
Conditioned spin and charge dynamics of a single electron quantum dot

Eliska Greplova 1, Edward A. Laird 2, G. Andrew D. Briggs 2, Klaus Mølmer 1

1 Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark and
2 Department of Materials, Oxford University, Oxford, UK

(Dated: August 23, 2017)

In this article we describe the incoherent and coherent spin and charge dynamics of a single
electron quantum dot. We use a stochastic master equation to model the state of the system, as
inferred by an observer with access to only the measurement signal. Measurements obtained during
an interval of time contribute, by a past quantum state analysis, to our knowledge about the system
at any time t within that interval. Such analysis permits precise estimation of physical parameters,
and we propose and test a modification of the classical Baum-Welch parameter re-estimation method
to systems driven by both coherent and incoherent processes.

I. INTRODUCTION

In quantum mechanics, the state of a physical system
is described by a wave function ψ or a density matrix
ρ which provides the probability of the outcomes of any
measurement that we might carry out on the system.
Following such a measurement, the state of the system
changes as described by the formalism of projective mea-
surements [1] and its extension to more general measure-
ments [2] and to continuous monitoring of quantum sys-
tems [3, 4].

The information about the system from stochastic
measurement signals can be used for the purpose of state
reconstruction [5–8] and precision measurements of phys-
ical parameters [9–13]. In this work we achieve this by a
a combination of Bayesian analysis and modified Baum-
Welch re-estimation that extracts the quantum state and
the physical parameters governing the system dynamics
from the measurement data. We apply this to the single-
electron occupation of a quantum dot. Because the oc-
cupation depends on quantum tunnelling which in turn
depends on the spin state [14], we have a combination
of incoherent and coherent dynamics. This requires a
modification to the conventional Baum-Welch estimation
scheme, with repeated application until all the parame-
ters have converged.

We consider a new scheme for repeated and continu-
ous monitoring of a spin qubit that tunnels on and off
a quantum dot [14]. A static magnetic field splits the
spin-up and spin-down state energies, such that only a
spin-down electron may tunnel into the dot and prevent
further charging of the dot by Coulomb blockade. A res-
onant drive causes oscillations between the spin-up and
spin-down states. There is therefore a mixture of co-
herent spin dynamics and incoherent tunneling events,
as the Rabi oscillations are interrupted when the excited
spin-up electron tunnels out of the dot. A quantum point
contact (QPC) which transmits an electron current that
depends on the charge but is insensitive to the spin dy-
namics on the quantum dot is used to continuously mon-
itor the electron tunneling dynamics [15–18]. Our theory
will apply to the analysis of real experimental data, but
in this work it will be illustrated on a simulated system

dynamics, where the tunneling events in and out of the
quantum dot occur governed by a stochastic master equa-
tion [3]. We note that even though our experiments are
not sensitive to the electron spin state, the Rabi oscilla-
tory dynamics will reveal itself through the distribution
of time intervals spent on the dot, since the electron en-
ters and leaves in different spin states. We thus aim to
recover the quantum state and the physical parameters
governing the electron spin and charge from the stochas-
tic measurement signal of the charge sensor. We show
how the time dependent dot occupation can be estimated
and how this estimate is improved by incorporating in-
formation from the subsequent sensor record. Finally, we
show how the spin precession becomes imprinted on the
charge dynamics, and we present a method to estimate
efficiently the parameters of the qubit Hamiltonian from
the noisy charge measurement record.

The article is organized as follows: In Sec. II, we in-
troduce the master equation and quantum trajectory de-
scription of the system subject to ideal probing of the
charge state. In Sec. III, we present the case of contin-
uous probing of the charge state, and illustrate the dis-
crepancy between the true and the estimated state of the
system. In Sec. IV, we show how the past quantum state
formalism employs the full time dependent signal and
provides an estimate of the time dependent charge state
in better agreement with the true evolution of the system.
In Sec. V, we propose a combination of Bayesian analy-
sis and modified Baum-Welch re-estimation that extracts
the physical parameters governing the system dynamics
from the measurement data. In Sec. VI, we present a
conclusion and outlook.

II. COHERENT AND INCOHERENT
PROCESSES, CONVENTIONAL AND
STOCHASTIC MASTER EQUATION

We consider a gate-defined quantum dot that can con-
tain zero or one electron (Fig. 1(a)). The quantum dot is
coupled to an electron reservoir such that electrons can
tunnel on and off. The three states available are the state
|0〉 with no electron charge on the quantum dot, and the
singly charged spin-up and spin-down states |↑〉 and |↓〉.
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FIG. 1. (a) Schematic of the experimental setup: GaAs quan-
tum dot with the quantum point contact, yielding the ex-
perimentally accessible current IQPC ; (b) Energy levels being
populated through the exchange of electrons with the the lead
electrode: a spin-down (up) electron can tunnel into (off) the
dot; (c) Relation of the system dynamics to the measured cur-
rent: the Rabi precession does not lead directly to a change in
current, but does enable the electron to leave the dot, causing
a temporary current increase until another electron tunnels
onto the quantum dot.

The dot is measured via a quantum point contact (QPC)
acting as a charge sensor. The current IQPC through this
point contact is sensitive to the charge occupation; when
the dot is empty, the average current is I0, while, when
the dot is occupied with one electron, the current is I1.

We suppose that the device is placed in a magnetic
field to introduce a Zeeman splitting of the two spin
states, adjusted using gate voltages so that the spin-up
and spin-down levels straddle the Fermi level of the reser-
voir (Fig. 1b). Electron tunneling is now spin-sensitive;
if the quantum dot is charged with an electron in state

FIG. 2. Example of a particular quantum trajectory: the
occupation of the spin-up state is plotted as a function of
time and shows the Rabi precession of the spin interrupted
by the quantum jumps where the electron leaves the dot. The
shaded red regions correspond to the time intervals when the
quantum dot is occupied irrespective of the spin state. The
figure is obtained with a spin Rabi frequency of Ω = 5 MHz,
and tunneling rates γ↑ = γ↓ = 3 MHz.

|↑〉, it will tunnel off the dot with rate γ↑; if the quan-
tum dot is empty, a spin-down electron will tunnel onto
the dot with rate γ↓. A coherent drive at the qubit res-
onance (Larmor) frequency induces coherent precession
at the Rabi frequency Ω, and when the device evolves
between the three states, the charge state sensitive IQPC

fluctuates around different characteristic values as shown
in Fig. 1c.

The Hamiltonian describing the resonant drive be-
tween the up and down states reads (~ = 1)

H =
Ω

2
(|↑〉 〈↓|+ |↓〉 〈↑|), (1)

with the Rabi frequency Ω.
Let us define the operators associated with the inco-

herent transfer of the electron between the dot and the
electron states in the Fermi sea:

c↓ = |0〉 〈↓| , c†↓ = |↓〉 〈0| , (2)

c↑ = |0〉 〈↑| , c†↑ = |↑〉 〈0| . (3)

If γ↓, γ↑ denote the respective tunneling rates and dt is
an infinitesimal time interval, the master equation [3] for
the system reads

dρ

dt
= −i[H, ρ] +

γ↓
2

(2c†↓ρc↓ − c↓c
†
↓ρ− ρc↓c

†
↓) (4)

+
γ↑
2

(2c↑ρc
†
↑ − c

†
↑c↑ρ− ρc

†
↑c↑).

This master equation describes the average dynamics of
the unobserved system, subjected to both coherent driv-
ing between the spin states and incoherent tunneling onto
and off the dot, described by rate equation terms. After
a time of a few γ−1

↑,↓ this equation causes ρ to converge
to a steady state density matrix with populations of the



3

three states and coherences between the two occupied
spin states. Here, the system is modelled at zero temper-
ature, but finite temperature can be straightforwardly
added into the master equation [19]. The typical tem-
perature in the dilution fridge is below 30 mK, while the
energy of Zeeman splitting of the electron spin resonance
at typical magnetic fields corresponds to a temperature
of ≈ 300 mK, which means that for our purposes the
thermal bath of the quantum dot is effectively at zero
temperature.

If we imagine that we could monitor the occurrence
of each tunneling event, Eq.(4) would be replaced by a
stochastic quantum trajectory. This means that in each
time step, dt, the system density matrix is first evolved
as

dρ

dt
= −i[H, ρ]− γ↓

2
(c↓c

†
↓ρ+ ρc↓c

†
↓) (5)

− γ↑
2

(c†↑c↑ρ+ ρc†↑c↑)

and then made subject to one of the quantum jumps onto
or off the quantum dot:

ρ→
c†↓ρc↓

Tr(c†↓ρc↓)
= | ↓〉〈↓ |

or,

ρ→
c↑ρc

†
↑

Tr(c↑ρc
†
↑)

= |0〉〈0|.

These jumps occur with the probabilities dp =

Tr(c†↓ρc↓)γ↓dt and dp = Tr(c↑ρc
†
↑)γ↑dt, respectively, and

ρ is renormalized, before the evolution is continued in the
following time step.

This stochastic evolution forms a quantum trajectory
[20], corresponding to the quantum dynamics conditioned
on the hypothetical, perfect probing of the tunneling dy-
namics. We shall thus use such a trajectory dynamics to
simulate the system, see Fig.2 which shows a sample evo-
lution obtained in the way just described. The curve in
the figure shows the spin-up population, dropping discon-
tinuously to zero in connection with the simulated tun-
neling events off the quantum dot. The total occupation
of the dot is unity in the intervals with the temporally
modulated spin up population.

III. CONTINUOUS PROBING OF THE
CHARGE DYNAMICS

We now describe the information about the quantum
state available to an experimentalist who has access only
to the fluctuating QPC current signal as illustrated in
Fig. 3. We shall then compare this information with the
simulated record of occupations on and off the quantum
dot, depicted in Fig. 1, that gives rise to the QPC signal
variation.

FIG. 3. Simulation of the measured current through the QPC
with the same parameters as in Fig.2, and with QPC current
rates r0 = 31.21 GHz and r1 = 24.97 GHz. These rates
lead to the charge dependent currents IQPC,0 = 5 nA and
IQPC,1 = 4 nA while Poissonian count statistics (see text)
leads to the standard deviation σ0 = 0.28 nA and σ1 = 0.26
nA for a measurement binning time of 10 ns.

FIG. 4. The probability that m electron counting events are
registered by the QPC during a measurement time T = Ndt
(where N is large). For the empty and the charged quantum
dot, a perfect detection yields QPC counts that are Poisson
distributed with the mean values Nr0dt and Nr1dt and stan-
dard deviations σ0 =

√
Nr0dt and σ1 =

√
Nr1dt respectively.

For the purpose of this analysis, we consider the cur-
rent through the charge sensor as a stochastic count-
ing signal, with two possible electron counting rates
r0,1 ≡ I0,1/e depending on the charge on the dot. We
assume a 1 nA difference between I0 and I1. While the
QPC current record is measured as a continuous signal
and does not resolve individual electrons, it is convenient
to describe the measurement back action by the positive
operator-valued measure (POVM) formalism [2], i.e., by
operators Mc and Mnc yielding the probabilities and the
back action associated with the count and no-count of
each single electron passing the QPC in a time interval
dt:

Mc =
√
r0dtΠ0 +

√
r1dtΠ1,

Mnc =
√

1− r0dtΠ0 +
√

1− r1dtΠ1,
(6)

where Π0 = |0〉〈0| is the projection on the empty dot
state and Π1 = | ↑〉〈↑ |+| ↓〉〈↓ | is the projection operator
on the charged dot state, with eigenvalues 0 and 1.
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The probability for an electron to tunnel through the
QPC in interval dt (a ’click event’) is

Pclick = Tr(McρM
†
c ) = ρ00r0dt+ (ρ↑↑ + ρ↓↓)r1dt (7)

and the state conditioned on the click or no click (x = c
or x = nc), is

ρ|x = (MxρM
†
x)/Tr(MxρM

†
x). (8)

In a real experiment one measures a macroscopic fluc-
tuating current corresponding to the large number of
electrons, m, passing through the QPC in finite time
increments ∆t = Ndt. If the system is subject to no
further evolution, Eqs. (6-8) then lead to an integrated
number of electrons going through the QPC given by a
sum of two Poisson distributions with mean values Nr0dt
and Nr1dt and standard deviations σ0 =

√
Nr0dt and

σ1 =
√
Nr1dt respectively (see Fig. 4). In the limit

of large N , the current fluctuations can be modelled
with Gaussian noise and various corrections to Poisso-
nian counting statistics [21] may be incorporated by ad-
justing the Gaussian widths. To simplify the presenta-
tion, we restrict our analysis to the Poissonian case given
by Eqs. (6-8). As the descriptions yield equivalent re-
sult, we shall refer to the conceptually simpler POVM
formalism throughout this work, while stochastic differ-
ential equations may be more efficient in some numerical
applications.

We shall use the symbol ρ to represent the density
matrix inferred from the QPC measurements, which dif-
fers from the "true" simulated state ρtrue. The QPC
counting rates and the noisy signals shown in Fig. 3 are
determined from ρtrue. Then we use only the QPC mea-
surement current, and knowledge about the spin rotation
Hamiltonian and the tunneling rates on and off the dot.
We apply Eq.(4) and the POVM operators associated
with the QPC detection to evolve the density matrix ρ.
Note that, in general, the simulated ρtrue should also
incorporate the back action of the QPC probing in its
evolution, but as ρtrue populates with certainty either
the charged state or the uncharged state, it is invariant
under the QPC back-action Eq. (8). In the upper panel
of Fig. 5 we compare the quantum dot occupation ac-
cording to ρ (blue curve) and ρtrue (red regions). With
the chosen parameters, the QPC probing is able to follow
the charge dynamics of the quantum dot, but the state
assignment is subject to statistical fluctuations due to
the measurement noise.

IV. PAST QUANTUM STATE

For the parameters used here, the charge state changes
on a similar time scale as our acquisition of measurement
data, and as Fig. 5 shows, we cannot track the true sys-
tem evolution perfectly because of the noise of the QPC
current. In particular, we observe sharp features, indi-
cating tunneling events, while subsequent rapid return

FIG. 5. Comparison of true and inferred dynamics: the blue
solid curve shows the occupation of the quantum dot as in-
ferred from the QPC current. The red regions show the time
intervals where the dot is actually occupied according to the
simulated tunneling events on and off the quantum dot. The
upper panel shows this comparison when the probability from
the QPC current is inferred using the conditioned master
equation. In the lower panel the probability is calculated
using the past quantum state method.

to the original state, reveals that it was most probably a
random signal fluctuation rather than a change of state.
This is a well known problem in classical inference and
has led to the introduction of data smoothing algorithms
which incorporate the full signal and use data obtained
both before and after t in the analysis of the state of
a system at the time t. This can be done in a rigor-
ous analysis known as the "forward-backward" analysis
for classical hidden Markov models [12] and as the past
quantum state (PQS) [22–24] and the quantum smooth-
ing [25] formalism for quantum systems.

As the quantum formalism deals with the assignment
of probabilities to measurement outcomes, we can present
our knowledge about a quantum system at time t by
a general expression for such probabilities. The most
general measurements are described by the formalism of
POVMs [2]. We already saw examples of this formalism
in our treatment of the QPC counting signal, and it quite
generally assigns to any measurement a set of operators
{Mi}, with

∑
iM
†
iMi = I, each representing an outcome

(i) of the measurement.

The probability for outcome i is conventionally given
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by the density matrix expression,

P (i) =
Tr(MiρM

†
i )∑

i Tr(MiρM
†
i )
, (9)

where the density matrix ρ may be the solution to our
stochastic quantum dynamics described above, i.e., ρ(t)
is conditioned on the QPC measurement outcomes that
occurred and were read out until time t.

The past quantum state formalism [22] offers an im-
proved expression that incorporates the subsequent sig-
nal record via an “effect matrix” E(t). In this formalism,
the probability that a measurements of the observable
corresponding to the POVM {Mi} yielded the outcome
i is

PPQS(i) =
Tr(Miρ(t)M†i E(t))∑
i Tr(Miρ(t)M†i E(t))

. (10)

Here, ρ(t) depends only on the QPC measurement out-
comes obtained before t and the matrix E(t) depends
only on the QPC measurement outcomes obtained after
time t. In particular, E follows from an adjoint master
equation that is solved backwards in time. The expres-
sion Eq. (10) follows from the quantum theory of mea-
surements and conditional probabilities, and it has been
applied to experiments with Rydberg atoms in microwave
cavities [26] and with superconducting qubits [27–29],
where its predictions have been confirmed and used to
identify quantitative properties of the system.

To evaluate the matrix E introduced in [22], we assume
the final value E = I in the future of all probing measure-
ments, and propagate the matrix elements backwards in
time by incorporating the known Hamiltonian evolution
and master equation damping terms, a well as the QPC
measurement outcomes, in a way that is adjoint to the
evolution of ρ [22]. Between QPC counting events, the
matrix E pertaining to the experimental observer, obeys
the equation

E(t− dt)− E(t)

dt
= i[H,E] +

γ↓
2

(2c↓Ec
†
↓ − c↓c

†
↓E − Ec↓c

†
↓)

+
γ↑
2

(2c†↑Ec↑ − c
†
↑c↑E − Ec

†
↑c↑). (11)

In addition to the dynamics, decribed by Eq. (11), E
undergoes changes associated with the QPC probing of
the system. This is described by and is analogous to
the POVM operations acting on ρ in Eqs. (6)-(8),
E|x = (M†xEMx)/Tr(M†xEMx)). We note that unlike
the master equation Eq. (4) the evolution Eq. (11) does
not preserve the trace of E, but the explicit normalization
of the outcome probabilities ensures the physical appli-
cability of Eq. (10).

The results of the PQS analysis are depicted in the
lower panel Fig. 5, again, in comparison with the sim-
ulated ‘true’ state. We observe that the assignment of
charge states to the dot is significantly improved com-
pared to the upper panel in Fig. 5.

FIG. 6. Histogram of the time intervals in which the quantum
dot is occupied by an electron according to the past quantum
state analysis of the QPCmeasurement data. The modulation
reflects the Rabi oscillation between the spin states and the
red curve represents the fit of the histogram by the expression
(12) which leads to an estimated Rabi frequency of ∼ 5.2 MHz
in reasonable agreement with the value of 5MHz used in our
simulation.

V. PARAMETER ESTIMATION

In order to infer the time dependent occupation of the
dot from the measurement signal, we solved the mas-
ter equation for ρ(t) and the adjoint equation for E(t),
taking into account the measurement data, which could
come from a real experiment but was synthesized by sim-
ulating the dynamics of a "true state". While the master
equation (4) contains terms governed by the numerical
values of the Rabi frequency Ω and the tunneling rates
γ↓, γ↑, the abrupt changes of the occupation are mainly
governed by the random measurement back-action, cf.
the variations in the current signal shown in Fig. 3.

Larger or smaller values of the Rabi frequency and the
rates would not be in conflict with short segments of the
signal and the inferred occupation dynamics, but we ex-
pect a statistical agreement with the physical parameters
when the system is observed over longer times. Thus, the
periods with no occupation of the dot should follow an
exponential distribution with the rate constant γ↓, and
since the electron always enters the quantum dot in the
spin down state and leaves in the spin up state, we ex-
pect to see the intervals of occupation of the dot cluster
around odd multiples of ∼ π/Ω, and there should be very
few intervals close to even multiples of ∼ π/Ω.

This intuition is confirmed by making a histogram of
the electron dwell times on the dot, extracted from the
PQS analysis of the dot occupation (Fig. 6). Even more
so, it permits a fit to the analytical dwell time distribu-
tion for different values of Ω,

w(t) = −2Ω2γ↑
κ2

exp

(
− tγ↓

2

)(
cos

(
tκ

2

)
− 1

)
, (12)
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FIG. 7. Bayesian estimation of Rabi frequency Ω. The color
scale depicts the likelihood function L(Ω). We used a grid of
60 candidate values between 3.5 MHz and 6.5 MHz. We see
clear convergence towards the correct value of Ω = 5 MHz.

where κ =
√

4Ω2 − γ2
↑ with 2Ω > γ↓.

So, even though the experiment is not directly sensi-
tive to the spin state, it is able to reveal the spin dynam-
ics and determine its characteristic frequency. Supple-
mented with a histogram for the periods with no electron
on the dot, we may also estimate the tunneling parame-
ters.

In our particular simulations, the past quantum state
analysis provides decisive information about the occupa-
tion of the dot, and the occupation dynamics is well re-
solved, but we note that a more general procedure allows
extraction of the physical parameters, even when the in-
ferred dynamics does not assign the state with certainty.

An optimal estimation of the Rabi frequency is thus
made by Bayes rule, which assumes a prior, e.g., uni-
form, probability distribution for Ω, and evolves a sepa-
rate density matrix ρΩ(t) for each of a set of candidate
values. The QPC current outcomes occur with higher
probabilities for some than for other conditional states
ρΩ, and the likelihood L(Ω) for the different Ω are merely
multiplied by these probabilities at each time step. Dur-
ing the parallel time evolution of the different candidate
density matrices, the value of Ω with the highest likeli-
hood represents the best estimate for the Rabi frequency.
An example of the Bayes rule evolution of L(Ω) with time
is shown in Fig. 8. We see that the method quickly iden-
tifies the plausible range of values for Ω, and that the
estimate becomes more peaked as data accumulates. A
more detailed analysis shows that the estimation error
scales as 1/

√
T with long probing times T [11].

It is in principle possible to identify multiple param-
eters by Bayes method, but it requires propagation of
conditional density matrices, with each parameter ex-
ploring a grid of candidate values. One therefore has
recourse to other methods if the number of parameters
is too high. For incoherent processes, the so-called pa-
rameter re-estimation method consists in determining the
dynamics of the system subject to a choice of parameters,

FIG. 8. Estimation of γ↓, γ↑ using the modified Baum-Welch
procedure. Assuming the correct Rabi frequency, Ω, γ↑,↓ is
shown as a function of number of iterations n.

and then extracting the apparent rates from the dynam-
ics. Using an initial guess for the rate parameters, one
determines the time dependent occupation of the differ-
ent states as well as the joint distribution for occupying
state i at time t, and state j at the next time step ac-
cording to the full measurement record. From the same
probabilities and joint probabilities, one subsequently ex-
tracts new candidate values for the transition probabili-
ties. The whole data record is then analyzed again, but
with these inferred rates, and the procedure is repeated
until it has converged and the rates applied in the dy-
namics are in agreement with the rates inferred from the
population dynamics.

This so-called Baum-Welch estimation scheme has
been developed for classical parameter estimation, which
means that it also applies to incoherent quantum pro-
cesses as shown in case of atomic dynamics in a cavity
QED experiment [12]. It cannot be applied directly here,
since we have a combination of coherent (Rabi frequency
Ω) and incoherent (tunneling rates γ↑,↓) dynamics. In
particular, the correlations between the population of the
states at different times are not only due to the incoher-
ent rates but also due to the coherent processes coupling
the populations of states i and j via the coherence ρij ,
i 6= j. Results of the modified Baum-Welch method de-
signed to include the coherent part of the dynamics are
shown in Fig. 8. The details of the method are discussed
in Appendix A.

Understanding how to estimate coherent parameters
assuming known values of the incoherent ones and vice
versa, we propose the hybrid scheme illustrated in Fig.
9. The method assumes (guessed) values for the rates,
and applies the Bayes rule method to find the most likely
value of Ω. That value, together with the rates is subse-
quently used in the propagation of the master equation
for ρ(t) and the adjoint equation for E(t). With the val-
ues of ρ(t) and E(t + dt), we then calculate the joint
probability for finding the system in state i at t and in j
at t+dt, which should agree on average with the rates as-
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FIG. 9. The scheme of our numerical approach to estimate
both coherent and incoherent physical parameters: We fix the
Rabi frequency and use n iterations of the Baum-Welch re-
estimation procedure to obtain consistent values of the rates.
With these rates fixed, we use Bayesian estimation to pick the
lost likely Rabi frequency among m candidate values. The
whole protocol is repeated N times until all parameters have
converged.

sumed in the calculation of the dynamics. As illustrated
in Fig. 9, this effective Baum-Welch protocol can be it-
erated until convergence (n times) for the given Ω, and
the resulting rates are used in a new Bayes estimation of
Ω. The step is repeated (N times) until all parameters
are converged and consistent with the data.

When applying this method to our simulated data
n = 5 modified Baum-Welch iterations and N = 5 it-
erations of the full protocol were sufficient to estimate
all three parameters. We observe in Fig. 8 that our
estimation does not identify the ‘true’ parameters used
for the simulation exactly. This is due to the use of fi-
nite data sampling and better agreement is expected for
longer probing times.

VI. CONCLUSIONS AND OUTLOOK

In this article we have investigated the prospects of
monitoring the spin and charge dynamics of a single elec-
tron quantum dot with a QPC. We have shown that the
conditional master equation allows inference of the quan-
tum state of the system, and that analysis of the full
temporal signal improves the statistical certainty about
the tunneling events in the system.

In our model, the tunneling dynamics is correlated
with the spin precession, and while the spin dynamics
is not directly observable in the experiment, it is possible
to infer its properties from the charge measurements. In
particular, the Rabi frequency is evident in the distribu-
tion of time intervals where the quantum dot is charged.

A Bayesian analysis of the noisy measurement current
record permits a reliable estimate of Ω, while a gener-
alization of the classical Baum-Welch algorithm allows
estimation of the tunneling rates.

By adjusting the bias across the charge sensor and
therefore the strength of the measurement, our method
offers a versatile approach to weak measurements of spin
qubits [34]. All of the ingredients of this approach have
now been demonstrated experimentally [35]. The key
technology of spin readout via a charge sensor has been
achieved both using dc current as in Fig. 1 [15–18] as
well as via the faster but conceptually similar technique
of radio-frequency reflectrometry [36–42], to which our
analysis can also be applied. Single-spin rotation can be
achieved in several ways; by applying a local magnetic
field [43, 44], by electrically driven spin resonance [45, 46],
or by coupling to an on-chip field gradient [47].

Our simulations used realistic physical parameters.
Thus, by operating at a qubit frequency of 40 GHz (cor-
responding to a magnetic field ∼ 7 T in GaAs or ∼ 1.4 T
in Si), thermal fluctuations at 30 mK may be neglected.
The variation of our simulated QPC signal is compatible
with the reported ability to perform charge readout and
distinguish the occupation in a quantum dot in 100 ns
[48]. Finally, Rabi oscillations as slow as 1.5 MHz [45]
have been measured and may thus form comparison with
the achievement of the method.

In spin quantum computing, one method for mitigating
the fluctuating hyperfine coupling that limits operation
fidelity is to track the instantaneous hyperfine field dy-
namically from its effect on the electron spin precession
frequency [30–32]. Also, a record of the spin qubit pre-
cession frequency can be used to estimate a local electric
field [33]. We believe that our results can be applied in a
number of such situations where parameters that govern
spin evolution must be estimated efficiently.
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Appendix A: Quantum modified Baum-Welch
method

The dynamics of a quantum system can be inferred
from the measurement data via a stochastic master equa-
tion. The average inferred behavior may be at variance
with the values assumed for the transition rates in the
master equation. This forms the basis for the classical
Baum-Welch parameter re-estimation algorithm which
iteratively extracts the rates from the inferred dynam-
ics and re-applies them in the inference process, until the
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values have converged.
The extraction of the rates is based on the estimation

of the joint probability,

Ct(i, j) = P (Xt+dt = j,Xt = i|s1, ..., sN ), (A1)

that the system occupies the state i at the time t and
the state j at the next discrete time step t + dt (condi-
tioned on the overall measurement record s1, . . . , sn). In
the quantum case this joint classical probability has to
be replaced by the probability that projective measure-
ments at the two subsequent times yield the outcomes |i〉
and |j〉, respectively. The quantum theory of measure-
ments allows evaluation of this probability by taking into
account the effect of the evolution of the system between

such projective measurements. The past quantum state
formalism (10), readily generalizes to yield the expression

Ct(i, j) = Tr(|j〉〈j|e(Ldt){|i〉〈i|ρ(t)|i〉〈i|}|j〉〈j|E(t+ dt)),
(A2)

where exp(Ldt) is a superoperator denoting the propa-
gator of the master equation for the short time step dt
between the (hypothetical) measurements on the system
[49]. Now, the Baum-Welch procedure obtains the transi-
tion rate γij from the average of this correlation function
over the entire measurement record, normalized to the
average population of the initial state |i〉 [12, 50]

γijdt =

∑
t Ct(i, j)∑

t(
∑

j Ct(i, j))
. (A3)
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