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Abstract: 11 

Fluoroquinolone antibiotics (FQs) are ubiquitous and ionizable in surface waters. Here we 12 

investigate gatifloxacin (GAT) and balofloxacin (BAL), two widely used FQs, and determine 13 

the photochemical reactivity of their respective dissociation species that arise at different pH to 14 

understand the relevance and pathways of phototransformation reactions. Simulated-sunlight 15 

experiments and matrix calculations showed that neutral forms (HFQs0) of the two antibiotics 16 

had the highest apparent photolytic efficiency and hydroxyl-radical oxidation reactivity. Based 17 

on the pH-dependent photochemical reactivities, the solar apparent photodegradation half-lives 18 

(t1/2) in sunlit surface waters ranged from 14.5 – 169 min and was 1 – 2 orders of magnitude 19 

faster than hydroxyl-radical induced oxidation (t1/2 = 20.9 – 29.8 h). The corresponding 20 

pathways were proposed based on the identification of key intermediates using HPLC-ESI-21 

MS/MS. The apparent photodegradation induced defluorination, decarboxylation, and 22 

piperazinyl oxidation and rearrangement, whereas hydroxyl-radical oxidation caused 23 
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hydroxylated defluorination and piperazinyl hydroxylation. The photomodified toxicity of GAT 24 

and BAL was examined using an Escherichia coli activity assay. E. Coli activity was not 25 

affected by BAL, but was significantly affected by the photo-modified solutions of GAT, 26 

indicating that primary photo-degradates have a comparable or higher antibacterial activity than 27 

the parent GAT. In fresh water and seawater this antibacterial activity remained high for up to 28 

24 h, even after GAT had undergone significant photodegradation (>1 half-life), indicating the 29 

potential impact of this chemical on microbial communities in aquatic systems. 30 

Keywords: Fluoroquinolones, Dissociation, Phototransformation kinetics, Pathways, Hydroxyl 31 

radicals 32 

 33 

1. Introduction 34 

The occurrence of antibiotics as micropollutants in surface waters is receiving increasing 35 

attention (Baena-Nogueras et al., 2017; Li et al., 2016; Luo et al., 2011; Schwarzenbach et al., 36 

2006). Among antibiotics, fluoroquinolones (FQs) are an important class of ‘emerging’ 37 

pollutant in surface waters and are considered the fourth largest class of antibiotics with regards 38 

their production and consumption (Sturini et al., 2014) (Van Doorslaer et al., 2014). Once 39 

administered to humans or livestock, antibiotics maybe only partially metabolized and therefore 40 

can enter agricultural runoff waters and wastewaters. Furthermore, some antibiotics may not be 41 

effectively removed during wastewater treatment processes resulting in their occurrence in final 42 

treated effluents and receiving waters (Chen et al., 2013; Liu et al., 2017; Luo et al., 2011; Meng 43 

et al., 2016; Polesel et al., 2016; Schwarzenbach et al., 2006) and this is particularly relevant in 44 

China with their widespread occurrence in coastal areas (Fig. S1). As part of the risk assessment 45 

process it is therefore pertinent to understand the longevity and fate of FQs in aquatic systems. 46 

FQs show resistance to hydrolysis and biodegradation in surface waters (Cardoza et al., 2005; 47 

Ge et al., 2010) and therefore photochemical transformation is considered to be an important 48 
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transformation and loss pathway in the aqueous euphotic zone (Ge et al., 2010) (Sturini et al., 49 

2015) (Wammer et al., 2013). FQs can absorb sunlight directly and undergo apparent photolysis, 50 

including direct photolysis and self-sensitized photooxidation via reactive oxygen species (ROS, 51 

such as hydroxyl radicals, ·OH). FQs might also undergo indirect photodegradation or 52 

sensitized photooxidation mediated by the photogenerated ·OH from dissolved organic matter, 53 

Fe(III) and nitrate (Fisher et al., 2006; Grannas et al., 2014; Mack and Bolton, 1999; Walse et 54 

al., 2004). Furthermore, photomodified FQs demonstrate toxicity to Vibrio fischeri and 55 

photoenhanced antibacterial activity to E. coli, raising concerns about their impact on aquatic 56 

microorganisms (Ge et al., 2010; Ge et al., 2015; Li et al., 2011). 57 

The environmental photochemical transformation of individual FQs is now reported in the 58 

literature (Ge et al., 2010; Ge et al., 2015; Porras et al., 2016; Sturini et al., 2010; Wei et al., 59 

2013). For example, FQs, such as ciprofloxacin (Ge et al., 2010), danofloxacin (Sturini et al., 60 

2012), norfloxacin (Niu et al., 2016), marbofloxacin and enrofloxacin (Sturini et al., 2010), 61 

have been found to follow apparent first-order photodegradation kinetics. Although dissociation 62 

of FQs was not fully considered, these previous studies laid a solid foundation for further insight 63 

into the phototransformation kinetics. As the molecular structures contain ionisable groups 64 

(e.g., −COOH and −NHn), many FQs are ionisable and will undergo acid-base dissociation 65 

depending on the environmental pH. Therefore, to assess the environmental photochemical fate 66 

of FQs, the effects of acid-base dissociation and the susceptibility of different ionised forms to 67 

photodegrade should be considered.  68 

Several studies have now reported the phototransformation pathways of FQs in pure water, 69 

mainly focusing on their apparent photolysis (Baena-Nogueras et al., 2017; Ge et al., 2010; 70 

Sturini et al., 2010) (Yan and Song, 2014) and hydroxyl-radical oxidation (Ge et al., 2015), 71 

although a variety of chemistries exist depending on the FQ in question and the environmental 72 

conditions (Ge et al., 2010; Ge et al., 2015; Sturini et al., 2010; Wei et al., 2013). Relevant 73 
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pathways and mechanisms of the concerned FQs are clarified, which is of importance to 74 

understand the risks they may pose. However, for several new widely used FQs, such as 75 

gatifloxacin (GAT) and balofloxacin (BAL) that have been frequently detected in 76 

environmental waters (Bu et al., 2013; Xiao et al., 2008), their phototransformation pathways 77 

still remain unclear. The aim of this study was to clarify the aqueous photodegradation of GAT 78 

and BAL, determining degradation kinetics and the formation of photoproducts over a range of 79 

environmentally-relevant pHs and to investigate changes in their antibacterial activity 80 

following photo-transformation. 81 

 82 

2. Materials and methods 83 

2.1. Reagents and materials 84 

GAT and BAL (both purity 99.0%) were obtained from different suppliers (Table S1). 85 

Acetonitrile and methanol (Tedia Inc.) were of high-performance liquid chromatography 86 

(HPLC) grade. Ultrapure water was prepared using a Milli-Q Millipore system (Waters, USA). 87 

All other reagents used in the experiment were of guaranteed grade. Oasis HLB cartridges 88 

(WAT106202) were purchased from Waters, USA. The supplier and culture of a freeze-dried 89 

wild-type E. coli K12 (ATCC 23716) has been provided in one of our recent studies (see Ge et 90 

al., 2015). 91 

2.2. Photodegradation experiments 92 

A Pyrex-well cooled and filtered xenon lamp (1 kW) was used to simulate sunlight (λ > 290 93 

nm). Aqueous FQ solutions (C0 = 10 μM), pipetted into quartz tubes and placed into a merry-94 

go-round apparatus, were irradiated and sampled over each irradiation period. A 380 nm cut-95 

off filter (λ > 380 nm) was obtained from Beijing Lighting Research Institute of China and used 96 

when needed. To compare the FQ apparent photolysis rate constants (kAP,FQs) under different 97 

pHs, phosphate buffers were used to adjust the solution pH and the data were fitted with the 98 
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first-order-kinetic equation. The photolytic quantum yields (ΦAP) were determined under the 99 

same conditions. Furthermore, to investigate the hydroxyl-radical oxidation reactivities, the 100 

bimolecular rate constants (k·OH,FQs) for the reaction between FQs and ·OH were determined 101 

according to the competition kinetic method (Ge et al., 2015).  102 

For each FQ, individual kAP,i or k·OH,i of the fully protonated (H2FQs+), neutral (HFQs0), and 103 

anionic forms (FQs-) were fitted by Matrix (1): 104 
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where δi represents the fraction of each FQ form (i) and the values are referred to Fig. S2, kFQs 106 

is kAP,FQs or k·OH,FQs at different pH, and kH2FQs+ − kFQs- represent the kAP,i or k·OH,i of the three 107 

FQ forms to be fitted. 108 

The irradiated solutions were sampled to investigate phototransformation products and the 109 

corresponding photomodified toxicity of GAT and BAL. A Waters UPLC was employed to 110 

analyze the FQ concentrations. Solid-phase extraction and LC-MS/MS were used to enrich and 111 

identify the intermediates, respectively. The analysis is further detailed in the Supplementary 112 

material.  113 

2.3. Antibacterial activity bioassay 114 

Antibacterial activity changes induced by the apparent photolysis were examined with 115 

Escherichia coli (E. coli). To better understand environmental risks, the experiment was carried 116 

out for photolyzed FQs in pure water and natural waters. The assay was conducted following 117 

the Chinese standard method QB/T 2738-2012 (Ge et al., 2015). The plated inhibition zone 118 

diameters (mm) were measured and recorded as antibacterial activity indexes (Tao et al., 2010). 119 

Each run was conducted in triplicate and one-way analyses of variance (ANOVAs) were used 120 

to assess any changes in antibacterial activity through phototransformation of the parent FQs. 121 
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 122 

3. Results and Discussion 123 

3.1. Apparent photolytic kinetics of neutral and dissociated FQ species.  124 

No significant loss of GAT and BAL was observed in the dark controls, eliminating the 125 

possibility of thermal and hydrolytic degradation. The FQs were observed to degrade relatively 126 

quickly (minutes to hours) under the simulated solar irradiation, and followed pseudo-first-127 

order kinetics with the data conforming to a linear regression (r2 > 0.95) of ln(C/C0) vs time (t). 128 

As shown in Fig. 1, their apparent photolytic rate constants (kAP,FQs) were found to be pH-129 

dependent. With the increase of pH from 3 to 11, kAP,FQs of the FQs initially increased with peak 130 

values at pH = 8 (Fig. 1), followed by a decline at higher pHs (>8). The UV-vis absorption 131 

spectrum also varied at different pH conditions (Fig. S3). Previous studies have also shown that 132 

k for other FQs, including ciprofloxacin and sarafloxacin, varied with pH (Ge et al., 2010; 133 

Porras et al., 2016; Wei et al., 2013). To clarify the pH effect, kAP,i of the individual dissociation 134 

species was determined. 135 

   136 

Fig. 1. Effect of pH on the apparent photodegradation rate constants of gatifloxacin and balofloxacin (C0 = 137 

10 μM). Error bars represent one standard error. 138 

 139 

Based on the matrix calculations, kAP,i for H2FQs+, HFQs0 and FQs- were determined for both 140 

GAT and BAL respectively (Table S2). Furthermore, the corresponding quantum yield (ФAP,i) 141 

of each dissociation species was determined and these values are listed in Table 1. The neutral 142 

HFQs0 photodegraded the fastest (Table S2) and had the highest photolytic efficiency (Table 143 

1), followed by H2FQs+ and FQs-. Based on the ΦAP,i values, δi values (Fig. S2) and the method 144 

of Leifer (Leifer, 1988; OECD, 1997), environmental rate constants (kAP,E) and half-lives (tAP,E) 145 

were calculated according to Eqs. 2 and 3 for the solar photodegradation of the FQs in sunlit 146 

surface waters and at 45° N latitude for summer and winter, respectively:  147 
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kAP,E = ∑δi[2.303ΦAP,i∑(Zλελ,i)]                     (2) 148 

AP,E
AP,E

ln 2
t

k
                                   (3) 149 

where Zλ is tabular solar photon flux at noon of summer and winter, assuming continuous 150 

irradiation (Leifer, 1988; OECD, 1997), and ελ,i is the molar extinction coefficient for the 151 

individual FQ species (Fig. S4). As listed in Table 1, the calculated tAP,E values clearly depend 152 

on the pH and the seasonal solar irradiance. Compared to the estimated solar photodegradation 153 

half-lives of the FQs in our previous study (Ge et al., 2010), the current method of determining 154 

tAP,E (that takes into account pH and the major speciated forms of the FQs) is likely to be a 155 

better reflection of FQ fate in environmental waters.  156 

 157 

Table 1. Apparent photolytic quantum yields (ΦAP,i) for the different dissociation FQ species, and the 158 

corresponding environmental half-lives (tAP,E at 45° N latitude) based on apparent photolysis including direct 159 

and self-sensitized photodegradation in sunlit surface waters. 160 

 161 

3.2. Hydroxyl-radical oxidation kinetics of different dissociation FQ species.  162 

The determined values for the bimolecular reaction rate constants (k·OH,FQs) between the FQs 163 

and aqueous hydroxyl radicals (·OH) under different pHs are listed in Table S3. The k·OH,FQs 164 

values were found to be pH-dependent and to exhibit a maximum value at pH 7. As the FQs 165 

underwent two acid-base processes at given pH values, the hydroxyl-radical oxidation 166 

reactivity of each protonation state was quantified. As shown in Table 2, the fitting results 167 

indicated that HFQs0 reacted the fastest with ·OH, followed by FQs- and H2FQs+. 168 

In sunlit surface waters, ·OH are ubiquitous and the most important transient oxidants with 169 

concentrations ranging from10-17 to 10-15 M (Cooper et al., 1989). Based on these ·OH 170 

concentrations, the environmental half-lives (t·OH,E) for the FQ reactions with ·OH were 171 

estimated. The results (Table 2) indicate that t·OH,E are dependent on surface water pH. 172 

Compared to the environmental apparent photolysis half-lives (Table 1), the t·OH,E values are 1 173 
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– 2 orders of magnitude higher, suggesting that this is not the dominant loss pathway for the 174 

FQs. However, the hydroxyl-radical oxidation is expected to be more effective at inducing the 175 

degradation of FQs due to the lower selectivity of ·OH, which can oxidize almost all classes of 176 

organic chemicals (Ge et al., 2015) (Keen and Linden, 2013; Li et al., 2014; Mill, 1999). 177 

 178 

Table 2. The bimolecular rate constants (k·OH,i) for the reaction between the different FQ species and ·OH, 179 

and the corresponding environmental half-lives in sunlit surface waters (t·OH,E). 180 

 181 

3.3. Pathways for apparent photolysis and aqueous hydroxyl-radical oxidation.  182 

Several studies have reported the major photodecomposition products and pathways of the 183 

FQs rather than GAT and BAL specifically (Ge et al., 2010; Ge et al., 2015; Sturini et al., 2010; 184 

Wei et al., 2013). In this study, ten and four main organic intermediates were identified for their 185 

apparent photodegradation and hydroxyl-radical induced oxidation, respectively, in pure water 186 

(Table S4 and Fig. S5). F- and HCOO- were also identified as two molecular ion products, and 187 

total organic carbon of irradiated FQ solutions was determined (Table S5 and Fig. S6). Among 188 

the apparent photolytic intermediates of GAT, there were two abundant photoproducts with 189 

molecular weights (MW) of 335 and 373, for which the responses in ESI (+) MS mode were 190 

most significant. BAL had one significant intermediate (MW = 292). As for their photooxidation 191 

via ·OH, only several products was generated, with MW of 373 and 363 more abundant for 192 

GAT and BAL, respectively. 193 

According to these photoproducts, phototransformation pathways for BAL and GAT are 194 

proposed as shown in Fig. 2. The apparent photodegradation of GAT involves five main 195 

pathways: N1-decyclopropyl, demethoxy, defluorination, decarboxylation, and piperazinyl 196 

oxidation and rearrangement. BAL photodegrades via three main pathways: defluorination, 197 

decarboxylation, and piperazinyl reactions, including C3-deaminomethyl, oxidation and 198 

app:ds:amino
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rearrangement. As for their reactions with ·OH, they are both oxidised through hydroxylated 199 

defluorination and piperazinyl hydroxylation. Furthermore, the hydroxylation of BAL leads to 200 

piperazinyl cleavage and oxidation. 201 

The piperazinyl reactions of GAT and BAL result in the same intermediate (MW = 292). For 202 

GAT and BAL, no decarboxylated intermediate was observed although decarboxylation 203 

probably occurred as the HCOO- ions were measured in the solutions. Similarly, no 204 

defluorinated intermediate was found for the apparent photolysis of GAT. Piperazinyl N4-205 

dealkylation, decarboxylation or defluorination are primary important pathways for other FQs, 206 

such as ciprofloxacin and enrofloxacin (Ge et al., 2010) (Wei et al., 2013). When further 207 

photodegraded, the FQs and their intermediates may suffer from piperazinyl reactions (Yan and 208 

Song, 2014) (Wei et al., 2013) (Niu et al., 2016). It is noteworthy that the piperazinyl reactions 209 

have been reported in some advanced oxidation processes (AOP) of FQs (Dodd et al., 2005; 210 

Martin et al., 2015; Michael et al., 2013; Paul et al., 2007; Zhang and Huang, 2005). Therefore, 211 

the results from this study would support the understanding of the AOP during water treatment 212 

techniques. 213 

 214 

Fig. 2. Main transformation pathways for apparent photolysis (black arrows) and hydroxyl-radical oxidation 215 

(red arrows) of gatifloxacin and balofloxacin. 216 

 217 

3.4. Antibacterial activity changes caused by photodegradation in different waters 218 

The antibacterial activity of the two FQs was firstly assayed, and the results are shown in Fig. 219 

S7. GAT showed notable antibacterial activity to E. coli, while BAL was found to show no 220 

activity. Thus, further studies were carried out with GAT only and results are given in Fig. 3. 221 

The evolution of antibacterial activity of the FQ photolytic solutions was similar in natural 222 

waters compared to pure water (Fig. 3). Moreover, the antibacterial activity of the light 223 

irradiated solutions did not decrease significantly (p > 0.05) in the initial photodegradation 224 
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period (0 – t1/2). This can be attributed to the formation and accumulation of primary 225 

degradation intermediates that appear to possess antibacterial activity. Based on the apparent 226 

photolytic pathways (Fig. 2), photoreactions did not transform the core aromatic backbone of 227 

the GAT molecule, so the primary intermediates may behave similarly with regards to their 228 

antibacterial activity to E. coli. This would indicate that in environmental waters antibacterial 229 

activity would continue for a period of time, even after GAT had been subject to significant 230 

photo-transformation in the water column.  231 

 232 

Fig. 3. Changes in antibacterial activity of gatifloxacin (GAT, 10 μM) due to photochemical degradation in 233 

different waters. Note that the units on the y-axis are millimeters (mm), representing the agar plated bacteria-234 

free zone diameter. The more potent the antibacterial effect then the larger the E. coli-free zone. 235 

 236 

4. Conclusion 237 

This study provides a detailed examination of the aqueous photo-transformation of two 238 

commonly used FQs, examining the susceptibility of the major dissociated forms of two FQ 239 

antibiotics (BAL and GAT) to undergo photo-transformation. Of three individual dissociated 240 

species, the neutral forms of BAL and GAT (HFQs0), present predominantly in most 241 

environmental waters with pH range from 6 to 9, had the highest apparent photolytic efficiency 242 

and most reactive hydroxyl-radical oxidation potential. Therefore, in the euphotic zone of 243 

surface waters, photochemical transformation will contribute significantly to their loss. 244 

Apparent photolysis was observed to induce defluorination, decarboxylation, and piperazinyl 245 

oxidation and molecular rearrangement, whereas hydroxyl-radical oxidation caused 246 

hydroxylated defluorination and piperazinyl hydroxylation in both chemicals, based on the 247 

tentative identification of key photo-intermediates. According to an E. coli. activity assay, these 248 

photointermediates, notably for GAT and potentially for other FQs, have similar antibacterial 249 

activity to the parent chemical, implying that while GAT may photodegrade quite rapidly (on 250 
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the order of hours) in sunlit surface waters, antimicrobial activity will persist for considerably 251 

longer. This raises concerns over the impact of FQs on natural microbial populations in the 252 

wider aquatic environment. 253 
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