
	

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

IoT-DDL—Device Description Language for the
“T” in IoT
Ahmed E. Khaled1, Abdelsalam (Sumi) Helal2, Wyatt Lindquist2, and Choonhwa Lee3
1Computer and Information Science and Engineering (CISE) Department, University of Florida, Gainesville, FL 32611 USA
2School of Computing and Communication, Lancaster University, Lancaster, LA1 4WA, UK
3Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, South Korea

Corresponding author: Ahmed E. Khaled (e-mail: aeeldin@ufl.edu).

ABSTRACT We argue that the success of the Internet of Things (IoT) vision will greatly depend on how its
main ingredient—the “thing”—is architected and prepared to engage. The IoT’s fragmented and wide-
varying nature introduces the need for additional effort to homogenize these things so they may blend together
with the surrounding space to create opportunities for powerful and unprecedented IoT applications. We
introduce the IoT Device Description Language (IoT-DDL), a machine- and human-readable descriptive
language for things, seeking to achieve such integration and homogenization. IoT-DDL explicitly tools things
to self-discover and securely share their own capabilities, entities, and services, including the various cloud-
based accessories that may be attached to them. We also present the Atlas thing architecture—a lightweight
architecture for things that fully exploits IoT-DDL and its specifications. Our architecture provides new OS
layers, services, and capabilities we believe a thing must have in order to be prepared to engage in IoT
scenarios and applications. The architecture and IoT-DDL enable things to generate their offered services
and self-formulate APIs for such services, on the fly, at power-on or whenever a thing description changes.
The architecture takes advantage of widely used device management, micro-services, security, and
communication standards and protocols. We present details of IoT-DDL and corresponding parts of the thing
architecture. We demonstrate some features of IoT-DDL and the architecture through proof-of-concept
implementations. Finally, we present a benchmarking study to measure and assess time performance and
energy consumption characteristics of our architecture and IoT-DDL on real hardware platforms.

INDEX TERMS Internet of Things Architecture, Thing Description, Microservices, OMA, IPSO, CoAP,
MQTT.

I. INTRODUCTION
The spaces around us are getting full of things! Things are
the basic building blocks and the main ingredient of the
emerging and revolutionary Internet of Things (IoT)
technology [1][2]. IoT actively brings more informative and
interactive flavors to our lives, enabled by the evolution of
low-power wireless technologies and embedded computing
and intelligence. Empowered by the fact that now almost all
devices are Internet-connected [3][4], IoT is transforming
the standard view of the Web as a set of digital documents
and links into a fully integrated Internet that includes
physical devices as well as cyber elements. This new Web,
combining the cyber and physical worlds, creates a new
ecosystem with new programmability opportunities through
the various interactions and interconnections of the two
realms [5][6]. While the IoT is perceived as a generic and a

generalized concept, in practice, it is not. Its various
specializations and full taxonomy are yet to shape up and be
fully learnt. A simple categorization of the IoT that captures
its scale and applicable domains de jour is illustrated in Fig.
1.

FIGURE 1. A simple IoT domain classification.

Personal IoT Industrial IoT At-Scale IoT

Internet of Things

	

VOLUME XX, 2017 2

According to the scale and place of deployment we classify
IoT into personal IoT (e.g., in smart homes or connected
cars), industrial IoT (e.g., a smart factory floor or a physical
plant), and at-scale IoT (e.g., a smart city deployment).
Classifying IoT in this simple manner at this stage in the
evolution of IoT is surely missing many important
parameters. However, the classification helps us state the
focus and applicability of our work in this paper, which is on
the personal IoT, where the set of things is located in a
bounded personal space.
The highly fragmented nature of IoT and the wide
heterogeneity in types, capabilities, and technologies raise
thing integration as a significant challenge. Integrating such a
wide spectrum of things in the ecosystem requires
considerable effort and limits programming opportunities for
smart spaces. Such challenges introduce further questions:
How can space users (e.g., developer, vendor, and space
owner) manage and configure such wide heterogeneity? How
can such fragmented things securely interoperate and interact
not only with cloud platforms and space users but also with
other things in the space? These challenges introduce, as a first
step, a requirement for a uniform way of describing things in
smart spaces in terms of what a particular thing is (e.g., its
components), what it does (e.g., its offered services) and how
it communicates (e.g., what it can speak or which protocols it
understands). Such a description paves the way to solve thing
integration, configuration, and management challenges, while
also enabling interactions. Such an approach requires an
architecture for things in IoT, as a second step, that fully
exploits thing description specifications (the first step) and
supports the promising vision of IoT.
Different approaches in the literature target these challenges
by describing things in a space in terms of metadata,
resources, and access methods. These approaches link the
access of things to a central point (e.g., cloud platform, or
edge), through which space users can access resources and
collect data. Such a restricted paradigm ignores the
distributed nature of IoT, which should also allow things to
communicate with one another in a space, forming thing-to-
thing as well as thing-to-cloud or thing-to-edge
communication paradigms. To enable such communication
paradigms, a thing should be fueled by an additional set of
attributes and properties that describe its various aspects as
well as how it can engage in smart spaces. This set of
attributes should not only describe the thing and its
components, but also how it can be managed and configured,
the different communication languages it supports, and
eventually the important IoT semantics of how a thing can
be used by other things or utilized within an IoT application.
We argue that a description language for things that covers
these aspects can enable various secure, meaningful
interactions between things and thing mates. Thing mates
include cloud platforms, edges, space users, and other things.
In this paper, we present the IoT Device Description
Language (IoT-DDL), a machine- and human-readable

XML-based descriptive language for things in smart spaces.
IoT-DDL explicitly tools a thing to self-discover its own
onboard capabilities, resources, entities, and services, as well
as cloud-based thing accessories. A thing’s resources are the
components that describe the basic services it needs to be
part of the IoT ecosystem (e.g., network module or memory
unit). A thing’s entities are the physical devices, software
functions, and hybrid (virtual) devices that can be attached
to, built in, or embedded inside the thing. Each entity
provides a set of services to thing mates through a set of well-
defined interfaces. In addition, external accessories, which
are entities external to the thing that could be added to
augment the thing capabilities over time, can provide a
cloud-based expansion of the thing (e.g., a database, drivers,
convertors, or specific add-on interfaces) through named
attachments. Enabling the thing to self-discover what it is,
what it does, and how it communicates can empower
meaningful interactions and interconnections that support
the distributed nature of IoT. Such enablement will be
required before any useful programming models can be
defined within the IoT ecosystem. Atlas IoT-DDL builder is
a web service tool that allows a thing’s creator (e.g., the
original equipment manufacturer (OEM)) or owner to create,
update, or upload an IoT-DDL to a thing. The OEM of a
thing could be the source of the IoT-DDL; a developer who
utilizes space things’ services and resources might also be
the source. Such flexibility facilitates further adoption of
IoT-DDL with changes, and supports thing innovation, in
which makers or hobbyists may be assembling new things
not established by an OEM. We developed an initial version
of the web tool [46] that enables space users to develop an
IoT-DDL that reflects the thing’s metadata and attachments,
as well as its inner entities, resources, and services; as will
be discussed later.
The IoT-DDL is proposed within the lightweight Atlas thing
architecture, which fully utilizes the specifications of IoT-
DDL. The Atlas thing architecture takes advantage of a
thing’s OS services to provide new layers and functionalities
that introduce the novel capabilities a thing needs to engage
in ad-hoc interactions and interconnections, as well as IoT
scenarios and applications. The architecture enables a thing
to self-discover its resources, attachments, components, and
services from the uploaded IoT-DDL. The architecture
extends the Apache licensed Micro Services project [51] to
enable the thing to generate the services it wishes to offer to
the smart space. Based on the inputs, outputs, and platform-
agnostic actions specified in the IoT-DDL, the architecture
dynamically generates and manages a bundle (single
executable microservice) that fulfills a specified thing
service at the runtime of the thing. The thing can then
formulate APIs of the services it offers and enable service-
oriented meaningful interactions to take place between the
thing and its thing mates.
This paper focuses on IoT-DDL concepts, requirements, and
specifications. It also focuses on the details of parts of the

	

VOLUME XX, 2017 2

Atlas thing architecture that implement and take advantage
of the IoT-DDL. The paper is organized as follows. Section
II highlights related work, followed by a description of a
proposed structure of things and the IoT-DDL specifications
in section III. The overall Atlas thing architecture is
described in section IV with focus on the architecture layers
that implement IoT-DDL. In section V we present our
implementation and a proof-of-concept, and in section VI we
present a benchmarking study in which we measure and
assess memory footprint, latency and energy characteristics
of the IoT-DDL and Atlas thing architecture on real
hardware platforms. Finally, a discussion and a conclusion
are presented in section VII.

II. RELATED WORK
Although there is not much in the literature on explicit
architectures for things, quite a bit of work exists on device
descriptions. The Device Description Language (DDL) is a
machine- and human-readable XML-based device description
approach developed by the Mobile and Pervasive Computing
Lab at the University of Florida [16][17]. DDL is a schema for
the seamless integration of devices into a smart space, service
registration, and discovery. DDL describes the metadata of the
physical device and how to access the offered services. DDL
was used to develop the Cloud-Edge-Beneath (CEB)
architecture [14][15][29]. CEB opens access links to devices
from the cloud through the use of the Atlas sensor platform
and middleware. Atlas middleware, hosted by the Edge (e.g.,
standalone server), uses the Open Services Gateway initiative
(OSGi) for service discovery and configuration of Atlas sensor
platforms. The middleware, when contacted by an Atlas
sensor platform, retrieves information from the DDL
descriptor and creates a Java bundle for that sensor. Sensors
are abstracted into sensor service interfaces in the cloud
through interlayer collaboration between the Atlas
middleware bundles at the Cloud, the Edge, and beneath.
To enable thing-to-thing, thing-to-cloud and thing-to-edge
communication paradigms, IoT-DDL extends the descriptive
power of Atlas DDL to address a thing’s self-discovery. IoT-
DDL, as a self-description tool uploaded to a thing, explicitly
powers the thing to discover its inner resources,
characteristics, services, communication languages, and
cloud-based attachments. IoT-DDL and the Atlas thing
architecture enable the thing to identify itself to thing mates
and formulate APIs for the offered services. The IoT-DDL
enables the seamless integration of things into the ecosystem,
and equips the thing with a set of attributes that enable thing
management and configuration with minimal human
intervention.
The Web of Things (WoT) framework by the World Wide
Web Consortium (W3C) [32][33] is an active research field
that explores access to and handling of things’ digital
representations through a set of web services. These services
are based on event-condition-action rules that involve these
virtual representations as proxies for physical entities. Such

objects are modeled in terms of metadata, events, and
actions, along with the RESTful protocol. Servers provide an
interface for instantiating and registering such proxies for the
things along with their descriptions. A client script interacts
with these proxies exported by the server, where applications
can register callbacks for events. Darko et. al. [49] utilize
Thing Description (TD) to describe the different things in the
WoT, in terms of their metadata, how to access them, and
their different events and corresponding actions. The TD
relies on the Resource Description Framework (RDF) [50] as
an underlying data model that can be extended to involve
domain specific information.
The Constrained RESTful Environments (CoRE) [47]
realizes the Representational State Transfer (REST)
architecture for the discovery of resources hosted by
constrained nodes to build M2M applications. CoRE extends
the universal resource identifiers (URI) for such resources
with a set of attributes and descriptions of relations between
such resources. A client, for his application, utilizes such
resource discovery architecture with the appropriate resource
description, along with possible application-specific
attributes. Datta et. al. [8][48] highlights an evolution in
Thing Description (TD) from the CoRE Link Format to
describe physical things in the IoT. TD represents the
different sensors and actuators in terms of events and actions.
The authors proposed a thing management framework that
resides in an M2M gateway.
Google’s Weave [18][19] is a communication platform that
allows smartphones and cloud services to interact with things
through mobile devices and the Web. Weave supports cloud
services such as device discovery, provisioning, state
subscription, remote access, and push notifications. Weave
introduces two main ideas of device description schema: 1)
trait, which describes device functions, commands, and state
definitions, and 2) component, which describes the
relationships between traits. Weave is provided in
conjunction with Brillo, Google’s new Android-based OS
for embedded development. Brillo offers device
management, a hardware abstraction layer, and a
development kit. Several Brillo-compatible boards can be
accessed and managed through a Linux developer machine.
IoT applications can be developed directly over Brillo, with
development taking place on the developer machine and the
resulting image is flashed on the target hardware.
A related approach to IoT-DDL is Amazon Web Services
IoT (AWS-IoT) [20][21], a cloud-based platform that
provides bidirectional communication between the AWS
cloud platform and things in a space (sensors, actuators, and
embedded devices). AWS’s primary focus is collecting and
analyzing data reported by multiple devices. A thing-registry
module stores and organizes thing-related information and
resources, while users can associate up to three custom
attributes with each thing. On the other side, each thing has
a thing-shadow that stores thing-state and metadata in
response to application requests.

	

VOLUME XX, 2017 2

The aforementioned approaches link the access of things to a
central point (e.g., cloud platforms or edge) where space users
can access resources and collect data. Such a restricted
paradigm ignores the distributed nature of IoT, which requires
things to communicate with other things as well as with cloud
platforms and edge. To enable secure ad-hoc interactions
between a thing and its thing mates in a space, a thing should
be fueled by an additional set of attributes and properties. In
the absence of a device description language that supports
basic thing requirements for a smart space, significant effort is
required to interact with and manage the wide heterogeneity
of things. At the same time, the thing description should be
part of the thing itself to facilitate a thing’s smooth migration
from one space to another. In the next section, as a first step
toward describing a thing, we define the essential
requirements that must be met for a thing to be part of the IoT
ecosystem. We also introduce a structural definition for things.

III. IoT-DDL SPECIFICATIONS
The first step in describing a thing in a smart space is
identifying the different parts that make up its structure. The
thing, as illustrated in Fig. 2, is composed of a set of resources,
entities, and attachments and engages with thing mates
through some interactions. Resources are the components that
shape the OS services a thing needs to be part of the IoT (e.g.,
network module, memory unit, etc). Each resource is shaped
through a set of properties that configures such operating
services. Moreover, thing entities are the physical devices,
software functions, and hybrid devices that can be attached to,
built in, or embedded inside the thing. Each entity provides a
set of services to the smart space through a set of well-defined
interfaces (APIs). Furthermore, a thing can have one or more
external accessories or attachments. Thing attachment is a
cloud-based expansion of the thing that provides further
representations (e.g., thing virtualization) and services (e.g.,
log server, database, or dashboard) that are considered too
heavyweight to be hosted on the thing or require additional
resources that are not available on such constrained devices.
Thing mates include cloud platforms, edges, humans (e.g.,
space users or developers), and other things.
A thing in a smart space engages with thing mates in the IoT
ecosystem through a set of information- and action-based
interactions. Information-based interactions (referred to in this
paper as tweets) enable a thing to announce its identity,
capabilities, and APIs to thing mates. A thing uses a tweet to
describe what it is, what it does, and what it knows to the other
thing mates. Action-based interactions include management
commands, lifetime updates, and configurations from
authorized parties as well as the applications that target the
thing’s capabilities and services.
Consider a smartphone as an example of a thing in smart
space. To be part of the smart space, a smartphone must be
equipped with an internal memory and Wi-Fi network
module. It also contains a set of sensors (e.g., proximity,
accelerometer) as embedded entities that can offer services

to the smart space. The phone can also be connected to a
cloud attachment for lifetime OS updates provided by the
vendor. The three requirements and the proposed structure
for the thing shape the specifications required to describe
things in smart spaces and highlight the design aspects of the
architecture that can fully utilize such specifications.

FIGURE 2. Thing structure.

Based on the thing structure outlined above, we now present
our IoT-DDL specifications that describe the different parts
and accessories of a thing through a set of attributes,
parameters, and properties. IoT-DDL is based on Atlas DDL
[16], which uses an XML-based schema to describe devices
to facilitate their integration in a smart space. It has been used
to develop the Atlas Cloud-Edge-Beneath (Atlas-CEB)
architecture [14], which uses DLL to generate Java bundles
that represent the devices and that can be deployed on an
edge and/or cloud to connect back and interact with the
devices the DDL describes. DDL is used to describe a single
device (sensor, actuator, or hybrid) through the device's
metadata, functions, and operations. Atlas IoT-DDL extends
Atlas DDL to address additional thing requirements and to
match the thing structure outlined above. The IoT-DDL
structure is divided into the Atlas thing, thing entities, and
thing attachments sections, as illustrated in Fig. 3. These
three main sections are described below.

A. Atlas Thing Section
The Atlas thing section of IoT-DDL characterizes the thing as
a whole, describing the different resources and components on
board. It is further structured into the following subsections:
1) The descriptive metadata section holds the thing’s

identification, including its name, model, short

…

…

Entities

Services

…
Attachments

Outputs
Interactions Interactions

Inputs

Resources

Thing

…

	

VOLUME XX, 2017 2

description, type (e.g., software, hardware, hybrid),
vendor, and owner.

2) The structural metadata section highlights the structure
of IoT-DDL file as a short description of the thing's
resources, entities, and attachments.

3) The resources section holds the attributes and properties
of the underlying OS services the thing needs to be part
of the IoT. The Atlas thing section holds a separate
section for each resource. In this paper, we support both
network module and memory unit as the two main
resources a thing needs to engage with a smart space.
• The network properties subsection describes the

network connection capabilities of a thing in terms of
the mounted network module (e.g., Wi-Fi, Bluetooth),
network access information, and preferences. The
subsection covers the attributes and properties of the
supported communication protocols (e.g., MQTT,
CoAP).

• The memory properties subsection highlights the
various memory units available to process
applications, generate APIs, and archive information
in a specific format.

FIGURE 3. IoT-DDL specifications.

B. Thing Entities Section
The thing entities section describes the different types of
entities (hardware, software, or hybrid) that can be embedded,

built in, or connected to the thing. Each entity is detailed in
terms of its descriptive information, the services and functions
it offers, and the different types of interactions it can engage
in. Each entity is further divided into components as follows:
1) The descriptive metadata section holds an entity’s

identification, including name, model, short description,
type (e.g., software, hardware, hybrid), category (built-in,
embedded, attached), vendor, and owner.

2) The service section holds descriptive information about
the different services offered by the entity in terms of
functional descriptions, inputs, and outputs. Each service
input or output is characterized in terms of a short
description, data types, units, and the acceptable range of
values.

C. Thing Attachments Section
The thing attachments section describes the different cloud-
based expansions of the thing. Each attachment is described
in terms of the type (e.g., data-log server, repository, device
management server), the access information (e.g., URI, key),
and the protocols used (e.g., REST).

D. Example IoT-DDL
To illustrate IoT-DDL, we use the example of a coffee
maker, which is part of the proof of concept presented in the
implementation section (Section V). In this example, a
coffee maker entity and a web-logging attachment are part of
a Beaglebone Black Atlas thing. The overall IoT-DDL in this
example consists of three parts: The Beaglebone Black Atlas
thing description, the coffee maker description, and the web-
logging attachment description, just as outlined in Fig. 3.
The Beaglebone Black Atlas thing section is shown in Fig.
4. The descriptive metadata section describes the thing in
terms of the owner, name, and operating system. The
structural metadata section summarizes information about
thing’s resources, entities and attachments. The resources
section shows the overall properties of both network and
memory resources of the underlying operating system. The
Beaglebone Black thing utilizes the MQTT protocol to
communicate with thing mates and to set up a TCP
connection with an online MQTT broker as will be shown in
section V. The broker domain name and port number are part
of the Network Properties sub-section that describes the
Beaglebone Black Atlas thing.
The coffee maker entity section is illustrated in Fig. 5. The
coffee maker is described in the descriptive metadata section
as a hardware device attached to the Atlas thing and offers
two services: to turn the coffee maker on for a maximum
amount of time, and to turn the maker off. Each of these
services is described in a separate service section within the
Services section of the entity in terms of function description,
inputs and outputs. The Web-log service attachment
section—as Fig. 6 shows—is a NodeJS-based server that
allows the Atlas thing to send status updates to the server
periodically (every two minutes in this example) through an
HTTP “PUT” method.

<Atlas_ IoT-DDL>
<Atlas_ Thing>

<Descriptive_ Metadata> </Descriptive_ Metadata>
<Structural_ Metadata> </Structural_ Metadata>

<Resources>

<Network_ Properties > </Network_ Properties >
<Memory_ Properties> </Memory_ Properties >

</Resources>
</Atlas_ Thing>

<Thing_ Entities>

<Entity_ 1>
 < Descriptive_ Metadata> </Descriptive_ Metadata>

< Services > </ Services >
</Entity_ 1>
…..
<Entity_ n>

</Entity_ n>

</Thing_ Entities>

<Thing_ Attachments>

< Attachment_ 1>

</Attachment_ 1>
…..
<Attachment_ n>

</Attachment_ n>

</Thing_ Attachments>

</Atlas_ IoT-DDL>!

Th
in
g!S
ec
tio
n!

At
tac
hm

en
ts!
Se
cti
on
!

En
tit
ies
!Se
cti
on
!

	

VOLUME XX, 2017 2

FIGURE 4. Beaglebone Atlas thing section.

FIGURE 5. Coffee maker entity section.

FIGURE 6. Web-Log server thing attachments section.

As noted earlier, the IoT-DDL is proposed within the Atlas
thing architecture, which takes advantage of a thing’s OS
services to provide new layers and functionalities that
introduce novel and necessary capabilities. The Atlas
architecture is briefly discussed in the next section. We do
not attempt to fully present the details of the architecture, and
keep our focus on device descriptive layers that reflect IoT-
DDL specifications.
The difference between the original DDL [16] [17] and the
proposed IoT-DDL can be summarized as follows: 1) The
focus of the DDL is to generate a run-time representation of
the thing’s service on the edge or the cloud for service
discovery, whereas the focus of the IoT-DDL is to generate
a run-time representation of the thing on the thing itself to
enable ad-hoc interactions and interconnections. 2) The DDL
focuses on describing the services offered by the thing, while
the IoT-DDL focuses on additional attributes to describe the
thing in the smart space by the thing’s entities, resources,
services, attachments, and device management and
communication protocols. 3) The focus of the DDL is to
enable the thing-to-cloud communication paradigm, whereas
the focus of the IoT-DDL is to enable both thing-to-thing and
thing-to-cloud communication paradigms for the seamless
building of IoT scenarios that involve different things.

IV. OVERVIEW OF THE ATLAS THING ARCHITECTURE
In this section, we present a brief overview of the Atlas thing
architecture, which fully exploits the specifications and design
principles of IoT-DDL. The Atlas thing architecture is
designed to meet the requirements for a thing to be part of the
IoT ecosystem. Its goals are to make the thing capable of 1)
self-discovering its characteristics, resources, and entities
through the uploaded IoT-DDL, and generating APIs for the
available services; 2) opening a channel with a device
management server for provisioning, management, and
configuration purposes, and 3) enabling secure interactions
with thing mates, The architecture also takes advantage of

<Atlas_Thing>
<Descriptive_Metadata>

<Owner> Mobile and Pervasive Computing Lab </Owner>
<Name> Beaglebone </Name>
<Model> Black </Model>
<Short_Description> Sensor Platform </Short_Description>
<Operating_System> Linux Angstrom </Operating_System>
….

</Descriptive_Metadata>
<Structural_Metadata>

<Hardware_Entities> 1 </Hardware_Entities>
<Attachments> 1 </Attachments>
….

</Structural_Metadata>
<Resources>

<Network_Properties>
<Module> Wifi </Module>
<Type> External USB </Type>
<UUID> Lab Network </UUID>
<Protocol> MQTT </Protocol>
<Broker_URL> broker.hivemq.com </ Broker_URL>
<Broker_Port> 1883 </ Broker_Port>
<Broker_Port_Type> TCP </ Broker_Port_Type>
….

</Network_Properties>
<Memory_Properties>

<Received_Interactions> RAM </Received_Interactions>
<Received_Tweets> RAM </Received_Tweets>
….

</Memory_Properties>
</Resources>

</Atlas_Thing>

<Entity_1>
<Descriptive_Metadata>

< Name>Coffee Maker</ Name>
< Category>Hardware</ Category>
< Owner>Bosch</ Owner>
< Type>Attached</ Type>
< Description>Prepare Coffee</ Description>
….

</Descriptive_Metadata>
< Services>

<Service_1>
< Description>Turn On For Duration </ Description>
< InputTypes>Integer </ InputTypes>
< InputDescription>Duration in Minutes </ InputDescription>
< InputRange> [0:59] </ InputRange>
< OutputTypes>NULL</ OutputTypes>
< FunctionMap>HighVolt_GPIO_Duration</ FunctionMap>
….

</Service_1>
<Service_2>

< Description>Turn Off </ Description>
< InputTypes>NULL </ InputTypes>
< OutputTypes>NULL</ OutputTypes>
< FunctionMap>LowVolt_GPIO</ FunctionMap>
….

</Service_2>
< /Services>

</ Entity_1>!

<Thing_Attachments>
<Attachment_1>

 < Type>Log_Server </ Type>
 <Description> HTTP1.1 Server </ Description>
 <URI>192.168.0.4</ URI>
 <Port>8080</ Port>
 <REST_Method>PUT</ REST_Method >
 <Access_Type>Public</ Access_Type>
 <API_Key>NULL</ API_Key>
 <Message_Format>Plain</ Message_Format>
 <Update_Duration_Value>2</ Update_Duration_value>
 < Update_Duration_Unit>minute</ Update_Duration_Unit>
 <Backend_Technology>NodeJS</ Backend_Technology>

….
….

</ Attachment_1>
</ Thing_Attachment>
!

	

VOLUME XX, 2017 2

lightweight device management standard OMA-LwM2M [9]
[10][11][13], object modeling standard IPSO [7][12], IoT
communication standards CoAP [34][35] and MQTT
[28][30], and the AES [39] security standard to enable thing
management and configuration with minimal human
intervention, and to empower secure ad-hoc interactions
between things and thing mates.
The architecture can be developed into a set of software
layers or firmware that can be flashed into the thing using the
vendor’s provided IDE or OS (e.g., C/C++ for Linux OS-
based platforms such as Beaglebone and Raspberry Pi,
Java/C++ for Android smartphones, or Arduino IDE for
Arduino Things). The Atlas thing architecture, as illustrated
in Fig. 7, consists of three main layers: Atlas IoT platform,
host interface, and IoT OS services. IoT OS services are the
basic functionalities provided by the thing’s operating engine
and represent a thing’s resources according to the proposed
thing structure. Such services enable the thing to be part of
the IoT through its network module, memory units, I/O ports
and interfaces (e.g., I/O, ADC, etc.), and its process manager.
Services may also include hardware-based security if
available, such as embedded secure elements [42][43]. The
process manager is responsible for offering services for
command execution and threading for concurrency if
supported by the IoT OS services.

The Atlas IoT platform represents the logical layer of the
architecture that runs on heterogeneous things to provide

new needed services not currently provided by embedded
OS’s. Such new services focus on descriptive and semantic
aspects of things to better enable thing engagement,
interaction, and programmability into an IoT. The host
interface layer shields the platform and gives it the
portability and interoperability features it needs. This layer
also maintains the platform’s lightweight nature by
maximally relying on lower-level services provided by the
underlying IoT OS. The host interface layer manages the
internal interactions between the Atlas IoT platform and the
set of services provided by the underlying OS. However, the
host layer assumes the responsibility of providing any
services that the underlying OS does not provide. An extreme
case is when there is no underlying OS in a given platform
(e.g., Arduino sensor platform); in this case, the host layer
must implement all required services.
Next, we present the details of the DDL sublayer within the
Atlas IoT Platform layer of the architecture that is
responsible for mapping and managing the IoT-DDL
specifications. We also briefly summarize the other
sublayers of the architecture.

A. DDL Sublayer
The DDL sublayer allows a thing to discover its own
resources, entities, and capabilities through the uploaded IoT-

DDL configuration file. It is composed of the following
modules:

FIGURE 7. Atlas thing architecture.

Interactions and Tweeting Engine

IoT-DDL Manager

API Engine Identity
Parser

Attachment
Manager

Interface and Communication Engine

Identity and Knowledge
Tweets

API
Tweets

A
tla

s I
oT

 P
la

tfo
rm

DDL
Sublayer

Tweeting
Sublayer

Interface
Sublayer

Host Interface Layer

Network
Manager

Process
Manager

Memory
Manager

Device Secure
Elements

Services
Interfaces

Main Controller and Messaging Backbone

Io
T

O
S

Se
rv

ic
es

Device
Manager

Meaningful
Interactions

Security Engine and
Application Run-Time

Knowledge
Engine

	

VOLUME XX, 2017 2

• The IoT-DDL manager opens a gate to access the uploaded
IoT-DDL configuration file, parses the various sections
and subsections, and regulates access to the IoT-DDL from
the other modules.

• The identity parser models the identification and
descriptive information of the thing and its entities. This
module interacts with the IoT-DDL manager to parse a
thing’s metadata for how uniquely the thing can be viewed
through the smart space.

• The attachment manager parses the information that
models the thing’s cloud-based attachments and its entities
and builds the required interactions with these
attachments.

• The device manager opens a communication channel with
a device management server that either resides on the edge
or cloud. This module interacts with the IoT-DDL
manager module to access information about the
management server (e.g., server IP address and access
parameters). The Atlas thing then registers itself as a client
at the server side for provisioning, managing, and
configuring different attributes during the thing’s lifetime
as well as authorized management commands.

• The API engine formulates descriptive interfaces for the
services offered by the thing’s entities. As Fig. 8 shows,
the API engine consists of four sub-modules: 1) the Bundle
& API generator interacts with the IoT-DDL manager to
parse services’ information (inputs, outputs, types, ranges,
descriptions, and functionality) stored in the IoT-DDL and
builds a descriptive API for each service, after generating
a bundle that fulfills the specifications of the service; 2)
service execution oversees packaging the relevant input
values, sending them to the running bundle, and retrieving
the result values before handing them off; 3) the API
parser and validator parses the received applications (API
calls) from thing mates, checks their validity, and hands
them to the bundle repository; 4) the bundle repository
stores and manages the generated bundles and handles
bundle execution through the service execution sub-
module. Each API, as Fig. 9 illustrates, has three parts: 1)
the function name as a short description of the offered
service; 2) a list of inputs to the service, where each input
is represented in a tuple that holds an input description,
data type, and value range; and 3) the expected output of
executing the service, where the output is represented in a
tuple that also holds the description, data type, and value
range. The generated API is announced to the thing mates
through tweets. On the other hand, an application (API
call) is captured and parsed in the architecture’s tweeting
sublayer. This API call holds the function name followed
by a list of values representing the corresponding inputs to
the service.

FIGURE 8. API engine structure.

FIGURE 9. API structure.

B. Summary of other sublayers
The tweeting sublayer tools the thing with an explicit
capability to uniquely define itself in the smart space, in
addition to discovering thing mates and securely interacting
with them. The tweeting sublayer represents the gateway that
regulates the communication and queries between the
interface and DDL sublayers, and is further composed of the
following modules:
• The interactions and tweeting engine models a thing’s

descriptive information about its identity and generated
APIs into sets of identity and API tweets, respectively.
Identity tweets hold metadata about a thing's identity,
description, entities, and capabilities. API tweets hold
metadata about the generated APIs and the corresponding
APIs. Such tweets are forwarded to the interface sublayer
to be announced to thing mates. At the same time, the
engine parses the received tweets (information-based
interactions) as well as action-based interactions (e.g.,
applications, management commands, and configurations)
from thing mates. The engine then forwards the interaction
to the DDL sublayer modules according to the parsed
content.

• The security engine and application runtime decodes
received interactions from thing mates to ensure

Bundle
Repository Bundle

and API
GeneratorService

Execution

API Parser and
Validator

API
API call and
Application Result(s)

Interactions and
Tweeting Engine

Security Engine and
Application Run-Time

IoT-DDL Manager

A
PI

 E
ng

in
e

IoT-DDL
Services’ sections

DDL
Sublayer

Tweeting
Sublayer

Function Name : [Inputs Tuples] : (Output Tuple)

(Description, Type, Range), ... , (Description, Type, Range)

(Description, Type, Range)

Input 1 Input n

	

VOLUME XX, 2017 2

authorization and authentication, and encodes interactions
from the thing to its thing mates. The security engine and
application runtime interacts with the interactions and
tweeting engine to build certified interactions from one
side, and with the architecture’s host interface layer from
the other side.

The interface sublayer holds the different communication
protocols (e.g., MQTT, CoAP, etc) that allow the thing to
engage with its thing mates. The sublayer announces the built
tweets to the smart space and captures others’ tweets and
action-based interactions to be forwarded to the tweeting
sublayer for processing.

V. IMPLEMENTATION
In this section, we describe the implementation details of the
parts of the Atlas thing architecture that address the various
aspects of IoT-DDL and thing requirements. The Atlas thing
architecture takes advantage of: 1) OMA-LwM2M, which is
lightweight device management standard that targets low-
power and constrained devices with the low-overhead REST
data model and point-to-point communication in a client-
server fashion, 2) IP Smart Object (IPSO) that provides a
common design pattern and semantic interoperability across
IoT devices that support LwM2M for a more reusable design
to composite modular objects, 3) CoAP, which is a
client/server protocol that provides a request/report paradigm
model over UDP and interoperates with HTTP and the
RESTful Web through simple proxies, 4) MQTT, which is one
of the most widely-used communications protocols that uses a
publish/subscribe architecture on top of the TCP/IP protocol.
The implementation demonstrates the feasibility of the
architecture’s deployment on a variety of real platforms.
Finally, we provide a proof-of-concept implementation of an
IoT application using the architecture implementation and
IoT-DDL to show the interaction between things on the one
hand, and between the thing and the device management
server and log server attachments on the other hand. As
mentioned earlier, our focus in this paper is the device
descriptive layers that reflect the different parts of IoT-DDL.

A. Thing Provisioning and Management
The first requirement for a thing to be part of the IoT
ecosystem is that it must be seamlessly integrated into the
ecosystem, so it can be managed and configured with minimal
human intervention. In this section, we target this essential
requirement using two widely used standards for device
management and object modeling: the Open Mobile Alliance
Lightweight M2M (OMA-LwM2M) and the IP Smart Object
(IPSO) Alliance, respectively.
Liblwm2m is an open source implementation for OMA-
LwM2M developed by the Wakaama project in Eclipse
[22][23]. The Atlas architecture extends Liblwm2m to allow
device management [24][25] not only for OMA standard
objects but also for the different aspects of IoT-DDL. The
architecture translates the different sections and subsections

of IoT-DDL into a set of dynamic objects, called Atlas
objects. Atlas objects, as shown in Fig. 10, represent the
different entities, services, resources, and attachments of an
Atlas thing. Atlas objects are based on the object resource
data representation model proposed by OMA-LwM2M and
utilize the IPSO idea of composite objects for higher modular
object design. Extending the broad standard for OMA with
Atlas objects allows seamless engagement of Atlas things
with OMA-LwM2M/IPSO-powered entities in a smart
space.
The device manager module of the DDL sublayer in the
architecture communicates with the IoT-DDL manager
module to access information about the OMA management
server (e.g., server IP address and access parameters). The
Atlas thing registers itself with the server as an OMA client,
where the registration process requires a thing to register a
tree of its programmed objects at the server side. Such a tree
is a hierarchal structure of both OMA-standard objects and
Atlas objects generated by the thing. The device manager
module, as shown in Fig. 11, creates and manages both OMA
standard objects and Atlas objects through an object engine.
Atlas object creation and management occur on demand
when IoT-DDL is uploaded to the thing during lifetime
updates. At the same time, authorized lifetime management
and updates from the management server trigger the device
manager’s object engine module to maintain the
corresponding objects and enables authorized dynamic
updates to the IoT-DDL parameters and attributes during the
lifetime of the thing.

FIGURE 10. Atlas objects’tree.

Descriptive
Metadata

Structural
Metadata

Thing Object Thing-entity “n” ….

Attachments

Memory
Manager

Network
Manager Administrative

Metadata

Attachment 1

Attachment n
….

Descriptive
Metadata

Functions &
Services

Thing-entity “1”

Attachments Attachment 1

Attachment n
….

Function 1

Function n
….

Interaction n

Interaction 1
Interactions

Entity 1 ref

Entity n ref

….

….

	

VOLUME XX, 2017 2

FIGURE 11. Device manager and OMA objects.

B. Atlas Thing Communication
To enable thing-to-thing and thing-to-edge or thing-to-cloud
information- and action-based interactions, the architecture
exploits widely used communication protocols for IoT and
constrained environments: Message Queuing Telemetry
Transport (MQTT) and the Constrained Application Protocol
(CoAP). In this section, we give an overview of the protocols
and describe how their implementation within the Atlas thing
architecture goes beyond just enabling communication to
support other thing requirements and IoT-DDL design
choices. The interface and communication engine of the Atlas
thing architecture adopts the open-source C/C++
implementation of MQTT developed by the Paho project in
Eclipse [30]. The implementation allows Atlas things to
connect to an MQTT broker, subscribe, and publish with
respect to a predefined set of topics. As a proof of concept, the
architecture utilizes a connection with the cloud-based MQTT
broker HiveMQ dashboard [31] to publish and subscribe to the
different topics.
As discussed earlier, an Atlas thing tweets identity information
about itself, thing entities, and generated APIs to its thing
mates, and similarly receives other things’ tweets. Things can
also interact (e.g., through issuing an API call) with each other.
The network manager subsection of the administrative thing
metadata of the IoT-DDL specification lists the required
configuration of MQTT. The configuration includes the URL
to the MQTT broker, the listening port, and a list of topics to
subscribe to and publish accordingly. Table I lists the different
topics the Atlas thing publishes and subscribes to in order to
announce its own and receive others’ tweets, respectively.
Furthermore, Atlas things interact using another set of topics
that include the things’ IDs. For an Atlas thing to receive
interactions, it must subscribe to an interaction topic that holds
its own ID. To forward an interaction to another thing mate, it
must publish a topic that includes the thing mate’s ID.

The interface and communication engine of the Atlas thing
architecture adopts the open-source C++ implementation of
CoAP developed by Noisy Atom [40]. This implementation
allows Atlas things to tweet and interact with respect to a
predefined set of resources. The Atlas architecture uses
CoAP protocol support for multicasting, which allows the
thing to broadcast tweets to all listening things. We extend
the imported library with Unix multicast sockets to enable
the CoAP multicast feature.
The network manager subsection of the thing Resources
metadata of the IoT-DDL specification lists the required
configuration of CoAP. The configuration includes the
listening port, a list of RESTful methods, and the
corresponding resources. Table II lists the resources an Atlas
thing uses to announce its own tweets and ask for others’
tweets. At the same time, Atlas things interact using another
set of resources that include the thing mates’ IDs.
We are currently working on enabling Atlas thing
communication between thing mates that speak different
protocols (currently limited to REST, CoAP and MQTT). By
developing protocol adaptors as thing attachments, two
things will be able to communicate despite their protocol
differences.

C. Atlas Thing Bundles
To best facilitate the creation and modification of arbitrary
thing services, the architecture adopts the Apache licensed
C++ Mircro Services project [51] for dynamic service-
oriented API functionality. Each thing service is represented
as an independent microservice, and can be executed through
a single call to the corresponding API taking inputs and
returning outputs as specified by the IoT-DDL. In this
section, we describe the steps taken to convert the textual
service description of the IoT-DDL into a compiled
microservice capable of running on an Atlas thing and
discuss how the architecture is expanded to allow for
generation of services on the fly.

IoT- DDL
Manager

IPSO

OMA LwM2M

OMA standard and
Atlas Objects

A
tla

s A
rc

hi
te

ct
ur

e
Authorized Device Management Commands and

Configurations

O
bj

ec
ts

 R
ep

os
ito

ry

Create/Update/Manage

Higher Layers of Atlas architecture

Device
Manager

Commands Parser

Objects Engine

IoT-DDL

Configuration
File

TABLE I
ATLAS TOPICS FOR THE MQTT PROTOCOL

Atlas IoT
Interactions Publish Topics Subscribe Topics

Information-based
Interaction
(Tweet)

Tweet/Thing/Identity Tweet/Thing/Identity
Tweet/Entity/Identity Tweet/Entity/Identity
Tweet/API Tweet/API

Action-based
Interaction

Interaction/
(ThingMate-ID)

Interaction/
(ThingMate-ID)

TABLE II
ATLAS RESOURCES FOR THE COAP PROTOCOL

Atlas IoT Interactions Thing Resources (URL) REST Method

Information-based
Interaction (Tweet)

Tweet_ThingIdentity GET
Tweet_EntityIdentity
Tweet_API

Action-based
Interaction

Interaction_(ThingMate
-ID)

POST/PUT

	

VOLUME XX, 2017 2

The C++ Micro Services project aims to allow for the
creation of service-based applications based on the dynamic
module system of OSGi [52]. Each microservice, called a
bundle, is a specially packaged shared library object that runs
in its own context within the microservices framework. The
state of these bundles can be managed dynamically during
the lifetime of the Atlas thing. The Atlas architecture uses
C++ Micro Services to allow loading, running, and
destroying its service bundles throughout execution, and to
access the running bundles’ functionalities through a generic
interface. Before a thing’s services can be ran, their bundles
are dynamically generated by the API Engine of the
architecture from the specification of the uploaded IoT-
DDL. Once the architecture has parsed the IoT-DDL, the
inputs and outputs are mapped to their corresponding native
types and the generic actions are mapped to platform-
specific function calls. The API Engine handles the
execution of the bundle upon receiving the corresponding
API call from other things in the smart space.

D. Atlas Thing Security
As mentioned earlier, the third essential requirement for
things to be part of the ecosystem is the capability to interact
with thing mates in a secure way that enables both the
authorization and authentication aspects of communication.
The architecture exploits the lightweight symmetric key [38]
encryption of AES to create secure dynamic communication
channels between things and thing mates.
AES is a widely used symmetric lightweight block cipher
security protocol [36][37][39]. For AES, the default block
size is 128 bits or 16 bytes. A mode of operation describes
how to repeatedly apply a cipher's single block operation to
securely transform amounts of data larger than a block. Each
mode requires an initialization vector (IV) to ensure distinct
ciphertexts are produced even when the same plaintext is
independently encrypted multiple times with the same key.
In the cipher block-chaining (CBC) mode of operation, each
block of plaintext is XORed with the previous ciphertext
block before it is encrypted. This way, each ciphertext block
depends on all plaintext blocks processed up to that point.
CBC is the most commonly used mode of operation.
The Atlas thing architecture utilizes AES with CBC as the
mode of operation using the Crypto++ library [41]. The
security engine of the tweeting sublayer assumes a master
secret key and IV, and encryption/decryption methods are
securely stored within the device secure elements of the OS
services. These security elements are unique to Atlas things
in smart spaces, where the space owner can generate a new
master key and IV to be securely deployed to the things
through the device management server. The security engine
generates dynamic session keys from the symmetric
predefined master key. Atlas thing A and Atlas thing B can
establish a session key as follows:
1. Thing A generates a random number (R1) and encrypts a

message holding its own ID and R1 using the master key.

2. Thing B decrypts the message using the predefined master
key, saves R1, and generates a new random number (R2).

3. Thing B encrypts a message holding its own ID and R2
using the master key.

4. Thing A and thing B each encrypt a concatenated value of
R1 and R2 using the master key and generate a session key.

E. Atlas Thing Architecture and IoT-DDL Proof-of-
Concept
Our proof of concept utilizes two things in a smart space, a
Raspberry Pi model B sensor platform running Raspbian OS,
and a Beaglebone Black sensor platform running Angstrom
OS. The Beaglebone Black thing is connected to the on/off
circuit of a coffee maker as an attached hardware entity,
while the Raspberry Pi thing offers an alarm clock service as
a built-in software entity, as shown in Fig. 12. The IoT-DDL
configuration files are developed and uploaded on both
things. These files indicate the identity of each thing,
including their inner entities, resources, and services. The
Beaglebone Black thing offers two services, one to start
brewing coffee and remain on for a specific time duration,
and the other for switching off the coffee maker. The
Raspberry Pi thing, on the other hand, offers two services to
set and clear the software alarm clock entity. When both
things are powered, the proof-of-concept implementation of
the Atlas thing architecture in starts parsing the different
sections and subsections of the uploaded IoT-DDL. Each
thing now identifies itself, discovers the different services
and functions it can offer to the smart space it is located in,
and starts generating its own APIs. Each thing starts looking
for thing mates by broadcasting thing identity tweets, entity
identity tweets, and generated API advertisement tweets.
The prototype starts by assuming that an IoT application in
the Beaglebone Black thing requires turning on the coffee
maker when the alarm triggers. At the same time, both things
register themselves as OMA clients that can connect to the
OMA server and register their OMA standard objects and
Atlas objects. On the server side, an authorized user can
browse the different connected clients, view the list of
registered objects, and update their attributes. We also
provide a NodeJS-based HTTP-log server that resides on an
edge in the smart space as an example of a thing attachment.
The attachment manager module of the DDL sublayer parses
the attachment settings (e.g., server URL, port, access
information, and update interval) through the IoT-DDL
manager module. The Raspberry Pi creates a communication
channel to PUT the current status of the thing (e.g., tweeting,
executing an application, management phase) when the
status changes or at every update interval if there are no
changes.

	

VOLUME XX, 2017 2

FIGURE 12. Proof-of-concept implementation.

Full details about the IoT-DDL configuration files for both
the Beaglebone and Raspberry Pi things, as well as a short
video of the coffee maker demo are available online as
supplemental materials [45].

VI. BENCHMARKING
In this section, we provide a benchmarking study to measure
time and energy consumption of the different Atlas thing
architecture aspects developed on three heterogeneous things.
The study aims to show the feasibility of deploying the
architecture on real platforms. The aspects benchmarked are
the thing’s capability to generate tweets, to encrypt and
decrypt action-based interactions, to be configured and
managed, and to interact using widely accepted
communication protocols. The things used in this study are the
Raspberry Pi Model B, Qualcomm Dragon Board 410C, and
Beaglebone Black sensor platforms with the specifications
listed in Table III.

TABLE III
SENSOR PLATFORM SPECIFICATIONS

Specifications Raspberry Pi
Model B

Dragon Board
410C

Beaglebone
Black

OS Raspbian Debian Angstrom

Processor 900-MHz
Quad-Core
ARM Cortex
A7

1.2-GHz
Quad-Core
ARM Cortex
A53
Snapdragon

1-GHz Sitara
AM3359 ARM
Cortex A8

Network
Module

Raspberry Pi
Wi-Fi adapter
2.4-GHz
CanaKit

Integrated
Digital core
2.4

Edimax USB
Wi-Fi 2.4 GHz

RAM 1GB 1GB 512MB

Flash Storage 4GB SD card 8GB eMMC 4GB eMMC

For a unified measurement, we uploaded the same IoT-DDL
configuration file (which was shown earlier in Section III) to

the three things. The uploaded IoT-DDL shows that the
thing contains an attached coffee maker as a hardware entity
that provides two services (turn on for a certain duration and
turn off). The code footprint of the IoT-DDL in addition to
the current version of Atlas thing architecture that imports
the OMA-LwM2M standard and AES protocol and supports
both CoAP and MQTT communication standards is 13
megabytes approximately. The code footprint—the actual
machine instructions that resides the flash memory—shows
the proposed framework is lightweight enough to fit on
constrained devices. Such small code footprint also reflects
that the actual running code does not require too much RAM
to execute.
Time is measured using the Unix-Chrono library for a high-
resolution clock cast to microseconds. Energy consumption
is measured using a PowerJive USB-based device that
calculates voltage and capacity [44]. To avoid data outliers,
the time measurement of a single operation is averaged over
five measurements. The energy consumption of a single
operation is the average value obtained from running the
operation a large number of times in a 10-minute period. The
energy consumption of the processes running in the
background of the thing’s OS is also calculated and is
subtracted from the calculated energy consumption of the
operation.
In the first subsection, we provide a benchmarking study that
focuses on the functionalities of both tweeting and DDL
sublayers of the architecture, where we measure—in terms
of the time performance and energy consumed (Table IV)—
the Atlas thing’s capability to generate tweets and to encrypt
and decrypt action-based ad-hoc interactions. In the second
subsection, we provide a set of experiments to benchmark
both time performance (Fig. 13) and energy consumption
(Table V) of the different device management capabilities
supported by the architecture. The device management
capabilities include the ability of the thing to generate the
different Atlas objects, connect to the OMA server, and
register the objects. The second subsection also provides a
set of experiments to benchmark both time performance and
energy consumption for adopting the widely accepted IoT
communication protocols MQTT (Fig. 14 and Table VI) and
CoAP (Fig. 15 and Table VII). The communication
capabilities include the different functionalities required by
the thing to send tweets and listen to tweets from thing mates
in the smart space. The third subsection provides analysis
and discussion on the provided benchmarking study for the
different functionalities and capabilities of the Atlas thing
architecture required by the thing to engage in wide range of
interactions and interconnections with other things in the
smart space during the thing’s lifetime.

IoT-DDL
IoT

DDL

Identity Tweets

APIs Tweets

Application

{ Prepare
Coffee by
7:00 AM }

OMA and Atlas
Objects

Set Alarm 7:00

Alarm 7:00

Beaglebone

Atlas
Architecture

Raspberry-PI
Interactions

Atlas
Architecture

OMA and Atlas
Objects

Thing A Thing B

	

VOLUME XX, 2017 2

A. Benchmarking Tweet Generation and Secure
Interactions
The first set of measurements focuses on the functionalities of
both tweeting and DDL sublayers of the architecture. These
functionalities are in terms of the thing’s capability to generate
tweets and to encrypt and decrypt action-based interactions.
The generated tweets are about thing identity (64 bytes), thing
entity (64 bytes), and the generated API for each of the two
services (60 bytes each). The size of the generated tweets and
APIs depends on the developed IoT-DDL for the Atlas thing.
However, we limited the sizes to 64 and 60 bytes for unified
measurements on time and energy on the different sensor
platforms. The secure action-based interaction (API call
forwarded by the thing or received from a thing mate) applies
the AES-CBC mode of operation. AES uses a key and IV,
each at 16 bytes, to encrypt and decrypt a 60-byte interaction.
Table IV shows the measurements of both time
(microseconds) and energy consumption (watt-seconds) on
the different hardware platforms. Analysis of these
measurements is presented in Section C.

TABLE IV
BENCHMARK TIME (IN MICROSECONDS) AND ENERGY CONSUMPTION (IN

WATT SECONDS)
 Interaction

Encryption
Interaction
Decryption

Tweet
Generation

Raspberry
Pi Model B

Time 2152 947 128484
Energy 7.4e-5 7.8e-5 0.014

Dragon
board 410C

Time 1438 916 26159
Energy 4.5e-5 5e-5 0.03

Beaglebone
Black

Time 3277 1414 54298
Energy 0.000114 0.000116 0.0506

B. Benchmarking OMA Device Management and
Communication Protocols
The second set of experiments focuses on the architecture’s
management and communication functionalities. These
functionalities are in terms of OMA device management
aspects as well as the different communication protocols
supported by the architecture.
After the IoT-DDL is uploaded to the thing, the thing starts
generating Atlas objects for the corresponding IoT-DDL
sections. The device manager module communicates with
the IoT-DDL manager module to access information about
the OMA management server (e.g., server IP address and
access parameters). The Atlas thing then registers itself as an
OMA client at the server, where the registration process
requires the thing to register a tree of its programmed objects
(both Atlas objects and standard OMA objects) at the server
side. For sake of simplicity, we limit Atlas object generation
to the descriptive metadata of the thing, the entity, and the
attachments. Fig. 13 compares the three sensor platform
things we used in terms of the time required to create Atlas
objects on the one hand, and connecting to the OMA server
on the local network and registering the objects' tree on the

other hand. Table V illustrates energy consumption rate in
terms of the consumed watts per second of these
functionalities on the different sensor platforms.

FIGURE 13. Time comparison for device manager functionalities.

TABLE V
ENERGY CONSUMPTION (IN WATT SECONDS) MEASUREMENTS FOR OMA

DEVICE MANAGER FUNCTIONALITIES
 Generated Atlas

objects
Connect to OMA server
then register objects

Raspberry Pi 0.0032 0.0157
Dragon board 0.00073 0.003845
Beaglebone Black 0.00147 0.010613

Furthermore, the Atlas thing architecture supports the widely
accepted IoT communication protocol, MQTT, and utilizes a
connection with the cloud-based MQTT broker HiveMQ
dashboard [31] to publish and subscribe to the different
topics. Fig. 14 compares the three sensor platforms in terms
of the time (in microseconds) required to connect to the
MQTT broker, publish a 64-byte tweet, subscribe to a topic,
and then get a 64-byte tweet from a thing mate. Table VI
illustrates energy consumption in terms of the consumed
watts per second of the different supported MQTT
functionalities on the different sensor platforms. Fig. 15
compares the three sensor platforms in terms of the time (in
microseconds) required to create a CoAP server at the thing
and wait for a tweet from a thing mate from one side, and to
create a client side that connects to the CoAP server of a
thing mate, then sends a 64-byte tweet from the other side.
Table VII illustrates the energy consumption in terms of the
consumed watts per second of the different functionalities on
the different sensor platforms. It should be noted that this set
of experiments depends mainly on the network connection
and network module used. Analysis of the results of this
second set of measurements is presented in Section C.

0" 40000" 80000"

Raspberry PI

Dragon Board

Beaglebone Black

Create Atlas Objects

Connect to OMA-Server
and Register Objects

Time"(Microseconds)"

	

VOLUME XX, 2017 2

FIGURE 14. Time comparison for the different aspects of MQTT
protocols.

TABLE VI

ENERGY CONSUMPTION (IN WATT SECONDS) MEASUREMENTS FOR THE
DIFFERENT ASPECTS OF MQTT PROTOCOL

 Open TCP
connection with
MQTT broker

Publish
single tweet
(64-bytes)

Subscribe
and receive
single tweet
(64-bytes)

Raspberry Pi 0.222 0.301 0.561
Dragon board 0.251 0.108 0.2729
Beaglebone Black 0.464 0.112 0.1098

FIGURE 15. Time comparison for the different aspects of CoAP
protocols.

TABLE VII
ENERGY CONSUMPTION (IN WATT SECONDS) MEASUREMENTS FOR THE

DIFFERENT ASPECTS OF COAP PROTOCOL
 CoAP server listens

and receives single
tweet (64-bytes)

CoAP client
connects to server
and sends single
tweet (64-bytes)

Raspberry Pi 0.020 0.007
Dragon board 0.000633 0.003267
Beaglebone Black 0.00287 0.00634

C. Analysis of the Benchmarking Study
We analyze the results of our benchmarking study in terms of
time performance and energy consumption. We start first with
the energy analysis. Understanding an Atlas thing duty cycle,
which is based on the Atlas thing architecture, helps in
analyzing the measured energy data. As Fig. 16 illustrates, an
Atlas thing goes through an initialization phase, followed by
one or more Atlas thing duty cycles until thing termination
(e.g., battery depletion). The initialization phase starts with
powering up the Atlas thing until it is ready to engage with its
thing mates and the device management server. In this phase,
the Atlas thing initializes the architecture and verifies that the
IoT-DDL is uploaded. The Atlas thing generates Atlas objects,
registers itself to the OMA server specified in the IoT-DDL,
and then generates tweets and APIs for the offered services.
Directly after the initialization phase, the Atlas thing starts
engaging with thing mates through tweets and actionable
interactions through the Atlas thing duty cycle. The duty cycle
starts running concurrent (threaded) server and client
processes to receive and send interactions, respectively.
Receipt of a management command triggers updates of Atlas
and OMA objects, as well as tweets and APIs, while receipt of
an interaction requires decrypting the interaction, and
mapping then executing the corresponding API.

FIGURE 16. Atlas thing initialization phase and duty cycle.

We can calculate battery lifetime in terms of hours to run an
Atlas thing continuously using (1).

𝐵𝑎𝑡𝑡𝑒𝑟𝑦	𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒		
≅ 		𝑇𝑖𝑚𝑒	𝑜𝑓	𝐷𝑢𝑡𝑦	𝐶𝑦𝑐𝑙𝑒		

×		(
𝐵𝑎𝑡𝑡𝑒𝑟𝑦	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦×	𝐵𝑎𝑡𝑡𝑒𝑟𝑦	𝑣𝑜𝑙𝑡𝑎𝑔𝑒
𝐸𝑛𝑒𝑟𝑔𝑦	𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑	𝑝𝑒𝑟	𝐷𝑢𝑡𝑦	𝐶𝑦𝑐𝑙𝑒

)
(1)

where battery lifetime is calculated in hours, battery

capacity is in milliamp hours (mAh), and battery voltage is
the battery’s initial voltage. The main assumption is that the
battery is capable of maintaining a voltage level over time to
operate the thing. Duty cycle includes the Atlas thing duty
cycle in addition to the background running processes of the
thing’s underlying OS. As an example, Rayovac 4AA

0" 3000000" 6000000"

Raspberry PI

Dragon Board

Beaglebone Black

Connect to MQTT
broker

Publish Tweet

Subscribe and Get
Tweet

Time"(Microseconds)"

0" 300000" 600000"

Raspberry PI

Dragon Board

Beaglebone Black

Create Server and Wait
for Tweet

Connect to CoAP-Server
and Send Tweet

Time"(Microseconds)"

Power&up&Atlas.Thing&

Ini5alize&Atlas&architecture&
Check&uploaded&IoT.DDL&

Generate&Atlas&objects&
Register&to&OMA.DM&server&
Generate&Tweets&and&APIs&

Server&and&Client&
Processes&

Update&objects&
Update&Tweets&and&APIs&

Decrypt&Interac5on&
Map&and&Execute&API&

NULL&NULL&

Receive&Interac5on&Receive&Management&&
Command&

Send&Tweet&
Send&Encrypted&Interac5on&
Receive&Tweet&

At
la
s.
Th
in
g&
Du

ty
&C
yc
le
&

At
la
s.
Th
in
g&
In
i5
al
iza

5o
n&
Ph

as
e&

	

VOLUME XX, 2017 2

alkaline batteries with six volts and 2400 mAh capacity can
run (according to (1)) a Beaglebone Atlas thing for 28 hours,
a Dragon Board Atlas thing for 12 hours, and a Raspberry Pi
Atlas thing for 7.5 hours. Such large differences are due to
the processes running in the background of the thing’s OS
and the high capabilities of the Dragon Board and the
Raspberry Pi (e.g., keyboard, mouse) compared to
Beaglebone Black. To demonstrate the accuracy of the
proposed equation for battery lifetime, Rayovac 4AA
batteries were able to run Raspberry Pi (which requires a
minimum of 2000 mAh and five volts to operate with full
peripherals) for approximately six hours. The difference
between the expected and the real value for the battery
lifetime is due to the drop of the battery voltage below five
volts. Such a drop forces the Raspberry Pi to shut down
connected peripherals (e.g., Wi-Fi module). However, most
of real life examples of things that exist in smart spaces either
have their own continuous source of power (e.g., smart home
appliances) or efficient power management modules (e.g.,
smartphones).
We next discuss time performance. The differences in the
measured time for the features and functionalities of the
Atlas thing architecture depend on the specifications of each
platform as mentioned in Table III. For the first set of
measurements, the time to complete the operation mainly
depends on the clock frequency of the processor as well as
the available RAM to keep track of the different internal
operations and the results. A Dragon Board 410C with 1GB
of ARM and 1.2GHz quad-core performs faster compared to
the other platforms on the same set of operations. For the
second set of measurements, the time to complete the
operation mainly depends on the network connectivity and
the current traffic as well as the properties of the different
Wi-Fi modules mounted on each platform. It is worth noting
that the Dragon Board 410C with integrated 2.4GHz Wi-Fi
module on board performs better compared to the other
platforms that are using external USB Wi-Fi modules.

VII. CONCLUSION
In this paper, we argue that the promise and transformative
success of the IoT vision will greatly depend on how its main
ingredient—the thing—is prepared, aligned, and made able to
engage in such a mission. The fragmented nature of IoT things
requires significant efforts to integrate, manage, and configure
such a wide heterogeneity of things. We propose IoT-DDL, a
machine- and human-readable descriptive language that tools
a thing to self-discover and share its own capabilities, entities,
and services, including the various cloud-based resources that
could be attached to it to extend it over time. Making things
describable using IoT-DDL enables self-discovery so the
thing itself becomes self-aware of what it can offer and what
its capabilities are. It also empowers the seamless integration,
configuration, and management of things with minimal human
intervention and enables the various secure interactions that
support the distributed nature of IoT. We also present the Atlas

thing architecture, which fully exploits the goals of the IoT-
DDL and its specifications. The architecture goes beyond and
above standard embedded OS services to provide new layers
and services with novel capabilities necessary for things to
have to be part of the IoT. In addition, the architecture takes
advantage of widely used device management, security, and
IoT communication standards to enable thing engagement in
secure ad hoc interactions with thing mates and space users.
We prove the feasibility of deploying the Atlas architecture
and the IoT-DDL on real hardware platforms through a proof-
of-concept implementation as well as a benchmarking study to
validate the feasibility of our approach. The study measures
both time performance and energy consumption rate. We
believe that our work in thing architectures will go far beyond
just enabling interactions and automatic generation of service
bundles and APIs, to pave the way for powerful programming
models that are currently missing. We are currently working
on refining our Atlas thing architecture with an ultimate aim
to formulate new IoT programming models and tools.

VIII. Acknowledgements

This research has been supported by a generous donation from
Philips, and the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT (No. 2017R1A2B4010395).

REFERENCES
[1] R. Want and S. Dustar. 2015. Activating the Internet of Things [Guest

Editor Introduction]. Computer, Vol. 48, No. 9, 16-20, (Sept. 2015).
[2] J. Gubbia, R. Buyyab, S. Marusic, and M. Palaniswami. 2013. Internet

of Things (IoT): A vision, architectural elements, and future
directions. Future Generation Computer Systems, Vol. 29, No. 7,
1645-1660.

[3] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. 2012.
Internet of things: Vision, applications and research challenges. Ad
Hoc Networks, Vol. 10, No. 7, 1497-1516.

[4] L. Atzori, A. Iera, and G. Morabito. 2010. The Internet of Things: A
survey. Computer Networks, Vol. 54, No. 15, 2787-2805.

[5] L. Coetzee and J. Eksteen. 2011. The Internet of Things – Promise for
the future? An introduction. IEEE IST-Africa Conference Proceeding,
1-9 (May 2011).

[6] L. Tan and N. Wang. 2010. Future Internet: The Internet of Things.
The 3rd International Conference on Advanced Computer Theory and
Engineering (ICACTE), Vol. 5, V5-376 (Aug. 2010).

[7] J. Jimenez, M. Koster, and H. Tschofenig. 2016. IPSO smart objects.
Position paper for the IoT Semantic Interoperability Workshop.

[8] S. Datta and C. Bonnet. 2015. A lightweight framework for efficient
M2M device management in oneM2M architecture. The International
Conference on Recent Advances in Internet of Things (RIoT), 1-6
(April 2015).

[9] M. Robles and P. Jokela. 2015. Design of a performance
measurements platform in lightweight m2m for Internet of things.
IRTF & ISOC Workshop on Research and Applications of Internet
Measurements (RAIM).

[10] M. Robles, D. D’Ambrosio, J. Bolonio, and M. Komu. 2016. Device
group management in constrained networks. The 13th IEEE
International Conference on Pervasive Computing and
Communication (PerCom workshops), 1-6 (March 2016).

[11] C. Putera and F. Lin. 2015. Incorporating OMA lightweight M2M
protocol in IoT/M2M standard architecture. IEEE 2nd World Forum
on Internet of Things (WF-IoT), 559-564 (Dec. 2015).

	

VOLUME XX, 2017 2

[12] S. Rao, D. Chendanada, C. Deshpande, and V. Lakkundi. 2015.
Implementing LwM2M in constrained IoT Devices. IEEE Conference
on Wireless Sensors (ICWiSe), 52-57 (Aug. 2015).

[13] G. Klas, F. Rodermund, Z. Shelby, S. Akhouri, and J. Höller. 2014.
Lightweight M2M: enabling device management and applications for
the Internet of things. White paper (Feb. 2014).

[14] Y. Xu and A. Helal. 2016. Scalable cloud-sensor architecture for the
Internet of Things. IEEE Internet of Things Journal, Vol.3, No. 3, 285-
298 (July 2016).

[15] A. Helal and Y. Xu. 2015. Scalable and energy-efficient cloud-sensor
architecture for cyber physical systems. NSF Workshop on Big Data
Analytics in CPS: Enabling the Move from IoT to Real-Time Control,
Seattle (April 2015).

[16] C. Chen and A. Helal. 2009. Device integration in SODA using the
Device Description Language. IEEE Ninth Annual International
Symposium on Applications and the Internet, 100-106 (July 2009).

[17] Mobile and Pervasive Computing Laboratory University of Florida,
Device Description Language Specification (Version 1.2), Nov. 2008.
https://www.cise.ufl.edu/~helal/atlas/ddl/DDL-Spec-1.2.2.pdf.

[18] Google Weave 2016. http://developers.google.com/weave/.
[19] Google Brillo 2016. http://developers.google.com/brillo/.
[20] Amazon AWS IoT 2016. http://aws.amazon.com/iot/.
[21] Amazon AWS IoT 2016.

docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-
iot.html.

[22] Eclipse Wakaama. projects.eclipse.org/projects/technology.wakaama.
[23] Wakaama implementation of the Open Mobile Alliance’s lightweight

M2M. https://github.com/eclipse/wakaama.
[24] LightweightM2M editor for OMA objects and resources.

http://devtoolkit.openmobilealliance.org/OEditor.
[25] LwM2M XML Schema from Editor schema.

http://technical.openmobilealliance.org/tech/profiles/LWM2M.xsd.
[26] C. Chen and A. Helal. 2011. A device-centric approach to a safer

Internet of Things. Proceedings of the International Workshop on
Networking and Object Memories for the Internet of Things (NOMe-
IoT), in conjunction with ACM Ubicomp Conference, Beijing, China,
1-6 (Sep. 2011).

[27] C. Chen and S. Helal. 2008. Sifting through the jungle of sensor
standards. IEEE Pervasive Computing, Vol. 7, No. 4, (Dec. 2008).

[28] MQTT is a machine-to-machine (M2M)/"Internet of Things"
connectivity protocol http://Mqtt.org.

[29] J. King, R. Bose, H. Yang, S. Pickles and A. Helal. 2006. Atlas – A
Service-Oriented Sensor Platform: Hardware and middleware to
enable programmable pervasive spaces. Proceedings of the IEEE
Conference on Local Computer Networks, 630-638 (Nov. 2006).

[30] Eclipse Paho open-source implementation of MQTT project.
https://eclipse.org/paho/.

[31] HiveMQ MQTT Dashboard. mqtt-dashboard.com/.
[32] Web of Things at W3C. https://www.w3.org/WoT/.
[33] Experimental implementation of the web of things framework 2016.

https://github.com/w3c/web-of-things-framework.
[34] The Constrained Application protocol (CoAP).

http://coap.technology/.
[35] The Constrained Application protocol (CoAP) IETF standards track

2014. https://tools.ietf.org/html/rfc7252.
[36] M. Katagi and S. Moriai. 2008. Lightweight cryptography for the

Internet of Things. Sony Corporation, 7-10.
[37] K. Gaurav, P. Goyal, V. Agrawal, and S. L. Rao. IoT Transaction

Security.
[38] Ebrahim, Mansoor, S. Khan, and Umer Bin Khalid. 2014. Symmetric

algorithm survey: A comparative analysis. arXiv preprint arXiv.
[39] J. Thakur, and N. Kumar. 2011. DES, AES and Blowfish: Symmetric

key cryptography algorithms simulation based performance analysis.
International Journal of Emerging Technology and Advanced
Engineering.

[40] CoAP implementation by Noisy Atom http://www.noisyatom.
[41] Crypto Library of cryptographic schemes. https://www.cryptopp.com.
[42] NXP A700X_Family for secure authentication microcontroller.

http://www.nxp.com/products/identification-and-security/secure-
authentication-and-anti-counterfeit-technology/secure-
authentication-microcontroller:A700X_FAMILY.

[43] Samsung ARTIK Modules. https://www.artik.io/modules/.

[44] PowerJive USB Voltage/Amps power meter.
http://www.measuringsupply.com/artifact/1402679/.

[45] Coffee maker demo video and things IoT-DDL files as additional
online materials on Github.
https://github.com/AEEldin/IoTDDL_CoffeeMakerDemo

[46] Atlas IoT-DDL builder web tool.
https://cise.ufl.edu/~aekhaled/AtlasIoTDDL_Builder.html

[47] Constrained RESTful Environments (CoRE) Link Format.
https://tools.ietf.org/html/rfc6690

[48] Datta, Soumya Kanti, and Christian Bonnet. "Describing things in the
Internet of Things: From CoRE link format to semantic based
descriptions." IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), 2016.

[49] S. Käbisch, D. Anicic, "Thing Description as Enabler of Semantic
Interoperability on the Web of Things," IoT Semantic Interoperability
Workshop, 2016.

[50] H. Hasemann, A. Kröller and M. Pagel, "RDF provisioning for the
Internet of Things," 2012 3rd IEEE International Conference on the
Internet of Things, Wuxi, 2012, pp. 143-150.

[51] C++ Micro Services. http://cppmicroservices.org/
[52] Open Services Gateway initiative Alliance. https://www.osgi.org/

Ahmed E. Khaled is currently pursuing the
Ph.D. degree in computer engineering, at the
Department of Computer and Information
Science and Engineering, University of
Florida, Gainesville, FL, USA. He received
the B.Sc. and M.Sc. degrees in computer
engineering from Cairo University, Egypt in
2011 and 2013, respectively. His current
research interests include Internet of Things,
smart spaces, and ubiquitous computing.

Abdelsalam (Sumi) Helal (F’15) received the
Ph.D. degree in computer sciences from
Purdue University, West Lafayette, IN, USA.
He is professor and the Chair in Digital
Health, School of Computing and
Communications, and the Division of Health
Research, Lancaster University, UK. Before
joining Lancaster University, he was professor
in the department of Computer and
Information Science and Engineering,

University of Florida, USA, where he directed the Mobile and Pervasive
Computing Laboratory and the Gator Tech Smart House. His research
interests span pervasive systems, the Internet of Things, smart spaces, with
applications to digital health and assistive technologies for successful aging
and independence.

	

VOLUME XX, 2017 2

Wyatt Lindquist received the B.Sc. degree
in computer engineering from the University
of Florida, Gainesville, FL, USA, in 2017.
He is currently pursuing the Ph.D. degree in
computer science at the School of
Computing and Communications,
University of Lancaster, UK. His current
research interests include Internet of Things,
operating systems, and embedded systems,

with applications to digital health.

 Choonhwa Lee received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, South Korea, in
1990 and 1992, respectively, and the Ph.D.
degree in computer engineering from the
University of Florida, Gainesville, FL, USA,
in 2003. He is currently a Professor with the
Division of Computer Science and
Engineering, Hanyang University, Seoul.
His research interests include cloud
computing, peer-to-peer and mobile

networking and computing, and services computing technology.

