Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect

Takriti, Mounir and Wild, Birgit and Schnecker, Jörg and Mooshammer, Maria and Knoltsch, Anna and Lashchinskiy, Nikolay and Eloy Alves, Ricardo J. and Gentsch, Norman and Gittel, Antje and Mikutta, Robert and Wanek, Wolfgang and Richter, Andreas (2018) Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry, 121. pp. 212-220. ISSN 0038-0717

PDF (SBB Takriti et al)
SBB_Takriti_et_al.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (873kB)


A substantial portion of soil organic matter (SOM) is of microbial origin. The efficiency with which soil mi-croorganisms can convert their substrate carbon (C) into biomass, compared to how much is lost as respiration, thus co-determines the carbon storage potential of soils. Despite increasing insight into soil microbial C cycling, empirical measurements of microbial C processing across biomes and across soil horizons remain sparse. The theory of ecological stoichiometry predicts that microbial carbon use efficiency (CUE), i.e. growth over uptake of organic C, strongly depends on the relative availability of C and nutrients, particularly N, as microorganisms will either respire excess C or conserve C while mineralising excess nutrients. Microbial CUE is thus expected to increase from high to low latitudes and from topsoil to subsoil as the soil C:N and the stoichiometric imbalance between SOM and the microbial biomass decrease. To test these hypotheses, we collected soil samples from the organic topsoil, mineral topsoil, and mineral subsoil of seven sites along a 1500-km latitudinal transect in Western Siberia. As a proxy for CUE, we measured the microbial substrate use efficiency (SUE) of added sub-strates by incubating soil samples with a mixture of 13 C labelled sugars, amino sugars, amino acids, and organic acids and tracing 13 C into microbial biomass and released CO 2 . In addition to soil and microbial C:N stoichio-metry, we also determined the potential extracellular enzyme activities of cellobiohydrolase (CBH) and phenol oxidase (POX) and used the CBH:POX ratio as an indicator of SOM substrate quality. We found an overall decrease of SUE with latitude, corresponding to a decrease in mean annual temperature, in mineral soil horizons. SUE decreased with decreasing stoichiometric imbalance in the organic and mineral topsoil, while a relationship of SUE with soil C:N was only found in the mineral topsoil. However, contrary to our hypothesis, SUE did not increase with soil depth and mineral subsoils displayed lower average SUE than mineral topsoils. Both within individual horizons and across all horizons SUE was strongly correlated with CBH:POX ratio as well as with climate variables. Since enzyme activities likely reflect the chemical properties of SOM, our results indicate that SOM quality exerts a stronger control on SUE than SOM stoichiometry, particularly in subsoils were SOM has been turned over repeatedly and there is little variation in SOM elemental ratios.

Item Type:
Journal Article
Journal or Publication Title:
Soil Biology and Biochemistry
Additional Information:
This is the author’s version of a work that was accepted for publication in Soil Biology and Biochemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Soil Biology and Biochemistry, 121, 2018 DOI: 10.1016/j.soilbio.2018.02.022
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
25 Apr 2018 09:08
Last Modified:
25 Nov 2020 05:18