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 
Abstract—Cyber-physical Internet of things system (CPIoTS), 

as an evolution of Internet of things (IoT), plays a significant role 
in industrial area to support the interoperability and interaction 
of various machines (e.g. sensors, actuators, and controllers) by 
providing seamless connectivity with low bandwidth requirement. 
The fifth generation (5G) is a key enabling technology to 
revolutionize the future of industrial CPIoTS. In this paper, a 
communication framework based on 5G is presented to support 
the deployment of CPIoTS with a central controller. Based on this 
framework, multiple sensors and actuators can establish 
communication links with the central controller in full-duplex 
mode. To accommodate the signal data in the available channel 
band, the resource allocation problem is formulated as a mixed 
integer non-convex programming problem, aiming to maximize 
the sum energy efficiency of CPIoTS. By introducing the 
transformation, we decompose the resource allocation problem 
into power allocation and channel allocation. Moreover, we 
consider an energy-efficient power allocation algorithm based on 
game theory and Dinkelbach’s algorithm. Finally, to reduce the 
computational complexity, the channel allocation is modeled as a 
3-dimensional matching problem, and solved by iterative 
Hungarian method with virtual devices (IHM-VD). A comparison 
is performed with well-known existing algorithms to demonstrate 
the performance of the proposed one. The simulation results 
validate the efficiency of our proposed model, which significantly 
outperforms other benchmark algorithms in terms of meeting the 
energy efficiency and the QoS requirements. 
 

Index Terms—5G, cyber-physical IoT system, energy efficiency, 
full-duplex, resource allocation 
 

I. INTRODUCTION 

ANY practical systems in the industrial area, such as smart 
grids, smart manufacturing and health-care systems, can 

be categorized as industrial cyber-physical Internet of things 
systems (CPIoTSs). CPIoTSs, which facilitate tight integration 
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and coordination between various entities and physical 
processes through networks, can be considered as an evolution 
of Internet of things (IoT) [1].  

The numbers of various IoT machines are expected to grow 
rapidly, as sensors and actuators are widely deployed in 
multiple applications, such as cyber security, automation, 
metering, health-care, utilities, and consumer electronics. 
According to [2], IoT will support the integration of 
approximately 5.5 million things every day by 2016, with 
estimation of 20.8 billion things by 2020. The rapid increase of 
IoT machines brings some technical challenges in order to meet 
the complex requirements. For example, the existing wireless 
communication technologies with low-power are still under 
investigation to meet the energy-efficient requirement with 
high system reliability. Therefore, research efforts should be 
carried out to tackle the obstacle of CPIoTS to be deployed in 
practice, especially in industrial applications [3]. 

Among all possible wireless communication network 
solutions for CPIoTS, 5G is considered as a promising 
technology, which integrates entities, communications and 
control technologies [4]. Since 5G supports enhanced mobile 
broadband communications, ultra-reliable and low latency 
communications (URLLC) and massive machine-type 
communications (mMTC), it is clear that URLLC and mMTC 
in 5G are closely related to industrial CPIoTS. Thus 5G 
provides an ideal platform for communications in industrial 
CPIoTS. In such a 5G-enabled CPIoTS, one major technical 
challenge is how to design energy-efficient communication that 
can facilitate various resources while providing satisfactory 
QoS and supporting dynamic network environments. 

To meet the critical QoS requirements in industrial CPIoTS, 
some advanced technologies are under investigation in 5G, 
including device-to-device communication (D2D) and 
full-duplex communication [5]. D2D allows two adjacent 
mobile devices to establish a direct communication link in 
order to facilitate local mobile service [6][7]. In [6], the 
resource allocation for D2D is investigated using a matching 
approach and an algorithm based on many-to-one matching 
with peer effects is proposed, which can achieve a two-sided 
exchange stable matching. On the other hand, full-duplex 
communications, as another promising technology in 5G, have 
the potential to provide significant spectral efficiency and 
energy efficiency gain, by allowing one node to receive and 
transmit signal using the same channel at the same time [8][9]. 
In a full-duplex cellular system, since the full-duplex base 
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station suffers from self-interference and downlink users suffer 
from co-channel interference from uplink users, the resource 
allocation problem is considered as a major challenge. In [10], 
the sum-rate of a full-duplex multi-user system with one 
full-duplex base station and multiple half-duplex mobile users 
is maximized by joint user pairing, subchannel allocation, and 
power allocation. In [11], the full-duplex resource allocation 
problem is modeled as a non-cooperative game between uplink 
and downlink channels. An iterative algorithm is proposed to 
achieve Nash equilibrium. However, all papers mentioned 
above mainly focus on the spectral efficiency optimization. 

Besides spectral efficiency, energy efficiency plays an 
important role in CPIoTS communications. Energy-efficient 
communication becomes an emerging technology, since most 
of wireless sensors and actuators in CPIoTS are battery 
powered and thus are fundamentally constrained by the energy 
due to the limited battery capacity and charging facilities [12]. 
Potential solutions for energy efficiency improvement include 
energy-efficient protocol design and energy-efficient resource 
allocation [13]-[15]. Focusing on the critical issue, resource 
allocation problem was investigated to maximizing energy 
efficiency in various wireless networks, including relay system 
[16], device-to-device communications [17]. However, the 
energy-efficiency issue for full-duplex communication in 
5G-enabled CPIoTSs has not been investigated yet. 

In this paper, we focus on energy-efficient resource 
allocation for the communication systems in 5G-enabled 
CPIoTSs. We consider a CPIoTS consisting of one full-duplex 
central controller, multiple sensors, and multiple actuators. The 
resource allocation problem is formulated as the maximization 
of sum energy efficiency of all sensors and actuators. The major 
contributions of this paper are summarized as follows: 

(1) We propose a new communication framework based on 
5G technology to support industrial CPIoTS, in which multiple 
sensors and actuators are connected with a full-duplex central 
controller. Specifically, the central control is allowed to operate 
in either half-duplex mode or full-duplex mode on each 
channel. 

(2) We formulate the energy-efficient resource allocation 
problem in CPIoTS, considering the QoS requirement of each 
sensor and actuator in terms of minimum transmit rate. By 
introducing virtual devices into the CPIoTS, the resource 
allocation problem is converted into a generalized mixed 
integer nonlinear problem (MINLP). 

(3) To tackle the resource allocation problem, we decompose 
the original optimization problem into power allocation and 
channel allocation to reduce the computational complexity. The 
energy-efficient power allocation of sensor and actuator 
allocated on each channel is solved based on game theoretical 
approach and Dinkelbach’s algorithm considering different 
channel allocation cases. Then the channel allocation is 
modeled as a 3-dimensional matching among sensors, actuators 
and channels, and further solved by an iterative algorithm 
denoted as IHM-VD. 

The remainder of this paper is organized as follows. Section 
II provides the details of the system model. The 
energy-efficient resource allocation problem is formulated in 

Section III. In Section IV, we present the energy-efficient 
resource allocation algorithm based on an iterative Hungarian 
method. Simulation results and discussions are delivered in 
Section V. Finally, we conclude our findings in Section VI. 

II. SYSTEM MODEL 

We consider an industrial cyber physical IoT system 
(CPIoTS) with one central controller (CC), multiple sensors 
and multiple actuators as illustrated in Fig. 1. The sensors are 
arranged on humans, equipment, products, and buildings to 
collect different kinds of information, such as temperature, 
pressure, and position. The central controller serves as both a 
cloud data center and a central processor. It receives the 
information signals transmitted from various sensors, performs 
data analysis, decides what kind of operations should be 
performed (such as sending alerts, turning on/off a pump, 
moving a mechanical arm to a certain position), and then sends 
control signals to relevant actuators. The actuators, which are 
used to control the equipment in CPIoTS, receive the control 
signals from the central controller and perform corresponding 
operations. Various applications emerging in 5G networks can 
be modeled as CPIoTS, such as smart grid, smart factory and 
Internet of Vehicles (IoV). 

The sets of sensors and actuators are denoted as ={S1, S2, … 

SM} and ={A1, A2, …, AN}, respectively. The available 

spectral resource is divided into multiple channels (CHs) and 
each channel has the same bandwidth. The set of channels is 

denoted as ={CH1, CH2,…, CHK}. 

 
Fig. 1 Communication framework for 5G-enabled CPIoTS 

The central controller can operate either in full-duplex mode 
or in half-duplex mode on each channel. The central controller 
is common to all cellular networks, including software define 
network (SDN) and slice based network. The sensors and 
actuators can only operate in half-duplex mode due to hardware 
limitation. When the central controller operates in full-duplex 
mode on CHk, it can receive data from a sensor and transmit 
data to an actuator in CHk simultaneously. In this case, the 
received antenna of the central controller will suffer 
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self-interference from transmit antenna of itself. Fortunately, 
this self-interference can be suppressed by certain 
self-interference cancellation technology, such as analog 
cancellation or digital cancellation. When the central controller 
operates in half-duplex mode on CHk, CHk can be allocated to 
one sensor or one actuator exclusively. 

Denote hi,c,k and hc,j,k as the channel gain between sensor Si 
and CC on CHk, and the channel gain between CC and actuator 
Aj on CHk respectively, i=1,…, M, j=1,…,N, k=1,…, K. Denote 
gc,k and gi,j,k as equivalent self-interference channel gain after 
interference cancellation and interference channel gain between 
sensor Si and actuator Aj on CHk respectively.  

The achievable data rate received by actuator Aj from central 
controller on CHk can be derived as: 

, ,
, , 2

, , ,
1

= log (1+ )
C

k c j kA
j k j k M

S
i k i i j k n

i

P h
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where PS 
i  denotes the transmit power of sensor Si, P

C 
k  denotes 

the transmit power of CC on CHk, W is channel bandwidth of 
each CH, σn denotes the variance of noise on each device. αi,k 
and βj,k denote the channel allocation index of sensor Si and 
actuator Aj, respectively. αi,k=1 means Si transmitting signals to 
central controller on CHk, while αi,k=0 means otherwise. 
Similarly, βj,k=1 means actuator Aj receives signals from central 
controller on CHk, while βj,k=0 means otherwise. 

Correspondingly, the achievable rate received by central 
controller from sensor Si on CHk can be derived as 
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Assume channels are allocated to sensors and actuators 
according to the following rules: a channel can be allocated to 
no more than one sensor and one actuator. One sensor can only 
be allocated with one channel. The same assumption holds for 
actuators. The channel allocation constraints can be represented 

as ,
1
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Note that according to channel allocation criterions above, 
for each channel there are three cases of channel allocation. In 
the first case, one channel can be allocated to one sensor and 
CC operates in half-duplex mode (as a receiver). In the second 
case, one channel can be allocated to one actuator and CC 
operates in half-duplex mode (as a transmitter). In the third case, 
one channel can be allocated to one sensor and one actuator, 
and CC operates in full-duplex mode. 

Considering equations (1) and (2), the energy efficiency of 
actuator Aj and sensor Si on CHk can be represented as 

,
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where Pcir denotes the total circuit power consumption, which 
mainly includes power consumption of mixer, frequency 
synthesizer, and digital-to-analog converter. η is a constant 

depending on the power amplifier efficiency, η>1. 
The utility function of this CPIoTS is defined as the sum 

energy efficiency of all sensors and actuators, which is 
represented as: 

, ,
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III. PROBLEM FORMULATION 

In this paper, we investigate the energy-efficient resource 
allocation problem of sensors and actuators, aiming to 
maximize the utility function defined in (5) while satisfying the 
rate requirements of each sensor and actuator. The optimization 
problem can be formulated as 

P1:
, ,, , ,
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max0 ,C C
kP P k            (6f) 

max0 ,S S
iP P i            (6g) 

, min , ,A A
j kR R j k           (6h) 

, min ,S S
i kR R i k  ，         (6i) 

Constraints (6b), (6c), (6d) and (6e) denote the channel 
allocation criterions. Constraints (6f) and (6g) represent the 
transmit power constraints of each sensor and transmit power 
constraints of central controller for each actuator respectively. 
Constraints (6h) and (6i) denote the rate requirement of each 
sensor and each actuator. 

To formulate the channel allocation problem in a more 
generalized way, we introduce the concept of virtual devices. 

Definition 1: A virtual device is defined as a device which 
satisfies the following condition: the channel gain between a 
virtual device and any device is zero. 

A virtual device can be a virtual sensor or a virtual actuator. 
Considering the definition of virtual device, it is clear that the 
energy efficiency of a virtual sensor or a virtual actuator is 
always 0. 

After the definition of virtual devices, we add N virtual 
sensors and M virtual actuators to the CPIoTS, and expand the 

sets of sensors and actuators as ={S1, S2, … SM, SM+1, …, SM+N} 

and ={A1, A2, …, AN, AN+1, …, AM+N}, where SM+1, …, SM+N 

and AN+1, …, AM+N are N virtual sensors and M virtual actuators 
respectively. Correspondingly, we refer to sensors S1, …, SM in 

 and actuators A1, …, AN in  as real sensors and real actuators 

respectively. Note that the sensors/actuators depicted in Fig.1 
are all real sensors/actuators. The virtual sensors/actuators 
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introduced are not shown in Fig.1. The addition of virtual 
sensors and virtual actuators do not cause any changes to real 
devices (real sensors and real actuators) and the central 
controller.  

After addition of virtual sensors and virtual actuators, we can 
regard the three channel allocation cases mentioned above as 
one generalized case, in which a channel is always allocated to 
a sensor (a real sensor or a virtual sensor) and an actuator (a real 
actuator or a virtual actuator). If CHk is allocated to a real 
sensor and a virtual actuator, CHk is actually allocated on a 
sensor only. Similarly, if CHk is allocated to a virtual sensor and 
a real actuator, CHk is actually allocated on an actuator only.  
We denote a 3-dimensional channel allocation index 
[W](M+N)×(M+N)×K indicating the allocation of channels on 
sensors and actuators, in which wi,j,k=1 when CHk is allocated to 
Si (When i≤M, Si is a real sensor. When i>M, Si is a virtual 
sensor) and Aj (When j≤N, Aj is a real actuator. When j>N, Aj is 
a virtual actuator); wi,j,k=0 otherwise. Considering the 
definitions of αi,k, βj,k and wi,j,k, the relationships among αi,k, βj,k 

and wi,j,k are as follows , , , ,= i j k i k j kw , , , ,
1




 
M

i k i j k
j

w  and 
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1





N

j k i j k
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Then we define energy efficiency matrix as a 3-dimensional 
matrix [SEE](M+N)(M+N)K, in which the elements SEEi,j,k is the 
sum energy efficiency of Si and Aj on CHk, when CHk is 
allocated on Si and Aj. According to (3) and (4), SEEi,j,k can be 
represented as 

, , ', ',, , , , 1, 1, 0, 0( ' , ' )= + |        i k j k i k j k

S A
i j k i k j k i i j jSEE EE EE    (7) 

Since sensor Si is either a real sensor (1≤i≤M) or a virtual 
sensor (M+1≤i≤M+N) and actuator Aj is either a real actuator 
(1≤j≤N) or a virtual actuator (N+1≤j≤M+N), SEEi,j,k can be 
calculated as follows: 
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(8) 
From (8), if both Si and Aj are real devices, SEEi,j,k denotes 

the sum energy efficiency of Si and Aj in CHk. If Si is a real 
sensor and Aj is a virtual actuator, SEEi,j,k equals to the energy 
efficiency of Si in CHk. If Si is a virtual sensor and Aj is a real 
actuator, SEEi,j,k equals to the energy efficiency of Aj in CHk. If 
both Si and Aj are virtual devices, SEEi,j,k equals to 0. 

After introducing energy efficiency matrix, we can rewrite 
the utility function defined in (5) as follows 

, , , ,
1 1 1

K M N

i j k i j k
k i j

U w SEE
  

 .        (9) 

Considering the relationship among αi,k, βj,k and wi,j,k and 

equation (9), the resource allocation problem P1 can be 
equivalently transformed as: 

P2:
, ,

, , , ,
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(6f), (6g), (6h), (6i).            
According to constraint (10b), a CH can only be allocated to 

a sensor-actuator pair. According to (10c) and (10d), a sensor or 
an actuator can occupy one CH only. 

The optimization problem P2 is a mixed integer nonlinear 
programming (MINLP), which includes both continuous 
variables and binary variables. To reduce computational 
complexity, we decompose the original optimization problem 
into two subproblems: power allocation problem and channel 
assignment problem, which is a widely used solution approach 
for resource allocation problem. In power allocation problem, 
the transmit power of sensors and central controller allocated 
on each channel is optimized. In channel assignment problem, 
each channel is assigned to different sensors and actuators.  

IV. ENERGY-EFFICIENT RESOURCE ALLOCATION BASED ON 

ITERATIVE HUNGARIAN METHOD 

A. Energy-Efficient Power Allocation 

In power allocation, we aim to maximize each SEEi,j,k in 
energy efficiency matrix first. Since each SEEi,j,k is only 
dependent on P C 

k  and P S 
i , we can optimize each SEEi,j,k 

separately. The power allocation problem can be formulated as  

P3: , ,
,

max
S C

i k
i j k

P P
SEE             (11a) 

s.t  (6f), (6g), (6h), (6i)        (11b) 
Considering the expression of SEEi,j,k in equation (8), we 

shall consider the power allocation problem P3 in different 
cases. Since when 1 , 1     M i K N j K , the SEEi,j,k is 
always 0, there is no need for power allocation in this case and 
we only need to consider SEEi,j,k in three cases. Case 1: a real 
sensor Si and a virtual actuator Aj are allocated on CHk, 1≤i≤M, 
N+1≤j≤M+N. Case 2: a virtual sensor Si and a real actuator Aj 
are allocated on CHk, M+1≤i≤M+N, 1≤j≤N. Case 3: a real 
sensor Si and a real actuator Aj are allocated on CHk, 1≤i≤M, 
1≤j≤N. In the following, we consider the solution to power 
allocation problem P3 in each case respectively. 

Case 1: In this case, CHk is allocated to a real sensor Si and a 
virtual actuator Aj. Thus only the transmit power of sensor Si 
need to be optimized. We formulate the power allocation of 
sensor Si as follows: 
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, min( )S S S
i k iR P R         (12c) 

where RS 
i,k(P

S 
i ) denotes the transmit rate of sensor Si. In this case, 
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Obviously, the optimization problem P4 only includes one 
variable PS 

i . The maximum power constraint (12b) is linear and 
the minimum rate requirement constraint (12c) can be 
converted into a linear constraint. However, since the objective 
function is a nonlinear fraction function, problem P4 is 
obviously not convex [18]. Thus, we cannot solve the 
optimization problem P4 directly. In the following, we try to 
solve P4 by transforming the nonconvex problem in fractional 
form to an equivalent convex problem. First, we define the 
optimum solution of P4 as 

*
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where PS* 
i  is the solution of power allocation problem P4. 

According to [19], we have Theorem 1. 
Theorem 1: qS* 

i,k  is achieved if and only if 
* * * *
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According to Theorem 1, we can transform optimization 
problem P4 as follows 

*
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where min /
, , , ,(2 1) /

SR W
i c k n i c kB h  . Constraint (14c) is 

equivalent to constraint (12c). Since the objective function of 
P4.1 is convex and both constraint (14b) and constraint (14c) 
are linear, optimization problem P4.1 is a convex problem and 
has the same solution with optimization P4. However, since the 
value of qS* 

i,k  is dependent on the solution of problem P4, qS* 
i,k  is 

unknown during solving this problem. To solve problem P4.1, 
we consider the following optimization problem 

, ,4.2 : max ( ) ( ) 
S

i

S S S S
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P
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s.t (14b), (14c)            (15b) 
We propose an iterative algorithm based on Dinkelbach’s 

algorithm for optimization problem P4.1 by solving problem 
P4.2 iteratively [20]. Particularly, we initialize the algorithm by 
assuming each sensor transmits with its maximum power PS 

max. 
In this case, the energy efficiency of each sensor qS 

i,k can be 
calculated. In each iteration, convex problem P4.2 is solved and 
the value of qS 

i,k is updated until convergence. The details of the 
algorithm are presented in Algorithm 1. 
Algorithm 1: 
1: Initialization: n=1, ε>0, qS 

i,k(1). 
2: while RS 

i,k(P
S 
i )− qS 

i,k(n)(ηPS 
i +Pcir)>ε 

3: Solve problem P4.2 by interior point method, 

,
, , , , ,( ) arg max ( ) ( )( )

S
i k

S S S S S
i k i k i k i k i k cir

P
P n R P q n P P   . 

4: Update ,
S
i kq : , ,( 1) ( ( )) / ( ( ) )S S S S

i k i k i i cirq n R P n P n P   . 

5: n=n+1. 

6: end while 
7: PS 

i =PS 
i (n), qS* 

i,k =qS* 
i,k (n).  

8: Output *S
iP . 

Convergence analysis: we analyze the convergence of 
Algorithm 1 in the following. First, we shall prove that qS 

i,k is 
non-decreasing after each iteration. 

Since , ,( ) arg max ( ) ( )( )  
S

i

S S S S S
i i k i i k i cir

P
P n R P q n P P , then 

we have 

, ,

, ,

( ( )) ( )( ( ) )

( ( 1)) ( )( ( 1) )

0





 

    



S S S S
i k i i k i cir

S S S S
i k i i k i cir

R P n q n P n P

R P n q n P n P . 

Considering ,
,

( ( ))
( 1)

( )
 



S S
i k iS

i k S
i cir

R P n
q n

P n P
, then we have 

, ,

, ,

( ( )) ( )( ( ) )

= ( 1)( ( ) ) ( )( ( ) )

0



 

 

   



S S S S
i k i i k i cir

S S S S
i k i cir i k i cir

R P n q n P n P

q n P n P q n P n P  

Since ( ) 0  S
i cirP n P , we have , ,( 1) ( ) S S

i k i kq n q n . 

Also, we shall prove that 
*

, ,lim ( )


S S
i k i kn

q n q . Suppose 
*

, , ,lim ( )


 S S S
i k i k i kn

q n q q , we must have *
, , S S

i k i kq q . Define 

function F(q) as ,( ) max ( ) ( )  
S

i

S S S
i k i i cir

P
F q R P q P P . 

According to [20], function F(q) is a monotonic decreasing 
function. According to the terminal condition of Algorithm 1, 

we have ,( ) 0 S
i kF q . On the other hand, we have *

,( ) 0S
i kF q  

according to Theorem 1. Thus this contradicts with the fact that 
*

, , S S
i k i kq q . Hence it follows that 

*
, ,lim ( ( )) ( )


S S

i k i kn
F q n F q  and 

*
, ,lim ( )


S S

i k i kn
q n q . 

Case 2: In this case, channel CHk is assigned to a virtual Si 
and a real actuator Aj and only the transmit power of central 
controller on CHk P C 

k  needs to be optimized. The power 
allocation can be formulated as 

,5 : max
C

k

A
j k

C
P

k cir

R
P

P P 
        (16a) 

s.t max0  C C
kP P          (16b) 

, min
A A
j kR R           (16c) 

where RA 
j,k denotes the achievable rate of actuator Aj. In this case 

RA 
j,k can be derived as , ,

, 2log (1+ )
C

k c j kA
j k

n

P h
R W


 . 

The formation of problem P5 is similar to that of problem P4. 
Thus the solution is similar to the solution of problem P4. The 
details of the solution are omitted due to space limitation. 

Case 3: In this case, CHk is allocated to a real sensor Si and a 
real actuator Aj and the power allocation problem of Si and Aj on 
CHk can be formulated as follows 

P6: ,,

,
max +

S C
i k

AS
j ki k

S C
P P

i cir k cir

RR

P P P P  
      (17a) 

s.t max0  S S
iP P           (17b) 
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max0 C C
kP P             (17c) 

, min
A A
j kR R            (17d) 

, minS S
i kR R            (17e) 

where RS 
i,k and  RA 

j,k denote the achievable rate of sensor Si and 
actuator Aj respectively. In this case, RS 

i,k and  RA 
j,k can be derived 

as 
, ,

, 2
,

log (1+ )
S

i i c kS
i k C

k c k n

P h
R W

P g 



, and 

, ,
, 2

, ,

log (1+ )
C

k c j kA
j k S

i i j k n

P h
R W

P g 



. 

The energy-efficient power allocation problem P6 is 
modeled as a sum-of-ratios problem (SoRP). The objective 
function is a summation of two terms and each term has the 
form of concave-convex fractional function. Thus the objective 
function is neither a pseudo-concave nor a quasi-concave 
function. 

To tackle problem P6, we propose a game theoretical 
approach to solve the power allocation problem of both sensor 
Si and actuator Aj. During the solution of optimization problem 
P6, we formulate a non-cooperative game with two players: Si 
and Aj. Sensor Si and actuator Aj are regarded as rational and 
selfish players who will choose their strategies depending on 
their partner’s decision. In this game, the strategies set of each 
player regards its feasible region of transmit power and the 
payoff regards its corresponding energy efficiency. Since each 
player only cares about its own payoff, if player Si knows the 
transmit power of player Aj, player Si will choose its transmit 
power according to the solution to the following power 
allocation problem: 

P6.1: ,max
S

i

S
i k

S
P

i cir

R

P P 
        (18a) 

s.t max0  S S
iP P          (18b) 

, ,
S

i i b kP O           (18c) 

where min /
, , , ,( )(2 1) /

SR WC
i k k c k n i c kO P g h   . Constraint (18c) 

is an equivalent transform of constraint (17e). 
Similarly, player Aj chooses its transmit power according to 

the solution to the following power allocation problem 

P6.2: ,max
C

k

A
j k

C
P

k cir

R

P P 
        (19a) 

s.t max0 C C
kP P          (19b) 

, ,
C

k i j kP Q            (19c) 

where min /
, , , , , ,( )(2 1) /

AR WS
i j k i i j k n c j kQ P g h   . Constraint (19c) is 

derived by equivalent transform of constraint (17d). 
Note that the two optimization problems P6.1 and P6.2 are 

inter-correlated through the interference terms. In other words, 
the solution of problem P6.1 is dependent on the transmit power 
PC 

k . Also, the solution of P6.2 is dependent on the transmit 
power P S 

i . To explore the characteristic of this game, we 
introduce Lemma 1. 

Lemma 1: There exists at least one Nash equilibrium of this 
non-cooperative game. 

Proof: According to [21], a Nash equilibrium exists if the 
utility function is continuous and quasi-concave and the set of 
strategies is a nonempty compact convex subset of Euclidean 
space. Considering energy efficiency of sensor Si defined in (2), 
the numerator R S 

i,k  is a concave function of P S 
i  and the 

denominator is an affine function of PS 
i . Therefore, energy 

efficiency EES 
i,k is quasi-concave. The set of strategies of sensor 

Si (0, P S 
max ) is a nonempty compact convex subset of the 

Euclidean space. Similarly, it is easy to prove that the above 
conditions also hold for the player Aj. Therefore, a Nash 
equilibrium exists in this non-cooperative game.                    □ 

Similar to the solution of problem P4 in case 1, the energy 
efficiency optimization problems P6.1 and P6.2 are modeled as 
fractional programming and can be solved by Algorithm 1. 
Then we propose an iterative algorithm to achieve the Nash 
equilibrium. In each iteration, sensor Si and actuator Aj optimize 
their transmit power using Algorithm 1 according to their 
partner's transmit power. After finite iterations, the Nash 
equilibrium of this repeated game can be achieved. The 
iterative algorithm is detailed in Algorithm 2. 
Algorithm 2: 
1: Initialization: l=0. 
2: while | ( ) ( 1) |   C C

k kP l P l  & | ( ) ( 1) |   S S
i iP l P l  

3: l=l+1. 
4 Solve optimization problem P6.1 by Algorithm 1 with 

input PC 
k (l−1) and obtain the optimal point PS 

i (l). 
5: Solve optimization problem P6.2 by Algorithm 1 with 

input PS 
i (l−1) and obtain the optimal point PC 

k (l). 
6: end while 
7: PS* 

i = PS 
i (l), PC* 

k  = PC 
k (l). 

8: Output: PS* 
i , PC* 

k . 
To prove that the result obtained in Algorithm 2 is the Nash 

equilibrium, we shall present Lemma 2. 
Lemma 2: The power allocation strategy set (PS* 

i , PC* 
k ) 

obtained by the iterative algorithm constitutes a Nash 
equilibrium. None individual device is able to unilaterally get 
better performance by deviating from Nash equilibrium. 

Proof: Suppose the strategy PS* 
i  obtained by the Algorithm 2 

is not the Nash equilibrium, which means Si can choose the 

Nash equilibrium ˆ S
iP  to obtain the maximum energy 

efficiency when Aj choose the strategy PC* 
k . However, this 

contradicts with the fact that PS* 
i  is a solution of problem P6.1. 

A similar proof also holds for PC* 
k . Thus we can conclude that 

the iterative algorithm can obtain a Nash equilibrium.                □ 

B. Channel assignment 

In the power allocation step, each SEEi,j,k is optimized. Then 
we consider the channel assignment problem, which is 
formulated as follows  

P7: 
, ,

, ,

*
, ,

1 1 1

max
 

  
  i j k

i j k

M N M N K

i j k
w

i j k

w SEE          (20a) 

s.t. , ,
1 1

1
M N M N

i j k
i j

w k
 

 

   ，          (20b) 

, ,
1 1

1
M N K

i j k
i k

w j


 

  ，           (20c) 
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, ,
1 1

1
K M N

i j k
k j

w i


 

  ，           (20d) 

where SEE * 
i,j,k is the optimal value of SEEi,j,k derived in the 

power allocation step, * *

*
, , , , , ,

|
 

 C C S S
k k i i

i j k i j k P P P P
SEE SEE . Obviously, 

only binary variables are involved in this problem. The channel 
assignment problem (20) can be modeled as a 3-dimensional 
one-to-one matching problem, which is known as an NP-hard 
problem. 
1) 3-Dimensional Matching 

We first present the definition of 3-dimensional matching. 

Definition 2: Given three disjoint sets ,  and , a 

3-dimensional one-to-one matching μ is defined as a mapping 

from ∪∪ to subsets of ∪∪, such that for m∈

, μ(m)=(n, w), n∈, w∈, for n∈, μ(n)=(m, w), m∈

, w∈, and for w∈, μ(w)=(m, n), m∈, n∈. 

 

Fig.2 3-dimensional matching problem 

According to the definition of 3-dimensional matching, the 
channel assignment for CPIoTS can be regarded as a 

3-dimensional matching among three sets (,  and ). The 

payoff of matching triple (Si, Aj, CHk) denotes the sum energy 
efficiency of Si and Aj on CHk. Our goal is to find the optimal 
matching to maximize the overall payoff.  

The 3-dimensional matching can be illustrated in another 
way. It is well known that 2-dimensional matching problem is 
also called task assignment problem, in which a task should be 
assigned to one agent with certain payoff [22]. Correspondingly, 
a 3-dimensional matching problem can be considered as an 
enhanced task assignment problem in which a task (CH) should 
be accomplished by a pair of agents (one sensor and one 
actuator) corporately. Different agent pairs have different 
payoffs after completing one task. The goal of a 3-dimensional 
matching is to find the optimal assignment by which the overall 
payoff can be maximized. 
2) Iterative Hungarian Method with Virtual Devices 

Inspired by the fact that the 2-dimensional matching problem 
(task assignment problem) can be solved by Hungarian 
algorithm [23], we propose an iterative algorithm based on 
Hungarian algorithm to tackle this 3-dimensional problem, 
which is regarded as Iterative Hungarian Method with Virtual 
Devices (IHM-VD). In each iteration, a 2-dimensional 
matching is implemented between one set and the set of 
matching pairs of other two sets. Then the 3-dimensional 
allocation matrix W is updated in each iteration. The algorithm 

continues until a stable allocation is achieved.  
We first consider a random channel allocation matrix W0 as 

initial allocation, which meets the constraints in (20). Then we 
consider the 2-dimensional matching between the set of sensors 
and the set of matched actuator-channel pairs. Denote the set of 

matched actuator-channel pairs as 1, 1={(j,k)|wi,j,k=1, 

wi,j,kW0}. We use index l to indicate each actuator-channel 
pair, 1<l<min(M+N, K). SEEi,l denotes the sum energy 
efficiency when sensor Si matches the lth actuator-channel pair. 
Then the original 3-dimensional matching problem is reduced 

to a 2-dimensional matching problem between  (the set of 

sensors) and 1 (the set of matched actuator-channel pairs). A 

2-dimensional index matrix [X](M+N)min(M+N, K) denotes the 
matching result between sensors and actuator-channel pairs, 
where xi,l=1, if sensor Si matches the lth actuator-channel pair; 
xi,l=0, otherwise. The sub-optimization problem can be 
formulated as: 

P7.1 
min( , )

, ,
1 1

max
M N KM N

i l i l
X

i l

x SEE


 
         (21a) 

s.t. ,
1

1
M N

i l
i

x




 , 
min( , )

,
1

1
M N K

i l
l

x




       (21b) 

The optimal solution X* to 2-dimensional matching problem 
P7.1 can be obtained using Hungarian algorithm. By joint 

considering X* and 1, we can update the 3-dimensional 

allocation matrix W1=[X*, 1]. 

Then we consider the 2-dimensional matching between the 
set of channels and the set of matched sensor-actuator pairs. 

Denote the set of matched sensor-actuator pairs as 2, 2={(i, 

j)|wi,j,k=1, wi,j,kW1}. And we use index r to indicate each 
sensor-actuator pair, 1<r<M+N. SEEr,k denotes the sum energy 
efficiency when CHk matches the rth sensor-actuator pair. Also, 

we consider a 2-dimensional matching between  (the set of 

CHs) and 2 (the set of matched sensor-actuator pairs). Denote 

a 2-dimensional index matrix [Y]K(M+N) as the matching result 
between sensor-actuator pairs and CHs, where yr,k=1, if the rth 
sensor-actuator pair matches CHk; yr,k=0, otherwise. The 
sub-optimization problem can be formulated as: 

P7.2 , ,
1 1

max
K M N

r k r k
Y

k r

y SEE


 
         (22a) 

s.t. ,
1

1
M N

r k
r

y




 , ,
1

1
K

r k
k

y


       (22b) 

The optimal solution Y* to 2-dimensional matching problem 
P7.2 can be solved by Hungarian algorithm. Then we can 

update the 3-dimensional allocation matrix W2=[Y*, 2]. 

Then we further consider the 2-dimensional matching 
between the set of actuators and the set of matched 
sensor-channel pairs. Denote the set of matched sensor-channel 

pairs as 3, 3={(i, k)|wi,j,k=1, wi,j,kW2}. And we use index d 

to indicate each sensor-channel pair, 1<d<K. SEEd,j denotes the 
sum energy efficiency when actuator Aj matches the dth 
sensor-channel pair. Then we consider a 2-dimensional 
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matching between  (the set of actuators) and 3 (the set of 

matched sensor-channel pairs). Denote a 2-dimensional index 
matrix [Z](M+N)min(M+N, K) as the matching result between 
actuators and sensor-channel pairs, where zd,j=1 if the dth 
sensor-channel pair matches Aj; zd,j=0, otherwise. The 
sub-optimization problem can be formulated as: 

P7.3 
min( , )

, ,
1 1

max
M N KM N

d j d j
Z

j d

z SEE


 
          (23a) 

s.t. 
min( , )

,
1

1
M N K

d j
d

z




 , ,
1

1
M N

d j
j

z




        (23b) 

The optimal solution Z* to 2-dimensional matching problem 
P7.3 can be solved by Hungarian algorithm. Then the 

3-dimensional allocation matrix can be updated as W3=[Z*, 3].  

In each iteration, the three 2-dimensional matching problems 
(P7.1, P7.2 and P7.3) are solved sequentially and after each 
2-dimensional matching the 3-dimensional allocation matrix is 
updated as follows: W0→W1→W2→W3→W4→.... The 
iteration continues until the 3-dimensional allocation matrix 
remains stable or the maximum iteration number is achieved. 
The details of Iterative Hungarian method with Virtual Devices 
(IHM-VD) are listed in Algorithm 3. 
Algorithm 3 Iterative Hungarian Method with Virtual Devices 
(IHM-VD) 
Input: [SEE](M+N)(M+N)K 
Output: W 
1: Initialization W0, n=0, Nmax. 
2: Repeat 
3: n=n+1. 
4: Obtain matched actuator-channel pairs set 1 and 

2-dimensional energy efficiency SEEi,l with ith sensor 
and lth actuator-channel pair. 

5: Solve 2-dimensional matching problem P7.1 using 
Hungarian method and get optimal allocation X*. 

6: Allocation result update, Wn=[X*, 1]. 

7: n=n+1. 
8: Obtain matched sensor-actuator pairs set 2 and 

2-dimensional energy efficiency SEEr,k with kth 
channel and rth sensor-actuator pair. 

9: Solve 2-dimensional matching problem P7.2 using 
Hungarian method and get optimal allocation Y*. 

10: Allocation result update, Wn=[Y*, 2]. 

11: n=n+1. 
12: Obtain matched sensor-channel pairs set 3 and 

2-dimensional energy efficiency SEEd,j with jth 
actuators and dth sensor-channel pair. 

13: Solve 2-dimensional matching problem P7.3 using 
Hungarian method and get optimal allocation Z*. 

14: Allocation result update, Wn=[Z*, 3]. 

15: Until the allocation result remains stable or n=Nmax 
16: return W*=Wn. 

As Hungarian algorithm can always achieve an optimal 
matching for a 2-dimensional matching, in each iteration the 

utility is either increased or unchanged after each 
2-dimensional matching. Also, it is clear that the utility has an 
upper bound. Thus, we can conclude that the algorithm can 
achieve convergence after finite iterations. If the utility is 
unchanged in one iteration, the algorithm terminates and the 
convergence is achieved.  

Assuming that the algorithm achieves convergence after I 
iterations, the number of 2-dimensional matching can be 
derived as 3I. Since the computational complexity of 

2-dimensional matching can be regarded as (K3) 

approximately, the computational complexity of IHM-VD is 

approximate to (3IK3). 

V. SIMULATION RESULTS 

In this section, we compare the performance of the proposed 
IHM-VD with the following benchmarks: greedy algorithm 
(GA), exhaustive search (ES) and two-sided Hungarian 
algorithm (TSH). We also perform the simulation of a 
half-duplex resource allocation algorithm (HDRA) and 
Iterative Hungarian Method without virtual users (IHM) [23]. 
The details of the benchmark algorithms are as follows. 

In the GA, each CH selects a sensor-actuator pair with the 
best sum energy efficiency for itself sequentially and 
exclusively. Note that CH can also select one sensor or one 
actuator according to energy efficiency maximization criterion.  

ES provides an optimal solution of the 3-dimensional 
matching problem, and the computational complexity is 

(K!K!). To reduce the complexity, we propose a low 

complexity algorithm for ES to achieve the optimal solution, 
which is implemented in two steps. In the first step, each 
possible sensor-actuator matching solution is obtained by 

exhaustively searching, which complexity is (K!). In the 

second step, the optimal matching between sensor-actuator 
pairs and channels is accomplished by Hungarian method with 

complexity (K3). Thus the computational complexity of this 

low complexity exhaustive search is (K3K!). 

In TSH, the 3-dimensional matching problem 
(sensor-actuator-channel) is decoupled as two 2-dimensional 
matching problems (sensor-channel and actuator-channel). In 
other words, the channels for sensors and those for actuators are 
allocated separately. Each 2-dimensional matching problem is 

solved by Hungarian algorithm with complexity (K3) [22]. 

Thus the computational complexity of TSH is (2K3). Note 

that two-sided Hungarian algorithm ignores the peer effects 
between different sensor-actuator pairs. 

In IHM, no virtual devices are added in CPIoTS, and a CH is 
always allocated to both a real sensor and a real actuator using  
iterative Hungarian method. In HDRA, the central controller 
operates in half-duplex mode and a CH can be only allocated to 
a sensor or an actuator. 

In the simulation, we assume that the channel gain contains 
the normalized small-scale fading and distance based 

large-scale pathloss, h d h , where d denotes the distance 
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between the transmitter and the receiver, α denotes the pathloss 
factor, h denotes the normalized Rayleigh fading. The 
simulation parameters are listed in Table I. 

Table I Simulation Parameters 
Simulation Parameters Value 
Pathloss factor (α) 4 
Distance between any sensor/actuator to CC (d) 10-50m 
Interference cancellation coefficient (η) -60dB 
Maximum transmit power of sensors (PS 

max) 25dBm 
Maximum transmit power of CC on each CH (PC 

max) 30dBm 
Noise Power (σn) -114dBm

 

Fig. 3 Sum energy efficiency with different number of channels 

 

Fig. 4 Sum energy efficiency with different number of channels 

 

Fig. 5 Sum energy efficiency after each 2-dimensional matching 

Fig. 3 plots the sum energy efficiency versus the number of 
channels for IHM-VD, IHM and HDRA, considering M=4, 
N=4. As illustrated in Fig. 3, when the number of channels K is 
less 4, the performance of our proposed algorithm IHM-VD is 
slightly better than IHM, but is much better than that of 
half-duplex resource allocation. This implies that when the 
number of channels is less than the number of sensors M or that 
of actuators N, each channel is more likely shared by a real 
sensor and a real actuator. 

When the number of channels is larger than 8, our algorithm 
outperforms the IHM significantly and achieve almost the same 
performance with the HDRA. This is due to the fact when the 
number of channels is equal to or larger than the sum of the 
number of sensors and that of actuators, each sensor or actuator 
can be allocated with one dedicated channel and do not need to 
share its channel with another device. 

To indicate that our proposed algorithm performs better than 
the other state-of-the-art algorithms, Fig. 4 plots the sum energy 
efficiency versus the number of channels for IHM-VD, TSH 
and GA. From Fig. 4, we can observe that our proposed 
algorithm achieves the best performance among three 
algorithms. The performance of our proposed algorithm and 
TTMA increases with the number of channels, while the 
performance of greedy algorithm nearly remains the same 
when the number of channels is larger than 4. 

To further illustrate the convergence of our proposed 
algorithm (IHM-VD), Fig. 5 shows the sum energy efficiency 
after each 2-dimensional matching, as well as the performance 
of exhaustive search (ES). We can observe that after about 6 
times of 2-dimensional matching, our algorithm converges to a 
stable solution. Also, the performance of our proposed 
algorithm is close to that of exhaustive searching, but the 
computational complexity is much less.  

VI. CONCLUSION 

In this paper, we presented a communication network 
framework based on 5G technology for CPIoTSs supporting 
multiple sensors, multiple actuators and a central controller 
with the ability of full-duplex communication. Based on this 
framework, we proposed an energy-efficient resource 
allocation algorithm, in which the power allocation and channel 
allocation was optimized separately. First, a power allocation 
algorithm was proposed based on Dinkelbach’s algorithm and 
game theory to achieve the maximum sum energy efficiency for 
each possible channel allocation result. Then, a channel 
allocation algorithm named iterative Hungarian method with 
virtual devices was proposed. Simulation results showed that 
the proposed resource allocation algorithm IHM-VD 
outperformed the state-of-art benchmarks and could nearly 
achieve the performance of the exhaustive searching method. 
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