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Abstract.  

Melt water from the Greenland ice sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected 

to contribute 20ï110 mm to future sea level rise by 2100. These estimates were produced by regional climate models which 10 

are known to be robust at the ice-sheet scale, but occasionally miss regional and local scale climate variability (e.g. Leeson et 

al., 2017, Medley et al., 2013). To date, the fidelity of these models in the context of short period variability in time (i.e. intra-

seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event 

identification algorithm commonly used in Extreme Value Analysis, together with observations from the Greenland Climate 

Network (GC-Net), to assess the ability of the MAR RCM to reproduce observed extreme positive temperature events at 14 15 

sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but 

underestimates their magnitude by more than half a degree Celsius/Kelvin, although this bias is much smaller than that 

exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 

16% and 41% depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme 

temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR 20 

from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions 

of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and 

regional climate model evaluation and addressing shortcomings in this area should be a priority for model development. 

1 Introduction  

Since the 1990s, the Greenland Ice Sheet has shifted from a state of near mass balance, to one of significant mass loss (Shepherd 25 

et al., 2012, Hanna et al., 2013a, van den Broeke et al., 2016), contributing approximately 10% to the measured global sea 

level rise during the last two decades (Church, 2013). Since 2010, the rate of mass loss from Greenland has increased and the 

ice sheet has experienced episodes of rare and extreme surface melt (Nghiem et al., 2012, Hanna et al., 2014, Tedesco et al., 

2013). For example in 2012, the summer melt extent reached 98.6% of the entire ice sheet; thought to be the greatest melt 

extent in over a century (Nghiem et al., 2012). In addition to directly removing more of the ice sheet into the sea, melting 30 
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reduces the reflectivity of the ice sheet and can warm the perennial snow pack (through latent heat release when the melt water 

refreezes), both of which act as a positive feedback to further enhance melt. These processes also alter the dielectric properties 

of the ice sheet surface, which makes it more difficult to measure surface height change using satellite-borne radar instruments 

(McMillan et al., 2016). An understanding of the location, frequency, duration and magnitude of melting is therefore necessary 

to 1) understand the ice sheetôs response to climate change, 2) interpret contemporary measurements of ice sheet volume 35 

change and 3) to constrain predictions of future ice sheet state. 

 

Mass lost through meltwater runoff and gained through snowfall together comprise the ice sheetôs surface mass balance (SMB), 

which is typically assessed at the ice sheet wide scale using Regional Climate Models (RCM). RCMs act as physically based 

interpolators of relatively coarse resolution climate reanalysis data, and produce high resolution estimates in areas where the 40 

local climate exhibits high spatial variability i.e. ice sheet margins (Noel et al., 2016). Alternative statistical downscaling 

techniques fulfil a similar purpose and give broadly comparable results (Wilton et al. 2017, Vernon et al. 2013). RCMs can 

also make high resolution predictions of future climate, when boundary forcing is applied by global climate model (GCM) 

output instead of reanalysis data. In the last IPCC report, the MAR, RACMO2 and MM5 RCMs reported that while SMB 

remains positive (net increase in mass due to surface processes) increases in melting were responsible for a sea level 45 

contribution of 0.23-0.64 mm yr-1 during 2005-2010 (Church, 2013). RCMs are known to perform well when compared to 

integrated quantities, for example mean annual melt measured at weather stations or total mass loss from the ice sheet measured 

by GRACE (van den Broeke et al., 2016). However, fidelity at the regional or seasonal scales does not necessarily translate to 

the local scale (e.g. Medley et al., 2013). Extreme melt events, for example, tend to be localised in time (typically only lasting 

for a day or so). While RCM predictions of melt extent during extreme events have been found to be reliable (Tedesco et al., 50 

2011), an assessment of their ability to simulate the frequency, duration and magnitude of these events, and how this might 

affect their projections of future ice sheet change, has yet to be performed.  

 

In this paper, we use advanced statistical techniques for extreme event identification to compile a statistical climatology of 

extreme temperature events on Greenland since the 1990s using data from 14 automatic weather stations forming part of the 55 

Greenland Climate Network (GC-Net, Steffen et al., 1996). Note that these are distinct from extreme melt years as it is possible 

to have multiple extreme temperature events in a year. We then use these data, together with temperature estimates from the 

MAR regional climate model (Fettweis et al., 2017) to evaluate the modelôs ability to capture the frequency, duration and 

magnitude of these events when forced by climate reanalysis and by GCM data. Finally, we estimate melt energy available at 

the GC-Net stations during this time using a positive degree day sum (PDD) and assess the degree to which discrepancies 60 

between observed and modelled characteristics of extreme events affects MAR based estimates of melt energy.  
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2 Methods and Data 

2.1 Greenland Climate Network data 

The Greenland climate network (GC-Net) consists of 18 automatic weather stations (AWS) distributed around the ice sheet. 

We refer the reader to Steffen et al. (1996) for details but briefly summarise here. The first station (Summit) began operation 65 

in 1995, with others coming online at various times since then. The AWS measure a range of meteorological variables, of 

which the temperature and pressure time series are the most complete. The GC-Net stations each have four temperature sensors 

(2 different instruments mounted at 2 different heights), here we use data from the Type-E Thermocouple mounted at position 

1 at all sites except NGRIP, and Saddle during 2010-2016, for which we used data from the Type-E Thermocouple mounted 

at position 2. Measurements are taken hourly, we use these data to calculate daily maximum and mean values for compatibility 70 

with MAR output. 

 

Our analysis focuses on 14 of the 18 stations; we found the remaining 4 stations to have temperature time series which were 

either too short or too patchy for robust statistical analysis. Figure 1 shows the data coverage at each of the 14 stations studied 

here and Table 1 gives the total number of years of data available, when gaps are excluded. We attribute these missing data to 75 

equipment failure and assume that it is unrelated to the occurrence of extreme high temperatures. As such we treat these data 

gaps as `missing at random' and ignore them in our analysis. Since most of the missing periods cover whole years, rather than 

just a summer- or winter-period, this assumption is reasonable.  

2.2 MAR Regional Climate Model 

The MAR model is an RCM developed and extensively evaluated to study the present Greenland climate and SMB from the 80 

beginning of the last century (Fettweis et al., 2017) as well as to perform future projections of Greenland Ice Sheet SMB for 

the last IPCC report till the end of this century (Fettweis et al., 2013). It is fully coupled with a snow energy balance model 

dealing with the energy and mass exchanges between surface, snow, ice and atmosphere. The MAR version 3.5 used here has 

been extensively evaluated in Fettweis et al. (2017) with daily in situ PROMICE based AWS measurements over 2008-2010, 

daily satellite derived melt extents over 1979-2010 as well as SMB measurements and ice cores over 1958-2010. We chose to 85 

use MARv3.5 in this study since this is the model version which was used to make the most recent set of estimates of future 

ice sheet change (Fettweis et al., 2013). We refer to Fettweis (2007) and Fettweis et al. (2013, 2017) for more details about 

MAR and its surface scheme. 

 

Here, we use data from MAR simulations forced with the ERA-Interim reanalysis (e.g. Fettweis et al., 2017), and with the 90 

GCMs CanESM2, MIROC5 and NorESM1 over 1995-2015. CanESM2, MIROC5 and NorESM1 have been found to be the 

best models (in respect to ERA-Interim over 1980-1999) from the CMIP5 database over Greenland from which 6 hourly 

outputs were available (Fettweis et al., 2013). MAR is forced every 6 hours at its lateral boundaries with temperature, humidity, 



4 

 

wind and surface pressure. Sea surface temperature and sea ice extent is also prescribed into the MAR integration domain from 

the forcing data every 6 hours. Hereafter we refer to MAR variants with forcing by Era-Interim, NorESM1, CanESM2 and 95 

MIROC5 as MAR-Era, MAR-Nor, MAR-Can MAR-MIR, respectively. MAR-Era data are available continuously during our 

study period (1995-2015 inclusive). For the GCM forced model runs, we use historical simulations until 2006 and simulations 

performed under forcing by the RCP8.5 climate change scenario (van Vuuren et al., 2011) thereafter. This is reasonable 

because observed greenhouse gas concentrations followed the RCP8.5 scenario during this period, and in any case the 

differences between the RCP scenarios during 2006-2015 are very small. For comparison with the GC-Net data we pick the 100 

MAR model grid cell (25 km by 25 km resolution) closest to the AWS location in terms of latitude and longitude of the cell 

centre. The MAR cell centre is typically at a lower elevation than the AWS, according to the MAR DEM and the measured 

elevation of the AWS, and so we apply a lapse rate based correction to MAR temperature data (0.71oC per 100 m of elevation 

difference, Steffen and Box (2001)). We restrict the model time series at each station to periods where GC-Net data are also 

available. 105 

2.3 Extreme Value Analysis (EVA) 

Extreme value analysis provides a toolbox of methods for the identification and statistical modelling of extreme events (Coles, 

2013) i.e. events that are unusually large or small when compared to the central behaviour of a dataset. For a given site and a 

given data type (observations, MAR-Era, MAR-MIR, MAR-Nor and MAR-Can), we identify the extreme events using a site- 

and type-specific threshold applied to the maximum daily temperature time series. To enable a fair comparison, the threshold 110 

is taken always to be the 90% quantile of the dataset in question (Table 2) and an extreme event is deemed to start once the 

maximum daily temperature exceeds this threshold. The event ends after the temperature has been below the threshold for 

three consecutive days. This method of event identification is known as the runs method (Smith and Weissman, 1994). It 

follows that the durations, as well as both frequencies and magnitudes, of events are random. Note that here we take the 

magnitude of an event to be the largest of the daily maxima within that event. 115 

 

2.3 Positive Degree-Day Sum 

Melting is most appropriately calculated as a function of the surface energy balance; however measurements of variables 

required to calculate the surface energy balance (e.g. net radiation, wind speed) are not consistently available at the GC-Net 

stations. Positive Degree Days are an estimate of the magnitude and duration of above-zero temperature events and are typically 120 

well-correlated with melting (e.g. Braithwaite (1995), Huybrechts et al. (1991)). Here we calculate positive degree-days (PDD) 

for both observed and modelled temperatures and take this to be a reasonable approximation for melt energy. Diurnal 

temperature variability is modelled using eq 1 and PDDs are calculated by integrating eq 1 where T > 0oC.  

Ὕ ὃίὭὲ•ὸ ὄ  (1) 
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Where A is daily maximum temperature, B is daily mean temperature and ű is one day. Daily mean and maximum 2 m 125 

temperature are output by MAR; for GC-Net data daily mean and maximum are calculated based on hourly data as detailed 

above.  

2.3 Melt zone definitions 

We use independent definitions of the ablation, percolation and dry snow zones first identified in McMillan et al. (2016) using 

RACMO2.3 simulations of SMB and surface melt. Briefly, the area of the ice sheet lying below the equilibrium line in a 130 

majority of years between 2009 and 2014 is defined as the ablation zone. The area of ice where melt did not exceed 5 mm w.e. 

on any day during this period is defined as the dry snow zone, with the remainder being classed as the percolation zone. Using 

these definitions we find areas of 0.23, 0.61 and 0.80 million km2 for the ablation, percolation and dry snow zones respectively. 

3 Results 

3.1 Extreme temperature events 135 

We apply extreme value analysis to observed daily maximum temperatures from GC-Net in order to compile a statistical 

climatology of extreme temperature events on Greenland (Table 3). Each location is considered independently and the timing 

of statistically extreme events is not necessarily contemporaneous between stations. Extreme events are characterised in terms 

of their frequency, duration and magnitude; we use ódurationô and ómagnitudeô to refer to median values across all events 

observed/modelled. We assess these characteristics in the context of station geography i.e. elevation, latitude and melt zone 140 

(see methods). Each of the three characteristics is dependent on elevation, however the nature of that dependence and the role 

that latitude and melt zone play in the relationship is different for each (Figure 2). Extreme temperature events occur 4-8 times 

per year and event frequency is negatively correlated with elevation in South Greenland; events become less frequent the 

higher the station is on the ice sheet. Event frequency is positively correlated with elevation in North Greenland/the dry snow 

zone (Figure 2a). Events last between 5-10 days, and duration is positively correlated with elevation for all stations (Figure 145 

2b). However events tend to last longer (by ~1 day) at stations in the dry snow zone/North Greenland than at stations at similar 

elevations in the percolation zone/South Greenland. Event magnitude is negatively correlated with elevation at all stations 

(Figure 2c), but elevation has a stronger influence on event magnitude in the dry snow and ablation zones (-4.4 (+/- 0.3) oC 

km-1) than in the percolation zone (-1.8 (0.4) oC km-1). 

 150 

We compare the degree to which MAR is able to capture the observed climatology of extreme events at GC-Net stations by 

repeating the same extreme value analysis with output from each of the MAR model variants (Figure 3). In addition to 

considering each station independently, we also consider each model variant independently, i.e. there is no common event 

mask. This is because the GCM forced model variants (MAR-MIR, MAR-Nor and MAR-Can) are designed to simulate 

climatic variability over typically climatic periods like 20-30 yrs, which is not necessarily contemporaneous with observed 155 
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variability in a given time period. We exclude JAR2 from the remainder of this analysis due to the large discrepancy in 

elevation between the station and the corresponding grid cell in MAR (316 m, Table 1) and the dependency we find between 

elevation and extreme event characteristics (Figure 2). Whilst all of the four model variants typically simulate the duration of 

extreme events reasonably well (i.e. within 1 day per event), they underestimate event frequency at most of the stations (Figure 

3). This is most notable for the GCM forced model variants MAR-MIR, MAR-Nor and MAR-Can which underestimate event 160 

frequency by 1.12, 0.75 and 0.65 events per year respectively. Similarly, all of the model variants underestimate the observed 

event magnitude by more than half a degree at most of the stations (though notably not the two remaining in the ablation zone, 

in fact event magnitude at Swiss Camp is overestimated). In terms of the individual model variants, the MAR-Era simulation 

is best able to reproduce event frequency (-0.09 events on average), the MAR-ERA and MAR-MIR simulations are both best 

able to reproduce event duration (+/-0.04 days on average) and the MAR-Era simulation is best able to reproduce event 165 

magnitude (-0.76 oC on average). MAR-Nor is the poorest performing model variant overall.  

3.1 Mean temperature and mean summer temperature at GC-Net stations in MAR 

We assess the ability of the four MAR variants to reproduce temperature observed by the GC-Net more generally by comparing 

the mean and trend of the entire daily mean temperature time series at each station location (Table 4). We present aggregate 

statistics for the entire time period in order to account for the fact that the GCM forced MAR variants are predicting climatic 170 

variability at the decadal scale. The number of years of data (including gaps in the time series) is given for each station in 

Table 1. Results are presented by melt zone, where values are an average of all stations in that zone, weighted by the number 

of years of data available for each station. Both MAR-Era and MAR-MIR overestimate mean daily mean temperature (i.e. the 

average of all of the daily means) by ~1oC, although this signal is dominated by a large discrepancy in the dry snow zone 

where both model variants are too warm by Ó1.5oC. Both model variants however, show good agreement with the observations 175 

in the ablation zone (-0.24oC and -0.34oC, respectively), which is where the most melting occurs. MAR-Can and MAR-Nor 

both underestimate temperatures overall, and give better agreement with observations in general (-0.13oC and -0.21oC, 

respectively), but they exhibit a poor performance in the ablation zone (both variants > 1oC too cold). Considering only the 

summer (JJA) daily mean temperatures, with the exception of MAR-Can in the percolation zone, all MAR variants are too 

cold in all zones and overall. MAR-Can performs best overall in summer, with a bias of just -0.01oC. All model variants 180 

reproduce observed trends in both all and summer temperatures to within 0.1oCyr-1 (most within 0.05oC per year). We evaluate 

the ability of MAR-Era to reproduce observed climate variability by comparing modelled vs observed mean annual and mean 

summer (JJA) temperatures (Figure 4). MAR-Era is well able to capture observed inter-annual variability in both. Mean annual 

temperatures are particularly well correlated with Pearsonôs correlation co-efficient (r) values in the range 0.77-1.00. Inter-

annual variability in mean summer temperatures is less well captured (r = 0.62-94, if JAR2 is ignored). The low bias in summer 185 

temperatures described above is also evident at the inter-annual timescale in the MAR-Era simulation. 
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3.3. Extreme temperature events in Era-Interim data  

We assess the degree to which the raw Era-Interim output (i.e. not MAR forced with Era-Interim) captures extreme temperature 

events at GC-Net stations (Figure 5). In comparison with the same data for MAR-Era, using the raw Era-Interim output yields 

a poorer match to observations at all sites except NASA-U and NGRIP. The average absolute bias in magnitude of extreme 190 

temperature events is 0.87oC in MAR-Era and 1.81oC in the raw Era-Interim data output. In general, Era-Interim 

underestimates temperatures during extreme events in a similar manner to MAR-Era. However Era-Interim overestimates 

temperatures in the Swiss Camp region and north east of the ice sheet. 

3.3 Melting during extreme temperature events 

We use a positive degree day sum (see methods) to approximate melt energy available during extreme and non-extreme 195 

conditions at each of the 13 stations (Figure 6). We note that the difference in abundance of melt energy between adjacent melt 

zones is roughly an order of magnitude, with observed total PDDs per station of 617, 96 and 5 oC in the ablation, percolation 

and dry snow zones respectively. All MAR variants are able to reproduce this gradient. We find that the dependence of 

observed melt energy on statistically extreme temperatures also scales with elevation (r2=0.71, n=13); one-third and ~95% of 

all melting occurs during extreme events in the ablation and dry snow zones respectively. MAR-Era is able to reproduce this 200 

pattern (r2=0.71) but the relationship is less clear in data from the GCM forced variants (r2 = 0.23-0.43).  

 

We compare differences in the total PDDs observed and predicted during the entire study period; all of the MAR variants are 

found to underestimate total PDDs (Table 5). During extreme events, we see a two-fold increase in the model bias for the 

MAR-Era, MAR-MIR and MAR-Can model variants; PDDs are underestimated by 26%, 32% and 22% during extreme events, 205 

and 12%, 18% and 10% respectively during non-extreme conditions. In the MAR-Nor simulation, PDDs are underestimated 

to a greater degree during non-extreme temperature conditions. The relative influence of model bias during extreme events is 

spatially variable. In the ablation zone, the total bias during extreme events is comparable to that during non-extreme events 

except that the two biases are of the opposite sign; PDDs are over-estimated in the ablation zone during extreme events and 

under-estimated in the ablation zone during non-extreme events. Given the relative contribution of melting during extreme 210 

events to overall melting here however (just 33%), this results in an underestimate overall of 5%, 12%, 22% and 7% for MAR-

Era, MAR-MIR, MAR-Nor and MAR-Can respectively. Conversely, in the percolation zone, PDDs are underestimated during 

extreme events and over-estimated during non-extreme conditions. However again the signal observed during the dominant 

regime (i.e. 96% of PDDs occur during extremes) leads to a large underestimate overall (52%, 58%, 84% and 40% for the 

model variants as before). In the dry snow zone it is more difficult to partition the relative influence of extreme vs non extreme 215 

events on total PDDs because there is far less melting here; a PDD total of 5 oC per station over the entire study period. This 

is particularly of note for Summit and NGRIP stations which are high up and far inland on the ice sheet; very small amounts 

of melting are observed here but no melting is modelled by any of the model variants. 



8 

 

4 Discussion 

4.1 Extreme temperature events in GC-Net Observations 220 

Despite our relatively small sample, given the size of the ice sheet, we see clear relationships between extreme event 

characteristics and elevation, latitude and melt regime. It is not surprising that extreme temperature events exhibit a stronger 

magnitude at lower-lying locations, given the atmospheric temperature lapse rate, but it is interesting that this relationship is 

less strong for the five percolation zone stations than for stations in the ablation and dry snow zones. We speculate that this is 

a result of heat exchange at the snow surface moderating near-surface temperatures in this region; sublimation is a known 225 

energy sink in the percolation zone in the summer (Ettema et al., 2010). In South Greenland, extreme events at lower elevations 

tend to be more frequent and of shorter duration than those higher up on the ice sheet. Temperature anomalies can be associated 

with cloudiness (reflecting upwelling longwave radiation back down to the surface) and lower-lying stations are more likely 

to experience short-term periods of orographic cloud cover. This is particularly likely to affect West Greenland which lies in 

the path of the prevailing summer circulation pattern and consequently receives moisture-laden onshore flow during the 230 

summer (Ohmura and Reeh, 1991). In North Greenland however, we see that extreme events become both longer-lasting, and 

more frequent, as elevation increases. Longer extreme temperature events are likely associated with high pressure conditions 

which are relatively persistent. In fact, extreme melt years on Greenland have been attributed to an increase in the frequency 

and duration of high pressure conditions promoted by wider scale atmospheric pressure gradients such as the North Atlantic 

Oscillation and the Greenland Blocking Index (e.g. Nghiem et al., 2012, Hanna et al., 2013, Lim et al., 2016, Hanna et al., 235 

2016). Extreme temperature events are responsible for the vast majority of melt energy produced in the percolation and dry 

snow zones on the ice sheet but contribute a much smaller proportion to overall melt energy in the ablation zone. Because we 

only have data for two ablation zone stations which are located in close proximity, further work is required to assess whether 

this is a general property of the ablation zone or restricted to this location; temperatures in general are much warmer here, and 

extreme events are not required to generate melting.  240 

4.2 Extreme temperature events in MAR simulations 

All of the four MAR model variants underestimate the frequency of extreme events but simulate their duration well. This 

suggests that MAR is able to reproduce the persistence of conditions driving extreme temperature events when they arise in 

the model. All MAR variants under-estimate the magnitude of extreme temperature events at most stations, in most cases by 

>0.5oC. This can be explained in part by a general low bias in modelled summer temperatures; although the magnitude of this 245 

bias is not sufficient to account for the magnitude of the data-model mismatch during extreme periods. For example, MAR-

Era exhibits a bias of -0.35oC during summer and -0.76oC during extreme temperature events. The raw Era-Interim output also 

exhibits a low bias during extreme temperature events at most of the GC-Net stations, with notable exceptions being North 

East Greenland and the most marginal stations at which temperature during extremes is over-estimated. This suggests that the 

low bias we see in the MAR model during extreme periods could be an artefact of the forcing data. This is important because 250 
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Era-Interim and the GCMs examined here are commonly used to force other regional and local scale models (e.g. RACMO2); 

their use is not restricted to MAR. The version of MAR which is analysed here (v3.5) is known to underestimate the 

atmospheric liquid water content and so cloudiness (Fettweis et al., 2017) which may also contribute to the cold bias in 

temperature extremes. However, we repeated the analysis with the most recent version of MAR (v3.7) in which a correction 

for this has been incorporated and this yielded no noticeable difference in the result. All of the MAR model variants and Era-255 

Interim over-estimate event magnitude at stations in the ablation zone, JAR and Swiss Camp. We attribute this to difference 

in albedo between the bare ice in the ablation zone and the snow-covered surface at higher elevations. Energy exchange in 

bare ice areas is generally more sensitive to sunny conditions; this likely explains why the biases are opposite in this area 

compared to the percolation and dry snow zones where the albedo is high enough to prevent this sensitivity. 

 260 

Melt energy simulated by MAR is underestimated by 19%, 25%, 41% and 16% when forcing is provided by Era-Interim, 

MIROC5, NorESM1 and CanESM2 respectively. However during extreme events, model biases in terms of melt energy are 

double those calculated during non-extreme, positive temperature, conditions. This is important because approximately half 

of all melt energy is generated during extreme events. In general, the GCM forced MAR simulations perform more poorly than 

the Era-Interim forced simulation, with the exception of MAR-Can (bias = 16% vs 19% for MAR-Era). We would expect the 265 

reanalysis forced simulation to perform the best, given its assimilation of observations; however we note that the difference is 

not large.  

 

We observe melt energy generated at the two highest/furthest inland stations in our sample; Summit and NGRIP, but none of 

the MAR variants simulate any melting at either of these stations during our study period. This is because extreme temperatures 270 

are underestimated by ~1oC by MAR at these stations (e.g. MAR-Era exhibits a bias of -0.91 at Summit and -0.76 at NGRIP). 

It is important to note that these are very small quantities and would not impact ice-sheet wide estimates of melting, however 

melting is also important because of its role in ice sheet albedo; wet snow is less reflective than dry snow. A significant melt 

event can be defined as achieving > 1 mm WE/day (Franco et al., 2013), and with the exception of Summit in 2012 this was 

not achieved at either station during the study period. Nonetheless, as the climate warms melting at these locations is likely to 275 

be more abundant and properly capturing temperature variability here will become even more important. 

4 Conclusions 

Analysis of GC-Net temperature data shows that the frequency, magnitude and duration of extreme temperature events on 

Greenland are strongly controlled by geography (e.g. elevation, latitude etc.), though further work is needed to determine the 

relative contributions of potential physical drivers of extreme events at different locations and over different time periods. The 280 

MAR regional climate model accurately predicts the duration of extreme temperature events on Greenland but underestimates 

their frequency by around 1 day per year and underestimates event magnitude by >0.5oC. While this is an improvement over 
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coarse-scale reanalysis data, it nonetheless leads to an under-estimate in melt energy, which we calculate to be 16-41% during 

our study period, dependant on model forcing chosen. MAR-based predictions of future melting are calculated using an energy 

balance method which has been shown to perform well against observations in the past (Fettweis et al., 2017). However since 285 

temperature plays a significant role in the energy balance equations (though melt does not linearly increase with temperature), 

it is likely that these predictions are affected by the exaggerated model bias we find during extreme events in our study. Further 

work is needed to determine why the model underperforms in this area, and if other similar models have the same limitation. 

We identify this as a model development priority to ensure that MAR based estimates of ice sheet change are both 

comprehensive and robust. 290 
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Figure 1: Data coverage in GC-Net temperature record. 
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 375 

Figure 2: Frequency, duration and magnitude of extreme events observed at GC-Net automatic weather stations. 

Shapes indicate location: south west = circle, north west = square, north east = cross, south east = triangle. Saddle is 

located on the ice divide and we choose to represent it as a south east station. Colours indicate melt zone: red = ablation 

zone, black = percolation zone, blue = dry snow zone. In (a) solid grey line represents a linear fit to data from the 

ablation and percolation zone stations, dashed line in (a) represents a linear fit to dry snow zone station data. In (b), 380 

solid grey line represents a linear fit to all data. In (c) solid grey line represents a linear fit to ablation zone stations, 

dashed grey line represents a linear fit to dry snow zone stations and dotted grey line represents a linear fit to 

percolation zone stations. In (d) contours delineate lower limit of percolation (pink) and dry snow (purple) zones. 
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Figure 3. Median frequency, duration and magnitude of extreme temperature events as simulated by each model variant at each 385 

station. Frequency is denoted by the height of each box, duration is indicated by the width of each box, and observed values are 

given by the dashed black boxes. Box colours indicate the departure of the modelled magnitude from the observed value, blue colours 

indicate an underestimate, and red colours indicate an over estimate. Note that a temperature lapse rate has been applied to modelled 

temperatures to account for the difference in elevation between AWS and MAR elevation. 
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 390 

Figure 4: Modelled vs observed mean annual and mean summer temperature at each of the GC-Net stations. Modelled values are 

as simulated by MAR-Era. Pearsonôs correlation co-efficient and the root mean squared error (oC) between the data is annotated. 

Red symbols and text refer to summer (JJA) values, black symbols and text refer to annual values. Black dotted line denotes a 1:1 

fit.  
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 395 

Figure 5. Median frequency, duration and magnitude of extreme temperature events as simulated by Era-Interim and MAR -Era. 

As before, frequency is denoted by the height of each box, duration is indicated by the width of each box and observed values are 

given by the dashed black boxes. Box colours indicate the departure of the modelled magnitude from the observed value, blue colours 

indicate an underestimate, and red colours indicate an over estimate. Note that a temperature lapse rate has been applied to modelled 

temperatures to account for differences in elevation between AWS and Era-Interim elevation and AWS and MAR elevation. 400 


