS. The Beaglebone Black thing is connected to the on/off 
circuit of a coffee maker as an attached hardware entity, 
while the Raspberry Pi thing offers an alarm clock service as 
a built-in software entity, as shown in Fig. 12. The IoT-DDL 
configuration files are developed and uploaded on both 
things. These files indicate the identity of each thing, 
including their inner entities, resources, and services. The 
Beaglebone Black thing offers two services, one to start 
brewing coffee and remain on for a specific time duration, 
and the other for switching off the coffee maker. The 
Raspberry Pi thing, on the other hand, offers two services to 
set and clear the software alarm clock entity. When both 
things are powered, the proof-of-concept implementation of 
the Atlas thing architecture in starts parsing the different 
sections and subsections of the uploaded IoT-DDL. Each 
thing now identifies itself, discovers the different services 
and functions it can offer to the smart space it is located in, 
and starts generating its own APIs. Each thing starts looking 
for thing mates by broadcasting thing identity tweets, entity 
identity tweets, and generated API advertisement tweets. 
The prototype starts by assuming that an IoT application in 
the Beaglebone Black thing requires turning on the coffee 
maker when the alarm triggers. At the same time, both things 
register themselves as OMA clients that can connect to the 
OMA server and register their OMA standard objects and 
Atlas objects. On the server side, an authorized user can 
browse the different connected clients, view the list of 
registered objects, and update their attributes. We also 
provide a NodeJS-based HTTP-log server that resides on an 
edge in the smart space as an example of a thing attachment. 
The attachment manager module of the DDL sublayer parses 
the attachment settings (e.g., server URL, port, access 
information, and update interval) through the IoT-DDL 
manager module. The Raspberry Pi creates a communication 
channel to PUT the current status of the thing (e.g., tweeting, 
executing an application, management phase) when the 
status changes or at every update interval if there are no 
changes.  
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FIGURE 12. Proof-of-concept implementation. 
 
Full details about the IoT-DDL configuration files for both 
the Beaglebone and Raspberry Pi things, as well as a short 
video of the coffee maker demo are available online as 
supplemental materials [45]. 

VI. BENCHMARKING 
In this section, we provide a benchmarking study to measure 
time and energy consumption of the different Atlas thing 
architecture aspects developed on three heterogeneous things. 
The study aims to show the feasibility of deploying the 
architecture on real platforms. The aspects benchmarked are 
the thing’s capability to generate tweets, to encrypt and 
decrypt action-based interactions, to be configured and 
managed, and to interact using widely accepted 
communication protocols. The things used in this study are the 
Raspberry Pi Model B, Qualcomm Dragon Board 410C, and 
Beaglebone Black sensor platforms with the specifications 
listed in Table III.  

TABLE III 
SENSOR PLATFORM SPECIFICATIONS 

Specifications Raspberry Pi 
Model B 

Dragon Board 
410C 

Beaglebone 
Black 

OS Raspbian Debian Angstrom 
 

Processor 900-MHz 
Quad-Core 
ARM Cortex 
A7 

1.2-GHz 
Quad-Core 
ARM Cortex 
A53 
Snapdragon 
 

1-GHz Sitara 
AM3359 ARM 
Cortex A8 

Network 
Module 

Raspberry Pi 
Wi-Fi adapter 
2.4-GHz 
CanaKit 
 

Integrated 
Digital core 
2.4 

Edimax USB 
Wi-Fi 2.4 GHz 

RAM 1GB 1GB 512MB 
 

Flash Storage 4GB SD card 8GB eMMC 4GB eMMC 

 
For a unified measurement, we uploaded the same IoT-DDL 
configuration file (which was shown earlier in Section III) to 

the three things.  The uploaded IoT-DDL shows that the 
thing contains an attached coffee maker as a hardware entity 
that provides two services (turn on for a certain duration and 
turn off). The code footprint of the IoT-DDL in addition to 
the current version of Atlas thing architecture that imports 
the OMA-LwM2M standard and AES protocol and supports 
both CoAP and MQTT communication standards is 13 
megabytes approximately. The code footprint—the actual 
machine instructions that resides the flash memory—shows 
the proposed framework is lightweight enough to fit on 
constrained devices. Such small code footprint also reflects 
that the actual running code does not require too much RAM 
to execute. 
Time is measured using the Unix-Chrono library for a high-
resolution clock cast to microseconds. Energy consumption 
is measured using a PowerJive USB-based device that 
calculates voltage and capacity [44]. To avoid data outliers, 
the time measurement of a single operation is averaged over 
five measurements. The energy consumption of a single 
operation is the average value obtained from running the 
operation a large number of times in a 10-minute period. The 
energy consumption of the processes running in the 
background of the thing’s OS is also calculated and is 
subtracted from the calculated energy consumption of the 
operation. 
In the first subsection, we provide a benchmarking study that 
focuses on the functionalities of both tweeting and DDL 
sublayers of the architecture, where we measure—in terms 
of the time performance and energy consumed (Table IV)—
the Atlas thing’s capability to generate tweets and to encrypt 
and decrypt action-based ad-hoc interactions. In the second 
subsection, we provide a set of experiments to benchmark 
both time performance (Fig. 13) and energy consumption 
(Table V) of the different device management capabilities 
supported by the architecture. The device management 
capabilities include the ability of the thing to generate the 
different Atlas objects, connect to the OMA server, and 
register the objects. The second subsection also provides a 
set of experiments to benchmark both time performance and 
energy consumption for adopting the widely accepted IoT 
communication protocols MQTT (Fig. 14 and Table VI) and 
CoAP (Fig. 15 and Table VII). The communication 
capabilities include the different functionalities required by 
the thing to send tweets and listen to tweets from thing mates 
in the smart space. The third subsection provides analysis 
and discussion on the provided benchmarking study for the 
different functionalities and capabilities of the Atlas thing 
architecture required by the thing to engage in wide range of 
interactions and interconnections with other things in the 
smart space during the thing’s lifetime.  
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A. Benchmarking Tweet Generation and Secure 
Interactions 
The first set of measurements focuses on the functionalities of 
both tweeting and DDL sublayers of the architecture. These 
functionalities are in terms of the thing’s capability to generate 
tweets and to encrypt and decrypt action-based interactions.  
The generated tweets are about thing identity (64 bytes), thing 
entity (64 bytes), and the generated API for each of the two 
services (60 bytes each). The size of the generated tweets and 
APIs depends on the developed IoT-DDL for the Atlas thing. 
However, we limited the sizes to 64 and 60 bytes for unified 
measurements on time and energy on the different sensor 
platforms. The secure action-based interaction (API call 
forwarded by the thing or received from a thing mate) applies 
the AES-CBC mode of operation. AES uses a key and IV, 
each at 16 bytes, to encrypt and decrypt a 60-byte interaction. 
Table IV shows the measurements of both time 
(microseconds) and energy consumption (watt-seconds) on 
the different hardware platforms. Analysis of these 
measurements is presented in Section C. 
 

TABLE IV 
BENCHMARK TIME (IN MICROSECONDS) AND ENERGY CONSUMPTION (IN 

WATT SECONDS) 
  Interaction 

Encryption 
Interaction 
Decryption 

Tweet 
Generation 

Raspberry 
Pi Model B 

Time  2152 947 128484 
Energy 7.4e-5 7.8e-5 0.014 

 
Dragon 
board 410C 

Time  1438 916 26159 
Energy 4.5e-5 5e-5 0.03 

 
Beaglebone 
Black 

Time  3277 1414 54298 
Energy 0.000114 0.000116 0.0506 

B. Benchmarking OMA Device Management and 
Communication Protocols 
The second set of experiments focuses on the architecture’s 
management and communication functionalities. These 
functionalities are in terms of OMA device management 
aspects as well as the different communication protocols 
supported by the architecture. 
After the IoT-DDL is uploaded to the thing, the thing starts 
generating Atlas objects for the corresponding IoT-DDL 
sections. The device manager module communicates with 
the IoT-DDL manager module to access information about 
the OMA management server (e.g., server IP address and 
access parameters). The Atlas thing then registers itself as an 
OMA client at the server, where the registration process 
requires the thing to register a tree of its programmed objects 
(both Atlas objects and standard OMA objects) at the server 
side. For sake of simplicity, we limit Atlas object generation 
to the descriptive metadata of the thing, the entity, and the 
attachments. Fig. 13 compares the three sensor platform 
things we used in terms of the time required to create Atlas 
objects on the one hand, and connecting to the OMA server 
on the local network and registering the objects' tree on the 

other hand. Table V illustrates energy consumption rate in 
terms of the consumed watts per second of these 
functionalities on the different sensor platforms. 

 

FIGURE 13. Time comparison for device manager functionalities. 

 
 

TABLE V 
ENERGY CONSUMPTION (IN WATT SECONDS) MEASUREMENTS FOR OMA 

DEVICE MANAGER FUNCTIONALITIES 
 Generated Atlas 

objects 
Connect to OMA server 
then register objects 

Raspberry Pi 0.0032 0.0157 
Dragon board 0.00073 0.003845 
Beaglebone Black 0.00147 0.010613 

 
 

Furthermore, the Atlas thing architecture supports the widely 
accepted IoT communication protocol, MQTT, and utilizes a 
connection with the cloud-based MQTT broker HiveMQ 
dashboard [31] to publish and subscribe to the different 
topics. Fig. 14 compares the three sensor platforms in terms 
of the time (in microseconds) required to connect to the 
MQTT broker, publish a 64-byte tweet, subscribe to a topic, 
and then get a 64-byte tweet from a thing mate. Table VI 
illustrates energy consumption in terms of the consumed 
watts per second of the different supported MQTT 
functionalities on the different sensor platforms. Fig. 15 
compares the three sensor platforms in terms of the time (in 
microseconds) required to create a CoAP server at the thing 
and wait for a tweet from a thing mate from one side, and to 
create a client side that connects to the CoAP server of a 
thing mate, then sends a 64-byte tweet from the other side. 
Table VII illustrates the energy consumption in terms of the 
consumed watts per second of the different functionalities on 
the different sensor platforms. It should be noted that this set 
of experiments depends mainly on the network connection 
and network module used. Analysis of the results of this 
second set of measurements is presented in Section C.  
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FIGURE 14. Time comparison for the different aspects of MQTT 
protocols. 

 
TABLE VI 

ENERGY CONSUMPTION (IN WATT SECONDS) MEASUREMENTS FOR THE 
DIFFERENT ASPECTS OF MQTT PROTOCOL 

 Open TCP 
connection with 
MQTT broker 

Publish 
single tweet 
(64-bytes) 

Subscribe 
and receive 
single tweet 
(64-bytes) 

Raspberry Pi 0.222 0.301 0.561 
Dragon board 0.251 0.108 0.2729 
Beaglebone Black 0.464 0.112 0.1098 

 

 

FIGURE 15. Time comparison for the different aspects of CoAP 
protocols. 

TABLE VII 
ENERGY CONSUMPTION (IN WATT SECONDS) MEASUREMENTS FOR THE 

DIFFERENT ASPECTS OF COAP PROTOCOL 
 CoAP server listens 

and receives single 
tweet (64-bytes) 

CoAP client 
connects to server 
and sends single 
tweet (64-bytes) 

Raspberry Pi 0.020 0.007 
Dragon board 0.000633 0.003267 
Beaglebone Black 0.00287 0.00634 

C. Analysis of the Benchmarking Study 
We analyze the results of our benchmarking study in terms of 
time performance and energy consumption. We start first with 
the energy analysis. Understanding an Atlas thing duty cycle, 
which is based on the Atlas thing architecture, helps in 
analyzing the measured energy data. As Fig. 16 illustrates, an 
Atlas thing goes through an initialization phase, followed by 
one or more Atlas thing duty cycles until thing termination 
(e.g., battery depletion). The initialization phase starts with 
powering up the Atlas thing until it is ready to engage with its 
thing mates and the device management server. In this phase, 
the Atlas thing initializes the architecture and verifies that the 
IoT-DDL is uploaded. The Atlas thing generates Atlas objects, 
registers itself to the OMA server specified in the IoT-DDL, 
and then generates tweets and APIs for the offered services. 
Directly after the initialization phase, the Atlas thing starts 
engaging with thing mates through tweets and actionable 
interactions through the Atlas thing duty cycle. The duty cycle 
starts running concurrent (threaded) server and client 
processes to receive and send interactions, respectively. 
Receipt of a management command triggers updates of Atlas 
and OMA objects, as well as tweets and APIs, while receipt of 
an interaction requires decrypting the interaction, and 
mapping then executing the corresponding API.  

 

FIGURE 16. Atlas thing initialization phase and duty cycle. 
 
We can calculate battery lifetime in terms of hours to run an 
Atlas thing continuously using (1). 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦	𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒		
≅ 		𝑇𝑖𝑚𝑒	𝑜𝑓	𝐷𝑢𝑡𝑦	𝐶𝑦𝑐𝑙𝑒		

×		(
𝐵𝑎𝑡𝑡𝑒𝑟𝑦	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦×	𝐵𝑎𝑡𝑡𝑒𝑟𝑦	𝑣𝑜𝑙𝑡𝑎𝑔𝑒
𝐸𝑛𝑒𝑟𝑔𝑦	𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑	𝑝𝑒𝑟	𝐷𝑢𝑡𝑦	𝐶𝑦𝑐𝑙𝑒

) 
(1) 

 
where battery lifetime is calculated in hours, battery 

capacity is in milliamp hours (mAh), and battery voltage is 
the battery’s initial voltage. The main assumption is that the 
battery is capable of maintaining a voltage level over time to 
operate the thing. Duty cycle includes the Atlas thing duty 
cycle in addition to the background running processes of the 
thing’s underlying OS. As an example, Rayovac 4AA 
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alkaline batteries with six volts and 2400 mAh capacity can 
run (according to (1)) a Beaglebone Atlas thing for 28 hours, 
a Dragon Board Atlas thing for 12 hours, and a Raspberry Pi 
Atlas thing for 7.5 hours. Such large differences are due to 
the processes running in the background of the thing’s OS 
and the high capabilities of the Dragon Board and the 
Raspberry Pi (e.g., keyboard, mouse) compared to 
Beaglebone Black. To demonstrate the accuracy of the 
proposed equation for battery lifetime, Rayovac 4AA 
batteries were able to run Raspberry Pi (which requires a 
minimum of 2000 mAh and five volts to operate with full 
peripherals) for approximately six hours. The difference 
between the expected and the real value for the battery 
lifetime is due to the drop of the battery voltage below five 
volts. Such a drop forces the Raspberry Pi to shut down 
connected peripherals (e.g., Wi-Fi module). However, most 
of real life examples of things that exist in smart spaces either 
have their own continuous source of power (e.g., smart home 
appliances) or efficient power management modules (e.g., 
smartphones). 
We next discuss time performance. The differences in the 
measured time for the features and functionalities of the 
Atlas thing architecture depend on the specifications of each 
platform as mentioned in Table III. For the first set of 
measurements, the time to complete the operation mainly 
depends on the clock frequency of the processor as well as 
the available RAM to keep track of the different internal 
operations and the results. A Dragon Board 410C with 1GB 
of ARM and 1.2GHz quad-core performs faster compared to 
the other platforms on the same set of operations. For the 
second set of measurements, the time to complete the 
operation mainly depends on the network connectivity and 
the current traffic as well as the properties of the different 
Wi-Fi modules mounted on each platform. It is worth noting 
that the Dragon Board 410C with integrated 2.4GHz Wi-Fi 
module on board performs better compared to the other 
platforms that are using external USB Wi-Fi modules. 

VII. CONCLUSION 
In this paper, we argue that the promise and transformative 
success of the IoT vision will greatly depend on how its main 
ingredient—the thing—is prepared, aligned, and made able to 
engage in such a mission. The fragmented nature of IoT things 
requires significant efforts to integrate, manage, and configure 
such a wide heterogeneity of things. We propose IoT-DDL, a 
machine- and human-readable descriptive language that tools 
a thing to self-discover and share its own capabilities, entities, 
and services, including the various cloud-based resources that 
could be attached to it to extend it over time. Making things 
describable using IoT-DDL enables self-discovery so the 
thing itself becomes self-aware of what it can offer and what 
its capabilities are. It also empowers the seamless integration, 
configuration, and management of things with minimal human 
intervention and enables the various secure interactions that 
support the distributed nature of IoT. We also present the Atlas 

thing architecture, which fully exploits the goals of the IoT-
DDL and its specifications. The architecture goes beyond and 
above standard embedded OS services to provide new layers 
and services with novel capabilities necessary for things to 
have to be part of the IoT. In addition, the architecture takes 
advantage of widely used device management, security, and 
IoT communication standards to enable thing engagement in 
secure ad hoc interactions with thing mates and space users. 
We prove the feasibility of deploying the Atlas architecture 
and the IoT-DDL on real hardware platforms through a proof-
of-concept implementation as well as a benchmarking study to 
validate the feasibility of our approach. The study measures 
both time performance and energy consumption rate. We 
believe that our work in thing architectures will go far beyond 
just enabling interactions and automatic generation of service 
bundles and APIs, to pave the way for powerful programming 
models that are currently missing. We are currently working 
on refining our Atlas thing architecture with an ultimate aim 
to formulate new IoT programming models and tools. 
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