
Peaks over thresholds modelling with
multivariate generalized Pareto distributions

Anna Kiriliouk
Erasmus University Rotterdam

Erasmus School of Economics

3000 DR Rotterdam, the Netherlands.

E-mail: kiriliouk@ese.eur.nl

Holger Rootzén
Chalmers University of Technology

Department of Mathematical Sciences

SE-412 96 Gothenburg, Sweden.

E-mail: hrootzen@chalmers.se

Johan Segers
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Abstract

When assessing the impact of extreme events, it is often not just a single compo-
nent, but the combined behaviour of several components which is important. Statis-
tical modelling using multivariate generalized Pareto (GP) distributions constitutes
the multivariate analogue of univariate peaks over thresholds modelling, which is
widely used in finance and engineering. We develop general methods for construction
of multivariate GP distributions and use them to create a variety of new statistical
models. A censored likelihood procedure is proposed to make inference on these mod-
els, together with a threshold selection procedure, goodness-of-fit diagnostics, and a
computationally tractable strategy for model selection. The models are fitted to re-
turns of stock prices of four UK-based banks and to rainfall data in the context of
landslide risk estimation. Supplementary materials and codes are available online.
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1 Introduction

Univariate peaks over thresholds modelling with the generalized Pareto (GP) distribution

is extensively used in hydrology to quantify risks of extreme floods, rainfalls and waves

(Katz et al., 2002; Hawkes et al., 2002). It is the standard way to estimate Value at Risk

in financial engineering (McNeil et al., 2015), and has been useful in a wide range of other

areas, including wind engineering, loads on structures, strength of materials, and traffic

safety (Ragan and Manuel, 2008; Anderson et al., 2013; Gordon et al., 2013).

However often it is the flooding of not just one but many dikes which determines the

damage caused by a big flood, and a flood in turn may be caused by rainfall in not just one

but in several catchments. Financial risks typically are not determined by the behaviour

of one financial instrument, but by many instruments which together form a financial

portfolio. Similarly, in the other areas listed above it is often multivariate rather than

univariate modeling which is required.

There is a growing body of probabilistic literature devoted to multivariate GP distri-

butions (Rootzén and Tajvidi, 2006; Falk and Guillou, 2008; Ferreira and de Haan, 2014;

Rootzén et al., 2018b,a). To our knowledge, however, there are only a few papers that use

these as a statistical model (Thibaud and Opitz, 2015; Huser et al., 2016; de Fondeville

and Davison, 2017), and these only use a single family of GP distributions.

In this paper we advance the practical usefulness of multivariate peaks over threshold

modelling by developing general construction methods of multivariate GP distributions

and by using them to create a variety of new GP distributions. To facilitate practical use,

we suggest computationally tractable strategies for model selection, demonstrate model

fitting via censored likelihood, and provide techniques for threshold selection and model

validation.

We illustrate the new methods by using them to derive multivariate risk estimates for

returns of stock prices of four UK-based banks (Section 5), and show that these can be more

useful for portfolio risk management than currently available one-dimensional estimates.

Environmental risks often involve physical constraints not taken into account by available

methods. We estimate landslide risks using models which handle such constraints, thereby

providing more realistic estimates (Section 6).
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The new parametric multivariate GP models are given in Sections 3 and 7, and the

model selection, fitting, and validation methods are developed in Section 4. An important

feature is that we can estimate marginal and dependence parameters simultaneously, so that

confidence intervals include the full estimation uncertainty. We also give some background

needed for the use of the models (Section 2).

The “point process method” (Coles and Tawn, 1991) provides an alternative approach

for modelling threshold exceedances. However, the multivariate GP distribution has prac-

tical and conceptual advantages, in so much as it is a proper multivariate distribution. It

also separates modelling of the times of threshold exceedances and the distribution of the

threshold excesses in a useful way.

We limit ourselves to the situation where all components show full asymptotic depen-

dence. Technically, with this we mean that the margins of the multivariate GP distribution

do not put any mass on their lower endpoints. The contrary case, which requires detecting

subgroups of variables which show full asymptotic dependence, constitutes a challenging

area for future research, especially when the number of variables is large.

The inference method that we propose is based on likelihoods for data points that are

censored from below, so as to avoid bias resulting from inclusion of observations that are

not high enough to warrant the use of the multivariate GP distribution. The formulas of

the censored likelihoods for the parametric models that we propose are given in the online

supplementary material. In that supplement, which includes all R codes, we also report on

bivariate tail dependence coefficients, further numerical experiments illustrating the models

and the model choice procedure, and we give further details on the case studies.

2 Background

This section provides a brief overview of basic properties of multivariate GP distributions,

as needed for understanding and practical use. Let Y be a random vector in Rd with

distribution function F . A common assumption on Y is that it is in the so-called max-

domain of attraction of a multivariate max-stable distribution, G. This means that if

Y1, . . . ,Yn are independent and identically distributed copies of Y , then one can find
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sequences an ∈ (0,∞)d and bn ∈ Rd such that

P[{max
1≤i≤n

Yi − bn}/an ≤ x]→ G(x), (2.1)

with G having non-degenerate margins. In (2.1) and throughout, operations involving

vectors are to be interpreted componentwise. If convergence (2.1) holds, then

max

{
Y − bn
an

,η

}
| Y 6≤ bn

d→X, as n→∞, (2.2)

where X follows a multivariate GP distribution (Rootzén et al., 2018b), and where η is

the vector of lower endpoints of the GP distribution, to be given below. We let H denote

the distribution function of X, and H1, . . . , Hd its marginal distributions. Typically the

margins Hj are not univariate GP, due to the difference between the conditioning events

{Yj > bn,j} and {Y 6≤ bn} in the one-dimensional and d-dimensional limits. Still, the

marginal distributions conditioned to be positive are GP distributions. That is, writing

a+ = max(a, 0), we have

H
+

j (x) := P[Xj > x | Xj > 0] = (1 + γjx/σj)
−1/γj
+ , (2.3)

where σj and γj are marginal scale and shape parameters. The unconditional margins Hj

have lower endpoints ηj = −σj/γj if γj > 0 and ηj = −∞ otherwise. The link between H

and G is H(x) = {logG(min(x,0))− logG(x)}/{logG(0)}, and we say that H and G are

associated.

Following common practice in the statistical modelling of extremes, H may be used

as a model for data which arise as multivariate excesses of high thresholds. Hence, if

u ∈ Rd is a threshold vector that is “sufficiently high” in each margin, then we approximate

Y − u | Y 6≤ u by a member X of the class of multivariate GP distributions, with σ,

γ, the marginal exceedance probabilities P(Yj > uj), and the dependence structure to be

estimated. In practice the truncation by the vector η in (2.2) is only relevant when dealing

with mass on lower-dimensional subspaces, and is outside the scope of the present paper.

Observe that there is no difficulty in directly considering large values of Y itself, i.e., the

conditional distribution of Y given that Y � u, by changing the support to {x : x � u};

this is equivalent to replacing x by x− u in density (3.5) below.

4



By straightforward computation, the distribution function of componentwise maxima

of a Poisson number of GP variables for x ≥ 0 equals exp{−t(1 − H(x))}, which is the

max-stable distribution Gt, and where t is the mean of the Poisson distribution. Hence, a

peaks over thresholds analysis, combined with estimation of the occurrence rate of events,

also provides an estimate of the joint distribution of, say, yearly maxima.

The following are further useful properties of GP distributions; for details and proofs

we refer to Rootzén et al. (2018b) and Rootzén et al. (2018a).

Threshold stability: GP distributions are threshold stable, meaning that if X ∼ H

follows a GP distribution and if w ≥ 0, with H(w) < 1 and σ + γw > 0, then

X −w |X 6≤ w is GP with parameters σ + γw and γ.

Hence if the thresholds are increased, then the distribution of conditional excesses is still

GP, with a new set of scale parameters, but retaining the same vector of shape parameters.

The practical relevance of this stability is that the model form does not change at higher

levels, which is useful for extrapolating further into the tail.

A special role is played by the levels w = wt := σ(tγ − 1)/γ: these have the stability

property that for any set A ⊂ {x ∈ Rd : x � 0} it holds that, for t ≥ 1,

P[X ∈ wt + tγA] = P[X ∈ A]/t, (2.4)

where wt + tγA = {wt + tγx : x ∈ A}. This follows from equation (3.1) along with the

representation ofX0 to be given in equation (3.2). The j-th component ofwt, σj(t
γj−1)/γj,

is the 1 − 1/t quantile of H+
j . Equation (2.4) provides one possible tool for checking if a

multivariate GP distribution is appropriate; see Section 4.3.

Lower dimensional conditional margins: Lower dimensional margins of GP distri-

butions are typically not GP. Instead XJ | XJ 6≤ 0J does follow a GP distribution, for

XJ = (xj : j ∈ J) and J ⊂ {1, . . . , d}. Combined with the threshold stability property

above, we also have that if wJ ∈ R|J | is such that wJ ≥ 0, HJ(wJ) < 1 and σJ +γJwJ > 0

then XJ −wJ |XJ 6≤ wJ follows a GP distribution.

Sum-stability under shape constraints: If X follows a multivariate GP distribution,

with scale parameter σ and shape parameter γ = γ1, then for weights aj > 0 such that
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∑d
j=1 ajXj > 0 with positive probability, we have

∑d
j=1 ajXj |

∑d
j=1 ajXj > 0 ∼ GP(

∑d
j=1 ajσj, γ). (2.5)

Thus weighted sums of components of a multivariate GP distribution with equal shape

parameters, conditioned to be positive, follow a univariate GP distribution with the same

shape parameter and with scale parameter equal to the weighted sum of the marginal scale

parameters. This in particular may be useful for financial modelling. Equation (2.5) holds

regardless of the particular GP dependence structure. However, the probability of the

conditioning event, {
∑d

j=1 ajXj > 0}, will differ for different dependence structures.

3 Model construction

We use three constructions to develop general parametric classes of GP densities, labelled

hT , hU , and hR. For the first two, one first constructs a standard form density for a

variable X0 with σ = 1,γ = 0, and then obtains a density on the observed scale through

the standard transformation

X
d
= σ

eγX0 − 1

γ
, (3.1)

with the distribution X supported on {x ∈ Rd : x 6≤ 0}. For γj = 0, the corresponding

component of the right-hand side of equation (3.1) is simply σjX0,j. The third class of

densities, hR, is constructed directly on the observed scale. Each of the constructions

starts with choosing a suitable probability distribution, T , U , or R, the “generator” of the

class, which is combined with a common random intensity, or strength, to yield the GP

model. More details, alternative constructions, and intuition for the three forms are given

in Rootzén et al. (2018b,a).

We note that several articles have previously used random vectors to generate depen-

dence structures for extremes, e.g. Segers (2012), Thibaud and Opitz (2015) and Aulbach

et al. (2015), whilst the literature on max-stable modelling for spatial extremes also relies

heavily on this device (de Haan, 1984; Schlather, 2002; Davison et al., 2012). However, it

is only recently that these constructions have led to simple density formulas for GP dis-

tributions (Rootzén et al., 2018a), which we exploit to build several new models. Explicit
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forms for a number of useful GP densities are given in Section 7; here we discuss their

construction further.

Standard form densities.

We first focus on how to construct suitable densities for the random vector X0, which,

through equation (3.1), lead to densities for the multivariate GP distribution with marginal

parameters σ and γ. Let E be a unit exponential random variable and let T be a d-

dimensional random vector, independent of E. Define max(T ) = max1≤j≤d Tj. Then the

random vector

X0 = E + T −max(T ) (3.2)

is a GP vector with support included in the set {x ∈ Rd : x � 0} and with σ = 1 and

γ = 0 (interpreted as the limit for γj → 0 for all j). Moreover, every such GP vector

can be expressed in this way (Ferreira and de Haan, 2014; Rootzén et al., 2018b). The

probability of the j-th component being positive is P[X0,j > 0] = E[eTj−max(T )], which, in

terms of the original data vector Y , corresponds to the probability P[Yj > uj | Y � u],

i.e., the probability that the j-th component exceeds its corresponding threshold given that

one of the d components does.

Suppose T has a density fT on (−∞,∞)d. By Theorem 5.1 of Rootzén et al. (2018b),

the density of X0 is given by

hT (x;1,0) =
1{max(x) > 0}

emax(x)

∫ ∞
0

fT (x+ log t) t−1 dt. (3.3)

One way to construct models therefore is to assume distributions for T which provide

flexible forms for hT , and for which ideally the integral in (3.3) can be evaluated analytically.

One further construction of GP random vectors is given in Rootzén et al. (2018b). If

U is a d-dimensional random vector with density fU and such that E[eUj ] < ∞ for all

j = 1, . . . , d, then the following function also defines the density of a GP distribution:

hU (x;1,0) =
1{max(x) > 0}
E[emax(U)]

∫ ∞
0

fU (x+ log t) dt. (3.4)

The marginal exceedance probabilities are now P[X0,j > 0] = E[eUj ]/E[emax(U)]. Formulas

(3.3) and (3.4) can be obtained from one another via a change of measure.
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Where fT and fU take the same form, then the similarity in integrals between (3.3)

and (3.4) means that if one can be evaluated, then typically so can the other; several in-

stances of this are given in the models presented in Section 7. What is sometimes more chal-

lenging is calculation of the normalization constant E[emax(U)] =
∫∞

0
P[max(U) > log t] dt

in (3.4). Nonetheless, the model in (3.4) has the particular advantage over that of (3.3)

that it behaves better across various dimensions: if the density of the GP vector X is hU

and if J ⊂ {1, . . . , d}, then the density of the GP subvector XJ | XJ � 0J is simply hUJ .

This property is advantageous when moving to the spatial setting, since the model retains

the same form when numbers of sites change, which is useful for spatial prediction.

Densities after transformation to the observed scale.

The densities above are in the standardized form σ = 1, γ = 0. Using (3.1), we obtain

general densities which are approximations to the conditional density of Y − u given that

Y � u, for the original data Y :

h(x;σ,γ) = h
(

1
γ

log(1 + γx/σ);1,0
) d∏
j=1

1

σj + γjxj
. (3.5)

In (3.5), h may be either hT or hU .

Densities constructed on observed scale.

The models (3.5) are built on a standardized scale, and then transformed to the ob-

served, or “real” scale. Alternatively, models can be constructed directly on the real scale,

which gives the possibility of respecting structures, say additive structures, in a way which

is not possible with the other two models; this approach will be used to model ordered data

in Section 6. One way of presenting this is to define the random vector R in terms of U

in (3.4) through the componentwise transformation

Rj =

(σj/γj) exp(γjUj), γj 6= 0,

σjUj, γj = 0,
(3.6)

and develop suitable models for R. This gives the GP density

hR(x;σ,γ) =
1 {max(x) > 0}
E[emax(U)]

∫ ∞
0

t
∑d
j=1 γjfR

((
g(t;xj, σj, γj)

)d
j=1

)
dt, (3.7)
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where fR denotes the density of R and where

g(t;xj, σj, γj) =

t
γj (xj + σj/γj) , γj 6= 0,

xj + σj log t, γj = 0.

The d components of U are found by inverting equation (3.6). For σ = 1 and γ = 0, the

densities (3.4) and (3.7) are the same.

In light of the abundance of possibilities, we note the following, which may help the

user to select a suitable model: Computation, and particularly simulation, is simplest for

the hT densities, and these models are continuous at γj = 0, for each j. However, spatial

prediction and lower dimensional margins are unnatural for this model class. Instead,

prediction, spatial modelling, and lower dimensional margins work well for the hU densities,

and this model class is also continuous at γj = 0. Finally, for the hR class, prediction,

spatial modelling, and lower dimensional margins are also natural, and the class additionally

permits more physically realistic modelling. However, it is not continuous at γj = 0.

4 Likelihood-based inference

Working within a likelihood-based framework for inference allows many benefits. Firstly,

comparison of nested models can be done using likelihood ratio tests. This is important

as the number of parameters can quickly grow large if margins and dependence are fitted

simultaneously, allowing us to test for simplifications in a principled manner. Secondly,

incorporation of covariate effects is straightforward in principle. For univariate peaks over

thresholds, such ideas were introduced by Davison and Smith (1990), but nonstationarity

in dependence structure estimation has received comparatively little attention. Thirdly,

such likelihoods could also be exploited for a Bayesian approach to inference if desired.

4.1 Censored likelihood

The density (3.5) is the basic ingredient in a likelihood. However, we will use (3.5) as a

contribution only when all components of the observed translated vector Y −u are “large”,

in the sense of exceeding a threshold v, with v ≤ 0. Where some components of Y − u

9



fall below v, the contribution is censored in those components. The reasoning for this is

twofold:

1. For γj > 0, the lower endpoint of the multivariate GP distribution is −σj/γj. Cen-

sored likelihood avoids small values of a component affecting the fit too strongly.

2. Without censoring, bias in the estimation of parameters controlling the dependence

can be larger than that for censored estimation, see Huser et al. (2016).

Censored likelihood for inference on extreme value models was first used by Smith et al.

(1997) and Ledford and Tawn (1997), and is now a standard approach to enable more

robust inference. Let C ⊂ D = {1, . . . , d} contain the indices for which components of

Y − u fall below the corresponding component of v, i.e., Yj − uj ≤ vj for j ∈ C, and

Yj − uj > vj for j ∈ D \ C, with at least one such Yj > uj. For each realization of Y , we

use the likelihood contribution

hC(yD\C − uD\C ,vC ;σ,γ) =

∫
×j∈C(−∞,uj+vj ]

h(y − u;σ,γ) dyC , (4.1)

with yC = (yj)j∈C , which is equal to (3.5) with x = y − u if C is empty, i.e., if all

components yj > uj + vj. The supplementary material contains forms of censored likeli-

hood contributions for the models presented in Section 7. For n independent observations

y1, . . . ,yn of Y | Y 6≤ u, the censored likelihood function to be optimized is

L(θ,σ,γ) =
n∏
i=1

hCi(yi,D\Ci − uD\Ci ,vCi ;θ,σ,γ), (4.2)

where Ci denotes the censoring subset for yi, which may be empty, and θ represents

parameters related to the model that we assumed for the generator.

4.2 Model choice

When fitting multivariate GP distributions to data on the observed scale we have a large

variety of potential models and parameterizations. For non-nested models, Akaike’s In-

formation Criterion (AIC = −2 × log-likelihood + 2 × number of parameters) can be

used to select a model with a good balance between parsimony and goodness-of-fit. When

looking at nested models, e.g., to test for simplifications in parameterization, we can use
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likelihood ratio tests. Because of the many possibilities for model fitting, we propose the

following model-fitting strategy to reduce the computational burden, which we will employ

in Section 5.

(i) Standardize the data to common exponential margins, YE, using the rank transforma-

tion (i.e., the probability integral transform using the empirical distribution function);

(ii) select a multivariate threshold, denoted u on the scale of the observations, and uE

on the exponential scale, using the method of Section 4.3;

(iii) fit the most complicated standard form model within each class (i.e., maximum num-

ber of possible parameters) to the standardized data YE − uE | YE 6≤ uE;

(iv) select as the standard form model class the one which produces the best fit to the

standardized data, in the sense of smallest AIC;

(v) use likelihood ratio tests to test for simplification of models within the selected stan-

dard form class, and select a final standard form model;

(vi) fit the GP margins simultaneously with this standard form model, to Y −u | Y 6≤ u

by maximizing (4.2);

(vii) Use likelihood ratio tests to find simplifications in the marginal parameterization.

Although this strategy is not guaranteed to result in a final GP model that is globally

optimal, in the sense of minimizing an information criterion such as AIC, it should still

result in a sensible model whilst avoiding enumeration and fitting of an unfeasibly large

number of possibilities. The goodness of fit of the final model can be checked via diagnostic

plots and tests (hereafter “diagnostics”).

4.3 Threshold selection and model diagnostics

An important issue that pervades extreme value statistics — in all dimensions — is the

selection of a threshold above which the limit model provides an adequate approximation

of the distribution of threshold exceedances. Here this amounts to “how can we select a

vector u such that Y −u | Y 6≤ u is well-approximated by a GP distribution?”. There are

two considerations to take into account: Yj−uj | Yj > uj should be well-approximated by a

univariate GP distribution, for j = 1, . . . , d, and the dependence structure of Y −u | Y 6≤ u

should be well-approximated by that of a multivariate GP distribution. Marginal threshold
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selection has a large body of literature devoted to it; see Scarrott and MacDonald (2012) and

Caeiro and Gomes (2016) for recent reviews. Threshold selection for dependence models

is a much less well studied problem. Contributions include Lee et al. (2015) who considers

threshold selection via Bayesian measures of surprise, and Wadsworth (2016) who examines

how to make better use of so-called parameter stability plots, offering a method that can be

employed on any parameter, pertaining to the margins or dependence structure. Recently,

Wan and Davis (2017) proposed a method based on asessing independence between radial

and angular distributions.

Here we propose exploiting the stability property of multivariate GP distributions, and

use the measure of asymptotic dependence

χ1:d(q) :=
P[F1(Y1) > q, . . . , Fd(Yd) > q]

1− q
,

where Yj ∼ Fj and the related quantity for the limiting GP distribution

χH(q) :=
P[H1(X1) > q, . . . , Hd(Xd) > q]

1− q
, q ∈ (0, 1)

to guide threshold selection for the dependence structure. For a suitable choice of A,

property (2.4) implies that χH(q) is constant for sufficiently large q such that Hj(Xj) > q

implies Xj > 0 for j ∈ {1, . . . , d}.

If Y ∼ F and Y − u | Y � u ∼ H, then on the region q > maxj Fj(uj), we have

χ1:d(q) = χH(q′) with q′ = {q − F (u)}/{1 − F (u)}. A consequence of this is that χ1:d(q)

should be constant on the region Y > u, if u represents a sufficiently high dependence

threshold. The empirical version χ̂1:d(q) of χ1:d(q) is defined by

χ̂1:d(q) :=

∑n
i=1 1

{
F̂1(Y1) > q, . . . , F̂d(Yd) > q

}
n(1− q)

, q ∈ [0, 1), (4.3)

where F̂1, . . . , F̂d represent the empirical distribution functions. If we use (4.3) to identify

q∗ = inf{0 < q̃ < 1 : χ1:d(q) ≡ χ ∀ q > q̃}, then u = (F−1
1 (q∗), . . . , F−1

d (q∗)) should provide

an adequate threshold for the dependence structure. Once suitable thresholds have been

identified for margins, um, and dependence, ud, then a threshold vector which is suitable

for the entire multivariate model is u = max(um,ud).
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Having identified a multivariate GP model and a threshold above which to fit it, a key

concern is to establish whether the goodness-of-fit is adequate. For the dependence struc-

ture, one diagnostic comes from comparing χ̂1:d(q) for q → 1 to its theoretical limit χ1:d,

which for models hT in (3.3) has the form χ1:d = E
[
min1≤j≤d{eTj−max(T )/E(eTj−max(T ))}

]
,

whilst for models hU in (3.4) we get χ1:d = E
[
min1≤j≤d{eUj/E(eUj)}

]
. The form of χ1:d for

hR models follows through equation (3.6). In some cases these expressions may be obtained

analytically, but they can always be evaluated by simulation (Rootzén et al., 2018b).

A further diagnostic uses that P[Xj > 0] = E[eTj−max(T )] = E[eUj ]/E[emax(U)]. Thus,

one compares P[Yj > uj]/P[Y 6≤ u] with the relevant model-based probability. These are

the same for each margin when the uj are equal marginal quantiles.

Equation (2.4) suggests a model-free diagnostic of whether a multivariate GP model

may be appropriate. To exploit this, one defines a set of interest A, and compares the

number of points of Y − u | Y 6≤ u that lie in A to t times the number of points of

(Y −u−wt)/t
γ | Y 6≤ u lying in A for various choices of t > 1. According to (2.4), the ratio

of these numbers should be approximately equal to 1. Note that setting A = {x : x > 0}

is equivalent to computing χH with H1, . . . , Hd replaced by H+
1 , . . . , H

+
d .

Finally, in the event that the margins can be modelled with identical shape parame-

ters, one can test property (2.5) by examining the adequacy of the implied univariate GP

distribution from a multivariate fit.

5 UK bank returns

We examine weekly negative raw returns on the prices of the stocks from four large UK

banks: HSBC (H), Lloyds (L), RBS (R) and Barclays (B). Data were downloaded from

Yahoo Finance. Letting Zj,t, j ∈ {H,L,R,B}, denote the closing stock price (adjusted

for stock splits and dividends) in week t for bank j, the data we examine are the negative

returns Yj,t = 1−Zj,t/Zj,t−1, so that large positive values of Yj,t correspond to large relative

losses for that stock. The observation period is 10/29/2007 – 10/17/2016, with n = 470

datapoints. The data are unfiltered, i.e., heteroscedasticity has not been removed. This

is because we are not trying to predict at specific time points, but rather understand the

global extremal dependence.
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Figure 1 displays pairwise plots of the negative returns. There is evidence of strong

extremal dependence from these plots, as the largest value of YL, YR, YB occurs simultane-

ously, with positive association amongst other large values. The largest value of YH occurs

at a different time, but again there is positive association between other large values. As is

common in practice the value of χ̂HLRB(q) generally decreases as q increases (see Figure 6

in the supplementary material), but is plausibly stable and constant from slightly above

q = 0.8. Consequently, we proceed with fitting a GP distribution. Ultimately, we wish

to fit a parametric GP model to the raw threshold excesses {Yt − u : Yt 6≤ u}. In view

of the large variety of potential models and parameterizations, we use the model selection

strategy detailed in Section 4.2. Throughout, we use censored likelihood with v = 0.
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Figure 1: Pairwise scatterplots of the negative weekly returns of the stock prices of four UK

banks: HSBC (H), Lloyds (L), RBS (R) and Barclays (B), from 10/29/2007 to 10/17/2016.

Based on the plot of χ̂HLRB(q) we select the 0.83 marginal quantile as the threshold in

each margin; there are 149 observations with at least one exceedance. We fit the models

with densities (7.1), (7.2), (7.3), (7.4) and (7.5) to the standardized data. For the final

model the matrix Σ had diagonal elements fixed at 1, with off-diagonal correlations esti-

mated; this entails some dependence restrictions, see the supplement for further details.

The smallest AIC is given by model (7.1), i.e., where fT (see Section 7) is the density of
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independent Gumbel random variables. We therefore select this class and proceed with

item (v) of the procedure in Section 4.2 to test for simplifications within this class. In

Table 1, model M1 is the most complex model with all dependence parameters. Model M2

imposes the restriction β1 = β2 = β3 = β4 = 0, whilst M3 imposes α1 = α2 = α3 = α4 = α,

and M4 imposes both. We observe that both possible sequences of likelihood ratio tests

between nested models lead to M4 when adopting a 5% significance level. This model only

contains a single parameter, which is a useful simplification.

Table 1: Negative UK bank returns: parameterizations of (7.1) for standardized data.

Model Parameters Number Maximized log-likelihood

M1 α1, α2, α3, α4, β1, β2, β3 7 −917.0

M2 α1, α2, α3, α4 4 −918.2

M3 α, β1, β2, β3 4 −920.8

M4 α 1 −921.0

Finally we fit a full GP distribution using Model M4, and test the hypothesis of a

common shape parameter. Marginal parameter stability plots suggest that the 0.83 quantile

is adequate, which is also supported by diagnostics from the fitted model (supplementary

material, Figure 7). At a 5% significance level, a likelihood ratio test for the hypothesis of

γH = γL = γR = γB provides no evidence to reject the null hypothesis, so a common shape

parameter is adopted. The parameter estimates are displayed in Table 2.

To scrutinize the fit of the model, we examine marginal, dependence, and joint diag-

nostics. Quantile-quantile (QQ) plots for each of the univariate GP distributions implied

Table 2: Negative UK bank returns: maximum likelihood estimates (MLE) and standard

errors (SE) of parameters from the final model for the original data.

α σH σL σR σB γ

MLE 1.29 0.020 0.041 0.038 0.035 0.43

SE 0.14 0.0026 0.0053 0.0052 0.0049 0.082
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for Yt,j − uj | Yt,j > uj are displayed in the supplementary material (Figure 7) indicating

reasonable fits in each case. Estimates of the pairwise χij(q), i 6= j ∈ {H,L,R,B}, are

plotted in Figure 2, with the corresponding fitted value and threshold indicated; tripletwise

plots and the plot of χ̂HLRB(q) show similarly good agreement. Since the model has a single

dependence parameter, all pairs are exchangeable and have the same fitted value of χ for

any fixed dimension.
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Figure 2: Negative UK bank returns: estimates of pairwise χij(q) with fitted pairwise χij

(horizontal line), for HSBC (H), Lloyds (L), RBS (R) and Barclays (B). Clockwise from top

left: χHL, χHR, χHB, χRB, χLB, χLR. The vertical line is the threshold used. Approximate

95% pointwise confidence intervals are obtained by bootstrapping from {Yt : t = 1, . . . , n}.

As the shape parameter may be taken as common across margins, we examine the

sum-stability property given in (2.5). We fit a univariate GP distribution to∑
j∈{H,L,R,B}

(Yt,j − uj)
∣∣∣ ∑
j∈{H,L,R,B}

(Yt,j − uj) > 0, (5.1)

with scale parameter estimate (standard error) obtained as 0.10 (0.021), and shape param-

eter estimate 0.45 (0.17). QQ plots suggest that the fit is good; see the supplementary

material (Figure 8). For comparison,
∑

j∈{H,L,R,B} σ̂j = 0.13 with standard error 0.014 ob-

tained using the delta method, whilst the maximized univariate GP log-likelihood is 63.5,
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and that for the parameters obtained via the multivariate fit is 62.2, showing that the

theory holds well.

Weighted sums of raw stock returns correspond to portfolio performance. We use the

final fitted model to compute two commonly-used risk measures, Value at Risk (VaR) and

Expected Shortfall (ES), for a time horizon of one week. If the conditional distribution of∑
j aj(Yt,j − uj) given the event

∑
j aj(Yt,j − uj) > 0 is GP(

∑
j ajσj, γ), then

VaR(p) =
∑
j

ajuj +

∑
j ajσj

γ

{(
φ

p

)γ
− 1

}
, (5.2)

where 0 < p < φ = P[
∑

j aj(Yt,j−uj) > 0], so that (5.2) is the unconditional 1− p quantile

of
∑

j ajYt,j. We estimate the probability φ by maximum likelihood using the assumption∑
t 1{
∑

j aj(Yt,j − uj) > 0} ∼ Bin(n, φ), and in the univariate model, φ is orthogonal to

the parameters of the conditional excess distribution. In the multivariate model

P
[∑

jaj(Yt,j − uj) > 0
]

= P
[∑

jaj(Yt,j − uj) > 0 | Yt 6≤ u
]
P[Yt 6≤ u] = p(θ) φ̃,

where p(θ) is an expression involving the parameters of the multivariate GP model, and

φ̃ is the proportion of points for which Yt 6≤ u. The expression p(θ) is not tractable here,

thus we continue to estimate φ as the binomial maximum likelihood estimate, and as a

working assumption treat it as orthogonal to the other parameters. However, an estimate

of p(θ) can be obtained by simulation using the estimated θ; the utility of this will be

demonstrated in Figure 4.

The expected shortfall is defined as the expected loss given that a particular VaR

threshold has been exceeded. Under the GP model, and provided γ < 1, it is given by

ES(p) = E
[∑

j ajYt,j |
∑

j ajYt,j > VaR(p)
]

= VaR(p) +
∑
j ajσj+γ[VaR(p)−

∑
j ajuj]

1−γ .

Asymptotic theory suggests that a univariate GP model fit directly to
∑

j aj(Yt,j − uj) or

the implied GP(
∑

j ajσj, γ) model obtained from the multivariate fit could be used. An

advantage of using the GP(
∑

j ajσj, γ) model derived from the multivariate fit is reduced

uncertainty, combined with consistent estimates across different portfolio combinations.

Figures 3 displays VaR curves and confidence intervals for two different weight combina-

tions and for both the univariate and multivariate fits, together with empirical counterparts,
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whilst Figure 9 in the supplementary material shows the corresponding ES curves. For VaR

the univariate fit is closer in the body and the multivariate fit is closer to the data in the

tails. The reduction in uncertainty is clear and potentially quite useful for smaller p. For

ES (supplementary material, Figure 9) the univariate fit estimates smaller values than the

multivariate fit in each case, and seems to reflect the observed data better. However, the

empirical ES values fall within the 95% confidence intervals obtained from the multivariate

model, suggesting that the model is still consistent with the data. Note that the univariate

fit is tailored specifically to the data
∑

j ajYt,j and as such, we would always expect the

point estimates from Figure 3 to look better for the univariate fit. On the other hand,

when interest lies in different functions of the extremes of Yt,j, the multivariate approach

is able to deliver self-consistent inference.
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Figure 3: VaR estimates and pointwise 95% delta-method confidence intervals for portfolio

losses based on the weights given as percentages invested in HSBC, Lloyds, RBS and

Barclays as in the figure title. Estimates based on the multivariate GP fit are on the left

of a pair; estimates based on the univariate fit are on the right.

Figure 4 illustrates how the multivariate model provides more consistent estimates of

VaR across different portfolio combinations compared to the use of multiple univariate

models. To produce the figures, we suppose that
∑

j aj = 100 represents the total amount

available to invest. The value aH = 10 is fixed, with other weights varying, but with each

aj ≥ 1. Two estimates making use of the multivariate model are provided: one for which

a model-based estimate of p(θ) from (5) is used (with estimation based on 100 000 draws

from the fitted model), and one where the empirical binomial estimate of φ is used, as in

Figure 3 and the supplementary material (Figure 9). Both sets of multivariate estimates

suggest much more consistent behaviour across portfolio combinations than the use of
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Figure 4: Maximum likelihood estimates of VaR(0.001) for
∑

j ajYt,j with aH = 10 and

aB = 90− aL − aR representing a portfolio of stocks of HSBC, Lloyds, RBS and Barclays.

Left: from multivariate model including simulation to estimate p(θ) from (5); centre: from

multivariate model using the binomial estimate of φ; right: from univariate model fit to

each combination separately. Note the different colour scales on each panel.

univariate fits. In particular, behaviour is very smooth once a model-based estimate for

p(θ) is included.

6 Landslides

Rainfall can cause ground water pressure build-up which, if very high, can trigger a land-

slide. The cause can be short periods with extreme rain intensities, or longer periods of

up to three days of more moderate, but still high rain intensities. Guzzetti et al. (2007)

consolidate many previous studies and propose threshold functions which link duration in

hours, D, with total rainfall in millimeters, P , such that rainfall below these thresholds are

unlikely to cause landslides. For highland climates in Europe this function is

P = 7.56×D0.52. (6.1)

Thus, a one-day rainfall below 39.5 mm, a two-day rainfall below 56.6 mm, or a three-day

rainfall below 69.9 mm are all unlikely to cause a landslide.

We use a long time series of daily precipitation amounts P1, . . . , PN collected by the

Abisko Scientific Research Station in northern Sweden in the period 1/1/1913 – 12/ 31/2014,

to estimate a lower bound for the probability of the occurrence of rainfall events which may
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lead to landslides. The total cost of landslides in Sweden is around SEK 200 million/year.

There have been several landslides in the Abisko area in the past century, for instance in

October 1959, August 1998, and July 2004 (Rapp and Strömquist, 1976; Jonasson and

Nyberg, 1999; Beylich and Sandberg, 2005). The rainfall episodes causing the landslides

are clearly visible in the data, with 24.5 mm of rain on October 5, 1959, 21.0 mm of rain

on August 24, 1998, and 61.9 mm of rain on July 21, 2004. The 2004 rain amount is well

above the 1-day risk threshold, whereas the 1959 and 1998 rain amounts are below the

1-day threshold. The explanation may be that the durations of the latter two rain events

were shorter than 24 hours, and that the threshold in (6.1) was still exceeded.

We wish to construct a dataset Y1, . . . ,Yn ∈ R3, for n < N , whose components represent

daily, two-day, and three-day extreme rainfall amounts respectively, to account for longer

periods of moderate rainfall. Based on a mean residual life plot and parameter stability

plots (not shown here) for the daily rainfall amounts P1, . . . , PN , we choose the threshold

u = 12, which corresponds roughly to the 99% quantile. Figure 5 shows the cumulative

three-day precipitation amounts Pi + Pi+1 + Pi+2 for i ∈ {1, . . . , N − 2}. The threshold

u is used to extract clusters of data containing extreme episodes; the data Y1, . . . ,Yn are

constructed as follows:

1. Let i correspond to the first sum Pi +Pi+1 +Pi+2 which exceeds the threshold u and

set P(1) = max(Pi, Pi+1, Pi+2).

2. Let the first cluster C(1) consist of P(1) plus the five values preceding it and the five

values following it.

3. Let Y11 be the largest value in C(1), Y12 the largest sum of two consecutive non-zero

values in C(1), and Y13 the largest sum of three consecutive non-zero values in C(1).

4. Find the second cluster C(2) and compute Y2 = (Y21, Y22, Y23) in the same way, starting

with the first observation after C(1).

Continuing this way, we obtain a dataset Y1, . . . ,Yn, with d = 3 and n = 580.

Annual maxima of a similar data set were analysed in Rudvik (2012), with the con-

clusion that there was no time trend. We fitted a univariate GP distribution with a fixed

shape parameter γ but a loglinear trend for the scale parameter to the marginal compo-

nents (Yi)
n
i=1, and also did not find any significant trend; see the supplementary material.
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Figure 5: Precipitation data in Abisko: cumulative three-day precipitation amounts Pi +

Pi+1 + Pi+2 for i ∈ {1, . . . , N − 2} with threshold u = 12 in red.

The estimated shape parameters obtained from fitting univariate GP distributions to the

marginal threshold excesses are close to zero (the hypothesis γ = 0 is not rejected at a 5%

level) and the confidence intervals for the scale parameters overlap (Table 3). Note that

a common σ and γ only implies that the marginal distributions are equal conditional on

exceeding the threshold; it does not imply that the unconditional probabilities P[Yj > uj]

are equal.

Table 3: Precipitation data in Abisko: estimates of the parameters of marginal GP models

for thresholds u = 12, u = 13.5 and u = 14 respectively; standard errors in parentheses.

Yi1 Yi2 Yi3

γ̂ -0.06 (0.05) -0.02 (0.06) -0.01 (0.05)

σ̂ 8.26 (0.69) 9.34 (0.74) 9.96 (0.74)

In the following analysis, we set σ = σ1 and γ = γ1, and we fit the structured models

from Section 7.3, both with γ = 0 and with γ > 0, using censored likelihood with v = 0.

To ensure identifiability we set λ1 = 1 for both models. We choose u = u1 with u = 24

since parameter estimates stabilize for thresholds around this value, and continue with the

142 data points whose third components exceed u = 24.

The estimates of σ are somewhat higher than in the marginal analysis and again the

hypothesis γ = 0 was not rejected (Table 4). The higher estimate of σ is intuitively
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reasonable since the maximum likelihood estimators for γ and σ are negatively correlated

and since γ̂ is positive for the second model.

To estimate the risk of a future landslide we assume that the extreme rainfalls, i.e., the

142 data points whose third components exceed u = 24, occur in time as a Poisson process.

The number of extreme rainfalls in a year then follows a Poisson distribution whose mean

we will denote by ζ. Assuming that the sizes of the excesses are independent of the Poisson

process, the yearly number of rainfalls for which at least one component exceeds the risk

level y = (39.5, 56.6, 69.9) (obtained from (6.1)) has a Poisson distribution with parameter

µ = ζ

{
1−H

(
y − u
σ

;1,0

)}
. (6.2)

Estimating ζ by #extreme rainfalls
#years

= 142/102 and H by integrating the density (7.7), using

the parameter estimates (λ̂1, λ̂2, λ̂3, σ̂) from the top row of Table 4, we obtain the estimate

µ̂ = 0.102. Hence, for any given year, the probability that there is exactly one rainfall

episode which could lead to a landslide is 0.092, and the probability that there is at least

one such rainfall is 0.097. This is higher than the result in Rudvik (2012) who used

data from 1913–2008 and analysed daily, three-day and five-day precipitation amounts to

estimate the yearly risk of at least one dangerous rainfall episode. In the data, we observed

seven exceedances of y over 102 years. This is not too far from the ten extreme rainfalls

that we would expect based on our model.

Table 4: Precipitation data in Abisko: parameter estimates for the structured components

model with u = 24; standard errors in parentheses.

Model λ̂1 λ̂2 λ̂3 σ̂ γ̂ Log-likelihood

γ = 0 1.00 0.84 (0.13) 1.08 (0.18) 10.17 (0.80) 0 -870.0

γ > 0 1.00 0.83 (0.12) 1.06 (0.18) 9.14 (0.99) 0.11 (0.08) -868.9

Marginal QQ-plots show good fits for components 2 and 3, but less so for component 1

for the model with γ = 0 (Figure 5 in the supplementary material). This is due to the

restriction σ = σ1 used to ensure that the components are ordered.

For the dependence structure, using Equation (2.4) (see also Section 4.3) and γ = 0,
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we display the empirical counterpart of the ratio

P[Y − u ∈ A | y � u]

tP[Y − u− σ log t ∈ A | Y � u]
, (6.3)

where σ is the vector of scale parameter estimates of the marginal GP models above u = 24

for the sets Aj = {x ∈ R3 : xj > 0}, j ∈ {1, 2, 3} (Figure 6). The plots indicate that a GP

dependence structure is appropriate. The plot for A1 uses few observations and hence is

more variable.
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Figure 6: Abisko precipitation data: Ratio (6.3) with u = 24. Approximate 95% pointwise

confidence intervals are obtained by bootstrapping from {Yi : i = 1, . . . ,Yn}.

Formulas for pairwise and trivariate χ and comparisons with their empirical counterpart

can be found in Section F of the supplementary material. The model-based estimates of

exceedance probabilities are P[X1 > 0] = 0.34 (0.03), P[X2 > 0] = 0.63 (0.03) using values

from the top row in Table 4 and delta method standard errors. The empirical probabilities

are 0.32 and 0.69 respectively. Plots of the empirical probabilities for a range of different

thresholds (not shown) confirm the chosen threshold value u = 24.

The test statistic in Einmahl et al. (2018, Corollary 2.5) compares the estimates of

(χ12, χ13, χ23, χ123) with an empirical estimator. It depends on a value k which represents

a threshold: a low value of k corresponds to a high threshold. Asymptotically the test

statistic has a chi-square distribution with 2 degrees of freedom whose 95% quantile is

5.99. For k ∈ {50, 75, 100, 125, 150} we obtain the values 1.08, 4.48, 1.17, 5.42, and 0.99,

and hence cannot reject the structured components model for any value of k.
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7 Parametric models

Here we derive the explicit densities for a number of GP models. To control bias when

fitting a multivariate GP distribution to threshold excesses, we often need to use censored

likelihood (Section 4) and thus not just to be able to calculate densities, but also inte-

grals of those densities. Whilst any (continuous) distribution may be used as generator,

this requirement together with the considerations in the beginning of Section 3 guide our

choice of models presented below. For each model we give the uncensored densities in the

subsequent subsections, and their censored versions are given in the supplementary mate-

rial. The supplementary material also contains calculations of the bivariate tail dependence

coefficients χ1:2, where these are available in closed form.

In Sections 7.1 and 7.2 we consider particular instances of densities fT and fU to

evaluate the corresponding densities hT and hU in (3.3) and (3.4). As noted in Section 3,

even if fT = fU , the GP densities hT and hU are still different in general. Thus we will

focus on the density of a random vector V , denoted fV , and create two GP models per fV

by setting fT = fV and then fU = fV , in the latter case with the restriction E[eUj ] < ∞.

The support for each GP density given in Sections 7.1 and 7.2 is {x ∈ Rd : x 6≤ 0}, and for

brevity, we omit the indicator 1{max(x) > 0}. In Section 7.3 we exhibit a construction of

hR in (3.7), with support depending on γ and σ. In the supplementary material, we show

scatterplots for some of these models together with the corresponding density contours.

In all models, identifiability issues occur if T or U have unconstrained location param-

eters β, or if R has unconstrained scale parameters λ. Indeed, replacing β or λ by β + k

or cλ, respectively, with k ∈ R and c > 0, leads to the same GP distribution (Rootzén

et al., 2018b, Proposition 1). A single constraint, such as fixing the first parameter in the

parameter vector, is sufficient to restore identifiability.

7.1 Generators with independent components

Let V ∈ Rd be a random vector with independent components and density fV (v) =∏d
j=1 fj(vj), where fj are densities of real-valued random variables. The dependence struc-

ture of the associated GP distributions is determined by the relative heaviness of the tails

of the fj: roughly speaking, if components have high probability of taking very different
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values, then dependence is weaker than if all components have a high probability of taking

similar values. Throughout, x ∈ Rd is such that max(x) > 0.

Generators with independent Gumbel components: Let

fj(vj) = αj exp{−αj(vj − βj)} exp[− exp{−αj(vj − βj)}], αj > 0, βj ∈ R.

Case fT = fV . Density (3.3) is

hT (x;1,0) = e−max(x)

∫ ∞
0

t−1

d∏
j=1

αj
(
texj−βj

)−αj
e−(texj−βj )−αj dt. (7.1)

If α1 = . . . = αd = α then the integral can be explicitly evaluated:

hT (x;1,0) = e−max(x)αd−1
Γ(d)

∏d
j=1 e

−α(xj−βj)(∑d
j=1 e

−α(xj−βj)
)d .

Case fU = fV . The marginal expectation of the exponentiated variable is E[eUj ] =

eβjΓ(1− 1/αj) for αj > 1 and E[eUj ] =∞ for αj ≤ 1. For min1≤j≤d αj > 1, density (3.4) is

hU (x;1,0) =

∫∞
0

∏d
j=1 αj

(
texj−βj

)−αj e−(texj−βj )−αj dt∫∞
0

(
1−

∏d
j=1 e

−(t/eβj )−αj
)

dt
. (7.2)

If α1 = . . . = αd = α then this simplifies to:

hU (x;1,0) =
αd−1Γ(d− 1/α)

∏d
j=1 e

−α(xj−βj)(∑d
j=1 e

−α(xj−βj)
)d−1/α

Γ(1− 1/α)
(∑d

j=1 e
βjα
)1/α

.

Observe that if in addition to α1 = . . . = αd = α, also β1 = . . . = βd = 0, then this is the

multivariate GP distribution associated to the well-known logistic max-stable distribution.

Generators with independent reverse Gumbel components: Let

fj(vj) = αj exp{αj(vj − βj)} exp[− exp{αj(vj − βj)}], αj > 0, βj ∈ R.

As the Gumbel case leads to the multivariate GP distribution associated to the logistic

max-stable distribution, when fU = fV , the reverse Gumbel leads to the multivariate GP

distribution associated to the negative logistic max-stable distribution1. Calculations are

very similar to the Gumbel case, and hence omitted.

1The authors are grateful to Clément Dombry for having pointed out this connection.
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Generators with independent reverse exponential components: Let

fj(vj) = αj exp{αj(vj + βj)}, vj ∈ (−∞,−βj), αj > 0, βj ∈ R.

Case fT = fV . Density (3.3) is

hT (x;1,0) = e−max(x)

∫ e−max(x+β)

0

t−1

d∏
j=1

αj(te
xj+βj)αj dt

=
e−max(x)−max(x+β)

∑d
j=1 αj∑d

j=1 αj

d∏
j=1

αj(e
xj+βj)αj . (7.3)

Case fU = fV . The expectation of the exponentiated variable is E[eUj ] = 1/
{
eβj(1/αj + 1)

}
,

which is finite for all permitted parameter values. Density (3.4) is

hU (x;1,0) =
1

E[emax(U)]

∫ e−max(x+β)

0

d∏
j=1

αj(te
xj+βj)αj dt

=
(e−max(x+β))

∑d
j=1 αj+1

E[emax(U)]

1

1 +
∑d

j=1 αj

d∏
j=1

αj(e
xj+βj)αj . (7.4)

The normalization constant may be evaluated as

E[emax(U)] =

∫ ∞
0

(
1−

∏d
j=1 min(eβj t, 1)αj

)
dt

= e−β(d) −
∏d

j=1 e
αjβj∑d

j=1 αj + 1
e−β(1)(

∑d
j=1 αj+1)

+
d−1∑
i=1

∏d
j=i+1 e

α[j]β(j)∑d
j=i+1 α[j] + 1

(
e−β(i+1)(

∑d
j=i+1 α[j]+1) − e−β(i)(

∑d
j=i+1 α[j]+1)

)
,

where β(1) > β(2) > · · · > β(d) and where α[j] is the component of α with the same index as

β(j) (thus the α[j]s are not ordered in general). As far as we are aware, the associated max-

stable model is not well known. If β = β1, then E[emax(U)] = [e−β
∑d

j=1 αj]/[1 +
∑d

j=1 αj],

and hU = hT .

Generators with independent log-gamma components: if eVj ∼ Gamma(αj, 1) then

fj(vj) = exp(αjvj) exp{− exp(vj)}/Γ(αj), αj > 0, vj ∈ (−∞,∞).

Case fT = fV . Density (3.3) is

hT (x;1,0) = e−max(x)

d∏
j=1

(
eαjxj

Γ(αj)

)∫ ∞
0

t
∑d
j=1 αj−1e−t

∑d
j=1 e

xj
dt
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=
Γ
(∑d

j=1 αj

)
∏d

j=1 Γ(αj)

e
∑d
j=1 αjxj−max(x)

(
∑d

j=1 e
xj)

∑d
j=1 αj

.

Case fU = fV . The marginal expectation of the exponentiated variable is E[eUj ] = αj,

hence finite for all permitted parameter values. Density (3.4) is

hU (x;1,0) =
1

E[emax(U)]

d∏
j=1

(
eαjxj

Γ(αj)

)∫ ∞
0

t
∑d
j=1 αje−t

∑d
j=1 e

xj
dt

=
1

E[emax(U)]

Γ
(∑d

j=1 αj + 1
)

∏d
j=1 Γ(αj)

e
∑d
j=1 αjxj−max(x)

(
∑d

j=1 e
xj)

∑d
j=1 αj+1

.

The normalization constant is

E[emax(U)] =
Γ
(∑d

j=1 αj + 1
)

∏d
j=1 Γ(αj)

∫
∆d−1

max(u1, . . . , ud)
d∏
j=1

u
αj−1
j du1 · · · dud−1,

where ∆d−1 = {(u1, . . . , ud) ∈ [0, 1]d : u1 + · · ·+ud = 1} is the unit simplex, and the integral

can be easily computed using the R package SimplicialCubature. This GP distribution is

associated to the Dirichlet max-stable distribution (Coles and Tawn, 1991; Segers, 2012).

7.2 Generators with multivariate Gaussian components

Let fV (v) = (2π)−d/2|Σ|−1/2 exp{−(v − β)TΣ−1(v − β)/2}, where β ∈ Rd is the mean

parameter and Σ ∈ Rd×d is a positive-definite covariance matrix. As before, max(x) > 0.

For calculations, it is simplest to make the change of variables s = log t in (3.3) and (3.4).

Case fT = fV . Density (3.3) is

hT (x;1,0) = e−max(x)

∫ ∞
−∞

(2π)−d/2

|Σ|1/2
exp

{
−1

2
(x− β − s1)TΣ−1(x− β − s1)

}
ds

=
(2π)(1−d)/2|Σ|−1/2

(1TΣ−11)1/2
exp

{
−1

2
(x− β)TA(x− β)−max(x)

}
(7.5)

with

A = Σ−1 − Σ−111TΣ−1

1TΣ−11
, (7.6)

a d× d matrix of rank d− 1.
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Case fU = fV . The expectation E[eUj ] = eβj+Σjj/2 is finite for all permitted parameter

values, where Σjj denotes the jth diagonal element of Σ. Density (3.4) is

hU (x;1,0) =
1

E[emax(U)]

∫ ∞
−∞

(2π)−d/2

|Σ|1/2
exp

{
−1

2
(x− β − s1)TΣ−1(x− β − s1)− s

}
ds

=
(2π)(1−d)/2|Σ|−1/2

E[emax(U)](1TΣ−11)1/2
exp

{
−1

2

[
(x− β)TA(x− β) +

2(x− β)TΣ−11− 1

1TΣ−11

]}
,

with A as in (7.6). This is the GP distribution associated to the Brown–Resnick or

Hüsler–Reiss max-stable model (Kabluchko et al., 2009; Hüsler and Reiss, 1989). A vari-

ant of the density formula with E[eUj ] = 1 (equivalently β = −diag(Σ)/2) was given in

Wadsworth and Tawn (2014). The normalization constant is
∫∞

0
[1− Φd(log t1− β; Σ)] dt,

where Φd(·; Σ) is the zero-mean multivariate normal distribution function with covariance

matrix Σ. This normalization constant can be expressed as a sum of multivariate normal

distribution functions (Huser and Davison, 2013).

7.3 Generators with structured components

We present a model for R based on cumulative sums of exponential random variables and

whose components are ordered; for the components of the corresponding GP vector to

be ordered as well, we assume that γ = γ1 and σ = σ1. We restrict our attention to

γ ∈ [0,∞) in view of the application we have in mind: this model is used in Section 6 to

model cumulative precipitation amounts which may trigger landslides.

Case γ = 0. By construction, the densities hR( · ;1,0) and hU ( · ;1,0) coincide since

R = U . Let R ∈ (−∞,∞)d be the random vector whose components are defined by

Rj = log
(∑j

i=1Ei

)
, Ej

iid∼ Exp(λj), j = 1, . . . , d,

where the λj are the mean values of the exponential distributions. Its density, fR, is

fR(r) =


(∏d

j=1 λje
rj

)
exp

{
−
∑d

j=1(λj − λj+1)erj
}
, if r1 < . . . < rd,

0, otherwise,

where we set λd+1 = 0. In view of (3.4), R1 < . . . < Rd (or equivalently U1 < . . . < Ud)

implies X0,1 < . . . < X0,d. The density of X0 is given as follows: if x1 < . . . < xd, then

hR(x;1,0) =
1 (xd > 0)

E[eRd ]

(
d∏
j=1

λje
xj

)∫ ∞
0

td exp

{
−t

(
d∑
j=1

(λj − λj+1)exj

)}
dt
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=
1(xd > 0) d!

∏d
j=1 λje

xj(∑d
j=1 λ

−1
j

)(∑d
j=1(λj − λj+1)exj

)d+1
, (7.7)

while hR(x;1,0) is zero otherwise. The density hR(x;σ,0) is obtained from (3.5).

Case γ > 0. Let R ∈ (0,∞)d be the random vector whose components are defined by

Rj =

j∑
i=1

Ei, Ej
iid∼ Exp(λj), j = 1, . . . , d,

Its density, fR, is similar to the one for γ = 0. Then

E
[
emax(U)

]
= E

[
max
1≤j≤d

(
γRj

σ

)1/γ
]

=
(γ
σ

)1/γ

E
[
R

1/γ
d

]
.

The distribution of Rd is called generalized Erlang if λi 6= λj for all i 6= j (Neuts, 1974),

and, letting fRd denote its density we get

E
[
R

1/γ
d

]
=

∫ ∞
0

r1/γfRd(r) dr = Γ

(
1

γ
+ 1

) d∑
i=1

λ
−1/γ
i

(
d∏

j=1,j 6=i

λj
λj − λi

)
.

If λ1 = . . . = λd, then Rd follows an Erlang distribution. By (3.7), the density of X

becomes, for xd > . . . > x1 > −σ/γ and xd > 0,

hR(x;σ,γ) =

(∏d
j=1 λj

) ∫∞
0
tdγ exp

{
−tγ

∑d
j=1(λj − λj+1)(xj + σ/γ)

}
dt(

γ
σ

)1/γ E
[
R

1/γ
d

]
=

(∏d
j=1 λj

) (
γ
σ

)−1/γ
Γ
(
d+ 1

γ

)
/Γ
(

1
γ

)
(∑d

j=1(λj − λj+1)xj + (σ/γ)λ1

)d+1/γ∑d
i=1 λ

−1/γ
i

(∏d
j=1,j 6=i

λj
λj−λi

) .
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SUPPLEMENTARY MATERIAL

Supporting information: Details of censored likelihoods, simulation study, and addi-

tional information relating to the analyses in Sections 5 and 6. (.pdf)

Code and data: Code and data for the analyses in Sections 5 and 6, with description

(.zip)
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