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Abstract.

Melt water from the Greenland ice sheentributedl.7-6.12mm to global sea leVdetweenl993 and 201@nd is expected

to contribute20i 110 mm to future sea level ridey 2100.Theseestimates were produgéy regional climate models which
areknown to be robust at the isheetscale, bubccasiomlly miss regionabnd local scale climateariability (e.g. Leeson et
al., 2017, Medley et al2013) To date the fidelity of these models the context of short period variability in tinfiee. intra
seasonalhas not beeffully assessedor exampletheir ability to simulateextreme temperature event¥e usean event
identification algorithm commonly used in Extreme Value Analysigether with observations from teenland Climate
Network GC-Net), to assess the ability of the MAR RCM tteproduce observed extrerpesitivetemperatureevents at 14
sites around GreenlantVe find trat MAR is able to accurately simulate the frequency and duration of these events but
underestimates tiremagnitudeby more than half a degrdeelsius/Kelvin altthough thisbiasis muchsmallerthan that
exhibited bycoarsescale Erdnterim reanalysis dat#\s aresult melt energy ilfMAR outputis underestimately between
16% and 41% depending on global forcing appliedrther work is needed toreciely determinethe drivers of extreme
temperature events, amthy the model underperforms in this arbat our findings suggest that biases are passed into MAR
from boundaryforcing dataThis is important becausieese forcings are common between RCMsthei range of predictions

of past and future ice sheet melting. Weposethat examining extreme everdBould becoma routine part of global and

regional climate model evaluation and addressing shortcomings in this area shaylddrity for modeldevelopment

1 Introduction

Since the 1990s, the Greenland Ice Sheet has shifted from a state of near mass balance, to one of significai@8meabetdss

et al.,, 2012 Hanna et al., 20E3 van den Broeke et al., 201 &ontributing approximately 10% to the measured global sea
level rise during the last two decad&hurch, 2013)Since 2010, the rate of mass loss from Greenland has increased and the
ice sheet has experienced episodes of rare and extreme surfaffdghieln et al., 201,2Hanna et al., 2014, Tedesco et al.,

2013). For example in 2012, the summer melt extent reached 98.6% of the entire ice sheet; thought to be the greatest me

extent in over a centuryNghiem et al., 201 In addition to directly removing more of the ice sheet into the sea, melting
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reduces th reflectivity of the ice sheet and can warm the perennial snow pack (through latent heat release when the melt wate
refreezes), both of which act as a positive feedback to further enhance melt. These processes also alter the dietgesric prope
of theice sheet surface, which makes it more difficult to measure surface height change usingtsatedlitadar instruments
(McMillan et al., 2016)An understanding of the location, frequency, duration and magnitude of melting isthex@tessary

to 1) understand the ice sheetds response to climate <c

change and 3) to constrain predictions of future ice sheet state.

Mass lost through meltwater runoff and gained througbsvf al | t oget her compri se the ice
which is typically assessed at the ice sheet wide scale using Regional Climate Models (RCM). RCMs act as physically base
interpolators of relatively coarse resolution climate reanatieta, and produce high resolution estimates in areas where the
local climate exhibits high spatial variability i.e. ice sheet mar@ieel et al., 2016)Alternative statistical downscaling
techniques fulfil a similar purpose and gitaroadly comparable results (Wilton et al. 2017, Vernon et al. 2BC3YIs can

also make high resolution predictions of future climate, when boundary forcing is applied by global climate model (GCM)
output instead of reanalysis data. In the last IPCCrteie MAR, RACMQ and MM5 RCMs reported that while SMB
remains positive (net increase in mass due to surface processes) increases in melting were responsible for a sea le\
contribution of 0.230.64 mm yr* during 20052010 (Church, 2013)RCMs are known to perform well when compared to
integrated quantities, for example mean anmedt measured at weather stations or total mass loss from the ice sheet measured
by GRACE(van den Broeke et al., 2016jowever, fidelity at the regionaf seasonadcales does not necessarily translate to

the local scalée.g.Medley et al., 2013)Extreme melt events, for example, tend to be localised in time (typically only lasting

for a day or so). While RCM predictions of mektentduring extreme events have been found to be rel{@lddesco et al.,

2011) an assessment of their ability to simulate the frequency, duration and magnitude of these events, and how this migh

affect their projections of future ice sheet change, has yet to be performed.

In this paper, we use advancedtistical techniquefor extreme event identificatioto compile a statistical climatology of
extreme temperatumvents on Greenland since the 1990s using data from 14 automatic weather stations forming part of the
Greenland Climate Network (GRet, Stefen et al.1996). Note that these are distinct from extreme melt years as it is possible

to have multiple extreme temperature events in a year. We then use these data, together with temperature estimates from t
MAR regional climate mode{Fettweis et al., 201®) o eval uate the model 6s ability t
magnitude of these events when forced by climate reanalysis and by GCM data. Finally, we estimate melt energy available &
the GGNet stations during thisnme using a positive degree day sum (PDD) and assess the degree to which discrepancies

between observed and modelled characteristics of extreme events affects MAR based estimates of melt energy.
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2 Methods and Data
2.1 Greenland Climate Network data

The Geenland climate network (GNet) consists of 18 automatic weather stations (AWS) distributed around the ice sheet.
We refer the reader tteffen et al. (1996Jpr details but befly summarise here. The first station (Summit) began operation

in 1995, with others coming online at various times since then. The AWS measure a range of meteorological variables, of
which the temperature and pressure time series are the most cofitpe®CNet stations each have four temperaturesses

(2 different instruments mounted at 2 different heights), here we use data from tHe Thipemocouple mounted at position

1 at all sites except NGRIP, and Saddle during 22016, for which we used data from the Typ&hermocouple mounted

at positon 2. Measurements are taken hourly, we use these data to calculate daitlymard mean values for compatibility

with MAR output.

Our analysis focuses on 14 of the 18 stations; we found the remaining 4 stations to have temperature time serigs which we
either too short or too patchy for robust statistical analfgigire 1 shows the data coverage at each of the 14 stations studied
here and Table 1 gives the total number of years of data available, when gaps are excluded. We attribute thestartossing da
equipment failure and assume that it is unrelated to the occurrence of extreme high temperatures. As such we treat these d:
gaps as ‘missing at random' and ignore them in our analysis. Since most of the missing periods cover whole yeans, rather ths

just a summeror winterperiod, this assumption is reasonable.

2.2 MAR Regional Climate Model

The MAR model is an RCM developed and extensively evaluated to study the present Greenland climate and SMB from the
beginning of the last centu(frettweis et al., 20173s well as to perform future projections ofe@nland ce SheetSMB for

the last IPCC report till the end of this centRettweis et al., 2013}t is fully coupled with a sn@ energy balance model

dealing with the energy and mass exchanges between surface, snow, ice and atmosphere. The MAR version 3.5 used here |
beenextensivelyevaluated irFettweis et al. (201Ayith daily in situ PROMICE based AWS measurements over -2008),

daily satellite derived melt extents over 1922®10 as well as SMB measurements and ice cores over20d58 We chose to

use MARvV3.5 in this study since this is the model version whichusad to make the most recent set of estimates of future

ice sheet changgé-ettweis et al., 2013We refer toFettweis (2007 and Fettweis et al. (2013, 20179r more details about

MAR and its surface scheme.

Here, we use data from MAR simulat®forced with the ERAnterim reanalysige.g. Fettweis et al., 201,7and with the
GCMs CanESM2, MIROCS5 and NorESM1 over 1992615. CanESM2, MIROC5 and NorESM1 have been found to be the
best models (in respect to ERAterim over 19801999) from the CMIP5 database over Greenland from which 6 hourly
outputs were availablgettweis et al., 2013MAR is forced every 6 hours at its lateral boundaries with temperdtumidity,
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wind and surface pressure. Sea surface temperature and sea ice extent is also prescribed into the MAR integration domain frc
the forcing data every 6 hours. Hereafter we refer to MAR variants with forcing bipntéran, NorESM1, CanESM2 and
MIROCS5 asMAR-Era, MAR-Nor, MAR-Can MARMIR, respectively. MAREradataareavailable continuously during our

study period (1992015 inclusive). For the GCM forced model runs, we use historical simulations until 2006 and simulations
performed under foiag by the RCP8.5 climate change scendvian Vuuren et al., 2011thereafter. This is reasonable
because observed greenhouse gas concentrations followed the RCP8.5 scenario during this period, and in any case t
differences betweethe RCP scenariaduring 20062015 are very small. For comparison with the-8€& data we pick the

MAR model grid cell(25 km by 25 km resolutiorglosest to the AWS location in terms of latitude and longitude of the cell
centre. The MARcell centres typically at a lower elevation than the AW&cording to the MAR DEM and the measured
elevation of the AWSand so we apply a lapse rate based correction to MAR temperatur®.@&@ per 100 nof elevation
difference Steffen and Box (200)1)We restrict the model time series at each station to periods wheMeGdata aralso
available.

2.3 Extreme Value Analysis (EVA)

Extreme value analysis provides a toolbox of methods for the identification and statistical modelling of extrenf€ @esnts
2013)i.e. events that are unusually large or small when compared to the central behaviour sdtafata given site and a

given dataype (observations, MAREra, MAR-MIR, MAR-Nor and MARCan), we identify the extreme events using a-site

and typespecific thresholépplied to the maximum daily temperature time sefi@senable a fair comparison, the threshold

is taken always to be tf8#9% quantile of the dagat in questiorfTable 2)and a extreme event is deemed to start once the
maximum dailytemperature exceeds this threshold. The event ends after the temperature has been below the threshold fc
three consecutive days. This methafdevent identification is known as the runs metiiSdhith and Weissman, 1994}

follows that the durations, as well as both frequencies and magnitudes, of events are random. Netewkatake the

magnitude of an event to liee largest of the daily maxima within that event.

2.3 Positive Degredday Sum

Melting is most appropriately calculated a function of theurface energy balanchowever measurements ofariables
required to calculate the surfaerergy balancee(g. netradiation wind speeflarenot consistentlyavailableat the GC-Net
stationsPositive Degree Dayare an estimate of the magnitude and duration of aber@temperature evergad are typically
well-correlated with meltinge.g.Braithwaite (1995)Huybrechts et al. (199).)Herewe calculate positive degrefays (PDD)
for both observed and modelled temperatures and take this to be a reasonable approximation for meDiemepy
temperature variability is modelled using eq 1 and PDDs are calculated by integrating eq 1 whé@e T > 0

Y 00 @0 0O 1)
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Where Aisdai |l y maxi mum temperatur e, B is daily mean Zmemper
temperaturare output by MAR; for G@Net data daily mean and maximum are calculated based on hourlgsddétailed

above

2.3 Melt zone definitions

We useindependendefinitions of the ablation, percolation and dry snow zones first identifigit Millan et al. (2016using
RACMO2.3 simulations of SMB and surface melt. Briefly, the area of the ice sheet lying below the iequilibe in a

majority of years between 2009 and 2014 is defined as the ablation zone. The area of ice where melt did not exceed 5 mm w.
on any day during this period is defined as the dry snow zone, with the remainder being classed as the permlatgingzo

these definitions we find areas of 0.23, 0.61 and 0.80 millicifdmthe ablation, percolation and dry snow zones respectively.

3 Results
3.1 Extreme temperature events

We apply extreme value analysis to observed daily maximum temperature& @dyet in order to compile a statistical
climatology of extreme temperature events on Greenland (Badiach location is considered independently and the timing

of statistically extreme events is not necessarily contemporaneous between statiome &xdrets are characterised in terms

of their frequency, duration and magnitude; acvwssalevwrs O dur
observed/modelled. We assess these characteristics in the context of station geographgtioa, é&é&tude and melt zone

(see methods). Each of the three characteristics is dependent on elevation, however the nature of that dependenee and the |
that latitude and melt zone play in the relationship is different for each (RguEgtreme temperature events occt dmes

per year and event frequency is negatively correlated with elevation in South Greenland; events become less frequent th
higher the station is on the ice sheet. Event frequency is positively correlated wéitioelén North Greenland/the dry snow

zone (Figure2a). Events last betweenB) days, and duration is positively correlated with elevation for all stations (Figure
2b). However events tend to last longer (by ~1 day) at stations in the dry snowadhézkeenland than at stations at similar
elevations in the percolation zone/South Greenland. Event magnitude is negatively correlated with elevation at all stations
(Figure 2¢), but elevation has a stronger influence on event magnitude in the dryasdoablation zones4.4 (+/- 0.3)°C

km1) than in the percolation zonel(8 (0.4) °C km?).

We compare the degree to which MAR is able to capture the observed climatology of extreme everteast@idns by
repeating the same extreme value asialwith output from each of the MAR model variants (Fig8yeln addition to
considering each station independently, we also consider each model variant independently, i.e. there is no common evel
mask. This is because the GCM forced model varifsR-MIR, MAR-Nor and MARCan) are designed to simulate

climatic variability over typically climatic periods like 28D yrs, which is not necessarily contemporaneous with observed
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variability in a given time period. We exclude JAR2 from the remainder ofatiédysis due to the large discrepancy in
elevation between the station and the corresponding grid cell in MAR (316 m, Table 1) and the dependency we find betweer
elevation and extreme event characterigfiégure 3. Whilst all of the four model variantgpically simulate the duration of
extreme events reasonably well (i.e. within 1 day per event), they underestimate event frequency at most of tflegliadions

3). This is most notable for the GCM forced model variants MAIR, MAR-Nor and MARCan whid underestimate event
frequency by 1.12, 0.75 and 0.65 events per year respectively. Similarly, all of the model variants underestimate tthe observe
event magnitude by more than half a degree at most of the stations (though notably not the two rentaérdtodgition zone,

in fact event magnitude at Swiss Camp is overestimated). In terms of the individual model variants, tBea\sikRulation

is best able to reproduce event frequen6y0Q events on average), the MARA and MARMIR simulations are bothest

able to reproduce event duration-Gt04 days on average) and the MA&Ra simulation is best able to reproduce event

magnitude {0.76°C on average). MARor is the poorest performing model variant overall.

3.1 Mean temperature and mean summetemperature at GC-Net stations in MAR

We assess the ability of the four MAR variatatseproduce temperature observed by theN&Emore generally by comparing

the mean and trend of the entire daily mean temperature time series at each station(lataledh We present aggregate
statistics for the entire time period in order to account for the fact that the GCM forced MAR variants are predictiieg climat
variability at thedecadal scale. The number of years of data (including gaps in the tie® $&igiven for each station in
Table 1. Results are presented by melt zone, where values are an average of all stations in that zone, weighted by the numt
of years of data available for each station. Both Mfa and MARMIR overestimate mean daily me temperaturé.e. the
average of all of the daily meanisy ~1°C, although this signal is dominated by a large discrepancy in the dry snow zone
where both model variants are too warnmtiy5°C. Both model variants however, show good agreement withbibervations

in the ablation zone-@.24C and-0.34C, respectively)which is where the most melting occukAR-Can and MARNor

both underestimate temperatures overall, and give better agreement with observations in -§eh@@land-0.21°C,
respedwely), but they exhibit a poor performance in the ablation zone (both variaft ted cold. Considering only the
summer (JJA) daily mean temperatures, with the exception of J@ARin the percolation zone, all MAR variants are too
cold in all zones ah overall. MARCan performs best overall in summer, with a bias of 0€1°C. All model variants
reproduce observed trends in both all and summer temperatures to wit@iyre (most within 0.08C per year). We evaluate

the ability of MAREra to reprduce observed climate variability by comparing modelled vs observed mean annual and mean
summer (JJA) temperatures (Figd)eMAR-Era is well able to capture observed ird@nual variability in both. Mean annual
temperatures are particularly well coatgld withP e ar s o n 6 s -efficient € hatuésiinathre range 0.7I700. Inter

annual variability in mean summer temperatures is ledagiured (r = 0.684, if JAR2 is ignored). The low bias in summer

temperatures described above is &ginlent at the inteannual timescale in the MAEra simulation.
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3.3. Extreme temperature events in Erdnterim data

We assess the degree to which the rawlBerim output(i.e. not MAR forced with Erdnterim) captures extreme temperature
events at GEN\et stations (Figur8). In comparison with the same data for MARRa, using the raw Eterim output yields

a poorer match to observatioasall sites except NASA) and NGRIP The average absolute bias in magnitude of extreme
temperature events is 0%7 in MAR-Era and 1.8%C in the raw Erdnterim data outputin general, Erdnterim
underestimates temperatures during extreme events in a similar manner t&&fdARowever Erdnterim overestimates

temperatures in the Swiss Camp region and north edtst ade sheet.

3.3 Melting during extreme temperature events

We use a positive degree day sum (see methods) to approximate melt energy available during extremexasnaon
conditions at each of the 13 stations (Figh)rte/Ve note that the differende abundance of melt energy between adjacent melt
zones is roughly an order of magnitude, with observed total PDDs per station of 617, 9&andHe ablation, percolation
and dry snow zones respectively. All MAR variants are able to reproduce thiergraWe find that the dependence of
observed melt energy on statistically extreme temperatures also scales with elet=0ida,(n=13); onghird and ~95% of

all melting occurs during extreme events in the ablation and dry snow zones respectiveher®d&Rable to reproduce this
pattern (f=0.71) but the relationship is less clear in data from the GCM forced variant8.@30.43).

We compare differences in the total PDDs obseamtpredicted during the entire study period; all of the MARasats are

found to underestimate total PDDs (Tab)e During extreme events, we see a {folnl increase in the model bias for the
MAR-Era, MAR-MIR and MAR-Can model variants; PDDs are underestimated by 26%, 32% and 22% during extreme events,
and 12%, 18% and 10% respectively during-eatreme conditiondn the MAR-Nor simulation, PDDs are underestimated

to a greater degree during Rertreme temperature conditions. The relative influence of model bias during extreme events is
spatially variable. In the ablation zone, the total bias during extreme esarmparable to that during nemtreme events

except that the two biases are of the opposite sign; PDDs aresiireated in the ablation zone during extreme events and
underestimated in the ablation zone during redtreme events. Given the relativentidbution of melting during extreme

events to overall melting here however (just 33%), this results in an underestimate overall of 5%, 12%, 22% and 7% for MAR
Era, MAR-MIR, MAR-Nor and MARCan respectively. Conversely, in the percolation zone, PDDs dezasiimated during
extreme events and ovestimated during neaextreme conditions. However again the signal observed during the dominant
regime (i.e. 96% of PDDs occur during extremes) leads to a large underestimate overall (52%, 58%, 84% and 40% for the
model variants as before). In the dry snow zone it is more difficult to partition the relative influence of extreme ugman ex
events on total PDDs because there is far less melting&h&®@D total ob °C per station over the entire stuggriod. This

is particularly of note for Summit and NGRIP stations which are high up and far inland on the ice sheet; very small amounts

of melting are observed here but no melting is modelled by any of the model variants.
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4 Discussion
4.1 Extreme temperdure events in GGNet Observations

Despite our relatively small sample, given the size of the ice sheet, we see clear relationships between extreme ever
characteristics and elevation, latitude and melt regime. It is not surprising that extreme tempeeattsrexhibit a stronger
magnitude at lowelying locations, given the atmospheric temperature lapse rate, but it is interesting that this relationship is
less strong for the five percolation zone stations than for stations in the ablation and drpiseaw\#e speculate that this is

a result of heat exchange at the snow surface moderatingunréace temperatures in this region; sublimation is a known
energy sink in the percolation zone in the sumflaétema et al., 2010)n South Greenland, extreme events at lower elevations

tend to be more frequent and of shorter duration than those higher up anghedt Temperature anomalies can be associated
with cloudiness (reflecting upwelling longwave radiation back down to the surface) andlyawestations are more likely

to experience shoeterm periods of orographic cloud cover. This is particulakglii to affect West Greenland which lies in

the path of the prevailing summer circulation pattern and consequently receives maggarenshore flow during the
summer (Ohmura and Reeh, 1991). In North Greenland however, we see that extreme eventsdbedongedasting, and

more frequent, as elevation increases. Longer extreme temperature events are likely associated with high pressure conditio
which are relatively persistent. In fact, extreme rgelrson Greenland have been attributed to aneiase in the frequency

and duration of high pressure conditions promoted by wider scale atmospheric pressure gradients such as the North Atlanti
Oscillation and the Greenland Blocking Ind@xg. Nghiem et al., 201Hanna et al., 2013,im et al., 2016 Hanna et al.,

2016. Extreme temperature events are responsible for the vast majority of melt energy produced in the percolation and dry
snow zones on the ice sheet but contribute a much smaller proportion to overall melt energplatithezoneBecause we

only have data for two ablation zone stations which are located in close proximity, further work is required to assass whethe
this isa general property of the ablation zone or restricted to this loctdimpeatures in general are much warmer here, and

extreme events are not required to generate melting.

4.2 Extreme temperature events in MAR simulations

All of the four MAR model variants underestimate the frequency of extreme events but simulate their duethtidhis

suggests that MAR is able to reproduce the persistence of conditions driving extreme temperature events when they arise |
the model. All MAR variants undegstimate the magnitude of extreme temperature events at most stations, in most cases by
>0.5°C. This can be explained in part by a general low bias in modelled summer temperatures; although the magnitude of thi
bias is not sufficient to account for the magnitude of the-oatdel mismatch during extreme periods. For example, MAR

Era exhibits a bias 60.35C during summer and).768C during extreme temperature events. The rawliiexim output also

exhibits a low bias during extreme temperature events at most of ti¢eG&ations, with notable exceptions being North

East Greeland and the most marginal stations at which temperature during extremeséstivated. This suggests that the

low bias we see in the MAR model during extreme pergmlild be an artefact of the forcing data. This is important because
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Eralnterim and he GCMs examined here are commonly used to force other regional and local scale models (e.g. RACMO?2);
their use is not restricted to MAR. The version of MAR which is analysed here (v3.5) is known to underestimate the
atmospheric liquid water content and doudiness(Fettweis et al., 2017Avhich may also contribute to the cold bias in
temperature extremes. However, we repeated the analysis with the most recent version of MAR (v3.7) in which a correction
for this has been incorporateddithis yielded no noticeable difference in the result. All of the MAR model variants and Era
Interim overestimate event magnitude at stations in the ablation zone, JAR and Swiss Camp. We attribute this to difference
in albedo between the bare ice in #idation zone and the snes@vered surface at higher elevations. Energy exchange in
bare ice areas is generally more sensitive to sunny conditions; this likely explains why the biases are opposite in this are

compared to the percolation and dry snow zawesre the albedo is high enough to prevent this sensitivity.

Melt energy simulated by MAR is underestimated by 19%, 25%, 41% and 16% when forcing is providedrigrigna
MIROCS5, NorESM1 and CanESM2 respectively. However during extreme events, loiegkd in terms of melt energy are
double those calculated during rextreme, positive temperature, conditions. This is important because approximately half
of all melt energy is generated during extreme events. In general, the GCM forced MAR simpktioms more poorly than

the Eralnterim forced simulation, with the exception of MARan (bias = 16% vs 19% for MARra). We would expect the
reanalysis forced simulation to perform the best, given its assimilation of observhtiaever we note thahe difference is

not large.

We observe melt energy generated at the two highest/furthest inland stations in our sample; Summit and NGRIP, but none c
the MAR variants simulate any melting at either of these stations during our study Pkisdd.becase extreméemperatures

are underestimated by %1 by MAR at these stations (e.g. MARaexhibits a bias 0f0.91 at Summit aneD.76 at NGRIP).

It is important to note that these are very small quantities and would not impabtigewide estimates ofelting, however

melting is also important because of its role in ice sheet albedo; wet snow is less reflective than dry snow. A siggltficant m
event can be defined as achieving mth WHday (Franco et al., 2013and with the exception of Summit in 2012 this was

not achieved at either station during the study period. Nonetheless, as the climate warms melting at these locatidos is likel

be moreabundant and properly capturitegmperature variabilithere will become even more important.

4 Conclusions

Analysis of GGNet temperature data shows that the frequency, magnitude and duration of extreme temperature events or
Greenland arstrongly controlled by geograplfg.g. elevation, latitudetc), though further work is needed to determine the
relative contributions of potential physical drivers of extreme events at different locatidiower different time period¥he

MAR regionalclimate model accurately predicts the duration of extreme temperature events on Greenland but underestimate:

their frequency by around 1 day per year and underestimates event magnitude®yWaike this is an improvement over
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coarsescale reanalysisatia, it nonetheledsads to an undezstimate in melt energy, which we calculate to b&é1% during

our study period, dependant on model forcing chosen. MAsed predictions of future melting are calculated using an energy
balance method which has besdrown to perform well against observations in the (Fsttweis et al., 2017However since
temperature plays a significant role in the energy balance equétiongh melt does not linearly increase with temperature)

it is likely that these predictions are affected by the exaggerated model bias we find during extreme events in our study. Furthe
work is needed to determine why the model underperforms in this area, and if other similar models have the same limitation
We identify ths as a model development priority to ensure that MAR based estimates of ice sheet change are both

comprehensive and robust.
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Figure 1: Data coverage in GCNet temperature record.
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As before, frequency is denoted by the height of each box, duration is indicated by the width of each box and observed vadves
given by the dashed black boxes. Box colours indicate the departure of theodelledmagnitude from the observed value, blue colours
indicate an underestimateand red colours indicate an over estimate. Note that a temperature lapse rate has been applied to modelled

temperatures to account for differences in elevation between AWS and Ermterim elevation and AWS and MAR elevation.

16



