SDQ: Enabling Rapid QoE Experimentation using
Software Defined Networking

Lyndon Fawcett!, Mu Mu?, Matthew Broadbent!, Nicholas Hart!, and Nicholas Race!

School of Computing and Communications, Lancaster University, UK
2School of Science and Technology, The University of Northampton, UK

Abstract—The emerging network paradigm of Software De-
fined Networking (SDN) has been increasingly adopted to im-
prove the Quality of Experiences (QoE) across multiple HTTP
adaptive streaming (HAS) instances. However, there is currently
a gap between research and reality in this field. QoE models,
which offer user-level context to network management processes,
are often tested in a simulation environment. Such environments
do not consider the effects that network protocols, client pro-
grams, and other real world factors may have on the outcomes.
Ultimately, this can lead to models not functioning as expected
in real networks. On the other hand, setting up an experiment
that reflects reality is a time consuming process requiring expert
knowledge. This paper shares designs and guidelines of an SDN
experimentation framework (SDQ), which offers rapid evaluation
of QoE models using real network infrastructures.

Index Terms—Software Defined Networking; Quality of Expe-
rience; Experimentation; Adaptive Streaming

I. INTRODUCTION

High quality video streaming accounts for a large portion
of today’s Internet traffic [3], with HTTP adaptive streaming
(HAS) established as the predominant method of streaming
content across networks to heterogeneous devices. On its
own, HAS offers improvements in Quality of Experience
(QoE), as the video delivered is adaptive to the prevailing
network conditions [6]. However, when other devices share
the same network, fluctuations can occur [7]. Software Defined
Networking (SDN) has opened up a wealth of opportunities
for improving QoE [12], [6]. This is achieved through a
greater level of control and awareness of the behaviour of the
underlying network. However, one of the current issues within
the QoE community relates to the popularity of simulation
environments, particularly for the evaluation of QoE models
[15] [13]. Simulations can overlook the effects of network
protocols, client programs, or other real world factors and
ultimately can lead to models not behaving as anticipated in
real networks [5]. On the other hand, setting up an experiment
environment that reflects real network configurations is a time
consuming process requiring expert knowledge.

In this paper we go beyond the use of SDN to simply
improve QoE, but consider how SDN can in fact support the
rapid experimentation and testing of QoE models within a
real network environment, thus addressing the aforementioned
issue. We consider OpenFlow as a means to supporting inno-
vation in QoE research in much the same way that it was
originally conceived as a mechanism to enable researchers
to innovate within networks. This paper highlights some of

the challenges of integrating QoE models using hardware
SDN equipment and shares experiences in realising a SDN
experimentation testbed. We also demonstrate the benefit of
SDQ using an existing QoE model [13].

II. BACKGROUND AND RELATED WORK

HTTP Adaptive Streaming (HAS) is widely adopted for
video distribution. Using MPEG-DASH as an example, media
content is encoded into representations, each of which is a
version of the content prepared in segments using different
encoding specifications. The adaptation logic (between repre-
sentations) is often determined at the player, with decisions
based upon criteria such as estimated throughput [9] and
buffer occupancy [8]. There has been significant effort placed
in improving the QoE of adaptive video streaming. Most of
this work in this area including [7], [8], [10] focuses on
optimising the network efficiency or the QoE on individual
media streams. Without coordination between HAS clients,
TCP-based resource allocation can lead to unfairness at the
user level [13] and severe fluctuations in multi-stream environ-
ments [10]. With the increasing number of HAS streams, it is
essential to orchestrate network resource consumption through
1) a better understanding of the user-level requirements of user
applications, and 2) a transparent network resource allocation
service in content networks.

Software Defined Networking [16], through the decoupling
of the control plane from the packet forwarding plane, allows
network services such as load balancing and context aware
resource allocation to be realised and automated as part of the
service delivery chain [12]. This has led to a significant body
of research investigating the use of SDN for QoE assessment
and improvement including [11], [4]. We first demonstrated
the feasibility of a SDN-assisted video quality management
framework in [6]. Through fairness modelling using video
quality, switching impact and cost efficiency as the impact
metrics [14], a scalable resource allocation model UFair was
introduced. This is designed to improve delivered video quality
and user-level fairness between HAS media streams [13].

QoE models are often proven using programmatic simu-
lation for their ease and rapid nature. Simulations overlook
some networking and client aspects, which result in models
not working as expected in real networking environments [5].
In contrast, to test a QoE model in a real-world environment
requires multiple switches and even more clients, all of which

consume more resources and time than a simulation. The
network emulator Mininet is often considered as an appro-
priate solution to the aforementioned problems; it is capable
of running at large scale, uses a real networking stack, and
can execute client programs [1]. However, at the moment
it is limited by the underlying capabilities that the software
switch (Open vSwitch) provides. In particular, Open vSwitch
is missing some of the extended features of OpenFlow 1.3
that are important for QoE, such as metering (rate-limiting of
flows). This highlights the need for a system that can balance
these requirements: an SDN and virtualisation environment
that provides the realism of real world experimentation whilst
offering the benefits in agility and low cost associated with
simulation environments.

III. SDQ FRAMEWORK

In the following section, we describe the requirements and
architecture of the SDQ Framework; a harness to be used in
aiding rapid deployment and orchestration of experiments. As
such, the architecture and experimentation environment has to
fulfil the following requirements:

o Experiments Close to Practice and at Scale: To provide
both realism and scale, the environment should encom-
pass both physical and virtual elements.

o Software Defined Dynamic Manipulation of Available
Bandwidth Within the Network: To match real-world net-
work topologies, the link speeds must be rate limited. For
QoE enforcement, dynamic configuration of rate limiting
also needs to be applied to specific flows.

o Configurable Clients: The client’s configuration should
be changeable between experiments.

o Rapid Repeatability of Experiments in a Clean Environ-
ment: Ensure that no residual effects are left over from
previous experiments.

o Generic Framework: The system should offer control
and statistics from physical networks and any virtual
infrastructure.

The SDQ framework orchestrates the virtual and physical
network infrastructure using SDN to assist the execution and
statistical data gathering of network based QoE experiments.
It consists of a three layer architecture: the top layer contains
components provided by the researcher including the test
manifest and application/user-level functions such as a QoE
module. The middle layer contains the SDQ orchestrator which
interfaces with, and includes, the infrastructure managers. The
bottom layer contains the network and virtualisation infrastruc-
ture where the experiments are deployed. The following is a
breakdown of the components shown in Figure 1:

Test Manifest: describes the experiment in a JSON format.
It includes each of the clients’ IP addresses, the networks each
is attached to, the virtual machine image to be used, network
emulation requirements, and timestamps for automated tests.

QoFE Model: an interchangeable component which commu-
nicates with the SDQ orchestrator (described below) through
an RPC (Remote Procedure Call) interface providing infor-
mation about resource allocation of one or more media flows.

E model fact
==

SDQ Orchestrator

Network infrastructure
manager (NIM)

Virtualisation infrastructure
manager (VIM)

H
_[OpenFlow

Network infrastructure

REST API

OpenStack infrastructure

[virtual user clients] [OpenFlow switches]

l virtual servers] [Other OpenFlow-enabled l

devices

L] }

Fig. 1. SDQ framework

Additionally, information is sent back in regards to the current
throughput at different points in the network using OpenFlow’s
meter statistics and flow statistics messages.

SDQ Orchestrator: handles communication between all of
the components. It includes two subcomponents, the Vir-
tual Infrastructure Manager (VIM) and network Infrastructure
Manager (NIM). The VIM controls the virtualisation infras-
tructure through a RESTful API, it launches and configures
experiment nodes with information from the test manifest.
At the end of the experiment it resets the test environment,
removing networks and virtual machines it instantiated, so
that the environment is ready for the next experiment. The
NIM controls the network infrastructure and consists of an
OpenFlow controller containing a metering and monitoring
application. It installs meter flow mods on request from
the QoE model and provides information from the network
including current throughput of flows and switches.

The virtualisation infrastructure (through integration with
OpenStack) instantiates experiment nodes and exposes them
to the network. The network infrastructure creates connections
between nodes and switches and provides a platform for QoE-
based flow enforcement. Section IV provides further details
regarding the configuration of each of these elements.

IV. EXPERIMENTATION ENVIRONMENT

This section describes the virtualisation and network infras-
tructure used to create the environment for SDQ.

Our objective is to create network and virtualisation infras-
tructures that are controllable through the SDQ framework!.
Ultimately, these need to resemble real world deployments.
To illustrate the advantages of SDQ, we highlight a potential
deployment scenario for evaluating QoE. This consists of a
number of households connected to the Internet using con-
sumer ADSL connections. They all share a common DSLAM,
which is connected to the wider Internet over a restricted
shared link. The video servers are located at the remote end of
this connection. The home routers and the local DSLAM are
also under SDN control to provide link emulation and QoE
enforcement functionalities. To realise the topology described
above we create the experimentation environment shown in

Uhttps://github.com/LancasterNetworking/SDQ

Switch 3
(QoE monitoring and
enforcement)
Switch 2
(Network ion)

Switch 1
(Port multiplexer)

e Client x
User devices
(for validation and

subjective tests)

Client1 Client 2

pa— ! pa—
N BN N
| _°f | |
L =] L= L=

Foreground Background OpenFlow
server server controller

OpenStack
virtualisation

Fig. 2. Experiment environment

Figure 2. It consists of a large cluster of generic servers,
three OpenFlow-capable switches, a user device, and local
connectivity between each.

In the following subsections, we outline the process under-
taken to establish our experimental environment so that readers
can replicate our experiments.

A. Virtualisation Infrastructure

At the core of the virtualisation infrastructure is an Open-
Stack installation. This provides the means of building and
connecting virtual machines (VM). The OpenStack installation
is standard, with one main modification: VLAN trunks are
used to break-out network interfaces from virtual machines.
These are then mapped one-to-one to exclusive physical
interfaces on a switch. This is an essential feature for our
experimentation as it allows each client to be directly assigned
to a physical port on an SDN controlled switch.

A typical experiment requires 10s to 100s of OpenStack
configuration elements, most of which are replicas of a basic
template. Building topologies by hand, either via the Horizon
GUI, or using command line, is tedious and prone to error;
the ability to both build and destroy test topologies rapidly
and consistently is essential both for replicating, revisiting
or extending experimental results and for sharing the test
environment with other workers. As such, we developed an
orchestration tool titled MiniStack?, which takes topology
description files and builds and boots fully connected experi-
mental topologies. The tool is written in Python and uses the
OpenStack REST APL

B. Network Infrastructure

The network infrastructure used in this example consists
of two OpenFlow v1.3 capable switches (Switch 2 and 3
shown in Figure 2) with metering support. In our facility, we
use Hewlett Packard Enterprise’s HP3800 switches, as they
fulfil both of these requirements. However, other compliant
switches could be used instead. The HP3800 also hosts other
important capabilities, such as the ability to flexibly partition
a single physical switch into a number of virtual switches.
Each of these is a complete, distinct OpenFlow instance. This
too is outside of the scope of OpenFlow, but is a feature
present on a number of devices available on the market. This

Zhttps://github.com/hdb3/ministack

partitioning feature is vital in achieving the scale required in
experimentation without incurring the associated cost.

The network infrastructure is controlled by the NIM: a Ryu
[2] controller application OpenFlow Bandwidth that provides a
REST/JSON API to issue requests for bandwidth management
and monitoring using simple intuitive JSON defined messages.
Ryu was selected because of its support for extended Open-
Flow 1.3 features and support for various hardware switches.
For the application, a typical request would be to report the
current network traffic level for a port or previously defined
flow.

Overall, the combination of features, programmability, and
openness provided by OpenFlow greatly assist us to fully
realise QoE applications in real-world networks.

V. QOE MODEL EXPERIMENTATION

This section describes how the SDQ experimental environ-
ment (described in Section IV) was used to evaluate the UFair
QoE model [13], which has previously been evaluated via
means of a simulator. When transforming this QoE model into
a real networked implementation, we came across a number
of issues. During early testing HAS clients were not receiving
sufficient bandwidth to reach the stream quality that the model
was aiming to achieve. Following analysis, the cause was
determined to be an assumption made in the simulator that
if meters were set to a specific bandwidth then clients would
receive exactly that. In addition, the simulator did not consider
packet header sizes, the meter dropping policy, and that HAS
chunks can vary in size. These were factors that were easy to
overlook when creating a simulation. In the remainder of this
section, we describe in more detail the experimental setup, the
experiments performed and the results of doing so.

A. Experiment topology

The topology used for the evaluation of UFair was con-
sistent with the original simulated environment. It represents
a tiered multi-household network, in which each household
contains 4-6 hosts running DASH clients, all of which are
connected to a gateway. This gateway is then connected, along
with other gateways in the topology, to an aggregation switch.
Over another hop, a foreground (serving DASH content) and a
background server act as endpoints for their respective traffic.

To simulate a potential home network environment where
links are limited, emulation of network link characteristics are
used. Through SDQ, the links between access switches and
the gateway switches are limited to 20Mbps. Similarly the
link between the aggregation switches is restricted to SOMbps.
The sum of the connectivity available to household links is
100Mbps, This results in a situation whereby there is more
demand than there is supply in the case of multiple households.
In these circumstances, the adaptive streams in each house
are affected by hosts within the same house, as well as the
behaviour of hosts in other houses.

B. Experiments

In order to evaluate the effectiveness of the UFair QoE
model, and to assess the capability of SDQ to achieve the

60000

N House | [House 2 [House 3 [House 4 [House 5

Throughput (Kbps)

50 100 150 200 250 300 350 400 450 500
Time (seconds)

Fig. 3. No OoE model across households

60000 T T T T T T T

T T
N House 1 [House 2 [I House 3 [House 4] House 5

Throughput (Kbps)

100 150 200 250 300 350 400 450 500

Time (seconds)

Fig. 4. UFair across households

required functionality, we conducted two representative ex-
periments: one where the QoE model was used for network
resource allocation and the other with no QoE model applied.
SDQ was used to capture experiment data, monitor traffic, and
enforce traffic limits per flow and per household.

C. Results

This section compares the results of the two experiments
(one with QoE model active and the other without) ran with
the assistance of the SDQ framework. Figures 3 and 4 depict
the allocation of network resources on the aggregation link
between all households. Without a global network view, TCP-
based resource allocation causes fluctuations in the network
(Figure 3), which ultimately deteriorates the user experience
through an increased switching of streams.

Through this experimentation, SDQ has shown to be an
effective framework to support QoE experiments relating to
adaptive video content. The whole toolset, including stream-
lining the orchestration of the QoE model, virtualisation
infrastructure, and physical OpenFlow equipment, allows re-
searchers to focus on human factor modelling and helps to
verify the feasibility of any QoE model.

VI. CONCLUSIONS

Often, researchers use simulations to test QoE models
due to the ease, agility and low cost that they offer when
compared to real world testing. However, simulations often
fail to recognise some of the additional effects that are present

in actual networks and the technologies that use them. This
leads to models behaving differently in reality, lessening the
contribution of experimental findings. This paper introduces
SDQ, a framework that uses SDN to facilitate rapid exper-
imentation of QoE models in such a realistic environment.
SDQ aids QoE researchers by reducing the barrier to entry for
SDN-assisted QoE experiments. An example use case, using
the UFair model, demonstrates how a QoE model previously
tested solely in simulation can be evaluated in the real world.

ACKNOWLEDGEMENTS

The authors are grateful to the UK Engineering and Physical
Sciences Research Council (EPSRC) for funding the TOU-
CAN project (EP/L020009/1), which supported some of the
work presented in this paper, and are grateful to Lancaster
University for funding Lyndon Fawcett’s PhD studentship in
association with TOUCAN.

REFERENCES

[11 Mininet network emulator. http://mininet.org/.

[2] Ryu OpenFlow controller. http://osrg.github.io/ryu/.

[3] Cisco Visual Networking Index: Forecast and Methodology, 2014-2019
White Paper, 2015.

[4] P. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour.
Design considerations for a 5G network architecture. Communications
Magazine, IEEE, 52(11):65-75, 2014.

[5] S. Floyd and V. Paxson. Difficulties in simulating the internet.
IEEE/ACM Transactions on Networking (TON), 9(4):392-403, 2001.

[6] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race.
Towards Network-wide QoE Fairness Using Openflow-assisted Adaptive
Video Streaming. In ACM SIGCOMM 2013 Workshop on Future
Human-centric Multimedia Networking (FhMN), 2013.

[71 T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari.
Confused, Rimid, and Unstable: Picking a Video Streaming Rate is Hard.
In Proc. ACM IMC, pages 225-238, 2012.

[8] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 187-198. ACM, 2014.

[9] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and
Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In
Proc. ACM CoNEXT, pages 97-108, 2012.

[10] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran. Probe
and Adapt: Rate Adaptation for HTTP Video Streaming At Scale. I[EEE
Journal on Selected Areas in Communications, 32(4):719-733, 2014.

[11] E. Liotou, G. Tseliou, K. Samdanis, D. Tsolkas, F. Adelantado, and
C. Verikoukis. An SDN QoE-Service for dynamically enhancing the
performance of OTT applications. In Quality of Multimedia Experience
(QoMEX), 2015 Seventh International Workshop on. IEEE, 2015.

[12] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba. Network Function Virtualization: State-of-the-art and
Research Challenges. (c):1-28, 2015.

[13] M. Mu, M. Broadbent, N. Hart, A. Farshad, N. Race, D. Hutchison,
and Q. Ni. A Scalable User Fairness Model for Adaptive Video
Streaming over Future Networks. IEEE Journal on Selected Areas in
Communications, 2016.

[14] M. Mu, S. Simpson, A. Farshad, Q. Ni, and N. Race. User-level
Fairness Delivered: Network Resource Allocation for Adaptive Video
Streaming. 2015 IEEE/ACM International Symposium on Quality of
Service (IWQoS), 2015.

[15] M. Seufert, T. Hosfeld, and C. Sieber. Impact of intermediate layer
on quality of experience of HTTP adaptive streaming. 2015 1Ith
International Conference on Network and Service Management (CNSM),
17(1):256-260, 2015.

[16] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie. A Survey
on Software-Defined Networking. [EEE Communications Surveys &
Tutorials, 17(1):27-51, 2015.

