
Descriptive
Business Process Models at Run-time

David Redlich, B.Sc., M.Sc.(Hons)

School of Computing and Communications

Lancaster University

This dissertation is submitted for the degree of

Doctor of Philosophy

March 2018

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements. This

dissertation contains fewer than 100,000 words including footnotes and appendices but

excluding the bibliography.

David Redlich, B.Sc., M.Sc.(Hons)

March 2018

Acknowledgements

First and foremost, I would like to thank my academic and industrial supervisors, Gordon

Blair, Awais Rashid, and Wasif Gilani, for their guidance and feedback as well as their con-

tinuous motivation and support throughout the course of my PhD studies. I would have

never seen the end of it without your help.

I would also like to extend my gratitude towards SAP in general and my managers in

particular: Phil Taylor and Wasif Gilani (yes, you are mentioned twice), who have always

supported me on my way towards thesis submission and provided helpful guidance about

how to survive in the industrial as well as the academic world.

My colleagues, Thomas Molka, Marc Drobek, Mykola Galushka, Ulrich Winkler, and

Mathias Fritzsche, deserve also a very big thanks. They made work a fun and enjoyable

place to be, but more importantly were always there to bounce ideas back and forth. This

helped my research progress enormously.

Last but not least, I would like to thank and acknowledge the undergraduate students

who contributed some of the implementation based on my ideas and also tremendously

helped to showcase the work with their unflagging effort to prepare demonstrations and

develop fancy visualisations: Stephanie Platz, Thomas Hornoff, Tobias Proske, Robert

Fritzsche, Max Bothe, Stefan Bunk, Johannes Jasper, Balazs Pinter, and Julien Bergner.

Abstract

Today’s competitive markets require organisations to react proactively to changes in their

environment if financial and legal consequences are to be avoided. Since business pro-

cesses are elementary parts of modern organisations they are also required to efficiently

adapt to these changes in quick and flexible ways. This requirement demands a more dy-

namic handling of business processes, i.e. treating business processes as run-time arte-

facts rather than design-time artefacts. One general approach to address this problem

is provided by the community of models@run.time, which promotes methodologies con-

cerned with self-adaptive systems where models reflect the system’s current state at any

point in time and allow immediate reasoning and adaptation mechanisms. However, in

contrast to common self-adaptive systems the domain of business processes features two

additional challenges: (i) a bigger than usual abstraction gap between the business pro-

cess models and the actual run-time information of the enterprise system and (ii) the

possibility of run-time deviations from the planned models. Developing an understand-

ing of such processes is a crucial necessity in order to optimise business processes and

dynamically adapt to changing demands.

This thesis explores the potential of adopting and enhancing principles and mecha-

nisms from the models@run.time domain to the business process domain for the pur-

pose of run-time reasoning, i.e. investigating the potential role of Descriptive Business

Process Models at Run-time (DBPMRTs) in the business process management domain.

The DBPMRT is a model describing the enterprise system at run-time and thus enabling

higher-level reasoning on the as-is state. Along with the specification of the DBPMRT, al-

gorithms and an overall framework are proposed to establish and maintain a causal link

from the enterprise system to the DBPMRT at run-time. Furthermore, it is shown that

proactive higher-level reasoning on a DBPMRT in the form of performance prediction

allows for more accurate results. By taking these steps the thesis addresses general chal-

lenges of business process management, e.g. dealing with frequently changing processes

and shortening the business process life cycle. At the same time this thesis contributes

to research in models@run.time by providing a complex real-world use case as well as

a reference approach for dealing with volatile models@run.time of a higher abstraction

level.

Table of contents

Table of contents iv

List of figures viii

List of tables xiii

1 Introduction 1

1.1 Problem Domain . 1

1.2 Problem Statement . 2

1.3 Overall Goal and Objectives . 3

1.4 Research Questions . 5

1.5 Research Strategy . 5

1.6 Research Philosophy & Research Method . 6

1.7 Main Contributions . 8

1.8 Thesis Roadmap . 10

2 State of the Art: Business Processes and Model-Driven Engineering 12

2.1 Business Processes . 12

2.2 Business Process Management . 17

2.2.1 Business Process Languages and Modelling Standards 18

2.2.2 Process Execution Event Logs . 21

2.2.3 Overview of Business Process Analyses 23

2.3 Flexibility in Business Processes . 28

2.3.1 Taxonomy of Business Process Flexibility 28

2.3.2 Build-time vs. Run-time Business Process Flexibility 30

2.4 Process Discovery . 33

2.4.1 The Process Discovery Problem . 34

2.4.2 Process Discovery Algorithms . 38

2.4.3 Concept Drift in Process Mining . 44

2.4.4 Online Process Discovery . 48

2.5 Performance Decision Support for Business Processes 53

2.5.1 Process Performance Indicators . 53

2.5.2 Process Performance Prediction . 56

Table of contents v

2.5.3 Performance Prediction from Event Logs 61

2.6 Model-Driven Engineering . 63

2.6.1 Models . 63

2.6.2 Domain-specific Modelling . 65

2.6.3 Methods and Techniques in Model-Driven Engineering 67

2.7 Models at Run-time . 69

2.7.1 Objectives . 70

2.7.2 Techniques . 72

2.7.3 Architectures and Megamodels . 75

2.7.4 Generalising Models at Run-time . 77

2.7.5 Descriptive Models at Run-time . 79

2.8 Summary . 83

3 Gap Analysis: Descriptive Models at Run-time in Business Process Management 85

3.1 Models at Run-time meets Business Process Management 85

3.1.1 Special Characteristics in Business Process Management 87

3.1.2 Business Process Models at Run-time 89

3.2 Descriptive Business Process Models at Run-time 91

3.3 Process Discovery at Run-time . 96

3.3.1 Gap Analysis: Process Discovery Algorithms 96

3.3.2 Gap Analysis: Online Process Discovery 98

3.4 Process Performance Prediction at Run-time 101

3.5 Summary . 104

4 Descriptive Business Process Models at Run-time 106

4.1 Identification of Characteristics for DBPMRTs 106

4.1.1 Characteristics for Run-time BP Models 107

4.1.2 Concrete Requirements for DBPMRTs 110

4.2 Descriptive Business Process State Model at Run-time 114

4.2.1 Control-Flow Perspective . 115

4.2.2 Resource Perspective . 116

4.2.3 Performance Perspective . 117

4.2.4 Process Instance Perspective . 119

4.2.5 Holistic DBPMRT . 121

4.3 Descriptive Business Business Process Evolution Model 122

4.3.1 Structure of Evolution DBPMRT . 122

4.3.2 Temporal Relations for Evolution DBPMRT 125

4.4 Qualitative Evaluation . 128

4.5 Summary . 131

Table of contents vi

5 Establishment of Causal Connection 132

5.1 Detailed Problem Definition . 134

5.2 Static Construct Competition Miner . 137

5.2.1 Preliminaries . 137

5.2.2 Divide and Conquer . 138

5.2.3 Footprint . 140

5.2.4 Suitability of BP-Constructs . 144

5.2.5 Competition Algorithm . 149

5.3 Dynamic Process Discovery Framework . 151

5.3.1 Concept . 152

5.3.2 Event Hub and Global, Standardised Events 153

5.3.3 Dynamic Footprints . 155

5.3.4 Modified Methodology for the Control-flow Perspective:

The Dynamic Construct Competition Miner 157

5.3.5 Description of other Framework Artefacts 159

5.3.6 Computer- vs. Human-oriented Run-time Models 161

5.4 Dynamic Footprint Update . 162

5.4.1 Control-Flow Footprint . 163

5.4.2 Resources Footprint . 167

5.4.3 Performance Footprint . 168

5.5 Dynamic Footprint Interpretation . 169

5.5.1 Control-Flow . 169

5.5.2 Roles and Resources . 170

5.5.3 Performance . 172

5.6 Process Instance State Tracking . 173

5.6.1 Additional Preliminaries . 173

5.6.2 Method Specification . 174

5.7 Overview of Mapping from Event Lifecycle Type to BP Perspective 177

5.8 Evaluation . 179

5.8.1 Evaluation of Constructs Competition Miner 179

5.8.2 Evaluation of Dynamic Constructs Competition Miner 184

5.8.3 Qualitative Evaluation . 193

5.9 Summary . 195

6 Reasoning on Descriptive Business Process Models at Run-time 197

6.1 DBPMRT Reasoning Framework . 197

6.1.1 Concept of DBPMRT Reasoning Framework 198

6.1.2 Event to Performance Processing (External Component) 199

6.1.3 Performance Prediction via Simulation 201

6.2 Case Study Scenario: Akron Heating Retailer 203

6.2.1 Organisational Structure . 204

Table of contents vii

6.2.2 IT-supported Business Processes . 204

6.3 Analysis Results . 206

6.3.1 Roles and Resources . 206

6.3.2 Business Processes . 207

6.3.3 Performance Predictions . 209

6.4 Summary . 217

7 Conclusion and Future Research 218

7.1 Results of the Thesis . 218

7.1.1 Research Questions Revisited . 218

7.1.2 Main Contributions . 220

7.2 Future Research Agenda . 222

7.3 Final Remarks . 225

Appendix A Publications 226

Appendix B Example Footprint Update with Ageing 230

Appendix C Visualisation Tools 232

C.1 DBPMRT Visualisation . 232

C.2 KPI/PPI Visualisations . 233

Appendix D Additional Processes in Case Study 235

D.1 Expense Payment . 235

D.2 Refill Stock . 236

D.3 Return Item . 237

Appendix E Additional Evaluation Results for Case Study 238

E.1 Business Processes . 238

E.1.1 Expense Payment . 238

E.1.2 Refill Stock . 239

E.1.3 Return Item . 239

E.2 Performance . 240

References 243

List of figures

1.1 The Two Common Types of Business Process Models 2

1.2 Scope and Objectives of Thesis . 4

1.3 Schematic View of Research Strategy . 6

1.4 Structure and Chapters of the Thesis . 11

2.1 Outline of Chapter 2 . 13

2.2 Online-Order-Processing Business Process . 14

2.3 BPM life-cycle: Difference between Workflow Management and Business

Process Management [246] . 18

2.4 Nested Relationship between BPM Theory, Standards, and Systems [123] . . 19

2.5 Common Kinds of Business Process Model Standards 20

2.6 Lifecycle transitions in MXML and XES [90, 256] 23

2.7 Extended BPM Lifecycle [251] and different types of BPA in relation 24

2.8 The three main types of Process Mining (in red) [251] 25

2.9 Input and Output of (a) Process Discovery, (b) Conformance Checking, and

(c) Model Enhancement [251] . 26

2.10 Taxonomy of Business Process Flexibility by Regev [190] 29

2.11 Types of BP Flexibility defined by Sadiq et al. [202] (light grey rectangles) and

by Schonenberg et al. [211] (dark grey ovals) in relation to level of abstraction

(type vs. instance) and anticipation (build-time vs. run-time) 31

2.12 Example Business Process . 34

2.13 Mined Trace Model (left) and Flower Model (right) for Log L1 36

2.14 Excerpt of a large "Spaghetti" Process Model [89] 37

2.15 Concept of the α-algorithm: Intermediate and End Results for Log L1 39

2.16 Result Petri Net of the Inductive Miner Plugin in ProM for Log L1 41

2.17 Concept of the HeuristicsMiner: Intermediate and End Results for Log L1 . 42

2.18 Example Concept Drift in the Original Log L1 45

2.19 Different Types of Event Queues [27] . 51

2.20 The Relation between PPIs, KPIs and the System 54

2.21 Algorithm of the three-phase discrete-event simulation approach [193] . . . 57

2.22 Short-term Prediction via BP Simulation vs. Trend Analysis 59

2.23 Short-term Simulation System Integrated with the Workflow System [200] . 60

List of figures ix

2.24 Mining Simulation Model for Steady-State Prediction [198] 62

2.25 Experts involved in Model-Driven Engineering [69] 65

2.26 MOF layers - Meta-data Architecture proposed by OMG [162] 67

2.27 Design Models vs. Run-time Models [9] . 70

2.28 Autonomic Control Loop: Monitor-Analyse-Decide-Execute (MAPE) Mech-

anism [116] . 74

2.29 Megamodel Example for Self-adaptive Software [267] 76

2.30 Simplified MRT Megamodel Example for IT Service Management [267] . . . 77

2.31 Descriptive vs. Prescriptive Parts . 79

2.32 Run-time Models for Monitoring in Maintenance [264] 80

2.33 Schematic View on Relations between Descriptive Run-time Models, other

Model Types, and the System . 82

3.1 Outline of Chapter 3 . 86

3.2 BPM Lifecycle and Information Artefacts Exchanged Between Phases 87

3.3 Conceptual Differences of the Approaches . 91

4.1 Outline of Chapter 4 . 107

4.2 Abstraction Levels of BP Changes . 108

4.3 Reflective Business Process Model as Process Instance Model at Run-time . 109

4.4 Business Process Abstraction Levels and the Conceptual Location of the Four

Required Characteristics for Run-time BP Models: Dynamism, Variability,

Reflectivity, and Expressibility . 110

4.5 BP-domain Artefacts Ordered by Abstraction Levels 111

4.6 Selected Element Types of a Business Process and Associations between them

(Stroked Lines) . 113

4.7 Model Layers of the DBPMRT in comparison to the MOF Layers [162] 114

4.8 Meta-Model for Single Control-Flow Models in State DBPMRT 115

4.9 Meta-Model for Resource Perspective in State DBPMRT 117

4.10 Meta-Model for Performance Perspective in State DBPMRT 118

4.11 Meta-Model for Process Instance Perspective in State DBPMRT 119

4.12 The Development of the Instance State (Model) for an Example Stream of

Events . 120

4.13 Meta-Model for the Holistic State DBPMRT . 121

4.14 Hierarchy (via Containment Relation) of a DBPMRT and important Associ-

ations between Elements . 123

4.15 Influence Spheres of Certain Changes and the Situation of Temporal Rela-

tions in the Evolution DBPMRT . 124

4.16 Model Schema for Temporal 1:1-Containment for ProcessInstantiation- Dou-

bleValue Relation . 125

4.17 Example Model for a DoubleValueTimeSeries Temporal Relation and its In-

terpretation . 126

List of figures x

4.18 Model Schema for Temporal Role-Activity Relation 127

4.19 Model Schema for Temporal BPScenarioModel-BPCtrlFlowModel Relation . 128

5.1 Outline of Chapter 5 . 133

5.2 First Steps of the Divide and Conquer Concept for the Example Process . . . 140

5.3 Example business process with two nested parallel constructs 141

5.4 Penalty development of (v ∼= t) (equal) and (v � t) (unequal) for given pu

and tt . 145

5.5 Supported Business Process Constructs . 147

5.6 Competition Algorithm: Traversing to the best split up 150

5.7 Information Flow: Agents and Model Artefacts involved in the DPDF Frame-

work . 153

5.8 Meta-Model for a BP Event Log (relevant elements are highlighted) 154

5.9 Conceptual Methodology of the Dynamic CCM 158

5.10 Result of the Footprint Interpretation on an event stream produced by the

example from Figure 5.3 if no sub-footprint for {b,c,d} is available yet - only

the top-level split has been discovered and due to the missing sub-footprint

one activity [b,c,d] is created . 159

5.11 Development of the influence of a trace for different trace influence factors

(tif) . 165

5.12 Concept of the Role Discovery Shown on an Example 171

5.13 Example Business Process with many Parallel Paths 174

5.14 Mappings from Event Lifecycles to Relation Types to DBPMRT Perspectives 178

5.15 Randomly Created Original BP (Top) and the (Re-)Discovered BP (Bottom)

by analysing the simulated log of the original BP with the CCM Algorithm . 180

5.16 Experimental Workflow . 181

5.17 Quality Criteria Net of HeuristicsMiner (HM), Inductive Miner (IM), and Con-

structs Competition Miner (CCM); Simplicity values normalised with | fs | = 100
fs

184

5.18 Measures for Detection of BP Change in System 185

5.19 The Evolution of the Discovered BP Model During the Warm-up Phase . . . 186

5.20 Warm-up Time with the Discrete Ageing in Relation to the Trace Influence

Factor . 187

5.21 Warm-up Time with Time-dependent Ageing in Relation to the Trace Influ-

ence Factor . 187

5.22 Warm-up Time without Optimisation in Relation to the Trace Influence Fac-

tor with m = 1 . 188

5.23 The Evolution of the Discovered BP Model During a Change (Move of Activ-

ity "A") . 189

5.24 The Change Transition Period in Relation to the Trace Influence Factor (for

Recognising Move of Activity "A") . 190

List of figures xi

5.25 The Evolution of the Discovered BP Model During a Change (Addition of

Activity "I") . 190

5.26 The Change Transition Period in Relation to the Trace Influence Factor for

all three Changes (m=1) . 191

5.27 The Evolution of the Discovered BP Model During a Change (Complex Change)192

6.1 Outline of Chapter 6 . 198

6.2 Repository Architecture for the General Reasoning Framework 199

6.3 Exemplary Calculation of PPIs Throughput, Processing Time, and Queue

Length . 200

6.4 Concept of Using Simulation for Performance Prediction 201

6.5 Complete Information Flow for the PPI Prediction using BP Simulation . . . 202

6.6 Actively Participating Roles in the Akron Heating Company 204

6.7 IT-supported BPs in the Akron Heating Company 204

6.8 The Planned "Create Telephone Order" BP in the Akron Heating Company . 205

6.9 The Planned "Process Order" BP in the Akron Heating Company 205

6.10 Discovered Resource Perspective . 207

6.11 Discovered Control-flows of Create Telephone Order, Create Online Order,

and Process Order BPs . 208

6.12 Example Extrapolation on Regressed Functions: Trend and Periodic Trend . 210

6.13 Six Episodes of Prediction Results vs. Real Development for Queue Length of

"Telephone Operator" Role . 210

6.14 Prediction Results vs. Real Development for Queue Length of "Telephone

Operator" Role . 211

6.15 MSE of the Prediction Methods for Queue Length of "Telephone Operator"

Role . 212

6.16 Prediction Results vs. Real Development for Queue Length of "Accounting"

Role . 212

6.17 MSE of the Prediction Methods for Queue Length of "Accounting" Role . . . 213

6.18 Prediction Results vs. Real Development for End-to-End Processing Time of

"Create Online Order" BP . 213

6.19 MSE of the Prediction Methods for End-to-End Processing Time of "Create

Online Order" BP . 214

6.20 Normalised Mean Square Errors of the Prediction Methods for the individual

PPIs . 216

6.21 Average Normalised Mean Square Error for the three different Prediction

Methods: (1) Simulation, (2) Trend Analysis, and (3) Periodic Trend Analysis 216

C.1 DBPMRT Evolution Visualisation (Element Descriptions annotated in red) . 232

C.2 PPI Dashboard (Element Descriptions annotated in red) 233

C.3 PPI Popup - when clicked on PPI in Dashboard (Descriptions annotated in

red) . 233

List of figures xii

C.4 Tablet App for PPI Visualisation . 234

D.1 The Planned "Expense Payment" Business Process in the Akron Heating Com-

pany . 235

D.2 The Planned "Refill Stock" Business Process in the Akron Heating Company 236

D.3 The Planned "Return Item" Business Process in the Akron Heating Company 237

E.1 Discovered Control-flow of the Expense Payment BP 238

E.2 Discovered Control-flow of the Refill Stock BP 239

E.3 Discovered Control-flow of the Return Item BP 239

E.4 Prediction Results vs. Real Development for End-to-End Processing Time of

"Return Items" BP . 240

E.5 MSE of the Prediction Methods for End-to-End Processing Time of "Return

Items" BP . 240

E.6 Prediction Results vs. Real Development for Utilisation of "Packer" Role . . 241

E.7 MSE of the Prediction Methods for Utilisation of "Packer" Role 241

E.8 Prediction Results vs. Real Development for Throughput of "Initiate Express

Shipping" Activity . 242

E.9 MSE of the Prediction Methods for Throughput of "Initiate Express Ship-

ping" Activity . 242

List of tables

2.1 Excerpt of Execution Event Log resulting from Process in Figure 2.2 21

3.1 Overview Gap Analysis Descriptive Business Process Models at Run-time;

Legend: (-) not supported, (◦) somewhat supported, (+) mainly supported . 95

3.2 Overview Gap Analysis Process Discovery at Run-time 101

3.3 Overview Gap Analysis Process Performance Prediction at Run-time 104

4.1 Degree of Requirement Fulfilment . 130

4.2 Gap Analysis Descriptive Business Process Models at Run-time for DBPMRT;

Legend: (-) not supported, (◦) somewhat supported, (+) mainly supported . 130

5.1 Supported BP constructs and their constraints sorted by constraint level . . 148

5.2 Trace Fitness and Precision conformance results of the discovery algorithms 183

5.3 Generalisation and Simplicity results of the discovery algorithms 183

5.4 All averaged results of the relevant discovery algorithms 183

5.5 Degree of Requirement Fulfilment . 195

Chapter 1

Introduction

1.1 Problem Domain

The success of modern organisations depends on the efficiency and performance of their

employed Business Processes (BPs). These processes dictate the flow of work for high-level

business functions to achieve business goals. Prominent examples of business processes

are Order-to-Cash, Accounts-Receivable, or Procure-to-Pay. They represent fundamental

parts of many organisations and are considered to be ”...the most valuable corporate as-

set” [270]. Business processes can reside on different levels of an organisation, e.g. oper-

ational vs. strategic [122], and can have different degrees of automation, e.g. fully auto-

mated vs. manual execution.

In order to deal with increasing complexity and to efficiently manage business pro-

cesses, IT-based solutions have been harnessed. This development led to the rise of Busi-

ness Process Management (BPM), as an IT-related discipline. In fact, BPM is an interdisci-

plinary subject of ”theory in practice” adopting a variety of paradigms and methodologies

from computer science, management theory, philosophy, mathematics, and linguistic,

just to name a few [95, 122, 194]. Business processes and their management are sup-

ported by (Enterprise) Business Process Management Systems (BPMS’s). They are imple-

mentations of so called "application and integration middleware", e.g. SAP Netweaver

BPM [287], IBM WebSphere [102], Intalio BPMS Designer [103].

In BPM, a business process is represented by a Business Process Model specifying dif-

ferent aspects of the process like activities, sequence, performance, resources, and roles.

In industry, many standards for business process models exist, e.g. Business Process Model

and Notation (BPMN) [168], Business Process Execution Language (BPEL) [161], or Busi-

ness Process Query Language (BPQL) [164]. Because of the inter-disciplinary nature of

BPM, each of these model standards are also subject to influence from non-IT disciplines

and thus were designed for one or more different purposes, e.g. comprehension, com-

munication, execution, or diagnosis. With regard to their time of validity in relation to

the enterprise system those standards can be categorised into two different types (see

Figure 1.1): a-priori and a-posteriori business process models.

1.2 Problem Statement 2

A-posteriori

Business Process Model

A-priori
Business Process Model

System in Use
Deployment/

Implementation
Model

Extraction

Timeline

Fig. 1.1 The Two Common Types of Business Process Models

A-priori business process models are design-time models, i.e. business processes are

designed or documented before execution to specify or pre-analyse the processes in an or-

ganisation. This is either done informally via a document listing and describing the steps

and their execution sequence or they are modelled via design-time languages. The most

prominent business process model languages were developed to build human-readable

design-time models with the focus on aspects like interoperability, or being a basis for

reliable communication between different stakeholders [47].

In contrast, a-posteriori business process models are extracted after execution for di-

agnosis purposes to reflect the real behaviour of the observed system. This kind of ret-

rospective analysis of business processes based on execution logs is called Process Min-

ing (PM) [231]. PM becomes necessary if no design-time model is available or the actual

business process execution deviates from the designed model. Such a deviation is com-

mon for all non-fully automated business processes and can be caused by, for instance,

an under-specification of the designed model, a reaction to exceptional circumstances,

or an evolution of the process during run-time [251].

1.2 Problem Statement

Today’s businesses need to survive in a highly competitive environment which comes

with strong requirements with regards to fast adaptation and optimisation. Because late,

inadequate, or incorrect actions can lead to Service Level Agreement (SLA) violations,

causing financial and legal consequences, the ability to react proactively to changes is

a crucial feature for successful organisations. Since business processes are driving today’s

modern organisations they are ultimately required to adapt and evolve continuously in

order to meet demands and constraints inflicted by internal or external sources [203], e.g.

changing market contexts, customer requirements, or business imperatives. One exam-

ple of such a dynamic organisation is a hospital, in which the treatment processes have

to be flexible and quickly modifiable, based on the qualifications of the current staff and

patients’ demands, e.g. emergencies, epidemics. Another example is a retail company

which is exposed to a lot of market pressure and has to quickly adapt to changing cus-

tomer demands and shortages of resources and/or goods.

In order to optimise business processes and adapt to changing demands, develop-

1.3 Overall Goal and Objectives 3

ing an understanding of the deployed processes is the first immediate and crucial neces-

sity. This information enables a business analyst to make insightful decisions and answer

questions related to compliance, performance, or sustainability, e.g.: How are my business

functions executed in reality? How do my business processes generally perform? How will

this performance change in the future? What are current and expected bottlenecks of the

deployed business processes?

However, discovering and understanding the current condition of deployed processes

is a difficult task: Firstly, business processes are often either not documented or poorly

documented. Secondly, modern organisations and their deployed processes are of an in-

creasingly dynamic nature. As a result, even if documented, the actual execution of busi-

ness processes usually deviates from the modelled design-time business processes due to

changes occurring during run-time. A-priori business process models are, therefore, not

accurate enough to be used as information sources for decision making. Process mining

algorithms, on the other hand, extract a-posteriori models from historic execution logs

and are, therefore, too static to respond to the dynamic nature of flexible business pro-

cesses, i.e. these models can already be outdated at the time of extraction.

In conclusion, both types of business process models, a-priori and a-posteriori mod-

els, exhibit a chronological distance to the running system. Furthermore, due to process

evolution and exceptional circumstances during run-time a factual difference between a

design-time model and the business process in the running system is often observable.

Both the identified chronological distances and factual differences imply a lack of causal-

ity between business process models and the system executing the business processes.

This makes reasoning on this information difficult and susceptible to errors.

1.3 Overall Goal and Objectives

The overall goal of this thesis is to mitigate the lack of causality between system and

business process model in real-time environments in order to promote a more dynamic

handling of business processes and enable higher-level reasoning on run-time data.

A general approach to achieve this goal is provided by the models@run.time (MRT)

community, which is concerned with model-driven mechanisms and principles to pur-

posefully (self-)reflect on an associated system during run-time [16]. This thesis explores

the adoption of principles and mechanisms from the MRT domain to the business pro-

cess domain for the purpose of run-time reasoning, thus, investigating the potential role

of Descriptive Business Process Models at Run-time (DBPMRT). As opposed to a-priori or

a-posteriori models, DBPMRT is a model of a business process describing the enterprise

system while in use and therefore represents a new type of model in the business pro-

cess management domain. To achieve this goal, the following objectives have to be ap-

proached and are the subject of this thesis (conceptually depicted in Figure 1.2):

1.3 Overall Goal and Objectives 4

Thesis Scope

Enterprise System

System 1

System 2

System 3

Descriptive
Business

Process Models
@ Run-time

Reasoning
on

Run-time
Model

Update
of

Run-time
Model

System
Modification

Business Analyst

Fig. 1.2 Scope and Objectives of Thesis

Specification of Descriptive Business Process Model at Run-time (DBPMRT):

DBPMRT has to deal with additional concerns as opposed to common business process

models, such as capturing status information of the enterprise system’s processes. One of

the main objectives is to identify these run-time characteristics and elaborate a DBPMRT

specification that allows for expressing these run-time characteristics.

Establishing the Link from Business Process Management System to DBPMRT:

Enterprise systems like BPMSs produce execution events indicating a change of the sys-

tem’s internal state. Since they represent fine-granule state transitions, they are on a dif-

ferent abstraction level than business processes. One objective is to infer from this low

level event data higher level BP information in a real-time environment, i.e. every change

in the system should be causally and timely reflected in the associated run-time represen-

tation (i.e. DPBPMRT). Due to run-time constraints and the abstract nature of business

process models this objective is particularly challenging as the connection from system

to DPBPMRT is difficult to maintain.

Reasoning on DBPMRT:

The potential benefit of reasoning on a DBPMRT is that the system’s complete state infor-

mation can be utilised to carry out high-level analyses for decision support, e.g. perfor-

mance prediction, detection of bottlenecks or SLA violations. One of the objectives of this

thesis is to provide decision support functionality based directly on the current descrip-

tive state of the business process and thus show that reasoning mechanisms built on the

introduced concept of DBPMRT have the potential to yield more accurate results.

1.4 Research Questions 5

1.4 Research Questions

These objectives raise a number of research questions that are addressed by this thesis:

1. How can the target system (BPMS) be effectively represented at run-time?

2. To what extent can a causal link from BPMS to BP model be established given that

event data and BP model conform to different levels of abstraction?

3. To what degree can a causal link from BPMS to BP model be maintained in a dynamic

run-time environment?

4. Can the quality of run-time reasoning be improved by utilising DBPMRTs?

In a broader sense this thesis also provides a partial answer, i.e. in the form of a use case,

to the question:

5. How and to what extent can a target system emitting low-level events be causally and

timely reflected by a run-time model of a higher abstraction level?

1.5 Research Strategy

In order to achieve the main goal and objectives the following research strategy has been

adopted (see Figure 1.3):

1. Requirement Collection: The research carried out in the context of this thesis is

driven by the requirements of real-life use cases provided by SAP, a large business

software vendor, and TIMBUS, an EU funded research project concerned with the

preservation of business processes [84]. These use cases drove the need for DBPMRT

and continued to shape the agenda for each of the involved objectives throughout

the research process, e.g. run-time constraints of algorithms, what information and

what types of reasoning are relevant for business analysts in order to proactively

initiate business process modifications and/or preservation.

2. State of the Art Review: In this phase, a state of the art and industry survey in the

domains of business process management and run-time models as well as related

disciplines has been carried out.

3. Determining the potential role of DBPMRT: By evaluating the state of the art and

reflecting on the nature of descriptive business process run-time models, the ob-

jectives and the respective individual challenges that need addressing have been

determined.

4. Designing a framework for DBPMRT: In this phase, a framework and the involved

run-time models for DBPMRT were designed responding to the topic’s objectives

and complying to the constraints and requirements imposed by the industrial use

cases.

1.6 Research Philosophy & Research Method 6

Requirements Collection

Literature Review

Potential Role of DBPMRT

Design of DBPMRT Framework

Requirements

SotA Overview

DBPMRT
Models &
Specification

Design and Implementation of
Key Algorithms

Research
Challenges

Algorithms
Experimental

Evaluation

Implementation of
DBPMRT Framework

DBPMRT
Framework

Use-case
Evaluation

Fig. 1.3 Schematic View of Research Strategy

5. Addressing of the individual challenges: Key algorithms have been implemented in

order to address individual challenges of each of the different objectives. The qual-

ity of the key algorithms have been quantitatively evaluated against other relevant

state-of-the-art algorithms in experiments based on artificial and real-life data.

6. Prototypical implementation of the DBPMRT framework: In this final phase, a proof

of concept for DBPMRT framework has been carried out. This was achieved by im-

plementing a DBPMRT solution compliant with the framework specifications which

was then utilised and evaluated in the context of industrial use cases provided by

SAP and the TIMBUS project.

1.6 Research Philosophy & Research Method

Depending on the problem to be investigated and previous advances on that subject the

appropriate scientific approach needs to be chosen. Computer Science is influenced

by many other subjects, e.g. Logic, Mathematics, Physics, Chemistry, Biology, and Psy-

chology, and thus employs a large variety of different scientific approaches [54, 59]. Two

fundamentally different paradigms exist: interpretivism and positivism [42]: (1) Research

conducted via interpretivism employs qualitative evaluations that are based on subjec-

tive data and follow a rather argumentative methodology; (2) Research conducted in the

positivism fashion is based on quantitative evaluations, i.e. it involves collecting objective

(and mostly numerical) data (measurements) and evaluating it statistically.

1.6 Research Philosophy & Research Method 7

The two fundamental paradigms also apply to research in the specific field of Software

Engineering. For instance, when performance is of relevance for the research topic the

more traditional paradigm of positivism is the obvious choice [1]. In contrast, when such

an empirical measure is not clearly evident - as is often the case in Software Engineering

- the research follows the interpretive paradigm. In the latter case the nature of scientific

questions asked is more important than the empirical method [87, 177], i.e. research must

ask questions that can be falsified by observations [108]. The implication is that the scien-

tific quality of research in Software Engineering improves if it "...is successfully developed

into practical applications (i.e. as a methodology, technique or tool)." [8] For this purpose

Case Studies are often employed - they are suitable to describe, understand, and explain

the research subject as well as validating the results [8, 59].

Concretely, this thesis is concerned with Software Engineering for BPM, i.e. the result-

ing artefacts are Information Systems. According to Hevner et al. in [97], the traditional

research paradigm debates (positivism vs. interpretivism) stem from natural sciences and

are based on the assumption that "... somewhere some truth exists and somehow that truth

can be extracted, explicated, and codified". They argue that most of the research in Infor-

mation Science can be characterised by two other paradigms: behavioural science and

design science [97]: (1) "the behavioural-science paradigm seeks to develop and verify the-

ories that describe or predict human or organizational behavior", while (2) the "design-

science paradigm seeks to extend the boundaries of human and organizational capabilities

by creating new and innovative artifacts". The design science paradigm is closely related

with the process of engineering and the sciences of the artificial [216], i.e. it does not seek

to find the one truth but rather what is effective. Hence, research in design science should

be aligned with real world production experience, i.e. case studies [97, 143].

The research conducted as part of this thesis is concerned with the analysis of busi-

ness processes, i.e. of organisations and the underlying Information Systems. However,

while the goal is to discover and predict human and organisational behaviour, the contri-

butions of this thesis are artefacts for the general purpose of analysing the behaviour but

not for the analysis of a particular behavioural reality. It therefore follows the design science

paradigm. In order to answer the research questions in accordance with the design sci-

ence paradigm the effectiveness of the artefacts is evaluated through case studies: (1) Mul-

tiple different event logs (real world and artificial) to evaluate the quality of the algorithm

artefacts and (2) A case study to evaluate correctness of the model specifications as well as

the overall advanced reasoning framework, i.e. the DBPMRT framework. When regarded

in the context of the traditional research paradigms of positivism and interpretivism, this

work follows a hybrid approach: It employs the positivist paradigm when a quantitative

analysis is performable, i.e. when algorithm artefacts are concerned and when established

quality metrics exist, but will also employ interpretivism methodologies when only a argu-

mentative reasoning is possible, e.g. when behavioural models are extracted for which no

quantitative measure exist.

1.7 Main Contributions 8

1.7 Main Contributions

The foremost and most important contribution of this thesis is the adoption of princi-

ples and theories of the models@run.time community to the abstraction level of business

processes. By taking this step the thesis addresses general challenges of business process

management [122, 123, 214], i.e. dealing with frequently changing processes and short-

ening the business process life cycle, and contributes to research in models@run.time by

providing a valid use case as well as further requirements for models@run.time of a higher

abstraction level. In particular, this thesis yields the following contributions (including

relevant paper publications as lead author):

1. Identification of run-time characteristics of BPs and composition of a DBPMRT ref-

erence specification:

The first contribution of this thesis is the identification of run-time characteristics of BPs

and the design of a set of DBPMRT meta-models capturing a descriptive reflection of the

BP system. The DBPMRTs comprise information of important perspectives of a business

process, i.e. control-flow, resources, performance, instance states, and are able to rep-

resent different levels of change, i.e. a step of the process was executed vs. the entire

process has changed. Part of the findings (with regards to need for representing the dif-

ferent levels of change) have been published in [181]. Additionally, in order to deal with

the challenge of differing abstraction levels (low level event data vs. high level BP model)

an approach for distinguishing between two different types of run-time models has been

proposed in [184]: computer-oriented footprint models vs. human-oriented BP models.

2. Key algorithms to establish a causal link from BPMS to BP model at run-time:

• A novel algorithm to establish a causal link between event data and a descriptive BP

control-flow model: The Constructs Competition Miner (CCM) published in [185]

follows a top-down approach to discover block-structured process models from

event logs possibly containing exceptional and contradictory behaviour.

• Modification of the statically operating CCM algorithm in order to work in a real-

time setting to detect changes in the BP control-flow while processing a stream of

BP execution events: The Dynamic Constructs Competition Miner (DCCM) is pub-

lished in [186]. A second evaluation of the DCCM on the eHealth use case "DrugFu-

sion" (provided by the TIMBUS project) is published in [182].

• A dynamic concept for the event-based update of higher abstraction levels of the

model (e.g. change in performance, control-flow, etc.) including concepts like

"time-dependent ageing" and "discrete ageing". The different ageing approaches

have been published in the context of the control-flow perspective of a BP in [187].

1.7 Main Contributions 9

• A smart and time-efficient algorithm to capture the fine-grained instance state of

an enterprise system. As of the time of writing this algorithm has not yet been indi-

vidually published.

3. DBPMRT Framework:

The third contribution is the design and proof of concept implementation for a generic

framework for Descriptive Business Process Models at Run-time, enabling (1) automated

monitoring of an enterprise system by capturing the state of the system in a descriptive

run-time model and (2) real-time reasoning based on the descriptive run-time model.

The concepts and component specifications of the framework have been published in [184].

4. Real-time Reasoning Approach based on DBPMRT and Simulation:

This thesis’ contribution includes a generic conceptual approach for predictive reasoning

on DBPMRTs. Since a DBPMRT comprises current and historical data about all impor-

tant perspectives and all levels of change it can be utilised by a BP simulation to predict

future behaviour. Consequently, already existing reasoning algorithms, e.g. performance

prediction, detection of future bottlenecks, what-if analysis, can be (re-)used to enable

proactive decision support on future states of the system. Parts of the concept have been

published in [183] and [188]. In the context of this thesis the predictive reasoning concept

is introduced and evaluated for the use case of performance prediction.

Additionally, the author has contributed in varying degrees to publications which are

related to the main contributions but not entirely covered within the scope of this thesis.

This includes publications in the fields of (design-time) BP simulations [57, 58, 178, 189,

286], BP discovery based on genetic algorithms [147, 148], BP conformance [146], digital

preservation [84], risk management [83], and mechanisms for MRT in self-adaptive soft-

ware [12]. To further promote the topic of DBPM@RT, many of the thesis’ concepts have

been applied and evaluated in the context of the multiple industrial business use case sce-

narios made available within the European research project TIMBUS as well as in internal

SAP projects. During this process a number of demonstration tools have been developed

and knowledge transfer projects with SAP’s productisation departments have been ini-

tiated. A complete collection of all publications the author produced or contributed to

during the course of the PhD studies is presented in Annex A.

1.8 Thesis Roadmap 10

1.8 Thesis Roadmap

Figure 1.4 gives an overview and a proposed reading flow of the chapters. The thesis con-

sists of three general parts: In Part I introduction, background, and current state of the

art for the related research disciplines is presented. Part II individually addresses the ob-

jectives of this thesis as well as describes and evaluates the main contributions. In Part III

these contributions are qualitatively assessed and future work is presented. The remain-

der of the thesis is structured as follows:

Chapter 2: State-of-the-Art Business Processes and Model-driven Engineering, com-

prises a discussion of state of the industry and state of the art for relevant disciplines in

the business process and model-driven engineering domain. This includes fundamental

information about business processes and business process management as well as mod-

els and model-driven engineering. Furthermore, the current state-of-the-art in the topics

of process discovery, business process analysis, business process flexibility, and models at

run-time are discussed and reviewed.

Chapter 3: Gap Analysis of Descriptive Models at Run-time in Business Process Man-

agement, discusses the consolidation of the previously introduced research disciplines

and the resulting challenges. In this context gaps in the current state-of-the-art work is

identified for the three individual challenges of this thesis.

Chapter 4: Descriptive Business Process Models at Run-time, addresses the first objec-

tive of this thesis by specifying a reference language for DBPMRTs. The specification is

qualitatively evaluated against pre-specified requirements inferred from the challenges.

Chapter 5: Establishment of Casual Connection, describes how the objective of moni-

toring a system under study whilst maintaining an accurate run-time model is addressed,

i.e. how a causal link from system to DBPMRT can be established and maintained in a dy-

namic run-time environment. It furthermore presents the algorithms and components

that are involved in the proposed concept. The concept and algorithms are quantitatively

and qualitatively evaluated.

Chapter 6: Reasoning on DBPMRTs, presents a concept to harness the run-time infor-

mation in a DBPMRT for high-level reasoning, i.e. in particular, short-term performance

prediction via simulation. Furthermore, a case scenario is introduced which is the basis

of the evaluation of the reasoning concept along with the overall DBPMRT concept in the

context of short-term performance prediction.

Chapter 7: Conclusion and Future Research, concludes the thesis by revisiting and an-

swering the research questions as well as highlighting the main contributions of this the-

sis. Additionally, an agenda for future research is proposed.

1.8 Thesis Roadmap 11

Part I

Part II

Part III

Appendices

Chapter 1: Introduction

Chapter 2: State-of-the-Art
Business Processes and Model-Driven Engineering

Chapter 3: Gap Analysis
Descriptive Models at Run-time in Business Process Management

Chapter 4:
Descriptive Business Process

Models at Run-time
Objective I

Chapter 5:
Establishment of Causal

Connection
Objective II

Chapter 6: Reasoning on DBPMRTs and Framework Evaluation
Objective III

Appendix C: Visualisation ToolsAppendix B: Detailed Footprints

Chapter 7: Conclusion and Future Research

Appendix E: Evaluation ResultsAppendix D: Retailer Scenario

Appendix A: Publications

Fig. 1.4 Structure and Chapters of the Thesis

Chapter 2

State of the Art: Business Processes and

Model-Driven Engineering

In this chapter state of the art in research and industry for different topics of the busi-

ness process domain and Model-Driven Engineering (MDE) domain are discussed. In

the beginning a basic introduction to business processes is provided (Section 2.1), which

is followed by a discussion about the management, lifecycle, standards, and analysis of

business processes (Section 2.2). This is followed by Section 2.3 in which recent work

in the field of process flexibility, i.e. changes applied during enactment of a process, is

presented. Furthermore, two relevant topics with regards to descriptive and predictive

analysis of business processes are discussed, namely Process Discovery (Section 2.4) and

Performance Decision Support for Business Processes (Section 2.5). Then relevant funda-

mentals as well as state of the art work is discussed for the MDE domain in general and

Models at Run-time (MRT) domain in particular. First in Section 2.6, an introduction to

the goals, principles, and definitions of MDE is provided. This is followed by a state of the

art analysis of current advances in the domain of models at run-time in Section 2.7, no-

tably, with regards to objectives, architecture, model composition, techniques, and other

characteristics of MRT in current literature. A particular focus throughout this analysis

will be on aspects of descriptive models at run-time. Figure 2.1 shows the overview and

the individual dependencies between the described sections.

2.1 Business Processes

Processes accompany every human venture, from simply booking a holiday to manufac-

turing a car. In a similar way a business organisation is driven by its so-called business

processes: Its elementary tasks have to be carried out in certain ways in order to achieve

business goals and meet predefined objectives. These tasks, their order of execution, and

the resources to perform them are usually defined in one or more business processes.

In [122] business processes are defined as ”...a series or network of value-added activi-

ties, performed by their relevant roles or collaborators, to purposefully achieve the common

2.1 Business Processes 13

Chapter 2: State of the Art

SotA:mModel-DrivenmEngineering

1:mIntroduction

2.1:mBusinessmProcesses

3:mGapmAnalysis:mModelsmatmRun-timemmeetsm BusinessmProcessmManagement

2.6:mModel-DrivenmEngineering

2.3:mFlexibilityminmBusinessmProcesses

2.4:mProcessmDiscovery

2.5:mPerformancemDecisionmSupportmformBPs

2.7:mModelsmatmRun-time

SotA:mBusinessmProcesses

2.2:mBPmManagement

Fig. 2.1 Outline of Chapter 2

business goal.” Figure 2.2 depicts an example business process: Online-Order-Processing.

It is specified by a set of essential elements, further described in the following:

Start and End Event are required parts of every business process, respectively indicating

its entry (start event) and exit points (end event), i.e. they represent instantiation and

termination of a process.

Activities are process steps which abstract the execution of actual work. Three different

types of activities exist:

1. Automated Activities are service-like work tasks that can be immediately performed

when requested, i.e. the allocated resource may execute multiple automated activi-

ties concurrently at the same time without a noticeable delay. For instance, "Credit

Check" in the example process is such a service-like activity and thus can be imme-

diately and automatically executed by a "Credit Server" which can process multiple

service requests at the same time and without delay.

2.1 Business Processes 14

Legend

RolesChooseb
Products

Credit
Check

Process
Order

Create
Invoice

Bill
Account

valid

Notifyb
Customer

Cancel
Order

Login
Customer

RegisterbNewb
Customer

notbyet
registered

already
registered

WebbServer

CreditbServer

Accounting
notbvalid

Condition 2Condition 1

Automated
Activity

Human
Activity

Sub-
Process

Start
Event

End
Event

Decision Merge

Fork Join

Customerb
Relations

Fig. 2.2 Online-Order-Processing Business Process

2.1 Business Processes 15

2. Human Activities, in contrast, do require a resource to actively perform the work

task. These "active" resources can only execute one activity at the time and are as-

sociated with one or more Roles which specify their areas of responsibility. An activ-

ity has to be executed by a resource that is qualified to perform the associated task,

i.e. only resources of a specific role are possible. If currently no resource is available

the task cannot be executed and the process execution cannot continue until the

required resource becomes available. "Jane Doe", for instance, is a resource that

has the roles "Accounting" and "Human Resources": If he is currently not occupied

she can perform all tasks that require these roles, e.g. "Bill Account" and "Create

Invoice" but cannot perform "Notify Customer".

3. Sub-Process is a non-atomic activity1 that abstracts a processes of a lower hierar-

chical level, e.g. the "Process Order" step from the Online-Order-Processing ex-

ample represents such a sub-process and has its own specification. The usage of

sub-processes makes it possible to abstract and modularise business processes.

Fork and Join elements are used to direct the workflow of the process. A fork represents

a splitting of the current process execution into two or more parallel paths, i.e. each of the

paths can be performed in parallel without dictating the order of execution. Its counter-

part, the Join represents a synchronisation point for the process, i.e. the execution only

proceeds once all of the incoming parallel paths are completed. This means for the exam-

ple that the process can only continue if activities "Create Invoice" and "Process Order"

were completed.

Decision and Merge elements are used to direct conditional flows in a process. A Deci-

sion is semantically equal to an exclusive choice between two or more target paths, a cer-

tain path will be followed if a corresponding condition is true. For instance, the decision

in the example process after "Credit Check" represents a choice between either continu-

ing or cancelling the order depending on whether or not the credit check was successful,

i.e. valid or not valid. Its counterpart, a Merge, is the join element which is enabled once

one of the exclusive source paths is completed. The merge element does not synchronise.

Note, that also loop behaviour can be constructed with the help of these two elements.

This list only contains common elements that are shared by all relevant business pro-

cess specifications, i.e. a process can also consists of elements which are not listed above.

However, these elements are usually language-specific and/or of a different abstraction

level.

In the business process domain a process type is a particular type of process with a

defined business goal, e.g. Online-Order-Processing has the goal of high customer sat-

isfaction which translates to reducing the end-to-end processing time. A process type is

1automated and human activities are atomic activities since they can be not split up further

2.1 Business Processes 16

represented by a particular process schema which is captured in a business process model

specifying the behavioural information of a business process like activities, ordering, re-

sources [168]. Figure 2.2 shows a particular process schema of Online-Order-Processing.

A process type may be represented by more than one process schema expressing different

versions or evolution steps of this type. Furthermore, a process instance is a single execu-

tion/occurrence of the business process, i.e. a particular sequence of executed activities

in order to process a work item.

Furthermore, it is common to distinguish between different perspectives of a business

process. For the scope of this thesis the following three perspectives are of importance:

• Control-flow Perspective: describes the execution order of process activities with

the help of control elements [233], e.g. start events, forks, and decisions (see Fig-

ure 2.2). Since it captures the behavioural information of a process it is sometimes

also referred to as behavioural perspective, e.g. [190].

• Resource Perspective: describes the classification of resources (e.g. people, systems)

into roles [233] and which of these entities are in charge of executing the activi-

ties of the process. In Figure 2.2, only the roles (on the right) and their respective

associations to the process activities are shown (via different colours). Since this

perspective captures the organisational structure of the process it is also referred to

as organisational perspective, e.g. [190, 233].

• Performance Perspective: describes the performance of a business process, which

includes for instance information about the execution time of an activity, or how of-

ten the process has been initiated, or with which probability certain paths are cho-

sen. This perspective is of a retrospective nature and not modelled at design-time

but rather extracted after or while execution. Since the majority of performance in-

formation is related to timing and frequencies, it is sometimes also referred to as

time perspective, e.g. [233].

Additional perspectives exist, e.g. (1) Functional Perspective: defines what a process has to

do, i.e. the goals of the process [190], and (2) Data Perspective (or Case Perspective [233])

which is concerned with specific information that is associated with a single instantiation

of the process, e.g. items ordered, money to be transferred. However, those perspectives

are highly dependent on use case and implementation of the process and are therefore

not easily generalised. This thesis focuses on an autonomous and general solution that is

independent from external input and as such not use case specific, i.e. it focuses on the

perspectives that can be generalised: Control-flow, Resource, and Performance.

2.2 Business Process Management 17

2.2 Business Process Management

The increasing complexity and importance of business processes initiated the develop-

ment of Business Process Management (BPM) as an IT-related research area. BPM is a

cross-discipline subject of ”theory in practice” adopting a number of different concepts

and methodologies from various domains such as computer science, management the-

ory, philosophy, linguistics, and mathematics [122]. Perhaps because of its cross-disci-

plinary nature, even after three decades, there are many duplicate and contradictory pub-

lications trying to clarify definition and scope of basic BPM terminology [122], e.g. busi-

ness process vs. workflow, BPM vs. Workflow Management (WfM) vs. Business Process

Reengineering (BPR).

Business Process Management (BPM) is, however, considered to be the next step af-

ter the workflow wave of the nineties [246]. Originating from the domain of workflow

management, many definitions of BPM are based on workflow terminology. A Workflow

Management System (WfMS) is defined as: ”A system that defines, creates and manages the

execution of workflows through the use of software, running on one or more workflow en-

gines, which is able to interpret the process definition, interact with workflow participants

and, where required, invoke the use of IT tools and applications.” [125]. In a similar fashion

BPM is defined as: ”Supporting business processes using methods, techniques, and software

to design, enact, control, and analyze operational processes involving humans, organiza-

tions, applications, documents, and other sources of information.” [246]. Software systems

that support the execution and general management of operational business processes

are referred to as Business Process Management Systems or Business Process Manage-

ment Suites (BPMS’s) [123]. Popular examples of BPMS are SAP Netweaver BPM [287],

IBM WebSphere [102], Intalio BPMS Designer [103].

Part of the complete BPM definition is the BPM life-cycle. It originates from the stan-

dard development life cycle and consists of 4 stages (see Figure 2.3) [246]:

1. Process Design - In this stage, business processes are modelled for the BPMS.

2. System Configuration - This stage configures the BPMS and the underlying system

infrastructure (e.g., synchronisation of roles).

3. Process Enactment - The modelled business processes are deployed and executed

in a BPMS.

4. Diagnosis - With analysis and monitoring tools, the BPM analyst can identify bot-

tlenecks and improve the business processes.

The viewpoint of van der Aalst et al. is that WfM covers only process design, sys-

tem configuration, and process enactment, but BPM also includes the diagnosis phase to

complete the BPM lifecycle [246]. This viewpoint makes WfM a logical subset of BPM. Ac-

cording to [122] ”...many BPMS are still very much workflow management systems (WfMS)

and have not yet matured in the support of the BPM diagnosis.” However, recently the

2.2 Business Process Management 18

Fig. 2.3 BPM life-cycle: Difference between Workflow Management and Business Process
Management [246]

diagnosis phase started to gain more attention which is reflected in the high number of

publications in the fields of Business Process Analysis (BPA) (see Section 2.2.3) in general

and the sub-topics of Process Discovery (see Section 2.4) and Process Intelligence (PI) (see

Section 2.2.3 and Section 2.5) in particular. Other definitions of the BPM lifecycle exist but

basically centre around the same or similar four lifecycle steps, e.g. Configure, Execute,

Analyse, and Decide in [70].

A more industrial viewpoint on BPM and WfM is provided by Gartner [98]: ”Business

process management (BPM) is a process-oriented management discipline. It is not a tech-

nology. Workflow is a flow management technology found in business process manage-

ment suites (BPMS’s) and other product categories.” Here BPM is a management discipline

which is supported by WfM as a technology.

To put BPM terminology into one coherent picture, understanding the nested rela-

tionship of BPM theory (e.g., Pi Calculus [145] and Petri Nets [172]), BPM standards (e.g.,

Business Process Model and Notation (BPMN) [168] or Business Process Execution Lan-

guage (BPEL) [161]), and BPM systems (e.g. SAP Netweaver BPM [287] or Intalio BPMS

Designer [103]) is important: BPM standards are based on established BPM theory and

eventually adopted into software, i.e. BPMSs [123]. This nested relationship is depicted

in Figure 2.4.

2.2.1 Business Process Languages and Modelling Standards

Today’s large-scale business processes, which potentially span across multiple organi-

sations, are usually collaboratively executed on a set of different BPMS instances, each

complying to its own standards. As of 2007, there were more than 10 formal groups cre-

ating BPM standards, which produced at least 7 specifications for business process mod-

elling [291]. Since then, industry has adopted many of these standards and specifications

and new ones have been developed. However, the diversity of standards and the fact that

especially the industrial standards are mostly only informally specified makes it difficult

to generalise towards one business process representation. In order to get an overview

about the state of the art for business process modelling standards it makes sense to cat-

2.2 Business Process Management 19

Fig. 2.4 Nested Relationship between BPM Theory, Standards, and Systems [123]

egorise them into groups with similar functions and characteristics [123]. Many of the

standards address at least one of the phases of the BPM life cycle. For this reason Ko et

al. suggest a separation of features found in existing standards into four different types of

standards [123]:

1. Graphical Standards allow users to express information flow, decision points, and

roles for business processes in a diagrammatic way. Standards of this type corre-

spond to the design phase of the BPM life cycle and are usually the easiest to un-

derstand, i.e. human-readable. Prominent examples of graphical standards are

Business Process Model and Notation (BPMN) [168], Event-driven Process Chains

(EPC) [207], and activity diagrams of Unified Modelling Language (UML) [165].

2. Execution Standards are code-like and enable business processes to be deployed in

a BPMS. Standards of this type correspond to the enactment phase of the BPM life-

cycle. The most prominent example is Business Process Execution Language (BPEL)

(sometimes also called Web Service Business Execution Language (WS-BPEL)) [161].

3. Interchange Standards are used to translate graphical standards to execution stan-

dards and exchange business process models between BPMS’s [144]. One of the rea-

sons these standards became necessary was the fragmented BPM landscape. Two

prominent examples of interchange standards exist: Business Process Definition

Metamodel (BPDM) [167] and XML Process Definition Language (XPDL) [289].

4. Diagnosis Standards provide monitoring capabilities. These standards are to sup-

port audit trails, real-time business process information, trend analysis, bottleneck

identification, etc. Examples are initiatives of Object Management Group: Busi-

ness Process Runtime Interface (BPRI) [166] and Business Process Query Language

(BPQL) [164]. Though, both of the projects have not produced a standard (as of yet).

2.2 Business Process Management 20

A-priori
Process)Design)and)Process)Enactment)Stage

BP
at

Run-
time)

A-posteriori
Diagnosis)Stage

Timeline

Graphical)
Standards
(BPMN,)EPC)

Execution)
Standards

(BPEL)

Interchange)
Standards)

(BPDM,)XPDL)

Diagnosis)
Standards
(BPRI,)BPQL)

Fig. 2.5 Common Kinds of Business Process Model Standards

Most of the existing standards dealing with modelling languages can be assigned to one

of these types. Of course, this a simplified view and standards exist which can be mapped

to more than just one type, e.g. Yet Another Workflow Language (YAWL) [245] can be

regarded as graphical and execution standard, or BPEL which can have a graphical repre-

sentation, too.

The previous classification can be further generalised: Considering only the relation

of each of the standards to the system with regards to their time of validity, practically only

two different types remain (see Figure 2.5):

• A-priori model - Business process models at design-time: In this case business pro-

cesses are documented before execution. This documentation can range from for-

mal, i.e. using a language defined by one of the BP Modelling Standards (e.g. BPEL),

to very informal, i.e. defining different design-aspects of the process in a concept-

like manner (e.g. word document). Basically, every prominent language that ad-

dresses the enactment phase or one of the preceding is considered a-priori model,

e.g. BPMN or BPEL, and focuses on design-time aspects like communication and

interoperability [47].

• A-posteriori model - In practice business process models are often required to be

extracted after execution to reflect the real behaviour of a process as part of the di-

agnosis phase of the BPM life cycle. This extraction is necessary if no design-time

model exists or a run-time deviation from the designed model has occurred, e.g.

caused by an under-specification, a reaction to exceptional circumstances, or an

evolution of the process during run-time [251]. This static a-posteriori analysis of

business processes based on process execution logs is called Process Mining [231]

and is discussed in more detail in Section 2.2.3. Since no standards for the diagno-

sis phase exist as of yet, a-posteriori models usually do not conform to BP-domain

specific languages but to formal languages of BPM theory, e.g. Petri Nets [172].

2.2 Business Process Management 21

2.2.2 Process Execution Event Logs

A computer-aided execution of a business processes via BPMS’s produces process execu-

tion event logs (or short event logs) containing transactional details for each event occur-

ring during the execution. These events are usually of a simple nature and often only

comprise raw and direct information describing the state transition, but not the state of

the whole system [233]. However, since the execution can span over multiple BPMS’s each

individual event log can look very different. Differences can occur on many dimensions,

e.g. event granularity (activity level events vs. instance level events), perspective support

(whether resource, instance or other information is provided or not). Due to the differ-

ences in the various log formats, efforts have been made to provide an extensible and

general log format, e.g. Mining XML (MXML) [256], its successor eXtensible Event Stream

(XES) [90, 258], or Business Process Analytics Format (BPAF) [288, 293]. In the case of an

execution of collaborative BPs spanning multiple different BPMS, events have to be cap-

tured, filtered, and merged to one seamless log conforming to such a generic log format

before further analysis (discussed in Section 2.2.3) is carried out.

Events captured in a process execution log which conforms to a general log format like

XES or BPAF have the following characteristics [90, 293] (Table 2.1 contains an excerpt of

an execution event log resulting from Process in Figure 2.2):

Table 2.1 Excerpt of Execution Event Log resulting from Process in Figure 2.2

Event ID Timestamp Instance ID Name Resource Lifecycle

296213 Thu Dec 16 11:47:27 GMT 1999 9520 Bill Account Eli Findmer complete
296214 Thu Dec 16 11:47:27 GMT 1999 9538 Bill Account Eli Findmer assign
296215 Thu Dec 16 11:47:27 GMT 1999 9520 Create Invoice - schedule
296216 Thu Dec 16 11:48:20 GMT 1999 9486 Create Invoice Mia Larson complete
296217 Thu Dec 16 11:48:20 GMT 1999 9472 Create Invoice Mia Larson assign
296218 Thu Dec 16 11:48:20 GMT 1999 9486 End Online Order - trace_end
296221 Thu Dec 16 11:48:41 GMT 1999 9468 Choose Products Webserver_Instance complete
296222 Thu Dec 16 11:48:41 GMT 1999 9468 Credit Check - schedule
296223 Thu Dec 16 11:48:50 GMT 1999 9468 Credit Check CreditServer_Instance complete
296224 Thu Dec 16 11:48:50 GMT 1999 9468 Sub Process Order - schedule
296227 Thu Dec 16 11:48:50 GMT 1999 9468 Bill Account - schedule
296233 Thu Dec 16 11:49:02 GMT 1999 9473 Sub Process Order - complete
296236 Thu Dec 16 11:49:32 GMT 1999 9540 Sub Process Order - complete
296237 Thu Dec 16 11:50:11 GMT 1999 9519 Bill Account Viktor Charmical complete
296238 Thu Dec 16 11:50:11 GMT 1999 9579 Create Invoice Viktor Charmical assign
296239 Thu Dec 16 11:50:11 GMT 1999 9519 Create Invoice - schedule
296251 Thu Dec 16 11:52:57 GMT 1999 9487 Create Invoice Chuck Tchahovsky assign
296259 Thu Dec 16 11:53:22 GMT 1999 9548 Login in known customer Webserver_Instance complete
296260 Thu Dec 16 11:53:22 GMT 1999 9548 Choose Products - schedule
296264 Thu Dec 16 11:54:38 GMT 1999 9546 Registering new customer Webserver_Instance complete
296265 Thu Dec 16 11:54:38 GMT 1999 9546 Choose Products - schedule
296266 Thu Dec 16 11:56:43 GMT 1999 9570 Start Online Order - triggered
296267 Thu Dec 16 11:56:43 GMT 1999 9570 Login in known customer - schedule
296270 Thu Dec 16 11:57:33 GMT 1999 9466 Start Online Order - triggered
296271 Thu Dec 16 11:57:33 GMT 1999 9466 Registering new customer - schedule
296274 Thu Dec 16 11:59:24 GMT 1999 9569 Choose Products Webserver_Instance complete
296275 Thu Dec 16 11:59:24 GMT 1999 9569 Credit Check - schedule
296276 Thu Dec 16 11:59:35 GMT 1999 9569 Credit Check CreditServer_Instance complete
296277 Thu Dec 16 11:59:35 GMT 1999 9569 Sub Process Order - schedule
296280 Thu Dec 16 11:59:35 GMT 1999 9569 Bill Account - schedule
296281 Thu Dec 16 11:59:36 GMT 1999 9557 Bill Account Julia Walker complete
296282 Thu Dec 16 11:59:36 GMT 1999 9474 Bill Account Julia Walker assign
296283 Thu Dec 16 11:59:36 GMT 1999 9557 Create Invoice - schedule

2.2 Business Process Management 22

• Event ID: The event’s unique identifier.

• Timestamp: The date and time, at which the event has occurred.

• Process Definition ID: If events of different processes are captured in a log, each

event requires a unique identifier to the corresponding process definition the event

belongs to. In Table 2.1 no Process Definition ID is displayed since the example log

only contains events from one process definition.

• Instance ID: A Log is a record of the execution details of the instances of one or more

business processes. Each event in the log represents a state transition that occurred

during the execution of a process instance, i.e. all events in a log corresponding to

the same instance make up a trace, which is also sometimes called case in literature

(e.g. in [233]). The Instance ID (or Trace ID, or Case ID) is the unique identifier that

specifies to which process instance this event belongs to. Note, that an Instance ID

only has to be unique in the universe of one process definition, i.e. traces of different

business processes may have the same Instance ID. In fact, it can occur that traces

span multiple business processes for which a shared identifier is required to analyse

inter-process dependencies.

• Name: Represents the generally understood name of the event, e.g. the name of the

executed activity represented by the event [90]. This event name is assumed to be a

unique identifier of the BP element in the process definition this event is associated

with and should not allow for duplicates. Events indicating the start and end of a

process may be part of the log but may have a customised "name" entry that is not

a direct reference to a BP element in the process definition (see Table 2.1 Event IDs

296218, 296266, and 296270).

• Resource: The name of the resource that triggered the event [90]. Similar to the

name attribute it is assumed to be a unique identifier to the resource associated

with the event, e.g. a unique employee id as opposed to the employee’s name. If no

resource is associated with this event, this value is empty.

• Lifecycle: Events in most logs capture state transition on the activity level, i.e. events

represent activity lifecycle transitions. In these cases the processing of an activity is

recorded by more than one event and the corresponding transitions are captured

by a lifecycle attribute. This is illustrated in Table 2.1 in which Event IDs 296222

and 296223 represent two different activity lifecycles of the same activity and in-

stance. MXML and XES propose a general and unified activity lifecycle based on

state transitions as displayed in Figure 2.6 [90, 256]. In contrast, the BPAF activ-

ity lifecycle is based on states and not on state transitions but proposes a map-

ping to the MXML/XES state transition system [288, 293]. However, it consists of

more states (13 vs. 7 states) and thus allows for more behaviour. Note, that the

event formats of many BPMS may record behaviour less complex than enforced

2.2 Business Process Management 23

Fig. 2.6 Lifecycle transitions in MXML and XES [90, 256]

by the activity lifecycle of MXML/XES. For instance, a successful completion of an

activity execution in the MXML/XES format requires a minimum of four events:

schedul e → assi g n → st ar t → compl ete whereas the successful completion of

the automated activity "Credit Check" is expressed by only two events in Table 2.1

(Event IDs 296222 and 296223): schedul e → compl ete. Some logs may even only

contain one single event per processed activity, e.g. when the task has been com-

pleted.

Since general standards like XES and BPAF are extensible, more information can be

contained in the events. For instance, additional organisational data (e.g. the role the

resource is associated with), additional cost data (e.g. cost and currency of the activity

execution), or additional transactional data (e.g. items of an order) [90].

2.2.3 Overview of Business Process Analyses

Business Process Analysis/Analytics "... provides process participants, decision makers,

and related stakeholders with insight about the efficiency and effectiveness of organiza-

tional processes" [292]. As such it is an important part of Business Process Management

since it enables a continuous improvement of planned or employed business processes.

Many techniques and research topics addressing the analysis of running or modelled BPs

exist and are sometimes difficult to differentiate, e.g. Process Mining vs. Business Activ-

ity Monitoring vs. Process Intelligence. Through the help of an extended BPM Lifecycle

adopted from [251] those types of BPAs can be put into context: Figure 2.7 shows the ex-

tended BPM Lifecycle and relevant types of business process analyses in relation to it.

One of the differences in comparison to the traditional BPM lifecyle in Figure 2.3 is that

instead of one process lifecycle it consists of three lifecycles. The main lifecycle is still

2.2 Business Process Management 24

Business Process Analysis

Real-time BPA,
e.g. BAM, EDBPM

Descriptive Analysis,
e.g. Process Mining

Process Intelligence,
Decision Support Design-time Analysis,

e.g. What-if, Optimisation

diagnosis

(re)design

analysis

implementation(re)configuration

execution

[monitoring &]
adjustment

Fig. 2.7 Extended BPM Lifecycle [251] and different types of BPA in relation

dominant and only slightly changed2 (Figure 2.7 - centre cycle). Additionally, two more

cycles have been introduced: One which allows for monitoring3 and adjustments of the

process during run-time (left cycle) and one that describes the iterative procedure em-

ploying predictive methods while designing the process (right cycle). The following two

types of Business Process Analyses can be distinguished:

Process Intelligence / Decision Support

Decision Support and Process Intelligence are two terms that basically describe the same

type of business process analyses: These are analyses supporting stakeholders and busi-

ness analyst in making decisions about the business process through providing them with

additional computed information of diverse nature, e.g. performance of the business pro-

cess or the predicted behaviour of a planned control-flow. This information enables the

stakeholders and analysts to obtain more insight into the behaviour of the actual or fu-

ture process execution and allows for insightful decision making when designing a new

iteration of the process. Note, that a human entity is explicitly involved in the diagno-

sis and analysis phases of the lifecycle, i.e. the configuration, execution, and evalua-

tion of the process intelligence analyses, as well as the eventual decision making are all

human-guided. Whereas the definition of Process Intelligence by Muehlen et al. mostly

focusses on forecasting future behaviour [292], the definition by Aalst et al. includes de-

scriptive techniques and even automated run-time monitoring4 [251]. Here, the term

Process Intelligence is defined as an umbrella term for all business process related high-

2now an optional implementation step is included acknowledging differentiation between de-
sign/graphical and execution standards for BPs (see Section 2.2.1)

3the term "monitoring" was added to the "adjustment" step of the original extended lifecycle from [251]
4This is mostly due to the fact that Aalst et al. do not distinguish between an ex-post analysis of an event

log and immediate event processing - for them both constitute an analysis at run-time [230]

2.2 Business Process Management 25

Fig. 2.8 The three main types of Process Mining (in red) [251]

level analyses (with human interaction) to support the diagnosis and design phase of the

traditional BPM lifecycle, e.g. process discovery, what-if analyses, optimisation, etc. In

a broader context Process Intelligence is regarded as a specialisation of Business Intelli-

gence [44, 251].

In Process Intelligence two different types of analyses can be distinguished: Descrip-

tive and Design-time Analyses. The former type encompasses all Process Mining (PM)

techniques. The goal of Process Mining is to discover, monitor, or improve processes by

harnessing information from an event log resulting from an actual BP execution, i.e. PM

techniques essentially represent the link between event logs and business process mod-

els and enable an log-to-model analysis of the as-is state. As such, process mining is a

research discipline located at the intersections between machine learning and data min-

ing and between process modelling and process analysis [233]. Three main disciplines of

process mining exist (see Figure 2.8) [251]:

1. Conformance Checking,

i.e. determining to what extent the behaviour recorded in the log conforms to the

behaviour of a given BP model and vice-versa

2. Model Enhancement,

i.e. extending/annotating an existing model with additional information, e.g. per-

formance data, obtained from the event log of this process, and

3. Process Discovery,

i.e. extracting business process models from an event log without using any a-priori

information [233]. Generally, process discovery is an umbrella term comprising the

discovery of all perspectives of a business process, however, in most cases it is in fact

2.2 Business Process Management 26

Fig. 2.9 Input and Output of (a) Process Discovery, (b) Conformance Checking, and
(c) Model Enhancement [251]

only referring to the discovery of the control-flow perspective, e.g. [126, 249, 278].

Since most BPMS support the recording of an event log, this information can be

readily accessed for analysis. However, the information in an event log is on a differ-

ent abstraction level than a BP model. For this reason the extraction of BP-domain

information from logs is a non-trivial task and has lead to extensive research in this

area. The advances and state-of-the-art in process discovery will be discussed in

detail in Section 2.4.

Figure 2.9 shows the different inputs and outputs of these three Process Mining disci-

plines, emphasising they essentially represent the link between execution event log and

business process model.

The second type of analyses in Process Intelligence can be summarised as higher-level

analyses that support the (re-)design stage. Those are mostly of a predictive or evalua-

tive nature on either log-extracted or modelled BP data, or a combination of both. Ex-

amples are verification [259], bottleneck detection [195], validation/what-if analysis [73],

sensitivity analysis [69], optimisations [221], or business impact analysis [189]. Methods

like optimisation, sensitivity or what-if analyses are based on performance evaluations

that employ methodologies for predicting future behaviour. This type of performance-

related decision support is of high importance for reasoning and decision making and is

discussed in further detail in Section 2.5.

The distinction between descriptive and design-time analyses is motivated to give an

overview of the different types of decision support analyses in relation to the BPM lifecy-

cle. The research areas and methods, e.g. performance prediction and process mining, do

not have to be exclusively part of only one of the stages (diagnosis vs. analysis) but are as-

signed to either based on their prevalent usage. For instance, process mining techniques

are predominantly used in the diagnosis phase but may also be used to some extent in the

analysis phase (e.g. to compare actual and planned behaviour) or performance prediction

on the mined model may also be part of the diagnosis phase.

2.2 Business Process Management 27

Business Process Analysis in Real-time

The phase of the traditional BPM lifecycle (centre and right circle in Figure 2.7) are in

many cases human-guided, i.e. not fully autonomic. However, making the parts of the

lifecycle more automated is one of the general goals of BPM [214] and lead to extended re-

search and a increasing number of publications in the area of automated business process

analyses, e.g. [68, 106, 130], or management, e.g. [221, 268, 270]. These automated real-

time analyses (and adjustments) differ from the static diagnosis and analysis method-

ologies, e.g. process mining and what-if analysis, that are prevalent in the traditional,

human-guided BPM lifecycle. In order to account for the efforts in the area of automated

BPA and BPM techniques the traditional lifecycle was extended in [251] with an additional

cycle that represents these automated techniques that support analysis during BP execu-

tion/enactment (left cycle in Figure 2.7).

An alternative to this approach of log-based business process analysis is the immedi-

ate processing of events when they occur to information of an higher abstraction level in

order to enable BPA in real-time. This is achieved with the help of Complex Event Pro-

cessing (CEP), which is a method that essentially deals with the event-driven behaviour of

large, distributed enterprise systems [60, 134]. This means in particular that events pro-

duced by the systems are captured, filtered, aggregated, and subsequently abstracted to

generate complex events representing high-level information about the situational sta-

tus of the system, e.g. current performance. By applying CEP methodologies in order

to support a continuous analysis and management of business processes, Ammon et al.

coined the term Event-Driven Business Process Management (EDBPM) [268–270]. The

term emerged from the combination of the two disciplines Business Process Manage-

ment and Complex Event Processing [270]. This is practically realised by two individual

platforms interacting with each other through interfaces or events: One is a BPM sys-

tem, which is used to model, manage, and optimise a business; the other one is a CEP

engine [268].

Business Activity Monitoring (BAM) is often related to EDBPM as the real-time or near

real-time approach of monitoring of events with a CEP engine to support BPM. In par-

ticular, BAM "...refers to methods for the timely identification of threads and opportunities

of business processes" [179]. BAM is a term coined by the Gartner group and is mainly

associated with monitoring a business’s and its processes’ performance in real-time by

processing events from different business process execution sources [55]. The main goals

of BAM is to allow immediate operational decision making based on real-time informa-

tion [68, 292]. Single live-events are not of interest in the context of BAM, instead the

aggregation of these into qualitative statements or quantitative performance measures is

carried out [60, 68]. In Section 2.5 the state of the art for computing and predicting per-

formance measures are discussed in detail.

The difference between BAM and EDBPM solutions is not clearly established and real-

time monitoring solutions belong to both categories. Based on the definitions, it can be

2.3 Flexibility in Business Processes 28

argued that EDBPM may include automated higher-level analyses and small adjustments

while BAM specialises on descriptive/diagnosis methodologies, i.e. BAM is a subset of

EDBPM. At the moment a shift towards a process diagnosis at run-time is noticeable, re-

flected in an increasing number of publications detailing approaches about how to make

modelling of BAM or EDBPM more automated, i.e. part of the business process mod-

elling, e.g. [50, 68, 130, 149, 282]. Examples for types of current BAM or EDBPM solutions

range from process violation monitoring [277] and performance monitoring [68, 107] over

performance prediction [220] and path prediction [32] to initial work on automated adjust-

ment [221, 270]. Note, that all of the referred BAM and EDBPM solutions in this section

can be classified as model enhancement in the context of process mining terminology,

since initial information about the process must already be provided, i.e. modelled.

2.3 Flexibility in Business Processes

Business processes are required to adapt to dynamic changes in the environment [203],

e.g. because of a lack of available resources, introduction of a new quality assurance step,

or simply due to an optimisation of the existing control-flow. For instance, in domains like

health care, Customer Relationship Management (CRM), or customised product manu-

facturing, process adaptations are necessary or desirable to address changing demands.

The ability to adapt to change without losing one’s core identity is called flexibility [190].

For descriptive run-time models of business processes it is important to reflect change

and thus to analyse which types of changes a business process can be subject to. For this

reason this section provides a state-of-the-art discussion on change-induced flexibility in

business processes.

2.3.1 Taxonomy of Business Process Flexibility

Research in the field of business process flexibility has resulted in a number of publica-

tions with the goal to classify different types of business process flexibility, e.g. [190, 192,

202, 211, 238]. A generic taxonomy of business process flexibility is proposed by Regev et

al. in [190]. The presented taxonomy is composed of three dimensions of change criteria

(see Figure 2.10):

1. Abstraction Level of Change: As discussed earlier (Section 2.1) two abstraction levels

are commonly distinguished in BP terminology: (1) process type, which describes

the general process and its business goals, and (2) process instance, which is a single

execution of the process. Changes on the process instance level denote deviation

from the current definition of the process type and are usually of exceptional nature.

On the other hand changes on the process type level constitute a shift/evolution of

the process definition which affects all future (and possibly current) instances.

2. Subject of Change: A business process change can affect one or more perspectives of

2.3 Flexibility in Business Processes 29

business process, e.g. the control-flow, the resources, and/or functional perspective

(see Section 2.1).

3. Properties of Change: Four different properties of change are considered: (1) ex-

tent, i.e. whether the change is of incremental or revolutionary nature, (2) duration,

i.e. whether the change is temporary or permanent, (3) swiftness, i.e. whether the

implementation is immediate or deferred, and (4) anticipation, i.e. whether the

change is planned or ad hoc.

Criteria of Change

Properties
of Change

Subject
of Change

- FunctionalfPerspective
- OrganisationalfPerspective
- BehaviouralfPerspective
- TimefPerspective
- CasefPerspective

- ...

Abstraction Level
of Change

- TypefLevel

- InstancefLevel

Extent
- Incremental

- Revolutionary

Duration
- Temporary

- Permanent

Swiftness
- Immediate

- Deferred

Anticipation
- Adfhoc

- Planned

Fig. 2.10 Taxonomy of Business Process Flexibility by Regev [190]

Note, that some of the criteria are inherently connected, e.g. a change in the case/data

perspective is always a change on the instance level, or mutually exclusive, e.g. any change

on the instance level can never be of a revolutionary extent. A similar taxonomy based on

change criteria is proposed in [238] with less focus on instance level changes but addi-

tional criteria defining what happens with currently active instances in case of a change

on the process type level, i.e. modification policies (further discussed in Section 2.3.2,

Run-time Flexibility).

Another, taxonomy defining five different types of process flexibility which were de-

rived from flexibility mechanisms supported by current BP languages is presented by

Schonenberg et al. in [211]:

1. Flexibility by design is the ability to model alternative execution paths within the

process definition at design-time. Dependent on the circumstances, the most ap-

propriate execution path for a process instance can be chosen at run-time. This

dimension is supported by any business process modelling language to some ex-

tent.

2. Flexibility by deviation is the ability for a process instance to deviate at run-time

from the prescribed execution path of the business process model. The deviation

does not allow for changes in the process definition, i.e. the business process model.

2.3 Flexibility in Business Processes 30

3. Flexibility by underspecification is the ability to execute an only partially defined

business process at run-time. The full specification of the model is made at run-

time and can be unique for each process instance.

4. Flexibility by momentary change is the ability to modify the execution of one or

more selected process instances. This change is performed at the process instance

level and does not affect any future instances.

5. Flexibility by permanent change is the ability to modify business process model at

run-time such that the process definition is permanently modified. All currently

executing process instances need to be transferred to the new process definition.

Another similar differentiation can be found in [204], in which dimensions of change

for workflows are defined. Note, that the terminology in the following approach is a little

contradictory to the terminology used in the first approach, i.e. ”flexibility” does have a

slightly different meaning and is therefore notated with a star (”flexibility*”). The classifi-

cation of change dimensions for workflows is [133, 202, 204]:

1. Flexibility* is the ability of the workflow process to execute on the basis of an in-

completely specified model, where the full specification of the model is made at

runtime [204]. This dimension of change is the equivalent of flexibility by under-

specification of the previous taxonomy. Arguably flexibility by design can also be

affiliated with the flexibility* dimension of Sadiq et al.: Designed flexibility, e.g. via

a decision or fork, could be understood as an incompletely designed process only

fully specified for each instance at run-time.

2. Adaptability is ”... the ability of the workflow processes to react to exceptional circum-

stances” [204]. These exceptional circumstances would affect one or more instances

but not the underlying business process on the type level. This dimension of change

is comparable to flexibility by momentary change or flexibility by deviation of the

previous taxonomy dependent on if the process definition is momentarily adapted

or not.

3. Dynamism is ”... the ability of the workflow process to change when the business

process evolves. This evolution may be slight as for process improvements, or drastic

as for process innovation or process reengineering” [204]. Compared to the previous

taxonomy this dimension is equivalent to flexibility by permanent change.

2.3.2 Build-time vs. Run-time Business Process Flexibility

Generally flexibility in processes are either anticipated or the result of an intervening ac-

tion. The taxonomies of Sadiq et al. and Schonenberg et al. allow a clearer differentiation

between two types of flexibility mechanisms:

• build-time flexibility, i.e. the ability to pre-model flexible execution behaviour, and

2.3 Flexibility in Business Processes 31

• run-time flexibility, i.e. in which an adaptation at run-time in the sense of exception

handling or process evolution is carried out.

In both cases the challenge is to balance flexibility and control [202]. Figure 2.11 shows

how the flexibility types of Sadiq et al. (light grey rectangles) and Schonenberg et al. (dark

grey ovals) relate to level of abstraction (type vs. instance) and anticipation (build-time

vs. run-time).

Build-timeMFlexibility Run-timeMFlexibility

In
st

an
ce

ML
e

ve
l

Ty
p

e
ML

e
ve

l Flexibility*

Adaptability

Dynamism

Underspecification
Late binding Late modelling

MomentaryM
Change

Deviation

Design
PermanentM

Change

Fig. 2.11 Types of BP Flexibility defined by Sadiq et al. [202] (light grey rectangles) and
by Schonenberg et al. [211] (dark grey ovals) in relation to level of abstraction (type vs.
instance) and anticipation (build-time vs. run-time)

Build-time Flexibility

Build-time flexibility is about leaving parts of the business process unspecified at design-

time, i.e. the flexibility is modelled into the business process, and the missing informa-

tion is determined at run-time according to pre-specified constraints or rules. Different

approaches to achieve this type of flexibility are by applying either general declarative

processes [171, 240, 281], advanced modelling [237], or late-binding [202]. In contrast

to the traditional imperative business process models (see Section 2.1) declarative busi-

ness processes are models that focus on the specification of what is not allowed instead of

what is allowed and are therefore generally more suitable to support flexibility character-

istics [133]. Declarative processes are particularly popular in academia but have not yet

achieved a high acceptance in industry. On the other hand, flexibility through advanced

imperative business modelling became to a certain extent a prevalent means to incor-

porate flexibility in a business process, e.g. the synchronising fork-join behaviour of the

example in Figure 2.2 allows for a flexible execution order of the activities on the respec-

tive parallel paths. Pioneers of the last approach of late-binding are Sadiq et al. who in-

troduced so called pockets of flexibility for workflow specifications [202]. The introduced

workflow specification consists of [204]:

2.3 Flexibility in Business Processes 32

• core process consisting of pre-defined activities,

• pockets of flexibility within the process which in turn consist of

– set of process elements, which can be a single activity or a sub-process,

– set of constraints for concretising the pocket with a valid composition of pro-

cess elements.

The definition is recursive and thus supports a hierarchical declaration of flexibility pock-

ets.

Run-time Flexibility

Since business process designers are not capable of anticipating all possible cases, excep-

tions, and events beforehand, the run-time system may not have sufficient knowledge to

handle these situations. The second type of flexibility is about permanently or temporar-

ily adapting the business process model or deviating from it at run-time, i.e. run-time

flexibility. Temporary adaptations in the sense of ad-hoc changes are carried out on the

process instance level and supported by exception- or case-handling [250], thus corre-

sponding to the Adaptability dimension (see Figure 2.11). Permanent adaptation in the

sense of process evolution is carried out by process schema changes on the process type

level (see Dynamism in Figure 2.11) and, for instance, supported by adaptive workflow

languages like ADEPTflex [191] or AGE N T WORK [154].

[273?]

One challenge in the field of run-time flexibility is the validation of the change that is

to be applied to the system. In [191] a conceptual and operational framework is proposed

that can reason about the correctness of a requested change to handle dynamic structural

adaptations of workflows. At the core of this framework is a conceptual graphical work-

flow model (ADEPT) based upon which a complete and minimal set of change operations

(ADEPT f lex) is defined, e.g. dynamic insertions/deletion of activities, or changing activity

sequence. These operations allow for modifying the structure while preserving correct-

ness and consistency of the system. With the help of formal constraints for state, flow of

data, and flow of control, changes can be rejected if they can potentially lead to an invalid

state of the system [192]. This solution provides only a minimal set of changes with strict

constraints to ensure that no invalid state can be reached. A more coarse-grained view

on these changes can help to reduce or relax these constraints, i.e. grouping changes in-

stead of regarding every change as an atomic modification action. For instance, assuming

two previously sequential activities are to become parallel, the constraints for this coarse-

grained modification would be less strong than the constraints of the sub-modifications,

deletion and parallel insertion, regarded individually. Weber et al. [272, 273] identified 18

change patterns based on 157 real-life business processes from the domains of health care

and automotive. 14 of these are adaptation patterns of different granularity, e.g. insert

2.4 Process Discovery 33

process fragment, delete process fragment, swap process fragments, parallelise activities,

and embed process fragment in loop. The identified changes only consider the control-

flow perspective and would have to be extended by patterns for the other perspectives,

e.g. reallocation of resources.

If more complex changes, e.g. to parallelise activities, are requested modification poli-

cies (also called migration strategies in some literature) have to be in place to ensure that

the run-time system continues to operate in the expected manner. Modification poli-

cies specify how the transition from one business process to another is carried out [203].

These policies are important with respect to the still active process instances of the out-

dated business process and describe how to deal with them. Example policies are Flush,

which allows all current instances to complete according to the old process model, Abort,

which aborts all active process instances, and Migrate, which maps the state of active pro-

cess instances to the new model. The last option is only applicable if additional migration

constraints can be met, i.e. the migration into a valid instance is possible. Modification

policies are discussed in more detail by Sadiq et al. [203] and Schonenberg et al. [211].

Despite the research effort carried out in the field of run-time flexibility of workflows

(and BPs) the resulting solutions have not yet found a wide acceptance in industry (mostly

only in the area of fully automated workflows). This can be mainly attributed to the com-

plexity and often perceived overhead of addressing the challenges of validity and change

policies. If a framework does not support run-time flexibility in the sense of dynamism

(changing BP model at run-time) changes are often introduced by ”... tossing aside existing

processes and starting over” [247], i.e. carrying out a hard replacement of business process

definitions or systems. This approach conforms more to the view of the BPM lifecycle

shown in Figure 2.3 which advocates separate diagnosis and (re-)design steps carried out

offline rather than online before the new model is enacted. However, some BPMS like

ADONIS5 allow to import new workflow models during run-time as shown by Herbst et

al. in [96]. Another source for run-time flexibility are business processes definitions that

are not fully enforced by the system (e.g. for documented, manual, or semi-automatic

BPs), and thus already allow for exceptions, deviations, and evolution within a certain

margin.

2.4 Process Discovery

The research area of Process Discovery is concerned with the extraction of a business pro-

cess model from event logs without using any a-priori information [233]. Generally, pro-

cess discovery is an umbrella term enclosing the discovery of all perspectives of a business

process, however, in reality solutions published in the topics of process mining or process

discovery are mostly concerned with the discovery of the control-flow perspective since

it poses the most difficult of the challenges.

5ADONIS is a registered trademark by BOC GmbH

2.4 Process Discovery 34

g
c

h

f
a b

d e

Fig. 2.12 Example Business Process

2.4.1 The Process Discovery Problem

Traditional process discovery approaches are carried out in a static way as an "offline"

method contrary to event-based BAM or EDBPM solutions (see Section 2.2.3). This is re-

flected by the fact that the input for these algorithms is an entire event log. Different to the

generic event logs introduced in Section 2.2.2, it is sufficient for the discovery of a control-

flow to contain only a minimal set of event features: Every event needs to have a reference

(1) to its process instance, e.g. via unique identifier, and (2) to the corresponding activity,

e.g. via unique name. Furthermore, it is assumed that the log contains exactly one event

for each activity execution, i.e. activity lifecycle events are not regarded (e.g. start, assign,

complete). In the context of process discovery, the execution of any two process instances

is assumed to be independent, i.e. the execution order within an instance does not de-

pend on the execution order of a second instance. In terms of process log terminology

(see Section 2.2.2), all events resulting from the execution of the same process instance are

captured in one trace, which is sometimes also called case. Accordingly, an event is repre-

sented by a pair (t , s) where t links to the trace and s to the activity. Figure 2.12 shows an

example process consisting of simple one-letter activities: a,b,c,d ,e, f , g ,h. This exam-

ple BP represents the reference process to help explaining the log-model terminology and

concepts. Since two traces are assumed to be independent from each other only the order

of the activities within a trace is of interest, i.e. a trace can be specified by a sequence of

activities ordered by their occurrence: t1 = [a,b,d ,e] denotes a trace that conforms to the

process in Figure 2.12.

2.4 Process Discovery 35

Furthermore, traces only consisting of the activity order are called simple traces and

event logs only consisting of simple traces are called simple event logs [233]. An example

of a simple event log for the business process in Figure 2.12 is 6

L1 = {[b, a]4, [a,b,d ,e]5, [b, a,e,d]4, [b, a,c, a,b,c,b, a,d ,e,e,d]6,

[g , g]2, [f ,h]3, [f , f ,h, f , g ,h, g , f ,h]8, [g ,h, f]2}
(2.1)

The log L1 consists of eight different traces each occurring a number of times. The po-

sition of the traces in the log is of no relevance for process discovery algorithms since all

have the same "weight" and need to be taken into account equally. Note, that log L1 does

not include all possible behaviour of the process from Figure 2.12, e.g. even though in

the model activity b may be followed by activity e no trace in L1 contains this behaviour.

Logs that do not include all possible behaviour of a source model are called incomplete

logs [128] and emerged as a challenge for rediscovering BPs. Another challenge origi-

nating from real life problems is the analysis of logs that contain exceptional/infrequent

behaviour. Behaviour that does not conform to the source model is called noise or in-

frequent behaviour [127]. For instance, adding trace [a,b,d ,e,e] to log L1 would result

in an incomplete event log containing infrequent behaviour since the new trace is not

conforming to the source model, i.e.

L2 = {[b, a]4, [a,b,d ,e]5, [b, a,e,d]4, [b, a,c, a,b,c,b, a,d ,e,e,d]6,

[g , g]2, [f ,h]3, [f , f ,h, f , g ,h, g , f ,h]8, [g ,h, f]2, [a,b,d ,e,e]1}
(2.2)

Considering that real-life logs are incomplete and/or contain infrequent behaviour,

conventional challenges in process discovery originate from the motivation to find the

"best fitting" model, i.e. discovered processes should be an accurate reflection of the be-

haviour contained in the log. Determining the "best fitting" model that conforms to a

given log is essentially a balance between over-fitting and under-fitting [46, 243]:

• An over-fitting model does allow for only the exact behaviour recorded in the log, i.e.

it does not generalise any behaviour and therefore does not allow for any additional

behaviour [254]. A naive example for an over-fitting model is the Trace Model: Here

every possible different trace of a log is transferred into an activity sequence com-

bined to a choice construct (see left model in Figure 2.13 for log L1). The example

model as well as trace models in general contain duplicate activities.

• An under-fitting model is "overgeneralised" [243] which is usually synonymous for

allowing "... too much behaviour that is not supported ..." [254] by the correspond-

ing log. Considering log L1, a model that would allow any permutation the involved

activities is considered under-fitting. A naive example would be the Flower Model

6The power values denote the respective occurrences of the traces in the log, e.g. trace [b, a] occurs 4
times in the log.

2.4 Process Discovery 36

a

b a

b

d

e

b

a

e

d

b

a

c

a

b

c

b

a

d

e

e

d

g

g

f

h

f

f

h

f

g

h

g

f

h

g

h

f

a

b

c

d

e

f

g

h

Fig. 2.13 Mined Trace Model (left) and Flower Model (right) for Log L1

(see right model in Figure 2.13) which allows for all permutations (with infinite rep-

etition) of a,b,c,d ,e, f , g ,h.

Both, Trace Model and Flower Model, are considered evaluation baselines for over-fitting

and under-fitting models, respectively. The quality of process discovery approaches is

essentially determined by their ability to discover the "best fitting" model from a given

event log, i.e. evaluation based on log-model conformance checking techniques (see Fig-

ure 2.9). What constitutes a "best fitting" model strongly depends on given requirements

and goals, e.g. the three BP models in Figures 2.12 and 2.13 are each a valid representative

of log L1 and have their respective advantages and disadvantages. Thus, process discov-

ery represents a multi-goal optimisation problem, i.e. a trade-off between the following

four quality criteria [233]:

1. Fitness: The ability of the discovered model to allow for the behaviour recorded in

the event log [3] - in other conformance checking literature and general data mining

terminology this quality criteria represents the recall measure [146].

2. Precision: The ability of the discovered model to not allow for behaviour unrelated

to what is recorded in the event log [2, 146, 155].

2.4 Process Discovery 37

Fig. 2.14 Excerpt of a large "Spaghetti" Process Model [89]

3. Generalisation: The ability of the discovered model to have generalised the example

behaviour recorded in the event log [236].

4. Simplicity: A measure to avoid overly complex models, e.g. a "spaghetti" model [89]

as shown in Figure 2.14.

With respect to those four criteria under-fitting models like the flower model score well

for fitness, generalisation, and simplicity values but very poorly for the precision value,

and over-fitting models like the trace model score well for the fitness and precision value

but poorly for generalisation and simplicity. The fitness and precision criteria originate

from traditional data mining challenges and evaluate the accuracy of a mined model. On

the other hand the criteria of generalisation and simplicity emphasises the need to create

less complex and human-readable models. Disregarding these criteria in favour of the

accuracy-based criteria often lead to the discovery of overly complex and highly intercon-

nected business processes, so called "spaghetti" models (see Figure 2.14) [89, 234]. This

is especially the case when dealing with logs that contain incomplete and/or infrequent

(noisy) behaviour. In recent literature, e.g. in [26, 118, 126, 147, 148, 175, 234], an increas-

ingly popular notion to promote generalisation and simplicity is the restriction of the BP

model language to a structure that only allows for constructs which are easy to under-

stand. The assumption here is that a well structured model is far easier to analyse while

still being able to represent the main behaviour recorded in the log, i.e. a little accuracy

(fitness and precision) is sacrificed in favour of a much increased structuredness [118].

A BP model is "... (well-)structured, if for every node with multiple outgoing arcs (a

split) there is a corresponding node with multiple incoming arcs (a join), and vice versa,

such that the fragment of the model between the split and the join forms a single-entry-

single-exit (SESE) process component" [175]. The processes shown in Figure 2.2 and Fig-

ure 2.12 are examples of such well-structured processes. This definition allows to intro-

duce a hierarchy of different constructs within a process, i.e. supports separations and

drill-down capabilities that help to understand independent parts of the process individ-

ually. For instance, the example process in Figure 2.12 is essentially a choice between the

2.4 Process Discovery 38

executions of activities a,b,c,d ,e (right branch) or f , g ,h (left branch); the right branch

is essentially a sequence of activities a,b,c (top right) followed by activities d ,e (bottom

right), and so on. BP models conforming to this definition of (well-)structuredness are

also called block-structured BP models in the context of this thesis. Other representations

with a very similar structure definition are Hierarchical Process Models, an abstracted view

on block-structured BPMN-like process models [147, 148], and Process Trees, a simplified

notation of block-structured Petri Nets/workflow nets [26, 126].

2.4.2 Process Discovery Algorithms

The discovery of the trace and flower model in Figure 2.13 from log L1 are trivial solu-

tions for the process discovery problem. However, a large number of advanced process

discovery algorithms exist, each with its own respective strengths and weaknesses. Pio-

neers of process discovery were Mannila et al. who proposed an algorithmic method for

discovery of frequent episodes in event sequences to describe the behaviour of users or

systems [140]. The first application to the workflow domain to discover directed graphs

from worklfow logs was carried out by Agrawal et al. [4]. Cook and Wolf presented three

approaches to the grammar inference problem in order to discover software processes

from event data based on statistical and/or algorithmic methods such as Neural Nets and

Markov Models [39].

As the WfMS or BPMS became more evolved and more event data in terms of quan-

tity, quality, and diversity was available new challenging problems emerged, e.g. detecting

hidden or duplicated activities, non-free choice constructs, and loops or dealing with in-

complete and/or noisy logs [248]. As a result, in the last twenty years a large number of

new process discovery approaches have been developed. A selection of the most promi-

nent approaches are listed in the following categories:

Abstraction-based Approaches

These are process discovery algorithms that "... construct a net based on an abstraction of

the log" [254]. The employed mining procedure consists of three phases [254]:

1. Abstraction phase in which each trace of the event log is analysed for direct succes-

sions of activity occurrences in order to create basic ordering relations, e.g. for log

L1 activity c is directly followed by a or b (see the fourth trace in Equation 2.1),

2. Induction phase in which advanced ordering relations are induced from the previ-

ously abstracted basic ordering relations, e.g. activities a and b have a "parallel"

relation because in each case if a occurs it is followed by b and vice versa, and

3. Construction phase in which the BP model is constructed from the inferred relations

of the induction phase.

2.4 Process Discovery 39

(1) Abstraction

a b c d e f g h

a 1 1 1 1

b 1 1 1

c 1 1

d 1

e 1 1

f 1 1 1

g 1 1 1

h 1 1

Directly-Follows Relation

(2
)

In
d

u
ct

io
n

a b c d e f g h

a # || || # # #

b || # || # # # #

c || || # # # # # #

d # # || # # #

e # # || || # # #

f # # # # # || || ||

g # # # # # || || ||

h # # # # # || || #

Direct Relations Footprint

(3
)

C
o

n
st

ru
ct

io
n

b c

d

a

f

g

h

e

Event Log

L1 = {[b,a]4, [a,b,d,e]5, [b,a,e,d]4, [b,a,c,a,b,c,b,a,d,e,e,d]6,
[g,g]2, [f,h]3, [f,f,h,f,g,h,g,f,h]8, [g,h,f]2}

Petri-Net

Fig. 2.15 Concept of the α-algorithm: Intermediate and End Results for Log L1

The foundation approach of abstraction-based algorithms is theα-algorithm [249] which

discovers a BP model in form of a Petri Net [172] from a given event log. Figure 2.15 il-

lustrates the general concept of the algorithm for the example log L1 (Equation 2.1): First,

in the abstraction phase all directly-follows relations occurring at least once in the log

are capture, e.g. trace [a,b,d ,e] contains the relations a > b (b directly follows a), b > d

(d directly follows b), and d > e (e directly follows d), i.e. > = {(a,b), (b,d), (d ,e)}. The

left table in Figure 2.15 shows all directly-follows relations contained in log L1 with "1"

marking contained pairs. Then, in the induction phase the directly-follows abstraction is

processed to three exclusive footprint relations: (1) x#y if neither x > y nor y > x, (2) x||y if

both x > y and y > x, and (3) x → y if x > y but not y > x. The respective relations between

any activities x, y ∈ {a,b,c,d ,e, f , g ,h} are shown in the middle table of Figure 2.15. This is

followed by the construction phase in which typical local process patterns are identified

from the footprint, e.g. if a → d , b → d , and a||b, then a and b are the parallel inputs for

the transition representing d (see bottom of Petri Net in Figure 2.15: transitions a and b

have to be triggered before d can be triggered). The Petri Net shown is the final result of

the α-algorithm for log L1 discovered with the help of the ProM 7 framework [253]. Note,

that due to problems discussed in the next paragraph the Petri Net discovered by the α-

algorithm has a lot of flaws and is not usable, e.g. activity transition b (and thus also a, c,

and d) can never fire because a token in the second input place is missing. Additionally, a

number of variations or extensions of the α-algorithm have been published which either

enhanced the abstraction phase, e.g. dealing with non-atomic tasks [280], or the number

of detectable constructs, e.g. non-free choice constructs [279] or short loops [45].

Abstraction algorithms based on the α-algorithm are accuracy-driven, factual analy-

ses using the directly-follows abstraction to discover BP models in the form of a Petri Net

(a General Purpose Language). As such, they discover models that try to represent exactly

the behaviour contained in the log, irrespective of completeness or occurrence frequency

7ProM is an academic framework that provides a set of tools and plugin implementations of published
algorithms related to the discovery and analysis of business processes (see http://www.processmining.org).

2.4 Process Discovery 40

of certain behaviour: a relation either exists in the log or it does not. As a result, analysing

logs containing incomplete or infrequent (noisy) behaviour with these algorithms will of-

ten lead to the discovery of poorly generalised BP models, i.e. either unsound (e.g. see

result in Figure 2.15) or overly complex (e.g. "spaghetti" models like shown in Figure 2.14)

BP models. In recent literature two general notions evolved to avoid the discovery of

poorly generalised BP models: Firstly, to promote the discovery of well-structured pro-

cesses (see Section 2.4.1) and, secondly, to consider the frequency of occurring behaviour

(discussed in the next Section "Heuristic-based Approaches").

With regards to the first notion of discovering only well-structured (i.e. block-struc-

tured) processes from a log, one option is the discovery of an arbitrary Petri Net followed

by a transformation into a block-structured process as shown in [175]. While this ap-

proach improves the human-readability through the introduction of a clear hierarchy, its

application to unsound Petri Nets like the one in Figure 2.15 is not possible. Another op-

tion is the direct discovery of block-structured BP models. An algorithm that directly dis-

covers block-structured Petri Nets is the Inductive Miner (IM) [126]. Like the α-algorithm

the IM is based on the directly-follows abstraction of an event log but instead of inducing

local relations, i.e. identifying splits, joins, decisions, etc., it induces single-entry-single-

exit constructs, i.e. loop, parallelism, etc. For this the IM evaluates constraints based on

the existing directly-follows relations to identify the construct that represents the speci-

fied set of activities. This is done following a divide-and-conquer approach from top till

down. That means, first the parent construct is identified which splits the set of activities

into a number of subsets, then these subsets are analysed the same way to identify their

respective constructs, and so on. The result of the induction phase is a process tree from

which then the Petri Net is constructed. The original IM focuses on rediscovering models

from complete logs without noise. However, if an incomplete and/or noisy log is anal-

ysed it still guarantees to find a sound model while favouring fitness over precision8. In

order to improve the results of the original IM two more extensions have been proposed:

In [127] special filters are introduced to better deal with noise and in [128] probabilistic

behavioural relations are introduced to improve the discovery results for incomplete logs.

Figure 2.16 shows the result of the improved Inductive Miner for log L1 extracted with the

IM plugin readily available for the ProM framework. It is a sound Petri Net model with an

(semi-)hierarchical structure that represents the main (but not all) behaviour present in

the log. Note, that possibly due to optimisation efforts in the transformation from process

tree to Petri Net the hierarchical structure was not entirely maintained: After activity c it

is possible to transition into the part of the net with activities f , g ,h. This is not allowed

in the original process tree discovered by the IM since it supports an exclusive decision

between activities a,b,c,d ,e and activities f , g ,h.

8If the conditions for none of the other construct is satisfied, a construct similar to the flower model is
build, thus producing a solution that allows for all behaviour with leads to a low degree of precision

2.4 Process Discovery 41

g

h

f

a

b

c

d

e

Fig. 2.16 Result Petri Net of the Inductive Miner Plugin in ProM for Log L1

Heuristic-based Approaches

The abstraction-based algorithms and extensions discussed in the previous subsection

are designed to perform especially well for rediscovering business processes, i.e. if the log

contains exactly the behaviour of a source BP model. This, however, is seldom the case in

real-life scenarios in which logs often contain exceptional behaviour, i.e. noise. One sim-

ple technique to avoid this is to pre-filter the log and remove non-frequent traces. This

technique may improve the readability of a general purpose target language like Petri

Net but is not always applicable for more restricted languages like process trees since

it could accidentally remove behaviour important for the identification of advanced or-

dering relations, i.e. the post-filtered log becomes incomplete. Many recent algorithms

therefore take the occurrence frequency of behaviour in the log directly into considera-

tion when discovering a BP model, using so called heuristics for the abstraction of the

log content. For instance, the extension of the Inductive Miner to deal with noise uses

a heuristics-based filter among other techniques [127]. Another example is the Fuzzy

Miner [89] which clusters events using correlations and significance measures to reduce

the "exact" BP model to a simplified model that still supports the main behaviour of the

process. While the resulting "fuzzy model" is particularly well suited for getting an initial

understanding of an unknown process, it does not conform to the usual workflow format

of the BP-domain and has no executable semantic which would allow for the transfor-

mation to a BP-domain language or analyses of a higher level, e.g. optimisation, confor-

mance, simulation.

A very prominent process discovery algorithm is the HeuristicsMiner (HM) [278] which

mines a Causal Net, a representation tailored towards Process Mining [233]. Figure 2.17

shows the concept and result of the HM for the example log L1 [278]: Firstly, instead of

the directly-follows relation x > y for x, y ∈ {a,b,c,d ,e, f , g ,h} the number of occurrences

of these relations in the log is considered, i.e. |x > y | (left table in Figure 2.17). With the

help of the directly-follows relation count the respective dependency measures x >> y are

2.4 Process Discovery 42

|>| a b c d e f g h

a 0 11 6 11 5 0 0 0

b 20 0 6 4 0 0 0 0

c 6 6 0 0 0 0 0 0

d 0 0 0 0 11 0 0 0

e 0 0 0 10 6 0 0 0

f 0 0 0 0 0 8 8 19

g 0 0 0 0 0 8 2 10

h 0 0 0 0 0 10 8 0

Directly-Follows Relation
Count

>> a b c d e f g h

a 0 -0.28 0 0.92 0.83 0 0 0

b 0.28 0 0 0.8 0 0 0 0

c 0 0 0 0 0 0 0 0

d -0.92 -0.8 0 0 0.05 0 0 0

e -0.83 0 0 -0.05 0.86 0 0 0

f 0 0 0 0 0 0.89 0 0.3

g 0 0 0 0 0 0 0.67 0.11

h 0 0 0 0 0 -0.3 -0.11 0

Dependency Measure

S

g

b e

h

E

Event Log

L1 = {[b,a]4, [a,b,d,e]5, [b,a,e,d]4, [b,a,c,a,b,c,b,a,d,e,e,d]6,
[g,g]2, [f,h]3, [f,f,h,f,g,h,g,f,h]8, [g,h,f]2}

Causal-Net

c a

d

f

Fig. 2.17 Concept of the HeuristicsMiner: Intermediate and End Results for Log L1

calculated which represent the footprint (centre table in Figure 2.17):

x >> y =
{ |x>x|

|x>x|+1 if x = y
|x>y |−|y>x|

|x>y |+|y>x|+1 if x ̸= y

Note, that the footprint used in the HeuristicsMiner is not based on absolute relations be-

tween activities but on relative relation values. In a third step, the directly-follows counts

and dependency measures are processed to a Causal Net, depending on pre-specified

thresholds for both measures. By increasing or decreasing these thresholds the result-

ing Causal Net may include less or more of the causal connections between activities.

Special treatment not shown in the concept in Figure 2.17 is applied for short loops (e.g.

{a,b, a,b, a}) and parallel splits or joins. The resulting Causal Net for log L1 on the right in

Figure 2.17 represents the main behaviour in the log according to the interpretation of the

HM. However, some connections are neglected, possibly due to their relative infrequent

occurrence in the log, e.g. c can only be executed after b but not after a. Plugins for the

transformation of the resulting Causal Net to a more common process representation, e.g.

BPMN model or Petri Net, are available in the ProM framework.

Other Related Approaches

Additionally to the abstraction-based and heuristic-based algorithms discussed previ-

ously a number of other techniques exist to deal with the process discovery problem.

Other than employing fuzzy models [89] or neural networks [39], the usage of genetic/evo-

lutionary algorithms are an emerging third type of artificial intelligence techniques that

enjoys an increased popularity among process discovery algorithms, e.g. [26, 46, 147, 148,

229, 257]. These algorithms adapt evolutionary principles like mutation, recombination,

and selection to explore the solution space in order to converge a population closer to

the optimum with each new generation. The involved operators mutation, recombina-

tion and sometimes selection are, like in nature, randomly influenced which makes ge-

2.4 Process Discovery 43

netic algorithms a non-determinstic approach. Generally, the application of such evo-

lutionary, search-based algorithms has two benefits: One is that it is independent from

local information in the log, i.e. instead of directly inferring from local relationships, e.g.

directly-follows relation, only the overall conformance measure is relevant with regards to

the "fitness" of an individual. This technically allows for better results as the conformance

measure that eventually defines the quality of the discovered model is directly involved

in the algorithm. A second benefit is that the target language can be freely chosen and

optimised according to the specified conformance measure. As a result, the best fitting

block-structured BP model can theoretically be discovered despite incomplete or noisy

logs as shown in [26] and [147]. The apparent disadvantages are (1) the non-deterministic

nature of the genetic algorithms, i.e. despite the same input log every analysis run may

yield a new result, and (2) the potentially very high exponential run-time, i.e. since the

search space is expanding exponentially it cannot be guaranteed that a well fitting model

is discovered in finite time (especially for large models). One approach to minimise the

time consuming conformance and quality measures is to replace them by a quicker ap-

proximate conformance measure which yields similar results as shown in [146–148]. This

allows for a quicker convergence in exchange for a little less accuracy but essentially does

not eliminate the two general main disadvantages of genetic algorithms: their exponen-

tially rising run-time and non-deterministic nature.

Yet another type of process discovery techniques is based on the Theory of Regions

which is concerned with the discovery of a Petri Net from a behavioural specification in

order to synthesise behaviour that has not yet been observed, i.e. incomplete logs [243].

The goal is to construct a Petri Net "... such that the behavior of this net corresponds

with the specified behavior, if such a net exists" [254]. In [243] a step-wise methodol-

ogy using state-based regions to construct a Petri Net from a transitions system (which

has previously been constructed by connecting and merging each individual "state" of

each trace/instance in the log) is proposed. Unfortunately, these transition systems may

become excessively big considering that loops and parallel behaviour lead to possibly in-

finite states (for loops) or exponentially growing number of states (for parallel splits with

many activities). This was addressed by limiting the definition of a trace’s "state" to the

last n events which has the negative effect of potentially neglecting behaviour needed

to identify loops or splits spanning sequences longer than n. This approach is therefore

strongly dependent on manual effort to find the right balance between "under-fitting"

and "over-fitting". Instead of state-based regions other approaches promote the extrac-

tion of Petri Nets with the help of language-base regions, i.e. a net synthesis based on a

language specification, e.g. [13, 132]. Regarding a business process as a language where

each event is a letter in an alphabet and each trace a word of the language has its own

shortcomings, e.g. no "invisible" transitions and difficulties to express "parallelism". Their

detailed discussion is, however, not in the scope of this thesis. Generally, algorithms based

on the theory of regions are factual analyses (like the α-algorithm) focussing on the syn-

thesis of behaviour not present in the log but do not address the problem of infrequent

2.4 Process Discovery 44

behaviour, i.e. noise.

2.4.3 Concept Drift in Process Mining

Concept drift is a problem in the domain of online machine learning that describes chan-

ges in a hidden context that potentially cause more or less radical changes in the target

concept [284]. That is, changes in the underlying data often make the model built on the

"old" data inconsistent and can only be addressed with regular model updates to reflect

the new circumstances. The problem of concept drift complicates the task of learning a

model and requires a deviation from common techniques which treat every instance (old

and new) with equal importance [228].

The same applies in the domain of process discovery: Models of business processes

may change over time (see Business Process Flexibility Section 2.3), i.e. an event log may

not only contain information of one BP but in fact of multiple versions/variants of a pro-

cess. If we take the example log L1 (see Equation 2.1 on page 35) and assume that all traces

in the first line occurred before all traces of the second line then it is fair to assume that

the execution of two (completely) different versions of the process was recorded in one

log. If L1 is split into two separate logs

L∗
1 = {[b, a]4, [a,b,d ,e]5, [b, a,e,d]4, [b, a,c, a,b,c,b, a,d ,e,e,d]6} and

L∗
2 = {[g , g]2, [f ,h]3, [f , f ,h, f , g ,h, g , f ,h]8, [g ,h, f]2}

their individual analyses result in the discovery of two different and independent BP mod-

els (see Figure 2.18). Both of these models BP1 and BP2 are more precise (see precision

quality criterion in Section 2.4.1) with regards to their respective source logs L∗
1 and L∗

2

than the overall BP model (see Figure 2.12). Additionally, instead of only discovering one

overall representative process like in the traditional process discovery problem (see Fig-

ure 2.12) the process’s evolution and thus arguably a more accurate reflection of the real-

ity recorded in L1 is discovered. Traditional process discovery algorithms as discussed in

Section 2.4.2 work on the assumption that the log describes the behaviour of one single,

not changing business process and thus treat every trace/instance within a log with equal

importance irrespective of their occurrence timing. The result of these algorithms is an

"averaged" model that tries to represent all behaviour captured in the event log even if

this behaviour is contradictory. Note, that this is not the case in the concept drift example

from Figure 2.18 - here the behaviour is exclusive and can easily be merged.

Because only few real-life processes are in a steady state (as assumed by the traditional

process discovery algorithms), detecting, understanding, and dealing with concept drift

in the domain of process discovery is of "prime importance for the management of pro-

cesses" [251], i.e. the problem of concept drift is an important challenge to process dis-

covery algorithms [233, 251]. Since concept drift describes the change of an underlying

concept over time it can be translated into a one-dimensional clustering problem based

2.4 Process Discovery 45

g

h

f

BP Influence in Log:

BP1 BP2

Moment of Change

ed

ca b

L = { [b,a] , [a,b,d,e] , [b,a,e,d] ,
[b,a,c,a,b,c,b,a,d,e,e,d] }

L = { [g,g] , [f,h] ,
[f,f,h,f,g,h,g,f,h] , [g,h,f] }

time

4 5 4

6
1
* *

2
2 3

8 2

Fig. 2.18 Example Concept Drift in the Original Log L1

on time, i.e. grouping of instances based on their timestamps into a specified number of

clusters which can be interpreted into well-fitting and well-structured BP model versions.

The difficulty is to find the right balance between fine-grained and coarse-grained cluster-

ing. An extreme example for a too fine-grained clustering is when each trace is considered

its own cluster, i.e. represents a BP model (similar to the paths in the flower model in Fig-

ure 2.13). Examples of too coarse-grained clustering are the traditional process discovery

algorithms for which all instances in the log belong to one single cluster. The challenge

of concept drift has gained more attention recently driven by specifically dynamic real-

life scenarios, e.g. in the domain of health care, where processes are weakly structured

(many exceptions) and inductive methods such as the abstraction-based algorithms have

difficulties to describe the behaviour with one single standardised BP model [248]. Here,

the discovery of "temporal patterns" produces simpler models and helps to understand

time-separated parts of a log [248].

One important and comprehensive step towards a definition of the problem of con-

cept drift in process mining and its accompanying challenges is provided by Bose (et

al.) in [20, 21, 23]. In the work three main challenges of concept drift have been iden-

tified [20, 21, 23]:

• Change Point Detection:

The challenge of detecting when, i.e. where in the log, a process change has taken

place.

2.4 Process Discovery 46

• Change Localisation and Characterisation:

If a change has been identified it should be further specified, i.e. what exactly has

changed (localisation) and how has it changed (characterisation). With regards

to the localisation Bose et al. differentiate between three different perspectives:

Control-flow, data, and resource (similar to what was defined in Section 2.1, page 16).

Furthermore, the exact location or region within these perspectives should be iden-

tified. Another characterisation of a BP concept drift is its "nature" [23]: (1) sud-

den drift, i.e. an immediate substitution of a complete BP by another at one single

point in time, (2) gradual drift, i.e. for a limited time both BPs coexist during the

substitution of one BP by another, (3) recurring drift, i.e. a set of different BPs are

substituted back and forth (alternating BPs, e.g. to adapt to seasonally recurring cir-

cumstances), and (4) incremental drift, i.e. a drift from one BP to another by smaller

incremental intermediate BPs. Note, that this classification is not mutually exclu-

sive, e.g. recurring and incremental drifts can be either sudden or gradual. While

in the BP flexibility Section 2.3 change from an enactment point of view was dis-

cussed, the concept drift characterisation of change is from an diagnosis point of

view. For instance, modification policies like "Migrate" or "Flush" respectively rep-

resent sudden or gradual drifts. The characterisation from Bose et al. is an essen-

tially a different view derived from the BP flexibility domain. It is, in comparison, a

simplified view because certain aspects of an enacted change can not be extracted

from the log, e.g. swiftness or anticipation, or are of no relevance to the concept drift

problem, e.g. momentary change does not constitute a concept drift but should be

considered noise.

• Change Process Discovery:

Is the challenge to describe a discovered change process in the second-order dy-

namics [23], i.e. to discover possibly existing higher-level patterns that specify the

order and other specifics of recurring changes. For instance, due to seasonal cir-

cumstances concept drift patterns could be modelled as a usually non-concurrent

process.

Furthermore Bose et al. see two different classes of concept drift analyses on an event

log: Offline analysis represents a scenario where the concept drift discovery on an event

log can be performed without any real-time constraints and online analysis which de-

scribes the scenario where a concept drift has to be discovered in (near) real-time. Some

solutions for the latter type are also discussed in the following Online Process Discovery

Section 2.4.4.

With regards to the first type of offline concept drift discovery Bose et al. propose

a solution to address the first and partly the second of the identified challenges in [21].

Though restricted to the control-flow perspective, the proposed approach is able to de-

tect points of change in time and localise these changes in the control-flow. In the work

the log is split up into a number of different parts. For each of them four measures are

2.4 Process Discovery 47

calculated upon which a change discovery can be achieved [21]: For each of the activi-

ties the relation type count triple is calculated by determining how many times activities

always, sometimes, or never eventually (not directly) follow the specified activity. Con-

sidering L∗
1 the triple is (0,2,3) for activity d because d is never followed by any activity

in each of the instances (→ 0), d followed by activities d and e in some of the instances

(→ 2), and d is never followed by three of the involved activities a, b, and c (→ 3). This

measure can also be calculated for the "precedes" relation, i.e. the number of times an

activity is always, sometimes, or never preceded (not directly) by the other activities. A

second measure calculated is the relation type entropy, i.e. entropy over the relation type

count vector. In contrast to relation type count and entropy which are global measures

over each instance in the entire (sub-)log, Bose at al. also suggest two local features [23]:

Window count, which is the number of times a specified activity is followed by another

one within a certain window, and J-measure, the probability of a particular activity be-

ing followed by another within a certain window, calculated based on the window count

values.

These four "feature" values can then be used to identify a concept drift. This is achieved

by splitting up the (time-ordered) log into sub-logs of the same length, i.e. contain same

number of traces, and compute feature sets for these sub-logs. If significant changes

in the feature values from neighbouring sub-logs are identified concept drift can be as-

sumed. In order to find the most probable position for such a drift a hypothesis test is

executed [23], which can generally be described as a sliding of the sub-log ranges over

the log and finding the point for which the feature values differ the most. This method

has been evaluated using the methodology of rediscovering, i.e. the position/time of ar-

tificially imposed changes recorded in a log were successfully detected [23], but also in a

real-life setting by detecting drifts in three different process event logs of a Dutch munic-

ipality [22]. However, a few shortcomings are: This method is only effective if a suitable

sub-log length is chosen; Changes in more complex constructs like loops can not be suf-

ficiently detected since it is not captured "how many times" an activity eventually follows

another activity in one trace; Gradual or incremental drifts are hard to detect with a fixed

sub-log length, e.g. the specified length can at the same time both be too small and too

large to detect some of the incremental intermediate BP changes.

The problem of concept drift does not only present a challenge for process discov-

ery but can also help to solve it. One such approach is explained in the work by Weber

et al. [275, 276]: Here the α-algorithm [249] as introduced previously in Section 2.4.2 is

used to create Petri Nets and transform them into probabilistic deterministic finite au-

tomata (PDFA) [260, 261]. Similar to the approach from Bose a hypothesis test is carried

out which involves the usage of a sliding window to extract the individual sub-logs which

are examined for concept drifts after transformation to PDFAs, i.e. compare the distribu-

tion generated by the discovered PDFA with the "ground truth". This is essentially carried

out for every new trace and it is argued that the approach complies with real-time con-

straints because it guarantees a result within a pre-specified amount of time (regardless

2.4 Process Discovery 48

of how long that time is). To achieve this upper bound run-time for each iteration the

approach uses an algorithm presented in [274] to determine the required trace length

necessary to, with a certain probability, correctly (re-)discover the structure of a Petri Net

model. The detection of concept drift in this approach is mainly focussed on probabilities

and not on the structure of the Petri Net [275]. Also, due to the possibility of infinite states

it is restricted to acyclic models.

Another approach by Carmona et al. in [34] which extends the initial process discov-

ery approach introduced in [33] to detect concept drift by utilising the theory of abstract

interpretation [41]. First an abstract representation in the form of a polyhedra is built for

some initial traces in a log. Subsequent traces are examined whether or not they lie within

the initial polyhedra. If so, it is considered to be a trace from the same process. If a trace

lies outside of it a changed process is indicated and the polyhedra is updated. However,

this technique is again a factual analysis that is not able to handle noisy behaviour, i.e. to

"ignore" infrequent behaviour.

Generally, all of these approaches can be seen as a type of pre-processing with which

the log is split up into different parts that are then individually analysed to discover the dif-

ferent versions of a BP as models. The change point information identified may also help

to address the third challenge of concept drift: To discover the change process. In [88] it is

examined how better decision support can be achieved for flexible processes by using in-

formation about the processes’ changes. For this two different process mining algorithms,

multiphase miner [255] and an adapted method by Cortadella et al. based on the theory

of regions [40], has been used in order to identify a change process. The process is discov-

ered from a so called change event log that is provided by the adaptive workflow manage-

ment system ADEPT f lex [191] (see Section 2.3.2) and stores detailed context information

about each change that was applied to the workflow. These change logs, however, are in

the most cases not available and thus detailed information about the changes/concept

drifts are not known at the time of analysis. The technique of Bose et al. can be a substi-

tute for analysing these changes but being an a-posteriori analysis the information about

the change characteristics lacks in detail as opposed to logged information at the time of

the enactment of the change.

2.4.4 Online Process Discovery

Traditional process discovery algorithms, as introduced in Section 2.4.2, are static, offline

approaches that analyses an historical event log. Their main goal is to improve the qual-

ity of the discovery results, i.e. optimising simplicity of the model and conformance with

the input log (see Section 2.4.1). An alternative to this approach is the online approach

based on Complex Event Processing techniques (see Section 2.2.3): Immediate process-

ing of events when they occur to information of an higher abstraction level (in this case

BP models). The motivation is to have a run-time reflection of the employed processes

based on up-to-date rather than historical information which essentially allows business

2.4 Process Discovery 49

analysts to react quicker to changes or occurring bottlenecks etc. in order to optimise the

overall performance of the monitored processes. In accordance to this objective online

process discovery algorithms have to deal with two additional challenges as opposed to

the traditional process discovery algorithms:

1. The application of online process discovery is executed in a real-time setting and

thus is required to conform to special memory and execution time constraints. Es-

pecially with regards to many modern systems producing "big data", i.e. data that is

too large and complex to simply store and process it [138]. This means in particular,

that online algorithms should be able to (1) process an infinite number of events

without exceeding a certain memory threshold and (2) process each event within

a small and near-constant amount of time [27]. For instance, a naïve approach is

logging every event and with each new occurrence (or periodically) the entire log is

(re-)analysed with a traditional discovery algorithm. This approach does not com-

ply with the run-time constraints for online process discovery since (1) the log grows

with each event and thus will exceed the memory threshold after a finite number of

events and (2) the run-time of the discovery algorithm will increase for analysing

an ever-growing log. Additionally, to satisfy the run-time constraint an online pro-

cess discovery algorithm needs to run autonomously without human interaction or

supervision. This excludes discovery algorithms that require manual effort like the

step-wise approach based on theory of region (see Section 2.4.2) [243].

2. Online process discovery algorithms are required to deal with concept drift caused

by dynamically changing processes during run-time (see BP Flexibility Section 2.3).

As discussed in the previous section real-life BPs are often subject to externally or in-

ternally initiated change which has to be reflected in the results of an online process

discovery algorithm. Whereas concept drift detection algorithms try to determine

the time and location of these changes, online process discovery algorithms are only

required to anticipate them in the sense of being reflected in the results. This solves

the conceptual difficulty of detecting gradual change where the time cannot be ex-

actly identified (thus making it impossible to split the log) because behaviour of

two differing BPs are contained in the current stream of events. On the downside, it

makes it more difficult to find a fitting model if the behaviour of the two co-existing

processes is conflicting. Generally, online discovery algorithms should be able to

(1) reflect newly appearing behaviour as well as (2) forget outdated behaviour.

Although not specifically, incremental process mining as introduced in [37] does at-

tempt to anticipate the problem of concept drift to some extent. Here, the assumption is

that a log does not yet contain the entire behaviour of the process (i.e. an incomplete log)

at the time of the discovery of the initial (declarative) process. Additional behaviour, that

occurred after the initial discovery and captured in a second log, is analysed separately

and the new information is then added to the existing BP model. This is possible due to

2.4 Process Discovery 50

structure of declarative BP specifications. The process of incrementally analysing log seg-

ments and then extending the BP model accordingly, i.e. incremental process mining, is

motivated by the assumption that the update of an already existing (declarative) BP model

is easier than to always analyse the complete log from scratch. One shortcoming of this

approach is that only new behaviour is added but outdated behaviour is not removed.

Another approach called incremental worklfow mining is based on the same principle

but does discover and adapt a Petri Net by incrementally processing log segments [119–

121]. It is a semi-automatic (and prototypical) approach specifically designed for dealing

with process flexibility in Document Management Systems that does not anticipate in-

complete or noisy logs. A third incremental approach is presented in [219] which utilises

the theory of regions to create transition systems for successive sub-logs and eventually

transform them into a Petri Net. Albeit based on a slightly different concept, incremen-

tal process mining approaches can be considered for online process discovery: The event

processing could be designed to group a number of successive traces into sub-logs which

are then individually analysed and incrementally update and extend the BP. However, a

conceptual weakness of incremental mining approaches is the lacking ability of forgetting

old behaviour and thus not supporting, for instance, revolutionary changes as discussed

in Section 2.3.

In the context of online process discovery, a synonymous term sometimes used is

Streaming Process Discovery (SPD). SPD was coined by Burattin et al. in [27]. In their

work the HeuristicsMiner [278](see Section 2.4.2) has been modified for this purpose and

a comprehensive evaluation of different event stream processing types was carried out.

The fundamentals of the HeuristicsMiner remain the same but the footprint in form of

the Directly-Follows Relation Count (see Figure 2.17) is dynamically adapted or rebuilt

while processing the individual events. From this the Causal Net (or the Petri Net with

an additional transformation) is periodically extracted, e.g. for every event or every 1000

events, using the traditional HM methodology. For instance, for the evaluation of the dif-

ferent streaming methods the HM discovery was triggered every 50 events [27]. Three

different groups of event streaming methods have been implemented and investigated:

Event Queue: The basic methodology of this approach is to collect events in a queue

which is representing a log that can be analysed in the traditional way of process discov-

ery. Figure 2.19 shows three basic types of this methodology: (1) In the sliding window

approach the queue is a FIFO (First-In-First-Out), i.e. when the maximum queue length

(queue memory) is reached for every new event inserted, the oldest event in the queue is

removed. The picture shows the development of the log/queue for each triggered discov-

ery analyses. (2) In the periodic reset approach the queue is reset whenever the maximum

queue length is reached. (3) The uniform split represents a special case of the sliding win-

dow or periodic reset approach when the queue memory equals the discovery frequency.

This approach was not analysed by Burattin et al. but was included into the figure as a

naïve baseline scenario. Note, that the approaches using the hypothesis test for the con-

2.4 Process Discovery 51

BP Influence in Stream:

(3) Uniform Split:

BP1 BP2

time

(1) Sliding Window:

(2) Periodic Reset:

Moment of Change

L 1 L 2 L 3 L 4 L 5 L 6 L 7

L 3

L 4

L 6

L 5

8

L 7

L

L 8

L 1

L 2

L 3

L 4

L7

L 8

Discovery Frequency

Queue Memory

L2

L1

Discovery Frequency

Queue Memory

Discovery Frequency

Queue Memory

L 5

L 6

Fig. 2.19 Different Types of Event Queues [27]

cept drift detection algorithms, e.g. [23, 276], are based on a (shifting) uniform log split.

The main advantage of these approaches is that the event queue can be regarded as event

log and allows for other discovery/mining analyses on event logs such as mining of the

performance perspective. Two of the main disadvantages are: Each event is handled at

least twice: once to store it in the queue and once or more to discover the model from

the queue; Also, it does only allow for a strict interpretation of "history" either the event is

still in the queue or not. In the first case an older event has the same influence as a newer

event. Essentially, the event queue approach is a simple method to use offline process

discovery solutions to solve the online process discovery problem.

Stream-specific Approaches: Stream-specific approaches already process events into

footprint information, i.e. queues of a capped size hold information about the latest oc-

curring activities and directly-follows relations. When a new event occurs all values in the

queues are updated and/or replaced. Burattin et al. distinguish between the following

three update operations: (1) Stationary, i.e. the queues function as a "sliding window"

2.4 Process Discovery 52

over the event stream and every queue entry has the same weight, (2) Ageing, i.e. the

weight of the latest entry is increased and the weights of older entries in the queue are

decreased, and (3) Self-Adaptive Ageing, i.e. the factor with which the influence of older

entries decreases is dependent on the fitness of the discovered model in relation to latest

events stored in an additional sample queue of a fixed size: quickly decreasing for a low

fitness and slowly decreasing for a high fitness. Generally, stream-specific approaches are

assumed to be more computation-balanced since events are only handled once and di-

rectly processed into footprint information (as opposed to the event queue approaches

where the discovery cycle contains all computation-heavy algorithms) [27]. Burattin et al.

also argue that ageing-based approaches have a more realistic interpretation of "history"

since older events have less influence than newer events. One disadvantage is that the

footprint is captured through a set of queues with a fixed size: if this size is set too low

behaviour is prematurely forgotten (i.e. removed from the queue); if this size is set too

high you might never forget certain information. The effect of a too large queue length

is mitigated for the ageing HM approaches since their weight continuously shrinks and is

eventually deemed irrelevant noisy behaviour by the core HM algorithm.

Lossy Counting: Lossy Counting is a technique adopted and modified from [139] that

uses approximate frequency count and divides the stream into a fixed number of buckets.

The evaluation of these methods was carried out for three example processes of differ-

ent sizes (8-19 activities) but without looping constructs involved. These were simulated

and two of them were modified during execution at specific points in time. The quality

of the results was measured using the criteria outlined in Section 2.4.1: Fitness [3], preci-

sion [155], generalisation, and simplicity. The conformance measures fitness, precision,

and generalisation were computed on the basis of a queue of a fixed size containing the

last events representing the sample log (similar to the sliding window approach). The

conclusions, however, were mostly drawn with regards to the fitness(recall) and preci-

sion criteria. Additionally, computation time and memory usage were investigated. Sum-

marised, the evaluation yielded the following results: With regards to the computation-

time and memory consumption the streaming-specific approaches (stationary, ageing,

self-adaptive ageing) were outperforming the event queue approaches (sliding window,

periodic reset) especially for higher queue lengths and the lossy counting approach. How-

ever, only the time for processing an event was investigated, not the time needed for the

discovery of the process. The self-adaptive ageing, for instance, would require more time

since conformance criteria have to be computed to adapt the ageing factor. Considering

the conformance criteria, all approaches performed similarly well if the correct param-

eters were chosen (e.g. ageing factor, queue lengths, number of buckets) for stationary

streams and converged to the best fitting BP after some time. For streams with concept

drift the streaming approaches and lossy counting performed better than the event queue

approaches. For the larger example the stationary streaming approach (with the same

2.5 Performance Decision Support for Business Processes 53

weights) achieved a significantly higher fitness which can be explained with the experi-

ment setup: The conformance checking treads every event in the sample queue equally

independent of their "age".

Another approach for discovering concept drifts on event streams of less relevance to

the thesis’ topic is presented in [138]: A discovery approach for declarative process models

using the sliding window approach and lossy counting to update a set of valid business

constraints according to the events occurring in the stream.

2.5 Performance Decision Support for Business Processes

An overview and examples of different types of process analysis and reasoning in the

context of process intelligence, decision support, and business activity monitoring are

provided in Section 2.2.3, e.g. what-if analysis, performance monitoring/extraction, per-

formance prediction, process discovery, etc. Some are applied online in an automated

fashion (e.g. performance monitoring, notifications) and others offline and may require

human interaction (e.g. what-if, sensitivity analysis, process discovery). All of which,

however, are motivated by potentially improving the decision process for (re-)designing

a business process (see Figure 2.7 on page 24) [70]. Generally, the decision making in the

BP-domain (and other domains) is based on rules, constraints, and goals. Business ana-

lysts strive to optimise the performance of a business process with regards to the specified

goals while still conforming to the rules and respecting the constraints. The performance

of a process is usually expressed by quantifiable measures against which the goals can be

evaluated. Thus, performance-centric decision support for BPs describes techniques that

provide additional, computed performance measures to support the business analyst in

making decisions about the business process in question. These measures essentially en-

able the analyst to understand the "health" of a process, obtain detailed insight into the

process execution as well as its environment, and react if an adaptation or exceptional

interference becomes necessary, e.g. reallocation of resources or prioritising parts of a

process.

In this section performance-centric decision support techniques with the focus on

performance analysis and prediction are discussed. In the context of the thesis’ topic

run-time performance prediction is used twofold: As means (1) to conceptually prove the

applicability of the devised reasoning approach based on descriptive business process

models at run-time (see Section 6.1) and (2) to evaluate the hypothesis that by employ-

ing this DBPMRT approach better higher-level reasoning (i.e. prediction) results can be

achieved (see Section 6.2).

2.5.1 Process Performance Indicators

Measures reflecting the health of the organisation and its processes are usually called Key

Performance Indicators (KPIs) and are derived from higher-level business goals [282]. In

2.5 Performance Decision Support for Business Processes 54

KPIs

Collaborative Information System

BPMS

Event
Data

Business
Data

PPIs

Fig. 2.20 The Relation between PPIs, KPIs and the System

some literature, KPIs that are directly related to the performance of a business process or

its elements are called Process Performance Indicators (PPIs) [49, 50, 56, 150, 179]. In [50]

a PPI is defined as "...measure that reflects the critical success factors of a business pro-

cess defined within an organisation..." which "...focuses exclusively on the indicators de-

fined on the business process". The conceptual relation between PPIs, KPIs, and the sys-

tem/organisation is shown in Figure 2.20: Whereas PPIs are exclusively calculated on the

basis of process-specific data (usually event data), KPIs may make use of other sources,

e.g. business or accounting data. That is, the set of PPIs is a specialised subset of the set

of KPIs.

PPI measures can be very diverse, for instance, be generic (e.g., instance occurrence of

process) or process-specific (e.g., net duration of activity "Credit Check"), calculated for a

single instance (e.g. current duration of a process instance) or aggregated over several/all

instances (e.g., average duration of process), or differ in many other aspects, e.g describe

resources or control-flow elements, etc. A comprehensive overview of over 500 perfor-

mance measures and their dependencies in the domain of software processes is provided

by Monteiro et al. in [150]. A more generic view on PPIs is given in [50]: Here, an ontology

is proposed that allows for generic modelling of PPIs in order to integrate the managing

of PPIs into the BPM lifecycle. Furthermore, three different types of measures are distin-

guished in [50]: (1) base measures, i.e. extracted from a single process instance using a

specified method (count, time, condition, data), (2) aggregated measures, i.e. calculated

by applying a certain aggregation function (min, max, sum, average, count) on a set of

base measures belonging to different instances, and (3) derived measures, i.e. applying a

customised mathematical function on one or more measures (base or aggregated). One

shortcoming is that frequency (e.g. process instance frequency), probability (e.g. path

2.5 Performance Decision Support for Business Processes 55

probabilities for decision), and resource-related (e.g. resource utilisation) performance

measures are impossible or difficult to model, i.e. only via derived measures. Similar at-

tempts following the approach of PPI modelling for automated process monitoring exist,

e.g. [68, 130, 149, 282].

These BAM solutions are in the context of process mining usually classified as model

enhancement (see Figure 2.9 on page 26) because basic information about the process is

already provided, i.e. the process definition/model is a required input to link the modelled

PPIs to the respective BP elements. These approaches are designed for stationary BPs. For

dynamically changing processes, PPIs cannot be modelled beforehand but have to be of a

rather generic type, automatically adapting to the underlying BP which may change over

time. In the following a selection of these generic PPIs are listed [69, 70, 189]:

• Process Instance Occurrence describes how often a start event of the process is trig-

gered within a certain time period (as frequency) or how much time passes between

the start of two instances (as duration).

• Activity Net Working Time specifies the time needed (for a resource) to process the

specified activity. This is the effective time the resource takes to fulfil the task and

does not include delays, e.g. unavailability of a suitable resource.

• Activity Processing Time specifies the overall time needed to process the specified

activity including all delays, e.g. waiting for suitable resource assignment.

• Throughput is the count of how instances have "passed through" this BP element

during a specified time period.

• End-to-End Processing Time determines how much time it takes to carry out the

whole process from start to end.

• Path probabilities describes the likelihood of the exclusive paths following a deci-

sion element.

• Utilisation specifies the percentage of time a resource or set of resources (i.e. grouped

as role) was busy, i.e. effectively processing tasks.

• Queue Length is a count describing how many tasks are currently in the queue and

waiting to be processed by a resource with the appropriate role.

If a performance measure is an average aggregate over multiple instances and the actual

values of the instances deviate from the average it is common to capture not just the av-

erage but also the standard deviation (to form a Normal Distribution [104]) or the z-value

(to form a Confidence Interval [24]) in order to reflect the probabilistic nature of the PPI.

For example, process instance occurrence is on average 10 per minute but does actually

range from 5 to 16 per minute. Duration or frequency-based PPIs such as process instance

occurrence, activity net working time, activity procesing time, and end-to-end processing

time are usually recorded as normal distributions rather than simple average values.

2.5 Performance Decision Support for Business Processes 56

2.5.2 Process Performance Prediction

The PPI values and their evaluation against their target values support the process of deci-

sion making in the BP lifecycle. Furthermore, they can be the basis for automatic higher-

level decision support techniques such as bottleneck detection (e.g. by examining the

average duration of a resource being active in comparison to all other resources [195]),

notifications for SLA violations (e.g. end-to-end processing time not within the agreed

margins of the service agreement [285]), or predictions of PPIs. The focus of this thesis

is on performance prediction which is the basis of pro-active decision support and many

higher-level analyses, e.g. what-if, sensitivity analysis, and optimisation.

A first type of performance prediction techniques is represented by analytical or statis-

tical approaches. Business applications for PPI monitoring (e.g. SAP Operational Process

Intelligence [206]) or data-centric Business Intelligence (BI) solutions (e.g. SAP Busines-

sObjects BI Platform [205]) often use trend analysis techniques which are based on ex-

trapolations from the historical data of the performance measure [24]. For this regression

algorithms can be employed to fit a type of function (e.g. linear, polynomial) into a set of

data points in a way that the distances between the data points and the function are mini-

mal. The retrieved function can then be used to calculate future values, i.e. extrapolation.

This approach, however, is solely based on a time series of values and does not take infor-

mation about the business process into account. Other analytical techniques exist where

the BP is represented by a mathematical model, e.g. FMC-QE [178]. The biggest advantage

of this type is that instant results can be computed, which is why analytical techniques

are preferably used in high-level analyses like optimisation where thousands of different

cases have to be analysed as fast as possible. Disadvantages are (1) that they typically are

only simplified approximations (e.g., conditional loop behaviour hard to be represented

by a formula [178]), (2) impose additional constraints and are difficult to use [29], and

(3) do not take information of the current state of the BP into account, i.e. they can essen-

tially only be used for steady-state predictions (such as what-if predictions).

Another group of techniques for process performance prediction is based on the sim-

ulation of business processes. Simulation "... attempts to mimic real-life or hypothetical

behaviour" [232]. Simulations can be classified in several ways [193]: They can either

be (1) continuous or discrete, (2) deterministic, or non-deterministic, (3) analyse dynamic

or static behaviour (the latter is also referred to as steady state analysis in many publi-

cations, e.g. [201, 210, 232, 235, 244, 252]), and (4) in the case of a discrete simulation

implemented as time-slicing or discrete-event approach. According to [193], the discrete-

event approach is very common in event-based simulations and in commercial tools like

AnyLogic [6].

In the BP domain simulations are usually discrete and non-deterministic utilising the

discrete-event simulation approach. For this “...the system is modeled as a series of events,

that is, instants in time when a state-change occurs.” [193]. One implementation of the

discrete-event simulation is the three-phase approach [173] shown in Figure 2.21. It is

2.5 Performance Decision Support for Business Processes 57

Conditional
Events Performed?

Initialize Simulation:
Configure Initial State & Events

Start

A Phase
Determine Time of Next Booked

Event and Advance Clock

B Phase
Execute All Booked Events Due

at Current Time

C Phase
Check and Potentially Execute

Conditional Events

Stop Simulation?

Stop

No

Yes

No

Yes

Fig. 2.21 Algorithm of the three-phase discrete-event simulation approach [193]

based on two kinds of simulation events9: booked events, i.e. state changes scheduled

to occur at a certain time, and conditional events, i.e. state changes that are executed

if a condition in the simulated system becomes true. With regards to a simulation of

business processes, booked events are commonly used to register activity completions

or instance occurrences and conditional events are used to express the semantic of the

process. The execution of any of these simulation events change the state of the system

simulated and/or schedule new booked events. In the A phase of the three-phase algo-

rithm (see Figure 2.21) the time of the next event is determined by examining the event

list and the simulation clock is advanced to that point in time. In the B phase all booked

events are executed which are due (for the current time). In the third step, the C phase, all

conditional events are checked and, if true, executed. Since the successful performance

of a conditional event alters the state of the system, thus possibly enabling another con-

ditional event, the C phase is repeated until no further conditions are true. In order to not

unnecessarily slow down the simulation the number of conditional events should be kept

small or completely avoided since all of them have to be checked repeatedly at every point

9Simulation events are not the same as BP events discussed in previous sections

2.5 Performance Decision Support for Business Processes 58

in time. The three steps are continuously repeated until the simulation’s stop condition is

true, e.g. when the predetermined time is reached.

In the domain of business process simulation two different specialisations of BP simu-

lations can be distinguished and will be discussed in the remainder of this section: steady-

state simulations and short-term simulations.

Steady-state BP Simulations

The method of simulation is considered to be versatile, impose only a few constraints, and

produce results that can be similarly interpreted as the ones of the simulated system [232].

This is why BP simulation is one of the most established techniques in the domain of

BPM supported by many tools, e.g. [72, 131, 180, 189, 200, 290]. Most of these tools focus

on analysing steady-state situations which are simplified models that help investigating

the future performance of a BP variant on a strategic or tactical level [232]. Steady-state

simulations are usually associated with the (re-)design phase of the BPM lifecycle (see

Figure 2.7 on page 24) and can be used to investigate the performance of a BP variant

before enactment, i.e. for what-if analysis. As an input steady-state simulations require

the following information [232, 292]: (1) the business process structure, i.e. control-flow,

resource and role information, and (2) annotated performance and routing information,

i.e. the incoming work/arrivals, activity details (e.g. type, time to process), and routing

details for the decisions in the control-flow. In relation to the PPI examples listed in the

previous Section 2.5.1, the performance and routing information corresponds to the three

PPIs process instance occurrence, activity net working time, and path probabilities. In [72,

73, 131, 180, 189] solutions following the approach of a steady-state BP simulations are

proposed.

An approach that supports a more dynamic interpretation of BP simulation is intro-

duced in [210]: Here an adaptive simulation model with a history-dependent mechanism

that propagates changes through the model is proposed, i.e. it assumes that the perfor-

mance parameters driving the simulation change over time are dependent on the devel-

opment of other parameters. These performance interdependencies are learnt from the

historical data stored in the event log. Note, that other approaches also allow for simula-

tion parameters changing over time, e.g. [72, 189], however, they have to be modelled and

are not extracted from historical data. Furthermore, all of the above simulation solutions

do typically start "empty", i.e. without any active traces, built-up queues, etc., and need

some time to "warm-up" until realistic measurements can be achieved, i.e. the steady-

state is reached.

Short-term BP Simulations

Since the current state of the system is irrelevant for steady-state simulations, they are not

deemed suitable for operational decision support at run-time [200]. In contrast, short-

term simulations take the current state of the system into account and are designed to al-

2.5 Performance Decision Support for Business Processes 59

Activity 1
Throughput

Activity 2
Throughput

Trend analysis
prediction via
historical data

Prediction via
Simulation

Activity 1 Activity 2

Fig. 2.22 Short-term Prediction via BP Simulation vs. Trend Analysis

low a look into the system’s near future, similar to pressing the "fast forward button" [232].

In essence, the objectives of both types of simulations are different: Whereas steady-state

simulations are to investigate what-if scenarios, i.e. provide answers on a strategical and

tactical level, short-term simulations help to predict problems and bottlenecks that will

occur in the near future in order to allow for pro-active mitigation before they take ef-

fect, i.e. provide answer on an operational level [232]. Since short-term simulations are

built on the current state of the system they are also called transient simulations. When

comparing short-term prediction approaches, a transient simulation is expected to pro-

vide better results than analytical analyses based on the historic data of the measure

(e.g. trend analysis) because BP simulations take additional structural information into

account (control-flow, resources). This is conceptually highlighted in Figure 2.22 for a

simple sequential BP example: While the trend of the throughput of "Activity 2" is flat

(upper right graph), the simulation based on structural information ("Activity 1" is fol-

lowed by "Activity 2") and the current state (there are currently an increasing number of

BP instances processed at "Activity 1", i.e. throughput for "Actitivy 1" is rising) will cor-

rectly predict a later rise of the throughput of "Activity 2" (lower right graph). Other such

dependencies between PPIs can be hidden in a BP model and thus can be predicted more

accurately with a short-term simulation, e.g. the sharing of resources by two or more ac-

tivities.

To the best of the author’s knowledge only a small number of publications exist that

address the challenge of short-term BP simulations for operational decision support [200,

201, 220, 290]. Solomon et al. show conceptually in [220] that simulations can predict

KPIs and essentially help adapting the running process. In their work combinations of

one-step predictions (always just the next KPI value is predicted) are compared for their

performance on a simple model of three activities. It is, however, neither stated how all

the information for the simulation model is extracted from the monitored system, nor

how it is integrated or modelled. In [290] it is conceptually shown that simulation mod-

els containing design, performance, and state information can be used to create a sim-

ulatable YAWL [245] model (see Section 2.2.1). Rozinat et al. extend this work in [200]

and [201] arguing that some of the information of the YAWL simulation model can be

2.5 Performance Decision Support for Business Processes 60

Fig. 2.23 Short-term Simulation System Integrated with the Workflow System [200]

extracted from the event log and the workflow system. Figure 2.23 shows the integra-

tion of the short-term simulation system and the worklfow system as well as the involved

sources and types of the information of a simulation model. It is distinguished between

three types of information [200]: design information, i.e. modelled control-flow and re-

source perspective, historic information, performance parameters availability patterns of

resources extracted from the log, and state information, i.e. obtained from the worklfow

system are the progress and associated data of currently active instances as well as cur-

rent resource availability (busy or not). When this model is simulated a log is created

containing the simulated events of the near future. Similar to the original event log, this

simulation log can then be analysed for its performance, i.e. predicted PPIs. The assump-

tion for this approach is that both, workflow and simulation system, use the same static

workflow model and states can be easily extracted from the system.

The biggest disadvantage of simulations is that they are time consuming and not very

scalable: size of the business process, time to simulate, and average instance occurrence

similarly have a linear influence on the execution time of the simulation. Furthermore,

BP simulations (short-term and steady-state) are non-deterministic: Decisions in simu-

lations are often not based on data but on probability distributions; Activity net working

times are based on distribution values, e.g. normal distribution; Resource appointments

are random to some extent. For this reason BP simulations should be executed several

times to gain a certain confidence about the results (either recorded as average value or

as confidence interval) [104, 193]. This is true for all steady-state analyses but some of the

presented short-term-predictions base their prediction results on one single simulation

run, e.g. [200, 220].

2.5 Performance Decision Support for Business Processes 61

2.5.3 Performance Prediction from Event Logs

In the previous section it was discussed what different prediction techniques exist (ana-

lytical vs. steady-state simulation vs. short-term simulation) as well as their goals, advan-

tages/disadvantages, and what input information these techniques require. In contrast,

this section is concerned with state of the art performance prediction techniques that do

not use any modelled information but are solely based on data contained in the event log.

A first type are approaches using analytical techniques to predict the future behaviour

on the instance level. One such approach is presented in [252]: Here a non-parametric

regression model is used to predict the time currently active BP instances still need to

finalise. Another approach that focuses on predicting the completion of BP instances

is presented in [241] and extended in [244]. The approach is based on the extraction

of a transitions system from an event log utilising the state-based process discovering

approach presented in [243] (see end of Section 2.4.2), annotating the resulting transi-

tion model with time information computed from earlier finished instances, and use this

to only predict the completion time of the not finished instances. Neither of these ap-

proaches take the resource perspective into account. Furthermore, both are limited to

predict completion times for open traces but do not provide the possibility to predict ag-

gregated PPIs as introduced in Section 2.5.1, e.g. end-to-end processing time, utilisation.

As established in the previous section, simulation is a more versatile approach to pre-

dict the development of a BP’s future performance. In [197] it is shown that BP simula-

tion models (in the form of Coloured Petri Nets (CPNs) [109]) can be extracted from the

event log (using the α-algorithm [249] as discussed in Section 2.4.2) and annotated with

decision, time, and probability data that is also extracted from the event log. This is the

minimum of information needed to carry out a BP simulation on a rather simplified BP in-

terpretation. This work was extended in [198] to include information about the resources

and thus allow for more accurate prediction results. Figure 2.24 shows the involved agents

and models of this approach [198]:

1. First, the control-flow is extracted (again with the α-algorithm) to build a Petri Net.

2. Based on this and the event log the Petri Net is enhanced with performance val-

ues and data dependencies respectively to build two annotated CPNs. The decision

point mining is based on the classification problem and discussed in more detail

in [199]. Note that for decisions both, probabilities and data dependencies, are

computed which is redundant but allows a choice for the user to simulate on the

basis of either of them.

3. Furthermore, the resources and their respective roles are discovered from the event

log. For this the "metrics based on joint activities" proposed in [242] is applied. The

approach works on the assumption that people/resources that are "...doing similar

things are more closely linked than people doing completely different activities" [198].

2.5 Performance Decision Support for Business Processes 62

Fig. 2.24 Mining Simulation Model for Steady-State Prediction [198]

The "distance" between two different resources is measured using Pearson’s corre-

lation coefficient on the two respective profile vectors that contain their association

frequencies with all involved activities. The computed distances are the basis for

the subsequent clustering algorithm that determines the role(s) of each resource.

Other approaches that (partly) address the discovery of the organisational perspec-

tive are based on (1) decision trees for staff assignment [136], (2) the handover of

roles, an approach based on partitioning and merging of sets of activities based on

the assigned resources [28], (3) characterisation of resource availability, an attempt

to model human resources more accurately, e.g. taking into account a resource is

usually not fully assigned to only the observed process or that activities are pro-

cessed in "chunks" [239].

4. In a final step the two annotated CPNs as well as the resource model are merged

to a final simulation model that can be interpreted and used by a CPN simulation

engine.

In none of the discovery approaches for simulation models discussed in the above para-

graph the information of the current state is taken into account, i.e. they can only be used

for steady-state simulations. The only state-based approach for short-term simulation

that discusses the current state as an input is [200] (see Section 2.5.2; Figure 2.23): Here a

plugin is proposed that exports the current state from the BPMS (i.e. a YAWL system) into

a file of a specialised format that is interpretable by the simulation engine. However, to

the best of the author’s knowledge no publication discusses how to effectively extract the

instance state of the process directly from an event log or monitor an event stream.

2.6 Model-Driven Engineering 63

2.6 Model-Driven Engineering

Model-Driven Engineering (MDE) is a technique to manage the increasing complexity

of modern software platforms and is based on lessons learnt in the past 30-40 years of

Computer-Aided Software Engineering (CASE) and object-oriented technologies [65]. It

describes the systematic use of models as development artefacts throughout the software

lifecycle [115, 209]. In contrast to object-oriented development which follows the prin-

ciple of "Everything is an object", MDE is the application of the principle "Everything is

a model" [14]. This shift of principles promises an effort reduction for the development

and maintenance by working at the model instead of the code level [52]. Bézivin defines

MDE in [14] as "the unification of initiatives that aim to improve software development by

employing high-level, domain-specific, models in the implementation, integration, main-

tenance, and testing of software systems". At the beginning of this millennium prominent

initiatives, i.e. Eclipse Foundation10 and the Object Management Group (OMG)11, have

published a set of standards that apply and support the principles of MDE:

• The eclipse project is based on MDE concepts (among many others) and provides

a unified set of modelling frameworks, tooling, and standards implementations,

such as Eclipse Modeling Framework (EMF) [225] and Graphical Editing Frame-

work (GEF) [63].

• Model-Driven Architecture (MDA) defined by the OMG is a realisation of MDE prin-

ciples around a set of standards like MOF, UML, XMI, QVT, etc. [169]. One of MDA’s

main objectives is the separation of modelled system functionality (i.e. PIM) from

its specification for a specified platform (i.e. PSM) in order to control their evolution

more independently [176].

2.6.1 Models

Depending on the context the term model can have many different general meanings

if looked up in an encyclopaedia. The two following are appropriate in the context of

Model-Driven Engineering [14]12: (1) copy of an object, especially one made on a smaller

scale than the original, or (2) a simplified version of something complex used in analysing

and solving problems or making predictions. A more fitting and apt definition for models

as they are understood in MDE is provided in [64, 224]:

• "A model has a purpose.

• A model describes some entity that exists or is intended to exist in the future.

• A model is an abstraction, that is, it does not describe details of the entity that are not

of interest to the audience of the model."

10http://www.eclipse.org/org/
11http://www.omg.org/
12Bézivin adopted these definitions from Encarta Encyclopedia which is not publicly available any more.

http://www.eclipse.org/org/
http://www.omg.org/

2.6 Model-Driven Engineering 64

In summary, models in the context of MDE can be described as purposeful abstractions

or reduced representations of a system. Furthermore, Stachowiak differentiates between

three types of information stored or not stored in a model [224]: (1) abundant attributes,

i.e. additional information in the model that is not part of the original object. An example

would be the BP model in Figure 2.2 on page 14: Not only the behavioural and struc-

tural information of a process is shown but also the model is enhanced with additional

graphical information of where exactly elements are positioned in the picture; (2) selected

attributes, i.e. information shared by both, the model and the original object. This is the

data of importance for the specific purpose of the model; And finally (3) preteritive at-

tributes, i.e. ignored attributes of the original that is not required in the model, reflecting

the fact that models are abstractions of original objects.

Many different types of models find practical usages in science and economy and help

abstracting from a (too) complex reality: statistical models, meteorological models, bio-

logical models, ecological models, economical models, etc. Furthermore, computer sci-

ence may be mainly described as the science of building software models [14]. The usage

of models in the domains of computer science and software engineering is beneficial for

a multitude of reasons, of which the following two are considered to be most important:

Higher Level of Abstraction:

The most important characteristic of an engineering model is abstraction [213]. Model-

Driven Engineering allows to raise the abstraction level for developers in order simplify

and formalise the tasks involved in the software lifecycle [92]. When developing software

a higher level of abstraction helps to reduce the complexity as well as required effort [8].

Furthermore, a higher abstraction level improves communication and analysis capabil-

ities. That is, models are better suited than (software) code to answer questions asked

by different stakeholders which generally are of a higher abstraction level [43]. Thus, they

can be used to reflect the intentions of stakeholders more precisely while at the same time

ignoring implementation details [8]. Thus, models improve the development of software

artefacts by providing information about the consequences before they are actually im-

plemented [135]. A general challenge is, however, to find the correct balance between

simplification, i.e. raising the abstraction level, and oversimplification, i.e. neglecting

details necessary for a specified purpose [8].

Systematic Reuse of Development Knowledge & Platform-Independence:

Independent from the target platform, models can be used in the software development

process to describe principles, processes, interactions, and other domain-specific knowl-

edge. This knowledge can be reused in an explicit and systematic way for other platforms

and software of the same domain and with the same purpose [8, 14, 124].

2.6 Model-Driven Engineering 65

Domain-specific Models
(Development Artefacts)

Domain Software
System

Domain
Expert

Software
ExpertDSML

DSML
Engineer

conforms-to

Fig. 2.25 Experts involved in Model-Driven Engineering [69]

2.6.2 Domain-specific Modelling

Domain-specific Languages (DSLs) have to deal with a reduced number of concerns when

compared to General Purpose Languages (GPLs) [69]. Examples for GPLs are General Pur-

pose Programming Languages like Java and C and General Purpose Modelling Languages

like UML [114, 165]. DSLs are applied in many different domains, such as grid comput-

ing [217], finance [91], or business processes [161, 168, 207]. More extensive DSLs like

Modelica [170] or MEMO [67] offer development support for a multiple different domains.

In [117] the benefits of using DSLs have been quantitatively evaluated with the result

that a higher degree of efficiency, e.g. in terms of productivity, can be achieved. In par-

ticular, DSLs are beneficial if a family of programs, e.g. the family of business processes,

is addressed due to a possible reuse of artefacts. Additionally, languages for a specific do-

main are typically of a higher abstraction level and thus shorter than their pendant con-

struct in GPLs [114]. As a result, developers using a DSL can concentrate on creative tasks

rather than repetitive tasks. The usage of models and DSLs have notably the same two

advantages, i.e. reusability and higher abstraction level, as they are essentially two sides

of the same coin. In the context of MDE DSLs are also called Domain-specific Modelling

Languages (DMSLs) and define a consistent set of rules which a domain-specific model

has to conform to. With the adoption of DMSLs in the MDE concept the responsibilities

can be split up into three different roles (see Figure 2.25) [69]:

• The DSML Engineer defines the DSML, e.g. BPMN, and provides tools to create

instances of this DSML, e.g. BPMN Modelling Tools.

• The Domain Expert uses the provided tools to define and manage her instances

of the DSML, i.e. the domain-specific models. Examples of domain experts are

Business Process Analysts or Business Impact Analysts.

• The Software Expert is the one who actually implements and configures the devel-

opment artefacts for a specific system. In some cases this step can be automated.

2.6 Model-Driven Engineering 66

In this setup the domain-specific models are essentially used as means of communica-

tion between domain expert and software expert. With the proposed sharing of respon-

sibilities, domain experts can now be more closely involved in the development process

without having to be skilled programmer themselves. The identification and attribute

mapping process from the original object to the model is in general called modelling or

Domain-specific Modelling (DMS) in the context of MDE [159]. This is carried out by the

domain expert.

The traditional understanding of modelling and models is based on "...an abstraction

of reality in the sense that it cannot represent all aspects of reality" [196], i.e. modelling

is a simplification process. Different to the traditional understanding of modelling, in

Model-Driven Engineering models are not only simplifications of reality but formal input

and output for computer-based tools and represent implementations of precise opera-

tions [14]. To enable a consistent interpretation of models of the same domain they have

to conform to the same DSML. Following the "everything is a model" paradigm of MDE,

DSMLs are in fact models themselves describing the abstract syntax of domain-specific

models and are in MDE literature usually called meta-models. To distinguish between

relations in MDE, two basic types of abstractions exist [14]:

1. the represented-by abstraction is used to define the relation between the original

information (or system) and the model, and

2. the conforms-to abstraction is to define the relation between a model and its meta-

model. Although, in a general sense a model is an instance of a meta-model, the

instance-of term is not widely supported in MDE in order to avoid confusion with

object-oriented principles.

Since a meta-model is also a model it needs to conform to a meta-meta-model which

defines the abstract syntax of the meta-model. For this purpose, the Object Management

Group (OMG) has defined a standard called Meta Object Facility (MOF) [162]. It proposes

a four-level architecture, shown in Figure 2.26:

At the bottom level, the layer M0 is the original information, i.e. the real system. An

example of such a system in terms of BPM is a enacted implementation of the business

process in Figure 2.2 on page 14. Information on level M0 is represented by a model at

the M1 level. With regards to the former M0 example, the actually executed online order

process is represented by the online order BP model shown in Figure 2.2. A model from

the level M1 conforms to a model in the meta-model layer at level M2. This layer permits

modelling tools to operate with M1 models, e.g. editors for DSLs, such as the Process

Composer of the SAP Netweaver BPM [287]. These tools require a formal specification of

the abstract syntax of the M1 models they are handling. This specification is defined by

the meta-model. Since the Online Order BP conforms to the BPMN language, BPMN is the

BP’s meta-model and an example for a model in the meta-model layer M2. The abstract

syntax of meta-models is defined by a meta-meta-model at the M3 level. Additionally, a

2.6 Model-Driven Engineering 67

conforms-to

represented-by

Meta-Model

Model

Information

Meta-Meta-Model

conforms-to

M3

conforms-to

M2

M1

M0

Fig. 2.26 MOF layers - Meta-data Architecture proposed by OMG [162]

meta-meta-model has to conform to itself. The MOF standard defines a meta-modelling

language called MOF2.0 [162], to which for instance the BPMN meta-model conforms to.

Another more or less aligned variant of a meta-meta-model is the Ecore model, used and

defined in the Eclipse Modeling Framework (EMF) [225]. Throughout this thesis, MDE

principles are implemented using the EMF toolkit/framework.

2.6.3 Methods and Techniques in Model-Driven Engineering

Frameworks for MDE provide methods to create, test, and manipulate models, i.e. man-

age models as development artefacts. Similarly methods and techniques have been es-

tablished to support MDE during run-time, e.g. model transformation, model merg-

ing, model metrication (establishing measures on models), and model verification, etc.

Bézivin et al. distinguishes in [15] between "modeling in the small and modeling in the

large". This view is adopted from the difference of "programming in the small and pro-

gramming in the large" [51] established by DeRemer and Kron in 1975. The following

two operations belong to the scope of modelling in the small [15]: model transforma-

tion and model weaving - both are further discussed in the following paragraphs. On the

other hand, modelling in the large, which is also called Megamodelling, is mainly based

on model management and an holistic approach to system engineering. Following the

paradigm of "everything is a model" a megamodel describes a global view on all involved

artefacts in the form of a model [15].

2.6 Model-Driven Engineering 68

Model Transformation is one of the most important operations in MDE and basically

represents the fundamental functionality of the software. It is used for translation from

one language into another or to annotate, merge, refine information of two or more source

models. The transformation from a number of source models into a number of target

models is also called Model-to-Model Transformation (M2M) [71]. A M2M transformation

generates a target model from a source model and is executed according to a specified

model transformation. Adhering to the basic MDE principle the transformation can be

considered a model itself. This common pattern for model transformations is referred to

as model transformation pattern [5]. These transformations can be realised in a number

of different ways, e.g. as script, programming code, or through a specialised M2M trans-

formation language such as Query/View/Transformation (QVT) [163] or ATLAS Transfor-

mation Language (ATL) [112, 113]. As a consequence of the "transformation is a model"

concept, higher-level transformations are possible, i.e. transformations taking transfor-

mations as input and/or generating transformations as output [14].

Generally, there are various applications for M2M transformations. One is to trans-

form a source model, e.g. a business process model, together with additional data, such

as process performance related information into one target model that conforms to the

same language as the source model. Now, the target model expresses the source model

plus the additional information. This example application is called refinement [69]. An-

other special type of transformation is the so called Model-to-Text Transformation (M2T),

in which a model is transformed into a text. If the resulting text is defined with a meta-

model, M2T is classified as a subclass of M2M [71]. M2T responds to the need that models

are normally stored based on a concrete syntax, e.g. translating a model conforming to a

specific XML format.

Model Weaving encapsulates the different kinds of semantic relationships between mod-

els and uses these for various activities [48]. Two of the most prominent and relevant

examples of semantic relationships are:

• Annotation models, i.e. elements of the annotation model have explicit and unique

references to elements of another model. E.g., for the online order business pro-

cess model from Figure 2.2 an annotation model with process performance data

can exist that contains performance information for each activity plus links to the

respective activities of the original BP process model.

• Traceability links between source and target models of an M2M transformation help

to maintain a connection between elements of source and target models [111]. Trace-

ability links are usually by-products of M2M transformations but are difficult to cre-

ate (in an automatic fashion) if the transformations go beyond simple mapping.

2.7 Models at Run-time 69

2.7 Models at Run-time

Models@run.time (MRT) is relatively new research area that attempts to apply and adopt

concepts of model-driven engineering for usage at run-time in order to cope with ever-

more dynamically changing software and its environment. Similar to the design-time fo-

cused view on models in MDE, in MRT models also represent central software artefacts

- but during run-time. In traditional MDE, software development and software execu-

tion are separated from each other while modifications on the running system is done

in an offline fashion, e.g. via redeployment of changed and compiled software artefacts

(cold swap). Since modern applications have to adapt quickly to changes in requirements

and execution environments during run-time, the distinction between development and

execution continues to fade [78]. The initial idea of MRT was to reuse model artefacts

from the development phase at run-time to overcome flexibility limitations of the tradi-

tional MDE approach [9, 16]. During execution, information monitored from the system

enables run-time reasoning to eventually initiate corrective actions at the model level if

necessary [227]. As a result techniques in MRT aim to shorten or automate (parts of)

the adaptation lifecycle on several accounts: monitoring, reasoning, and modification

during execution. The achieved run-time flexibility of self-adaptation, however, requires

additional modelling effort since cause and reaction need to be specified which may in-

volve extreme modelling efforts for complex systems. This issue can partly be mitigated

by using multiple models capturing different system concerns as opposed to one model

capturing the entire system [16, 267].

Blair et al. define a model at run-time as "... a causally connected self-representation of

the associated system that emphasises the structure, behaviour, or goals of the system from

a problem space perspective" [16]. An alternative definition with a greater emphasis on

model manipulation is provided in [10]: "models@run.time is an abstraction of a running

system that is being manipulated at runtime for a specific purpose". It is further specified

that (1) the main kinds of manipulation are model observation and model modification,

and (2) the specific purposes mostly focus on adaptation, monitoring, trace of execution,

or debugging [10]. Figure 2.27 illustrates the concept of models@run.time in comparison

to the traditional view of models as design artefacts in the MDE approach [9]. In contrast

to design-time models which are transformed or compiled to an executable system and

thus are separated from the run-time system, MRTs feature a closer link to the system with

the purpose of ensuring a "...good performance during execution" [9]. This is highlighted

in Figure 2.27 by the different distances between model and system for MDE and MRT

respectively. The definition and principal is very similar to reflection where the system is

able to query and manipulate its own structure and state, i.e. is a causally connected self-

representation [137]. However, the difference is that MRTs generally operate on a higher

level of abstraction (solution space) than reflection (problem space) and as a result allow

for a utilisation of model-driven techniques at run-time [9, 16].

In the following different (re-)occurring aspects of existing MRT approaches are dis-

2.7 Models at Run-time 70

Causal Connection
(bidirectional)

MRT

Model

Compilation,
Transformation

System System

Traditional MDE MRT

Design-time Run-time

Fig. 2.27 Design Models vs. Run-time Models [9]

cussed, namely their objectives, techniques, architectures, megamodels, and a gener-

alised view on properties of run-time models. A particular focus throughout this discus-

sion will be on aspects of descriptive models at run-time, which is also the subject of the

concluding part of this section.

2.7.1 Objectives

Purpose and objectives of MRT can be very diverse. While early approaches mostly fo-

cussed on simple monitoring and self-adaptation approaches, e.g. [75, 76], in recent years

MRT approaches of a wider application range that are more goal-oriented and user-centric

have been proposed [11]. In the following observed classes of objectives of recent MRT

approaches are listed [227, 264]:

Monitoring: An essential part of MRT is monitoring the actual state of the system which

is the basis for immediate reasoning on the monitored state, e.g. via constraint check-

ing, simulation, and prediction. Monitoring using MRT provides information that helps

to trace the applications behaviour and allows for an analysis on the model level, i.e. on

a higher level of abstraction and closer to the problem space [16, 227]. Example MRT ap-

proaches that include the objective of monitoring of the system are, for instance: (1) so-

lutions based on the Supporting Models @ RunTime (SM@RT) tool to maintain the causal

connection between system and architecture model through bidirectional QVT-transfor-

mations, e.g. [100, 222, 223], (2) solutions based on the Triple Graph Grammar (TGG) ap-

proach for architectural monitoring, e.g. [82, 262, 265, 266], (3) Object Constraint Lan-

guage (OCL)-based monitoring, e.g. [93, 94], (4) using i Nets to recognise [208] or moni-

tor [36] run-time events, or (5) solutions based on the analysis of event log [19] or execu-

tion trace [141, 141].

2.7 Models at Run-time 71

Prediction and Simulation: Based on monitored data immediate and automated rea-

soning on the current system state (and possibly other alternative states) is possible. Many

MRT approaches employ prediction and simulation methodologies as an enabler for adap-

tive reasoning and/or adaptation decision support. One example MRT approach that is

based on simulation is provided by Beltrame et al. which enables effective simulation

and debugging through model switching [7]. MRT approaches with prediction-based ob-

jectives are often based on transformations to formal model representations and their

subsequent analysis (either trough simulation or analytical approaches). Examples are

(1) Queueing Networks and Markov Chains, e.g. built from dynamically created models

through system monitoring [31, 80, 152], (2) (Coloured) Petri Nets, e.g. to predict the per-

formance of component-based systems [157], or (3) Bayesian Networks, e.g. to predict

future performance, reliability, and possible violations based on run-time data [61]. How-

ever, in some MRT approaches the usage of domain-specific models for simulation and

predictions is employed, e.g. to predict the resource consumption of executable compo-

nents in embedded systems resource models, behaviour models and scenario specifica-

tions are utilised in [156].

Adaptation: One of the main objectives of MRT is adaptation during run-time. This can

either be facilitated by an operator or in an automated fashion, i.e. as self-adaptation.

Often MRT approaches supporting run-time adaptation combine system modification

mechanisms with monitoring mechanisms, i.e. establishing a causal connection between

models and system in a bidirectional way, e.g. [31, 77, 105, 222, 223]. Furthermore, some

MRT approaches utilise prediction and/or simulation mechanisms as enabler for certain

types of adaptive reasoning [116, 174]. Adaptation is an objective in the context of many

different scenarios such as (1) dynamic user interface interaction, i.e. learning from previ-

ous user interactions and improving the user experience through continuous adaptation

of an interpretable or executable interaction model, e.g. [18, 77], (2) changes of require-

ments or in the operational environment, e.g. through feature models that help decrease

the amount of possible system configurations [105] or the usage of the requirements lan-

guage RELAX for self-adaptive systems [283], change impact analysis, e.g. through a com-

bination of performance and history-based models to analyse the potential impact of

adaptations [160, 174], or enforcement of Quality-of-Service (QoS), e.g. via monitoring

data of the execution system and checking the performance model for violations of non-

functional requirements [31]. According to [227] non-functional requirements which can

be satisfied through MRT-based system adaptation are, for instance, performance, relia-

bility, efficiency, effectiveness, security, interoperability, and usability. Since this is one of

the main objectives, many other domain-specific solutions for MRT-based self-adaptation

exist, however, their extensive review is outside of the scope of this thesis.

Other objectives: Several MRT approaches also attempt to meet a set of other objec-

tives. For instance, objectives that originate from advantages of using of models closer to

2.7 Models at Run-time 72

the problem space (i.e. domain-specific models) such as abstraction and platform inde-

pendence, e.g. [82, 262, 265, 266]; According to Szvetits and Zdun in [227] other objectives

of MRT approaches include checking and/or enforcement of consistency, conformance,

and/or policies as well as error handling.

2.7.2 Techniques

MRT approaches apply different techniques to achieve their objectives while at the same

time accommodate to the system’s setup and specifics. To structure the techniques, they

have been split up into three different groups: (1) system modification, i.e. maintaining

the causal connection from model(s) to system, (2) system monitoring, i.e. maintaining

the causal connection from system to the model(s), and (3) general techniques, i.e. tech-

niques that are not directly attributed to system modification or monitoring but have an

important role in managing and supervising MRT systems.

System modification: In order to maintain the causal connection from model(s) to sys-

tem different techniques have been proposed. One is the usage of executable models,

i.e. models comply to a language that has an operational semantic and are, much like

machine code, directly interpreted/executed by the system. For this model and program

share the same representation and are inherently on the same level of abstraction [85].

One example promoting the usage of executable models is MEMO [67], a DSML for multi-

perspective enterprise modelling that is syntactically and semantically specified using

the meta-modelling language MML [66, 67]. MML allows the definition of intrinsic fea-

tures, i.e. enabling the modelling of instantiation as meta-concept [66]. Johanndeiter et

al. conceptually propose in [110] the usage of OrgML (a specialisation of MEMO) to be

used as executable business process model. Another example is the employment of ex-

ecutable models for Human-Computer Interaction as proposed in [18]. While the usage

of executable models simplifies system modifications since changes in the model directly

change the system behaviour, it does contradict the abstraction principle of MDE and

DSMLs to some extent because problem and solution space are on the same abstraction

level. Another technique used for system modification in MRT approaches is via model

transformations such as M2M- and M2T-transformations as discussed in Section 2.6.3.

MRT approaches using transformations to modify the system are, for instance, solutions

based on the Triple Graph Grammar (TGG), e.g. [82, 262, 265, 266], or on bidirectional

QVT-transformations, e.g. [222, 223]. On a more general note, a special challenge model-

based system modifications need to address is how run-time changes affect current in-

stances of the executable model entities, i.e. modification policies.

System monitoring: In the executable models system monitoring is usually not neces-

sary since the models are directly involved in the system execution and can be queried via

reflective methods (e.g. intrinsic features [66, 67]). Transformations may also be involved

2.7 Models at Run-time 73

in the monitoring of the system, e.g. see TGG approaches [82, 265, 266]. Generally, the

technique of extracting state information from the system is called introspection [227].

Based on how the state information is extracted from the system three different types can

be distinguished in MRT literature:

• Event log analysis: This monitoring technique is based on analysing a log contain-

ing information about state transitions of the observed system. These event logs

have to conform to a specified language in order to represent or be processed into

run-time models. One system monitoring approach based on such transition logs is

proposed by Mao in [141]: Here traces represent a model-based reflection that pro-

vides a "unique visibility" into a system’s run-time state and thus enables model-

based dynamic analyses. It is furthermore demonstrated that the trace itself can

be viewed as a run-time model according to a definition by France and Rumpe

in [65] if it conforms to a modelling language. It can certainly be argued that such

a trace/log model fulfils both, the abstraction and causal connection requirements

usually associated with run-time models. Another approach presented in [19] ex-

tracts information from an event log to subsequently check its consistency with the

corresponding model, i.e. conformance checking (see general techniques). In [215]

events omitted by a web service application are processed "online"13 and checked

for run-time violations which in turn may initiate the enactment of defined recov-

ery plans. Also in [99, 151] direct event processing via CEP or sockets is proposed to

extract the system’s context.

• Enhance observed system: If state transition data is not readily available an alter-

native approach is to insert monitoring functionality into the observed system. The

weaving of data extraction code into the system application is often realised through

aspect-oriented concepts, e.g. [151, 271]. Some approaches monitor the system

state on the bytecode level, e.g. [93], others through annotations or manipulations

on a higher abstraction level such as (1) Abstract Syntax Tree (AST), e.g. [158], or

(2) process model, e.g. [101], which then automatically translates into monitoring

functionality at enactment. The connection between implementation and model

in these cases is often maintained with the help of a traceability model (see Sec-

tion 2.6.3).

• Reflection API : In this case an interface on the target system already exists which al-

lows extraction of state information at run-time. This is achieved with reflection

APIs, e.g. provided by reflective middleware solutions such as OpenORB [17] or

ReMMoC [86], the reflective data structure H-graph [85], or the multi-perspective

enterprise modelling framework MEMO/MML [66, 67].
13instead of an event log, a stream of events is directly accessed and analysed event-by-event (see Com-

plex Event Processing (CEP) in Section 2.2.3)

2.7 Models at Run-time 74

PlanAnalyse

Monitor Execute

Running
System

Fig. 2.28 Autonomic Control Loop: Monitor-Analyse-Decide-Execute (MAPE) Mecha-
nism [116]

General techniques: Apart from mechanisms for system modification or monitoring,

MRT approaches also use a set of other techniques in order to tackle the objectives intro-

duced in the last section. One of the key concepts of adapting systems at run-time is a

strategy that can be described as autonomic control loop [116, 174, 271]. One implemen-

tation of the autonomic control loop is the Monitor-Analyse-Decide-Execute (MAPE - or

MAPE-K with a shared knowledge component) procedure as displayed in Figure 2.28 [116]:

In a first step the system (or a part of it) is monitored (see techniques for system monitor-

ing). This data is further analysed, e.g. prediction, constraint violation, etc., and the re-

sults are the basis for deciding/planning whether and how the system needs to adapt. In

a last step the proposed adaptation is then enacted (see techniques for system modifica-

tion). Depending on the MRT approach and its objectives the adaptations can encompass

structural changes, e.g. in [266], as well as parameter adaptations, e.g. in [61], or both [30].

There are different ways to carry out the adaptive reasoning in the planning phase. Exam-

ples are (1) logic-based reasoning, i.e. finding a configuration that is satisfying the current

contextual constraints and requirements, e.g. [62, 271], or (2) optimisation-based reason-

ing, i.e. configurations are analysed for their quantifiable performance in order to find

the best configuration according to specified goals, e.g. [61, 156, 157]. Approaches of

both types often employ simulation or other predictive analyses to determine the per-

formance potential of possible configurations or to verify impacts of planned changes,

e.g. [61, 156, 157, 271]. According to Fleurey et al. adaptation reasoning requires the fol-

lowing types of input [62]: context, variants, constraints, and rules. The output of the rea-

soning framework is an adaptation that matches the rules based on possible variants as

well as context and satisfies the dependency constraints. Vogel et al. additionally include

strategies and goals to allow for a wider range of adaptive reasoning techniques [267]. Fol-

lowing the principle of "everything is a model" Vogel et al. propose in [263] the ExecUtable

Run-timE MegAmodel (EUREMA), a domain-specific modelling language and a runtime

interpreter for adaptation engines, i.e. a megamodel language to model and execute au-

tonomic control loop techniques.

Whereas the autonomic control loop can be regarded as a kind of mega-modelling

2.7 Models at Run-time 75

technique, i.e. corresponds to "modelling in the large", other techniques used by MRT ap-

proaches rather correspond to "modelling in the small". Such smaller-scale mechanisms

that have not yet been discussed are, for instance, (1) model conformance, i.e. a technique

that usually compares information of different language levels (see Figure 2.26): whether a

model conforms to its meta-model or if model instance information is consistent with the

corresponding model, (2) model comparison, i.e. an operation that compares two models

and provides information about the differences, or (3) model annotation, a specialisation

of model weaving (see Section 2.6.3). For instance, model comparison is often used to

compare current with designed model to identify deviations or with a planned model in

order to determine which system modifications have to be carried out [62, 99, 267, 271].

2.7.3 Architectures and Megamodels

A differing perspective on recent MRT approaches is to investigate where the run-time

models reside in relation to the system and agents. For this two different dimensions

are considered: (1) an architecture-based view and (2) a view describing the interactions

between system, run-time models, and agents, i.e. information flows expressed via meg-

amodels [15] (see Section 2.6.3).

Architectures

Dealing with models at run-time requires architectures that support (as a minimum) in-

trospective and/or system modification capabilities, i.e. provide an answer to the ques-

tion where the models reside and through which channels an information exchange be-

tween models and system can be achieved. Architectural differences are mostly related

to model access, virtual location of the models, or the level of supported dynamics, e.g.

adaptation, simulation, optimisation [227].

Szvetits and Zdun identified in their review of MRT approaches the following five ar-

chitecture types [227]: Monolithic, local dataflow, model-aware middleware, communi-

cation middleware, and repository architectures. MRT approaches using a monolithic

architecture encompass MRT and system functionality in one single component without

separation of concerns, e.g. [158]. In contrast, the local dataflow architecture separate

concerns into local components which communicate with inter-process or in-process

mechanisms like sockets and pipes, e.g. [99]. A third (and very prominent) approach

in the MRT domain comprise middleware architectures which use dedicated and dis-

tributed components for additional abstracted functionality like controlling, monitor-

ing, or communication, e.g. model-aware middleware [31, 80, 208, 222, 262, 265, 266]

or communication middleware [80, 101, 208]. Yet another approach is that of a reposi-

tory architecture which allows for concurrent access operations (e.g. publish, subscribe,

add/delete, update, etc.) and archiving for models via a central repository component,

e.g. [30]. Note, that this differentiation is not exclusive, i.e. approaches can use more than

2.7 Models at Run-time 76

Fig. 2.29 Megamodel Example for Self-adaptive Software [267]

one of these architectures, e.g. model-aware and communication middleware architec-

ture in [80, 208].

Megamodels

Another perspective on where run-time models reside is through the megamodelling view,

i.e. modelled relations between the system and run-time models, agents, and operators

of different purpose. Vogel et al. carried out an initial investigation of megamodelling for

MRT and proposed reference megamodels for different MRT scenarios in [267].

One of the scenarios investigated is that of self-adaptive software which employs sev-

eral runtime models simultaneously for monitoring and adapting as proposed in [262,

265] (see Figure 2.29). The main feature of this scenario is that a run-time Implementa-

tion Model resides in the MRT supervision component and conforms to a solution-space

representation, i.e. is complex, platform-specific, and at a low level of abstraction [267].

Abstractions on top of this solution-space model to specific problem-space models, i.e.

Architecture, Failure, and Performance Model, is achieved via incremental and bidirec-

tional Model Synchronisation techniques. On the other hand the Causal Connection be-

tween model and system is in this case achieved via reflective techniques since the Im-

plementation Model is a true self-representation. This scenario thus represents reflective

use cases close to the solution space.

A second representative scenario investigated in [267] is that of model-driven configu-

ration management system for IT service management as originally proposed in [81] (see

Figure 2.30). Here the main feature is that a differentiation between a monitored As-Is-

Configuration Model and a reasoned To-Be-Configuration Model is proposed. While this

approach supports the notion of a run-time model on a higher abstraction level (i.e. a

2.7 Models at Run-time 77

Fig. 2.30 Simplified MRT Megamodel Example for IT Service Management [267]

Configuration Model), stronger requirements to maintain the causal connection between

system and the as-is/to-be models have to be met. This scenario and the proposed sep-

aration between as-is and to-be model can be seen as reference for use cases that are

concerned with run-time models of a high abstraction level (i.e. located in the problem

space) and thus fits better in the domain of run-time business process models.

2.7.4 Generalising Models at Run-time

Run-time models are used in different domains and serve different purposes, i.e. they are

typically problem oriented. Examples of domains and abstractions of run-time models

are Abstract Syntax Tree [158], Petri Net [36, 208], architecture models [82, 265, 266], state

machines [99, 129], and many more. Generally, the model’s properties are dependent on

its domain and purpose. Still, similarities can be found that are more or less existent in

most of the run-time models.

One approach of classifying model elements of MRT is presented in [25] in which an

analysis of model dynamics and executability has been carried out. Therein the following

classification of elements of executable run-time models has been identified:

• Definition part: the static part of the model which is defined at design-time

• Situation part: describing the dynamic state of a system during execution

• Execution part: specifying the transitions from one state to another

Because of the classification’s focus on executable models it does not fully apply to gen-

eral run-time models [129], i.e. not every run-time model is an executable model. For in-

stance, run-time models with the purpose of monitoring do not necessarily have to have

a definition part; some are built completely at run-time (e.g. by data mining algorithms).

The inapplicability for general run-time models of this element classification motivated

2.7 Models at Run-time 78

Lehmann et al. [129] to focus on classifying run-time model elements based on the causal

connections of the model. The causal connections in a MRT are either of a descriptive or

prescriptive nature [212]:

• A model is descriptive if all statements made in the model are true for the System

Under Study (SUS), i.e. every relevant change of the system is captured in the de-

scriptive part of a run-time model.

• A specific SUS is considered valid relative to a prescriptive model if no statement in

the model is false for the SUS, i.e. the space of possible system states is defined by

the prescriptive part of a run-time model.

In general, the specification ratios of descriptive and prescriptive parts in a run-time

model differ dependent on its purpose. That is, a MRT that focuses, for instance, on mon-

itoring has a strong focus on descriptive parts (e.g. [141, 208, 226]) and a MRT that focuses

on executability has a dominating prescriptive role (e.g. [153]). In addition to the pre-

scriptive and descriptive parts of the model, Lehmann at. al identified that valid model

modifications for both, descriptive and prescriptive, and the actual information flow of

the causal connection are part of a general run-time model, too. The resulting classifica-

tion to define elements of meta-models for general run-time models is the following [129]:

• prescriptive part - how the model should be

• descriptive part - state of the SUS at run-time

• valid modifications of descriptive part during run-time

• valid modifications of prescriptive part during run-time

• causal connections - modelling the information flow between the model and its SUS

The classification of elements for run-time models by Lehmann et al. [129] is shown in an

example in Figure 2.31. Assuming the system has only a finite number of states then the

prescriptive part would reflect all these states and the descriptive part would consist of

the single state the system is in at the moment. The valid modifications of the descriptive

part would determine the transition from one state to another, it represents the execution

logic of the system. Additionally, through the notion of modifications of the prescriptive

part the run-time model would be available from within the run-time model itself, i.e.

be self-representative. Models that have the properties of self-representation and causal

connection are called reflective [38]. As elaborated in earlier sections, a run-time model

does not necessarily has to have the property of self-representation, e.g. monitoring mod-

els are causally connected to the system sufficient for their purpose without having the

ability to change the system. Also, the ratio of prescriptive and descriptive parts are de-

pendent on the purpose of the model: For instance, prescriptive parts of a monitoring

MRT can be descriptive in a MRT for dynamic structural adaptation.

2.7 Models at Run-time 79

State)1

State)2

State)3

State)1

State)2

State)3

State)1

State)2

State)3

State)4

Descriptive)Part:)State

Prescriptive)Part:)Set)of)States

Mod.)of)Descriptive)Part:)Transitions)between)States

Mod.)of)Prescriptive)Part:)Transitions)between)Set)of)States)
(+)Adapting)Transitions)between)States)

Legend

Current Descriptive Part

Current Prescriptive Part

Fig. 2.31 Descriptive vs. Prescriptive Parts

There is, however, one general issue that makes this classification only partly suitable

for a general MRT: The classification captures the self-representation property only partly

because valid modifications for the descriptive parts should be able to change at run-time

as well in order to support full self-representation. Assuming a state is added to the pre-

scriptive part of the model then transitions describing how to reach this state would also

have to be defined (see Figure 2.31), i.e. add valid modifications of the descriptive part.

It can be argued that the logical adaptation of the classification to overcome this issue is

to declare the valid modifications of the descriptive part to be a part of the prescriptive

part of the model. A good example of this fact are business processes models: They are

in their original sense mostly prescriptive but also already define a workflow, i.e. the valid

modifications/state transitions of the system.

2.7.5 Descriptive Models at Run-time

In many cases, approaches in the MRT domain are regarded as holistic solutions for self-

adaptation for which both directions of the causal connection between a run-time model

and system are to be maintained. This is often achieved either (1) through a shared rep-

resentation in the form of an executable model on the solution space (see Figure 2.29 and

Section 2.7.2), e.g. [18, 110, 153]), or (2) through bidirectional transformations (which al-

low for some level of abstraction to the problem space), e.g. [82, 222, 223, 265, 266].

However, in domains where a greater gap in abstraction between models and man-

aged system prevails, it is more difficult to maintain a causal connection between sys-

tem and the run-time models. One such example domain is "IT Service Management"

as introduced in Section 2.7.3 (see Figure 2.30 on page 77): In this scenario it is dif-

ferentiated between an "as-is" and a "to-be" model; while the "as-is" model contains

2.7 Models at Run-time 80

Fig. 2.32 Run-time Models for Monitoring in Maintenance [264]

monitored/extracted information of the current state of the managed system, the "to-be"

model specifies what the system should behave like [267]. Using the terminology estab-

lished in the previous section, that means the "as-is" run-time model consists solely of

a descriptive part and thus may also be called a descriptive run-time model. Similarly,

the "to-be" model solely consists of a prescriptive part and thus can be also called a pre-

scriptive run-time model. The separation of concerns through a differentiation between

descriptive and prescriptive run-time models has the additional benefit of allowing for

other actors than the MRT system to be the driver of change, thus supporting the man-

agement of so called open systems [79, 80]. That means, this concept allows for dealing

with a system change caused by an external source (e.g. exceptional behaviour, chang-

ing environment). In contrast, holistic closed-loop concepts based, for instance, on exe-

cutable models or bidirectional transformations assume an isolation of the system from

external influences, i.e. the system will always act according to the behaviour specified in

the model and not allow for deviations.

Another benefit of this differentiation is showcased by Vogel and Giese in [264] where

different maintenance and self-adaptation scenarios for the adjustment of a faulty appli-

cation (original approach proposed in [35]) are investigated. For the different scenarios

all actors and models are associated to either the system, the user, or the engineer, i.e.

defining the managing entity of the agents and models. The association to the entities for

each scenario is dependent on the purpose of the MRT solution but also on what kind of

interactions with the system are permitted, i.e. what model access possibilities are sup-

ported by the managed system. Note, that the entities basically represent different stages

of an application’s traditional lifecycle, i.e. engineer → design, user → implementation,

system → enactment/execution. Figure 2.32 shows the associations for the scenario of

"monitoring in maintenance". With increasing autonomy of the investigated scenarios

in [264], e.g. "execution in maintenance" and "self-adaptation", an increasing number of

models and agents move into the system’s sphere of influence, i.e. become run-time mod-

els/agents. The different scenarios showcase that differentiating between descriptive and

prescriptive run-time models is helpful to (1) separate concerns, i.e focus on particular

challenges for system monitoring, adaptive reasoning, and system modification individ-

ually, and (2) scale the level of autonomy to an appropriate level, i.e. appropriate for the

2.7 Models at Run-time 81

abstraction level of the domain (e.g. autonomous reasoning possible vs. domain-expert

reasoning required) while taking the available support for system access into account (e.g.

autonomous system modification possible vs. software-expert required for change im-

plementation). In conclusion, the additional conceptual flexibility achieved by the differ-

entiation of descriptive and prescriptive run-time models yields the following important

benefits in comparison to holistic closed-loop concepts:

• allows for other drivers of change than the MRT supervision system,

• enables a greater variety of objectives, e.g. conformance checking, error handling,

• different scales of lifecycle autonomy are supported, e.g. self-adaptation vs. adap-

tation reasoning by domain experts, and

• separating concerns for system monitoring, adaptive reasoning, and system adap-

tation.

All four benefits are helpful when addressing domains that feature models of high ab-

straction levels (e.g. business processes) where the causal connection between model

and system is difficult to establish. This is further emphasised by the shift of focus in MRT

publications in recent years: They concentrate less on low level self-adaptation issues but

are more specialised and cover a wider application range, i.e. are user-centric, domain-

specific, and goal-oriented [11].

In the context of the differentiation between these two types of run-time models and

the consequential separation between the two directions of the causal connection, a de-

scriptive run-time model can be defined as a causal reflection of the associated system’s

current status from a problem space perspective. Research in the domain of descriptive

run-time models can therefore focus on domain-specific challenges that are concerned

with reflecting different dimensions of change, e.g. reflecting change on both levels: model

type and model instance, and maintaining a causal connection from system to descriptive

run-time model, e.g. overcoming a possibly existing abstraction gap between the avail-

able system data and the domain-specific model. Figure 2.33 demonstrates the relation

of a descriptive MRT to the system as well as to potential other relevant types of mod-

els that are directly interacting with the system, i.e. design model and prescriptive MRT.

Models on the meta level which are not directly interacting with the system, e.g. models

for reasoning such as rule, constraint, or goal models [62, 267], are not regarded in this

context since they address a different concern (that of adaptive reasoning). The figure en-

hances the comparison between MDE and MRT concepts from [9] shown in Figure 2.27

on page 70. Similarly it highlights that run-time models (descriptive and prescriptive)

have a conceptually closer link to the system than design model. In this simplified view

three different scenarios for descriptive MRT relationships are displayed:

1. In the first scenario (all elements in red, purple, or black colours) a design-time

model is the basis for establishing a system instance via compilation, transforma-

tion, implementation, or configuration depending on the employed MRT concept

2.7 Models at Run-time 82

Optional:
Comparison,

Weaving Optional:
Comparison,

Weaving

Causal Connection
(System -> DMRT)

Descriptive
MRT

Design Model

Compilation,
Transformation,
Implementation,

Configuration

System

Design-time Run-time

Prescriptive
MRT

Causal Connection
(PMRT -> System)

Transformation, Synchronisation, Deployment

Fig. 2.33 Schematic View on Relations between Descriptive Run-time Models, other
Model Types, and the System

of the scenario. The descriptive MRT is conceptually linked with the design model

via model weaving techniques, e.g. model enhancement, or model comparison for

reasoning purposes, e.g. identifying constraint violations based on monitored run-

time data [61, 93, 94, 99, 215].

2. In the second scenario (blue, purple, and black colours) a prescriptive MRT is defin-

ing the functionality of the system instance via system modification techniques (see

Section 2.7.2). The prescriptive MRT is usually connected with a design model and

updated via transformation, synchronisation, or deployment depending on the em-

ployed MRT concept of the scenario. Similar to the scenario 1 the descriptive MRT

is conceptually linked with the prescriptive MRT via model weaving techniques or

model comparison. An example of this scenario is presented in [81, 267] and shown

in Figure 2.30 on page 77 with "As-Is-Configuration Model" being the descriptive

MRT and the "To-Be-Configuration Model" the prescriptive MRT. Other examples

of this scenario based on a prescriptive and descriptive MRT relationship are pro-

posed in [62, 271].

3. In the third scenario (only black colour) the descriptive MRT is a single entity inde-

pendent from possibly existing design models or prescriptive MRTs. It has the sin-

gle purpose of directly and accurately discovering problem level information and/or

the system’s reflective state from solution level data to enable further reasoning (this

may include model comparisons however). Solutions of this scenario of indepen-

dent descriptive run-time models are proposed for architecture models [208], trace

models [141, 142], Queueing Networks [80] or protocol behaviour models [79].

Descriptive MRTs in scenarios 1 and 2 often feature model weaving techniques which link

to higher level information from the design model or prescriptive MRT. These cases focus

on monitoring the system’s state on the instance level and associate it with the (existing)

2.8 Summary 83

information on the model level, e.g. [61, 93, 94, 99, 215]. This is different in scenario 3

(and scenarios 1 and 2 based on model comparison) for which additionally the higher

level (problem space) models have to be discovered from lower level (solution space) data

received from the system, e.g. [79–81, 141, 142, 208, 267]. While this makes it harder to

maintain the causal connection between system and the descriptive MRT it allows for

more system flexibility (as discussed earlier in this section). In the domain of business

processes the method of extracting problem space models (BP models) from solution

space data (BP event logs) is referred to as process discovery and discussed in Section 2.4.

Note, that the definition of descriptive MRT provided is strongly associated with that

of context models [62, 151, 267] or situation models [25], similarly describing the opera-

tional environment of the system. Context is defined in [53] as "...any information that can

be used to characterize the situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an application, including the

user and applications themselves." One difference, however, is that context models can

also include environmental context (e.g. the current temperature or customer satisfac-

tion) which is not describing the application system but an entity that may be influencing

it. Another difference is that it is often not associated with structural information (on the

problem space level) but with quantifiable measures or key-value pairs, e.g. in [62, 151].

In summary, with regards to the introduced objectives (see Section 2.7.1) descriptive

MRTs aim to fulfil that of monitoring, abstraction, and platform-independence but also

act as enabler for the other objectives such as simulation, prediction, adaptation, and

fault error handling. The different techniques for obtaining the information in order to

maintain the causal connection are discussed in Section 2.7.2: System Monitoring, e.g.

event log analysis, system enhancement, or reflection APIs. The resulting descriptive

MRTs are diverse and can range from simple measurable sensor data to discovered struc-

tural information on the domain-level. In the former case model weaving techniques are

often employed to connect domain-level models and low-level sensor data, e.g. through

model enhancement. In the later case elaborate data mining algorithms have to be em-

ployed to infer or update the domain-specific descriptive MRTs.

2.8 Summary

In this chapter state of the art literature with regards to the topics of business processes,

their management, flexibility, discovery, and performance analysis as well as Model-Driven

Engineering (MDE) and Models at Run-time (MRT) was presented and discussed. First,

an introduction to BPs, their components, perspectives, and basic terminology was given

in Section 2.1. This chapter showed that for each of the individual topics extensive re-

search has been carried out and many approaches and solutions in these individual do-

mains exist. Key take away points of this literature review are:

• Solutions or standards for languages or process analysis disciplines are strongly as-

2.8 Summary 84

sociated with a BPM lifecycle step: For instance. BPMN is an a-priori language used

at design-time with the main purpose being documentation and communication

between stakeholders, or Business Activity Monitoring (BAM) solutions are run-time

analyses approaches (mostly focussing on KPI/PPI calculation or violation) devel-

oped for the enactment phase. These and other BPM lifecycle associations of lan-

guages and process analysis disciplines were identified in Section 2.2.

• Changes to the BP can occur in certain forms and extents (see Section 2.3). Many

taxonomies exist classifying model changes from the enactment perspective, i.e.

when the change is applied. In the context of descriptive run-time models it is espe-

cially important to identify what changes may occur during run-time: momentary

change, deviation, permanent change, underspecification through late modelling.

• This chapter also showed that extensive research in the area of Process Discovery

has been carried out (see Section 2.4). Process Discovery provides solutions to es-

tablish causality from system to BP models, however, the traditional approaches

are carried out in an offline/a-posteriori manner. The more specialised fields of

concept drift (data mining term for type level changes) and online process discov-

ery techniques have been considerably less researched with only a small number

of contributions. Especially the areas of process discovery and online process dis-

covery are relevant to identifying gaps in current literature in addressing the goal of

establishing a causal connection from system to BP model at run-time.

• In the literature review for BP performance decision support (see Section 2.5) it was

shown that the capturing and prediction of key performance indicators (KPIs) or

more domain-specific process performance indicators (PPIs) is an important field

in BP research with many solutions published. With regards to the use case of per-

formance prediction two fundamentally different approach types exist: One based

on mathematical models and the other based on simulation. It was identified that

the simulation approach performs slower but is more accurate in terms of short-

term predictions (provided it is based on an accurate model).

• Model-Driven Engineering was introduced as a technique to manage the increasing

complexity of modern software platforms, much like Business Process Management

Systems, in Section 2.6. The reviewed literature describes the systematic usage of

models as development artefacts throughout the software lifecycle.

• An in-depth literature review was carried out in the MDE topic of models at run-

time. A special focus throughout this discussion were on solutions in the domain

of adaptive systems that feature descriptive models at run-time or contributing to

their understanding and application.

The next chapter will be analysing the literature presented here for existing gaps with re-

gards to the thesis’ topic of descriptive business process models at run-time.

Chapter 3

Gap Analysis: Descriptive Models at

Run-time in Business Process

Management

Following the review of state-of-the-art literature in the domains of Business Processes as

well as Model-Driven Engineering and Models at Run-time in particular (Chapter 2), this

chapter discusses the fusion of these domains. In the context of this fusion the reviewed

literature is revisited and it is discussed to what extent the three individual objectives of

descriptive models at run-time are addressed and what limitations do still exist. This gap

analysis represents the defining input for the subsequent contribution chapters.

Figure 3.1 shows the outline of this chapter and the relation to the remaining contri-

bution chapters. First, in Section 3.1 the feasibility of employing MRT concepts in the

domain of business processes is discussed in general. The discovered general findings

are relevant for the main goal and all individual objectives of this thesis (see Section 1.3).

Hence, the subsequent three subsections discuss the respective limitations of (1) business

process models at run-time (Section 3.2), (2) process discovery at run-time (Section 3.3),

and (3) process performance prediction at run-time (Section 3.4). The individual findings

are each mapped to the respective main contribution as shown in the Figure: (1) Chap-

ter 4: Specification of Descriptive Business Process Models at Run-time, (2) Chapter 5: Es-

tablishment of Causal Connection and (3) Chapter 6: Reasoning on Descriptive Business

Process Models at Run-time.

3.1 Models at Run-time meets Business Process Manage-

ment

As discussed in Section 2.2, existing BP standards can be distinguished according to the

different phases of the BPM lifecycle (see Figure 2.3 on page 18) they address, e.g. design

vs. enactment vs. diagnosis phase, and the purpose they serve, e.g. communication be-

3.1 Models at Run-time meets Business Process Management 86

Contribution Chapters

Chapter 3: Gap Analysis

Chapter 2: State of the Art

3.2: Descriptive
BP Models at

Run-time

Business Process Management Model-Driven Engineering

Chapter 4:
Specification of

DBPMRT

Chapter 5:
Establishment of

Causal Connection

Chapter 6:
Reasoning on

DBPMRT

3.3: Process
Discovery at

Run-time

3.4: BP Performance
Prediction at

Run-time

3.1: Models at Run-time meets Business Process Management

Fig. 3.1 Outline of Chapter 3

tween stakeholders vs. execution vs. analysis. On a higher abstraction level they can be

distinguished between a-priori, i.e. before execution, and a-posteriori, i.e. after execu-

tion, model standards. In this traditional view both, a-priori and a-posteriori models, are

rather disconnected from the running business process management system, i.e. display

lack in run-time features. This makes them less suitable for today’s modern and volatile

organisations which require their BPs to adapt and evolve continuously in order to meet

changing demands and constraints inflicted by internal or external sources. To address

this, one of the main challenges in BPM is to further automate parts of the lifecycle, i.e.

bring the BP-domain models closer to the system (see Section 1.2).

Models@run.time (MRT) which are discussed in Section 2.7 offer techniques and a

principled guide to support adaptive systems in a volatile environment. Their main pur-

pose can be described as reducing the distance between domain models and system (see

Figure 2.27 on page 70) to make the process of adaptation more automated. Since the

domain of business processes is to a large extent a model-based domain (albeit many

modelling languages and standards are serving a diverse set of purposes) the assump-

tion is that the consolidation of MRT solutions provides concepts that also help reducing

the model-system-distance in the BP-domain, i.e. promoting a closer link between BP

models and the BPMS. An additional similarity indicating a benefit of consolidating the

BPM and MRT domains can be observed between the BPM lifecycle and the autonomic

control loop, e.g. the Monitor-Analyse-Plan-Execute (MAPE) as displayed in Figure 2.28

3.1 Models at Run-time meets Business Process Management 87

Implementation,
Configuration

Diagnosis

Executable
Workflows

Process Design

Enactment

KPIs/PPIs,
Real BP

BP
Models

BP Event
Logs

System

Models

Fig. 3.2 BPM Lifecycle and Information Artefacts Exchanged Between Phases

on page 74: Both, the BPM lifecycle and the MAPE approach, are identical in substance

with similar phases representing a control loop. Figure 3.2 shows the BPM lifecycle an-

notated with the respective information artefacts that serve as interfaces between the dif-

ferent phases of the lifecycle, i.e. BP models, executable workflows (code on the solution

space), BP event logs, and PPIs/KPIs or discovered BP models. Ultimately, the interface

linking the models and the run-time system in the BP-domain is twofold: (1) executable

workflows in the form of code artefacts that represent implementations of the planned BP

model which enforce the execution of some or all parts of the BP; (2) BP event logs that

capture fine-granular changes in the transactional state of the system (see Section 2.2.2)

which can be analysed and processed into higher-level information, e.g. how business

processes are executed in reality, i.e. process discovery (see Section 2.4), or measurable

values representing certain performance aspects, i.e. KPIs or PPIs (see Section 2.5).

3.1.1 Special Characteristics in Business Process Management

Generally, two main reasons are prevalent in the BP-domain that make the establishment

of a causal connection BP models and BPMS as stipulated in MRT approaches very diffi-

cult: (1) a high abstraction gap between problem and solution space and (2) uncontrolled

deviations from the BP model during the BPM lifecycle phases of implementation and

enactment. Both are discussed in more detail in the following.

High Abstraction Gap

Different to the BP-domain, many models in MRT solutions evidently operate on a lower

abstraction level (see Section 2.7), e.g. Petri Nets [36, 208], architecture models [82, 265,

266], abstract syntax trees [158], etc. With regards to the BPM lifecycle, there is a consid-

erable abstraction gap between the low level models acting as interface to the system, i.e.

the worklfow code artefacts and the event log, on the one hand, and the higher-level BP-

domain models on the other hand. While the former dictate (workflow) or describe (BP

event log) fine-granule system transitions, the latter are generally associated with strate-

3.1 Models at Run-time meets Business Process Management 88

gic goals and serve more abstract purposes like documentation, communication between

stakeholders, and conceptual planning (see Section 2.2.1). This gap in abstraction is best

demonstrated by the level of human involvement still required in each of the phases of

the BPM lifecycle:

1. Design: The domain expert responsible for the design of BP models is referred to as

business analyst. Her profile includes extensive knowledge about all things con-

cerned with the business process domain but only limited knowledge about the

system and actual implementation and enactment concerns (see Figure 2.25 on

page 65).

2. Implementation/Configuration: The higher the abstraction level of the business

process model the more effort is needed to manually or semi-automatically carry

out the implementation of a planned process or its adaptation. Common prac-

tice (see Section 2.2.1) is that a graphical standard (e.g. BPMN) is used to design

the business process model, then an interchange standard (e.g. BPDM) is utilised

to transform that into an execution standard (e.g. BPEL). This phase is accompa-

nied with additional configuration or implementation efforts since BPs are domain-

specific but not system-specific.

3. Enactment: Perhaps different to most other IT-related domains is the human in-

volvement in the enactment phase. Workers are regarded as resources that carry

out human activities (see Section 2.1). As a consequence the enactment of a BP is

usually not fully automated but only computer-aided.

4. Diagnosis: The diagnosis phase is the most advanced of the BPM lifecycle in terms

of autonomy, i.e. only limited human involvement is required. For instance, BAM

solutions exists that allow for the automatic computation of PPIs and KPIs once

they have been properly configured (see Sections 2.2.3 and 2.5.1). However, as dis-

cussed in Section 2.4.1 the discovery of the actually executed control-flow based on

BP events is a multi-goal optimisation and thus a non-trivial and human-guided

task, i.e. expert knowledge is required to balance between under-fitting and over-

fitting results.

Uncontrolled Deviation

Additional to the abstraction gap, a second important reason for the lack of causality in

the phases of the BPM lifecycle is uncontrolled deviation. Real life use cases like those

provided by TIMBUS and SAP-internal projects showed that the actual execution often

deviates from the designed business process. This is a result of specific characteristics in

the BPM-domain and (again) best demonstrated by the high degree of human involve-

ment in two of the BPM lifecycle phases:

3.1 Models at Run-time meets Business Process Management 89

1. Implementation/Configuration: The BP as designed by the business analyst is an

often under-specified and over-simplified abstraction of reality, i.e. the real imple-

mentation of a BP is usually different due to system-specific and practical reasons.

2. Enactment: As mentioned earlier, a very BP-domain specific characteristic is the

human involvement in the enactment phase. A direct result is the lack of enforce-

ment, i.e. the semi-automatic execution of a BP allows for a certain degree of un-

controlled deviation from the designed and/or implemented BP. The core reason is

again the lack of practicality of the designed BP. Examples are: (1) some predicted

conditions do never in reality apply, (2) exceptional or unforeseen conditions occur

that demand ad-hoc adjustments in the execution flow, or (3) a gradual deviation

from planned BPs towards a more applicable/optimal (in real life) execution flow

takes place.

Both cases indicate that the management and lifecycle of business processes is subject to

major or partial influences from outside the controlled system, i.e. uncontrolled devia-

tions from the planned BP occur during implementation and run-time.

3.1.2 Business Process Models at Run-time

Solutions in the MRT domain offer a set of concepts and techniques to deal with complex

systems such as BPMSs. However, to maintain the casual connections between system

and model as stipulated by MRT some form of automation in the different phases of the

BPM lifecycle is required. Hence, many of the MRT principles are difficult or even im-

possible to adopt since the BP domain has to deal with the two additional concerns that

usually do not apply for them: (1) the large abstraction gap between run-time system (so-

lution space) and BP model (problem space) and (2) that the management and lifecycle

of business processes are human-guided and subject to external influences.

For instance, many of the MRT solutions provide holistic approaches for an autonomic

control loop for specific domains (see Section 2.7.2). Approaches adopting an autonomic

control loop for the BPM lifecycle can also be found in the domain of BPM. They provide

techniques for modelled or ad-hoc adaptations of business processes as presented in Sec-

tion 2.3 and are based on a shared representation, i.e. the BP model is interpreted by the

system (BP model = solution space = problem space). While these holistic solutions for

executable and adaptable workflows have been an important research topic for almost 20

years, they have not yet been successfully adopted in industry and remain a rather aca-

demic topic. It can be argued that this due to legacy issues, e.g. integration problems with

SAP systems or other enterprise software. However, in this thesis it is argued that this is

also a result of practical reasons concerning the complexity of BPMSs. While holistic BP

approaches generally provide solutions to mitigate or address the issue of the abstraction

gap (solution space = problem space), they assume major simplifications of which two

are listed in the following:

3.1 Models at Run-time meets Business Process Management 90

1. they only focus on workflows (which can be likened to automated BP models), and

2. they assume a closed, self-contained system where no other sources can cause a

change1.

Additionally, it can be argued that modelled adaptations as proposed by many adaptive

MRT solutions are not easily applicable in the BPM domain due to

1. redundancy: since BPs already allow for modelled flexibility (e.g. optional behaviour,

choices) a business analyst would rather model known flexibility directly into the

business process (a domain she is familiar with) than model them as BP adapta-

tions, and

2. autonomic enactment: the enactment of a BPMS modification in an automated way

remains a very difficult task since many modification policies cannot simply be ap-

plied to all the active BP instances at run-time.

In summary, these holistic solutions do address the issue of the abstraction gap (by sim-

ply raising the abstraction level of the solution space), but do not account for the issue

of uncontrolled deviations and are often too expensive to model (modification policies,

including all eventualities, etc.). This is perhaps the main reason why holistic approaches

based on adaptive and interpretable workflow languages which support an autonomic

control loop for the BPM domain have only been adopted in domains that employ fully

automated BPs in self-contained systems.

The two special characteristics (big abstraction gap and uncontrolled deviation) are

also the main motivation for another very prominent research field of BPM: That of de-

veloping process discovery algorithms (see Section 2.4.2) to discover the "real" underlying

business process. In contrast to the flexible workflow initiatives, process discovery be-

came widely adopted in industry in recent years. This is an indication that the separation

between a-priori and a-posteriori models is not only prevalent but also to some extent an

inherent requirement given the special characteristics of this domain. So, on one end of

the spectrum resides the concept of a-priori and a-posteriori models disconnected from

the system which does not meet the requirements of systems in which business processes

are highly volatile with possible changes over time. On the other end resides the concept

of business process models being handled completely at run-time like with flexible work-

flows which appears to be a step too far with the observed weaknesses of heavy upfront

modelling and no accounting for uncontrolled deviations. As discussed in Section 2.7.5

the challenges of establishing a causal connection between models and system in a com-

plex and high-level domain like business process management which additionally has to

deal with uncontrolled deviation are very difficult to address in a holistic fashion.

1In such systems all properties of a high-level change are known from the perspective of the change
enactment. However, in more liberal BP environments these type-level changes are not recorded in the BP
execution event logs and are therefore not available to be analysed. For this reason the detection of these
higher-level changes based on low-level event streams is a non-trivial matter and results in new challenges
discussed in Section 3.3.

3.2 Descriptive Business Process Models at Run-time 91

DescriptiveH
BPMRT

System

AutomationH

PrescriptiveH
BPMRT

AdaptiveHWorkflows

System

A-posteriori
BPHModels

A-priori
BPHModels

System

Environment

Traditional BPM Flexible WorkflowsBP Models at Run-time

HumanHinfluenced Environmental
Influence

Automated

Fig. 3.3 Conceptual Differences of the Approaches

In order to sufficiently address the need for adapting to changing demands and for

shorter BPM life cycles this thesis proposes a balanced compromise between these two

sides: In complex and high-level domains like BPM a separation of concerns (system

monitoring vs. adaptive reasoning vs. system modification) is preferred which can be

achieved through a differentiation between descriptive MRTs and prescriptive MRTs. This

approach is conceptually shown in the middle of Figure 3.3 in relation to the other two

approaches. While it allows for more automation than the traditional approach through

causally connected models it still allows for outside influences and human interaction

during adaptive reasoning. In the following the focus of this thesis is on descriptive MRTs

for the BP domain (DBPMRTs), i.e. this thesis focusses on merging the BPM lifecycle

phase of diagnosis into that of enactment. That means in particular: (1) the specification

of DBPMRTs, (2) the associated concern of system monitoring to establish and maintain

the causal link from BPMS to DBPMRT at run-time, and (3) direct and automated reason-

ing based on the DBPMRT in the form of performance prediction. For each of these areas

individual limitations of relevant state of the art work is discussed.

3.2 Descriptive Business Process Models at Run-time

The role of Descriptive Business Process Models at Run-time in the concept motivated in

the previous section is that of a BPMS abstraction to enable BP domain reasoning. De-

pending on the reasoning type and approach the form and extent of a descriptive model

can vary greatly, e.g. historical performance information is required for sensitivity anal-

ysis or optimizations [72, 131], or current state information is required for system adap-

tations [191]. In order to be used for most BP reasoning techniques, a generic descrip-

3.2 Descriptive Business Process Models at Run-time 92

tive reflection of the system will have to capture the main aspects, past and current, of

a BPMS, namely (see Section 2.1 on page 16): (1) the control-flow of the observed BPs,

(2) the organisational perspective (which includes shared resources and roles across mul-

tiple BPs), and the (3) performance perspective2. A model language supporting the ex-

pression of these aspects will be also occasionally described as "holistic" in the remainder

of this thesis. In this gap analysis section the "holistic" modelling capabilities of a selec-

tion of prominent state-of-the-art and state-of-the-industry modelling languages from

three different domains are discussed: (1) Prominent BP languages used in BPM industry,

(2) Worklfow domain languages, and (3) Abstractions or languages used in the domain of

Process Discovery.

Business Process Management Languages

BP languages used in the BPM domain such as BPMN [168] or EPC [207] are used pre-

dominantly as prescriptive language with the purpose of documentation or communi-

cation (see Section 2.2.1). Since they are serving a different purpose they cannot fully

reflect the run-time system in a descriptive way. In general such a-priori standards lack

in: (1) providing modelling capabilities for holistic BP reflection, i.e. they are prescrip-

tive model standards with which often only control-flow and roles can be modelled but

not resources and performance, and/or (2) addressing specific run-time concerns, e.g. re-

flecting the current state or dealing with change in the environment. There have also been

initiatives such as Business Process Runtime Interface (BPRI) [166] and Business Process

Query Language (BPQL) [164] to introduce diagnosis standards into BPM. However, they

lack maturity or are discontinued and have so far failed to produce standards adopted by

industry. Instead of a coherent and holistic descriptive approach, in BPM practise there

is a clear distinction between run-time analysis and offline diagnosis (see Figure 2.7 on

page 24).

Run-time analyses in BPM are often referred to as Business Activity Monitoring (BAM)

approaches, e.g. [50, 68, 130, 149, 282]. However, they are highly customisable and require

modelling input (e.g. definition of KPIs/PPIs, BP Model) and thus cannot handle a dynam-

ically changing context. Additionally, they are mostly focussed solely on the performance

perspective or other singular aspects of the process, e.g. KPI/PPI violation (see 2.5.1), path

prediction, or violation monitoring, and as a consequence use languages specific to these

singular aspects. One notable approach that uses a prominent BP domain language in a

BAM (i.e. run-time) context is presented by Friedenstab et al. [68]: A BPMN extension is

proposed which allows for the performance perspective to be reflected in the BP model.

The other type Process Intelligence describes diagnosis or analysis types in the tradi-

tional a-posteriori way. Being on the BP abstraction they are mostly utilizing BP domain

languages. The observed system state is taken into account for the diagnosis either via

2The case/data and functional perspectives are not considered in the scope of this thesis since they are
extremely dependent on the use case and implementation of the BP and therefore not easily generalised.

3.2 Descriptive Business Process Models at Run-time 93

modelled expert knowledge, e.g. [72, 178, 180, 189], or via structured models in the form of

offline event logs [131, 195, 259]. Additionally, these approaches are often combined with

user modelled information, e.g. organisational structure, problem space, and are gener-

ally carried out on a strategical level with the purpose of process reengineering, e.g. for

what-if analysis [73], sensitivity analysis [69], bottleneck detection [195], business impact

analysis [189]. If the analysis is carried out in an independent fashion without modelled

input this falls into the category of Process Discovery which is discussed in a separate later

part of this section.

Workflow Languages

Workflow languages such as ADEPTflex [191], AGENT WORK [154], and YAWL (Yet Another

Workflow Language) [245] were created with the purpose of making BP management more

automated, i.e. bringing problem space and solution space together. However, because of

legacy systems as well as conceptual and fundamental reasons discussed in Section 3.1.2

they have only been adopted successfully in easily automatable domains. With regards

to their capability to represent descriptive business models at run-time, workflow models

have the benefit of being designed for run-time purposes. As such they are able to deal

with all or most run-time reflections and can in the case of adaptive workflow models

(e.g. ADEPTflex, AGENT WORK) even deal with various extents of run-time flexibility on the

type level (see Section 2.3). Two of the downsides with regards to the topic is that adap-

tive worklfow approaches are (1) on a different abstraction level and (2) assume complete

governance of the processes execution. The latter downside is negligible from a language

perspective since it has only ramifications for the causal connection between system and

model (see Section 3.3). In contrast, the abstraction gap leads to lack of representation ca-

pabilities with regards to other perspectives than the control-flow perspective. This stems

from the focus of adaptive workflow approaches on the enactment of change and all en-

tailing difficulties. As a result other perspectives such as organisational or performance

are regarded as secondary, i.e. passive.

Descriptive Abstractions or Languages used in Process Discovery

Since business processes are enacted in a way that allows for unforeseen exceptions, de-

viations, and evolution steps Process Discovery became a very prominent research field

in BPM diagnosis phase that (from a models@run.time perspective) helps to establish a

causal connection from system to model. The languages used in traditional process dis-

covery techniques are predominantly General Purpose Languages (GPLs) like Heuristic

Nets [278] or Petri Nets [172] (see Figures 2.17, page 42 and 2.15, page 39). Their benefit

is that these formal languages of BPM theory make an evaluation more comparable. A

disadvantage is that they are on a different abstraction level an do not posses the basic BP

domain-specific elements such as Activity, XOR/AND-Branch, or Role. While tools like the

ProM framework [253] allow for a translation of Petri Nets or Heuristic Nets to and from

3.2 Descriptive Business Process Models at Run-time 94

BP-domain languages like BPMN and YAWL. Although the success of this is not guaran-

teed since the abstraction differences are great and the translation is a non-trivial matter

concerned with execution-equivalence. To bridge the gap, somewhat block-structured

Petri Nets [26, 126] can be used as an abstraction that simplifies the problem of trans-

formation. While this might serve as mitigation strategy languages used in Process Dis-

covery do not serve as a good basis for a descriptive BP run-time model due to: (1) the

extreme abstraction gap (including missing other BP perspectives, e.g. performance, or-

ganisational) and (2) missing representations for instance state (only Heuristics Net) or

type evolution.

Summary

The findings of the gap analysis for descriptive business process models at run-time are

summarised in Table 3.1. The content is explained further in the following paragraphs.

BP Languages: A selection of prominent state-of-the-art and state-of-the-industry mod-

elling languages from three different domains were analysed with regards to their capabil-

ities section the "holistic" modelling capabilities. The investigated languages are a repre-

sentative selection of all existing graph-based modelling approaches and their extensions

based on prominence and relevance. In particular, the representatives of BP Languages in

Business Process Management are Event-driven Process Chain (EPC) [207] and Business

Process Model and Notation (BPMN) [168] as well as the BPMN extension of Friedenstab

et al. (BPMN+) [68] which allows for the definition and capturing of the performance per-

spective in the BP model. The most prominent abstractions used in the domain of Pro-

cess Discovery are the general purpose languages Petri Nets (PN)[172] (and its extensions)

as well as Heuristic Nets (HN) [278]. In the domain of worklfow the languages Yet An-

other Workflow Language (YAWL) [245] and ADEPTflex [191] are representative of adaptive

workflow languages. With the exception of the languages of the Process Discovery do-

main (PN, HN) and the extended BPMN approach (BPMN+) these languages have been

primarily developed for planning or execution purposes.

Abstraction Perspectives : The investigated languages have differing support for the

abstraction perspectives of interest3, namely: Control-Flow (Ctrl.-Fl.), Organisation/Re-

sources (Org.), and Performance (Perf.) (see Section 2.1):

• Control-Flow: With the exception of HN and PN all other languages can capture

control-flow via BP-domain specific elements, e.g subprocess, activity. HN and PN

are general purpose abstractions of a BP’s control-flow.

• Organisational: The organisation hierarchy including roles and resources or other

representatives like organisational unit and position (see EPC) can be represented

3As stated earlier in this section, it is focused on main perspectives that are BP-domain specific and can
be generalized in this context.

3.2 Descriptive Business Process Models at Run-time 95

Table 3.1 Overview Gap Analysis Descriptive Business Process Models at Run-time;
Legend: (-) not supported, (◦) somewhat supported, (+) mainly supported

BP BP Type Perspectives BP Instance State BP History
Language Ctrl-Fl. Org. Perf. Ctrl-Fl. Org. Perf. Ctrl-Fl. Org. Perf.

EPC + + + ◦ ◦ − ◦ ◦ −
BPMN + + − − − − − − −

BPMN+ + + + − − + − − +
PN ◦ ◦ ◦ + ◦ − − − −
HN ◦ ◦ ◦ − − − − − −

YAWL + + − + ◦ − − − −
ADEPTflex + − − + ◦ − + − −

by all analysed BPM languages (EPC, BPMN, BPMN+), the workflow language YAWL,

and in an abstracted fashion also by the general purpose languages HN and PN (the

resource-role relationship can be modelled via sub-petri nets). ADEPTflex does not

support an organisational perspective since it only focusses on the control-flow.

• Performance: Descriptive temporal or probabilistic information in form of perfor-

mance parameters (PPIs or KPIs) can be modelled with EPC, the BPMN+ extension,

and partly with HN (only probabilistic PPIs, e.g. decision probability) or PN (e.g.

CPN with timed transitions). YAWL, ADEPTflex, and BPMN do not specifically sup-

port the modelling of KPIs, although the BPMN allows for extensions to do that (see

BPMN+).

State of Perspectives: The current state of the respective perspectives can only be de-

scribed with some of the languages, in particular:

• Control-Flow: It is common to capture the state or state changes of instances in an

event log. PN (in an abstracted fashion) and the workflow languages YAWL as well

as ADEPTflex have possible representations to represent the BP instance state within

the model. The EPC model language has no particular state representation (only via

event declarations) but together with EPC-based BPMS this state information is still

accessible via event logs. While BPMN (and BPMN+) has no concrete specification

of a control-flow state it can potentially capture the state for activity and data (but

this needs to be meta-modelled by an extension). HN is not capable to represent a

BP instance state.

• Organisational: The organisational state is the current association between activi-

ties and resources (current resource occupancy). PNs have the notion of state (via

tokens in places) and can abstractly capture the resource perspective. As such the

organisational state can theoretically (and non-BP-domain specific) be modelled

via PN. The other languages have also no specific provision to model this, however

with the possible representation of the BP control-flow state (see YAWL, ADEPTflex,

3.3 Process Discovery at Run-time 96

EPC) this is indirectly achieved. HN, BPMN, BPMN+ have no possibility to model

the resource state.

• Performance: Amongst the analysed languages the current state of the KPIs/PPIs

can only be expressed by the BPMN+ approach (which was developed for this pur-

pose). With regards to BPM and worklfow languages (EPC, BPMN, YAWL, ADEPTflex)

the capturing of modelled performance parameters is usually considered a purpose

of the BPMS or BAM solutions and as such not part of language specifications.

History of Perspectives: The history of the instance state is captured by the transac-

tional events during the execution. On the type level, change events are only available

in specialised holistic frameworks that govern BP changes, e.g. with ADEPTflex all type

changes af the control-flow are captured with the relevant change characteristics. The

other languages do not inherently support modelling capabilities to capture the history

of BP types, however, this is often (and especially in prescriptive languages) imitated by

manual (e.g. through different files) or automatic versioning. One such automatic exam-

ple is the EPC framework where a design history captures the different design versions of

the organisational and control-flow perspectives [218]. To capture the history in a non-

model-based way is not a desirable approach since references between different perspec-

tives become either broken or need to be completely cloned. BAM solutions like BPMN+

support the history of the performance perspective but do not allow for capturing the

history of the other type level perspectives. In conclusion, model-based support to cap-

ture the evolution or history of the type levels independent of the source and extent of

the change is not well supported by current BP-domain languages and thus constitutes a

significant gap in current state of the art and industry.

3.3 Process Discovery at Run-time

Through process discovery a causal connection from the system to the discovered BP

Model can be established. Related relevant work in process discovery has been discussed

in Section 2.4 and is the basis for this gap analysis.

3.3.1 Gap Analysis: Process Discovery Algorithms

The general problem is that due to uncontrolled deviations from the planned BP during

implementation and enactment the real BP needs to be discovered directly from execu-

tion event logs (see Section 2.2.2). The problem of process discovery and its challenges

(see Section 2.4.1) are well researched with a very large number of publications in this

area. The most relevant techniques (see Section 2.4.2) have, however, individual short-

comings with regards to functional requirements necessary to establish a causal connec-

tion from BPMS to discovered BP model:

3.3 Process Discovery at Run-time 97

1. No Infrequent and Incomplete Logs: A reality in real-life scenarios are infrequent

(noisy) and incomplete logs. To establish a strong causality an algorithm must be

able to interpret any given real-life scenario. However, many algorithms cannot deal

with incomplete and noisy logs, e.g. abstraction-based and other factual algorithms

not employing a heuristics-based approach [45, 249], or region-theory based algo-

rithms [132, 243].

2. Representation not on BP Abstraction Level: There is a noticeable difference be-

tween business process specifications at design-time and the representations of

business processes discovered from logs. Whereas prominent standards for busi-

ness process models, e.g. BPMN and EPC, are BP-domain-specific, the results of

process discovery algorithms conform to general purpose representations like Petri

Nets, e.g. [243, 249], or other abstract languages such as Causal Net, e.g. [278], or

fuzzy models, e.g. [89]. For a business analyst, the comprehension of these general

purpose languages for decision making is a difficult task, because (1) these are of

a different representation and abstraction level than what she is familiar with and

(2) the mapping between the process modelled at design-time and the discovered

process model at run-time can be difficult to establish since they both conform to

different languages. This can be mitigated by language transformations which are

however not guaranteed to produce a sound BP-domain model since they reside

on a different level of abstraction. Also, techniques in the area of process discovery

almost exclusively focus on the discovery of the control-flow perspective and ne-

glect other perspectives such as resources and performance (see Section 2.1). Tech-

niques that mine information about these perspectives are mostly associated with

the model enhancement discipline (introduced in Section 2.2.3) and discussed in

more detail in Section 2.5.3. Furthermore, representations such as Petri Net, Causal

Net, etc. can not be easily used for further analysis and decision support since

they have difficulties to express perspectives other than of the control-flow, e.g. re-

sources, performance. This limitation of expression is fittingly summarised by Aalst

in [230] who concludes "The world is not a Petri Net" and motivates the need for a

more representative, BP-domain-specific solution.

3. Non-Deterministic or Non-Automatic: Generally, non-deterministic, e.g. genetic

algorithms [26, 147] or neural nets [39], as well as techniques that require manual

effort, e.g. [243], are not suited for the discovery of causally connected run-time BP

models. Although non-deterministic types of analyses like the genetic algorithms

do not subscribe to any of the above mentioned shortcomings, the simple fact that

no correct or stable output can be guaranteed for the same input, makes them un-

suitable to maintain a causal connection in a real-time setting; The same applies for

approaches requiring manual effort.

Other limitations of process discovery algorithms exist but are rather dependent on other

aspects of the use case than the establishment of a causal connection at run-time. One

3.3 Process Discovery at Run-time 98

such example is the balance between over-fitting and under-fitting: Since often the qual-

ity of the solution is dependent on what is more important for a specified use-case, e.g.

under-fitting might be preferred to discover human readable non-spaghetti nets - in other

occasions the discovery of extremely accurate over-fitting models might be desired. An-

other such use-case dependent limitation is that of footprint abstraction: Most of the

process discovery approaches are mainly based on footprints representing direct activity

successions, i.e. some form of a local directly-follows relation, e.g. [126, 249, 278]. Global

relations, e.g. activity x1 is eventually followed by activity x2, are either not taken into

account or are only used to identify and reflect special behaviour, e.g. non-free choice

constructs [279]. Especially with regards to the discovery of parallel constructs the even-

tually follows relation has a clear benefit in comparison to the directly follows relation: all

"follows" combinations of the elements of two parallel paths are easier to observe when

they are required to be "eventually" rather than "directly". This will be discussed in more

detail in Section 5.2. The author argues that results can be improved and computation

costs reduced by basing the discovery on global relations (see Section 5.8.1).

In the context of this gap analysis the Inductive Miner (IM) [126] together with its ex-

tensions [127, 128] to deal with incomplete and noisy logs deserves special mentioning:

It is the only algorithm - to the best of the authors knowledge - that does not subscribe to

any of the three main limitations that apply when PD algorithms are used for establishing

a causal connection during run-time. However, still two limitations remain: (1) The IM

is based on local rather than global relationships and (2) it has a potentially exponential

run-time when considering incomplete logs because the involved constraint solving is an

NP-hard problem for which an SMT4 solver is used [128].

3.3.2 Gap Analysis: Online Process Discovery

Business processes can stretch out for months, have a very high instantiation frequency,

or both. For a slow and long executing BP the traditional process discovery approach

might temporarily create causality from system to the discovered model; this is not the

case for BPs with very frequent state changes. Here, the causality from system to model

is already "outdated" when the discovery analysis has finished. Another additional chal-

lenge in the BPM domain which is not address by traditional process discovery algorithms

is that of uncontrolled deviations as elaborated earlier in Section 3.1. Those can manifest

themselves in many different forms, e.g. (1) a predicted condition does in reality never

apply, (2) exceptional or unforeseen conditions occur that demand ad-hoc adjustments

in the execution flow, or (3) a gradual or abrupt deviation from planned BPs towards a

more applicable/optimal (in real life) execution flow takes place. The first two deviation

examples are addressed by the more sophisticated process discovery algorithms of recent

years which can deal with noisy and incomplete logs (see discussion above). However,

during recent years and due to the advancement of Big Data, a frequently changing en-

4Satisfiability Modulo Theories

3.3 Process Discovery at Run-time 99

vironment, and fast machine guided processes, the latter deviation example of continu-

ous and uncontrolled BP evolution has gained more relevance. These observations build

the foundation of (initial) research in the fields of concept drift in the business process

domain for which recent research is reviewed in Section 2.4.3). In reality only a "...few

processes are in steady-state and due to changing circumstances processes evolve" [138].

This view stands in contrast to the view of traditional PD approaches where BPs are as-

sumed to be steady-state. In Section 2.4.3 different solutions to address concept drift are

discussed, e.g. [21, 23, 34, 274–276], including their individual limitations. The biggest

of which with regards to descriptive BP run-time models is that their purpose is essen-

tially different: they focus on detection and localisation of concept drift and are rather

pre-processing methods to identify where to split logs so that they can be individually

analysed by a traditional PD algorithm. The sole detection and localisation of these drifts

on static event logs are not sufficient for maintaining a causal connection from system to

model at run-time.

Approaches of Online Process Discovery as discussed in Section 2.4.4 go a step fur-

ther. They work on an online stream of events rather than on an offline event log. The

conceptual idea is that of carrying out Process Discovery with Complex Event Processing

techniques (see Section 2.2.3). That means in the context of models at run-time, imme-

diate processing of state changes (events) when they occur to information of an higher

abstraction level (BP models). The motivation is to have a run-time reflection of the em-

ployed processes based on up-to-date rather than historical information. As discussed in

the respective Section 2.4.4 online process discovery algorithms have to deal with two ad-

ditional challenges as opposed to the traditional process discovery algorithms: (1) antic-

ipation of concept drift, i.e. reflecting new behaviour as well as forgetting old behaviour,

and (2) potentially processing of an infinite amount of events at high frequency, i.e. scal-

able with regards to the amount of events occurring. In the state of the art Section 2.4.4

it has been shown that incremental discovery approaches [37, 119–121, 219] address the

challenges of online process discovery, albeit only partly:

• Incremental process mining [37]: Newly observed behaviour is added, but once ob-

served behaviour will stay valid indefinitely despite it becoming outdated, i.e. no

support for real concept drift since revolutionary changes (see Section 2.3) are not

supported.

• Incremental workflow mining [119–121, 219]: Additonal to the same short-coming

of incremental process mining, it also requires human interaction, i.e. not applica-

ble in real-time environment.

A contrast to the incremental approaches are that of Streaming Process Discovery as

discussed in the work of Burattin et al. in [27]. It discusses different techniques for us-

ing event streams for process discovery (e.g. sliding window, FIFO queue, ageing, lossy

counting) and generally provides a solution that addresses the challenges of online pro-

cess discovery. However, since it is based on the HeuristicsMiner its shortcomings apply

3.3 Process Discovery at Run-time 100

for this online approach as well, namely the BP-independent representation, the sole fo-

cus on the control-flow, and the reliance on only local relations between activities. To

the best of the authors knowledge the only other streaming process discovery approach is

that of Maggi et al. [138], but since it is discovering declarative process models (using the

sliding window and lossy counting) it is outside of the scope of this thesis.

Summary

The findings of this section are summarised in Table 3.2. The used abbreviations as well

as the content are explained further in the following paragraphs.

Approaches: Different types of approaches that are compared with regards to the chal-

lenges of BP model discovery at run-time: (1) Traditional Process Discovery (TPD) repre-

sent the static offline process discovery approaches based on Logs (see previous Section),

(2) Traditional Process Discovery with Concept Drift Detection (TPD+CDD) is the combi-

nation of both fields, i.e. using a concept drift algorithm to detect where to split the log

into sub-logs which are then individually analysed by a traditional Process Discovery al-

gorithm, (3) Incremental Process Discovery as proposed in [37], (4) the approach of Maggi

et al. (MEA) [138], (4) Incremental Workflow Discovery as proposed in [119–121, 219], and

(6) the approach of Burratin et al. [27].

BP Representation: The BP representation of an approach decides what information

can be retrieved and what further analysis can be carried out. The domain of process

discovery is solely focussing on the control-flow perspective which as discussed in Sec-

tion 3.2 is not sufficient. Furthermore, is the type of BP representation important: While

traditional approaches (TPD) have also advanced towards discovering BP domain mod-

els, that is not the case for online process discovery approaches: Either they are based

on declarative models (IPD and MEA) or on non-domain-specific models (IWD and BEA)

such as Petri-Net and Heuristic Net.

Supported Input: While the traditional discovery approaches (TPD, TPD+CDD) work

on complete logs, the online approaches (IPD, MEA, IWD, BEA) can operate on a stream

of events. However, only the BEA can handle noisy or in complete logs, i.e. she is the only

one able to handle real-world BP scenarios.

Concept Drift: Supporting concept drift is an important requirement to maintain the

causal connection from system to BP model. While traditional approaches (TSP) assume

to be observing an unchangeable process, i.e. do not support concept drift (−) the incre-

mental approaches (IPD and IWD) support concept drift to some level (◦) and the other

approaches (TPD+CDD, MEA, BEA) even fully (+).

3.4 Process Performance Prediction at Run-time 101

Table 3.2 Overview Gap Analysis Process Discovery at Run-time

Approach BP Representation Supported Input Concept Level of
Type View Type Inc./Noise Drift Automation

TPD diverse
Control-
flow
Perspec-
tive
only

Log varies − varies
TPD+CDD diverse Log varies + ◦

IPD Declarative Stream − ◦ ◦
MEA Declarative Stream − + +
IWD Petri-Net Stream − ◦ ◦
BEA Heuristic Net Stream + + +

Level of Automation: Similarly, the level of automation is important to maintain the

causal connection in real-time systems: while all approaches are at least semi-automatic

(◦), i.e. only need some manual steps, others are able to operate fully automatic (+), i.e.

without any manual steps.

3.4 Process Performance Prediction at Run-time

Traditional reasoning in BPM is mostly based on the analysis of state transition events, es-

pecially in the discipline of decision support (see Sections 2.2.3, 2.2.3, and 2.5). Part of an

organisation and its business processes are its goals which are usually monitored through

quantifiable measures expressing the performance of organisational units and processes,

i.e. Key Performance Indicators (KPIs). Process-centric measures are also called Process

Performance Indicators (PPIs), e.g. number of ordered items, rate of cancel requests. Eval-

uating KPIs and PPIs against their target values support the process of decision making in

the BP lifecycle and they are often basis to higher level analysis such as bottleneck detec-

tion [195], or SLA violations [285], or performance prediction.

Current solutions for monitoring PPIs require modelling effort to specify their aggre-

gation, and computation methods (based on the event data), e.g. [68, 130, 149, 282]. This

approach is not applicable for dynamically changing processes. Here, the PPIs have to be

of a generic nature and automatically adapt to the underlying BP, e.g. resource utilisation,

end-to-end processing time.

With regards to the prediction of these PPIs there is two different general approaches:

(1) a quantitative/statistical analysis of timeseries as is done traditional BI solutions [24,

29, 178, 205, 206], and (2) that of simulation, where a model of a system is used to "enact"

the same or similar behaviour. Since the focus of this thesis is on run-time BP models and

proving their worth for facilitating pro-active decision support and many other higher-

level analyses, e.g. what-if, sensitivity analysis, and optimisation, the latter approach is

of particular interest: It is considered to be versatile, imposes only a few constraints, and

produces results that can be interpreted in a similar way than the ones of the real sys-

tem [232]. In the BP domain it is particularly common to utilise the discrete-event simu-

lation (see Figure 2.21 on page 57) due to its congeneric characteristics. Of this, again two

3.4 Process Performance Prediction at Run-time 102

different types exist: (1) steady-state simulations and (2) short-term predictions.

Steady state simulations are based on the assumption that the system converges to the

same balanced state if you let it run long enough (unless the resources cannot cope with

the demand). Examples of this approach are [72, 131, 180, 189, 290]. While steady state

simulations in their different implementations are especially of importance for strategic

analysis like what-if, or sensitivity analysis, they neglect the current fine-granular state of

the system, i.e. they start with an "empty" system.

On the other hand, short-term (or transient) simulations start to simulate from ex-

actly the system’s fine-granular state, and can more reliably answer questions about the

immediate future of the BPs. This information can be used for more accurate higher-level

decision support support. One such example is adaptive reasoning [62] as conceptually

discussed in certain EDBPM publications, e.g. [268–270]. Another example is automated

optimisation as prototypically shown in [221]: Here the future performance of every busi-

ness process variant, which was computed via using simulation, represents the respective

fitness of the individuals for the optimisation. However, all of these approaches have so

far only been researched conceptually or in a prototypical manner without evaluation on

real-life use cases or being applied in industry.

In the context of BP models at run-time, a more suitable and evaluable reasoning use-

case of transient simulation is the short-term prediction of a BP’s performance. The more

accurate and detailed the BPMS is reflected as descriptive BP run-time model, the better

prediction result can be expected. Although this technique potentially yields improved

results (see Figure 2.22 on page 59) than statistical methods such as trend analysis or

steady state simulations, only the approaches by Rozinat et al. in [198, 200] addresses

the challenge of transient PPI predictions via simulation. The first approach in [200] is

based on modelled BP design information and extracts the state in a non-generic way di-

rectly from the system (but not from the event log). The event log is only used to compute

performance input and decision point information. In [198] it is shown that the design

information (control-flow and resource perspective) can also be extracted from the log.

However, the current state is neglected and due to the process discovery approach used

(α-algorithm) noise and incomplete behaviour in the log may lead to the discovery of in-

valid and non-simulatable models (see Figure 2.15 on page 39). Furthermore, neither this

nor any of the other simulation model discovery approaches is able to deal with dynami-

cally changing processes, monitor more than one process, or is applicable "online" on an

event stream to allow for (near-)real-time results.

Summary

Table 3.3 summarises the gap analysis findings of this section with regards to performance

prediction at run-time. In the following paragraphs used abbreviations as well as the con-

tent are further explained.

3.4 Process Performance Prediction at Run-time 103

Prediction Approach: We distinguish between five different types of approaches: (1) An-

alytical Timeseries Analysis (ANA-TA) comprise traditional BI methods based on correla-

tions, extrapolations, e.g. [24, 29, 205, 206], (2) Analytical mathematical models (ANA-

MM) which comprise methods that abstractly emulates structural behaviour with sophis-

ticated mathematical models such as FMC-QE [178], (3) Steady-state Discrete Event Sim-

ulation (DES-SS) [72, 131, 180, 189, 290], (4) Transient Discrete Event Simulation (DES-T)

by Rozinat et al. [200], and (5) Transient Discrete Event Simulation based on Event Logs

(DES-TE), an extension of approach (4) and partly based on event information [198].

Source of Levels: Whether information on the two granularity levels is used and if so

from where it is extracted:

• Instance Level: Neither the traditional BI approach ANA-TA, nor the steady state

approaches ANA-MM and DES-SS use fine granular instance state information (i.e.

not applicable "N/A"). The two transient approaches (DES-T and DES-TE) use them

but do not extract this information from the events but rather directly from the

"BPMS" through a generic but not further specified interface.

• Type Level: While ANA-TE is not based on structural information at all ("N/A"), ap-

proaches ANA-MM and DES-T require this information to be modelled ("M"). The

DES-TE solution allows to discover the simulation model from an event log ("D").

The DES-SS is a special case - here it depends on the individual solution: Some so-

lutions are originally based on modelled simulation models, e.g. [72, 189], but some

solutions (e.g. when based on YAWL like in [290]) also may allow the simulation

model to be discovered from an event log, i.e. "M/D".

Resource Representation: The structural view on resources varies for the different ap-

proaches: For solutions of the ANA-TA type it is not explicitly included (−) since they can-

not replicate queueing behaviour; Others like DES-T and some of the DES-SS solutions

(e.g. [72, 189]) do not support shared resources across multiple BPs but instead model

resource availability or activity waiting time through probabilistic values (◦); The others

allow for a simulation model with shared resources across multiple BPs (+).

Special Characteristics: Reasoning on real-life stream data requires the support of the

following characteristics:

• Incomplete/Noisy: Simulations based on the descriptive BPMS state utilise discov-

ery algorithms (see Sections 2.4 and 3.3) which should be able to deal with incom-

plete behaviour and noise in the event logs (see Section 2.4.1). For ANA-TA, ANA-

MM, and DES-T this is not applicable (N/A). DES-TE is based on the α-algorithm

and thus does not support incomplete or noisy behaviour (−). For DES-SS it de-

pends on the specific approach and is supported in some cases (−/+), although it

has not been explicitly mentioned in the publications.

3.5 Summary 104

Table 3.3 Overview Gap Analysis Process Performance Prediction at Run-time

Prediction Source of Level Resource Online Characteristics
Approach Instance L. Type L. Represent. Inc./Noise Conc. Drift Stream

ANA-TA N/A N/A − N/A ◦ +
ANA-MM N/A M + N/A − −

DES-SS N/A M/D ◦/+ −/+ ◦ −
DES-T BPMS M ◦ N/A − −

DES-TE BPMS D + − − −

• Concept Drift: Run-time performance predictions must be able to handle process

change, i.e. concept drift. This is indirectly supported by ANA-TA on a non-structural

level (◦) but by none of the others (−).

• Event Stream: Similarly run-time performance predictions should be causally con-

nected to the system, i.e. work on an event stream. While most solutions of ANA-TA

are capable of doing so (+) this is not the case for the other approaches (−).

3.5 Summary

Based on the state-of-the-art literature review from Chapter 2, this chapter discussed the

fusion of the BPM and MRT domains as well as the resulting gaps of current research in

the context of Descriptive Business Process Models at Run-time.

First, in Section 3.1 the feasibility of employing MRT concepts in the domain of busi-

ness processes was discussed in general and two special characteristics of the BP domain

were identified that are uncommon in conventional MRT concepts:

1. the unusually high abstraction gap between BP model and system which are mani-

fested in all phases of the BP lifecycle, and

2. uncontrolled deviation which occur not only in the implementation and configura-

tion phase but also in the enactment phase of a BP’s lifecycle.

Then in Section 3.1.2, it was discussed what implications that has for potential so-

lutions for Business Process Models at Run-time and why holistic solutions like adaptive

workflows do not meet those challenges due to one major simplification that usually does

not apply in the BP domain: The assumption of closed-loop, self contained systems with-

out external changes sources. Finally, a two phased concept that consists of two run-time

models, descriptive and prescriptive, was proposed in order to account for the previously

identified special characteristics of the BP domain: high abstraction gap and uncontrolled

deviations.

This concept is the base assumption for the gap analyses for the individual goals of

this thesis. The following individual gaps of current state of the art were identified:

3.5 Summary 105

1. Descriptive Business Process Models at Run-time (Section 3.2): It was shown that

prominent languages from the three relevant domains of BPM, workflows, and pro-

cess discover do respectively support only a subset of all essential descriptive or

run-time information, i.e. type level information as well as their history and current

state for the main abstractions of a BP: control-flow, organisation, and performance.

The analysis showed that especially when considering the modelling capabilities to

capture the history of type level changes (rather then instance level changes which

are captured in a traditional event log) a clear gap exists for state of the art or indus-

try languages.

2. Process Discovery at Run-time (Section 3.3): Here it was shown that no solution can

address all requirements for a causal connection from system to model at run-time,

i.e. bridging the abstraction gap, incorporating all perspectives (control-flow, re-

sources, instance, performance), working on event streams with noisy and incom-

plete behaviour, dealing with changing processes (concept drift), and requiring no

human interaction.

3. Process Performance Prediction at Run-time (Section 3.4): Here it was shown that

no solution can predict PPIs based on abstracted BP type level and instance level

information from an event stream with noisy, incomplete, and changing behaviour.

The gaps will be addressed in the subsequent contribution chapters.

Chapter 4

Descriptive Business Process Models at

Run-time

The motivation of this chapter is to fulfil the first objective of this thesis, the specification

of a DBPMRT reference modelling language, by addressing the gaps identified in the last

chapter in Section 3.2. As a result, the proposed "holistic" model language is required

enable the capturing of type level information as well as their history and current state for

all main abstractions of a BP: control-flow, organisation, and performance.

Figure 4.1 shows the outline of this chapter and the relation to the remaining con-

tribution chapters. In the first Section 4.1, the objective of specifying DBPMRTs is trans-

lated into concrete requirements that should be met by a modelling language for DBPMRT

while considering the input of the gap associated analysis in Section 3.2. These require-

ments are essential characteristics a DBPMRT needs to comply to and represent the basis

for the following sections. Then in Section 4.2 reference meta-models for a DBPMRT are

proposed with the focus on capturing the holistic status of an observed BPMS. In Sec-

tion 4.3, these reference meta-models are further enhanced to enable the capturing of

the temporal evolution of the BPMS’s status on the type level. This includes a discussion

on the different meta-model compositions that are possible. In Section 4.4 the proposed

reference meta-models for DBPMRTs are evaluated in a qualitative fashion against the

previously established requirements. The proposed DBPMRT language’s value of use is

evaluated through its application in the subsequent chapters.

4.1 Identification of Characteristics for DBPMRTs

A language for run-time BP models has to support specific characteristics in order to meet

the requirements of a run-time model. In Section 3.2 it was identified that current lan-

guages either cannot capture other perspectives than the control-flow, or lack in captur-

ing the current state of an instance or the type level history or a combination of these.

Based on these results a discussion on what is essentially required of a language in terms

of reflecting different abstraction levels of states and changes in order to constitute a lan-

4.1 Identification of Characteristics for DBPMRTs 107

Chapter 4: Objective I – Specification of DBPMRT

Evaluation

3.2: Gap Analysis: Descriptive Business Processes Models at Run-time

4.4: Qualitative Evaluation

Chapters 5&6: Evaluation of Use

4.1: Requirements for DBPMRT

Contribution

4.2: DBPMRT (State)

4.3: DBPMRT (Evolution)

Fig. 4.1 Outline of Chapter 4

guage for DBPMRTs.

4.1.1 Characteristics for Run-time BP Models

The classifications of elements for general characteristics of run-time models, reviewed

in Section 2.7.4 (Generalisation of Models at Run-time), is a good entry point to identify

requirements for such a language. As pointed out in that section, the ratio of prescriptive

and descriptive parts are dependent on the purpose of the model, e.g. monitoring MRT

vs. executable MRT. But not only the ratio of these parts can be different also the run-time

aspect, prescriptive or descriptive, can vary for the same model element types depending

on the purpose. That is, an element type, e.g. an activity, can be of a prescriptive na-

ture in one run-time BP model, e.g. execution standards like BPEL, but of a descriptive

nature in another run-time BP model, e.g. a BP model extracted via process discovery

(see Section 2.4). In all cases (descriptive, prescriptive, or both) the objective is to allow

for or record changes on different abstraction levels (e.g. type level vs. instance level)

and across different BP perspectives (e.g. control-flow vs. resources). The current state-

of-the-art work classifying these dimensions of change in the BP domain is discussed in

Section 2.3. Particularly of relevance with regards to the dimensions of change in the BP

domain are the two approaches by Sadiq et al. [202] and by Schonenberg et al. [211], both

defining different types of changes from a realisation perspective rather than a context

4.1 Identification of Characteristics for DBPMRTs 108

Run-time BP Model

BP Type

Business
Process

Process
Instance

State of Process
Instance

Sy
st

em

Dynamism

Variability

Reflectivity

C
a

u
sa

lly
C

o
n

n
e

ct
ed

Fig. 4.2 Abstraction Levels of BP Changes

perspective. A summary is depicted in Figure 2.11 on page 31 which merges both classifi-

cations with regards to their abstraction (type vs. instance) and anticipation (build-time

vs. run-time).

Since the focus of this thesis is on techniques that allow changes during run-time,

only the associated abstraction level of the change is of importance, i.e. the granularity of

a change. There are two abstraction levels of change that can be identified in both classi-

fication: (1) The change of the execution path of a process instance (instance level), in the

remainder called Variability, and (2) the change of a complete business process defini-

tion (type level), in the remainder called Dynamism. Due to the focus of both approaches

on process change, one abstraction level of change has not been regarded, yet: the fine-

granular state change in a process instance, in the remainder called Reflectivity. We argue

that a language for run-time BP models needs to be able to support these three dimen-

sions of change (see Figure 4.2) in order to support any business process related purpose

from business process monitoring to dynamic process optimisation.

A first conclusion to be drawn after identifying these three different dimensions of

change is that reflective business process models, e.g. workflow models like ADEPTflex [191]

that are executable and monitor the state of the system, are technically already adaptive

run-time models. The inherent flexibility of BP modelling languages (e.g. via conditional

or parallel behaviour) describes execution rules for the individual process instances, i.e.

these BP models are adaptive run-time models for process instances but not for the BP type

level. That means in the context of the differentiation between descriptive and prescrip-

tive model parts by Lehmann et al. [129] (see Figure 2.31 on page 79), that the prescriptive

part specifies the possible states and transitions of one process instance, the descriptive

part describes the current state in the process instance, and the valid modifications of the

prescriptive parts are the shifts of execution paths for the process instance dependent on

4.1 Identification of Characteristics for DBPMRTs 109

MRT for Process Instance

Activity Sequence = Process Instance

Activity 1 Activity 2 Activity 4

Descriptive Part

Prescriptive Part

Mod. of Descriptive Part

Mod. of Prescriptive Part

Legend

Current Descriptive Part

Reflective Business Process Model

Activity 1

Activity 2

Activity 4

Activity 3

Start Decision Merge

Activity Sequence = Process Instance

Activity 1 Activity 3 Activity 4

Current Prescriptive Part

End

equivalent to

Fig. 4.3 Reflective Business Process Model as Process Instance Model at Run-time

the circumstances. This is shown in Figure 4.3. Fully automated workflow languages like

ADEPTflex are a good example to show how important the abstraction level of change is,

i.e. in terms of dynamic adaptation: On what level the MRT system captures change of

the system and on what level the MRT system is governing modifications for the system.

With regards to general run-time BP models, the requirements are to be able to cap-

ture and govern change on the levels of reflectivity, variability, and dynamism. In addition

to the desired change dimensions, run-time BP models also have to support standard

business process modelling capabilities which is why the requirement of expressibility is

essential, as well. Figure 4.4 shows all four general requirements for run-time BP models

in an conceptual overview. In accordance with the distinction between prescriptive and

descriptive MRTs discussed in Section 2.7.5 a similarly distinguished view for the domain

of dynamic BPs is highlighted: While the light grey arrows display prescriptive connections

between the abstraction levels, the stroked black arrows highlight descriptive connections

between the levels. The fundamental difference between these relations is the following:

(1) the prescriptive connection represents that the higher abstraction level defines the

potential "solution" space according to which the lower level is substantiated at run-time

(i.e., a dynamic BP language or BP type defines via goals, rules, etc. according to which

the business process is substantiated; the BP model describes rules for the BP instances;

the BP instance defines the parameters of the states it can take), (2) the descriptive con-

nection represents the actual as-is situation in a run-time system (i.e. the BP instance

state describes the BP instances current state; the monitored BP instances describe the

actual BP; the captured BPs describe the evolution of the BP on a type level). While the

prescriptive connection represents a definition of the lower level space, the descriptive

connection is the concrete monitored substantiation on that level. Note, that on the top

level two different abstractions exist: the one on the left (BP Type/Dynamic BP) defines all

possible variations and adaptations of the BP model while the one on the right (BP Evolu-

4.1 Identification of Characteristics for DBPMRTs 110

Business Process
Models at Run-time

Current Business
Process Modelling

Standards
Relations

Dynamism

Variability

Reflectivity

BP Type/
Dynamic BP

Business
Process

BP Evolution

BP Instance

State of BP
Instance

prescribes

describes

Expressibility

Fig. 4.4 Business Process Abstraction Levels and the Conceptual Location of the Four Re-
quired Characteristics for Run-time BP Models: Dynamism, Variability, Reflectivity, and
Expressibility

tion) temporally describes the inhabited states and their development during execution.

Also highlighted in Figure 4.4 is that normal BP standards such as BPMN [168] already

inherently meet the requirements of variability and expressibility. Reflective workflow

languages like ADEPTflex [191] additionally support the capturing of the lowest level, i.e.

the BP instance state.

4.1.2 Concrete Requirements for DBPMRTs

In the context of this thesis the focus is on realising the descriptive connections, i.e. defin-

ing a language for DBPMRT which meets these four identified requirements. In the re-

mainder of this section the concrete requirements for a DBPMRT are formulated.

Levels of Change

One general aspect of DBPMRTs is the support for representing change on the different

abstraction levels. For development, deployment, and enactment as well as for the diag-

nosis, BP domain artefacts exist that operate on one or a number of different abstraction

levels. Figure 4.5 shows these artefacts sorted by level of their abstraction. On the left

all development and run-time artefacts and examples are displayed that are a product

of design, implementation, and enactment of a BP: In particular, the BP type defined by

goals and KPIs, e.g. through a specification document, is the basis for the designed BP

model (problem space), e.g. with BPMN [168]; After the completion of the BP design it is

then implemented by a BP execution language (solution space), e.g. BPEL [161], and de-

ployed/compiled in order to be enacted by a BPMS such as SAP Netweaver BPM [287]; In-

ternally, during enactment BP instances of the BP model are created, controlled/managed,

and discarded. As a result BP events representing state transitions on the instance level

are recorded and stored conforming to a specific event standard, e.g. XES [90]. During

4.1 Identification of Characteristics for DBPMRTs 111

Event Standard

DBPMRTDesign Models

BPMS

Implementation,
Configuration

Compilation,
Deployment

BP Model

BP Execution
Language

BP Type

Specialisation

BP Model(s)

BP Events

BP State/
BP Evolution

BP Instances

describe

describe

describe

Context/State
of BP Instances

Processing

BP Instances

Produces

e.g. XES

e.g. SAP Netweaver
BPM

e.g. BPEL

e.g. BPMN

e.g. Specification
Document

A
b

s
tra

c
tio

n
 L

e
v

e
l

High

Low

Fig. 4.5 BP-domain Artefacts Ordered by Abstraction Levels

that process the abstraction level continuously decreases.

In a similar fashion, a descriptive BP model at run-time (DBPMRT) is required to cap-

ture information and change on these abstraction levels (right hand side of Figure 4.5),

i.e. the higher level data is inferred from/described by lower level data. In this context a

language to model holistic DBPM@RTs has to support the following change level-related

requirements1:

MR1 Reflectivity:

Reflectivity is the ability to represent fine-granular change in the system, i.e. a state

transition (BP event) needs to be translated into, and reflected by, a valid update of

the instance information in the DBPMRT. Examples are the current lifecycle state

of an activity or which resource is executing this activity. In a broader context, in-

formation that is not directly reflecting the fine-granular state but represents ag-

gregated information for a single instance can also be regarded as reflectivity, i.e.

describing an instance’s state. Examples are end-to-end processing time or activity

net working time (see Section 2.5.1) of one single instance since they are each the

result of at least two state transitions.
1MR = Model Requirement

4.1 Identification of Characteristics for DBPMRTs 112

MR2 Variability:

Variability is the ability to allow for flexibility on the instance level, i.e. the lan-

guage supports the meta concept of individual instantiation. This means in practi-

cal terms for the DBPMRT that the information captured about observed instances

can be generalised, represented, and accommodated by a single BP model. An ex-

ample of this generalisation is, for instance, the inference of the actual control-flow

from the respective activity sequence of each instance (this is the subject of process

discovery techniques - see Section 2.4.1), or aggregated performance values such

as the average activity net working time. With regards to the control-flow, promi-

nent BP model languages support this requirement by default since they primarily

design the control-flow and feature in that context flexibility by design [211] (see

Section 2.3.1).

MR3 Dynamism:

Dynamism is the ability of business process model to represent change on the type

level of the process. In the context of DBPMRT there are two different representa-

tions that can represent the change: (1) A BP State model that allows for changes

on the type level but only captures the current as-is state and discards outdated

information, (2) A BP Evolution model that records the evolution of the type infor-

mation, i.e. an additional time dimension is included which allows to retain infor-

mation about historic states of the BP rather then discard them. Examples of a BP

state model is a BP simulation model capturing the complete context of the system

to enable accurate predictions. A BP evolution model on the other hand is benefi-

cial to analyse the development of a BP in order to find change patterns and cycles

or simply to understand higher level changes of dynamic BPs.

Expressibility

In contrast to the levels of change the requirement of expressibility comprises concerns

specific to the BP domain. Many different views exist about what information a BP model

should be able to comprise which is usually dependent on the purpose of the language/

standard. In Section 2.1 it is discussed what different perspectives of a BP generally exist.

The most prominent among them are the control-flow, resource, and performance per-

spectives. In order to allow for a generic and flexible solution which supports different

purposes the principle of separation of concerns needs to be applied with regards to ex-

pressibility in DBPMRTs. That means, in particular, that these perspectives are required

to be separated which essentially provides the following two benefits: (1) modular struc-

ture, i.e. complete perspectives can be added or removed; (2) simplified extension of the

respective perspectives. Figure 4.6 shows these three BP perspectives, a set of represen-

tative elements, and the direct associations between them: (1) control-flow perspective

on the left, (2) performance perspective (PPIs - see Section 2.5.1) in the centre, and (3) re-

source/organisation perspective on the right. Note that only selected elements on the

4.1 Identification of Characteristics for DBPMRTs 113

Holistic Business Process Model

OrganisationControl-flow

Roles

Resources

Performance

Branching
Probabilties

Activity
Networking Times

Utilisations

Process Instance
Occurrences

:

(Sub-)Processes

Activities

Decisions

Other Control-
flow Elements

Fig. 4.6 Selected Element Types of a Business Process and Associations between them
(Stroked Lines)

type level are included in the figure. If required, instance-specific data is also part of an

holistic BP model. The expressibility requirements is summarised by the following de-

scription:

MR4 Expressibility:

Expressibility is the ability of a DBPMRT to express BP-specific requirements re-

flecting the purpose of the language. Influenced by the industrial use cases, the

DBPMRT language should conform to the following concrete expressibility (sub-)

requirements: (1) It should be flexible to enable a simplified and module-based

customisation; (2) It should be generic rather than specific, i.e. mostly consist of

essential BP elements supported by the majority of BP representations in order to

allow for bi-directional transformations to and from these representations. The

generic nature is also important considering the prevalent gap in abstraction (see

Section 3.1) and the challenges of process discovery (see Section 2.4.1); (3) It should

be a holistic language covering all features (qualitative and quantitative) of the ob-

served system. That means in particular the sufficient representation of all relevant

BP perspectives and the support for complex structures such as sub-processes, mul-

tiple parallel processes acquiring the same resource pools, etc. (see left in Figure 4.6

where the control-flow perspective is represented by the concept of a control-flow

scenario which in turn contains a number of dependent or independent (sub-)

processes).

It can be argued, that the variability requirement from the previous section is a logical

subset of the expressibility requirement since flexibility by design via decisions, etc. is an

4.2 Descriptive Business Process State Model at Run-time 114

instance-of

represented-by

Meta-Model

Model

Information

Meta-Meta-Model

instance-of

M3

conforms-to

M2

M1

M0

instance-of

represented-by

DBPMRT
Meta-Models

DBPMRTs

BPMS

Ecore

instance-of

conforms-to

Layers in
DBPMRT Domain

MOF Layers

Fig. 4.7 Model Layers of the DBPMRT in comparison to the MOF Layers [162]

expressibility feature of all prominent BP languages/standards. Considering this observa-

tion the requirements for a DBPMRT can be summarised in a simplified way as follows:

A DBPMRT should be able to capture information on the instance as well as the type level

while at the same time support expressibility features specific to the BP domain.

4.2 Descriptive Business Process State Model at Run-time

One of the two types of DBPMRT is a state model, i.e. the DBPMRT reflects the current

run-time state (on type and instance level) of the BPMSs. It consists of the three perspec-

tives of control-flow, resources, and performance plus the information about the current

state of the traces. The current state of the business process acts as an input for known

BPM reasoning techniques like simulation in order to perform for instance a prediction

or what-if analysis. The main challenge for the DBPMRT state language is to find a gen-

eralised state representation that can be analysed with existing reasoning methods and at

the same time supports the common element types that can be found in popular business

process standards.

In this section the meta-models that are making up the state DBPMRT are presented.

The meta-models and models are designed, maintained, and managed using tools of the

Eclipse Modeling Framework (EMF) [225], i.e. the meta-models conform to the Ecore

meta-meta-model and represent the language the DBPMRT instances conform to. The

model layers in the DBPMRT domain are shown in Figure 4.7 in relation to the MOF Lay-

ers [162]. The individual DBPMRT meta-models are presented in the following:

4.2 Descriptive Business Process State Model at Run-time 115

dbpmrt.ctrlflow

Childnodes
+ id: Long
+ name: String
+ startEvent: Start
+ ctrlFlowElements: BPElement*
+ complete: Boolean

BPCtrlFlowModel

Childnodes
+ id: Long
+ name: String
+ sources: BPElement*
+ targets: BPElement*

CtrlFlowElement

0..*

Childnodes
+ type: ActivityType

Activity

Childnodes
-

BPEvent

Childnodes
-

Start

Childnodes
-

Decision

Childnodes
-

End

Childnodes
-

Connection

Childnodes
-

Sequence

Childnodes
-

Merge

Childnodes
-

Fork

Childnodes
-

Join

1

Literals
+ Automated = 0
+ SimpleHuman = 1
+ SubProcess = 2

<<enum>>

ActivityType

1

1..*

Childnodes
+ assCtrlFlow : BPCtrlFlowModel
+ type := ActivityType.SubProcess

SubProcess

1

Fig. 4.8 Meta-Model for Single Control-Flow Models in State DBPMRT

4.2.1 Control-Flow Perspective

The control-flow is considered to be the core part of a business process and as such other

perspectives are often based on elements of the control-flow, e.g. a role is associated with

a set of activities. Figure 4.8 shows the meta-model from which a specific control-flow can

be instantiated. Note, that abstract (non-instantiable) classes/interfaces are depicted in

green, instantiable classes in blue, and enumerations in orange. A few important specifi-

cations of the meta-model are highlighted in the following:

• The parent element to which all other elements that are part of this control-flow

have a transitive containment relation2 is the BPCtrlFlowModel. An instance of the

BPCtrlFlowModel has an id, a name, contains ctrlFlowElements, and has a refer-

2A diamond shape at the beginning of the connection determines that the target is logically a part of the
source element, i.e. the target is contained in the source; An element must have exactly one direct con-
tainment relation to a parent with the exception of the top-level parent element, e.g. the BPCtrlFlowModel
in the case of the control-flow. An arrow-less and diamond-less connection constitutes an association be-
tween elements without containment relation, i.e. a reference.

4.2 Descriptive Business Process State Model at Run-time 116

ence to exactly one start element (which is already contained as ctrlFlowElement).

Furthermore, it has a flag complete that indicates if the control-flow model is sound,

i.e. is block-structured and does not possess group activities (later explained in Sec-

tion 5.3.4).

• The core element class from which every other class (apart from the BPCtrlFlow-

Model and the ActivityType) is derived3 is the CtrlFlowElement. All control-flow ele-

ments, e.g. Start and End Events, Activities, as well as Decisions, Merges, Forks, and

Joins (see Section 2.1) are a specialisation of the CtrlFlowElement which has an id,

name, and source and target references to other CtrlFlowElements (fields sources
and targets). The number of permitted sources and targets is dependent on the

eventual specialisation, e.g, a Decision has exactly one source and two or more tar-

gets, a Merge two or more sources and exactly one target, a Start no source and

exactly one target, and an Activity exactly one each, etc.

• There are three different types of activities (see Section 2.1): Automated, Human,

and Sub-Process. While automated, and human activities are instantiations of the

Activity class (defined by the respective type field) the SubProcess is a specialisation

of the Activity class (with the type field enforced to ActivityType.SubProcess)

and an additional reference to another BPCtrlFlowModel (outside of the transitive

containment relation of the SubProcess’s control-flow). Note, that with the pre-

sented meta-model only single BP control-flows can be instantiated. A collection

of connected (via SubProcess) or independent control-flows in order to fully reflect

the systems control-flow perspective is presented in the Section 4.2.5 introducing

the meta-model for a holistic BP model.

4.2.2 Resource Perspective

Figure 4.9 shows the meta-model that specifies the resources perspective. The resource

perspective contains information about which Resource is associated to which Role(s) and

which set of Activities4 is associated with a specified Role. The parent element containing

all Resources and Roles is the BPResourceModel. Both, Roles and Resources have names and

unique ids, respectively. Technically, two types of resources exist: (1) automated actors

which are non-blocking (one resource may process multiple activities in parallel without

influence on the respective processing times (no queue), e.g. a cloud web-service) and

can only be associated to roles representing automated activities; (2) human actors asso-

ciated to roles representing human activities (blocking; with queue). The flag automated
specifies the resource type: true representing the former type and false the latter.

3Connections labelled with an arrow represents a specialisation relation.
4Elements of the language defined in other meta-models, e.g. Activity defined in the dbpmrt.ctrlflow

meta-model, have have a purple colour.

4.2 Descriptive Business Process State Model at Run-time 117

dbpmrt.ctrlflow

dbpmrt.resource

Childnodes
+ id: Long
+ resources: Resource*
+ roles: Role*

BPResourceModel

Childnodes
+ id: Long
+ name: String
+ automated: Boolean
+ roles: Role*

Resource

0..*0..*

Childnodes
+ id: Long
+ name: String
+ assignedActivities: Activity*

Role

1..*

Childnodes
...

Activity

1..*

Fig. 4.9 Meta-Model for Resource Perspective in State DBPMRT

4.2.3 Performance Perspective

Figure 4.10 depicts the meta-model for the performance perspective of the DBPMRT. The

parent element to which other elements of this meta-model (in the dbpmrt.performance

package) have a containment relation is the BPPerformanceModel. The meta-model only

shows three selected performance parameters (see PPIs in Section 2.5.1): process instance

occurrence (ProcessInstantiation in the meta-model), activity net working time (Activity-

Workload), path probabilities (BranchingProbability). These three PPIs are in fact not re-

flecting the internal performance of the process/system but rather describe external en-

vironmental circumstances, i.e. they are influenced from outside of the business process.

For instance, the process instance occurrence of the online ordering process in Figure 2.2

(page 14) is driven by demand, season, and other factors but not (directly) by how well the

process performs. These kind of PPIs are also referred to as external PPIs and are required

to carry out performance prediction reasoning via simulation (see Section 2.5.2), the rea-

soning use case examined in the context of this thesis. Generally, the PPIs contained in the

performance perspective of the DBPMRT are aligned with the desired reasoning purpose.

If required, other PPIs, such as Resource Utilisation and End-to-End Processing Time, can

be included in a similar way as the ones depicted in the meta-model.

Each of the three PPIs in the model has a reference to the respective element that

the performance describes, i.e. ProcessInstantiation with a Start, ActivityWorkload with

an Activity, and BranchingProbability with a Decision, and contains a representation of

the respective performance value, i.e. ProcessInstantiation and ActivityWorkload con-

4.2 Descriptive Business Process State Model at Run-time 118

dbpmrt.performance

dbpmrt.ctrlflow

Childnodes
+ id: Long
+ processInstantiations: ProcessInstantiation*
+ activityWorkloads: ActivityWorkload*
+ branchingProbabilities: BranchingProbability*

BPPerformanceModel

Childnodes
+ id: Long
+ occurrence: DoubleValue
+ startEvent: Start

ProcessInstantiation

0..*

Childnodes
+ id: Long
+ workAmount : DoubleValue
+ activity: Activity

ActivityWorkload

Childnodes
+ id: Long
+ branchingProbabilities: DoubleListValue
+ decisionNode: Decision

BranchingProbability

0..* 0..*

Childnodes
...

Start

1

Childnodes
...

Activity

1

Childnodes
...

Decision

1

Childnodes
+ mean : Double
+ stdtDeviation : Double

DoubleValue

Childnodes
+ values : Double*

DoubleListValue

1 11

Fig. 4.10 Meta-Model for Performance Perspective in State DBPMRT

tain a DoubleValue representing occurrence and workAmount, respectively, and Branch-

ingProbability contains a DoubleListValue representing the branchingProbabilities.

DoubleValue and DoubleListValue are aggregated type level performance values:

• A DoubleValue is represented by the average aggregated over multiple instances

(field mean) and a measure that indicates by how much the actual values of the in-

stances deviate from the average, i.e. the standard deviation (field stdDeviation).

Both values form a Normal Distribution [104] which serves as a common represen-

tative in the probability theory to generalise/aggregate from a sequence of param-

eters. If only the mean of the PPI is to be recorded the standard deviation (default)

value is 0.

• A DoubleListValue already represents a distribution value, albeit for a discrete rather

than a continuous domain (i.e. no standard deviation). In the meta-model it is used

to describe the respective probabilities of the different outgoing paths of a decision.

The order of the probabilities in the values list has to correspond to the order of

the outgoing paths in the targets list of the Decision, e.g. the first value describes

the probability of the first outgoing path. Furthermore, it is assumed that the sum

of the probabilities in the list equals 1.

4.2 Descriptive Business Process State Model at Run-time 119

dbpmrt.performancedbpmrt.ctrlflowdbpmrt.resource

dbpmrt.istate

Childnodes
+ currentTime: Date
+ instanceStates: InstanceState*
+ resourceStates: ResourceState*
+ perfState: SinglePerformanceValue

BPState

Childnodes
+ instanceID: Long
+ pathStates : PathState*
+ startDate : Date

InstanceState

0..*

Childnodes
+ associatedBPElem: BPElement

PathState

Childnodes
+ currentlyAssignedActivities: Activity*
+ resource: Resource

ResourceState

Childnodes
+ value: Double
+ aggregate: PPIType

SinglePerformanceValue
<PPIType>

0..*

Childnodes
...

CtrlFlowElement
1

Childnodes
...

Activity

Childnodes
...

Resource

1

Childnodes
+ lastLifecycleEvent: LifecycleState
+ stateDate: Date
+ assignedTo: Resource

TransitionState

Childnodes
+ targetsToActivate : BPElement*

ForkState

0..*

0..*

0..1

Literals
+ entered = 0
+ scheduled = 1
+ assigned = 2
+ started = 3
+ suspended = 4
+ completed = 5
+ aborted = 6
+ triggered = 7

<<enum>>

LifecycleState

1

0..*

Childnodes
+ assInstance: InstanceState

SingleActivityWorkload

0..*

Childnodes
...

ActivityWorkload

<ActivityWorkload>
1

1

...

Fig. 4.11 Meta-Model for Process Instance Perspective in State DBPMRT

4.2.4 Process Instance Perspective

While in the previous sections the meta-models for type level perspectives control-flow,

resources, and performance were proposed, this section is concerned with meta-mod-

elling the instance level of the DBPMRT. Figure 4.11 shows the proposed meta-model. A

few features are highlighted in the following:

• The parent element to which all other instance state elements have a transitive con-

tainment relation is the BPState. Basically, internal fine-granular states can be asso-

ciated with either resources or BP instances. The states (if captured) of other more

collection-based elements such as Role are aggregates of these fine-granular states.

• The state of a resource is captured as ResourceState. It has a reference to the Resource

it is representing and references to all Activities to which the resource is currently

assigned. If the resource is automated, more than one activity might be associated

to its state; otherwise at most one.

• A InstanceState represents the internal state of an actively processed BP instance.

It mainly describes the current state in the control-flow (via pathStates) but may

4.2 Descriptive Business Process State Model at Run-time 120

b

c

a

InstanceState
(instanceID: 12)

TransitionState
(a ,completed)

Event 1
(a , complete)

Event 2
(b , schedule)

Event 3
(c , schedule)

b

c

a

b

c

a

pathStates

InstanceState
(instanceID: 12)

TransitionState
(b ,scheduled)

pathStates

ForkState
(targetsToActivate: [c])

InstanceState
(instanceID: 12)

TransitionState
(b ,scheduled)

pathStates

TransitionState
(c , scheduled)

...as model:

...graphically:
(blue dots)

Instance State development...

Fig. 4.12 The Development of the Instance State (Model) for an Example Stream of Events

potentially also contain information about performance or data aspects. Since the

data perspective is highly system- and domain-specific it cannot be supported by a

generic solution as proposed in this thesis. Hence, it is not part of the meta-model.

• The instance level performance state is the single occurrence of a PPI (the aggre-

gated value as meta-modelled in the performance perspective in Figure 4.10). The

reference meta-model includes as an example the instance level performance state

of the ActivityWorkload PPI (greyed out elements on the right of Figure 4.11): Sin-

glePerformanceValue is an abstract class generic to <PPIType> that contains the

recorded value of the performance parameter PPIType (see aggregation field).

SingleActivityWorkload is an example of an realisation/specialisation of the Sin-

glePerformanceValue where the PPIType is resolved to ActivityWorkload, i.e. the ref-

erence aggregate is of the type ActivityWorkload. Additionally, it has a reference to

the InstanceState for which the PPI was recorded. Other PPIs, e.g. process instance

occurrence, are meta-modelled in the same way as specialisation of the abstract

class SinglePerformanceValue but may have references to other state elements,

e.g. ResourceState if the PPI is resource-related.

• The state of the control-flow for a BP instance is reflected by its PathStates. An In-

stanceState can have more than one current PathStates due to parallel constructs,

i.e. state of path p1 plus state of path p2, etc. Possible realisations of a PathState are

a TransitionState and a ForkState. A TransitionState reflects the actual events and

has a reference to the corresponding CtrlFlowElement and a Resource if available. A

ForkState on the other hand is the result of entering a fork (see Figure 4.12): When

an event associated to one of the target paths occurs (see Event 2), a ForkState rep-

resents that other paths still have to be activated (the lower path including activity

’c’ in the example case). This is resolved when an event associated with the "still to

activate" path occurs (see Event 3).

4.2 Descriptive Business Process State Model at Run-time 121

4.2.5 Holistic DBPMRT

The holistic DBPMRT for states is the combination of the previously presented perspec-

tives with the addition to be able to reflect systems that employ more than one BP control-

flow. In Figure 4.13 the meta-model for the holistic state DBPMRT is depicted: It con-

sists of an id field and directly contains the resource, performance, and instance state

perspectives. Furthermore, it contains a BPScenarioModel which acts as a container for

all control-flows (some inter-connected via the sub-process relation) that are captured

from the run-time system. In particular, a BPScenarioModel has an id, a name, contains

the respective control-flow models (ctrlFlows), and has a reference to the control-flow

models (contained via ctrlFlows) that are externally instantiated, i.e. not internally as

sub-process (instantiatableCtrlFlows; it is a subset of ctrlFlows). If we consider

the Online-Order-Processing BP from Figure 2.2 (page 14): While the main process is an

instantiable control-flow, Process Order (the grey activity) is a sub-process and only trig-

gers system-internally, i.e. Process Order is not in instantiatableCtrlFlows. Note, that

being a sub-process and being externally instantiatable is not mutually exclusive, i.e. a

control-flow can be both.

dbpmrt.istate dbpmrt.resource dbpmrt.performance dbpmrt.ctrlflow

dbpmrt.holistic

Childnodes
+ id: Long
+ bpscen: BPScenarioModel
+ bpperf: BPPerformanceModel
+ bpres: BPResourceModel
+ istate: InstanceState

BPHolisticModel

Childnodes
...

BPPerformanceModel

0..1

0..1

Childnodes
...

BPResourceModel

0..1

Childnodes
+ id: Long
+ name : String
+ ctrlFlows: BPCtrlFlowModel*
+ instantiableCtrlFlows: BPCtrlFlowModel*

BPScenarioModel

Childnodes
...

BPCtrlFlowModel

1..*

Childnodes
...

InstanceState

0..1 1..*

Fig. 4.13 Meta-Model for the Holistic State DBPMRT

4.3 Descriptive Business Business Process Evolution Model 122

4.3 Descriptive Business Business Process Evolution Model

The second type of the DBPMRT is an evolution model. Different to the State DBPMRT

proposed in the previous section, the Evolution DBPMRT allows a stronger support for

the dynamism requirement, i.e. while the state DBPMRT only allows for changes on the

type level (i.e. updating information) the evolution DBPMRT records all states (i.e. adding

information). This means, in practical terms, that while the former just captures/updates

the current state, the latter introduces an additional time dimension that allows to map

states to a specified time values (dates or timespans) and does not discard old states (sim-

ilar to the "Big Data" principle). However, this is restricted to aggregated type-level infor-

mation, i.e. the control-flow, resource, and performance perspectives. The evolution of

the instance state is not required (and sufficient) to be stored since it is already available as

abstracted data: the aforementioned type level perspectives. The DBPMRT as evolution

model proposed in this section essentially acts as input for further high-level reasoning

such as discovering change or adaptation patterns.

4.3.1 Structure of Evolution DBPMRT

The type level perspectives of the State DBPMRT as established in the previous section is

the basis for the Evolution DBPMRT. Including the time dimension and thus making rela-

tions between model elements temporal is a non-trivial task and provides many different

solutions which depend on the characteristics of the (meta-)model and, even more im-

portantly on the frequency of change of individual elements. If the model structure would

be solely hierarchically similar (i.e. tree structure with only containment relationships

- containments are the primary order relations here) without any further interconnec-

tions (references are secondary order relations) the problem could be solved by replacing

the containment relation with a temporal containment relation (discussed later). This is

not the case with BP models in general and the DBPMRT in particular as shown in Fig-

ure 4.14: Here, key elements of the state DBPMRT are depicted along with their hierarchy

level (dark shade = top level; light shade = low level) defined by the containment relations

between them (diamond shaped arrows). Note, that all basic control-flow elements, e.g.

activity, decision, etc., are conflated to the representative BPCtrlFlowElement. Addition-

ally, important references between the elements (simple arrows) are shown adding to the

complex structure of the DBPMRT. This makes the introduction of temporal relations into

the DBPMRT more difficult.

One naïve solution to transform the DBPMRT into an evolution model would be to in-

troduce a new parent element containing a list of BPHolsiticModels each associated with

their respective time of relevance. This solution would require to recreate a new complete

holistic model for each time a change occurred. Especially the changes in the perfor-

mance perspective are only small but very frequent which makes this solution relatively

unsuitable. A more fine-tuned option is to take the frequencies of certain changes into

4.3 Descriptive Business Business Process Evolution Model 123

DoubleValue

CtrlFlowElement

BPCtrlFlowModel

BPHolisticModel

BPResourceModel BPScenarioModel BPPerformanceModel

BPCtrlFlowModel

CtrlFlowElementResourceResource RoleRole

ProcessInstantiation

ActivityWorkload

BranchingProbability

ProcessInstantiation

ActivityWorkload

BranchingProbability

DoubleValue

DoubleValueDoubleListValue

Fig. 4.14 Hierarchy (via Containment Relation) of a DBPMRT and important Associations
between Elements

account and strategically replace containment or reference relations with their temporal

equivalents (i.e. relations annotated with their time of relevance). One such possibility

is to define "spheres of change" which correspond with the different perspectives, e.g. if

something in the resource perspective changes, a new time-associated BPResourceModel

is added. Figure 4.15 shows an example of this approach: The different colours indicated

the different "spheres of change" and whenever relations are crossing these spheres they

are required to become an equivalent temporal relation, i.e. temporal containment and

temporal reference. The realisation of these relations is discussed in Section 4.3.2. Other

relations5, not crossing spheres, remain as before. Note, that the spheres are not in ev-

ery case matching the separated perspectives, e.g. the sphere for control-flow changes

reaches into the performance perspective. These deviations are the result of considering

the special characteristics of BP changes:

• Since the performance perspective changes with a very high frequency relative to

the control-flow perspective it is not feasible for each such change to create a com-

plete new BPPerformanceModel including all PPIs (ProcessInstantiation, Activity-

Workload, and BranchingProbability) with all its references to the control-flow. Fur-

thermore, the respective PPIs are directly connected to BPCtrlFlowElements and

5Figure 4.15 shows is a simplified view of the DBPMRT. In the complete model are more relations that are
not crossing spheres.

4.3 Descriptive Business Business Process Evolution Model 124

DoubleValue

CtrlFlowElement

BPCtrlFlowModel

BPHolisticModel

BPResourceModel BPScenarioModel BPPerformanceModel

BPCtrlFlowModel

CtrlFlowElementResourceResource RoleRole

ProcessInstantiation

ActivityWorkload

BranchingProbability

ProcessInstantiation

ActivityWorkload

BranchingProbability

DoubleValue

DoubleValueDoubleListValue

Legend
Affected when Change in...

...Control-flow

...Performance

...nothing

...Roles/Res.

Temporal
Containment
Temporal
Reference

Fig. 4.15 Influence Spheres of Certain Changes and the Situation of Temporal Relations in
the Evolution DBPMRT

thus fall logically rather into the change sphere of the control-flow perspective. As a

result of the inclusion of the PPIs into the control-flow sphere of change, a changed

performance is reflected by the temporal relation to each PPI’s value, i.e. Double-

Value or DoubleListValue.

• The DBPMRT captures the state and evolution of multiple control-flows (see BP-

ScenarioModel). Usually if one control-flow changes, the others are unaffected by

this. This is the reason to differentiate between changes of individual control-flows

and not conflate them with each other. Hence, the introduction of the tempo-

ral relations between BPScenarioModel and BPCtrlFlowModel rather than between

BPHolisticModel and BPScenarioModel.

If a system features extremely volatile resource or control-flow models it can make

sense to position the temporal relations on an even lower level. Possible candidates are:

(1) roles and resources, e.g. if the resources change very frequently but the roles stay

mostly the same it can make sense to not create the entire BPResourceModel new for each

resource change but instead decouple them, i.e. make all relations in the BPResource-

Model temporal; (2) activities and other control-flow elements, i.e. the set of activities in

a control-flow does change very rarely in comparison to the general control-flow (execu-

tion order). In this scenario it can make sense to separate an activity sphere of change

from the control-flow sphere of change.

4.3 Descriptive Business Business Process Evolution Model 125

Childnodes
+ occurrence: DoubleValue

...

ProcessInstantiation

Childnodes
+ mean : Double
+ stdtDeviation : Double

DoubleValue

1

Childnodes
+ timedValues: TimeSeriesEntry<Type>*

TimeSeries
<Type>

Childnodes
-

DoubleValueTimeSeries

<DoubleValue>

0...*
Childnodes
+ startDate: Date
+ value: Type

TimeSeriesEntry
<Type>

1

Fig. 4.16 Model Schema for Temporal 1:1-Containment for ProcessInstantiation-
DoubleValue Relation

4.3.2 Temporal Relations for Evolution DBPMRT

The schematic DBPMRT as evolution model was introduced in the previous section con-

taining 10 different temporal relations. In essence they conform to three different types

that need to be meta-modelled. The realisations of these three types are described in the

following, each exemplary on the basis of a reference temporal relation.

Temporal 1:1-Containment Relation

One of the types is a temporal 1:1-containment relation, i.e. the parent element contains

one child element. The relation between the PPI ProcessInstantiation and DoubleValue

is such a relation. Figure 4.16 depicts the proposed meta-model to realise the temporal

relation for this type: Two new key classes are introduced, TimeSeries and TimeSeriesEn-

try. The latter is a typed element (<Type>) that contains the typed value and a startDate
representing the start time of relevance of the value. The former is a typed abstract class

that contains TimeSeriesEntries of the same type. With the help of these two basic classes

the temporal relation is realised by the new class DoubleValueTimeSeries which is a spe-

cialisation of both, the DoubleValue and the typed TimeSeries<DoubleValue>6. Through

the resolved type being DoubleValue all TimeSeriesEntries do now contain a value of type

DoubleValue. With regards to the classes ProcessInstantiation and DoubleValue nothing

in the original meta-model definition changes; only new elements are included and al-

low for using the temporal (DoubleValueTimeSeries) rather than the state (DoubleValue)

element for the occurrence value. Through the proposed realisation ProcessInstantia-

tion-DoubleValue essentially becomes a 1:*-relation since many values are now contained

6EMF allows multiple super types, i.e. multiple inheritance

4.3 Descriptive Business Business Process Evolution Model 126

TimeSeriesEntry
<DoubleValue>

startDate = 20.01.2015

17:13:09:651

timedValues

TimeSeriesEntry
<DoubleValue>

startDate = 20.01.2015

17:18:12:782

DoubleValue
mean = 11.0

stdDeviation = 0.4

DoubleValue
mean = 15.0

stdDeviation = 0.7

TimeSeriesEntry
<DoubleValue>

startDate = 20.01.2015

17:23:15:913

DoubleValue
mean = 9.0

stdDeviation = 0.6

value value value

20.01.2015

17:13:09:651

20.01.2015

17:18:12:782

20.01.2015

17:23:15:913
Time

m
ea

n

Model:

Interpretation (showing mean value):

[0] [1] [2]

DoubleValueTimeSeries
mean = 10.0

stdDeviation = 0.6

Fig. 4.17 Example Model for a DoubleValueTimeSeries Temporal Relation and its Interpre-
tation

in this PPI. However, given a specified time/date the relation stays of the type 1:1 as in-

tended.

An example model of such a temporal relation (DoubleValueTimeSeries) and its inter-

pretation is shown in Figure 4.17: The values belonging to the DoubleValueTimeSeries (it

is a specialisation of DoubleValue and thus also has mean and stdDeviation) are associ-

ated with the time before the startDate of the first entry in the timedValues (light green

colour). The DoubleValue of the first TimeSeriesEntry is valid from its startDate to the

startDate of the next entry. If there is no next TimeSeriesEntry, the associated Double-

Value is valid from startDate to infinity.

Other relations of a similar type and which are realised in the same way are between

ActivityWorkload and DoubleValue, BranchingProbability and DoubleListValue, as well as

BPHolisticModel and BPResourceModel.

Temporal 1:*-Reference Relation

Another type is the temporal 1:*-reference relation as existent between Role and Activ-

ity7. Figure 4.18 shows its realisation. Again with the help of the two core classes Time-

Series and TimeSeriesEntry the Role-Activity is transformed into a temporal relation. For

this, two new classes are created: ActivityList essentially representing the 1:* character-

istic of the relation and ActivityListTimeSeries, a specialisation of ActivityList and Time-

Series<ActivityList> representing the temporal relation. However, the original meta-model

7One Role has references to multiple Activities, i.e. 1:* relation.

4.3 Descriptive Business Business Process Evolution Model 127

Childnodes
+ assignedActivities: ActivityList (new)
+ assignedActivities: Activity* (old)
...

Role

Childnodes
+ activities: Activity*

ActivityList

Childnodes
+ timedValues: TimeSeriesEntry<Type>*

TimeSeries
<Type>

Childnodes
-

ActivityListTimeSeries

<ActivityList>

0...*
Childnodes
+ startDate: Date
+ value: Type

TimeSeriesEntry
<Type>

Childnodes
...

Activity
1 *

1

11 *

Fig. 4.18 Model Schema for Temporal Role-Activity Relation

had to be slightly altered: now assignedActivities in Role contains one ActivityList

rather than multiple Activities directly. This alteration allows for both: the model to be

used as state model (when assignedActivities is an ActivityList) and as evolution model

(when assignedActivities is an ActivityListTimeSeries).

Temporal Grouped Relation

A third type used in the evolution DBPMRT is the temporal group relation which is a col-

lection of relations from one source to a number of targets (possibly of the same type) that

change at the same time, i.e. can be temporally grouped. One such group are the relations

from BPScenarioModel to BPCtrlFlowModel. Figure 4.19 shows the meta-model extension

for this relation. It is similarly realised as with the previous temporal relation: A proxy class

is modelled that groups the considered relations into one entity (CtrlFlowRelations) with

references copying said relations (ctrlFlows and instantiableCtrlFlows). Further-

more, BPScenarioModel is amended so that it contains all BPCtrlFlowModels (ctrlFlows)

and one proxy class CtrlFlowRelations (temporalCtrlFlows) but not the relations that

have been moved to the proxy class. With the second new class CtrlFlowRelationsTime-

Series (a specialisation of CtrlFlowRelations and TimeSeries<CtrlFlowRelations>) the meta-

model allows for evolution modelling (when temporalCtrlFlows is an CtrlFlowRelation-

sTimeSeries) and state modelling (when temporalCtrlFlows is an CtrlFlowRelations).

The same pattern is also applied in the temporal group relation between the BPPerfor-

manceModel and its respective ProcessInstantiations, ActivityWorkloads, and Branching-

Probabilities.

4.4 Qualitative Evaluation 128

Childnodes
+ ctrlFlows: BPCtrlFlowModel*
+ instantiableCtrlFlows: BPCtrlFlowModel* (old)
+ temporalCtrlFlow: CtrlFlowRelations (new)
...

BPScenarioModel

Childnodes
+ ctrlFlows: BPCtrlFlowModel*
+ instantiableCtrlFlows: BPCtrlFlowModel*

CtrlFlowRelations

Childnodes
+ timedValues: TimeSeriesEntry<Type>*

TimeSeries
<Type>

Childnodes
-

CtrlFlowRelationsTimeSeries

<CtrlFlowRelations>

0...*
Childnodes
+ startDate: Date
+ value: Type

TimeSeriesEntry
<Type>

Childnodes
...

BPCtrlFlowModel 1 *

1

11 *

1 *

1 *

Fig. 4.19 Model Schema for Temporal BPScenarioModel-BPCtrlFlowModel Relation

4.4 Qualitative Evaluation

The evaluation of the proposed DBPMRT meta-models is twofold:

1. Primarily through an evaluation via a case study (see Chapter 6): There the pro-

posed DBPMRT is quantitatively evaluated for its capability to represent a BP simu-

lation model in Chapter 6 in the context of predictive performance reasoning. The

use of case study for evaluation is a standard evaluation methodology to analyse the

usefulness of model artefacts in software engineering (see Section 1.6).

2. Secondly, through a supplementary qualitative evaluation of the reference meta-

models with regards to meeting the DBPMRT requirements MR1-MR4 established

in Section 4.1.2. The goal is to evaluate whether the proposed reference language is

expressive enough to represent domain-specific constructs while at the same time

not allow for much redundancy.

The qualitative evaluation with regards to meeting the defined requirements is carried out

in the remainder of this section:

Reflectivity (MR1): In order to meet the reflectivity requirement, modelling capabilities

were introduced that allow the capturing of instance level information. This includes in-

stance state information for the control-flow, resources, and performance perspective.

The proposed DBPMRT language allows for the capturing of these types of instance level

information (see Section 4.2.4). Since the DBPMRT is a use case independent solution,

the proposed meta-model has been designed to generalise from the actual reality, i.e. no

system-specific data is captured such as "value of order" or "credit card details". Albeit

being instance level information that is potentially useful for some form of reasoning,

4.4 Qualitative Evaluation 129

this kind of data is use case- and system-dependent, i.e. it can not be easily included in

a general-purpose DBPMRT. Furthermore, the evolution of the reflective state is not cap-

tured as this would quickly exhaust any amount of memory for very frequent BPs (e.g.

1000s of instance state changes per second).

Variability (MR2): Just like every BP language that allows for individual instantiation

and flexibility on the instance level, the variability requirement is fully met by the pro-

posed DBPMRT. This is achieved by including control-flow elements that support flexi-

bility by design like Fork, Join, Decision, and Merge into the language (see Section 4.2.1).

This means with regards to descriptive models that the instance information is sufficiently

generalised and represented by the type level information, e.g. the control-flow is aggre-

gated information inferred from sequences of BP instance states or the PPIs are aggre-

gated information inferred from occurred single performance values. This narrative is an

alteration of that of design models in MDE where model information on the instance level

conforms to the type information.

Dynamism (MR3): Dynamism is the ability to represent change on the type level of the

process. To fulfil this requirement two different types of DBPMRT have been proposed:

(1) the State DBPMRT (see Section 4.2) which allows for changes on the type level but

only captures the current as-is state and discards outdated information, and (2) the Evo-

lution DBPMRT (see Section 4.3) that records the evolution of the type information, i.e.

certain relations in the State DBPMRT are extended by a time dimension in order to retain

information about historic states of the BP. While both models allow for changes on the

type level, the evolution DBPMRT even allows for recording different variants and their

respective time of validity.

Expressibility (M4): The expressibility requirement is the ability to model relevant infor-

mation specific to the BP domain (this technically includes the variability requirement).

To support this ability the proposed DBPMRT has the following characteristics: (1) the

DBPMRT is modularly structured (see Section 4.2.5), i.e. allowing the modelling of basic

BP structures and supporting extensions where necessary (e.g. more PPIs in the perfor-

mance perspective), (2) it is of generic nature, i.e. all essential BP elements and their asso-

ciations are supported, and (3) the DBPMRT is a holistic approach, i.e. all relevant BP per-

spectives are supported and it is possible to model complex behaviour or circumstances

such as sub-processes or different processes accessing the same resource pool. However,

the proposed DBPMRT is a generic solution, i.e. it may, in some cases, be considered

too much of a simplification/generalisation of the real system. For instance, resources

have different efficiencies or other statuses, e.g. on holidays, sick, etc. Such missing mod-

elling capabilities can be added to the meta-models if required. The aspect of possible

oversimplification will be further discussed in the evaluation of the overall and reasoning

framework in Section 6.3.3.

4.4 Qualitative Evaluation 130

Conclusion: Based on the results of the qualitative analysis the author has assigned

a semi-quantitative measure representing the degree of fulfilment achieved by the pre-

sented DBPMRT for each of the model requirements. The result is shown in Table 4.1.

Table 4.1 Degree of Requirement Fulfilment

(++ = Full, + = Mainly, ◦ = Partly, − = Negligible)

Requirement:
Principal

Restrictions
Degree of

Fulfilment Fulfilment

MR1 Yes
- no system-specific data +
- no instance evolution

MR2 Yes - ++

MR3 Yes - ++

MR4 Yes
- simplification of real +

system

Aside from the concrete requirements for DBPMRT, the reference models can be eval-

uated against the identified gaps in the analysis carried out in Section 3.2. When regarding

the individual features of the gap analysis (control-flow, organisational, and performance

abstractions, as well as their state, and history) the proposed DBPMRT reference models

represent a language that supports all theses features. This is in contrast to the state-of-

the-art languages investigated in the gap analysis as shown in Table 4.2.

Table 4.2 Gap Analysis Descriptive Business Process Models at Run-time for DBPMRT;
Legend: (-) not supported, (◦) somewhat supported, (+) mainly supported

BP BP Type Perspectives BP Instance State BP History
Language Ctrl-Fl. Org. Perf. Ctrl-Fl. Org. Perf. Ctrl-Fl. Org. Perf.

EPC + + + ◦ ◦ − ◦ ◦ −
BPMN + + − − − − − − −

BPMN+ + + + − − + − − +
PN ◦ ◦ ◦ + ◦ − − − −
HN ◦ ◦ ◦ − − − − − −

YAWL + + − + ◦ − − − −
ADEPTflex + − − + ◦ − + − −
DBPMRT + + + + + + + + +

4.5 Summary 131

4.5 Summary

In this chapter the first objective of this thesis was addressed: The specification of a ref-

erence language for DBPMRTs. To achieve this, concrete requirements were formulated

that need to be met by a modelling language for DBPMRT (see Section 4.1.2): captur-

ing change on the levels of dynamism, variability, and reflectivity, as well as support the

expressibility of common BP-domain models. To meet this requirements two languages

were proposed: (1) reference meta-models for a DBPMRT were presented that are able

to represent the holistic state (instance and type level + control-flow, resource, and per-

formance perspective) of one or more observed BPMS (see Section 4.2), and (2) These

reference meta-models were enhanced/adapted to enable the capturing of the temporal

evolution of the BPMS’s state on the type level (see Section 4.3). In the final Section 4.4, the

DBPMRT specification was evaluated in a qualitative fashion against the requirements es-

tablished earlier: It was shown that all requirements are at least mainly fulfilled with only

minor restrictions that are subject of future work (see Section 7.2).

Chapter 5

Establishment of Causal Connection

BPMSs produce BP events indicating a change of the system’s internal state. They repre-

sent fine-granule state transitions and are on a different abstraction level than business

processes. This chapter addresses the objective of inferring the DBPMRT from this low

level event data in a real-time environment, i.e. every change in the system should be

causally and timely reflected in the associated run-time representation comprising infor-

mation of different abstraction levels. In other words, the objective can be described as

online discovery of a holistic BP model and as such consolidates a multitude of related do-

mains: model-driven engineering, business process management, and data mining. In

particular, the research areas of models at run-time (see Section 2.7), process discovery

(offline (2.4.2) and online (2.4.4)), concept drift (2.4.3), simulation BP models (2.5.3) are

of relevance for this objective. This chapter provides details about the developed agents

and algorithms which are formally presented, evaluated, and thus addresses the state-of-

the-art gaps identified in Section 3.3.

To address this objective, the chapter is divided in several parts (see Figure 5.1): First,

the objective is further specified in Section 5.1, which includes the discussion of pre-

liminary definitions and the specification of concrete requirements. In a second part a

unique approach to establish the causal connection between BPMS and the DBPMRT

is introduced in Section 5.2: The Construct Competition Miner (CCM) which discov-

ers the control-flow of a process via a BP event log. The third part of this chapter is

concerned with the issue of maintaining the causal connection during run-time. Con-

cretely, a framework has been designed processing each BP event individually in order to

adapt the BP state information on the type and instance levels and for all relevant per-

spectives. The general concept and components of the framework are explained in Sec-

tion 5.3. On the basis of this concept the CCM was modified (utilising its unique features)

to monitor an BP event stream and dynamically discover the control-flow. The design

and modifications which lead to the development of the Dynamic Construct Competi-

tion Miner (DCCM) are discussed in Section 5.3.4. The specific algorithmic details for

all components involved in the dynamic inference of type level information of all rele-

vant BP perspectives are then explained in the following two Sections 5.4 and 5.5. Subse-

133

Chapter 5: Objective II – Establishment of Causal Connection

Contribution

3.3: Gap Analysis: Processes Discovery at Run-time

5.8: Evaluation

5.1: Detailed Problem Definition

Dynamic Discovery (complete)

5.4: Dynamic Footprint Update

5.5: Footprint Interpretation

5.6: Process Instance State Tracking

5.7: Lifecycle to Perspective Mapping

5.3: Dynamic Process Discovery Framework

5.3.4: Dynamic Construct Competition Miner

Static Discovery (Control-flow)

5.2: Construct Competition Miner

Fig. 5.1 Outline of Chapter 5

quently, in Section 5.6 it is discussed how to effectively track the instance state within the

overall framework followed by an overview of how different event lifecycles contribute

to the computation of the respective BP perspectives in Section 5.7. In a fourth part in

Section 5.8, the algorithms concerned with the control-flow discovery, CCM and DCCM,

are individually evaluated in a quantitative way via established quality criteria (see Sec-

tion 2.4.1). Furthermore, a qualitative evaluation against the previously established re-

quirements is carried out which includes all levels and perspectives. The chapter is sum-

marised by a brief conclusion.

5.1 Detailed Problem Definition 134

5.1 Detailed Problem Definition

The objective of establishing a link from BPMS to DBPMRT can be divided into two parts:

(1) Establishing the causal connection and (2) Maintaining the causal connection in a

dynamic real-time environment. The solution for both sub-objectives has to meet certain

requirements which are explained in the remainder of this section.

Establishment of the Causal Connection

The abstraction gap between the events emitted by a BPMS and a BP model is difficult to

bridge and only achievable with the help of complex aggregations. Bridging this gap of low

level transactional information and a higher level model is the domain of contemporary

data mining techniques. In the domain of business processes this is a challenging task in

its own right highlighted by the fact that extensive research field (Process Mining/Process

Discovery) has evolved featuring many substantial contributions as previously outlined

in Section 2.4.2. The shortcomings of recent state-of-the-art algorithms are discussed in

Section ?? and includes, for instance, the mining of Petri Nets instead of BP models, or

not supporting noisy or incomplete event logs. Generally, traditional process discovery

approaches are carried out in an static way as an "offline" method. This is reflected by

the fact that the input for these algorithms is an entire log as expressed by the following

definition:

Definition 1 Let the log Ln = [e0,e1, ...,en] be a sequence of n +1 events e0,e1, ...,en ∈ E or-

dered by time of occurrence (∀i < j∧ei ,e j ∈ Ln :time(ei)≤ time(e j)) and BPn be the business

process model representing this sequence of n+1 events, then process discovery is defined as

a function that maps a log Ln to a process BPn , i.e.

ProcessDiscovery : Ln ⇒ BPn or

ProcessDiscovery : [e0,e1, ...,en] ⇒ BPn

(5.1)

In order to establish a causal link from BPMS events to DBPMRT through process dis-

covery the following requirements1 need to be met2:

TR1 Independent/Autonomous:

The enactment of BPs often deviates from the planned model which therefore does

not properly reflect reality (see Section 3.1). This is why the discovery of a business

process model from event logs should not rely on (possibly wrong or outdated) ex-

ternal a-priori information but instead act autonomously in order to extract an ac-

curate as-is representation solely based on the reality captured in the log.

1TR1 and TR2 are derived from general process discovery requirements; TR3 is specific with regards to
the problem of establishing a causal connection.

2TR = Tooling Requirement

5.1 Detailed Problem Definition 135

TR2 Well-fitting Result:

The DBPMRT supports the most common elements and constructs of the existing

standards of the business process domain. The algorithm is required to always dis-

cover such a generalised model even if the log contains sporadic, contradictory,

or incomplete information, i.e. generalisation and simplicity are important qual-

ity criteria. But while supporting a certain degree of generalisation and simplicity,

the agent should also achieve a high level of accuracy, i.e. precision and fitness,

are similarly important to have an accurate reflection of reality. That means, the

result should reflect the main behaviour while ignoring outliers (exceptional be-

haviour/noise), i.e. good balance between over-fitting and under-fitting (see Sec-

tion 2.4.1).

TR3 Robustness:

Real life logs are likely to contain sporadic, contradictory, or incomplete behaviour.

The agent has to always provide a (well-fitting) result independent of the input. Fur-

thermore, a true causal link can only be established if the approach is a determinis-

tic projection, i.e. the same input creates the same output.

The Causal Connection in a Real-time Environment

As elaborated in the state-of-the-art Sections 2.4.2 and 2.4.4 as well as the gap analysis

Section 3.3, the challenges of establishing a causal link through traditional process dis-

covery from event logs are generally motivated by algorithmic features (e.g. abstraction-

based vs. heuristic, deterministic vs. non-deterministic) and their quality of the results

(e.g. precision, simplicity, fitness; over-fitting vs. under-fitting). Of less or little impor-

tance on the other hand is the practical execution of these process discovery solutions for

modern collaborative systems which represent a large scale, high-frequency, and dynamic

environment. For such an environment it can be argued that just analysing a log in a static

"offline" fashion can only partly claim to support a causal connection mainly due to (see

Sections 2.4.4 and 3.3): (1) technical impracticability ("big data", i.e. data sets are too

large and complex to store and process all of them), (2) technical delay (the log is already

long out-of-date when the analysis has finished), and (3) the lack of provision for a BP’s

dynamic nature (most processes are not "steady-state" but instead evolve continuously).

In order to adequately respond to these new challenges the initial concept of process

discovery has to be altered in order to allow for dynamic process discovery or online process

discovery (see Section 2.4.4). Instead of the traditional static method (see Definition 1)

dynamic process discovery is an iterative approach as defined in the following:

Definition 2 Let the log Ln = [e0,e1, ...en] be a sequence of n + 1 events ordered by time

of occurrence (∀i < j ∧ ei ,e j ∈ Ln : time(ei) < time(e j)) and BPn be the business process

model representing this sequence of n +1 events then dynamic process discovery is defined

5.1 Detailed Problem Definition 136

as a function that projects the tuple (en ,BPn−1) to BPn , i.e.

DynamicProcessDiscovery : (en ,BPn−1) ⇒ BPn (5.2)

This definition entails that every run-time event (system transition) in the BPMSs

is immediately processed according to the concept of CEP and BAM (see Section 2.2.3:

Business Process Analysis in Real-time) and reflected in the continuously updated "cur-

rent state" of the process. This includes potentially all relevant perspectives of a BP, i.e.

control-flow, resource, performance, instance state. Taking the new challenges into ac-

count (dynamic, large-scale, high-frequency) and the adapted concept of dynamic pro-

cess discovery, additional requirements should be met to maintain the causal link in this

challenging environment:

TR4 Detection of Change:

While traditional process discovery approaches take into account the Variability

level of change (see Section 4.1) a framework supporting dynamic process discovery

should also detect change in the other two remaining levels to maintain the causal

link: (1) Reflectivity: Change on the instance level, i.e. every single event leads to

a fine-granular transition of the state of a trace, and (2) Dynamism: Change on the

type level (Concept Drift), i.e. when a set of more recent events indicate a change

of one of the type level perspectives of a business process this should be reflected

in the respective parts of the output DBPMRT, e.g. because a trace appears that

contradicts with the currently assumed control-flow.

TR5 Optimised Algorithmic Run-time/Memory Usage:

To fulfil the objective a timely reflection of causality is required. This aspect is for

current control-flow discovery solutions of almost no importance. But since dy-

namic process discovery is adopting the event-by-event concept as specified in Def-

inition 2 while potentially dealing with massive BPs consisting of hundreds of activ-

ities and producing thousands of events per second, the actual run-time of the algo-

rithms becomes very important. As a consequence the event processing is required

to be (1) quasi-immediate, i.e. each event needs to be processed within a small and

near-constant amount of time, and (2) memory neutral, i.e. processing an infinite

number of events without exceeding a certain memory threshold. Furthermore,

it is desirable if the concept allows for scalability in order to cope with increasing

workload at as little as possible additional computational cost, i.e. processing more

events can be mitigated via scale-up or scale-out measures.

TR6 Extensibility:

As an MRT solution the framework should follow model-driven principles on the

mega-model level and allow for customisation to suit specific input, output, and

processing requirements, i.e.: (1) Since collaborative BPs often span multiple BPMSs,

each potentially producing events of different formats, the concept is also required

5.2 Static Construct Competition Miner 137

to enable the introduction of additional adapters which allow for processing new

event formats; (2) The concept is required to allow for individual processing com-

ponents to be exchanged, removed, and/or added, dependent on the purpose and

extent of the DBPMRT that is to be mined.

5.2 Static Construct Competition Miner

In this section the specifics of the Constructs Competition Miner (CCM) are described.

The CCM was developed to meet requirements TR1 - TR3 and features unique character-

istics that can be utilised to fulfil TR4 - TR6 (through modifications which are specified in

Section 5.3.4). Generally, the CCM can be characterised as a deterministic process discov-

ery algorithm that operates in a static fashion and follows a divide-and-conquer approach

which, from a given event log, directly mines a block-structured process model that rep-

resents the main behaviour of the process. Note, that the CCM is only discovering the

control-flow of a process; the (dynamic) discovery of the other perspectives and instance

level information is described in later sections.

5.2.1 Preliminaries

Firstly, preliminary formal definitions are established which are the basis for formalising

the methods and algorithms to solve the problem. For this the input and output formats,

i.e. the BP event logs as well as the BP control-flow, are formalised. The example control-

flow shown in Figure 2.12 on page 34 is used as a reference process in the remainder of

this chapter. Formally, the control-flow of a business process is defined here as follows:

Definition 3 A BP control-flow is a tuple CF = (A,S, J ,ω,ϵ,C) where A is a finite set of ac-

tivities, S a finite set of splits, J a finite set of joins, ω the start event, ϵ the end event, and

C ⊆ F ×F the path connection relation, with F = A∪S ∪ J ∪ {ω,ϵ}, such that

• C = {(c1,c2) ∈ F ×F | c1 ̸= c2 ∧ c1 ̸= ϵ∧ c2 ̸=ω},

• ∀a ∈ A∪ J ∪ {ω} : |{(a,b) ∈C | b ∈ F }| = 1,

• ∀a ∈ A∪S ∪ {ϵ} : |{(b, a) ∈C | b ∈ F }| = 1,

• ∀a ∈ J : |{(b, a) ∈C | b ∈ F }| ≥ 2,

• ∀a ∈ S : |{(a,b) ∈C | b ∈ F }| ≥ 2, and

• all elements e ∈ F in the graph (F,C) are on a path from start event ω to end event ϵ.

A block-structured control-flow as discussed in Section 2.4.1 is a refinement of Defini-

tion 3. It is additionally required that the process is hierarchically structured, i.e. every

split element is mapped to exactly one join and vice-versa, both representing either a sin-

gle entry or a single exit point of a non-sequence BP construct, e.g. Choice, Parallel, etc.

5.2 Static Construct Competition Miner 138

Furthermore, the input for the process discovery algorithm, i.e. a simple event log (see

Section 2.4.1), is formally defined in the following:

Definition 4 Let A be a finite set of activities then σ ∈ A∗ is a trace3 and Log ⊆ A∗ is an

event log, more specifically Log is a multi-set (bag)4 of traces (sequences of activities). A

finite sequence over A of length n is a mapping σ : {0,1, ...,n − 1} → A and is represented

in the following by a string, i.e. σ = [a0, a1, ..., an−1] where ai =σ(i) for 0 ≤ i < n. |σ| = n

denotes the length of the sequence.

According to this definition L1 ∈ Log from Equation 2.1 on page 35 is an example of a

simple event log of the reference BP and acts as the reference log in this chapter if not

stated otherwise.

5.2.2 Divide and Conquer

The motivation to develop a discovery algorithm, which makes different BP constructs

compete with each other for the best solution, is mainly derived from the challenge that

logs often contain noise or even have frequent but conflicting behaviour. This cannot be

expressed by common BP constructs without allowing duplicated activities. In uncertain

cases the algorithm should look for the best solution which can support most of the be-

haviour, i.e. sequence, choice, parallelism, or loop or a combinations of these. Another

important part of the CCM is that it is not based on local relationships like direct neigh-

bours (see Section 2.4.2) but rather mines the process structure from global relationships

between any two activities, e.g. which activities eventually follow one another in a trace.

This approach has the benefit of avoiding a state-space explosion for logs of strongly con-

nected BPs and will be of further benefit for the competition algorithm.

Algorithm 1 shows the conceptual methodology of the CCM algorithm in pseudocode.

The CCM applies the divide-and-conquer paradigm and is implemented in a recursive

fashion (see lines 7, 16, and 17). At the beginning getFootprintAndBuildConstruct is

initially called for all involved activities (Am = A) with the process bp consisting of only

a start and end element. The recursive function is first creating a footprint fp from the

given log L only considering the activities specified in set Am (at the beginning all in-

volved activities). In a next step it will be decided which is the best construct to represent

the behaviour captured by fp: (1) If the activity set Am only consists of one element, it will

be decided which of the single activity constructs (see bottom of Figure 5.5) fits best - the

process bp will then be enriched with the new single activity construct (see line 11); (2) If

the activity set Am contains more than one element, the suitability for each of the differ-

ent constructs is calculated for any two activities x, y ∈ Am based on "soft" constraints and

behaviour approximations, e.g. activities a and b are in a strong Sequence relationship.

3 A∗ is the set of finite sequences of elements of A.
4Since Log is a multi-set each trace can be contained more than once - see [233]

5.2 Static Construct Competition Miner 139

Algorithm 1: Methodology of the CCM in Pseudocode
Data: Log L
Result: CF bp

1 begin
2 A ← getSetOfAllActivitiesInLog(L);
3 CF bp ← buildInitialBPWithStartAndEnd();
4 bp ← getFootprintAndBuildConstruct(A,L,bp);
5 return bp;

6 Function getFootprintAndBuildConstruct(Am, Log L,CF bp)
7 Footprint fp = extractFootprintForActivities(Am ,L);
8 if |Am | = 1 then
9 Construct c ← analyseConstructForSingleActivity(fp);

10 bp ← createSingleActivityConstruct(c, Am);

11 else
12 ConstructsSuitability[] cs ← calculateSuitabilityForConstructs(fp, Am);
13 (Construct c, Afirst , Asecond) ← constructCompetition(cs, Am);
14 bp ← createBlockConstruct(c,bp);
15 bp ← getFootprintAndBuildConstruct(Afirst ,L,bp);
16 bp ← getFootprintAndBuildConstruct(Asecond,L,bp);

17 return bp;

The result of this calculation (line 13) is a number of suitability matrices, one for each con-

struct. In the subsequent competition algorithm it is determined what is the best com-

bination of (A) the construct type c ∈ {Sequence,Choice,Loop, ...}, and (B) the two subsets

Afirst and Asecond of Am with Afirst ∪ Asecond = Am , Afirst ∩ Asecond = {}, and Afirst , Asecond ̸= {},

that best accommodate all x, y-pair relations of the corresponding matrix of construct

c (line 14). The construct is then created and added to the existing process model bp

(line 15), e.g. XOR-split and -join if the winning construct c was Choice. At this stage the

recursive method calls will be executed to analyse and construct the respective behaviour

for the subsets Afirst and Asecond. The split up of the set Am continues in a recursive fashion

until it cannot be divided any more, i.e. the set consists of a single activity (see case (1)).

The control-flow is completely constructed when the top recursive call returns.

The general principle of the algorithm is graphically depicted in Figure 5.2. Note, that

the "Find Best Construct" component is equivalent to the function on line 6 of the Algo-

rithm 1: getFootprintAndBuildConstruct. Furthermore, the first few steps to discover

the example process from Figure 2.12 on page 34 are shown as coloured annotations (red,

blue, and green text + boxes): (1) In the first step (red annotations) the best construct for

all activities, i.e. [a,b,c,d ,e, f , g ,h], is determined to be a Decision that splits the set of

activities into two disjoint subsets, i.e. [a,b,c,d ,e] and [f , g ,h]; (2) Then for both of these

subsets their respective best suiting constructs are determined: Sequence for [a,b,c,d ,e]

(green annotations) and Loopover Sequence5 for [f , g ,h] (blue annotations). These con-

5This is a specialised BP construct that represents a sequence which can be repeatedly executed; All
possible BP constructs are defined later in Section 5.2.4.

5.2 Static Construct Competition Miner 140

Block-Structured BP ModelAll Activities

Find Best
Construct

Activity
Subset 1

Activity
Subset 2

Find Best
Construct

Find Best
Construct

:

:

L1 Winning
Construct

L2 Winning
Construct 2

L2 Winning
Construct 1

:

:

[a,b,c,d,e,f,g,h]

[a,b,c,d,e] [f,g,h]

Decision

Loopover
Sequence

Sequence

g
c

h

f
a b

d e

Fig. 5.2 First Steps of the Divide and Conquer Concept for the Example Process

structs further split up the respective sets of activities which are again analysed in a recur-

sive fashion until the subsets consist of only one activity (not shown in the figure).

The functioning of "Find Best Construct" (or getFootprintAndBuildConstruct) can

be divided into three different parts which are further explained following sections: (1) the

calculation of the footprint (Section 5.2.3), (2) the suitability evaluation of the individual

constructs (Section 5.2.4), and (3) the construct competition (Section 5.2.5).

5.2.3 Footprint

The CCM creates multiple footprints during its execution. These footprints are heuris-

tic abstractions of the event log similar to the approach of the HeuristicsMiner (see Sec-

tion 2.4.2) but based on different relations (global rather than local). At the beginning the

overall footprint for all occurring activities has to be created. As the algorithm contin-

ues in its divide-and-conquer fashion, new activity subsets are built for each of which a

new footprint has to be created, e.g. for A = {a,b,c,d ,e} : (a,b,c,d ,e) → ((a,b,c), (d ,e)) →
(((a), (b,c)), ((d), (e))) → (((a), ((b), (c))), ((d), (e)))6 nine different footprints for sets {a,b,c,

d ,e}, {a,b,c}, {d ,e}, {b,c}, {a}, {b}, {c}, {d}, {e} need to be created. For reasons motivated ear-

lier, the CCM focuses on global relations between the different activities (e.g. in how many

traces will x be followed at some later point in the trace by activity y) and occurrence in-

formation about single activities (e.g. how many times does activity x appear in the log).

The set of activities the footprint is to be calculated for is denoted by Am ⊆ A. Further-

more, if the elements of Am are encompassed by one or more parallelism constructs, two

more sets need to be specified7:

• Ai ⊂ A is the set of activities that are to be ignored, i.e. the occurrence of these activ-

ities do neither directly nor indirectly interfere with the occurrence of the activities

6(,) denote the nested blocks that emerge while splitting the sets recursively.
7For simplification reasons (in order to easier explain the overall concept) these two activity sets were

not included in the pseudocode of Algorithm 1. Their functionality is instead explained in this section.

5.2 Static Construct Competition Miner 141

Start
Event

AND
Split

End
Event

AND
Join d

a

c

AND
Split

AND
Join

bXOR
Join

XOR
Split

Fig. 5.3 Example business process with two nested parallel constructs

in Am and are to be ignored (e.g. from a distant parallel path).

• At ⊂ A is the set of activities that are to be tolerated, i.e. the occurrence of these

activities do not directly interfere with the occurrence of the activities in Am but

indicate that the enclosing parallelism construct has been entered (e.g. from a local

parallel path).

Note that Am , Ai , At are disjoint sets of activities. Ai , At are empty if the activities in Am

are not on a parallel path. To distinguish between the different activity sets consider the

process in Figure 5.3. For the creation of the footprint for the top path with activity b the

three sets would be configured in the following way: Am = {b}, Ai = {a}, At = {c}, because a

is on a distant parallel path and c on a local parallel path in relation to b. The distinction

between Ai and At is that elements in Ai are truly independent from the elements in

Am , but elements in At trigger the path in which elements of Am reside as well. This is

important to identify if a parallel path is optional like in the example where b does not

appear in every trace.

To enable the CCM to discover the process from top till bottom the notion of a sub-

trace is required which at a later stage will help to determine the footprint for a subset Am

of all the activities A included in the original log:

Definition 5 Let σ ∈ A∗ be a trace, Am , Ai , At ⊆ A disjoint sets of activities, and Ar =
A\(Am∪Ai∪At) the set of activities in A but not in Am , Ai , or At . Thenλ ∈ A∗

m is a sub-trace

of σ (λ@Am
Ai ,At

σ) iff there is i , j ∈ {0,1, ..., |σ|−1} and i < j such that

• i = 0∨σ(i −1) ∈ Ar and j = |σ|−1∨σ(j +1) ∈ Ar and

• ∃l∈{i ,i+1,..., j }σ(l) ∈ (Am ∪ Ai) and

• ∀l∈{i ,i+1,..., j }σ(l) ∈ (Am ∪ Ai ∪ At) and

• (|λ| = 0)∨
(|λ| = 1∧∃l∈{i ,i+1,..., j }(σ(l) =λ(0)∧∀n∈{i ,i+1,..., j },n ̸=lσ(n) ∉ Am))∨
(|λ| > 1∧∀k∈{0,1,...,|λ|−2}∃l ,n∈{i ,i+1,..., j },l<n(σ(l) =λ(k)∧σ(n) =λ(k +1)∧

∀p∈{l+1,l+2,...,n−1}σ(p) ∉ Am)).

5.2 Static Construct Competition Miner 142

Considering the example in Figure 5.3 and the corresponding trace σ = [b,c, a,b,d] then

λ= [b,c, a,b,d] is a sub-trace ofσ for@{a,b,c,d}
{},{} , λ= [b,c,b,d] is a sub-trace ofσ for@{b,c,d}

{},{a} ,

and λ = [b,b] is a sub-trace of σ for @{b}
{a},{c}. In contrast, when instead considering trace

σ = [c, a,d] only the empty trace λ = [] represents the sub-sequence of σ for @{b}
{a},{c} be-

cause a appeared and indicated that the top path has been enabled as well but exited

without any occurrence of b. Note, that σ @A
{},{} σ, i.e. if the set of activities that are to

be monitored is the set of all activities in the trace then the trace itself is the sub-trace.

Also, in the case of a loop behaviour contained in a trace, the original trace may produce

more than one sub-trace for a subset of activities that reside in the loop, e.g. for trace

σ= [b, a,c, a,b,c,b, a,d ,e,e,d] from L1 on page 35, the following three sequences are sub-

traces of σ for @{a,b}
{},{} : [b, a], [a,b], and again [b, a].

The purpose of the definition of a sub-trace is to establish the basis for the discovery

of the best suited BP control-flow construct for complete traces but also for sub-traces

corresponding to a subset of all involved activities. In order to build the footprint for sub-

traces the following additional notations are introduced:

Definition 6 Let L ⊆ A∗ be an event log over A, and Am , Ai , At ⊆ A disjoint sets of activities

specifying the scope of the notations, and ΛL,Am
Ai ,At

= {λ | λ ∈ A∗
m ∧ λ@Am

Ai ,At
σ ∧ σ ∈ L} be a

multi-set of all sub-traces in L specified by Am , Ai , and At . Let activity x ∈ Am , then is:

1. OnceL,Am
Ai ,At

(x) = {λ ∈ΛL,Am
Ai ,At

| ∃i∈{0,1,...|λ|−1}λ(i) = x},

2. SumL,Am
Ai ,At

(x) = {(λ, l) |λ ∈ΛL,Am
Ai ,At

∧ λ(l) = x},

3. StartL,Am
Ai ,At

(x) = {λ ∈ΛL,Am
Ai ,At

|λ(0) = x},

4. |OnceL,Am
Ai ,At

(x)|, |SumL,Am
Ai ,At

(x)|, and |StartL,Am
Ai ,At

(x)| the sizes of these sets.

Furthermore, let x, y ∈ Am , then is:

1. x >L,Am
Ai ,At

y iff a sub-trace λ ∈ΛL,Am
Ai ,At

and i , j ∈ {0,1, ..., |λ|−1} and i < j exists such that

λ(i) = x and λ(j) = y and ∀k∈{0,1,..., j−1}λ(k) ̸= y,

2. x >>L,Am
Ai ,At

y iff a sub-trace λ ∈ ΛL,Am
Ai ,At

and i , j ∈ {0,1, ..., |λ| − 1} and i < j exists such

that λ(i) = x and λ(j) = y,

3. |x >L,Am
Ai ,At

y | the number of occurrences of x >L,Am
Ai ,At

y in L,

4. |x >>L,Am
Ai ,At

y | the number of occurrences of x >>L,Am
Ai ,At

y in L.

Example: For Am = A = {a,b,c,d} consider the following log L3 = {[a,b,c,d]2, [b, a,c,b,d]1}:

• |OnceL,Am
Ai ,At

(x)| determines how many of the sub-traces contained x,

e.g. |OnceL3,{a,b,c,d}
{},{} (b)| = 3 (twice from [a,b,c,d]2 and once from [b, a,c,b,d]1);

• |SumL,Am
Ai ,At

(x)| represents how many x were in all sub-traces,

e.g. |SumL3,{a,b,c,d}
{},{} (b)| = 4 (2 from [a,b,c,d]2 + 2 from [b, a,c,b,d]1);

5.2 Static Construct Competition Miner 143

• |StartL,Am
Ai ,At

(x)| specifies how many times the sub-trace started with x,

e.g. |StartL3,{a,b,c,d}
{},{} (b)| = 1 (only [b, a,c,b,d]1 started with b)

• |x >L,Am
Ai ,At

y | determines the amount of sub-traces in which x at some point appeared

before the first occurrence of y ,

e.g. |a >L3,{a,b,c,d}
{},{} b| = 2 (only in [a,b,c,d]2 a appears before the first b)

• |x >>L,Am
Ai ,At

y | determines the amount of sub-traces in which x is occurring at some

point before any y ,

e.g. |a >>L3,{a,b,c,d}
{},{} b| = 3 (twice from [a,b,c,d]2 and once from [b, a,c,b,d]1).

With the help of these absolute values the footprint can now be calculated by putting

them in relation to the number of all sub-traces. Then based on these values the CCM

performs a construct analysis which in turn enables the execution of the competition be-

tween these constructs.

Definition 7 Let L ⊆ A∗ be an event log over A, Am , Ai , At ⊆ A disjoint sets of activities

specifying the scope of the footprint, |ΛL,Am
Ai ,At

| be the number of sub-traces in L specified by

Am , Ai , and At . Let x ∈ Am :

• The occurrence once value OonL,Am
Ai ,At

(x) and the occurrence overall value OovL,Am
Ai ,At

(x)

are calculated as follows:

OonL,Am
Ai ,At

(x) =
|OnceL,Am

Ai ,At
(x)|

|ΛL,Am
Ai ,At

|
OovL,Am

Ai ,At
(x) =

|SumL,Am
Ai ,At

(x)|
|ΛL,Am

Ai ,At
|

(5.3)

• The first element value FelL,Am
Ai ,At

(x) is calculated with the following equation:

FelL,Am
Ai ,At

(x) =
|StartL,Am

Ai ,At
(x)|

|ΛL,Am
Ai ,At

|
(5.4)

Let x, y ∈ Am then is the appears before first value x◃L,Am
Ai ,At

y and the appears before value

x ◃◃L,Am
Ai ,At

y calculated as follows:

x ◃L,Am
Ai ,At

y =
|x >L,Am

Ai ,At
y |

|ΛL,Am
Ai ,At

|
x ◃◃L,Am

Ai ,At
y =

|x >>L,Am
Ai ,At

y |
|ΛL,Am

Ai ,At
|

(5.5)

All values of OonL,Am
Ai ,At

, FelL,Am
Ai ,At

, ◃L,Am
Ai ,At

, and ◃◃L,Am
Ai ,At

will be ≥ 0 and ≤ 1 since each of their

relation can occur at most once per sub-trace. However, the values of OovL,Am
Ai ,At

(x) can

become greater than 1 if activity x occurs on average more than once per sub-trace. The

complete footprint consisting of Oon, Oov, Fel, ◃, and ◃◃ is displayed in this thesis as

labelled vectors for the values of Oon, Oov, and Fel and as labelled matrices for the values

5.2 Static Construct Competition Miner 144

of ◃ and ◃◃. Considering again the example log L1 from page 35, its complete footprint

FPL1,A
{},{} for Am = A = {a,b,c,d ,e, f , g ,h} is:

OonL1 ,A
{},{} (x) :

(a b c d e f g h

0.56 0.56 0.18 0.44 0.44 0.38 0.35 0.44
)

OovL1 ,A
{},{} (x) :

(a b c d e f g h

0.91 0.91 0.35 0.62 0.62 1.09 0.65 0.85
)

FelL1 ,A
{},{} (x) :

(a b c d e f g h

0.15 0.41 0.00 0.00 0.00 0.32 0.12 0.00
)

x ◃◃L1 ,A
{},{} y : x ◃L1 ,A

{},{} y :

a b c d e f g h

a 0.18 0.32 0.18 0.44 0.44 0 0 0

b 0.41 0.18 0.18 0.44 0.44 0 0 0

c 0.18 0.18 0.18 0.18 0.18 0 0 0

d 0 0 0 0.18 0.32 0 0 0

e 0 0 0 0.29 0.18 0 0 0

f 0 0 0 0 0 0.24 0.24 0.32

g 0 0 0 0 0 0.29 0.29 0.29

h 0 0 0 0 0 0.29 0.24 0.24

a b c d e f g h

a 0 0.15 0.18 0.44 0.44 0 0 0

b 0.41 0 0.18 0.44 0.44 0 0 0

c 0 0 0 0.18 0.18 0 0 0

d 0 0 0 0 0.32 0 0 0

e 0 0 0 0.18 0 0 0 0

f 0 0 0 0 0 0 0.24 0.32

g 0 0 0 0 0 0.06 0 0.06

h 0 0 0 0 0 0.06 0.24 0

Definition 8 Let L ⊆ A∗ be an event log over A, Am , Ai , At ⊆ A disjoint sets of activities

specifying the scope of the footprint FP, then is

FPL,Am
Ai ,At

= (OonL,Am
Ai ,At

,OovL,Am
Ai ,At

,FelL,Am
Ai ,At

,◃L,Am
Ai ,At

,◃◃L,Am
Ai ,At

) (5.6)

Note: Since the analysis in the remainder of this section is based on one specific footprint

FPL,Am
Ai ,At

, if not otherwise stated FPL,Am
Ai ,At

,OonL,Am
Ai ,At

, OovL,Am
Ai ,At

,FelL,Am
Ai ,At

,◃L,Am
Ai ,At

, and ◃◃L,Am
Ai ,At

will be simply denoted as FP, Oon, Oov, Fel, ◃, and ◃◃ for the remainder of this section

to support the readability, i.e. with regards to Equation 5.6: FP = (Oon,Oov,Fel,◃,◃◃).

5.2.4 Suitability of BP-Constructs

The next step is to infer to what degree the (sub-)footprint FP is reflected by each BP

construct, respectively. If the above footprint is considered it can already logically inferred

that the activity sets {a,b,c,d ,e} and { f , g ,h} are in a Choice construct because all values

between the two sets in the◃◃matrix are 08. It can be additionally inferred that in the◃◃

matrix {a,b,c} and {d ,e} are in a Sequence construct because d and e are never followed

by a, b, or c, but a, b, and c can be followed by d or e. Note, that the footprint FP is a

"perfect" example to showcase how BP constructs can be derived from such a footprint.

Usually, footprint matrices are not sorted in a way that this can be manually inferred by

8i.e. none the of activities { f , g ,h} ever follows or is followed by any of the activities {a,b,c,d ,e} in a trace

5.2 Static Construct Competition Miner 145

Fig. 5.4 Penalty development of (v ∼= t) (equal) and (v � t) (unequal) for given pu and tt

logical deduction and noise as well as the incompleteness of the original log make it more

difficult to find the right construct since none would fit perfectly unlike in the example.

The CCM works similarly to how the Decision and Sequence constructs were iden-

tified for the example footprint: Based on the footprint FP, the algorithm identifies the

BP construct that best describes the footprint with the help of constraints. The construct

which fulfils its respective constraints best is chosen to be part of the BP control-flow

model. As an example, the constraint for the Choice construct (i.e. two activities being

mutually exclusive) requires the appears-before values between the respective activities

to be "equal to 0". However, in order to handle noise well, the CCM uses the following

definition of equality for checking the fulfilment of constraints:

Definition 9 Let v be the actual value, t be the target value, pu be the maximum penalty for

a not fulfilled unequal relation, tt the tolerance which determines the maximum difference

so that v and t are still considered equal, and v, t , pu , tt ∈R+:

(v � t) =
{

pu ∗ (2∗tt
|v−t |+tt

−1)2 if |v − t | < tt

0 el se

(v ∼= t) =
{

0 if |v − t | < tt

|v − t |2 else

(5.7)

Figure 5.4 shows the development of the functions (v ∼= t) (stroked blue line) and

(v � t) (black line) for a given pu and tt . The (penalty) value of (v ∼= t) rises the further the

actual value v is away from the target value t . In contrast, the (penalty) value of (v � t)

rises (up to pu) the closer the actual value v is to the target value t . This essentially trans-

lates "hard" constraints, e.g. the constraint is satisfied if v equals 0, into "soft" constraints,

e.g. the constraints satisfaction penalty value is 0.3. Note, that a penalty of 0 indicates that

the constraint is assumed to be fully satisfied whereas a high the penalty value indicates

5.2 Static Construct Competition Miner 146

that the constraint is only little satisfied.

Construct Suitability for a Single Activity: If a footprint consists of only one activity, i.e.

|Am | = 1, no competition between constructs is necessary. Instead, the correct construct

is identified based on the values in the footprint. Four different constructs for a single

activity x ∈ Am exist9:

• Normal: if (Fel(x) ∼= 1) = 0 and (x ◃◃x ∼= 0) = 0 then x is a simple activity.

• Optional: if (Fel(x) ∼= 1) > 0 and (x ◃◃x ∼= 0) = 0 then x is an optional activity,

i.e. x may also be skipped.

• Loopover: if (Fel(x) ∼= 1) = 0 and (x ◃◃x ∼= 0) > 0 then x is a looping activity,

i.e. x can repeatedly occur after itself ("short loop").

• Loopback: if (Fel(x) ∼= 1) > 0 and (x ◃◃x ∼= 0) > 0 then x is an optional looping

activity, i.e. x may be skipped but can also repeatedly occur.

Construct Suitability for Multiple Activities: If a footprint FP consists of more than one

activity, i.e. |Am | > 1, a preliminary analysis is carried out to identify the suitability of any

two activities x, y ∈ Am with regards to each available construct, e.g. activities x and y are

in a very strong Parallelism relation but less strong in a Sequence relation. The calculation

of this construct’s suitability is again based on constraints. If a constraint is not fulfilled

there will be a penalty depending on the "level" of the constraint10 and how badly it has

failed.

The first step of the suitability analysis is to identify if the construct represented by the

FP is optional, i.e. an optional path exists that allows to bypass this construct. If this is

the case the FP needs to be normalised, i.e. removal of the overall optional behaviour. For

this purpose it is calculated if and to what extent the FP also recorded empty (sub-)traces,

i.e. relative occurrence of an empty (sub-)trace: op = 1−∑
x∈Am Fel(x). The influence of

these empty traces is removed from the FP by multiplying every value of Oon,Oov,Fel,◃,

and ◃◃ with 1
1−op .

Additionally, the following values are calculated for each x ∈ Am and each x, y ∈ Am

pair:

Definition 10 Let x ∈ Am be an activity recorded in FP then is the repetition of x in FP

denoted rep(x) = Oov(x)−Oon(x)
Oov(x) .

Definition 11 Let x, y ∈ Am be activities recorded in FP then is:

(1) the ratio of (sub-)traces in which both activities x and y appear: oc(x, y) = x◃ y + y ◃x,

(2) the maximum possible probability of x and y appearing in the same (sub-)trace:

9> is in this case the common "greater than" relation, not the one specified in Definition 6
10the levels of constraints will be discussed later in this section

5.2 Static Construct Competition Miner 147

AND
Split

XOR
Split

AND
Join

XOR
Join

Source Target

Source TargetA First A Second

A First

A Second

Source Target

A First

A Second

Source Target

a

XOR
Join

XOR
Split

Source Target

A First A Second

XOR
Join

XOR
Split

Source Target
XOR
Join

XOR
Split

XOR
Split

XOR
Join

A First

A Second

Source Target
XOR
Join

XOR
Split

A First

A Second

AND
Join

AND
Split

(a)tSequence

(c)tParallel

(b)tChoice

(4)tLoopback

(e)tLoop-
overt

Sequence

(f)tLoopovert
Parallel

(g)tLoopovert
Choicet
(Flower)

Source Target

a

XOR
Join

XOR
Split

(3)tLoopover

XOR
Split

XOR
Join

Source Target

a
(2)tOptional

Source Target

A First

A Second

XOR
Join

XOR
Split

(d)tLoop

Source Targeta

(1)tNormal

Fig. 5.5 Supported Business Process Constructs

moc(x, y) = min(Oon(x),Oon(y)), and

(3) the combined occurrence probability of x and y: coc(x, y) = Oon(x)∗Oon(y).

The algorithm supports the identification of the BP constructs shown in Figure 5.5.

For each construct a set of constraints have been formulated to determine to which de-

gree a construct represents the global relation between any two activities. In Table 5.1 the

constraints for each construct are listed, sorted by the constraint level. It is distinguished

between different levels/severities of constraints to highlight the importance of their ful-

filment:

• Strict: Constraints of this type can be seen as "iff" requirements on the construct

and are thus required to be fulfilled for a construct to apply, e.g. every activity in a

Loop construct has to occur at least once repeatedly in a trace, otherwise the ob-

served construct cannot be a Loop. Penalties originating from the failure of con-

straints of this type have a strong influence on the suitability of a construct relation;

• Log-Complete: A log-complete constraint is fulfilled when all variants are repre-

sented in the log, i.e. the log is complete. If the log is incomplete constraints of

this type may fail. This is why penalties originating from the failure of log-complete

constraints have a medium influence on the suitability of a construct relation;

• Indication: An indication constraint represents default behaviour of the construct

but may not be fulfilled even in a complete log. Indication constraints are basi-

cally not constraints in the common sense but rather approximations of default be-

haviour in order to distinguish between two very similar constructs, e.g. Parallel

and Loopover-Parallel. Penalties originating from the failure of constraints of this

type have a low influence on the overall suitability.

5.2 Static Construct Competition Miner 148

Table 5.1 Supported BP constructs and their constraints sorted by constraint level

Construct Strict Log-Complete Indication

Choice x ◃◃y ∼= 0, - -
y ◃◃x ∼= 0

Sequence x ◃◃y � 0, - -
y ◃◃x ∼= 0,

x ◃◃y ∼= x ◃ y
Parallel - x ◃ y � 0, x ◃◃y ∼=

y ◃x � 0, (x ◃ y +min(rep(x),rep(y)))
coc(x, y) ∼= oc(x, y) ∗(moc(x, y)−x ◃ y)

Loop rep(x)� 0, x ◃◃y ∼= coc(x, y), -
rep(y)� 0 y ◃◃x ∼= coc(x, y)

Loopover- rep(x)� 0, x ◃◃y ∼= coc(x, y), -
Sequence rep(y)� 0 y ◃◃x � coc(x, y),

x ◃◃y � y ◃◃x
Loopover- rep(x)� 0, x ◃ y � 0, x ◃◃y ∼=

Parallel rep(y)� 0 y ◃x � 0, (x ◃ y ∗Oon(y)+Oov(y)−Oon(y))
coc(x, y) ∼= oc(x, y) /Oov(y)

Loopover- rep(x)� 0, x ◃ y � 0, x ◃◃y ∼= y ◃◃x,
Choice rep(y)� 0, y ◃x � 0 coc(x, y) ∼= max(0,

(Flower) coc(x, y)� 1 Oon(y)+Oon(y)−1)

Based on the constraints listed in Table 5.1 and their respective constraint level the

suitability of each construct for any activity pair x, y ∈ Am , x ̸= y is calculated. Exemplary,

it is shown in the following how values for the constructs Choice Ch(x, y) and Sequence

Se(x, y) are calculated (ws ∈R is the weight of Strict constraints):

1. Ch(x, y) = ws ∗ 1
2 ∗ (x ◃◃y ∼= 0+ y ◃◃x ∼= 0),

2. Se(x, y) = ws ∗ 1
3 ∗ (x ◃◃y � 0+ y ◃◃x ∼= 0+x ◃◃y ∼= x ◃ y).

The values for the other constructs are similarly calculated, with wlc, wi ∈R further speci-

fying the weights for Log-Complete and Indication constraints, respectively. For the foot-

print FPL1,A
{},{} on page 144 the resulting suitability matrices Ch and Se for ws = 0.6 are:

Ch(x, y) : Se(x, y) :

a b c d e f g h

a − 0.26 0.6 0.3 0.3 0 0 0

b 0.26 − 0.6 0.3 0.3 0 0 0

c 0.6 0.6 − 0.3 0.3 0 0 0

d 0.3 0.3 0.3 − 0.29 0 0 0

e 0.3 0.3 0.3 0.29 − 0 0 0

f 0 0 0 0 0 − 0.34 0.39

g 0 0 0 0 0 0.34 − 0.34

h 0 0 0 0 0 0.39 0.34 −

a b c d e f g h

a − 0.13 0.2 0 0 0.2 0.2 0.2

b 0.07 − 0.2 0 0 0.2 0.2 0.2

c 0.4 0.4 − 0 0 0.2 0.2 0.2

d 0.4 0.4 0.4 − 0.09 0.2 0.2 0.2

e 0.4 0.4 0.4 0.14 − 0.2 0.2 0.2

f 0.2 0.2 0.2 0.2 0.2 − 0.14 0.12

g 0.2 0.2 0.2 0.2 0.2 0.18 − 0.18

h 0.2 0.2 0.2 0.2 0.2 0.22 0.22 −

5.2 Static Construct Competition Miner 149

Algorithm 2: Competition Algorithm for the Choice Construct
Data: A, Ch
Result: Afirst , Asecond

1 begin
2 PriorityQueue openCases ← {};
3 openCases.add(({}, {}, A, .0));
4 while true do
5 (Afirst , Asecond, Aleft ,pen) ← openCases.poll();
6 if Aleft = {} then return(Afirst , Asecond) ;
7 x ← Aleft .poll();
8 if |Aleft | > 0∨|Asecond| > 0 then
9 Anew ← Afirst ∪ {x};

10 pennew ← 0;
11 foreach y ∈ Asecond do pennew ← pennew +Ch(x, y) ;
12 if pennew > 0 then pennew ← pennew/|Asecond|+pen ;
13 else pennew ← pen ;
14 openCases.add((Anew, Asecond, Aleft ,pennew));

15 end
16 if |Aleft | > 0∨|Afirst | > 0 then
17 Anew ← Asecond ∪ {x};
18 pennew ← 0;
19 foreach y ∈ Afirst do pennew ← pennew +Ch(y, x) ;
20 if pennew > 0 then pennew ← pennew/|Afirst |+pen ;
21 else pennew ← pen ;
22 openCases.add((Afirst , Anew, Aleft ,pennew));

23 end
24 end
25 end

5.2.5 Competition Algorithm

The goal of the competition algorithm is to find the best combination of (1) the construct

type, e.g. Sequence, Choice, or Loop, and (2) the best two subsets Afirst and Asecond of A

with Afirst ∪Asecond = A and Afirst ∩Asecond = {}, that best accommodates all corresponding

x, y-pair relations. The principal of operation of the competition algorithm is shown by

means of the Choice construct, i.e. for the explanation the construct is fixed and the two

subsets Afirst and Asecond have to be determined. A naive solution would be to create and

compare all possible split ups. With regards to the execution time of the CCM, this is not

desirable since the algorithm would have to check all 2|A|−1 possible split ups. Instead it

should be taken advantage of the fact that these relations, in this case only Ch, represent

the global relation of x and y . That means it is irrelevant for the calculation of the penalty

what the relations between the elements in the same set are (either Afirst and Asecond). In

Algorithm 2 it is presented how the competition algorithm works if only Ch is considered

to be part of the competition. Note, that the priority queue is ordered firstly by the penalty

value pen and secondly by how even the split up is (it is desirable to split the activity set

as evenly as possible to quickly reduce the number of activities). For Ch from the exam-

5.2 Static Construct Competition Miner 150

({},{},{a,b,..h},0)

({a},{},{b,c,..h},0)

({a},{b},{c,..h},0.26)

({a,b},{},{c,..h},0)

({a,b},{c},{d,..h},0.6)

({a,b,c},{},{d,..h},0)

({},{a},{b,c,..h},0)

({a,b,c},{d},{e,..h},0.3)

({a,b,c,d},{},{e,..h},0)

({a,b,c,d},{e},{f,g,h},0.3)

({a,b,c,d,e},{},{f,g,h},0)

({a,b,c,d,e},{f},{g,h},0)

({a,b,c,d,e,f},{},{g,h},0)

({a,b,c,d,e},{f,g},{h},0)

({a,b,c,d,e,g},{f},{h},0.34)

({a,b,c,d,e},{f,g,h},{},0)

({a,b,c,d,e,h},{f,g},{},0.36)

1.

2.

3.

4.

5.

6.

7.

8.

9.

Fig. 5.6 Competition Algorithm: Traversing to the best split up

ple log with Am = A = {a,b,c,d ,e, f , g ,h} the algorithm functions as follows: in first step

an "empty" combination tuple (Afirst , Asecond, Aleft ,pen) is inserted into the priority queue

with (1) Afirst and Asecond, the both disjunct sets of activities are empty at the beginning;

(2) the set of the activities Aleft which contains the activities that still have to be assigned

to either the first or second set - Aleft = A = {a,b,c,d ,e, f , g ,h}; (3) the current penalty

pen = 0. With this one element in the priority queue the while-loop is entered. There, the

tuple with the highest priority (the one that was just inserted) is removed from the queue

and further processed. That means in this case that an activity is removed from Aleft and

assigned to x. Now, two more tuples are created, one with x in Afirst (line 8-15) and one

with x in Asecond (line 16-23). The conditions on lines 8 and 16 are to ensure that at the

last assignment (when Aleft is empty) it will only be added to either (Afirst or Asecond when

the other set is not empty. This ensures that only real split ups are allowed where neither

subset is empty. According to the set x was inserted into, all Ch values from x to elements

from the other set are checked and the average of these is added to the respective penalty

value pen. Both newly created tuples are then inserted into the priority queue. This con-

tinues until the best combination tuple has no activities left, i.e. Aleft = {}. In Figure 5.6 the

different created combinations for the choice competition are shown: the light grey com-

binations are still in the queue when the algorithm terminates, the grey combinations are

already processed and the number next to them represents the order in which they were

processed; the black combination is the winner of the competition algorithm.

Note, that the competition has only been carried out for the choice construct in order

to show how the splitting up is achieved. More BP constructs can enter the competition by

three simple modifications of the algorithm: (1) the tuple in the priority queue also has to

contain the construct type, e.g. Choice, Loopover-Sequence,etc. (2) adding one "empty"

tuple per construct to the priority queue before the while loop is entered; (3) The penalty

calculation then has to be carried out on the relation matrix corresponding to the cur-

rently processed construct type. Note, that in the default configuration all BP constructs

enter the competition.

When the winning construct and the corresponding split up (for sets with multiple ac-

tivities) has been decided the construct is created and incorporated into the BP control-

flow model (see Algorithm 1 on page 139). For this the previously identified optional

5.3 Dynamic Process Discovery Framework 151

empty paths (their influence was removed from the suitability matrices - see Section 5.2.4,

page 146) are taken into account. Also, if possible, the identified BP construct is combined

with the parent construct, e.g. if the parent construct was a choice and the now identified

construct is a choice again, then no new decision and merge elements are created but

instead the parent decision construct is extended.

In conclusion, in this section the Construct Competition Miner (CCM) was introduced.

The CCM is a deterministic process discovery algorithm that operates in a static fashion

and follows a divide-and-conquer approach which, from a given event log, directly mines

a block-structured BP control-flow model that represents the main behaviour of the pro-

cess. The CCM has the following main features: (1) A deadlock-free, block-structured

business process without duplicated activities is mined; (2) The following BP constructs

are supported and can be discovered for single activities: Normal, Optional, Loopover,

and Loopback; or for a set of activities: Choice, Sequence, Parallel, Loop, Loopover-Se-

quence, Loopover-Choice, Loopover-Parallel (see Figure 5.5), and additionally all of them

as optional constructs - these are constructs supported by the majority of business pro-

cess standards like BPMN or YAWL; (3) The CCM operates on "global" relationships be-

tween activities rather than "local" relationships to determine the suitability of the re-

spective BP constructs; (4) If conflicting, incomplete, or exceptional behaviour exists in

the log, the CCM picks the "best" fitting BP construct.

5.3 Dynamic Process Discovery Framework

The CCM is specialised on the discovery of the control-flow perspective from an event

log in a static way. This is not sufficient to meet all requirements for establishing a causal

connection between BPMS and DBPMRT in a dynamic run-time environment (see Sec-

tion 5.1), e.g. because there is no concept for detecting change or applicability on an event

stream. The basic problem to overcome in order to meet these requirements is that of

abstraction. This is especially the case for the control-flow of a BP for which elaborate al-

gorithms like the CCM and other state-of-the-art approaches (see Section 2.4.2) exist but

rely on time-intensive aggregations. This is why a new approach towards a process dis-

covery based on event-based processing needs to be established, e.g. by adapting existing

algorithms (like the CCM) to enable direct processing of an event stream (a number of ini-

tial approaches in this area have been discussed in Section 2.4.4). Furthermore, process

discovery approaches need to be extended to allow for the discovery of all perspectives

(not just the control-flow) and instance information in order to accurately and holisti-

cally reflect the system and allow for advanced reasoning (see Chapter 6). According to

the defined requirements such a monitoring system should be also extensible to allow for

different purposes and individual monitoring specialised on specific areas of interest.

For this reason the Dynamic Process Discovery Framework (DPDF) has been devel-

oped. The DPDF can be characterised as a modular framework for monitoring one or

5.3 Dynamic Process Discovery Framework 152

more BPMSs in order to provide at any point in time a reasonably accurate representation

of the current state of the processes deployed in the systems with regards to their control-

flow, resource, and performance perspectives as well as the state of still open traces. That

means, change in the mentioned aspects of processes in the system during run-time has

to be reflected in the monitored representation of the current state, i.e. the DBPMRT. In

this section the general concept of the DPDF along with its components and model arte-

facts are described. The individual details of the components are further specified in the

sections thereafter.

5.3.1 Concept

The main concept of the DPDF is to introduce an intermediate layer of abstraction, i.e.

the dynamic footprint, and to consequently distinguish two different lifecycles and their

associated components:

1. The Event Processing operating at run-time, complying to the stringent require-

ments with regards to the algorithmic run-time, and producing a so called dynamic

footprint from the event input.

2. The Footprint Interpretation which can compute the actual state of the business

process based on the current dynamic footprint. The footprint interpretation has

less restrictions with regards to algorithmic run-time as it does not have to be ex-

ecuted with every occurring event but rather more autonomously, i.e. either on

demand, or repeatedly after a certain time has passed or after a fixed number of

events or traces occurred.

The concept of the resulting framework is presented in an information flow diagram

in Figure 5.7. It shows agents in a rectangular shape and models with round edges. The

general concept works as follows11: Events from different sources of the monitored Enter-

prise System, in which the end-to-end process is deployed, are processed to a standardised

format and put into a global context by the Event Hub. The standardised events are then

further processed to update the current dynamic footprint, which acts as the current state

of the process. The footprint information can then at any point in time be compiled to the

actual state information (instance and type level) of the business process, i.e. the abstract

footprint representation is interpreted into knowledge conforming to a generalised busi-

ness process standard (control-flow, performance, and resource perspective, and state of

the active traces). This information can be processed by different reasoning algorithms to

further analyse the process, e.g. performance prediction via simulation (see Chapter 6).

In the following the models and agents involved in the DPDF framework are described

in more detail. This includes descriptions further specifying the involved components

11To improve the understanding for the reader the explanation of the concept focuses on the monitoring
of one end-to-end process only.

5.3 Dynamic Process Discovery Framework 153

BPMS 1

Run-time Processing of Standardised Events (i.e. Footprint Update)

Run-Time
Event

Processing

Event Hub

Global, Standardised
Events

...
Events

from BPMS n
Events

from BPMS 2
Events

from BPMS 1

Footprint Interpretation

Dynamic
Control-flow
Interpration

Enterprise
System

Trace State
Monitoring

Performance
Footprint
Update

Resource
Footprint
Update

Resource
Perspective

Performance
Perspective

Current State of
Traces

Reasoning on Current State

Dynamic Footprint

Control-Flow
Footprint

Resource
Footprint

Performance
Footprint

Dynamic
Resource FP

Interpretation

Dynamic
Performance

Interpretation

Control-Flow
Footprint
Update

Current State of Business Process (i.e. DBPMRT)

Sub-
Footprint
Configs.

Control-Flow
Perspective

BPMS 2 BPMS n

Trace State
Interpretation

Open Traces

Fig. 5.7 Information Flow: Agents and Model Artefacts involved in the DPDF Framework

and models as well as remarks on important implementation details for artefacts that are

not explicitly explained at a later stage.

5.3.2 Event Hub and Global, Standardised Events

The Event Hub and the Global, Standardised Events are part of the DPDF mainly with the

purpose of complying to the Extensibility requirement TR6. They are responsible for the

pre-processing step in which every event is translated into a standardised version that can

be further processed.

Global, Standardised Events In Section 2.2.2 the common elements and the lifecycle of

BP event logs are introduced. The Global, Standardised Events are pre-processed events

5.3 Dynamic Process Discovery Framework 154

events.xes

0..*

Childnodes
+ ID: Long
+ traceID: Long
+ name: String
+ processName: String
+ timeStamp: Date
+ processElement: String
+ resource: String
+ role: String
+ group: String
+ lifecycleTransition: Lifecycle

Event

Childnodes
+ ID: Long
+ traces: Trace*
+ name: String

Log

Childnodes
+ ID: Long
+ events: Event*
+ name: String

Trace

0..*

Literals
+ schedule = 0
+ assign = 1
+ withdraw = 2
+ reassign = 3
+ start = 4
+ suspend = 5
+ resume = 6
+ pi_abort = 7
+ ate_abort = 8
+ complete = 9
+ autoskip = 10
+ manualskip = 11
+ triggered = 12
+ unknown = 13

<<enum>>

Lifecycle

1

Fig. 5.8 Meta-Model for a BP Event Log (relevant elements are highlighted)

conforming to a general format capturing main features of the different source formats.

In the case of the DPDF the global, standardised events conform to the prominent eX-

tensible Event Stream (XES) [90, 258] format which is also supported by existing process

discovery tools such as ProM12. Figure 5.8 shows the meta-model for the default XES for-

mat including highlighted parts which are of relevance for the DPDF. Since the framework

is a run-time solution that operates in a event-by-event basis the notion of Log is not sup-

ported and the notion of a Trace (record of an instance) is included in the attributes of

an event (see traceID). Generally, the relevant elements can be mapped to the ones in-

troduced in Section 2.2.2: Event ID = ID, Timestamp = timeStamp, Instance ID = traceID,

Name = name, Resource = resource, and Lifecycle = lifecycleTransition. One element not in-

troduced yet is the processName which is a unique identifier to map an occurring event to

its business process. It is required since the DPDF monitors enterprise systems with mul-

tiple connected or not directly dependent processes. Note, that the DPDF only supports

a simple lifecycle (including event types schedule, assign, complete, and triggered) since

this is a part that is very difficult to standardise between the different formats. Events

with other lifecycles have to be either discarded or (preferably) mapped by the responsi-

ble adapter in the Event Hub. The XES format was chosen to enable an extension of the

format at a later point in order to allow for additional information to be observed and

analysed, further supporting the Extensibility requirement TR6.

Event Hub The main task of the Event Hub is the translation of BPMS-specific events to

events which conform to the standardised format. This is achieved via adapters which

implement this translation. With regards to the translation the following problems had to

12http://www.processmining.org

5.3 Dynamic Process Discovery Framework 155

be addressed: (1) Two BPMS might work in different timezones, which is why the times-

tamp value has to be translated to a unified timezone (e.g. UTC) in order to avoid anal-

ysis errors; (2) activity names might have different formats or might collide even though

they originate from two different activities. In these cases a mapping to a unified naming

system has to be in place for the various adapters. The same applies for other event in-

formation, e.g. the Trace ID: If two different BPMS use two differing trace ids for the same

trace, the event hub has to map them while processing, e.g. by using an alternative event

feature to create the mapping.

5.3.3 Dynamic Footprints

The Dynamic Footprint (see Figure 5.7) is the model that contains the state of the busi-

ness process in an abstract form and acts both as an input and output of the run-time

event processing. With each event the footprint is potentially updated. It has to be noted

at this point again that the dynamic footprint model is only abstract information (in the

form of vectors and matrices) and still has to be interpreted into a proper business process

model. The term footprint has been borrowed from the process discovery terminology:

In many process discovery algorithms it is common to first build a footprint which is then

analysed and transformed into a business process model, e.g. α-algorithm [249], Heuris-

ticsMiner [278], or CCM (see Section 5.2).

One of the main challenges for the framework was the design of the footprint: On one

hand it has to be expressive enough to enable the translation into the different aspects

of a business process state; on the other hand size constraints were to be met in order

to ensure a quick update of the footprint during run-time. Furthermore, to support the

requirement TR5 (optimised algorithmic run-time/memory usage) the size of the foot-

print has to be independent from the total number of occurred events and from the total

number of occurred traces. This is necessary to keep the algorithmic run-time of pro-

cessing one event constant. Only the number of activities and resources is influencing

the size of some parts of the dynamic footprint which is explained later. Another finding

during the development of the framework was that, apart from the Open Traces, all parts

of the footprint should avoid absolute statements, i.e. true/1 and false/0, but instead use

weights, e.g. statement A is true with a probability of 0.92 on a scale from 0 to 1. These

statement weights can than be updated incrementally with each event, either supporting

or opposing the statement. In accordance with TR6 (Extensibility) the footprints are mod-

ularly separated along the same dimensions as the DBPMRT: control-flow, performance,

resources, instance states (Open Traces). In this way complete perspectives can be added

and removed as required for individual reasoning purposes. The respective footprints are

briefly described in the following:

Control-Flow Footprint contains the same information as the footprint of the CCM in-

troduced in Section 5.2.3: (1) the two matrices "appears before first" (x ◃ y) and "appears

5.3 Dynamic Process Discovery Framework 156

before" (x ◃◃y) which contain abstracted information about the global relationship be-

tween activities. Their size is n ∗n with n being the number of involved activities; and

(2) Three additional vectors "occurrence once" (Oon(x)), "occurrence overall" (Oov(x)), and

"first element" (Fel(x)) store the probability and loop behaviour of an individual activity.

The length of these vectors is n. Note, that this footprint was defined for a complete event

log. The adaptation to allow for event-wise processing while conforming to the original

semantic of the matrices/vectors is discussed in Section 5.4. The dynamic control-flow

footprint additionally contains the "directly-follows" relation in matrix form (size n ∗n)

similar to that of the HeuristicsMiner (see Figure 2.17 on page 42). It is, however, not

used for interpretation but for specific sub-footprint calculation to further shorten the al-

gorithmic run-time of the involved components. The details about this are discussed in

later sections.

Performance Footprint consists of generic, type-level performance parameters like pro-

cess instance occurrence or activity net working time and are stored as a normal distribu-

tion function, i.e. mean and deviation values (see Section 2.5.1). The size of this footprint

increases linearly with the number of activities in the process. An exception is the path

probabilities for decisions: For them the footprint is the directly-follows matrix as intro-

duced in the previous paragraph. The size of the footprint increases quadratically in rela-

tion to the number of involved activities. For the reasoning purpose of prediction via sim-

ulation the performance footprint is only focused on capturing "BP defining" parameters

which are necessary to carry out a simulation, i.e. process instance occurrence, activity net

working time, and path probabilities. If other parameters like End-to-End Processing Time

should be part of the DBPMRT, e.g. for other reasoning purposes, the performance foot-

print and the associated adapter need to be extended. The formal details of the footprint

calculation are defined in Section 5.4.3.

Resource Footprint consists of a matrix that associates each activity to a resource de-

pending on the probability of a resource being assigned to perform this activity. The size

of the matrix is n ∗nr with n being the number of activities and nr the number of re-

sources. The formal description of the resource footprint is presented in Section 5.4.2.

Open Traces consists of the last lifecycle transition of each activity that has appeared in

each open trace. This is the only part of the footprint that consists of absolute statements

on the instance level as opposed to heuristic abstractions on the type level. The details of

this footprint and its extraction are discussed in Section 5.6.

5.3 Dynamic Process Discovery Framework 157

5.3.4 Modified Methodology for the Control-flow Perspective:

The Dynamic Construct Competition Miner

One of the most challenging parts for realising the DPDF is the implementation of the

concept for the control-flow perspective. For this reason an overview of the modifications

applied to the original CCM (see Section 5.2) in order to comply with the DPDF framework

is provided in this separate (sub-)section. The result of these modifications is called Dy-

namic Construct Competition Miner (DCCM), an event-based methodology that discov-

ers type level control-flow information and features the same general characteristics as

the CCM with regards to autonomy, quality of results, and robustness (requirements TR1-

TR3). Of particular interest for the transformation of the CCM algorithm to a solution for

dynamic process discovery is the composition of the footprint and its calculation from

the log: It is deterministic, based on heuristics (relative values), and on global relations

between activities. Furthermore, not only one overall footprint is created by the CCM but

also for each divide-and-conquer step two new subsets Afirst and Asecond are distinguished

for which new sub-footprints have to be created (see Algorithm 1 on page 139).

Overview of the Modifications

The following modifications were applied to the default CCM to create the DCCM:

1. Splitting up the algorithm in two separate parts as proposed for the DPDF: one for

dynamically updating the current footprint(s) complying to the run-time require-

ment TR5, and one for interpreting the footprint into a control-flow model which

has less restrictions with regards to its execution-time.

2. In the CCM the footprint is calculated in relation to all occurring traces. This is

not applicable for DPDF since the number of traces should not have an influence

on the execution-time of any component of an DPDF solution. For this reason the

footprint has to be calculated in a dynamic fashion, i.e. an event-wise footprint

update independent from the previously occurred number of events or traces.

3. The original behaviour of the CCM to carry out a footprint calculation for every

subset that has been created by the divide-and-conquer approach is not optimal

since then the DCCM would have to extract up to 2∗n + 1 different footprints if

only one activity was split-up from the main set for each recursion13. This has been

improved for the DCCM: for the most common constructs Choice and Sequence the

sub-footprints are automatically derived from the parent footprint (with the help of

the directly-follows relation that was added to the footprint).

13e.g. for A = {a,b,c,d} : (a,b,c,d) → ((a,b,c), (d)) → (((a), (b,c)), (d)) → (((a), ((b), (c))), (d)), seven dif-
ferent footprints for sets {a,b,c,d}, {a,b,c}, {b,c}, {a}, {b}, {c}, {d} need to be created - (,) denote the nested
blocks that emerge while splitting the sets recursively.

5.3 Dynamic Process Discovery Framework 158

Run-Time
Event

Processing

Events
Footprint

Interpretation
Footprint
Update

Dynamic
Footprint

Sub-
Footprint
Configs.

Business Process
Model

Enterprise
System

Scheduled
Process

Discovery

Eve
n

t Stre
am

Fig. 5.9 Conceptual Methodology of the Dynamic CCM

4. In some use cases it was observed that for every occurring event the state of the

process is alternating between a number of different control-flows. This is caused

by "footprint equivalent" BP models, i.e. two models are footprint equivalent if they

both express the behaviour captured by the footprint. To mitigate this a measure

which favours the last control-flow state in order to prevent the described behaviour

was introduced.

Details about the individual modifications are provided in later sections, i.e. modifica-

tion 2 is described in Section 5.4.1, modifications 3 and 4 in Section 5.5.1, and modifica-

tion 1 in the following (sub-)section.

Modified Methodology

The original CCM algorithm had to be split up into two separate parts. A component

triggered by the occurrence of a new event to update the dynamic footprint and a compo-

nent decoupled from the event processing which interprets the footprint into a BP Model.

The conceptual methodology of the DCCM is depicted in Figure 5.9. The components,

models, and functionality of the DCCM are described in the following: Events from the

monitored Enterprise System, in which the end-to-end process is deployed, are fed into

an event stream. The Footprint Update component is the receiver of these events and

processes them directly into changes on the overall Dynamic Footprint which represents

the abstract state of the monitored business process. If additional footprints for subsets

of activities are required as specified by the Sub-Footprint Configurations, e.g. if a Loop

or Parallel construct was identified, then these sub-footprints are also updated (or cre-

ated if they were not existent before). The Dynamic Footprint(s) can then at any point in

time be compiled to a human-oriented representation of the BP control-flow by the Foot-

print Interpretation component, i.e. the abstract footprint representation is interpreted

into knowledge conforming to a block-structured BP model. In the DCCM this interpre-

tation is scheduled dependent on how many new completed traces have appeared since

the last interpretation, e.g. the footprint interpretation is executed once every 10 termi-

nated traces. If the interpretation frequency m ∈ N of the DCCM is set to 1 a footprint

interpretation is executed for every single trace that terminated. The Footprint Interpre-

5.3 Dynamic Process Discovery Framework 159

Start
Event

End
Event

a

AND
Split

AND
Join

[b, c, d]

Fig. 5.10 Result of the Footprint Interpretation on an event stream produced by the exam-
ple from Figure 5.3 if no sub-footprint for {b,c,d} is available yet - only the top-level split
has been discovered and due to the missing sub-footprint one activity [b,c,d] is created

tation algorithm works similar to the CCM algorithm shown in Algorithm 1 on page 139

but instead of extracting footprints from a log (line 8), the modified algorithm requests

the readily available Dynamic Footprint(s). If a sub-footprint is not yet available (e.g. at

the beginning or if the process changed) the Footprint Interpretation specifies the request

for a sub-footprint in the Sub-Footprint Configurations in the fashion of a feedback loop.

Thus, Sub-Footprint Configurations and Dynamic Footprints act as interfaces between the

two components, Footprint Update and Footprint Interpretation. A sub-footprint configu-

ration defines how the event stream is monitored to create the sub-footprints and consists

of the three activity sets Am , Ai , and At (activities to monitor, ignore, or tolerate) which

were introduced in Section 5.2.3. If no sub-footprint for these exist yet the Footprint In-

terpretation cannot continue to analyse the subsets. In this case, usually occurring in the

warm-up or transition phase, an intermediate BP model is created with activities contain-

ing all elements of the unresolved sets as exemplary depicted in Figure 5.10.

5.3.5 Description of other Framework Artefacts

The remaining general components are briefly described in the following to help under-

standing the DPDF’s overall concept. A detailed and more formal description of these

components is provided in later sections or chapters.

Run-time Processing of Standardised Events

As shown in Figure 5.7 the Run-time Processing of Standardised Events agent processes

the global standardised events to updates in the dynamic footprint and thus updating

the abstract state of the business process. Each of the agents/methods included in this

component should be deterministic and designed as independent as possible, i.e. with-

out any input from other perspectives. The Control-flow Footprint Update as well as the

Trace State Monitoring agents are to some extent an exception to this constraint which is

discussed at a later stage. Furthermore, each processing agent should only take a con-

stant amount of time, independent from the total number of previously occurred events

or traces. The total number of involved activities can have, however, a linear increase

5.3 Dynamic Process Discovery Framework 160

of the run-time due to recalculating the relation of the occurred activity to, in the worst

case, all other activities. Overall the agent has to scale linearly to the number of events

occurring. Since the event stream is to be processed sequentially due to the incremental

methods applied the framework can be scaled up easily by adding computational power.

Essentially, the main challenge was to split up the process discovery algorithms into

a footprint update part and a footprint interpretation part. Additionally, the footprint

update part had to be dynamic, i.e. work incrementally and always update the current

dynamic footprint in a way that older events have less influence than the newer events.

The approach utilised in the DPDF framework is based on the ageing principle explained

in detail in Section 5.4. Note, that the Trace State Monitoring is not updated in a dynamic

way since it consists of absolute rather than heuristic values. Instead only the lifecycle

transition for the activity and trace associated with the occurred event is updated (see

Section 5.6). Also note, that if any information is not available from the events, some

parts of the footprint may neither be discovered nor updated, e.g. if the resource infor-

mation is not provided the resource footprint cannot be build, or if the lifecycle transitions

were not to be provided, the performance footprint in general and the activity net work-

ing time in particular could not be properly discovered without further information about

the control-flow of the business process.

Footprint Interpretation

The Footprint Interpretation (see Figure 5.7) is the agent that translates the abstract state

information in form of the dynamic footprint into state information that conforms to

business process notations of a certain purpose, i.e. a DBPMRT. As opposed to the run-

time event processing agent it has less restrictive constraints with regards to run-time as

it is only executed on demand, after a specified amount of time passed or after a specified

number of events or traces occurred. However, since this framework is designed to en-

able real-time or near real-time analysis the run-time should not increase exponentially

in relation to the number of activities involved.

Generally, the footprint interpretation is required to have exchangeable adapters since

different requirements on the state representation may need to be met. For instance, if

only performance information is to be monitored (similar to BAM solutions) it is suffi-

cient to only discover the associated activities but not the complete control-flow. Another

challenging problem that had to be addressed during development was that for some

footprints multiple interpretations existed, i.e. two different control-flows can produce

the exact same traces. In such cases it could happen that the state of the business pro-

cess was alternating between these options which is an undesired behaviour. To prevent

this from happening in the DPDF framework, a technique is applied that favours the last

control-flow in order to prevent the alternation between different but trace-equivalent

versions. The details of the agents involved in the footprint interpretation are presented

in Section 5.5.

5.3 Dynamic Process Discovery Framework 161

Current State of Business Process

The current state of the business process(es) is represented by the DBPMRT specified in

Section 4.2. When adding a time dimension to the specification and not discarding older

states (of the type level), the DBPMRT may also represent the evolution of the monitored

BPs as discussed in Section 4.3.

Reasoning on DBPMRT

The DBPMRT (as state or evolution model) may be used for a certain reasoning purpose

(or simply be displayed and allow for expert reasoning). In Chapter 6 the use case of pre-

dicting the development of PPIs via simulation based on the DBPMRT is presented and

serves as evaluation of the DPDF and the applied concepts.

5.3.6 Computer- vs. Human-oriented Run-time Models

The main concept proposes the introduction of the dynamic footprint as intermediate

abstraction level. The dynamic footprint matrices and vectors are essentially aggregated

and heuristic type level abstractions of the occurring events/traces which are, however,

not residing on the same level of abstraction as common imperative BP standards. Only

via interpretation algorithms that are more run-time cost intensive the information on BP

level, i.e. the DBPMRT, can be inferred. The result is that the DPDF’s concept maintains

information on two different levels. Both of which can be considered run-time models:

1. The dynamic footprint represents a Computer-oriented Run-time Model not con-

forming to a human-interpretable model language but with a direct causal link to

the system, i.e. changes in the system are quasi-immediately reflected in the foot-

print.

2. On the other hand the DBPMRT represents a Human-oriented Run-time Model con-

forming to a human-interpretable model language which, however, features a less

direct link to system due to the separated interpretation lifecycle, i.e. changes in the

system may be reflected in the DBPMRT after a potential delay.

The timeliness of a change reflection is different for the human-oriented run-time model

than for the computer-oriented run-time model since it may not be practical to execute

the interpretation for every event in cases of big but fast processes. For "slow" processes,

e.g. one event per second, this might be entirely reasonable, however, this is not appli-

cable when dealing with systems potentially producing thousands of events per second.

One way to mitigate this is to introduce thresholds that trigger a re-interpretation for per-

spectives where the interpretation is not combinatoric-based14 but the inferred entities

14For instance, the competition algorithm of the CCM (see Section 5.2.5) is combinatoric-based since
it needs to find the best combination for suitable construct and the members of two distinctive sets of
activities.

5.4 Dynamic Footprint Update 162

and relations in the DBPMRT are directly related to values in the footprint: For instance,

the relations between activities, roles, and resources are directly based on whether or not

a footprint value has crossed a certain threshold. If such a crossing of a threshold is ob-

served a re-interpretation of this part of the respective BP perspective can be triggered.

If this approach is followed the interpretation is again directly connected to the event-

lifecycle rather than being in a separate lifecycle. In order to support the greatest possible

extent of a timely causal link from system to DBPMRT, the DPDF follows this approach

for BP perspectives when applicable (e.g. see Section 5.5.2). Note, that this is not applica-

ble for the control-flow perspective since the associated interpretation is combinatoric-

based. As a result, the DPDF can only achieve a direct causal link between system and

DBPMRT if the use case is "slow" (interpretation at every event) or based on BPs with

fixed control-flows (no control-flow interpretation required). Since the objective of this

thesis is to deal with large-scale, dynamic enterprise systems (see particularly require-

ments TR4 and TR5) the control-flow interpretation remains a separate lifecycle and thus

represents a less direct causal link. In the DCCM evaluation section 5.8.2 it is investigated

if and to which extent this "weak" causal link is of significance.

In conclusion, this section presented the general concept of the DPDF and a specifica-

tion of its components. The goal of the DPDF framework is to maintain the causal link

from an enterprise system to a DBPMRT in a volatile run-time environment, i.e. meet-

ing the requirements defined for such a framework in Section 5.1. The main feature of

the concept is that the inference of high-level BP information from low-level event data

was divided into two lifecycles, Event Processing (for each event) and Footprint Interpre-

tation (periodically executed). While some of the concept’s artefacts like Event Hub, the

Global, Standardised Events, the Dynamic Footprint, as well as the updated methodology

of the CCM towards the DCCM were discussed in detail, the features and functionality of

the other components were only briefly introduced to support the understanding of the

overall concept. However, detailed information of the components for footprint update

and interpretation as well as the state tracking on the instance level are presented in the

following.

5.4 Dynamic Footprint Update

The Dynamic Footprint Update components process Global, Standardised Events to

changes in the Dynamic Footprint, i.e. updates the abstract representation of the process

state (type and instance level). In this section the specifics of the update components for

the footprints of the type level BP perspectives, i.e. control-flow, resources, and perfor-

mance, are presented.

5.4 Dynamic Footprint Update 163

5.4.1 Control-Flow Footprint

The modifications to the original CCM algorithm are threefold: (1) the introduction of the

dynamic concept of ageing (which is then also used for the other perspectives), (2) the

adding and removal of activities to the (control-flow) footprint that appear or disappear

from the event stream, and (3) the introduction of the directly-follows relation into the

footprint to decrease the required interpretation time.

The Concept of Ageing

The original footprint extraction of the CCM algorithm calculates all values in relation to

the number of occurred traces, i.e. every trace’s influence on the footprint is equal: 1
|Λ| (|Λ|

is notation for number of traces in logΛ). To comply to the algorithmic run-time require-

ment TR5 the footprint update calculation should only take a fixed amount of time, inde-

pendent from the total number of previously occurred events or traces. An increase of the

total number of involved activities can cause, however, a linear increase of the execution-

time due to the recalculation of the relations between the occurred activity and, in the

worst case, all other activities. The independence from previous traces is the reason the

footprint is calculated in a dynamic fashion, i.e. the dynamic footprint is incrementally

updated in a way that older traces "age" and thus have less influence than more recent

traces. Note, that the dynamic footprint is not updated for each event but for each fin-

ished trace. This is necessary since the footprint consists of global relationships between

activities, for which reliable statements can only be made for completed traces.

The general ageing approach that is utilised in the footprint update of the DCCM is

based on the calculation of an individual trace footprint15 (TFP) for each trace which in-

fluences the dynamic overall footprint (DFP). For the n-th new TFPn the DFP is updated

in the following way: Given a specified trace influence factor tif ∈Rwith 0 < tif ≤ 1 the old

DFPn−1 is aged by the ageing factor a f = 1− tif , i.e.

DFPn = tif ∗TFPn+ (1− tif)∗DFPn−1

or alternatively DFPn = (1−a f)∗TFPn+ a f ∗DFPn−1

(5.8)

E.g., for trace influence factor tif = 0.01: DFPn = 0.01∗TFPn+0.99∗DFPn−1. An example of

this footprint ageing is presented in Appendix Chapter B where the new footprint DFP35 is

calculated based on the new trace footprint TFP35 from trace [b, a,c, a,b,c,b, a,d ,e,e,d]

and the old footprint DFP34 (which is equivalent to the example footprint FPL1,A
{},{} from

page 144).

Two different specialised ageing methods have been developed which are specified

in the following and evaluated against each other in Section 5.8.2: Discrete Ageing and

Time-dependent Ageing.

15the occurrence values for activities as well as the global relations (see Definition 7 in Section 5.2.3) are
represented in the trace footprint by absolute statements true ≡ 1 if the relation is true and false ≡ 0 if not

5.4 Dynamic Footprint Update 164

Discrete Ageing is the ageing method based on the occurrence of a new trace. That

means, that the trace influence tif is a fixed value and the DFP ages the same proportion

for every time a trace footprint is added indeterminate from how much time has passed

since the last footprint update. For example, assuming tif = 0.01 the trace footprint TFPn

has the influence of 0.01 when it first occurs (see Equation 5.8); after another TFPn+1 has

occurred the influence of TFPn decreases to 0.01∗0.99, and after another 0.01∗0.992 and

so on. By applying this incremental method, older TFP are losing influence in the over-

all dynamic footprint. Figure 5.11 shows how the influence of a trace is dependent on its

"age": If tif = 0.1, the influence of a trace that appeared 60 traces ago became almost irrel-

evant. At the same time if tif = 0.01 the influence of a trace of the same age is still a little

more than half of its initial influence when it first appeared. Essentially, the purpose of

the trace influence factor tif is to configure both, the "memory" and the adaptation rate,

of the footprint update component, i.e. a high tif means quick adaptation but short mem-

ory but a low tif means a slow adaptation but a long memory. Finding the correct trace

influence is an issue of balancing these two inversely proportional effects, e.g. it might be

generally desirable to have a high adaptation rate (tif = 0.1) but if certain behaviour of the

process only occurs once in every 60 traces it will already be "forgotten" when it reappears

(see Figure 5.11) essentially resulting in a continuously alternating business process.

However, while applying this method it was observed that at the beginning of the

event streaming an unnecessarily long time to "warm-up" was required until the DFP

reflected the correct behaviour of the business process. The reason for delay is that the

first dynamic footprint DFP0 starts with matrices and vectors containing only 0s and, de-

pending on the influence factor, it might take a large number of traces until the influence

of DFP0 disappears. In order to shorten the "warm-up" phase of the Footprint Update

a more dynamic method was adopted: If the overall number of so far occurred traces

n − 1 < 1
tif

then the influence of the dynamic overall footprint DFPn−1 is n−1
n and of the

new trace footprint TFPn is 1
n . As a result all traces that occur while n −1 < 1

tif
have the

same influence in the DFPn of 1
n−1 . For instance if tif = 0.01 and n = 10 then a new dy-

namic footprint is calculated with DFP10 = 1
10 ∗TFP10 + 9

10 ∗DFP9 and for the next trace

DFP11 = 1
11 ∗TFP11 + 10

11 ∗DFP10 and so on. As soon as n − 1 ≥ 1
tif

the standard discrete

ageing with a fixed influence factor is adopted:

DFPn =

1
n ∗TFPn + n−1

n ∗DFPn−1 if n < 1
tif

+1

tif ∗TFPn + (1− tif)∗DFPn−1 if n ≥ 1
tif

+1
(5.9)

With the help of this additional modification the "warm-up" phase of the Footprint Up-

date could be drastically reduced, i.e. processes were already completely discovered a few

traces after the start of the monitoring which will be shown in the evaluation Section 5.8.2.

Time-dependent Ageing is an ageing method based on the time that has passed since

the last trace occurred. The more time has passed the less influence the old DFPn−1 has

5.4 Dynamic Footprint Update 165

Fig. 5.11 Development of the influence of a trace for different trace influence factors (tif)

on the updated DFPn . This is achieved in a similar way than in the discrete ageing but

instead of having an ageing factor a f that is fixed or relative to the number of occurred

traces (see Equation 5.9) it is now relative to the time passed. That means that ageing

factor a f and trace influence factor tif are now calculated based on an ageing rate ar per

passed time unit tur, i.e. in particular time tn has passed since the last completed trace

occurred then:

a f = a
tn
tur
r (5.10)

If tn = tur then the dynamic overall footprint ages exactly the same as with the discrete

ageing, if tn > tur then it ages quicker, and if tn < tur it ages slower. For instance, with

ageing rate ar = 0.99 and time unit tur = 1s: If the new trace occurred tn = 2s after the last

footprint update then the new dynamic overall footprint DFPn = (1−0.992)∗TFPn+0.992∗
DFPn−1. Through time-dependent ageing the influence development of passed traces

behaves similarly to the discrete ageing in Figure 5.11 apart from that the ageing is not

based on the number of traces but on the actual time passed (the numbers on the x-axis

now represent the passed time units since the trace occurred). For the time-dependent

ageing a similar problem was observed during the warm-up phase as with the discrete

ageing: Since the DFP only consists of zeros when initialised it takes an unnecessary long

time to converge towards a footprint representing the correct behaviour of the business

process. For this reason an alternative linear ageing, relative to the overall passed time

since the first trace recorded tur, was adopted. The final ageing factor a f is the minimum

of both calculated values as shown in Equation 5.11.

a f = min(1− tn

tall
, a

tn
tur
r) (5.11)

Considering the example from earlier where ar = 0.99, time unit tur = 1s, the new trace

TFPn occurred 2s after the last update, and the first trace recorded was tall = 4s then

a f = min(1− 2s
4s ,0.992) = 0.5 and according to Equation 5.8: DFPn = (1−0.5)∗TFPn +0.5∗

DFPn−1. In this way the warm-up phase can be shortened similar to the discrete approach

but is still be based on time.

5.4 Dynamic Footprint Update 166

Appearing or Disappearing Activities

Another important dynamism feature that had to be implemented was the possibility to

add an activity that has not appeared before. A new activity is first recorded in the respec-

tive trace footprint. When the trace is terminated it will be added to the overall footprint in

which it is not contained yet. The factored summation of both footprints to build the new

dynamic footprint is carried out by assuming that a relation not previously in the dynamic

overall footprint contained has a value 0. As a result, it might take a number of traces that

contain the new activity until the correct behaviour is captured in the footprint.

Furthermore, activities that do not appear any more during operation should be re-

moved from the dynamic footprint. This was implemented in the DCCM in the following

way: If the occurrence once value Oon(x) of an activity x drops below a removal threshold

tr ∈ R, tr < tif it is removed from the dynamic footprint, i.e. all values and relations to

other activities are discarded.

Garbage Collection for Sub-Footprint Requests

The discarding of previously requested sub-footprints (see Section 5.3.4: Modified Method-

ology) which have not been requested for a certain number of footprint interpretations

works in a similar fashion. The default configuration of the DCCM is that after 10000 in-

terpretations without requesting a particular sub-footprint it will be removed from the set

of footprints to monitor.

The Directly-Follows Relation

The fact that especially many Choice and Sequence constructs are present in common

business processes, motivates an automated sub-footprint creation in the Footprint In-

terpretation based on the parent footprint rather then creating the sub-footprint from the

event stream. This step helps to decrease the execution-time of the Footprint Update by

reducing the numbers of sub-footprints the component needs to keep track of16. It is

achieved by introducing an extra relation to the footprint - the directly follows relation as

used by other mining algorithms (see Section 2.4.2).

Definition 12 Given a (sub-)traceλ ∈ A∗
m then the directly follows relation for two activities

x, y ∈ Am is:

|x ≫ y | = |{i ∈ {0,1, ..., |λ|−2} |λ(i) = x ∧ λ(i +1) = y}|

Examples for trace [b, a,c, a,b,c,b, a,d ,e,e,d]: a is directly followed by b once,

i.e. a ≫ b = 1; b is directly followed by a twice, i.e. b ≫ a = 2; d is never directly fol-

lowed by c, i.e. d ≫ c = 0. This relation is part of the footprint in matrix form and updated

16Note, that rare cases (if Loop and Parallel constructs dominate) this modification can have a negative
effect on the execution-time since extra information needs to be extracted without the benefit of mining
less sub-footprints

5.4 Dynamic Footprint Update 167

in the same way as introduced earlier. Note, that the values can become greater than 1.

In the Footprint Interpretation this relation is then used for creating the respective sub-

footprints for Sequence and Choice constructs but not for identifying BP constructs since

the directly follows relation does not represent a global relation between activities (see

Section 5.5.1).

5.4.2 Resources Footprint

The resources footprint is an abstraction from event information that is used for inter-

pretation of the resource perspective. For the update of this footprint only the events

that record the assigning of a resource in order to execute an activity are of relevance,

i.e. events are filtered for the lifecycle "assign" (see Figure 5.8). Furthermore, unlike the

update for the control-flow footprint, the resource footprint is updated with every event

(of the "assign" lifecycle). Note, that only one overall resource footprint exists, i.e. no

feedback loop or sub-footprints are part of the concept.

For the definition of the resource footprint events are not regarded as elements of a

simple trace or simple event log (see Section 5.2.1), i.e. only represent the associated ac-

tivity or BP element, but are instead tuples (x,r) with activity x ∈ A and resource r ∈ R:

Definition 13 Let Λres be the multi-set17 of tuples (x,r) ∈ A ×R representing all occurred

events (with the lifecycle "assign"), then is

x ⊗Λres r = |{(x1,r1) ∈Λres | x1 = x ∧ r1 = r }|
|{(x1,r1) ∈Λres | x1 = x}|

The resource footprint consists of heuristic relations between activities and their assigned

resources x⊗Λres r that represent the respective probability of resource r being assigned to

activity x in relation to all resource assignments to activity x inΛres. Consider, for instance,

Λres = {(a,r1)2, (a,r2)3, (b,r2)2, (b,r3)2} then the resulting resource footprint FPres is

(r1 r2 r3

a ⊗Λres r : 0.4 0.6 0

b ⊗Λres r : 0 0.5 0.5

)

Note, that the sum of all probabilities of an activity is 1, i.e. ∀x∈A :
∑

r∈R (x ⊗Λres r) = 1.

Definition 13 defines the probabilities in the resource footprint in absolute terms for a

complete (multi-)set of occurred events. Similarly as with the control-flow footprint, the

ageing concept (discrete and time-dependent) can be applied to the resource footprint

in order to facilitate for a dynamic setting where older events are to lose influence over

time. If the above footprint is considered to be the current dynamic overall footprint for

resources DFPres
n−1 and a new event (a,r1) occurs, then is with a trace influence of tif = 0.1

the new a⊗r relation updated to 0.1∗ (1 0 0)+0.9∗ (0.4 0.6 0) = (0.46 0.54 0)

and the new dynamic overall resource footprint DFPres
n is updated to

17Multiples tuple entries possible

5.4 Dynamic Footprint Update 168

(r1 r2 r3

a ⊗ r : 0.46 0.54 0

b ⊗ r : 0 0.5 0.5

)
for which still the condition applies that the sum of the probabilities for each activity is 1.

For each resource footprint update the resulting values are tested whether or not they

crossed (in either direction) a certain tolerance threshold. If this is the case a new resource

interpretation is triggered which directly updates the DBPMRT’s resource perspective.

The details of this threshold and why it is indicating a model change are further discussed

in Section 5.5.2. Furthermore, this component features a activity or resource removal pol-

icy similar to the one described in the control-flow footprint update component.

5.4.3 Performance Footprint

The performance footprint is an abstraction from event information that is used for in-

terpretation of the BP performance values required for BP simulation, i.e. activity net

working times, process instance occurrences, and path probabilities.

The two performance values activity net working time and process instance occur-

rence are recorded as durations, i.e. the process instance occurrence is the time passed

between two occurring BP instances; and the activity net working time is the duration

from (1) the assignment of a resource to the activity until its completion (for human ac-

tivities) or (2) the scheduling of an activity execution to its completion (for automated

activities). Furthermore, these values which in reality are subject to a varying degree of

fluctuation are treated as probabilistic values, i.e. with mean and variance, in order to

better reflect reality.

Definition 14 Let T = {t1, t2, ..., tN } be a multi-set of size N with values t1, t2, ..., tN ∈R, then

T can be represented by a tuple vT = (meanT ,varT) with

• the average/mean over T : meanT = 1
N ∗∑N

i=1 ti , and

• the variance over T : varT = 1
N ∗∑N

i=1 (meanT − ti)2.

The example T1 = {1,3,4,2,3,5} can be represented by meanT1 = 1+3+4+2+3+5
6 = 3 and

varT1 = (3−1)2+(3−3)2+(3−4)2+(3−2)2+(3−3)2+(3−5)2

6 = 4+0+1+1+0+4
6 = 10

6 = 1.4, i.e. vT = (3, 1.4).

Definition 14 specifies the mean and variance for a (multi-)set of values of the same

context (e.g. net working time for activity a) with equal weights for all elements. How-

ever, in a dynamic environment newer elements should have a higher influence than

older elements. For this reason, the same incremental ageing concept as introduced

earlier is applied in this case. E.g. for a new value tn = 5 and the current mean value

meann−1 = 3, variance value varn−1 = 1.4 the updated mean and variance are for tif = 0.1:

meann = 0.1∗5+0.9∗3 = 3.2 and varn = 0.1∗ (3.2−5)2 +0.9∗1.4 = 0.324+1.26 = 1.584,

i.e. vn = (3.2, 1.584).

5.5 Dynamic Footprint Interpretation 169

The overall dynamic footprint DF P perf
n contains the activity net working time for each

occurring activity and the process instance occurrence for each business process in the

form of such a probability value. Additionally, the directly-follows relation as explained in

Section 5.4.1 is part of the footprint to enable the computation of specific path probabili-

ties by the performance interpretation (see Section 5.5.3). Note, that the general concept

technically requires the directly-follows relation to be calculated twice due to the modu-

lar concept of the DPDF. However, in the implementation only one overall directly-follows

relation is computed to avoid duplicated effort.

5.5 Dynamic Footprint Interpretation

The Footprint Interpretation (see Figure 5.7 on page 153) is the agent that translates the

abstract state information in form of the dynamic footprint into the DBPMRT. As a re-

sult of the different interpretation components the respective perspectives are replaced

(if changed) as well as associations to other perspectives are updated. Depending on the

type of DBPMRT (state vs. evolution; what purpose is supported, e.g. BP simulation vs.

performance monitoring) the exact implementation of updating the model accordingly

might vary which is, however, outside of the scope of this thesis. This section is particu-

larly concerned with the formal process of extracting human-oriented model information

(on the type level) from the computer-oriented footprint information for the BP perspec-

tives control-flow, resource, and performance, respectively and independently.

5.5.1 Control-Flow

The DPDF’s dynamic footprint interpretation of the control-flow is part of the DCCM

(methodology introduced in Section 5.3.4) which is an extension of the CCM modified

to work in dynamic run-time environments. It consists of two parts: the constructs suit-

ability computation discussed in Section 5.2.4 and in the case of a construct for multiple

activities the construct competition algorithm discussed in Section 5.2.5. Additionally, for

the dynamic interpretation two modifications have been implemented and are explained

in the following:

Automated Sub-Footprint Creation

As discussed in Section 5.3.4, the original behaviour of the CCM (see Section 5.2.2) to re-

trieve a sub-footprint for each subset that has been created by the divide-and-conquer

approach is not optimal. This is why, in the Footprint Interpretation the DCCM calcu-

lates the sub-footprints for the most common constructs, Choice and Sequence, from the

available parent footprint:

1. For the Choice construct the probability of the exclusive paths are calculated with

Pfirst =
∑

x∈Afirst
Fel(x) and Psecond =∑

x∈Asecond
Fel(x) with Fel(x) being the occurrences

5.5 Dynamic Footprint Interpretation 170

of x as first element (see CCM footprint description in Section 5.2.3). Then the

relevant values of the parent footprint are copied into their respective new sub-

footprints and normalised, i.e. multiplied with 1
Pfirst

and 1
Psecond

, respectively.

2. The sub-footprints for the Sequence construct are similarly built, but without the

normalisation. Instead, the directly-follows relation is used to calculate the new

overall probabilities of the sub-footprints which indicate whether or not each part

of the sequence is optional.

Avoiding Alternating Control-flow Interpretations

If two or more BP constructs are almost identically suitable for one and the same foot-

print, a slight change of the dynamic footprint might result in a differently discovered BP.

This may cause an alternating behaviour for the footprint interpretation, i.e. with almost

every footprint update the result of the interpretation changes. This is undesirable be-

haviour which is why the competition algorithm was additionally modified as follows: All

combinations of BP construct and subsets are by default penalised by a very small value,

e.g.
tif

10 , with the exception of the combination corresponding to the previously discovered

BP model, hence reducing the risk of discovering alternating BP models.

5.5.2 Roles and Resources

The resource footprint interpretation constructs the resource perspective of the DBPMRT

from the current resource footprint DFPres defined in Section 5.4.2. The interpretation

method is similar to clustering techniques from the data mining area and is conceptually

depicted for an example resource footprint in Figure 5.12:

Filtering the Footprint: In a first step the footprint is filtered for all relevant activity-

resource associations. An association is considered relevant if it crosses a certain activity-

dependent threshold tres(x) with x ∈ A which is relative to the number of relations x⊗r > 0

in the footprint DFPres, i.e. for a given resource threshold Tres ∈R+
<1

tres(x) = Tres

|{(x,r) | x ⊗ r > 0}| .

Considering the example shown in Figure 5.12, the individual thresholds are tres(a) =
tres(b) = 0.1

3 = 0.033, tres(c) = 0.1
4 = 0.025, and tres(d) = 0.1

2 = 0.05 (top, right in the figure).

The relative threshold became necessary due to observed behaviour in the use cases: The

resources-activity associations were often unbalanced, e.g. some activities had connec-

tions to 30 resources whereas others to only 3; This resulted in probabilities that were

on average different by the factor 10 which makes the balanced application of a fixed re-

source threshold impossible.

5.5 Dynamic Footprint Interpretation 171

Bill Account

Activities Resources

Roles

Create Invoice

Cancel Order

Notify Customer

Eli Findmer

Mia Larson

Viktor Charmical

Chuck Tchahovsky

Bill Account

Activities Resources

Create Invoice

Cancel Order

Notify Customer

Eli Findmer

Mia Larson

Viktor Charmical

Chuck Tchahovsky

Accountant
[Bill Account, Create

Invoice, Cancel Order]

Customer Relations
[Notify Customer]

Bill Account

Create Invoice

Cancel Order

Notify Customer

El
i F

in
d

m
er

M
ia

 L
ar

so
n

V
ik

to
r

C
ha

rm
ic

al

C
h

uc
k

Tc
h

ah
o

vs
ky

0.50

0.25

0.36

0

0.20

0.60

0.50

0

0.30

0.15

0.12

0.20

0

0

0.02

0.80

Filter threshold t = 0.1

Role Interpretation

res

(a)

(b)

(c)

(d)

(1) (2) (3) (4)

(a)

(b)

(c)

(d)

(1)

(2)

(3)

(4)

(a)

(b)

(c)

(d)

(1)

(2)

(3)

(4)

Dynamic thresholds:

t (a) = 0.033

t (b) = 0.033

t (c) = 0.025

t (d) = 0.05

res

res

res

res

Filtering

Fig. 5.12 Concept of the Role Discovery Shown on an Example

Based on the activity-related resource thresholds tres(x) the filtered activity-resource

relation AR is calculated by

AR = {(x,r) | x ⊗ r > tres(x)}.

With regards to the example shown in Figure 5.12, the condition is true for the green high-

lighted elements of the matrix at the top. The constructed filtered relation contains the el-

ements as shown in graph form in the middle of the picture: AR = {(a,1), (a,2), (a,3), (b,1),

(b,2), (b,3), (c,1), (c,2), (c,3), (d ,3), (d ,4)}. Note, that the threshold checking is also carried

directly after each update of the footprint values. When a threshold is crossed, it means

that AB would have (at least) one relation more or less which again results in a different in-

terpretation which is why the resource interpretation is triggered in that case. Moving the

threshold checking into the update component makes the dynamic resource discovery

methodology a direct (i.e. not in separate lifecycles) causal connection between system

and the resource perspective of the DBPMRT.

5.5 Dynamic Footprint Interpretation 172

Role Interpretation: In the final step the filtered activity-resource relation is processed

to information in the resource perspective, i.e. (1) all (actively) involved resources as well

as (2) the roles that represent the connection to the associated activities. Roles are an ab-

stract concept not recorded by many BPMS, i.e. in reality the role field in the events is of-

ten empty or simply equals the resource name (i.e. each resource has its own unique role).

For this reason this information is not taken into account by the DPDF (see Figure 5.8) but

instead responsibilities (with regards to each resource) are grouped to represent the con-

cept of the resources’ roles. For this the map from activity a ∈ A to a set of all associated

resources res(x) is defined as follows:

res(x) = {r | (x,r) ∈ AR}

This means for the above example that res(a) = res(b) = res(c) = {1,2,3} and res(d) = {3,4}.

In the next step all different mapping targets for all activities (
⋃

x∈A res(x) = {{1,2,3}{3,4}})

are mapped to their associated activities:

RA = {(Ra , Ar) | Ra ∈ ⋃
x∈A

res(x)∧ Ar = {x ∈ A | res(x) = Ra}}

For the example this means that RA = {({1,2,3}, {a,b,c}), ({3,4}, {d})}. This set contains the

representatives of roles (resource groups that are associated with the same activities) and

the associated activities and resources. In the example these discovered roles are named

"Accountant" and "Public Relations" (see bottom of Figure 5.12) to improve the under-

standing. This context information is, however, not readily available which is why the

roles’s names in DPDF are represented by a sequence of all respectively involved activi-

ties, i.e. "[Bill Account, Create Invoice, Concel Order]" and "[Notify Customer]". Accord-

ing to the discovered information about roles and resources in the system the respective

entities and their associations are created or updated in the DBPMRT.

5.5.3 Performance

The interpretation of the performance footprint is in the case of the activity network-

ing time and the process instance occurrence executed in a simple way: The mean value

mean is identically taken over and the variance var is translated into a standard deviation

sd =p
var as modelled in the DBPMRT (see Section 4.2.3).

The computation of the path probabilities for each decision in the control-flow on the

basis of the directly-follows relation is done following these steps:

1. In a first step the decision d ∈ S is traced back in the control-flow (this perspective

is required input to find the path probabilities) via a breadth-first graph algorithm

to find all source elements (activities or (BP) start event) source(d) ⊆ A ∪ {ω} from

which the decisions can be reached18. Additionally, for each outgoing path of the

18Sets and elements defined in BP Definition 3 on page 137

5.6 Process Instance State Tracking 173

decision all elements (activities or (BP) end event) are collected, again via breadth-

search, i.e. target(d) = {p1, p2, ..., pn} with p1, p2, ..., pn ⊆ A∪ {ϵ}.

2. In a second step, each path’s pi probability pp(pi) is calculated by adding for each of

the decision d sources x ∈ source(d) the sum of all directly-follows values (x ≫ y) for

each of the path’s targets y ∈ pi relative to the overall occurrence of the respective

source elements Oov(x):

pp(pi) = ∑
x∈source(d)

∑
y∈pi

(x ≫ y)

Oov(x)
.

3. In a final step all path probabilities pp(pi) of the decision d are normalised with

PP(d) = ∑
p∈target(d) pp(p) to enforce that their sum is 1, i.e. ppn(pi) = pp(pi)

PP(d) , which

then reflects the real path probabilities in the system. All final normalised path

probabilities {ppn(pi)} are then updated in the DBPMRT.

There are two policies for the performance interpretation lifecycle: (1) change the re-

spective value whenever associated parts of the footprint are updated, or (2) whenever an

interpretation is requested, i.e. simultaneously with the control-flow interpretation. In

the DPDF the latter option is set as default.

5.6 Process Instance State Tracking

While the previous sections were concerned with establishing the causal connection for

aggregated type level information (control-flow, resources, performance) this section is

concerned with tracking the fine granular changes in the system on the instance level.

Since every event basically constitutes a change on the instance level, the model transi-

tion frequency is a lot higher than changes in the type level information. Storing a fixed

number, or even all of the past events, are not appropriate approaches for tracking the

state in real-time: Whereas the first option is prone to failure due to the possibility of

multiple states for parallel paths, the second option requires significant post-processing

to determine the actual state since a lot of events are already outdated, i.e. overwritten.

In this section a highly run-time optimised method is presented that tracks the state

of a given well-structured business process while processing the events and thus allows

for an always up to date state representation without further post-processing. The state

update operation for each event has a quasi-constant run-time due to exploiting bit-

operations.

5.6.1 Additional Preliminaries

Additionally to the previous definitions from Section 5.2.1, the functions BIT , AND, and

OR are specified. They are equivalent to bit-manipulation operations of common pro-

gramming languages like Java ("<<" shifting bit string to left by a specified number of

5.6 Process Instance State Tracking 174

g
e

h

f

d a

b c

Fig. 5.13 Example Business Process with many Parallel Paths

bits, "|" bit-wise or, and "&" bit-wise and) with bs1,bs2 being native types that allow bit-

manipulation operations (like Integer or Long) and bit index idx ∈N:

BIT(idx) = 1 << idx

AND(bs1,bs2) = bs1 & bs2

OR(bs1,bs2) = bs1 | bs2

(5.12)

Furthermore, the highly parallel example process depicted in Figure 5.13 serves as refer-

ence process to explain specific details and features of the proposed approach.

5.6.2 Method Specification

The method is divided in two separate parts: (1) creating bit masks from a given well-

structured BP model to pre-configure the state change behaviour for certain event occur-

rences and (2) a procedure which is called for every event that updates the state according

to the pre-calculated bit masks. That means, preferably the BP is already known for the

state tracking since it allows to determine whether a historical event is still part of the sys-

tem’s state or has already been made redundant. In the following it is assumed that this

type level information is known. Note, that the DPDF also allows for state tracking without

a given BP model through capturing and retaining all events of active traces. This is, how-

ever, a rather trivial solution and requires unnecessary intensive computational efforts

for each interpretation rather than only for each type level change (like in the proposed

approach).

Bit Mask Creation From BP Model:

The tracking of the BP state is essentially based on bit mask operations. For this, in

a first step the BP model is translated into simple bit masks/sequences. Two different

maps are created: activityBitMap, defining which bit is representing what activity, and

5.6 Process Instance State Tracking 175

changeBitMask, which defines the activities that are in parallel paths from this activity,

e.g. for activity d in the example in Figure 5.13: activityBitMap[d] = (...00001000) and

changeBitMask[d] = (...00000111) since activities a,b, and c represented by bits 1-3 are

parallel to d . Algorithm 3 shows the approach followed to compute these two maps:

First the activityBitMap is filled in a straight-forward fashion (see lines 4 and 7-11). In

a second step the BP model is traversed in a recursive way to find parallel paths to fill the

changeBitMask map. Lines 13-21 and 38-41 is a simple search (breadth-first if

elementsToReview is a queue and depth-first if it is a stack) for activities in this path on

the same recursion level. If a fork element is encountered, a special routine (lines 22-

37) is evoked that analyses the different outgoing paths individually through a recursive

call of traversePath and combines the results to respective bit masks indicating which

activities are in parallel to each other. These bit masks are stored in the changeBitMask

map. The result for activityBitMap and changeBitMask of the algorithm for the BP model

in Figure 5.13 is19:

activityBitMap : activityChangeBitMask :

... h g f e d c b a

a ... 0 0 0 0 0 0 0 1

b ... 0 0 0 0 0 0 1 0

c ... 0 0 0 0 0 1 0 0

d ... 0 0 0 0 1 0 0 0

e ... 0 0 0 1 0 0 0 0

f ... 0 0 1 0 0 0 0 0

g ... 0 1 0 0 0 0 0 0

h ... 1 0 0 0 0 0 0 0

... h g f e d c b a

a ... 0 0 0 0 1 0 0 0

b ... 0 0 0 0 1 1 0 0

c ... 0 0 0 0 1 0 1 0

d ... 0 0 0 0 0 1 1 1

e ... 0 1 1 0 0 0 0 0

f ... 0 0 0 1 0 0 0 0

g ... 0 0 0 1 0 0 0 0

h ... 0 0 0 0 0 0 0 0

State Update:

After the two bit mask maps have been computed from the BP control-flow model the

state can be tracked with the method shown in Algorithm 4 (e.traceID is the event’s unique

identifier for the trace/instance and e.activity the reference to the activity in the model).

For each event this method is called and updates the respective trace state through a com-

bination of AND and OR operations as well as the pre-computed bit masks. Assuming that

for a specific instance of the example BP in Figure 5.13 the previous events occurred in the

following order: a,b,c,d ,e, f , g ,h, a,d then the current state of this trace is (...00001001)

since only a and d represented by bit 1 and 4 are the currently relevant events comprising

the state of the instance, i.e. none of the other previous events are required to uniquely

identify the state of the process instance: If now an event representing the execution

19The map is depicted as matrix; on the left are the activities which are the keys to retrieve the respective
bit masks and on top of the matrix are the references to show which activity is represented what bit

5.6 Process Instance State Tracking 176

Algorithm 3: Creating Bit-Masks from BP Control-flow Model
Data: CF bp
Result: Map activityBitMap, Map changeBitMask

1 begin
2 activityBitMap ← {};
3 changeBitMask ← {};
4 buildActivityBitMap(bp.A);
5 traversePath(bp,bp.es);
6 return (activityBitMap, changeBitMask);

7 Function buildActivityBitMap(activities)
8 i ← 0;
9 foreach a ∈ activities do

10 activityBitMap[a] ← BIT(i);
11 i ← i +1;

12 Function traversePath(bp,startOfPath)
13 elementsToReview ← {startOfPath};
14 elementsVisited ← {}; pathElements ← {}; endJoin ← null;
15 repeat
16 curElem ← elementsToReview.pop();
17 elementsVisited ← elementsVisited∪ {curElem};
18 if curElem ̸= bp.ee then
19 if curElem ∈ bp.J∧ then endJoin ← curElem;
20 else
21 if curElem ∈ bp.A then pathElements ← pathElements∪ {curElem};
22 else if curElem ∈ bp.S∧ then
23 paths ← {}; pathBits ← {}; corrJoin ← null; i ← 0;
24 foreach (curElem, t) ∈ bp.C do
25 (corrJoin,paths[i]) ← traversePath(bp, t);
26 pathElements ← pathElements∪paths[i];
27 pathBits[i] ← 0;
28 foreach act ∈ paths[i] do
29 pathBits[i] ← OR(pathBits[i],activityBitMap[act]);

30 i ← i +1;

31 foreach (pathIdx,curPath) ∈ paths do
32 paraPathBits ← 0;
33 foreach paraPathIdx ∈ {0, ..., |paths|−1} : pathIdx ̸= paraPathIdx do
34 paraPathBits ← OR(paraPathBits,pathBits[paraPathIdx]);

35 foreach act ∈ curPath do
36 changeBitMask[act] ← OR(changeBitMask[act],paraPathBits);

37 curElem ← corrJoin;

38 foreach (curElem, t) ∈ bp.C : t ∉ elementsVisited∧ t ∉ elementsToReview do
39 elementsToReview ← elementsToReview∪ {t };

40 until el ement sToRevi ew = {};
41 return (endJoin,pathElements);

5.7 Overview of Mapping from Event Lifecycle Type to BP Perspective 177

Algorithm 4: Updating the BP State
Data: Map activityBitMap, Map changeBitMask, Map traceStates, Event e
Result: updated traceStates

1 begin
2 if ̸ ∃ traceStates[e.traceID] then traceStates[e.traceID] ← 0;
3 else traceStates[e.traceID] ← AND(traceStates[e.traceID],changeBitMask[e.activity]);
4 traceStates[e.traceID] ← OR(traceStates[e.traceID],activityBitMap[e.activity]);

of b occurs the state is updated with OR(AN D(...00001001, ...00001100), ...00000010) =
(...00001010) marking activities b and d relevant for the trace’s state; this again is followed

by the occurrence of an event representing the execution of c which updates the trace’s

state to OR(AN D(...00001010, ...00001010), ...00000100) = (...00001110); if this is followed

by e the state will be updated to OR(AN D(...00001110, ...01100000), ...00010000) =
(...00010000) and so on.

Considering the dynamic nature of some BP’s the bit masks might not (yet) account for

the state of some of the events occurring. These events are ignored for the instance state

and only taken into account once the information on the type level has been updated and

as a result the state tracking uses the updated bit masks. For these transitional phases

the state tracking might not represent an accurate reflection of reality. This behaviour

can under the given circumstances not be further mitigated (there are no events for type

level change, i.e. they have to be aggregated from low level events which again leads to a

certain causation delay) but at the same time it only constitutes a negligible factor since

the reasoning in transitional phases is relatively error prone in general due to being based

on outdated information (see Chapter 6).

Algorithm Modifications for larger BP Control-flow Models

The approach above allows to process events and keep track of the BP’s state in very low

constant run-time provided that the model does not consist of more than 64 activities

and a native type of 64 bits (like Long) is used20. However, in order to support bigger

models the operations have been extended to work on arrays of native types. That means,

in Algorithm 3 lines 27 and 32 assign an array of bit strings (all bits set to zero) as well as

in Algorithm 4 line 2. Furthermore, the operations BIT , AND, and OR were adapted to

similarly operate on arrays of bit strings.

5.7 Overview of Mapping from Event Lifecycle Type to BP

Perspective

While in the previous section specific details about establishing and maintaining a causal

link from BPMSs to a DBPMRT were discussed, this section is concerned with the general

20modern CPUs are based on 64-bit operations

5.7 Overview of Mapping from Event Lifecycle Type to BP Perspective 178

Footprint
Interpretation

Event Monitoring

Relation/Footprint Type

DBPMRT Perspective

Resource
Perspective

Performance
Perspective

Current State
of Traces

Single Entity
Performance

Resource
Associations

Global
Relations

Control-Flow
Perspective

Open Traces

Process/Activity Lifecycle Transition

Activity:
Schedule

End Event:
Triggered

Activity:
Complete

Start Event:
Triggered

Activity:
Assign

Local
Relations

Fig. 5.14 Mappings from Event Lifecycles to Relation Types to DBPMRT Perspectives

aspect of mapping source to target information. The overview provided in Figure 5.14

shows the following three levels of data:

1. Event Lifecycle Transition Types as shown at the top of the figure. Five different types

are of relevance for the DPDF (as also highlighted in Figure 5.8, page 154): Triggered

(by a BP start event21), Schedule, Assign, Complete, Triggered (by a BP end event21).

2. Relation Types as shown in the middle of the picture. The five different types are

not distinguished between footprints (as in the overall DPDF method in Figure 5.7,

page 153) but rather between type of content: Open Traces (bit masks containing

the state), Single Entity Performance (such as activity net working time and process

instance occurrence), Local Relations (directly follows matrix), Global Relations (the

CCM footprint as explained in Section 5.2.3), and Resource Associations (activity to

resource matrix as defined in Section 5.4.2).

3. DBPMRT Perspectives as shown at the bottom of the figure.

With this overview the sources of the target perspectives can be tracked down to the

event level. For instance, the current state of traces is calculated using the complete set

of different event types. The same applies for the performance perspective albeit in a

more indirect way: While activity networking time and process instance occurrence is di-

rectly calculated through Single Entity Performance information, the path probabilities

are computed via the directly-follows relation (= Local Relations) - the union of both of

their sources encompasses all lifecycle types.

21BP start events or end events are elements in the BP control-flow - not to be confused with the events
emitted by a BPMS

5.8 Evaluation 179

5.8 Evaluation

This section is concerned with the evaluation of selected parts of the dynamic process

discovery methodologies described in the chapter. Note, that while established methods

exist for the evaluation of "offline" process control-flow discovery this is not the case for

online process discovery algorithms or the discovery of holistic BP models22. The indi-

vidual components and methodologies are evaluated in the following way: (1) Evaluation

of the control-flow discovery with the CCM via established conformance measures is car-

ried out in Section 5.8.1; (2) To evaluate the ageing methods and the behaviour of the

online control-flow discovery via the DCCM a sensitivity analysis is carried out in Sec-

tion 5.8.2; (3) The dynamic discovery of the holistic DBPMRT can be quantitatively evalu-

ated through a proxy method: Comparing predicted developments of PPIs with the actual

PPI values. Since this requires further specifications of higher-level reasoning it is carried

out as part of the DBPMRT reasoning chapter 6. However, a qualitative evaluation of the

DPDF against the requirements defined in Section 5.1 is carried out in the concluding

evaluation Section 5.8.3.

5.8.1 Evaluation of Constructs Competition Miner

In this section the CCM is evaluated: First qualitatively and later quantitatively in com-

parison to other miners. For the tests the CCM was configured as follows: The tolerance

threshold was set to tt = 0.001 and the unequal penalty to pu = 1.0 (see Definition 9).

Furthermore, for the construct suitability computation the constraint weights were set to

ws = 0.6, wlc = 0.3, and wi = 0.1 (see page 148).

Rediscovery Tests

In a first evaluation step a number of initial process rediscover tests have been carried

out. For this 67 example processes were created, each consisting of a small number of

activities nested in a combination of BP constructs. The 67 example processes repre-

sent all reasonably sensible (from the author’s perspective) nested combinations of the

supported BP constructs shown in Figure 5.5 on page 147. The artificially constructed

BPs were simulated to produce a corresponding log, which in turn was analysed with the

CCM. The CCM rediscovered all but 4 of the conceptual processes or found a model with

equivalent behaviour. The not successfully rediscovered models were variations of the

Loopover-Parallel construct that had at least one loop in one of the parallel paths.

Additionally, the CCM has been tested for rediscovering more complex BPs consist-

ing of 10−50 activities. For this randomly created models were constructed by taking a

plain sequential model and repeatedly applying random mutations on it, e.g. introduce

choice, introduce loop, etc. Those strongly nested BPs were again simulated and analysed

by the CCM in order to (re-)discover the initial BP model. The log and the mined model

22This will be evaluated through a case study in Chapter 6

5.8 Evaluation 180

Fig. 5.15 Randomly Created Original BP (Top) and the (Re-)Discovered BP (Bottom) by
analysing the simulated log of the original BP with the CCM Algorithm

were then checked for their conformance. The conformance checking method used mea-

sures the quality of the mined models in two directions: (1) recall, i.e. how much of the

behaviour expressed by the event log is captured by the mined model, and (2) precision,

i.e. how much of the behaviour the mined model allows for is actually supported by the

log. The algorithms used for extracting and comparing log and model footprint are de-

scribed in [146]. For 10 activities and 20 mutations (10 runs) an average recall of 1.0 (i.e.

100%) and a precision of 0.96 was achieved. For 20 activities and 50 mutations (12 runs

of which one example is shown in Figure 5.15) an average recall of 0.97 and an average

precision of 0.92 was achieved. The run with the lowest precision of 0.79 (recall 0.98) was

probably very likely due to an incomplete log since the original model had an even lower

precision of 0.69 (recall 1.0) which shows that not all variations have been in the log. The

result of the miner is actually the desired behaviour, for the sacrifice of excluding 2% of

the exceptional behaviour the precision could be increased, i.e. the mined model had a

better overall conformance than the original model; For 50 activities and 100 mutations

(5 runs23) an average recall of 0.94 and a precision of only 0.49 was achieved. However,

the average precision of the source model was only 0.6 (between 0.5 and 0.76), i.e. the log

was not complete. In some of the cases the CCM could even improve the precision for the

cost of minimally reducing the recall, e.g. precision: 0.76 → 0.92, recall 1.0 → 0.99.

2350% of the runs failed due to memory exhaustion - many nested loops produce 1000s of events per trace

5.8 Evaluation 181

HN2PNHM

IM

CCM

Pre-
ProcessG

Log

FM

PT2PN
BSBP2PT

(Fitness)G
PN-Replay

Precision,G
Generalization,G

Simplicity

Fig. 5.16 Experimental Workflow

Comparative Evaluation: Experiment Setup

As opposed to DCCM the static CCM does not support an online causal connection from

system to model but instead is an offline analysis working on an event log. It is, however,

an important contribution of the work presented in this thesis and addresses functional

gaps identified in Section 3.3.1: (1) it can deal with infrequent (noisy) and incomplete logs,

(2) its abstraction level is that of the BP domain, and (3) it is deterministic and requires

no human intervention. To the best of the authors knowledge, the only other algorithm

which fulfils these requirements is the Inductive Miner (IM) including its various exten-

sions. The CCM and IM share some concepts (e.g. the top-down-divide-and-conquer

approach) but were developed entirely independently and have significant differences:

(1) the IM is based on local (directly-follows) rather than global relationships (eventually-

follows) and (2) it has a potentially exponential run-time when considering incomplete

logs (see Section 3.3.1).

In order to quantitatively compare the performance of the CCM with state-of-the-art

algorithms like the IM a conformance analysis of the discovered models was carried out

with the help of the ProM framework [253]. The other investigated algorithms are the

HeuristicsMiner (HM), which is a popular discovery algorithm that can deal with real-life

(noisy and incomplete) logs and is thus often used as reference algorithm, and the Flower

Miner (FM)24. The IM, HM, and FM are readily available in the nightly build of ProM and

were used to benchmark the quality of the models discovered by the CCM. The experi-

mental setup is conceptually shown in Figure 5.16: (1) The logs were filtered so that only

events with the lifecycle "complete" are considered. These logs are available in the XES-

format [90, 258]. (2) In a second step each individual miner discovers the process in its

representation language using its default settings, i.e. HM creates a heuristic net, IM cre-

ates a process tree, CCM creates a block-structured BP, and FM directly creates a Petri net.

(3) In Figure 5.16 the different transformations from the originally mined language to a

Petri net representation are shown. Note, that a transformation has been implemented to

translate the block-structured BP into process trees in order to enable an analysis of the

CCM results with the ProM framework. (4) The Petri net representation of each mined

model is then analysed with the help of the PNetReplayer package, an implementation of

the approaches in [2, 3, 236]. With the help of this plugin, three different quality mea-

24Creating the Flower Model as shown in Figure 2.13 on page 36

5.8 Evaluation 182

sures are calculated that represent the conformance of the (filtered) log to the discovered

model25: trace fitness ftf - a measure how well the traces in the log can be replayed by

the Petri net, precision fpr - a measure how closely the behaviour in the log is represented

by the Petri net, and generalisation fg - a measure that shows to what level a generalisa-

tion of the log behaviour was achieved. Additionally, all places, transitions, and arcs of

the discovered Petri nets are counted and accumulated to a simplicity measure fs . These

conformance measures are discussed in more detail in Section 2.4.1. The following 10

logs have been used for evaluation:

(1) L1 (8 activities, 34 traces, 204 events): log on page 35 (BP model in Figure 2.12),

(2) EX5 (14,100,1498): example log of a reviewing process26,

(3) REP (8,1104,7733): example log of a repair process26,

(4) BE1 (20,8204,189242), (5) BE2 (20,8206,132235), (6) BE3 (20,8194, 239318),

(7) BE4 (20,8153,253784), (8) BE5 (20,8190,151604): large logs of strongly nested BPs that

are artificially generated by a process simulation tool (similar to the rediscovery tests),

(9) DF (18,100,3354): an incomplete real-life log of an eHealth process [74], and

(10) FLA (10,13087,60849): a large real-life log from the finance sector27.

Comparative Evaluation: Experiment Results

The results of the different discovery algorithms applied to the investigated logs are shown

in Table 5.2 for trace fitness ftf and precision fpr as well as in Table 5.3 for generalisation fg

and simplicity fs . At the bottom of the table the combined averages over all 10 logs are

listed. Note, that all algorithms were executed using default settings, i.e. choosing other

parameters may result in different results. In order to provide comparable results also the

parameters for the CCM were fixed to the default values of tt = 0.001 and pu = 1.0 for all

runs.

Compared with HM and IM the CCM scores a generally high trace fitness for the con-

sidered logs (always higher than 0.95) with the exception of BE5 for which a trace fitness

of only 0.822 was determined. The precision values of the models discovered by CCM are

mostly between the respective values scored by HM and IM but always above 0.5 - as ex-

pected FM always scores the lowest for precision. Positive exceptions are L1, BE5, and DF

for which CCM scores the highest precision. In terms of the generalisation measure, the

CCM scores are average in comparison to HM and IM: yielding a high result for log L1 but

low results for DF and FLA. Very positive results are achieved if the simplicity measure is

considered: the CCM mostly discovers a model consisting of the lowest number of ele-

ments (excluding FM): far smaller than the HM models and slightly smaller than the IM

models. Generally, it seems that the CCM tends to favour trace fitness, generalisation, and

simplicity for the cost of a lower precision.

25using "Prefixed based A* Cost-based fitness" algorithm with maximum explored states = 200000
26exercise5 (EX5) and repairExample (REP) are example logs from the ProM website (processmining.org)
27log from the BPI Challenge of 2012 (http://www.win.tue.nl/bpi/2012/challenge) filtered for events that

start with "A", e.g. "A_APPROVED", "A_DECLINED", etc.

5.8 Evaluation 183

Table 5.2 Trace Fitness and Precision conformance results of the discovery algorithms

Log Trace Fitness ftf Precision fpr

HM IM FM CCM HM IM FM CCM

L1 0.679 0.863 1.0 1.0 0.532 0.529 0.224 0.550
EX5 0.985 0.935 1.0 1.0 0.495 0.560 0.120 0.529
REP 1.0 1.0 1.0 1.0 0.905 0.955 0.209 0.955
BE1 0.991 1.0 1.0 1.0 0.838 0.814 0.081 0.818
BE2 0.924 0.981 1.0 0.998 0.737 0.594 0.087 0.621
BE3 0.822 0.983 1.0 0.999 0.891 0.443 0.073 0.525
BE4 0.876 1.0 1.0 1.0 0.707 0.406 0.067 0.608
BE5 0.942 0.991 1.0 0.822 0.590 0.668 0.089 0.711
DF 1.0 0.911 1.0 0.970 0.563 0.559 0.060 0.588
FLA 0.974 1.0 1.0 1.0 0.920 0.695 0.227 0.727

φ 0.919 0.966 1.0 0.979 0.718 0.622 0.124 0.663

Table 5.3 Generalisation and Simplicity results of the discovery algorithms

Log Generalisation fg Simplicity fs

HM IM FM CCM HM IM FM CCM

L1 0.638 0.422 0.949 0.654 86 91 33 81
EX5 0.931 0.996 0.999 0.998 155 102 51 80
REP 0.998 0.999 0.999 0.999 72 46 33 49
BE1 0.999 0.999 1.0 0.999 192 132 69 122
BE2 1.0 1.0 1.0 1.0 196 156 69 146
BE3 1.0 1.0 1.0 1.0 178 149 69 139
BE4 1.0 1.0 1.0 1.0 193 173 69 149
BE5 1.0 1.0 1.0 1.0 206 181 69 167
DF 0.914 0.906 0.982 0.832 177 136 63 121
FLA 0.925 0.825 0.988 0.818 98 62 39 65

φ 0.941 0.915 0.992 0.930 155.3 122.8 56.4 111.9

Process discovery is a multi-goal optimization and it is sometimes hard to tell how

well a discovery algorithm performs overall (see Section 2.4.1: balance between overfitting

and underfitting). From the four resulting quality criteria, usually no aggregated metric is

computed since the individual requirements differ with each use case. To put the overall

performance result into a more readable format and make it more comparable Table 5.4

shows the average score of the CCM against the two relevant other algorithms HM and IM

(FM is only a base line case for underfitting). Additionally, the winner in each of the indi-

vidual quality criteria is coloured in green , the second place in olive green , and the last

Table 5.4 All averaged results of the relevant discovery algorithms

Trace Fitness ftf Precision fpr Generalisation fg Simplicity fs

HM IM CCM HM IM CCM HM IM CCM HM IM CCM

0.919 0.966 0.979 0.718 0.622 0.663 0.941 0.915 0.930 155.3 122.8 111.9

5.8 Evaluation 184

Fig. 5.17 Quality Criteria Net of HeuristicsMiner (HM), Inductive Miner (IM), and Con-
structs Competition Miner (CCM); Simplicity values normalised with | fs | = 100

fs

place in brown . The CCM scores best in trace fitness and simplicity and second best in

precision and generalisation. The HM scores best in precision and generalisation but as a

trade off very badly in trace fitness and simplicity. While the IM has more balanced results

it only comes second in trace fitness and simplicity and last in precision and generalisa-

tion. To get a better picture of the overall performance Figure 5.17 shows the average score

of the individual discovery algorithms as net graph. In order to fit the simplicity score into

the same range (0.5 ≤ f ≤ 1.0) and direction (higher is better) the absolute simplicity score

of each discovery algorithm has been normalised to | fs | = 100
fs

, i.e. HM: | fs | = 100
155.3 = 0.644,

IM: | fs | = 100
122.8 = 0.814, CCM: | fs | = 100

111.9 = 0.894. The picture shows that on balance the

CCM performs better than HM and IM since it scores either the highest or close to the

highest in all relevant criteria.

5.8.2 Evaluation of Dynamic Constructs Competition Miner

In this section evaluation results of the DCCM are presented with regards to its capability

of initially discovering the correct process and how it reacts to certain changes of a real-

time monitored business process. Furthermore, a comparative analysis is carried out to

determine the advantages and disadvantages of the two ageing strategies, discrete and

time-dependent ageing.

Experiment Setup

The experiments revolve around the concept of process rediscovery, i.e. that a source

business process is executed and produces an event stream which is fed to the DCCM

which then should discover a process behaviourally equivalent to the executed source

process. Figure 5.18 shows three measures (tw , td , and ttr) which are used to evaluate the

5.8 Evaluation 185

of traces

BP’ - BP’

BP1 BP2

BP’m

BP in system:

Observed BP’: BP’nm+1 n-1

td ttr

BP’ - BP’1 m-1

tw

Fig. 5.18 Measures for Detection of BP Change in System

quality of the DCCM. In the figure BP1 and BP2 are the business processes deployed in the

monitored system and BP′
1 to BP′

n are the (control-flow) models discovered by the DCCM.

Additionally, BP1 and BP′
m are equivalent (BP1 ≡ BP′

m) as well as BP2 and BP′
n (BP2 ≡ BP′

n).

For this part of the evaluation the following measures are of interest:

• Warm-up: tw ∈N the amount of completed traces the DCCM needs as input at the

start until the resulting model equivalently represents the process in the system, i.e.

until BP1 ≡ BP′
m .

• Change Detection: td ∈N the amount of completed traces it takes to detect a certain

change in the monitored process - from the point at which the process changed in

the system to the point at which a different process was detected. When the change

is detected the newly discovered process is usually not equivalent to the new pro-

cess in the system BP2 but instead represents parts of the behaviour of both pro-

cesses, BP1 and BP2.

• Change Transition Period: ttr ∈ N the amount of completed traces it takes to re-

detect a changed process - from the point at which the process change was detected

to the point at which the correct process representation was identified, i.e. until

BP2 ≡ BP′
n . In this period multiple different business processes may be detected,

each best representing the dynamic footprint at the respective point in time.

The basis of this evaluation is the example model in Figure 5.13 on page 174 which

is simulated and the resulting event stream fed into the DCCM. Since the simulation is

non-deterministic this is repeated 60 times for each configuration in order to get reliable

values for the three measures tw , td , and ttr . From these 60 runs the highest and lowest 5

values for each measure are discarded and the average is calculated over the remaining 50

values. For each experiment the CCM core is configured with its default parameters (see

beginning of Section 5.8.1).

Warm-up Evaluation

The first experiment will evaluate how the DCCM behaves at the beginning when first

exposed to the event stream, more particularly, the duration of the warm-up phase tw

is determined. Figure 5.19 shows the development of the first few BP models extracted

by the DCCM using Discrete Ageing with trace influence factor tif = 0.01 (see Section 5.4.1)

5.8 Evaluation 186

and interpretation frequency m = 10, i.e. an interpretation is executed every 10 completed

traces: After the first trace the discovered process is a sequence reflecting the single trace

that defines the process at that point in time. At trace 10, which is the next scheduled foot-

print interpretation, the algorithm discovers a Loop construct but cannot further analyse

the subsets since the corresponding sub-footprint was not requested yet. Because of that,

the feedback mechanism via the Sub-Footprint Configurations is utilised by the Footprint

Interpretation algorithm to register the creation of the missing sub-footprints. In the next

scheduled run of the footprint interpretation, the Parallel construct of a,b,c, and d is dis-

covered but again the analysis can not advance since a sub-footprint for the individual

activity subsets has not been created yet. Activities e, f , g , and h seem to have appeared

only in exactly this sequence until trace 20. Skipping one of the interpretation steps, it can

be seen that at trace 40 the complete process has been mined, i.e. tw = 40.

In Figure 5.20 the development of warm-up duration tw for of the DCCM with Discrete

Ageing for different m ∈ {1,2,3,6,10} and tif ∈ {0.001,0.002,0.005, 0.01,0.018,0.03} is de-

picted. The warm-up phase seems generally very short and not strongly influenced by tif .

For m = 10 the warm-up phase cannot be any shorter because the example process con-

sists of a block-depth of 3: Parallel-in-Parallel-in-Loop, i.e. 3 subsequent requests for sub-

footprints have to be made. This is an indicator that the modification effort to shorten the

warm-up phase had a positive effect. No significant changes of tw can be noticed when

increasing or decreasing the trace influence factor tif . This is caused by the optimisation

rule that essentially nullifies the default ageing via tif (see Equation 5.9 on page 164).

A similar sensitivity experiment was carried out for the warm-up duration tw with the

Time-dependent Ageing: In order to make the results comparable the ageing time unit was

set to one minute (tur = 1min) and the simulation produced on average approximately

one instance per minute (instance occurrence: 1/min; deviation: 0.5). As a result similar

Fig. 5.19 The Evolution of the Discovered BP Model During the Warm-up Phase

5.8 Evaluation 187

Fig. 5.20 Warm-up Time with the Discrete Ageing in Relation to the Trace Influence Factor

Fig. 5.21 Warm-up Time with Time-dependent Ageing in Relation to the Trace Influence
Factor

tif for the discrete and time-dependent28 ageing should yield results of a similar magni-

tude and are thus comparable, i.e. 10 traces ≈ 10 minutes. In Figure 5.21 the development

of warm-up duration tw for the DCCM with Time-dependent Ageing for different m ∈ {1,5}

and tif ∈ {0.005,0.01,0.02,0.05,0.1} is depicted. As a reference the results of the Discrete

Ageing with m = 1 were also added to the graph. Similar to the discrete ageing, the de-

velopment of the warm-up duration tw seems to be in no relation to the trace influence

factor tif for the time-dependent ageing. This indicates that the optimisation rule for the

time-dependent ageing successfully improves and nullifies the default ageing method for

the warm-up phase (see Equations 5.11 on page 165). Additionally, it can be seen that the

result of the two different ageing types with a similar configuration yield similar results

(for m = 1).

In order to examine the effect of the optimisations for both of the ageing methods,

the same experiments were repeated without the respective optimisations (only for m =
28Time-dependent ageing is technically based on an ageing rate ar rather than trace influence factor tif .

However, ar can be derived from tif , i.e. ar = 1− tif

5.8 Evaluation 188

Fig. 5.22 Warm-up Time without Optimisation in Relation to the Trace Influence Factor
with m = 1

1). Figure 5.22 shows that especially for the discrete ageing a sizeable improvement was

achieved through the application of the proposed optimisations, e.g. for tif = 0.02 the

non-optimised discrete ageing took on average 341 traces until the model was rediscov-

ered but the optimised version was already successful after 8.44 traces (on average). The

non-optimised time-dependent ageing already yielded comparatively good results which

could be further improved by the optimisation proposed, e.g. for tif = 0.02 the non-

optimised time-dependent ageing took on average 37.16 minutes (≈ number of traces)

until the model was rediscovered but the optimised version was already successful after

an average of 8.42 minutes.

Change Evaluation

In a second set of experiments three changes of different extent are applied to the business

process (moving of an activity, adding an activity, and a complete process swap) during

execution. Of interest for these experiments are the behaviour of the DCCM as well as the

change detection time td and the change transition period ttr .

Moving of Activity "A" The change applied is the move of activity A from the position

before the inner Parallel construct to the position behind it. Figure 5.23 shows the evolu-

tion of the discovered BP models with discrete ageing and trace influence factor tif = 0.01

and interpretation frequency m = 10. The change was applied after 5753 traces. The

footprint interpretation detects a concept drift at the first chance to discover the change

(trace 5760) and finds via competition the best fitting construct: Parallel of a,c and b,d .

The change detection td seemed to be unrelated to m and tif for all experiment runs

and was immediately recognised every time29. In Figure 5.24 the development of ttr for

both ageing approaches with different m ∈ {1,10} and tif ∈ {0.005,0.01,0.02,0.05,0.1} is

29Note, that other changes like deletion of an activity will take longer to recognise, since their existence
still "lingers" in the footprints "memory" for some time.

5.8 Evaluation 189

shown. For this change a clear difference between the performance of the discrete and

the time-dependent ageing can be observed: The time-dependent ageing is significantly

slower to finally detect the correct changed process, e.g. for tif = 0.02 and m = 1 the time-

dependent method detects the correct process BP2 after on average 345 traces/minutes

while the discrete ageing method recognises the new process correctly already after 105

traces (on average). Furthermore, it is observable that the change transition period ttr was

not particularly influenced by the interpretation frequency m but strongly influenced by

tif . If the value was very small (tif = 0.005) a change took on average 450 traces (dis-

crete) or 1382 traces/minutes (time-dependent) in order to be reflected correctly in the

discovered BP model. On the other hand if the trace influence factor is chosen very high,

e.g. tif = 0.1, the new process is correctly discovered after 21.1 (discrete) or 67 (time-

dependent) traces/minutes.

Adding of Activity "I" The change applied in this scenario is the addition of activity I at

the end of the process. Figure 5.25 shows the evolution of the discovered BP models with

discrete ageing and trace influence factor tif = 0.01 and interpretation frequency m = 10

while the change was applied after 5753 traces. It can be observed that the change de-

tection td was again immediate, i.e. unrelated to m and tif . However, it took on average

140 traces longer for the transition phase to be completed than for the previous scenario,

i.e. on average 690 traces were necessary. The intermediate model which was valid from

trace 5760 until 6450 (exclusively) recognises the relative position of activity I correctly

(at the end of the process) but makes the activity optional. This is due to the fact that

the "memory" of the dynamic overall footprint still contains behaviour from the original

process in which the process ended without an activity I . Only after a certain amount of

Fig. 5.23 The Evolution of the Discovered BP Model During a Change (Move of Activity
"A")

5.8 Evaluation 190

Fig. 5.24 The Change Transition Period in Relation to the Trace Influence Factor (for
Recognising Move of Activity "A")

Fig. 5.25 The Evolution of the Discovered BP Model During a Change (Addition of Activity
"I")

traces (dependent on the trace influence factor tif) the memory of this behaviour became

insignificant. Figure 5.26 shows an overview of the development of ttr for all changes and

both ageing approaches with m = 1 and tif ∈ {0.005,0.01,0.02,0.05,0.1}. Both ageing ap-

proaches behave similarly for the change of introducing the new activity I : even though

the time-dependent ageing was usually slightly quicker, e.g. for tif = 0.01: 687 (discrete)

vs. 684 (time-dependent) traces/minutes, the transition periods essentially only differed

marginally (2 to 6 traces). When comparing the transition period ttr for the discrete age-

ing method it can be concluded that the movement of an activity was correctly detected

quicker than the addition of a new activity (tif = 0.01: 209 (move A) vs. 687 (add I)).

However, for the time-dependent ageing only a relatively small difference was observed

(tif = 0.01: 691 (move A) vs. 684 (add I)).

5.8 Evaluation 191

Complex Change (Swap of Complete Process) The change applied in third scenario is

a complete exchange of the original process during runtime, i.e. a revolutionary change.

Figure 5.27 shows the evolution of the discovered BP models with discrete ageing and

trace influence factor tif = 0.01 and interpretation frequency m = 10 with the change being

applied after 5753 traces. The change detection td was again immediate (not displayed in

Figure 5.27), thus being unrelated to m and tif . Many different process versions occurred

during the transition phase of which only the version at trace 6310 is exemplary shown

in the figure. Process BP2 which is extremely different from BP1 was finally correctly de-

tected at trace 6680, i.e. on average 927 traces after the change was applied and 230 traces

later than the introduction of a new activity (second scenario). When comparing the per-

formance of discrete and time-dependent ageing it can be observed that both develop

similarly in relation to the trace influence factor tif (see top two graphs in Figure 5.26).

This scenario can be considered the baseline scenario for how long the transition phase

may last at maximum for any tif .

Discrete vs. Time-dependent Ageing

A first observation is that the change detection td for all changes and ageing configura-

tion was always quasi-immediate, i.e. whenever the first interpretation occurred after a

change it was detected that the process has changed. This is mainly due to the configu-

ration of the core CCM component and may change if different interpretation thresholds

are selected. The ageing strategy, however, seems to not influence this directly (unless an

extremely low trace influence tif is selected).

A second observation is that there is a significant difference for the transition duration

ttr depending on the extent of the change, e.g. the movement of activity A took on average

only ttr = 209 traces to be correctly recognised whereas swapping process BP1 with an

entirely different process took on average ttr = 932 to be recognised by the DCCM with

Fig. 5.26 The Change Transition Period in Relation to the Trace Influence Factor for all
three Changes (m=1)

5.8 Evaluation 192

Fig. 5.27 The Evolution of the Discovered BP Model During a Change (Complex Change)

discrete ageing and tif = 0.01 and m = 1.

Thirdly, time-dependent and discrete ageing perform in most cases similarly well,

with the exception of change scenario 1, in which activity A was moved to a different

position within the process. Here, the discrete ageing was able to detect the change sig-

nificantly earlier than the time-dependent method, e.g. for tif = 0.1 the new process is

correctly discovered after 21.1 (discrete) or 67 (time-dependent) traces/minutes. How-

ever, a fact not shown in the graphs is the number of exceptional results: While the time-

dependent ageing did not suffer any exceptional experiment results it was observed that

in approximately 4% of the experiments for the discrete ageing method disproportion-

ately high values for ttr occurred. Due to the experiment setup, these results were ignored

(i.e. removal of the five highest and lowest values). In this context it was furthermore

observed that a very high trace influence tif > 0.1 (not part of the above experiments) re-

sulted in frequently changing/alternating discovered BP models even though the source

process producing the events did not change. The reason for this behaviour is that not

all variations of the process are included in the current dynamic footprint because they

have already been "forgotten" before they reappeared. It was observed that for the ex-

amined scenarios the discrete ageing is slightly more susceptible to this issue than the

time-dependent approach. Generally, the issue of "forgetting" too quickly is more likely to

occur in large business processes containing rarely executed but still relevant behaviour

and emphasises the importance of setting the trace influence factor tif correctly to bal-

ance between timely correct discovery (higher tif) and a sufficiently long memory (lower

tif) to not forget frequently occurring behaviour.

5.8 Evaluation 193

5.8.3 Qualitative Evaluation

In the final evaluation part the proposed concept and the involved algorithms are quali-

tatively analysed with regards to the requirements established in Section 5.1:

TR1 Independent/Autonomous:

The overall concept does not rely on any external output information apart from

specific configuration parameters, e.g. trace influence factor tif , which might have

to be adapted depending on the use case. While the overall concept principally fol-

lows an autonomous approach and also promotes the independence of individual

components, some of the them rely in their implementation on input from other

components due to considerations with regards to improvement of the algorith-

mic run-time. For instance, (1) the instance state tracking preferably uses a given

control-flow model as input, or (2) the directly-follows matrix is only maintained

once to avoid duplicated computation effort despite being technically part of both,

the control-flow footprint and the performance footprint.

TR2 Well-fitting Result:

As shown in the previous evaluation sections, the CCM (and the DCCM by exten-

sion) performs accuracy-wise on par or even slightly more balanced than other

state-of-the-art discovery algorithms even if the events contain sporadic, contra-

dictory, or incomplete behaviour. It has also been shown that the CCM does have

problems detecting the rare and complex construct of "loop over parallel paths"30.

TR3 Robustness:

The CCM always yields a control-flow output for a given log. When translated to a

dynamic real-time environment (DCCM) it can be argued that this is not entirely

true any more since the interpretation does not drill down further if sub-footprint

configurations have previously not been registered and recorded with the control-

flow footprint update component. As a result abstracted group-activities encap-

sulating singular-activities become temporarily part of the control-flow model, e.g.

see Figure 5.10 on page 159. This results in different ramifications for other perspec-

tives: While the resource perspective is still interpreted, performance and state-

tracking is suspended until a complete control-flow interpretation (with all sub-

footprints available) is carried out. Although only temporarily, this requires the

DBPMRT reasoning to operate on a slightly outdated (but complete) model until

this situation has been resolved.

TR4 Detection of Change:

Change on the instance level (reflectivity) as well as on the type level (dynamism)

is detected by the DPDF as shown in the evaluations (type level in Section 5.8.2; in-

stance level in the later cases study Section 6.3). However, changes in the system

30Note, that to the best of the authors knowledge other deterministic process discovery algorithms per-
form in that case not better or even worse.

5.8 Evaluation 194

are often not immediately and correctly reflected by the DBPMRT due to: (1) The

employment of an interpretation rate m as part of the separation of FP update and

interpretation, and (2) the employment of a trace influence factor tif which regu-

lates the memory and influence of new process instances. While the first was shown

to have a negligible effect on the speed of change detection (see Section 5.8.2) or

is even not applicable for some perspectives, e.g. resource and instance state, the

trace influence factor plays a significantly more influential role for the delayed change

detection. In fact, a change is immediately recognisable in almost all investigated

cases. However, only after an unsatisfyingly long transition phase does the model

reflect the reality (because the footprint does still contain the behaviour of the older

models for some time). This effect weakens the causal link for type level information

(delayed reflection of the system in the model) but is essentially due to the problem

of balancing between exceptional and new consistent behaviour. This problem is

difficult to mitigate if no higher-level events are available (e.g. when and how a BP

has changed).

TR5 Optimised Algorithmic Run-time/Memory Usage:

Much effort has been carried out to optimise the algorithmic run-time and mem-

ory usage: (1) Firstly, the conceptual separation into two lifecycles (when neces-

sary) enabled an event processing/footprint update of quasi-constant algorithmic

run-time with limited memory usage (when assuming the amount of different activ-

ities/resources is not significantly increased during run-time); (2) Secondly, further

run-time improvements of individual components were detailed in the respective

sections, e.g. using bit operations for state tracking. However, from an end-to-end

perspective (BPMS events to DBPMRT, i.e. footprint update and interpretation) the

proposed solution is not particularly scalable which can be attributed to character-

istics of the problem: The big gap in abstraction and the lack of higher-level events

emitted by common BPMSs.

TR6 Extensibility:

Extensibility is to a high degree supported by the main concept since it follows a

modular structure: new adapters for different event formats can be added and pro-

cessing components can be exchanged/removed/added depending on the purpose

and extent of the DBPMRT that is to be extracted. However, as pointed out in the

qualitative evaluation of TR1, a number of components have been implemented

using interfaces to exchange information across the different perspectives in order

to optimise the algorithmic run-time. This slightly increases the requirements for

components (since they also have to implement the interfaces).

The degree of fulfilment as semi-quantitative measure for each of the requirements based

on the results of the qualitative analysis is shown in Table 5.5.

Note, that the DPDF is quantitatively evaluated for its capability to discover a holistic

DBPMRT for BP simulation in Chapter 6.

5.9 Summary 195

Table 5.5 Degree of Requirement Fulfilment

(++ = Full, + = Mainly, ◦ = Partly, − = Negligible)

Requirement:
Principal

Restrictions
Degree of

Fulfilment Fulfilment

TR1 Yes
- single components not independent

+from components of other perspectives
- configuration parameters

TR2 Yes
- CCM has problems detecting loop ++

over parallel paths (rare)

TR3 Yes
- creates group-activities in +

transition phase (hinders reasoning)

TR4 Yes - long transition phase +

TR5 Yes/No
- Yes: only for footprint update

◦- No: if interpretation (in separate
lifecycle) is considered as well

TR6 Yes
- due to interconnection of

+components more interfaces need to
be impl. by new component

5.9 Summary

In this chapter the establishment of a causal link from BPMSs to the DBPMRT was dis-

cussed in four parts: First, the problem was further specified and requirements to ad-

dress it were formulated in Section 5.1. Then in the second part (Section 5.2) the Con-

struct Competition Miner (CCM) is presented: a novel algorithm that discovers the BP

control-flow from an event log potentially containing exceptional and/or contradictory

behaviour. The CCM follows a divide and conquer approach to directly discover block-

structured control-flow models which consist of common BP-domain constructs and rep-

resent the main behaviour of the process. For each recursion step of the divide and con-

quer methodology the different supported constructs compete with each other for the

most suitable solution from top to bottom using constraints and behaviour approxima-

tions based on global relations between activities. The CCM represents the foundation

for establishing a causal link from BPMS to the control-flow perspective of the DBPMRT.

In the third part the general concept, involved agents, and specific aspects for maintain-

ing the causal link for a dynamic run-time environment, the Dynamic Process Discovery

Framework (DPDF), were discussed (Sections 5.3-5.7). For this the CCM approach has

been expanded along two dimensions: (1) dynamic control-flow discovery at run-time,

i.e. modifying the CCM to create the Dynamic Construct Competition Miner (DCCM), and

(2) including additional perspectives into the concept such as resources, performance,

and instance state. Notable contributions of the DPDF are the employed ageing concept

based on time-dependent or distinct ageing, as well as the time-efficient algorithm based

on bit operations that tracks the fine-grained instance state of the BPMS. In a fourth and

5.9 Summary 196

final part in Section 5.8, the algorithms concerned with the control-flow discovery, CCM

and DCCM, were individually evaluated in a quantitative fashion and the holistic DPDF

concept was qualitatively evaluated against the requirements established in Section 5.1.

The qualitative evaluation against the requirements of the problem definition provided

theoretical evidence that the approach of the DPDF is a first successful step towards es-

tablishing and maintaining a causal link from enterprise system to a descriptive business

process run-time model. Practical evidence of DPDF’s usefulness is provided in the next

chapter for the use case of performance prediction.

Chapter 6

Reasoning on Descriptive Business

Process Models at Run-time

This chapter serves a dual purpose: (1) In addressing third objective of this thesis: Reason-

ing on a DBPMRT, and (2) Evaluation of the usefulness of the DBPMRT reference model

(Chapter 4) and the DPDF concept and algorithms (Chapter 5) with the help of a rea-

soning use case. The potential benefit of reasoning on a DBPMRT is that the system’s

complete state information can be utilised to carry out high-level analyses for decision

support. Since the DBPMRT is an abstracted state representation of the system, a natural

reasoning technique is that of simulation. Furthermore, adaptive reasoning in the BP do-

main is mostly based on expert knowledge and current or predicted Key/Process Perfor-

mance Indicators (KPIs/PPIs - see Section 2.5). For this reason a relevant and promising

reasoning use case is that of PPI prediction via simulation as identified in Section 3.4. If

proven successful, this will not only validate the reasoning framework but by extension

also give an estimate to what extent BP reasoning techniques can be improved by basing

them on descriptive BP run-time models (i.e. proof of the DBPMRT + DPDF concept).

The chapter is structured as follows (see Figure 6.1): In the first part, the framework is

introduced that performs the reasoning on the DBPMRT. The particular focus of this sec-

tion are performance parameters and their prediction via short-term/transient BP sim-

ulation. In a second part, a retailer company as case study scenario is introduced. This

includes the original specification of the company as well as key business processes and

the organisational perspective. In a third part, the introduced reasoning framework (and

by extension the quality of DBPMRT and DPDF) is analysed for its prediction quality with

regards to the introduced scenario.

6.1 DBPMRT Reasoning Framework

This section is proposing a general overall concept for the reasoning framework (Sec-

tion 6.1.1) as well as introducing important details of the proposed implementation for

the use case of PPI prediction via simulation (Sections 6.1.2 & 6.1.3).

6.1 DBPMRT Reasoning Framework 198

Chapter26:2Objective2III2– Reasoning2on2DBPMRTs

Contribution

3.4:kGapkAnalysis:kProcesses PerformancekPrediction atkRun-time

Evaluation
6.3:kCasekStudykResults

6.2:kCasekStudykScenario

6.1:kReasoningkFramework
(Specialisation:kPerformancekPredictionkwithkSimulation)

Chapter24:2DBPMRT Chapter25:2Causal2Connection

Fig. 6.1 Outline of Chapter 6

6.1.1 Concept of DBPMRT Reasoning Framework

The reasoning on DBPMRTs is in itself a models@run.time (MRT) system: The continu-

ously executed reasoning techniques are based on a run-time model that is subject to con-

tinuous changes imposed by an outside source (the DPDF) and have to adapt accordingly.

As a consequence the reasoning techniques and the DBPMRT are causally connected.

The MRT architecture adopted for the DBPMRT reasoning framework is that of a repos-

itory architecture (see Section 2.7.3). The adopted architecture is shown in Figure 6.2: The

DPDF is the controlling entity, manipulating (create, add, delete, update) the repository

entries, i.e. the run-time model (DBPMRT). Potentially, the repository features versioning

capabilities to store older variants of the DBPMRT or, alternatively, stores a more compact

Evolution DBPMRT as introduced in Section 4.3. The DBPMRT can then be accessed by

various analysis/reasoning components which act as run-time systems in this architec-

ture. There are two different types of analysis components: (1) some solely consume the

DBPMRT channelling their resulting output into other components, e.g. visualisation or

notifications, (2) others process information in the DBPMRT into higher-level run-time

information that is part of the DBPMRT specification, i.e. model refinement (see Sec-

tion 2.6.3). With the second type mega-modelled analysis chains using the DBPMRT as

information hub can be supported.

Both, model update and reasoning components, have their own lifecycles and access

the DBPMRT in an uncoordinated fashion. For this reason the repository is required to

enforce synchronised access, e.g. the analysis component is required to (bulk-)read in-

formation from the DBPMRT associated with a specified state; during that time the state

may not be updated since this could contaminate the read-out information and invalidate

the analysis’ results.

6.1 DBPMRT Reasoning Framework 199

Reasoning System

Dynamic
Process

Discovery
Framework

Repository

DBPMRT

create/add/delete

update

read
Analysis 1

read + write
Analysis 2

:

Fig. 6.2 Repository Architecture for the General Reasoning Framework

6.1.2 Event to Performance Processing (External Component)

For clarification it has to be stated at this point that the event to performance process-

ing component discussed in this (sub-)section is not an analysis component based on a

DBPMRT (as previously discussed). Instead it is based on processing BP events and is

only used as a sub-component of the performance prediction analysis component (see

next section). Essentially, the event to performance processing component is an individ-

ual Business Activity Monitoring (BAM) solution (see Section 2.2.3) that is originally used

independent of the DPDF. As it represents an external tool and offers no contribution in

the context of this thesis only its essential features are briefly discussed.

The event to performance processing component takes single events and aggregates

them to selected PPIs in order to monitor their development. Objective-wise this is sim-

ilar to what the agents for the DBPMRT performance perspective are calculating. The

difference, however, is that the DBPMRT is only focussed on external PPIs such as Path

Probabilties and Process Instance Occurrence whereas the performance processing com-

ponent is focused on mainly behavioural PPIs such as End-to-End Processing Time, Role

Queue Length Resource Utilisation1. Additionally, in the performance processing com-

ponent the PPI calculation is not done in a dynamic fashion where older events have

less influence on the current value (i.e. no ageing) but instead by using the more con-

ventional method of sliding windows. Figure 6.3 shows how the performance processing

component conceptionally operates for the example PPIs Throughput, Processing Time,

and Queue Length:

• Throughput (top of the figure): The throughput is essentially counting the occur-

rences of a certain event for a given sampling rate and sampling interval. The first

determining the rate at which a throughput value is recorded and the latter the time

window for which residing occurrences are contributing to the throughput value.

With the sliding window approach it is possible to have occurrences contributing

to throughput values associated with different times, e.g. the orange occurrences

are part of the yellow and red throughput values. Note, that the PPI process instance

occurrence is a specialisation of the throughput PPI counting the start event occur-

rences of a BP.
1While external PPIs describe environment-dependent outside influences, behavioural PPIs describe the

performance directly influenced by the characteristics of the BP.

6.1 DBPMRT Reasoning Framework 200

8

4

time

Sampling Rate:

Sampling Interval:

Occurrence:

7 6 7Throughput:

2

time

Role
Requests

1 4
0Queue Length:

Schedule:
Assign:

time

time

4

time(4+5+3)/3

(4+5+3+2+8+5)/6

(2+8+5+4+6)/5

(4+6+3+1+1)/5

Single Processing
Time:

4.5 5
3

Ø Processing
Time:

time

4
2

4 3
5

3
5 6

1 1

Fig. 6.3 Exemplary Calculation of PPIs Throughput, Processing Time, and Queue Length

• Processing Time (middle of the figure): The processing time is a measure that de-

scribes how much time has passed from a initial event to the target event, e.g. from

start to end of a BP: End-to-End Processing Time. It is similarly computed like the

throughput PPI with a specified sampling rate and interval. However, instead of

counting occurrences, the average of the occurring single processing times is calcu-

lated and recorded, e.g. the yellow value is the average of the orange and light green

recorded single processing times: 2+8+5+4+6
5 = 5.

• Queue Length (bottom of the figure): The queue length (of roles or activities) is a dis-

crete state measure (unlike the former two) that is only defined by a sampling rate

but not sampling interval. It essentially determines how many tasks are waiting to

be processed by an available resource. This is determined by offsetting the number

of occurrences of "schedule" events (a resource is requested) with that of "assign"

events (specific resource has been assigned), e.g. the red value is: 2 (former queue

length) + 1 (the one orange schedule) − 2 (the two orange assigns) = 1.

Other PPIs, such as Resource or Role Utilisation (see Section 2.5.1), are calculated similar

to the described PPIs.

6.1 DBPMRT Reasoning Framework 201

Complex Event Processing

DPDF

Business Analyst

Enterprise
Systems

DBPMRT

Simulation Engine

Real-time
events

Real-time &
prediction

performance
parameter

Simulated
Future
Events

BP perfor-
mance events

Business
Process

Adaptation

Legend

Events

Performance
Data

C
ur

re
n

t

F
u

tu
re

C
ur

re
n

t
&

 F
u

tu
re

Performance Processing

Fig. 6.4 Concept of Using Simulation for Performance Prediction

6.1.3 Performance Prediction via Simulation

In this section an analysis component (only read access) for the overall reasoning frame-

work introduced in Section 6.1.1 is further specified for proof-of-concept purposes: the

performance prediction via simulation. The potential benefits of simulation over statis-

tical methods is discussed in Section 2.5.2, e.g. as opposed to standard statistical meth-

ods such as trend analysis a simulation tries to emulate the complex and interdependent

structures of a system and not regard a performance measure in isolation (see Figure 2.22

on page 59). However, due to the fact that a simulation often only is a simplification of

the real system, predictions of a further away future might turn out to be far from what

is actually going to happen. Hence, the proposed performance prediction is a transient

short-term prediction, i.e. predicting the immediate future development of PPIs taking

the current reflective system state into account.

The methodology proposed makes use of another advantage of simulations: the abil-

ity to produce future events, which are of the same type as the live events generated by the

actually executed business process. For this reason simulated future events can be pro-

cessed by existing event stream analysis tools in the same way as the live events. The pre-

viously introduced performance processing component is such a tool and can in this way

calculate the historic, current, and future values of a PPI. Figure 6.4 depicts the concept

along with a schematic data flow and involved components2 that provides performance

2Flows of raw data events like live and future events are depicted as fine grained arrows; processed per-
formance data as coarse grained arrow; common data exchange via services as uninterrupted arrows

6.1 DBPMRT Reasoning Framework 202

Performance Processing

DBPMRT2Simulation
Transformation

DBPMRT

Executable Simulation
Model

Discrete Event
Simulation

Future
Events

Dynamic Process
Discovery Framework

Enterprise
Systems

Process Performance
Parameters

Future PPIs

PPI
Aggregation

Future PPIs
(multiple runs)

Historic PPIs

Statistical
Performance

Prediction

Events

PPI Visualisation
& Analysis

Predicted
External PPIs

Simulation Agent

Initialize

Advance Clock to
Time of Next Event

Execute event

Remove Event
from Queue

Stop? Finish

Check and Execute
Conditional Events

YesNo

Conditional
Event List

Event Queue

Discrete Event
Simulation

Fig. 6.5 Complete Information Flow for the PPI Prediction using BP Simulation

predictions via simulation with minimal adaptation effort on the part of the performance

processing component. The enterprise systems continuously produce live events (black

squares) which are processed and aggregated to real-time performance values (black tri-

angles). Additionally, the live events are processed by the DPDF to the DBPMRT, reflecting

the holistic state of the system. With this information short-term simulations are carried

out producing future events (white squares). These future events are fed back into the

performance processing component where, just like for the live events, they are aggre-

gated to performance values (white triangles). The available historic, current, and future

performance data is then merged (grey triangles) and further processed, e.g. by present-

ing the results in a dashboard, sending warning notifications, or triggering more complex

events leading to system adaptations. Following this concept other event processing anal-

ysis techniques than performance aggregation can be integrated to not just support the

analysis of the current (and historic) but also of the future states.

With regards to the use case of performance prediction via simulation this concept is

further refined. The proposed information flow is shown in Figure 6.5 and features the

following new models and agents:

6.2 Case Study Scenario: Akron Heating Retailer 203

• Statistical Performance Prediction: This component predicts the future develop-

ment of external PPIs stored in the performance perspective of the DBPMRT. It

uses regression algorithms to extrapolate future values from a set of historical data

points.

• Simulation Agent: This component is in charge for orchestrating the transforma-

tion of a DBPMRT and the predicted external PPIs into simulated future events and

consists of the following sub-elements: (1) A transformation from DBPMRT to an

executable simulation model into which also the predicted external PPIs (neces-

sary for a simulation) are incorporated; (2) The executable simulation model is a

semantic enhanced copy of the DBPMRT that is interacting with the discrete event

simulation; (3) The discrete event simulation is the component executing the sim-

ulation model via timed and conditional events (see Section 2.5.2). The simula-

tion produces future events and runs until a specified date in the future is reached.

Since the BP simulation is non-deterministic method it is executed a fixed number

of times creating multiple batches of future events.

• Future Events and PPIs: The multiple batches of future events are respectively ag-

gregated to future PPIs with the help of the performance processing component.

The result is a set of PPI results projecting multiple possible futures.

• PPI Aggregation: The set of future PPIs are then aggregated to a single future pro-

jection representing the most likely/average outcome of the PPIs produced by the

different simulation runs. The result of this aggregation is merged with the current

and historic PPIs.

• Process Performance Parameters: It is the container element for historic (including

current) PPIs calculated by the performance processing component and the future

PPIs predicted by DBPMRT reasoning methodology explained earlier. This can be

further processed by higher-level analyses (e.g. optimisations) or visualised (see

Appendix C).

6.2 Case Study Scenario: Akron Heating Retailer

Akron Heating3 is a retailer company with 28 active employees. It sells a wide range of

products via telephone or online, i.e. it has no local shop. Dependent on the season

and weekday usually a range of 100-300 orders per day are recorded. The management

of Akron Heating wants to be able to react proactively to unforeseen peaks or gradual

changes in demand and decides to tightly monitor and predict key performance indica-

tors of all internal IT-supported BPs.

3Akron Heating is an artificial company emulating a real-life retailer scenario. It is used in SAP-internal
projects to showcase products and prototypes.

6.2 Case Study Scenario: Akron Heating Retailer 204

Warehouse
Personnel

Packer
Accounting

Customer
Relations

Web Server

Credit Server

Routing Server

Telephone
Operator

Fig. 6.6 Actively Participating Roles in the Akron Heating Company

6.2.1 Organisational Structure

The documented organisational structure (from BP point of view) of Akron Heating is

shown in Figure 6.6: Employees (not management) have at least one of the five roles in

the "Human Resources" box. Commonly, Packers are also used for tasks as Warehouse

Personnel and Telephone Operators work also for Customer Relations. Employees with the

role Accounting have no other relevant role in this scenario. Furthermore, the three "IT

Service Providers" Web Server, Credit Server, and Routing Server are in charge for execut-

ing specific automated task.

6.2.2 IT-supported Business Processes

Akron Heating features six IT-supported BPs which are partly interconnected (see Fig-

ure 6.7): the four customer-related BPs Create Telephone Order, Create Online Order, Pro-

cess Order, and Return Item, and two organisation-internal processes Refill Stock and Ex-

pense Payment. Some of the processes are used by others, i.e. they are sub-processes.

For instance, in Create Telephone Order an operator is initiating an Online Order Process.

However, that does not mean, they cannot be initiated from somewhere else than a parent

process. For instance, Create Online Order and Expense Payment are both, sub-processes

of another BP and self-initiatable. In fact, Process Order is the only BP that is only used as

sub-process (by Create Online Order and itself). Create Telephone Order, Return Item, and

Refill Stock are the only processes not used as sub-processes.

The BPs associated with processing an order are Create Telephone Order (see Figure 6.8),

the Create Online Order (see Figure 2.2 on page 14), and Process Order (see Figure 6.9).

Create Online
Order

Process Order

Refill Stock

Return Item

Expense
Payment

Create
Telephone Order

Sub-process

Sub-process

Externally Initiated Externally Initiated

Externally Initiated

Internally Initiated

Sub-process

Internally Initiated

Sub-process

Fig. 6.7 IT-supported BPs in the Akron Heating Company

6.2 Case Study Scenario: Akron Heating Retailer 205

Place customer in
waiting queue

Check for
free operators

Operator processes
customer

Create Online
Order

Routing Server

Telephone
Operator

Condition 2Condition 1

Automated
Activity

Human
Activity

Sub-
Process

Start
Event

End
Event

Decision Merge

Fork Join

Fig. 6.8 The Planned "Create Telephone Order" BP in the Akron Heating Company

The remaining three BPs not directly associated with the ordering process are shown in

Appendix D. As Figures 6.8 and 6.9 show, the respective BPs can be diverse with regards to

their complexity: While the Create Telephone Order is a simple sequence of four activities

(one of them the Create Online Order sub-process), Process Order is relatively complex

featuring itself as a recursive sub-process. The arguably most complex BP in the Akron

Heating scenario is Return Item shown in Figure D.3 on page 237.

Check
Stock

Packaging

Initiate Express
Shipping

Collect
Products

Notify
Customer

Update
System

Initiate Normal
Shipping

Delay for
Reschedule

Default deliveryExpress delivery

Process
Order

No real active process
element but a delay to
wait for refilled stock

Packer

Warehouse
Personnel

Accounting

Customer
Relations

The order process is
recursively re-triggered

Condition 2Condition 1

Automated
Activity

Human
Activity

Sub-
Process

Start
Event

End
Event

Decision Merge

Fork Join

Fig. 6.9 The Planned "Process Order" BP in the Akron Heating Company

6.3 Analysis Results 206

6.3 Analysis Results

In this section it is investigated if run-time reasoning can be improved by utilising DBPM-

RTs (see fourth research question in Section 1.4). This will be done for the reasoning use

case of performance prediction and evaluated in the context of the Akron Heating Retailer

case study. Since all proposed contributions are involved in the reasoning methodology

this represents not only an evaluation of the proposed predictive reasoning framework

but also for the DBPMRT reference model as well as methodologies and algorithms em-

ployed in the DPDF. The experiment is set up as follows:

• DPDF configuration: The core CCM was configured with its default parameters (see

Section 5.8.1) and the ageing method of discrete ageing with trace influence factor

tif = 0.002 and interpretation frequency m = 10 was used.

• Approximately eight weeks of event data produced by the Akron Heating were

recorded (379200 events; ≈ 6771 events per day) and later replayed as event stream

(in higher speed). One month of that time (216088 events) was used to "warm-up"

the footprints without any interpretation or simulation. The remaining 163112 were

then analysed with the full DPDF and performance prediction framework.

• The statistical method used for predicting the future of the external PPIs in the

DBPMRT (see Statistical Performance Prediction in Figure 6.5) is the periodic trend

extrapolation which is later explained in Section 6.3.3. Other prediction-related ex-

periment configurations are detailed in that section, too.

The following two Sections 6.3.1 and 6.3.2 discuss the (last state of the) discovered DPBM-

RT with regards to the control-flow and resource perspective. The shown models are

screen shots of the DBPMRT visualisation tool (see Appendix Section C.1). The perfor-

mance prediction results and a comparison to other statistical prediction methods is then

presented in the final Section 6.3.3.

6.3.1 Roles and Resources

During the experiment three changes in the resource perspective were noticed which

were, however, of a minor nature, e.g. one resource was given an additional role. Fig-

ure 6.10 shows the resource perspective of the DBPMRT at the end of the experiment.

Annotated in red are the official names of the respective roles (smaller rounded rectan-

gles). As established in Section 5.5.2 those names are usually not transmitted by the events

which is why the roles have to be discovered. Their representative names are the set of ac-

tivities they are representing. Some of the roles are discovered as planned and presented

in the scenario description, e.g. Telephone Operator (5 employees) and Customer Rela-

tions (3), including the fact that all of the former have at the same time the latter role.

Also, all IT service providers and other non-resource activities are represented with roles

6.3 Analysis Results 207

Fig. 6.10 Discovered Resource Perspective

in the picture. The planned "Accounting" role consists of three different representatives in

the DBPMRT, each representing a different set of activities. All 9 accountants have at least

one association with one of the three representatives and no other role of a different kind.

However, not all accountants work on the same activities. This can be due to a specialisa-

tion of employees since the role of accountant is originally very diverse and involves (too)

many different activities. A similar effect is observable with Warehouse Personnel where

"John Kluge" is not in charge for activity "Put Products back into shelfs" which is why two

separate roles exist in the model. The dependency that all Packers have additionally the

role of Warehouse Personnel is reflected in the model and in the system.

6.3.2 Business Processes

Figure 6.11 shows the control-flows of the three processes involved with the ordering in

the DBPMRT at the end of the experiment. The control-flow visualisation also shows the

performance values (i.e. (external) PPIs for simulation) annotated to the respective BP

elements, e.g. "ANT" = Activity Networking Time, "PIO" = Process Instance Occurrence.

Manually annotated by the author in black colour are the names of the three involved BPs

and the boxes separating them from each other. Furthermore, light blue arrows repre-

sent associations between a parent process and its sub-process, e.g. between "Sub Order

6.3 Analysis Results 208

Fig. 6.11 Discovered Control-flows of Create Telephone Order, Create Online Order, and
Process Order BPs

Process" and the BP start and BP end elements of the "Process Order" BP. While human

activities are depicted as big rounded rectangles, sub-processes and automated activities

are depicted as slim rounded rectangles. The colour of each activity is that of the associ-

ated role4 (see Figure 6.10).

The discovered control-flows of the "Create Telephone Order" and "Create Online Or-

der" BPs are identical to their respective planned models introduced with the case sce-

nario (see Figures 6.8 and 2.2). This indicates that the system implementation of these BPs

did not majorly deviate from the planned scenario as well as no concept shifts and only a

few exceptions occurred during run-time. This is not the case for the "Process Order" BP:

Here, the planned recursive structure (i.e. calling itself as sub-process) is dissolved into

a loop (see bottom of figure). After investigating the events the implementation followed

the planned recursive structure, the DPDF interpreted this behaviour into an imperative

4The colours were randomly chosen by the DBPMRT visualisation tool which has the unfortunate effect
that some shades of green are difficult to distinguish.

6.3 Analysis Results 209

loop construct. Furthermore, the optional path from "Check Stock" to "Notify Customer"

does not seem to appear in the real-life log indicating either a deviation from the planned

model or that the condition for that path never applies in the system.

The discovered control-flows of the other BPs that are not directly connected to the

ordering process are shown in Appendix Section E.1 starting on page 238.

6.3.3 Performance Predictions

In this section the proposed performance prediction reasoning methodology is evaluated

against a statistical prediction method of extrapolating from a regressed function. That

means, given a set of historical data points, a function type is regressed (parametrised) so

that the Mean Squared Error (MSE) between function data points fi and actual data points

ri is minimal, i.e. minimal MSE = 1
n

∑n
i=1(ri − fi)2. The resulting parametrised function is

then used to predict data points for "future" values. Two function types are regarded for

this method:

• Trend: This is the equivalent of a trend analysis, i.e. applying a simple linear regres-

sion5 to parametrise a0 and a1 for the linear function

f (x) = a1 ∗x +a0

• Periodic Trend: This function type additionally adds a sinus element to account

for periodic developments. The Levenberg-Marquardt algorithm6 was applied to

parametrise a0, a1, a2, and a3 for the function

f (x) = a3 ∗ sin(a2 ∗x)+a1 ∗x +a0

Figure 6.12 shows the real value data points (black solid line) and the two functions which

were regressed from the real values: Trend (light blue solid line) and Periodic Trend (dark

blue solid line). The dashed lines of the same colour represent the extrapolated data

points of the respective functions and thus the predicted future development.

For the case study experiment the external performance processing component (see

Section 6.1.2) is configured with a sampling rate of 1 hour and a sampling interval of 10

hours. Furthermore, the predictions were carried out roughly every 24 hours, always pre-

dicting the next 24 hours. The two statistical prediction methods take the last 30 hours

of data points for regressing the respective functions. The simulation-based method pro-

posed in this chapter takes for each prediction interval, the current state of the system, i.e.

the DBPMRT. Since it is a simulation- and probability-based method it is non-deterministic

5for this org.apache.commons.math3.stat.regression.SimpleRegression was used
6for this org.apache.commons.math3.optimization.general.LevenbergMarquardtOptimizer

was used

6.3 Analysis Results 210

Fig. 6.12 Example Extrapolation on Regressed Functions: Trend and Periodic Trend

and thus will be executed 20 runs for each prediction and which are aggregated to an av-

erage value representing the predicted PPI. In particular, the predictive quality of the sim-

ulation methodology and the statistical methods is evaluated for the PPIs Queue Lengths

of the roles "Telephone Operator" and "Accounting" as well as the End-to-End Processing

Time for the "Create Online Order" BP in the following. The results for some additional

(but not further discussed) PPIs are presented in the Appendix Section E.2. The discussed

and additional PPIs are further analysed in a summary section where an overall accuracy

is determined from these results for the individual prediction methods.

Queue Length: Telephone Operator

In Figure 6.13 an excerpt of the predictions of each of the methods in relation to the really

occurring queue length values is shown. 6 prediction episodes are shown in the picture

Fig. 6.13 Six Episodes of Prediction Results vs. Real Development for Queue Length of
"Telephone Operator" Role

6.3 Analysis Results 211

Fig. 6.14 Prediction Results vs. Real Development for Queue Length of "Telephone Opera-
tor" Role

(highlighted by breaks between the predicted lines). Whenever a trend continues all pre-

diction methods are predicting this to continue, especially in episodes 1, 2, and 3. In

contrast, the individual predictions for episodes 4, 5, and 6 diverge significantly: While

the simulation does predict the general direction, sometimes even the correct inflection

point (episode 5), the statistical methods are generally further off. A complete overview

of all prediction results of the different methods for the entire 25 days of the scenario

is shown in Figure 6.14. Here it can be seen, that the simulation predicts the inflection

points very well but performs less well when the development is flat (middle of the pic-

ture).

If the respective predictions are compared to the real value an error can be computed.

If this is done for all prediction episodes the MSE can be computed depending on how far

ahead is predicted, e.g. one hour ahead the prediction error of method x was better than

the prediction error of method y . Figure 6.15 shows the MSE of each of the prediction

methods: The values become less reliable, i.e. the error increases, the further ahead it is

predicted. The figure shows quantitatively that the simulation method is significantly bet-

ter suited to predict the queue length of the "Telephone Operator" role than the statistical

methods.

6.3 Analysis Results 212

Fig. 6.15 MSE of the Prediction Methods for Queue Length of "Telephone Operator" Role

Queue Length: Accounting

Figure 6.16 shows the real Queue Length values of "Accounting" as well as the prediction

results of the different runs/episodes. The break in the black line is due to a change in

the resource perspective which was related to "Accounting" role. The development of

this role queue length is a lot more diverse since it covers many activities and with strong

interdependencies to other developments in the BPs. Generally, it can be observed that,

similarly like for the "Telephone Operator" the simulation prediction tends to be better

but is sometimes also not very close. The overall performance of the different methods

with regards to the MSE is shown in Figure 6.17: While still predicting "twice" as good as

the other both methods the simulation prediction does not perform significantly better

than the others for the "Accounting" queue length.

Fig. 6.16 Prediction Results vs. Real Development for Queue Length of "Accounting" Role

6.3 Analysis Results 213

Fig. 6.17 MSE of the Prediction Methods for Queue Length of "Accounting" Role

End-to-End Processing Time: Create Online Order

Figure 6.18 shows the real End-To-End Processing Time values of "Create Online Order"

as well as the prediction results of the different runs. Despite being influenced by many

internal system developments this PPI is less fluctuating than the "Accountant" queue

length. On average the simulation seems to predict roughly the correct development in

a bit more than half the episodes while this is less so the case for the statistical methods.

This subjective impression is confirmed in Figure 6.19 which shows that the MSE of the

simulation prediction is significantly better than that of the other two. It even stays rel-

atively flat for longer term predictions which indicates that a lot of long term effects are

influencing this PPI.

Fig. 6.18 Prediction Results vs. Real Development for End-to-End Processing Time of "Cre-
ate Online Order" BP

6.3 Analysis Results 214

Fig. 6.19 MSE of the Prediction Methods for End-to-End Processing Time of "Create Online
Order" BP

Discussion of PPI Prediction Results

The case study evaluation results show that the simulation-based prediction based on the

DBPMRT improves the prediction results for the regarded PPIs when compared to com-

mon statistical prediction methods, i.e. trend or periodic trend analysis. In many cases the

results were significantly better, in particular for the predictions of the "Telephone Oper-

ator" queue length (see Figure 6.15), the "Create Online Order" BP end-to-end processing

time (see Figure 6.19), the "Return Items" BP end-to-end processing time (see Figure E.5),

and the "Packer" utilisation (see Figure E.7). For other predictions, i.e. the "Accounting"

queue length (see Figure 6.17) and the "Initiate Express Shipping" activity throughput (see

Figure E.9), the predictions were moderately or even only slightly better than the statis-

tical methods. Overall, the predictions of the simulation method are more often close to

reality than deviating from it.

Nevertheless, the results show that large discrepancies between the simulation pre-

dicted values and the really measured values exist for some cases, e.g. for the "Account-

ing" queue length in the centre of the time series in Figure 6.16 two or more prediction

runs even show the wrong trend (the predictions go upwards but the reality goes down-

wards). These discrepancies can have a multitude of reasons of which three are listed in

the following:

• The case scenario can be very volatile with many peaks and lows in demand or

resource availability. For such a scenario any prediction will be difficult since too

many hidden factors are involved.

• Structural dependencies also play an important role regarding the predictability: If,

for instance, an element at the beginning of the process is monitored, then mostly

only external (e.g. business process instantiation) but not BP-dependent influences

6.3 Analysis Results 215

(e.g. resource availability) drive the performance parameter. For the prediction of

these PPIs BP simulation might not be of much benefit.

• The DBPMRT representation may be too much of a simplification/generalisation of

the real system. For instance, the "Initiate Express Shipping" activity throughput is

directly behind a decision which is abstractly captured by probability values in the

DBPMRT. In contrast, the decision in the real system is based on instance-specific

data. This simplification can be the reason for the observed discrepancy between

predicted and real values for this PPI. The "Accounting" queue length could also

be explained by a simplification of the DBPMRT: Since the "Accounting" role is in-

volved in many different activities, the reason for the deviation could be the sim-

plified representation of the resource perspective, e.g. all resources have the same

efficiency and fulfil a role to 100%.

While the first two possible reasons are independent of the proposed solution, the latter

can be mitigated and is the subject of future work (see Section 7.2).

Overall Accuracy

To give an overall assessment of the accuracy of the respective prediction methods, the

error values (mean squared errors) from the three specifically discussed PPIs (see Fig-

ures 6.15, 6.17, and 6.19) as well as from the three additional PPIs in the appendix (see

Figures E.5, E.7, and E.9) are normalised with the square of the PPIs’ mean value so that

they are in a similar range, i.e. normalised mean squared error |MSEPPI | is calculated

by |MSEPPI | = MSEPPI

φ2
PPI

, with PPI being one of the six PPIs: PPI ∈ {QLTelephoneOperator,

QLAccounting,E2EOnlineOrder,E2EReturnItem,UtilPacker,TPExpressShipping}. The av-

erage values are:

φQLTelephoneOperator = 41.3461, φQLAccounting = 236.2043, φE2EOnlineOrder = 11.7104,

φE2EReturnItem = 32.5625, φUtilPacker = 0.2537, φTPExpressShipping = 1.4779

The normalised mean squared errors of each PPI and prediction method can be seen

in Figure 6.20: The range goes from 0 to 3 in all sub-figures. One can see that for some

calculations like the End-to-End Processing Time or "Return Items" BP the error is rela-

tively small since the PPI does not fluctuate a lot and the predictions are quite close to

reality (see Figure E.4). On the other hand, the prediction error is relatively for the PPIs

Queue Length of "Telephone Operator" Role, Utilisation of "Packer" Role, and Through-

put of "Initiate Express Shipping" Activity. These normalised prediction errors are now

averaged to evaluate how well the prediction methods perform overall (see Figure 6.21).

One can see that the proposed prediction via simulation based on the current DBPMRT

far outperforms the statistical predictions trend analysis and periodic trend analysis. Very

good results are achieved for predicting the more immediate future: Up to 11 hours in ad-

vance the simulation records only small errors, which later doubles but still stays far below

the prediction errors of the statistical methods. This provides evidence, that the reason-

ing on the DBPMRT can yield more accurate results, i.e. the third objective of this thesis

6.3 Analysis Results 216

(a) Queue Length of "Telephone Operator" Role (b) Queue Length of "Accounting" Role

(c) End-to-End Processing Time of "Create
Online Order" BP

(d) End-to-End Processing Time of "Return
Items" BP (see Figure E.5)

(e) Utilisation of "Packer" Role (see Figure E.7)
(f) Throughput of "Initiate Express Shipping" Ac-
tivity (see Figure E.9)

Fig. 6.20 Normalised Mean Square Errors of the Prediction Methods for the individual PPIs

Fig. 6.21 Average Normalised Mean Square Error for the three different Prediction Meth-
ods: (1) Simulation, (2) Trend Analysis, and (3) Periodic Trend Analysis

6.4 Summary 217

has been successfully addressed. Furthermore, the DPDF addresses the gap identified in

Section 3.4: It provides a solution to predict PPIs based on abstracted BP type level and

instance level information from an event stream with noisy, incomplete, and changing

behaviour.

6.4 Summary

This chapter addressed the third objective of reasoning on the abstracted run-time state

of BPMSs, i.e. the DBPMRT. It presented a general reasoning framework (which can be re-

garded as MRT system by itself) that employs a repository architecture with the DBPMRT

at the centre providing synchronised access for the update and analysis agents. Further-

more, a particular concept for a predictive reasoning was presented that uses BP simu-

lations and integrates an external performance processing component to carry out per-

formance predictions. The core principle of this reasoning methodology is based on the

fact that simulation events and live events conform to the same format and can thus be

similarly processed by an external event processing analysis, e.g. detection of future bot-

tlenecks, what-if analysis, performance analysis. Following this approach these external

event analysis tools enable proactive decision support on future states of the system.

In the remainder of the chapter a case study is carried out to evaluate the reasoning

framework and by extension the DBPMRT and the DPDF: A case study scenario, the Akron

Heating retailer company, was described in Section 6.2 which was then used to evaluate

the overall concept. The analysis results with regards to the actually monitored control-

flow and resource perspective as well as the prediction for selected PPIs were shown in

Section 6.3. It shows that the simulation-based prediction based on the DBPMRT in most

of the cases significantly and in some cases moderately or slightly improves the prediction

results when compared to common statistical prediction methods.

Chapter 7

Conclusion and Future Research

This thesis has explored the potential of adopting and enhancing principles and mecha-

nisms from the models@run.time domain to the business process domain for the purpose

of run-time reasoning, i.e. it investigated the potential role of Descriptive Business Process

Models at Run-time (DBPMRTs) in the business process management domain. This in-

cluded (1) a gap analysis and extensive state-of-the art review of relevant work in the fields

of Business Process Management and Model-Driven Engineering, as well as (2) identify-

ing characteristics and proposing a reference specification for DBPMRTs, (3) providing an

overall framework and associated algorithms to establish and maintain a causal link from

an enterprise system to the DBPMRT in a dynamic run-time environment, and (4) propos-

ing a general reasoning framework and a detailed concept for the use case of performance

prediction. Overall, the thesis provided a novel approach that mitigates the lack of imme-

diate causality between system and BP models, promotes a more dynamic handling of

BPs, and enables reasoning on run-time data.

7.1 Results of the Thesis

7.1.1 Research Questions Revisited

How can the target system (BPMS) be effectively represented at run-time?

A BPMS can be effectively represented at run-time by a DBPMRT which are required to

capture change on the levels of dynamism, variability, and reflectivity, as well as sup-

port the general expressibility of BP-domain models. Furthermore, two different types

of DBPMRTs exist: a state and an evolution representation. The thesis provided refer-

ence meta-models which specify languages for these two types of DBPMRTs and fulfil the

above requirements.

7.1 Results of the Thesis 219

To what extent can a causal link from BPMS to BP model be established given that event

data and BP model conform to different levels of abstraction?

Bridging the abstraction gap between BPMS and BP model to establish a causal link (from

BPMS to BP model) is a multi-goal optimisation (fitness vs. precision vs. generalisation

vs. simplicity) which is addressed by process discovery algorithms. This thesis proposed a

novel algorithm to bridge the particularly challenging gap between BPMS emitted events

and the control-flow of a BP: the Constructs Competition Miner (CCM). Additionally, algo-

rithms to bridge the gap between events and other BP perspectives were proposed in the

context of online process discovery, e.g. for resource, performance, instance state.

To what degree can a causal link from BPMS to BP model be maintained in a dynamic

run-time environment?

The causal link in a dynamic run-time environment is difficult to maintain in real-time

due to the big abstraction gap (algorithms have a high run-time cost), the dynamic na-

ture of the BPs (frequent changes on the type level), and the very high frequency of events

emitted by the enterprise system (potentially 1000s per second). To address these chal-

lenges this thesis proposes the Dynamic Process Discovery Framework (DPDF). The core

features of the framework are the separation of the discovery methodology into two differ-

ent lifecycles and the introduction of a Dynamic Footprint as an intermediate computer-

oriented run-time model that abstracts event information: (1) The first lifecycle, synchro-

nised with the event lifecycle, processes events to updates in the Dynamic Footprint in

near-constant run-time. It uses the concept of ageing (discrete or time-based) allowing

to "forget" old and "learn" new relations and thus abstractly recognise change on the type

level; (2) the second lifecycle interprets the abstract Dynamic Footprint into the human-

oriented run-time model, the DBPMRT. The interpretation is executed periodically or on

demand and has less restrictions with regards to its computational run-time.

Can the quality of run-time reasoning be improved by utilising DBPMRTs?

To answer this question the thesis proposed a reasoning concept which is based on a

DBPMRT and specialised for performance prediction via simulation. It furthermore in-

troduces a case scenario in the context of which the reasoning framework and overall

concept is evaluated. The case study demonstrated that the quality of run-time reasoning

yielded more accurate results for the use case of short-term performance prediction. The

more accurate prediction of near future developments promises better adaptive reason-

ing capabilities and shortens the BPM lifecycle.

7.1 Results of the Thesis 220

How and to what extent can a target system emitting low-level events be causally and

timely reflected by a run-time model of a higher abstraction level?

As demonstrated for the business processes domain, this can be achieved by introduc-

ing an intermediate computer-oriented run-time model and two separate lifecycles: one

that (timely) abstracts the low level information into changes in the computer-oriented

run-time model and one that interprets this information into a human-oriented run-

time model, thus, completing the causal link. This general approach could potentially

be adopted for other models@run.time use cases that have similar characteristics (big

abstraction gap + uncontrolled deviations as described in Section 3.1). Additionally, to

transform a run-time state model language into an evolution model language, extensions

were proposed which effectively add a time dimension to relations and thus enable the

realisation of temporal relations.

7.1.2 Main Contributions

Identification of BP run-time characteristics and composition of a holistic DBPMRT

specification

One of the main objectives of this thesis was the identification of run-time characteristics

of BPs and the design of a DBPMRT specification able to capture the holistic and descrip-

tive reflection of a BPMS. The identified characteristics as well as a reference specification

for a DBPMRT have been described in Chapter 4: a DBPMRT comprises information of all

important type level perspectives of a business process, i.e. control-flow, resources, and

performance, and is able to represent different levels of change, i.e. dynamism, variability,

and reflectivity. According to these requirements reference meta-models which specify

DBPMRT languages for state or evolution models, respectively, have been provided. They

have been realised with the Eclipse Modelling Framework (EMF) using only the existent

basic capabilities of EMF, i.e. special relations of models at run-time such as temporal

relations were successfully substituted by artefacts modelled with standard EMF. Addi-

tionally, in order to deal with the challenge of differing abstraction levels (low level event

data vs. high level BP model) it was proposed to distinguish between two different general

types of run-time models: computer-oriented footprint models vs. human-oriented BP

models. This conceptual differentiation is part of the main concept to maintain a causal

connection in a run-time environment and described in Chapter 5.

Key Algorithms, Methodologies, and Frameworks

The following list of contributions are the outcome of addressing the remaining two ob-

jectives of this thesis (Chapters 5 and 6):

• A novel algorithm to establish a causal link between event data and a descriptive

BP control-flow model: The Constructs Competition Miner (CCM) follows a top-

down approach to directly discover block-structured process models which consist

7.1 Results of the Thesis 221

of common BP-domain constructs and represent the main behaviour of the process.

The algorithm was designed so that it can deal with exceptional and contradictory

behaviour. This was achieved by letting the different supported constructs compete

with each other for the most suitable solution from top to bottom using "soft" con-

straints and behaviour approximations based on global relations between activities

abstracted from the event log.

• Modifications of the statically operating CCM algorithm in order to work in a real-

time setting to detect changes in the BP control-flow while processing a stream

of BP execution events: the Dynamic Constructs Competition Miner (DCCM). The

DCCM applies the core principle of dividing the discovery methodology into two

separate lifecycles with the Dynamic Footprint at its centre. An additional evalua-

tion of the DCCM on the eHealth use case "DrugFusion" is provided in [182] (not

part of the thesis).

• A dynamic concept for the event-based update of higher abstraction levels of the

model (e.g. change in performance, control-flow, etc.) including concepts like

"time-dependent ageing" and "discrete ageing". Additionally to the core ageing

concept, modifications were provided which have been proven to successfully

shorten the "warm-up" phase.

• A smart and time-efficient algorithm that tracks the fine-grained instance state of

an enterprise system based on bit operations.

• A generic framework for Descriptive Business Process Models at Run-time, enabling

(1) automated monitoring of an enterprise system by capturing the state of the sys-

tem in a descriptive run-time model and (2) real-time reasoning based on the de-

scriptive run-time model.

• An architecture that enables real-time reasoning based on DBPMRTs: The reason-

ing system can be considered as an autonomous MRT system that operates based

on continuously updating model information. The solution proposed to address

this challenge is a repository architecture with the DBPMRT at the centre providing

synchronised access for the update and analysis agents.

• A methodology for predictive reasoning utilising BP simulations and integrating an

external performance processing component: The (evolution) DBPMRT comprises

current and historical data about all important perspectives on the type and in-

stance level which can be used for short term simulations predicting future event

sequences. The thesis proposes a simulation-based methodology that makes use of

an external performance processing tool to process the simulated future events in

the same way as the live events. As a result, not only historic and current perfor-

mance values can be computed but also the predicted future development of these.

This concept is also applicable for other event processing analyses, e.g. detection

7.2 Future Research Agenda 222

of future bottlenecks, what-if analysis, which can be (re-)used to enable proactive

decision support on future states of the system.

Implementation of Key Algorithms, Methodologies, and Frameworks

All presented algorithms, methodologies, and frameworks have been implemented as de-

scribed in the thesis. Some parts have also also incorporated into other solutions, e.g. the

performance prediction framework, in which case additional adapters or interfaces were

implemented. Furthermore, multiple visualisation and demonstration tools were devel-

oped on the basis of the thesis’ contributions1 as local, mobile, or web applications. Three

examples of these are shown in Annex C.

Exploitation

The contributions of this thesis were utilised and put into practice by SAP projects such

as Operational Process Intelligence (OPInt), a project about monitoring the performance

of large enterprise processes [206], bizInsight, an internal innovation project in the area

of business intelligence which combines Business Dynamics, Process Discovery, and Pro-

cess Simulation techniques to monitor and predict KPIs and PPIs. Also, main components

and algorithms such as the DPDF and DCCM are integral parts of the digital preservation

and risk management platform developed within the EU funded project TIMBUS [84].

Much of the work presented in this thesis was demonstrated at different internal or ex-

ternal events/locations, e.g. Lancaster University, Ulster University, Queen’s University

Belfast, DKOM Karlsruhe, or at scientific conferences. Furthermore, the main contribu-

tions have been published and presented at conferences (see Annex A).

7.2 Future Research Agenda

Improvements to the DBPMRT

• It could be beneficial for the run-time reasoning if the DBPMRT would reflect the

system in a less general but more detailed way. One possible direction for future re-

search is therefore to investigate how to make the DBPMRT more expressive and

representative. This includes efforts to extend the specification by the ability to

capture, for instance, (1) the system-specific data perspective, (2) more specialised

control-flow elements such as OR-Split and OR-join, and/or (3) enable a more re-

alistic representation of the organisational perspective - the current representation

regards human resources as CPU-like processor while, in fact, humans are more

complex entities: they can be sick or on holidays as well as have a varying efficiency

1Note, that the implementation of the demonstration tools was mainly carried out by undergraduate
students under the supervision of the author.

7.2 Future Research Agenda 223

for carrying out tasks or work on other, not recorded tasks that reduce their avail-

ability.

• The temporal relation for the evolution model was realised via extending the state

model by substitute modelling artefacts which are not optimised for this type of

relation. A more efficient way would be to enable the model expert to directly model

"temporal relations" which are then automatically realised by using more efficient

data structures that optimise access and update operations, e.g. similar to Google’s

BigTable2. Another option would be to investigate the possibility of specifying the

DBPMRT as declarative language for which it might be easier to integrate the time

dimension. Thus, a possible direction for future research is the analysis of these and

similar other methods to effectively realise temporal relations.

Discovery Improvements

• The proposed algorithm (CCM) for establishing a causal link (only control-flow) has

shown weaknesses in terms of discovering some of the more special constructs such

as a loop over a parallel split (see Section 5.8.1). This construct is not always cor-

rectly identified with the current constraints. One possible direction for future re-

search is the establishment of better suiting constraints which would likely improve

the results of the CCM (as well as DCCM, DPDF, and higher-level reasoning). Fur-

thermore, it should be investigated how additional BP constructs can be identified,

e.g. OR-Split and -Join.

• Currently, if no sub-footprint is available for a set of activities, the footprint inter-

preter does not further analyse this set but creates a single representative activity.

This behaviour makes the reasoning on such a model more complicated or even

impossible since it may not be interpretable by the reasoning component. Future

research should focus on mitigating this undesirable effect, e.g. through approx-

imations or the use of the direct neighbours relation in order to retrieve a "close

enough" control-flow for the activity subset. Such an alternative way would ensure

that always a complete and analysable DBPMRT is available.

• Although a change is quickly detected, it currently takes an undesirable large amount

of events/traces until the new process is appropriately reflected by the DBPMRT

(see Section 5.8.2). This behaviour originates from the fact that the dynamic foot-

print and the interpreted business process are in a sort of intermediate state for a

while until the influence of the old version of the business process becomes irrele-

vant in the footprint. This behaviour is not observable for the warm-up phase where

the model is in most cases already correctly represented after a significantly shorter

amount of time. This is an indication that resetting the dynamic footprint (or parts

2https://cloud.google.com/bigtable/ (accessed 21.12.2015)

7.2 Future Research Agenda 224

of it) after detecting a change (which has been proven to happen almost instantly)

could be a possible solution that should be investigated to address this problem.

Other solutions might be of benefit to reduce the transition time and are be part of

future research.

• Currently the trace influence factor tif is a pre-specified value but in reality it is de-

pendent on how many traces are needed to represent the complete behaviour of

the model, i.e. if many possible instance variants exist then it takes many traces

until this is represented in the footprint; if only a few variants exist the complete be-

haviour is quickly represented in the footprint. The complete behaviour is in turn

strongly dependent on the number of activities in the model, since more activities

usually mean more control-flow behaviour. Hence, a possible future research direc-

tion to improve the autonomy of the solution is to investigate ways to make the trace

influence factor adapt dynamically, e.g. by making it dependent on the number of

observed activities. This step could also shorten the transition time (see previous

point).

Further Efforts to Promote Scalability

The division of the discovery method into event processing and footprint interpretation

transferred the run-time cost-expensive interpretation into a lifecycle separate from the

event lifecycle. This allows for a parallel and arbitrarily execution on demand or in a re-

occurring fashion. Since the processing is featuring a constant run-time for each event

that occurs (only dependant on the amount of activities) the overall processing demand

has a linear run-time in terms of the overall number of occurring events, i.e. the required

computation power increases with an increasing event frequency. This should be further

mitigated through techniques used in the big data domain. For instance, each machine

could be responsible for the processing and creation of specified instance footprints. Fol-

lowing this approach only the eventual update of the overall dynamic footprint needs to

be centralised. With this the algorithmic run-time of the event processing becomes lin-

ear in terms of instance frequency instead of event frequency (the former usually occurs

significantly more seldom). One direction for future research is the investigation of scala-

bility approaches like the above to further improve the algorithmic run-time of the DPDF

(and DCCM).

Adaptive Reasoning and System Modification

The work presented in this thesis is a major step towards shortening the BPM lifecycle.

In order to close the loop and fully automate the management of BPs, it is required to

employ adaptive reasoning and modification techniques. This is not easily achievable

since it involves a new set of challenges, e.g. modification policies, change validation,

etc. In the area of workflows (fully automated BPs) these challenges have been addressed,

7.3 Final Remarks 225

however, always under the assumption that no uncontrolled changes are introduced from

outside of the system. That means the supervising system records and/or controls all type

level changes directly which essentially eliminates the abstraction gap and thus the need

for (dynamic) process discovery. One possible future direction is therefore to investigate

whether the lessons in the area of adaptive reasoning in workflow management can also

be fully or partly applied to the business process management domain.

Investigation of other Domains

The contributions of this thesis might also apply in other domains which have similar

characteristics (big abstraction gap + uncontrolled deviations) than the BP domain for

which reasoning on the current run-time state of the system might be beneficial, e.g. risk

management. Thus, investigating these domains for their potential role of run-time mod-

els is a possible direction for future research and might lead to further contributions in the

domain of DBPMRT or MRT and BPM in general.

7.3 Final Remarks

This thesis has investigated the potential of adopting and enhancing principles and mech-

anisms from the models@run.time domain to the business process domain for the pur-

pose of run-time reasoning. The proposed meta-model artefacts, algorithms, methodolo-

gies, and framework concepts are a result of this investigation. By taking the steps pro-

posed in this thesis general challenges of business process management, e.g. dealing with

frequently changing processes and shortening the business process life cycle, have been

addressed. This also contributed to research in models@run.time by providing a complex

real-world use case and a principled approach for dealing with volatile models@run.time

of a higher abstraction level.

The author hopes that this thesis will contribute to a more dynamic handling of busi-

ness processes in the future and may serve as a reference for other domains where the

reasoning on descriptive run-time time models may be beneficial.

Appendix A

Publications

For overview purposes this appendix contains a collection of all research contributions

made by the author during the course of the PhD studies. A mapping of the publications

to the contributions presented in this thesis is provided in Section 1.7. The publications

listed are chronologically sorted by date of publication (which is not necessarily the same

as the date of the associated conference/workshop).

Conference and Workshop Papers as Principal Author

2015

1. Dynamic Constructs Competition Miner - Occurrence- vs. Time-based Ageing ,

David Redlich, Thomas Molka, Wasif Gilani, Gordon S. Blair, Awais Rashid. In Post-

Proceedings of the 4th International Symposium on Data-driven Process Discovery

and Analysis (SIMPDA 2014), volume 237 of Lecture Notes in Business Information

Processing, pages 79-106. Springer.

2. Evaluation of the Dynamic Construct Competition Miner for an eHealth System,

David Redlich, Mykola Galushka, Thomas Molka, Wasif Gilani, Gordon S. Blair,

Awais Rashid. In Business Information Systems - 18th International Conference,

BIS 2015, Proceedings, volume 208 of Lecture Notes in Business Information Pro-

cessing, pages 115–126. Springer.

2014

3. Scalable Dynamic Business Process Discovery with the Constructs Competition

Miner,

David Redlich, Thomas Molka, Wasif Gilani, Gordon S. Blair, Awais Rashid. In Pro-

ceedings of the 4th International Symposium on Data-driven Process Discovery

and Analysis (SIMPDA 2014), volume 1293 of CEUR Workshop Proceedings, pages

91–107. CEUR-WS.org.

227

4. Introducing a Framework for Scalable Dynamic Process Discovery,

David Redlich, Wasif Gilani, Thomas Molka, Marc Drobek, Awais Rashid, Gordon S.

Blair. In Advances in Enterprise Engineering VIII - 4th Enterprise Engineering Work-

ing Conference, EEWC 2014. Proceedings, volume 174 of Lecture Notes in Business

Information Processing, pages 151–166. Springer.

5. Constructs Competition Miner: Process Control-flow Discovery of BP-domain

Constructs,

David Redlich, Thomas Molka, Wasif Gilani, Gordon S. Blair, Awais Rashid. In Busi-

ness Process Management - 12th International Conference, BPM 2014. Proceed-

ings, volume 8659 of Lecture Notes in Computer Science, pages 134–150. Springer.

6. Model-driven Engineering in Practice: Integrated Performance Decision Sup-

port for Process-centric Business Impact Analysis,

David Redlich, Ulrich Winkler, Thomas Molka, Wasif Gilani. In ACM/SPEC Interna-

tional Conference on Performance Engineering, ICPE 2014, pages 247–258. ACM.

7. Research Challenges for Business Process Models at Run-time,

David Redlich, Gordon S. Blair, Awais Rashid, Thomas Molka, Wasif Gilani. In Mod-

els@run.time - Foundations, Applications, and Roadmaps [Dagstuhl Seminar 11481,

2011], volume 8378 of Lecture Notes in Computer Science, pages 208–236. Springer.

2012

8. MDE in Practice: Process-centric Performance Prediction via Simulation in Real-

time,

David Redlich, Stefanie Platz, Wasif Gilani. In Joint Proceedings of co-located Events

at the 8th European Conference on Modelling Foundations and Applications

(ECMFA) - Tool Presentations, pages 336–339.

2011

9. Event-driven Process-centric Performance Prediction via Simulation,

David Redlich, Wasif Gilani. In Business Process Management Workshops - BPM

2011 International Workshops, Revised Selected Papers, Part I, volume 99 of Lecture

Notes in Business Information Processing, pages 473–478. Springer.

For all listed publications the author was the main responsible person in terms of the in-

volved research activities as well as the authorship of the publication. With the exception

of publication 6 all can be directly mapped to contributions presented in this thesis (see

Section 1.7).

228

Conference and Workshop Papers as Contributing Author

2015

10. Diversity Guided Evolutionary Mining of Hierarchical Process Models,

Thomas Molka, David Redlich, Marc Drobek, Xiao-Jun Zeng, Wasif Gilani. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015,

pages 1247–1254. ACM.

11. Evolutionary Computation Based Discovery of Hierarchical Business Process

Models,

Thomas Molka, David Redlich, Wasif Gilani, Xiao-Jun Zeng, Marc Drobek. In Busi-

ness Information Systems - 18th International Conference, BIS 2015, Proceedings,

volume 208 of Lecture Notes in Business Information Processing, pages 191–204.

Springer.

2014

12. Advanced Business Simulations - Incorporating Business and Process Execution

Data,

Marc Drobek, Wasif Gilani, David Redlich, Thomas Molka, Danielle Soban. In Busi-

ness Modeling and Software Design - 4th International Symposium, BMSD 2014,

Revised Selected Papers, volume 220 of Lecture Notes in Business Information Pro-

cessing, pages 119–137. Springer.

13. A Process-oriented Performance and Risk Management Workbench,

Wasif Gilani, Mykola Galushka, Thomas Molka, David Redlich, Ying Du, Marc

Drobek. In eChallenges e-2014, 2014 Conference, pages 1–9.

14. Conformance Checking for BPMN-based Process Models,

Thomas Molka, David Redlich, Marc Drobek, Artur Caetano, Xiao-Jun Zeng, Wasif

Gilani. In Symposium on Applied Computing, SAC 2014, pages 1406–1413. ACM.

15. Mechanisms for Leveraging Models at Runtime in Self-adaptive Software,

Amel Bennaceur, Robert B. France, Giordano Tamburrelli, Thomas Vogel, Pieter

J. Mosterman, Walter Cazzola, Fábio M. Costa, Alfonso Pierantonio, Matthias

Tichy, Mehmet Aksit, Pär Emmanuelson, Gang Huang, Nikolaos Georgantas, David

Redlich. In Models@run.time - Foundations, Applications, and Roadmaps[Dagstuhl

Seminar 11481, 2011], volume 8378 of Lecture Notes in Computer Science, pages

19–46. Springer.

229

2013

16. TIMBUS: Digital Preservation for Timeless Business Processes and Services,

Wasif Gilani, David Redlich, Mykola Galushka, Thomas Molka, Ying Du. In eChal-

lenges e-2013, 2013 Conference.

2010

17. Combination of a Discrete Event Simulation and an Analytical Performance Anal-

ysis through Model-Transformations,

Tomasz Porzucek, Stephan Kluth, Mathias Fritzsche, David Redlich. In 17th IEEE

International Conference and Workshops on the Engineering of Computer-Based

Systems, ECBS 2010, pages 183–192. IEEE Computer Society

For the listed publications the author contributed to the involved research activities as

well as the co-authorship of the publication. While some of the thesis’ concepts are inte-

gral parts of the publications 12, 13, and 16, the research carried out for the other publi-

cations is related to the thesis’ topic but not within the scope of the presented concepts.

Patents

18. A Novel Closed Loop Business Dynamics Solution,

Marc Drobek, Wasif Gilani, David Redlich, Thomas Molka. US Patent, Reference

number: 141165US01; Application number: US 14/716,161 (filed in 2015)

19. Model-based Business Continuity Management,

Ulrich Winkler, Wasif Gilani, David Redlich. US Patent 8,457,996. (2013)

Both patents yield contributions in the field of model-based simulations for business pro-

cesses.

Public Project Deliverables

The thesis’ concepts are part of the contributions of the EU funded project TIMBUS. The

author was either main or co-author of the following deliverables:

• D6.10: Refinements to Populating and Accessing Context Model (2014)

• D6.5: Populating and Accessing the Context Model (2013)

• D8.2: Use Case Specific Risks - Civil Engineering Infrastructures (2012)

• D9.2: Use Case Specific Risks - eScience and Mathematical Simulations (2012)

• D4.2: Dependency Models: Definition of a Formalism to Express Dependencies and

Relations between Technological, Business and Organizational Components and

Processes (2012)

Appendix B

Example Footprint Update with Ageing

Given that DFP34 is the following (equivalent of example footprint FPL1,A
{},{} from page 144):

a b c d e f g h

Oon(x) : 0.56 0.56 0.18 0.44 0.44 0.38 0.35 0.44

Oov(x) : 0.91 0.91 0.35 0.62 0.62 1.09 0.65 0.85

Fel(x) : 0.15 0.41 0 0 0 0.32 0.12 0

x ◃◃y : x ◃ y :

a b c d e f g h

a 0.18 0.32 0.18 0.44 0.44 0 0 0

b 0.41 0.18 0.18 0.44 0.44 0 0 0

c 0.18 0.18 0.18 0.18 0.18 0 0 0

d 0 0 0 0.18 0.32 0 0 0

e 0 0 0 0.29 0.18 0 0 0

f 0 0 0 0 0 0.24 0.24 0.32

g 0 0 0 0 0 0.29 0.29 0.29

h 0 0 0 0 0 0.29 0.24 0.24

a b c d e f g h

a 0 0.15 0.18 0.44 0.44 0 0 0

b 0.41 0 0.18 0.44 0.44 0 0 0

c 0 0 0 0.18 0.18 0 0 0

d 0 0 0 0 0.32 0 0 0

e 0 0 0 0.18 0 0 0 0

f 0 0 0 0 0 0 0.24 0.32

g 0 0 0 0 0 0.06 0 0.06

h 0 0 0 0 0 0.06 0.24 0

And the trace footprint TFP35 for the new trace [b, a,c, a,b,c,b, a,d ,e,e,d] is:

a b c d e f g h

Oon(x) : 1 1 1 1 1 0 0 0

Oov(x) : 3 3 2 2 2 0 0 0

Fel(x) : 0 1 0 0 0 0 0 0

x ◃◃y : x ◃ y :

a b c d e f g h

a 1 1 1 1 1 0 0 0

b 1 1 1 1 1 0 0 0

c 1 1 1 1 1 0 0 0

d 0 0 0 1 1 0 0 0

e 0 0 0 1 1 0 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0

a b c d e f g h

a 0 0 1 1 1 0 0 0

b 1 0 1 1 1 0 0 0

c 0 0 0 1 1 0 0 0

d 0 0 0 0 1 0 0 0

e 0 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0

231

Then for trace influence factor tif = 0.1 the new dynamic overall footprint DFP35 is calcu-

lated by

DFP35 = 0.1∗TFP35 +0.9∗DFP34

That means that all vectors and matrices are multiplied with their respective factor (0.1 or

0.9) and added, e.g. for the x ◃◃y relation:

(x ◃◃y)35 = 0.1∗

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+0.9∗

0.18 0.32 0.18 0.44 0.44 0 0 0

0.41 0.18 0.18 0.44 0.44 0 0 0

0.18 0.18 0.18 0.18 0.18 0 0 0

0 0 0 0.18 0.32 0 0 0

0 0 0 0.29 0.18 0 0 0

0 0 0 0 0 0.24 0.24 0.32

0 0 0 0 0 0.29 0.29 0.29

0 0 0 0 0 0.29 0.24 0.24

⇒ (x ◃◃y)35 =

a b c d e f g h

a 0.26 0.39 0.26 0.50 0.50 0 0 0

b 0.47 0.26 0.26 0.50 0.50 0 0 0

c 0.26 0.26 0.26 0.26 0.26 0 0 0

d 0 0 0 0.26 0.39 0 0 0

e 0 0 0 0.36 0.26 0 0 0

f 0 0 0 0 0 0.22 0.22 0.29

g 0 0 0 0 0 0.26 0.26 0.26

h 0 0 0 0 0 0.26 0.22 0.22

This operation is applied to each respective vector and matrix. The resulting "aged"

overall footprint DFP35 is the following:

a b c d e f g h

Oon(x) : 0.60 0.60 0.26 0.50 0.50 0.34 0.32 0.40

Oov(x) : 1.12 1.12 0.52 0.76 0.76 0.98 0.59 0.77

Fel(x) : 0.14 0.47 0 0 0 0.29 0.11 0

x ◃◃y : x ◃ y :

a b c d e f g h

a 0.26 0.39 0.26 0.50 0.50 0 0 0

b 0.47 0.26 0.26 0.50 0.50 0 0 0

c 0.26 0.26 0.26 0.26 0.26 0 0 0

d 0 0 0 0.26 0.39 0 0 0

e 0 0 0 0.36 0.26 0 0 0

f 0 0 0 0 0 0.22 0.22 0.29

g 0 0 0 0 0 0.26 0.26 0.26

h 0 0 0 0 0 0.26 0.22 0.22

a b c d e f g h

a 0 0.14 0.26 0.50 0.50 0 0 0

b 0.47 0 0.26 0.50 0.50 0 0 0

c 0 0 0 0.26 0.26 0 0 0

d 0 0 0 0 0.39 0 0 0

e 0 0 0 0.16 0 0 0 0

f 0 0 0 0 0 0 0.22 0.29

g 0 0 0 0 0 0.05 0 0.05

h 0 0 0 0 0 0.05 0.22 0

Appendix C

Visualisation Tools

C.1 DBPMRT Visualisation

Fig. C.1 DBPMRT Evolution Visualisation (Element Descriptions annotated in red)

C.2 KPI/PPI Visualisations 233

C.2 KPI/PPI Visualisations

Fig. C.2 PPI Dashboard (Element Descriptions annotated in red)

Fig. C.3 PPI Popup - when clicked on PPI in Dashboard (Descriptions annotated in red)

C.2 KPI/PPI Visualisations 234

Fig. C.4 Tablet App for PPI Visualisation

Appendix D

Additional Processes in Case Study

D.1 Expense Payment

The "Expense Payment" BP is a sub-Process of the "Refill Stock" BP (see Figure D.2) but

also independently initiated for weekly/monthly fixed payments.

Check
Correctness

Initiate Money
Transfer

no issueReduce Bill

issue

Accounting

Condition 2Condition 1

Automated
Activity

Human
Activity

Sub-
Process

Start
Event

End
Event

Decision Merge

Fork Join

Fig. D.1 The Planned "Expense Payment" Business Process in the Akron Heating Company

D.2 Refill Stock 236

D.2 Refill Stock

The "Refill Stock" BP is periodically initiated approximately every two days, checking and

refilling the stock items to avoid delays in the delivery (when items are not in stock). The

"Expense Payment" BP is a sub-Process of the "Refill Stock" BP.

Check Current
Stock

Predict Future
Demand

Order
Products

Wait for products
to be delivered

Put products into
shelfs

Update inventory
numbers

Expense
Payment

Warehouse
Personnel

Accounting

Condition 2Condition 1

Automated
Activity

Human
Activity

Sub-
Process

Start
Event

End
Event

Decision Merge

Fork Join

Fig. D.2 The Planned "Refill Stock" Business Process in the Akron Heating Company

D.3 Return Item 237

D.3 Return Item

The "Return Item" BP is a complex process which is initiated when customers return their

order or parts of them. In the Akron Heating case scenario this happens regularly with

approximately 15% of the orders being sent back (in full or partly).

Receive Return
Request

Check
Items

Check for
Warranty

Check Return
Request/Invoice

valid Contact customer
(invalid request)

Manufacturer responsible

Not in good condition/
items missing Contact customer

(items not ok)

Send Items back
to Customer

(items not ok)

Refund
Partly

Items not OK/missing

Refund
Fully

Send to
Manufacturer

Repair/
Replace

Send Items back
to Customer

Reorder
Products

Wait for Products
from Manufacturer

Packaging

Wants repair/replacement

Receive Items
(invalid request)

Repair/Replace
(invalid request)

Send Items & Invoice
for Repair/

Replacement

Receive
Items

Return Items
to Stock

Customer corrects request (e.g. forgotten invoice)

No repair

In good condition

Web Server

Accounting

Customer
Relations

Warehouse
Personnel

Packer

Condition 2Condition 1

Automated
Activity

Human
Activity

Sub-
Process

Start
Event

End
Event

Decision Merge

Fork Join

Items not OK

Items OK

Fig. D.3 The Planned "Return Item" Business Process in the Akron Heating Company

Appendix E

Additional Evaluation Results for Case

Study

E.1 Business Processes

E.1.1 Expense Payment

Fig. E.1 Discovered Control-flow of the Expense Payment BP

E.1 Business Processes 239

E.1.2 Refill Stock

Fig. E.2 Discovered Control-flow of the Refill Stock BP

E.1.3 Return Item

Fig. E.3 Discovered Control-flow of the Return Item BP

E.2 Performance 240

E.2 Performance

End-To-End Processing Time for Return Items BP

Fig. E.4 Prediction Results vs. Real Development for End-to-End Processing Time of "Re-
turn Items" BP

Fig. E.5 MSE of the Prediction Methods for End-to-End Processing Time of "Return Items"
BP

E.2 Performance 241

Utilisation of Packer (Role)

Fig. E.6 Prediction Results vs. Real Development for Utilisation of "Packer" Role

Fig. E.7 MSE of the Prediction Methods for Utilisation of "Packer" Role

E.2 Performance 242

Throughput of ’Initiate Express Shipping’ Activity

Fig. E.8 Prediction Results vs. Real Development for Throughput of "Initiate Express Ship-
ping" Activity

Fig. E.9 MSE of the Prediction Methods for Throughput of "Initiate Express Shipping" Ac-
tivity

References

[1] Aagedal, J. Ø. (2001). Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo.

[2] Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B. F., and van der Aalst,
W. M. P. (2012). Alignment based precision checking. In Business Process Management
Workshops - BPM 2012 International Workshops, Revised Papers, volume 132 of Lecture
Notes in Business Information Processing, pages 137–149. Springer.

[3] Adriansyah, A., van Dongen, B. F., and van der Aalst, W. M. P. (2011). Conformance
checking using cost-based fitness analysis. In Proceedings of the 15th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, EDOC 2011, pages 55–64.
IEEE Computer Society.

[4] Agrawal, R., Gunopulos, D., and Leymann, F. (1998). Mining process models from
workflow logs. In Advances in Database Technology - EDBT’98, 6th International Con-
ference on Extending Database Technology, Valencia, Spain, March 23-27, 1998, Pro-
ceedings, volume 1377 of Lecture Notes in Computer Science, pages 469–483. Springer.

[5] Allilaire, F., Bézivin, J., Jouault, F., and Kurtev, I. (2006). Atl – eclipse support for model
transformation. In IN: PROC. OF THE ECLIPSE TECHNOLOGY EXCHANGE WORK-
SHOP (ETX) AT ECOOP.

[6] AnyLogic (2015). AnyLogic - multimethod simulation software. http://www.anylogic.
com/ (accessed June 16th, 2015).

[7] Beltrame, G., Sciuto, D., Silvano, C., Lyonnard, D., and Pilkington, C. (2006). Exploiting
TLM and object introspection for system-level simulation. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe, DATE 2006, pages 100–105. European
Design and Automation Association, Leuven, Belgium.

[8] Bencomo, N. (2008). Supporting the Modelling and Generation of Reflective Middle-
ware Families and Applications using Dynamic Variability. PhD thesis, Computing De-
partment, Lancaster University.

[9] Bencomo, N. (2009). On the use of software models during software execution. In
Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering, MISE ’09,
pages 62–67, Washington, DC, USA. IEEE Computer Society.

[10] Bencomo, N., Blair, G. S., Götz, S., Morin, B., and Rumpe, B. (2013). Report on the
7th international workshop on models@run.time. ACM SIGSOFT Software Engineering
Notes, 38(1):27–30.

[11] Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., and Letier, E. (2010). Re-
quirements reflection: requirements as runtime entities. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE 2010,
pages 199–202. ACM.

http://www.anylogic.com/
http://www.anylogic.com/

References 244

[12] Bennaceur, A., France, R. B., Tamburrelli, G., Vogel, T., Mosterman, P. J., Cazzola, W.,
Costa, F. M., Pierantonio, A., Tichy, M., Aksit, M., Emmanuelson, P., Huang, G., Geor-
gantas, N., and Redlich, D. (2011). Mechanisms for leveraging models at runtime in self-
adaptive software. In Models@run.time - Foundations, Applications, and Roadmaps
[Dagstuhl Seminar 11481, 2011]., volume 8378 of Lecture Notes in Computer Science,
pages 19–46. Springer.

[13] Bergenthum, R., Desel, J., Lorenz, R., and Mauser, S. (2007). Process mining based on
regions of languages. In Business Process Management, 5th International Conference,
BPM 2007, Proceedings, volume 4714 of Lecture Notes in Computer Science, pages 375–
383. Springer.

[14] Bézivin, J. (2005). On the unification power of models. Software and System Model-
ing, 4(2):171–188.

[15] Bézivin, J., Jouault, F., and Valduriez, P. (2004). On the need for megamodels. In
Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Develop-
ment workshop, 19th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications.

[16] Blair, G. S., Bencomo, N., and France, R. B. (2009). Models@ run.time. IEEE Com-
puter, 42(10):22–27.

[17] Blair, G. S., Coulson, G., Clarke, M., and Parlavantzas, N. (2001). Performance and in-
tegrity in the openorb reflective middleware. In Metalevel Architectures and Separation
of Crosscutting Concerns, Third International Conference, REFLECTION 2001, Proceed-
ings, volume 2192 of Lecture Notes in Computer Science, pages 268–269. Springer.

[18] Blumendorf, M., Lehmann, G., Feuerstack, S., and Albayrak, S. (2008). Executable
models for human-computer interaction. In Interactive Systems. Design, Specification,
and Verification, 15th International Workshop, DSV-IS 2008, Revised Papers, volume
5136 of Lecture Notes in Computer Science, pages 238–251. Springer.

[19] Bodenstaff, L., Wombacher, A., Reichert, M., and Wieringa, R. (2010). Made4ic: an
abstract method for managing model dependencies in inter-organizational coopera-
tions. Service Oriented Computing and Applications, 4(3):203–228.

[20] Bose, R. J. C. (2012). Process Mining in the Large: Preprocessing, Discovery, and Diag-
nostics. PhD thesis, Eindhoven University of Technology.

[21] Bose, R. P. J. C., van der Aalst, W. M. P., Zliobaite, I., and Pechenizkiy, M. (2011). Han-
dling concept drift in process mining. In Advanced Information Systems Engineering -
23rd International Conference, CAiSE 2011. Proceedings, volume 6741 of Lecture Notes
in Computer Science, pages 391–405. Springer.

[22] Bose, R. P. J. C., van der Aalst, W. M. P., Zliobaite, I., and Pechenizkiy, M. (2013). Deal-
ing with concept drifts in process mining : a case study in a dutch municipality. Tech-
nical Report No. BPM-13-13.

[23] Bose, R. P. J. C., van der Aalst, W. M. P., Zliobaite, I., and Pechenizkiy, M. (2014). Deal-
ing with concept drifts in process mining. IEEE Trans. Neural Netw. Learning Syst.,
25(1):154–171.

[24] Brandon-Jones, A. and Slack, N. (2008). Quantitative Analysis in Operations Manage-
ment. Financial Times Prentice Hall.

References 245

[25] Breton, E. and Bézivin, J. (2001). Towards an understanding of model executability.
In International Conference on Formal Ontology in Information Systems FOIS, Proceed-
ings, pages 70–80.

[26] Buijs, J. C. A. M., van Dongen, B. F., and van der Aalst, W. M. P. (2012). A genetic algo-
rithm for discovering process trees. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2012, pages 1–8. IEEE.

[27] Burattin, A., Sperduti, A., and van der Aalst, W. M. P. (2012). Heuristics miners for
streaming event data. CoRR, abs/1212.6383.

[28] Burattin, A., Sperduti, A., and Veluscek, M. (2013). Business models enhancement
through discovery of roles. In IEEE Symposium on Computational Intelligence and Data
Mining, CIDM 2013, pages 103–110. IEEE.

[29] Buzacott, J. A. (1996). Commonalities in reengineered business processes: Models
and issues. Management Science, 42(5):pp. 768–782.

[30] Caporuscio, M., Marco, A. D., and Inverardi, P. (2005). Run-time performance man-
agement of the siena publish/subscribe middleware. In Proceedings of the Fifth Inter-
national Workshop on Software and Performance, WOSP 2005, pages 65–74. ACM.

[31] Caporuscio, M., Marco, A. D., and Inverardi, P. (2007). Model-based system recon-
figuration for dynamic performance management. Journal of Systems and Software,
80(4):455–473.

[32] Cardoso, J. and Lenic, M. (2006). Web process and workflow path mining using the
multimethod approach. IJBIDM, 1(3):304–328.

[33] Carmona, J. and Cortadella, J. (2010). Process mining meets abstract interpreta-
tion. In Machine Learning and Knowledge Discovery in Databases, European Confer-
ence, ECML PKDD 2010, Proceedings, Part I, volume 6321 of Lecture Notes in Computer
Science, pages 184–199. Springer.

[34] Carmona, J. and Gavaldà, R. (2012). Online techniques for dealing with concept
drift in process mining. In Advances in Intelligent Data Analysis XI - 11th International
Symposium, IDA 2012. Proceedings, volume 7619 of Lecture Notes in Computer Science,
pages 90–102. Springer.

[35] Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., and Pezzè, M. (2013). Automatic
recovery from runtime failures. In 35th International Conference on Software Engineer-
ing, ICSE ’13, pages 782–791. IEEE / ACM.

[36] Casanova, P., Schmerl, B. R., Garlan, D., and Abreu, R. (2011). Architecture-based
run-time fault diagnosis. In Software Architecture - 5th European Conference, ECSA
2011. Proceedings, volume 6903 of Lecture Notes in Computer Science, pages 261–277.
Springer.

[37] Cattafi, M., Lamma, E., Riguzzi, F., and Storari, S. (2010). Incremental declarative
process mining. In Smart Information and Knowledge Management: Advances, Chal-
lenges, and Critical Issues, volume 260 of Studies in Computational Intelligence, pages
103–127. Springer.

[38] Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G. D. M., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H. M., Kramer, J., Litoiu, M., Malek,
S., Mirandola, R., Müller, H. A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., and

References 246

Whittle, J. (2009). Software engineering for self-adaptive systems: A research roadmap.
In Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar], vol-
ume 5525 of Lecture Notes in Computer Science, pages 1–26. Springer.

[39] Cook, J. E. and Wolf, A. L. (1998). Discovering models of software processes from
event-based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249.

[40] Cortadella, J., Kishinevsky, M., Lavagno, L., and Yakovlev, A. (1998). Deriving petri
nets for finite transition systems. IEEE Trans. Computers, 47(8):859–882.

[41] Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Confer-
ence Record of the Fourth ACM Symposium on Principles of Programming Languages
1977, pages 238–252. ACM.

[42] Creswell, J. (1998). Qualitative inquiry and research design: choosing among five tra-
ditions. Sage Publications series. Sage Publications.

[43] Czarnecki, K. (2004). Overview of generative software development. In Unconven-
tional Programming Paradigms, International Workshop UPP 2004, Revised Selected
and Invited Papers, volume 3566 of Lecture Notes in Computer Science, pages 326–341.
Springer.

[44] Davenport, T. H. (2010). Business intelligence and organizational decisions. IJBIR,
1(1):1–12.

[45] de Medeiros, A. K. A., van Dongen, B. F., van der Aalst, W. M. P., and Weijters, A. J.
M. M. (2004). Process mining for ubiquitous mobile systems: An overview and a con-
crete algorithm. In Ubiquitous Mobile Information and Collaboration Systems, Second
CAiSE Workshop, UMICS 2004, Revised Selected Papers, volume 3272 of Lecture Notes in
Computer Science, pages 151–165. Springer.

[46] de Medeiros, A. K. A., Weijters, A. J. M. M., and van der Aalst, W. M. P. (2007). Genetic
process mining: an experimental evaluation. Data Min. Knowl. Discov., 14(2):245–304.

[47] Dehnert, J. and van der Aalst, W. M. P. (2004). Bridging the gap between business
models and workflow specifications. Int. J. Cooperative Inf. Syst., 13(3):289–332.

[48] Del Fabro, M. D., Bézivin, J., and Valduriez, P. (2006). Weaving models with the eclipse
amw plugin. Eclipse Modeling Symposium, Eclipse Summit Europe, 2006.

[49] del-Río-Ortega, A., de Reyna, M. R. A., Toro, A. D., and Cortés, A. R. (2012). Defining
process performance indicators by using templates and patterns. In Business Process
Management - 10th International Conference, BPM 2012. Proceedings, volume 7481 of
Lecture Notes in Computer Science, pages 223–228. Springer.

[50] del-Río-Ortega, A., Resinas, M., and Cortés, A. R. (2010). Defining process perfor-
mance indicators: An ontological approach. In On the Move to Meaningful Internet
Systems: OTM 2010 - Confederated International Conferences: CoopIS, IS, DOA and
ODBASE, Proceedings, Part I, volume 6426 of Lecture Notes in Computer Science, pages
555–572. Springer.

[51] DeRemer, F. and Kron, H. H. (1976). Programming-in-the-large versus
programming-in-the-small. IEEE Trans. Software Eng., 2(2):80–86.

[52] Deursen, A. V., Visser, E., and Warmer, J. (2007). Model-driven software evolution: A
research agenda. In IN PROC. INT. WS ON MODEL-DRIVEN SOFTWARE EVOLUTION
HELD WITH THE ECSMR’07. Delft University of Technology.

References 247

[53] Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Com-
puting, 5(1):4–7.

[54] Dodig-Crnkovic, Gordana (2002). Scientific Methods in Computer Science. In Con-
ference for the Promotion of Research in IT at New Universities and at University Colleges
in Sweden.

[55] Dresner, H. (2002). Business Activity Monitoring: New Age BI. ID no. G00105565.
Gartner Research.

[56] Drobek, M., Gilani, W., Molka, T., and Soban, D. (2015a). Automated equation formu-
lation for causal loop diagrams. In Business Information Systems - 18th International
Conference, BIS 2015, Proceedings, volume 208 of Lecture Notes in Business Information
Processing, pages 38–49. Springer.

[57] Drobek, M., Gilani, W., Redlich, D., and Molka, T. (2015b). Model-based business
continuity management. US Patent (filed in 2015).

[58] Drobek, M., Gilani, W., Redlich, D., Molka, T., and Soban, D. (2014). Advanced busi-
ness simulations - incorporating business and process execution data. In Business
Modeling and Software Design - 4th International Symposium, BMSD 2014, Revised Se-
lected Papers, volume 220 of Lecture Notes in Business Information Processing, pages
119–137. Springer.

[59] Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). Selecting Empirical
Methods for Software Engineering Research, pages 285–311. Springer London".

[60] Eckert, M. and Bry, F. (2009). Complex event processing (CEP). Informatik Spektrum,
32(2):163–167.

[61] Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli, G. (2009). Model evolution
by run-time parameter adaptation. In 31st International Conference on Software Engi-
neering, ICSE 2009, Proceedings, pages 111–121. IEEE.

[62] Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., and Jézéquel, J. (2008). Modeling
and validating dynamic adaptation. In Models in Software Engineering, Workshops and
Symposia at MODELS 2008. Reports and Revised Selected Papers, volume 5421 of Lecture
Notes in Computer Science, pages 97–108. Springer.

[63] Foundation, E. (2015). Eclipse graphical editing framework (gef). http://www.
eclipse.org/gef (accessed July 02nd, 2015).

[64] France, R. B. and Rumpe, B. (2003). Editorial - model engineering. Software and
System Modeling, 2(2):73–75.

[65] France, R. B. and Rumpe, B. (2007). Model-driven development of complex software:
A research roadmap. In International Conference on Software Engineering, ISCE 2007,
Workshop on the Future of Software Engineering, FOSE 2007, pages 37–54.

[66] Frank, U. (2008). The memo meta modelling language (mml) and language archi-
tecture. ICB Research Reports 24, University Duisburg-Essen, Institute for Computer
Science and Business Information Systems (ICB).

[67] Frank, U. (2014). Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges. Software and System Modeling, 13(3):941–
962.

http://www.eclipse.org/gef
http://www.eclipse.org/gef

References 248

[68] Friedenstab, J., Janiesch, C., Matzner, M., and Müller, O. (2012). Extending BPMN for
business activity monitoring. In 45th Hawaii International International Conference on
Systems Science (HICSS-45 2012), Proceedings, 4-7 January 2012, Grand Wailea, Maui,
HI, USA, pages 4158–4167. IEEE Computer Society.

[69] Fritzsche, M. (2010). Performance related Decision Support for Process Modelling.
PhD thesis, School of Electronics, Electrical Engineering and Computer Science,
Queens University Belfast.

[70] Fritzsche, M., Gilani, W., and Picht, M. (2011). Process-Centric Decision Support.
In Rosenberg, A., von Rosing, M., Chase, G., Omar, R., and Taylor, J., editors, Applying
Real-World BPM in an SAP Environment. SAP PRESS.

[71] Fritzsche, M., Johannes, J., Aßmann, U., Mitschke, S., Gilani, W., Spence, I. T. A.,
Brown, T. J., and Kilpatrick, P. (2008). Systematic usage of embedded modelling lan-
guages in automated model transformation chains. In Software Language Engineering,
First International Conference, SLE 2008. Revised Selected Papers, volume 5452 of Lec-
ture Notes in Computer Science, pages 134–150. Springer.

[72] Fritzsche, M., Johannes, J., Cech, S., and Gilani, W. (2009a). MDPE workbench - A so-
lution for performance related decision support. In Proceedings of the Business Process
Management Demonstration Track (BPMDemos 2009), volume 489 of CEUR Workshop
Proceedings. CEUR-WS.org.

[73] Fritzsche, M., Picht, M., Gilani, W., Spence, I. T. A., Brown, T. J., and Kilpatrick, P.
(2009b). Extending BPM environments of your choice with performance related de-
cision support. In Business Process Management, 7th International Conference, BPM
2009, Proceedings, volume 5701 of Lecture Notes in Computer Science, pages 97–112.
Springer.

[74] Galushka, M. and Gilani, W. (2014). Drugfusion - retrieval knowledge management
for prediction of adverse drug events. In Business Information Systems - 17th Inter-
national Conference, BIS 2014. Proceedings, volume 176 of Lecture Notes in Business
Information Processing, pages 13–24. Springer.

[75] Garlan, D., Cheng, S., Huang, A., Schmerl, B. R., and Steenkiste, P. (2004). Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. IEEE Computer,
37(10):46–54.

[76] Garlan, D. and Schmerl, B. R. (2002). Model-based adaptation for self-healing sys-
tems. In Proceedings of the First Workshop on Self-Healing Systems, WOSS 2002, pages
27–32. ACM.

[77] Garzon, S. R. and Cebulla, M. (2010). Model-based personalization within an adapt-
able human-machine interface environment that is capable of learning from user in-
teractions. In ACHI 2010, The Third International Conference on Advances in Computer-
Human Interactions, pages 191–198. IEEE Computer Society.

[78] Ghezzi, C. (2011). The fading boundary between development time and run time. In
9th IEEE European Conference on Web Services, ECOWS 2011, page 11. IEEE.

[79] Ghezzi, C., Mocci, A., and Sangiorgio, M. (2011). Runtime monitoring of functional
component changes with behavior models. In Models in Software Engineering - Work-
shops and Symposia at MODELS 2011, Reports and Revised Selected Papers, volume
7167 of Lecture Notes in Computer Science, pages 152–166. Springer.

References 249

[80] Ghezzi, C. and Tamburrelli, G. (2009). Predicting performance properties for open
systems with KAMI. In Architectures for Adaptive Software Systems, 5th International
Conference on the Quality of Software Architectures, QoSA 2009, Proceedings, volume
5581 of Lecture Notes in Computer Science, pages 70–85. Springer.

[81] Giese, H., Seibel, A., and Vogel, T. (2009). A Model-Driven Configuration Manage-
ment System for Advanced IT Service Management. In Proceedings of the 4th Interna-
tional Workshop on Models@run.time at the 12th IEEE/ACM International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2009), volume 509 of
CEUR Workshop Proceedings, pages 61–70. CEUR-WS.org.

[82] Giese, H. and Wagner, R. (2009). From model transformation to incremental bidirec-
tional model synchronization. Software and System Modeling, 8(1):21–43.

[83] Gilani, W., Galushka, M., Molka, T., Redlich, D., Du, Y., and Drobek, M. (2014). A
process-oriented performance and risk management workbench. In eChallenges e-
2014, 2014 Conference, pages 1–9.

[84] Gilani, W., Redlich, D., Galushka, M., Molka, T., and Du, Y. (2013). Timbus : Digital
preservation for timeless business processes and services. In eChallenges e-2013, 2013
Conference.

[85] Gjerlufsen, T., Ingstrup, M., Wolff, J., and Olsen, O. (2009). Mirrors of meaning: Sup-
porting inspectable runtime models. IEEE Computer, 42(10):61–68.

[86] Grace, P., Blair, G. S., and Samuel, S. (2005). A reflective framework for discovery and
interaction in heterogeneous mobile environments. Mobile Computing and Commu-
nications Review, 9(1):2–14.

[87] Gregg, D. G., Kulkarni, U. R., and Vinze, A. S. (2001). Understanding the philosophical
underpinnings of software engineering research in information systems. Information
Systems Frontiers, 3(2):169–183.

[88] Günther, C. W., Rinderle, S. B., Reichert, M., van der Aalst, W. M. P., and Recker, J.
(2008). Using process mining to learn from process changes in evolutionary systems.
International Journal of Business Process Integration and Management, Special Issue on
Business Process Flexibility, 3(1):61–78.

[89] Günther, C. W. and van der Aalst, W. M. P. (2007). Fuzzy mining - adaptive process
simplification based on multi-perspective metrics. In Business Process Management,
5th International Conference, BPM 2007, Proceedings, volume 4714 of Lecture Notes in
Computer Science, pages 328–343. Springer.

[90] Günther, C. W. and Verbeek, E. (2014). XES Standard Definition Version 2.0. http:
//www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf (accessed July 13,
2015).

[91] Gupta, N. K., Jagadeesan, L. J., Koutsofios, E., and Weiss, D. M. (1997). Auditdraw:
Generating audits the FAST way. In 3rd IEEE International Symposium on Requirements
Engineering (RE’97), pages 188–197. IEEE Computer Society.

[92] Hailpern, B. and Tarr, P. L. (2006). Model-driven development: The good, the bad,
and the ugly. IBM Systems Journal, 45(3):451–462.

[93] Hamann, L., Gogolla, M., and Kuhlmann, M. (2011). Ocl-based runtime monitoring
of JVM hosted applications. ECEASST, 44.

http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf

References 250

[94] Hamann, L., Hofrichter, O., and Gogolla, M. (2012). Ocl-based runtime monitoring of
applications with protocol state machines. In Modelling Foundations and Applications
- 8th European Conference, ECMFA 2012. Proceedings, volume 7349 of Lecture Notes in
Computer Science, pages 384–399. Springer.

[95] Harmon, P. (2015). The scope and evolution of business process management. In
vom Brocke, J. and Rosemann, M., editors, Handbook on Business Process Management
1, Introduction, Methods, and Information Systems, 2nd Ed., International Handbooks
on Information Systems, pages 37–80. Springer.

[96] Herbst, J. and Karagiannis, D. (2000). Integrating machine learning and workflow
management to support acquisition and adaptation of workflow models. Int. Syst. in
Accounting, Finance and Management, 9(2):67–92.

[97] Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly, 28(1):75–105.

[98] Hill, J. B., Pezzini, M., and Natis, Y. V. (2008). Findings: Confusion remains regarding
BPM terminologies. ID no. G00155817. Gartner Research.

[99] Hooman, J. and Hendriks, T. (2007). Model-based run-time error detection. In Mod-
els in Software Engineering, Workshops and Symposia at MoDELS 2007, Reports and
Revised Selected Papers, volume 5002 of Lecture Notes in Computer Science, pages 225–
236. Springer.

[100] Huang, G., Song, H., and Mei, H. (2009). Sm@rt: Towards architecture-based run-
time management of internetware systems. In Proceedings of the First Asia-Pacific Sym-
posium on Internetware, Internetware ’09, pages 9:1–9:10, New York, NY, USA. ACM.

[101] Hummer, W., Gaubatz, P., Strembeck, M., Zdun, U., and Dustdar, S. (2011). An in-
tegrated approach for identity and access management in a SOA context. In SACMAT
2011, 16th ACM Symposium on Access Control Models and Technologies, Proceedings,
pages 21–30. ACM.

[102] IBM Redbooks (2002). IBM WebSphere V4.0 Advanced Edition Handbook. IBM.

[103] Intalio (2014). Intalio BPMS. http://www.intalio.com/products/bpms/overview/
(accessed Dec. 6th, 2014).

[104] International SEMATECH and National Institute of Standards and Technology
(2013). Engineering statistics handbook. http://www.itl.nist.gov/div898/handbook/.

[105] Inverardi, P. and Mori, M. (2013). A software lifecycle process to support consistent
evolutions. In Software Engineering for Self-Adaptive Systems II - International Seminar
2010, Revised Selected and Invited Papers, volume 7475 of Lecture Notes in Computer
Science, pages 239–264. Springer.

[106] Janiesch, C., Matzner, M., and Müller, O. (2012). Beyond process monitoring:
a proof-of-concept of event-driven business activity management. Business Proc.
Manag. Journal, 18(4):625–643.

[107] Janiesch, C., Matzner, M., Müller, O., Vollmer, R., and Becker, J. (2011). Slipstream:
architecture options for real-time process analytics. In Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC), pages 295–300. ACM.

[108] Jaring, M. (2005). Variability Engineering as an Integral Part of the Software Prod-
uct Family Development Process. PhD thesis, Institute of Mathematics and Computing
Science, University of Groningen.

http://www.intalio.com/products/bpms/overview/
http://www.itl.nist.gov/div898/handbook/

References 251

[109] Jensen, K. (1997). Coloured Petri Nets - Basic Concepts, Analysis Methods and Prac-
tical Use - Volume 3. Monographs in Theoretical Computer Science. An EATCS Series.
Springer.

[110] Johanndeiter, T., Goldstein, A., and Frank, U. (2013). Towards business process
models at runtime. In Proceedings of the 8th Workshop on Models @ Run.time co-
located with 16th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2013), volume 1079 of CEUR Workshop Proceedings, pages 13–
25. CEUR-WS.org.

[111] Jouault, F. (2005). Loosely coupled traceability for atl. In In Proceedings of the Eu-
ropean Conference on Model Driven Architecture (ECMDA) workshop on traceability,
pages 29–37.

[112] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2):31–39.

[113] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Valduriez, P. (2006a). ATL: a qvt-like
transformation language. In Companion to the 21th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2006, pages 719–720. ACM.

[114] Jouault, F., Bézivin, J., and Kurtev, I. (2006b). TCS: a DSL for the specification of
textual concrete syntaxes in model engineering. In Generative Programming and Com-
ponent Engineering, 5th International Conference, GPCE 2006, Proceedings, pages 249–
254. ACM.

[115] Kent, S. (2002). Model driven engineering. In Integrated Formal Methods, Third
International Conference, IFM 2002, Proceedings, volume 2335 of Lecture Notes in Com-
puter Science, pages 286–298. Springer.

[116] Kephart, J. O. and Chess, D. M. (2003). The vision of autonomic computing. IEEE
Computer, 36(1):41–50.

[117] Kieburtz, R. B., McKinney, L., Bell, J. M., Hook, J., Kotov, A., Lewis, J., Oliva, D.,
Sheard, T., Smith, I., and Walton, L. (1996). A software engineering experiment in soft-
ware component generation. In 18th International Conference on Software Engineer-
ing, Proceedings, pages 542–552. IEEE Computer Society.

[118] Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C. (2000). On structured work-
flow modelling. In Advanced Information Systems Engineering, 12th International Con-
ference CAiSE 2000, Proceedings, volume 1789 of Lecture Notes in Computer Science,
pages 431–445. Springer.

[119] Kindler, E., Rubin, V., and Schäfer, W. (2005). Incremental workflow mining based
on document versioning information. In Unifying the Software Process Spectrum, Inter-
national Software Process Workshop, SPW 2005, Revised Selected Papers, volume 3840
of Lecture Notes in Computer Science, pages 287–301. Springer.

[120] Kindler, E., Rubin, V., and Schäfer, W. (2006a). Activity mining for discovering soft-
ware process models. In Software Engineering 2006, Fachtagung des GI-Fachbereichs
Softwaretechnik, volume 79 of LNI, pages 175–180. GI.

[121] Kindler, E., Rubin, V., and Schäfer, W. (2006b). Incremental workflow mining for
process flexibility. In Proceedings of the CAISE*06 Workshop on Business Process Mod-
elling, Development, and Support BPMDS 2006, volume 236 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

References 252

[122] Ko, R. K. L. (2009). A computer scientist’s introductory guide to business process
management (BPM). ACM Crossroads, 15(4):4:11–4:18.

[123] Ko, R. K. L., Lee, S. S. G., and Lee, E. W. (2009). Business Process Management (BPM)
Standards: A Survey. Business Proc. Manag. Journal, 15(5):744–791.

[124] Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24(2):131–183.

[125] Lawrence, P. (1997). Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York.

[126] Leemans, S. J. J., Fahland, D., and van der Aalst, W. M. P. (2013a). Discovering block-
structured process models from event logs - A constructive approach. In Application
and Theory of Petri Nets and Concurrency - 34th International Conference, PETRI NETS
2013, Milan, Italy, June 24-28, 2013. Proceedings, volume 7927 of Lecture Notes in Com-
puter Science, pages 311–329. Springer.

[127] Leemans, S. J. J., Fahland, D., and van der Aalst, W. M. P. (2013b). Discovering
block-structured process models from event logs containing infrequent behaviour. In
Business Process Management Workshops - BPM 2013 International Workshops, Beijing,
China, August 26, 2013, Revised Papers, volume 171 of Lecture Notes in Business Infor-
mation Processing, pages 66–78. Springer.

[128] Leemans, S. J. J., Fahland, D., and van der Aalst, W. M. P. (2014). Discovering block-
structured process models from incomplete event logs. In Application and Theory of
Petri Nets and Concurrency - 35th International Conference, PETRI NETS 2014. Proceed-
ings, volume 8489 of Lecture Notes in Computer Science, pages 91–110. Springer.

[129] Lehmann, G., Blumendorf, M., Trollmann, F., and Albayrak, S. (2010). Meta-
modeling runtime models. In Models in Software Engineering - Workshops and Sym-
posia at MODELS 2010, Reports and Revised Selected Papers, volume 6627 of Lecture
Notes in Computer Science, pages 209–223. Springer.

[130] Liu, R., Nigam, A., Jeng, J., Shieh, C., and Wu, F. Y. (2010). Integrated modeling of
performance monitoring with business artifacts. In IEEE 7th International Conference
on e-Business Engineering, ICEBE 2010, pages 64–71. IEEE Computer Society.

[131] Liu, Y., Zhang, H., Li, C., and Jiao, R. J. (2012). Workflow simulation for operational
decision support using event graph through process mining. Decision Support Systems,
52(3):685–697.

[132] Lorenz, R., Mauser, S., and Juhás, G. (2007). How to synthesize nets from languages:
a survey. In Proceedings of the Winter Simulation Conference, WSC 2007, pages 637–647.
WSC.

[133] Lu, R. and Sadiq, S. W. (2007). A survey of comparative business process modeling
approaches. In Business Information Systems, 10th International Conference, BIS 2007,
Proceedings, volume 4439 of Lecture Notes in Computer Science, pages 82–94. Springer.

[134] Luckham, D. C. (2005). The power of events - an introduction to complex event pro-
cessing in distributed enterprise systems. ACM.

[135] Ludewig, J. (2004). Models in software engineering - an introduction. Inform.,
Forsch. Entwickl., 18(3-4):105–112.

[136] Ly, L. T., Rinderle, S., Dadam, P., and Reichert, M. (2005). Mining staff assignment
rules from event-based data. In Business Process Management Workshops, BPM 2005
International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Revised Selected Pa-
pers, volume 3812, pages 177–190.

References 253

[137] Maes, P. (1987). Concepts and experiments in computational reflection. In Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’87), 1987, Proceedings, pages 147–155. ACM.

[138] Maggi, F. M., Burattin, A., Cimitile, M., and Sperduti, A. (2013). Online process dis-
covery to detect concept drifts in ltl-based declarative process models. In On the Move
to Meaningful Internet Systems: OTM 2013 Conferences - Confederated International
Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013. Proceedings, volume 8185
of Lecture Notes in Computer Science, pages 94–111. Springer.

[139] Manku, G. S. and Motwani, R. (2002). Approximate frequency counts over data
streams. In VLDB 2002, Proceedings of 28th International Conference on Very Large
Data Bases, pages 346–357. Morgan Kaufmann.

[140] Mannila, H., Toivonen, H., and Verkamo, A. I. (1995). Discovering frequent episodes
in sequences. In Proceedings of the First International Conference on Knowledge Discov-
ery and Data Mining (KDD-95), 1995, pages 210–215. AAAI Press.

[141] Maoz, S. (2009). Using model-based traces as runtime models. IEEE Computer,
42(10):28–36.

[142] Maoz, S. and Harel, D. (2011). On tracing reactive systems. Software and System
Modeling, 10(4):447–468.

[143] March, S. T., Hevner, A. R., and Ram, S. (2000). Research commentary: An agenda
for information technology research in heterogeneous and distributed environments.
Information Systems Research, 11(4):327–341.

[144] Mendling, J., Neumann, G., and Nüttgens, M. (2004). A Comparison of XML Inter-
change Formats for Business Process Modelling. In EMISA 2004, Informationssysteme
im E-Business und E-Government, volume 56 of LNI, pages 129–140. GI.

[145] Milner, R. (1999). Communicating and mobile systems - the Pi-calculus. Cambridge
University Press.

[146] Molka, T., Redlich, D., Drobek, M., Caetano, A., Zeng, X., and Gilani, W. (2014). Con-
formance checking for bpmn-based process models. In Symposium on Applied Com-
puting, SAC 2014, pages 1406–1413. ACM.

[147] Molka, T., Redlich, D., Drobek, M., Zeng, X., and Gilani, W. (2015a). Diversity guided
evolutionary mining of hierarchical process models. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2015, pages 1247–1254. ACM.

[148] Molka, T., Redlich, D., Gilani, W., Zeng, X., and Drobek, M. (2015b). Evolutionary
computation based discovery of hierarchical business process models. In Business In-
formation Systems - 18th International Conference, BIS 2015, Proceedings, volume 208
of Lecture Notes in Business Information Processing, pages 191–204. Springer.

[149] Momm, C., Malec, R., and Abeck, S. (2007). Towards a model-driven development
of monitored processes. In eOrganisation: Service-, Prozess-, Market-Engineering: 8.
Internationale Tagung Wirtschaftsinformatik - Band 2, WI 2007, pages 319–336. Uni-
versitaetsverlag Karlsruhe.

[150] Monteiro, L. F. S. and de Oliveira, K. M. (2011). Defining a catalog of indicators to
support process performance analysis. Journal of Software Maintenance, 23(6):395–
422.

References 254

[151] Morin, B., Barais, O., Jézéquel, J., Fleurey, F., and Solberg, A. (2009). Mod-
els@run.time to support dynamic adaptation. IEEE Computer, 42(10):44–51.

[152] Mos, A. and Murphy, J. (2002). Performance management in component-oriented
systems using a model driven architecturetm approach. In 6th International Enterprise
Distributed Object Computing Conference (EDOC 2002), Proceedings, pages 227–237.
IEEE Computer Society.

[153] Muller, P., Fleurey, F., and Jézéquel, J. (2005). Weaving executability into object-
oriented meta-languages. In Model Driven Engineering Languages and Systems, 8th
International Conference, MoDELS 2005, Proceedings, volume 3713 of Lecture Notes in
Computer Science, pages 264–278. Springer.

[154] Müller, R., Greiner, U., and Rahm, E. (2004). Agentwork: a workflow system sup-
porting rule-based workflow adaptation. Data Knowl. Eng., 51(2):223–256.

[155] Munoz-Gama, J. and Carmona, J. (2010). A fresh look at precision in process confor-
mance. In Business Process Management - 8th International Conference, BPM 2010. Pro-
ceedings, volume 6336 of Lecture Notes in Computer Science, pages 211–226. Springer.

[156] Muskens, J. and Chaudron, M. R. V. (2004). Integrity management in component
based systems. In 30th EUROMICRO Conference 2004, pages 611–619. IEEE Computer
Society.

[157] Nguyen, V. H., Fouquet, F., Plouzeau, N., and Barais, O. (2012). A process for contin-
uous validation of self-adapting component based systems. In Proceedings of the 7th
Workshop on Models@run.time, 2012, pages 32–37. ACM.

[158] Nierstrasz, O., Denker, M., and Renggli, L. (2009). Model-centric, context-aware
software adaptation. In Software Engineering for Self-Adaptive Systems [outcome of a
Dagstuhl Seminar], volume 5525 of Lecture Notes in Computer Science, pages 128–145.
Springer.

[159] Nordstrom, G., Sztipanovits, J., Karsai, G., and Lédeczi, Á. (1999). Metamodeling
- rapid design and evolution of domain-specific modeling environments. In 6th Sym-
posium on Engineering of Computer-Based Systems (ECBS ’99), IEEE Computer Society,
1999, pages 68–74. IEEE Computer Society.

[160] Nordstrom, S., Dubey, A., Keskinpala, T., Datta, R., Neema, S., and Bapty, T. (2007).
Model predictive analysis for autonomicworkflow management in large-scale scientific
computing environments. In Fourth IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems, 2007. EASe’07, pages 37–42. IEEE.

[161] OASIS (2007). Web Services Business Process Execution Language Version 2.0. http:
//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[162] Object Management Group (2006). Meta Object Facility (MOF) specification
version 2.0. http://www.omg.org/cgi-bin/doc?formal/2006-01-01 (accessed July 13,
2015).

[163] Object Management Group (2015). Meta Object Facility (MOF) 2.0 -
Query/View/Transformation Specification. http://www.omg.org/spec/QVT/1.2/
(accessed June 14th 2015).

[164] Object Management Group Inc (2003). BPMN and Business Process Management
- Introduction to the New Business Process Modeling Standard. http://www.omg.org/
bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf (accessed Dec. 12, 2014).

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.omg.org/bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf

References 255

[165] Object Management Group Inc (2005). Unified Modeling Language 2.0: Superstruc-
ture. http://www.omg.org/spec/UML/2.0/Superstructure/PDF. formal/05-07-04.

[166] Object Management Group Inc (2007). The OMG Business Process Related
Standards. http://bpmfocus.pbworks.com/f/BPM+Standards+At+The+OMG+-+July+
07.pdf (accessed Dec. 12, 2014).

[167] Object Management Group Inc (2008). Business Process Definition Meta-
Model - Volume I: Common Infrastructure. http://www.omg.org/spec/BPDM/1.0.
formal/2008-11-03.

[168] Object Management Group Inc (2011). Business Process Model and Notation
(BPMN) Specification 2.0. http://www.omg.org/spec/BPMN/2.0/PDF. formal/2011-
01-03.

[169] Object Management Group Inc (2015). Model-driven architecture. http://www.
omg.org/mda/specs.htm (accessed July 02nd, 2015).

[170] Otter, M., Mattsson, S. E., and Elmqvist, H. (2007). Multidomain modeling with
modelica. In Handbook of Dynamic System Modeling. Chapman and Hall/CRC.

[171] Pesic, M., Schonenberg, M. H., Sidorova, N., and van der Aalst, W. M. P. (2007).
Constraint-Based Workflow Models: Change Made Easy. In On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated Inter-
national Conferences, Proceedings, Part I, volume 4803 of Lecture Notes in Computer
Science, pages 77–94. Springer.

[172] Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Rheinisch-
Westfälisches Institut f. instrumentelle Mathematik.

[173] Pidd, M. (1998). Computer Simulation in Management Science. John Wiley & Sons,
Inc., New York, NY, USA, 4th edition.

[174] Pienaar, J. A., Raghunathan, A., and Chakradhar, S. T. (2011). MDR: performance
model driven runtime for heterogeneous parallel platforms. In Proceedings of the 25th
International Conference on Supercomputing, 2011, pages 225–234. ACM.

[175] Polyvyanyy, A., García-Bañuelos, L., Fahland, D., and Weske, M. (2014). Maximal
structuring of acyclic process models. Comput. J., 57(1):12–35.

[176] Poole, J. D. (2001). Model-driven architecture: Vision, standards and emerging
technologies. In ECOOP 2001 - Workshop on Metamodeling and Adaptive Object Mod-
els.

[177] Popper, K. (2002). Conjectures and Refutations: The Growth of Scientific Knowledge.
Classics Series. Routledge.

[178] Porzucek, T., Kluth, S., Fritzsche, M., and Redlich, D. (2010). Combination of
a discrete event simulation and an analytical performance analysis through model-
transformations. In 17th IEEE International Conference and Workshops on the Engi-
neering of Computer-Based Systems, ECBS 2010, pages 183–192. IEEE Computer Soci-
ety.

[179] Raffelsieper, T., Becker, J., Matzner, M., and Janiesch, C. (2012). Requirements for
a pattern language for event-driven business activity monitoring. In Multikonferenz
Wirtschaftsinformatik 2012, pages 77–89. BoD.

http://www.omg.org/spec/UML/2.0/Superstructure/PDF
http://bpmfocus.pbworks.com/f/BPM+Standards+At+The+OMG+-+July+07.pdf
http://bpmfocus.pbworks.com/f/BPM+Standards+At+The+OMG+-+July+07.pdf
http://www.omg.org/spec/BPDM/1.0
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm

References 256

[180] Rajsiri, V., Fleury, N., Crosmarie, G., and Lorré, J. (2010). Event-based business pro-
cess editor and simulator. In Business Process Management Workshops - BPM 2010
International Workshops and Education Track, Revised Selected Papers, volume 66 of
Lecture Notes in Business Information Processing, pages 707–718. Springer.

[181] Redlich, D., Blair, G. S., Rashid, A., Molka, T., and Gilani, W. (2011). Research chal-
lenges for business process models at run-time. In Models@run.time - Foundations,
Applications, and Roadmaps [Dagstuhl Seminar 11481, 2011]., volume 8378 of Lecture
Notes in Computer Science, pages 208–236. Springer.

[182] Redlich, D., Galushka, M., Molka, T., Gilani, W., Blair, G. S., and Rashid, A. (2015a).
Evaluation of the dynamic construct competition miner for an ehealth system. In Busi-
ness Information Systems - 18th International Conference, BIS 2015, Proceedings, vol-
ume 208 of Lecture Notes in Business Information Processing, pages 115–126. Springer.

[183] Redlich, D. and Gilani, W. (2011). Event-driven process-centric performance pre-
diction via simulation. In Business Process Management Workshops - BPM 2011 In-
ternational Workshops, Revised Selected Papers, Part I, volume 99 of Lecture Notes in
Business Information Processing, pages 473–478. Springer.

[184] Redlich, D., Gilani, W., Molka, T., Drobek, M., Rashid, A., and Blair, G. S. (2014a).
Introducing a framework for scalable dynamic process discovery. In Advances in En-
terprise Engineering VIII - 4th Enterprise Engineering Working Conference, EEWC 2014.
Proceedings, volume 174 of Lecture Notes in Business Information Processing, pages
151–166. Springer.

[185] Redlich, D., Molka, T., Gilani, W., Blair, G. S., and Rashid, A. (2014b). Constructs
competition miner: Process control-flow discovery of bp-domain constructs. In Busi-
ness Process Management - 12th International Conference, BPM 2014. Proceedings, vol-
ume 8659 of Lecture Notes in Computer Science, pages 134–150. Springer.

[186] Redlich, D., Molka, T., Gilani, W., Blair, G. S., and Rashid, A. (2014c). Scalable dy-
namic business process discovery with the constructs competition miner. In Proceed-
ings of the 4th International Symposium on Data-driven Process Discovery and Analy-
sis (SIMPDA 2014), 2014., volume 1293 of CEUR Workshop Proceedings, pages 91–107.
CEUR-WS.org.

[187] Redlich, D., Molka, T., Gilani, W., Blair, G. S., and Rashid, A. (2015b). Dynamic con-
structs competition miner - occurrence- vs. time-based ageing. In 4th International
Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2014), Revised Se-
lected Papers, volume 237 of Lecture Notes in Business Information Processing, pages
79–106. Springer.

[188] Redlich, D., Platz, S., and Gilani, W. (2012). Mde in practice: Process-centric perfor-
mance prediction via simulation in real-time. In Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foundations and Applications(ECMFA) -
Tool Presentations, pages 336–339.

[189] Redlich, D., Winkler, U., Molka, T., and Gilani, W. (2014d). Model-driven engineer-
ing in practice: integrated performance decision support for process-centric business
impact analysis. In ACM/SPEC International Conference on Performance Engineering,
ICPE 2014, pages 247–258. ACM.

[190] Regev, G., Soffer, P., and Schmidt, R. (2006). Taxonomy of Flexibility in Business
Processes. In Proceedings of the CAISE*06 Workshop on Business Process Modelling,
Development, and Support BPMDS, volume 236 of CEUR Workshop Proceedings.

References 257

[191] Reichert, M. and Dadam, P. (1998). Adept Flex: Supporting Dynamic Changes of
Workflows Without Losing Control. J. Intell. Inf. Syst., 10(2):93–129.

[192] Reichert, M. and Weber, B. (2012). Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer.

[193] Robinson, S. (2004). Simulation: The Practice of Model Development and Use. John
Wiley & Sons.

[194] Rosemann, M. and vom Brocke, J. (2015). The six core elements of business process
management. In vom Brocke, J. and Rosemann, M., editors, Handbook on Business
Process Management 1, Introduction, Methods, and Information Systems, 2nd Ed., In-
ternational Handbooks on Information Systems, pages 105–122. Springer.

[195] Roser, C., Nakano, M., and Tanaka, M. (2001). A practical bottleneck detection
method. In Proceedings of the 33nd conference on Winter simulation, WSC 2001, pages
949–953. ACM.

[196] Rothenberg, J. (1989). Artificial intelligence, simulation & modeling. chapter The
Nature of Modeling, pages 75–92. John Wiley & Sons, Inc., New York, NY, USA.

[197] Rozinat, A., Mans, R. S., Song, M., and van der Aalst, W. M. P. (2008a). Discovering
colored petri nets from event logs. STTT, 10(1):57–74.

[198] Rozinat, A., Mans, R. S., Song, M., and van der Aalst, W. M. P. (2009a). Discovering
simulation models. Inf. Syst., 34(3):305–327.

[199] Rozinat, A. and van der Aalst, W. M. P. (2006). Decision mining in prom. In Busi-
ness Process Management, 4th International Conference, BPM 2006, Proceedings, vol-
ume 4102 of Lecture Notes in Computer Science, pages 420–425. Springer.

[200] Rozinat, A., Wynn, M. T., van der Aalst, W. M. P., ter Hofstede, A. H. M., and Fidge,
C. J. (2008b). Workflow simulation for operational decision support using design, his-
toric and state information. In Business Process Management, 6th International Confer-
ence, BPM 2008. Proceedings, volume 5240 of Lecture Notes in Computer Science, pages
196–211. Springer.

[201] Rozinat, A., Wynn, M. T., van der Aalst, W. M. P., ter Hofstede, A. H. M., and Fidge,
C. J. (2009b). Workflow simulation for operational decision support. Data Knowl. Eng.,
68(9):834–850.

[202] Sadiq, S., Sadiq, W., and Orlowska, M. (2001). Pockets of Flexibility in Workflow
Specifications. In 20th International Conference on Conceptual Modeling, ER2001,
pages 513–526.

[203] Sadiq, S. W. (2000). Handling dynamic schema change in process models. In Pro-
ceedings of the Australasian Database Conference, ADC ’00, pages 120–126, Washington,
DC, USA. IEEE Computer Society.

[204] Sadiq, S. W., Orlowska, M. E., and Sadiq, W. (2005). Specification and validation of
process constraints for flexible workflows. Inf. Syst., 30(5):349–378.

[205] SAP (2014a). BusinessObjects BI Platform. http://www.sap.com/pc/analytics/
business-intelligence/software/bi-platform-analytics/ (accessed June 16, 2015).

[206] SAP (2014b). Operational Process Intelligence 1.0. http://help.sap.com/hana-opint
(accessed June 16, 2015).

http://www.sap.com/pc/analytics/business-intelligence/software/bi-platform-analytics/
http://www.sap.com/pc/analytics/business-intelligence/software/bi-platform-analytics/
http://help.sap.com/hana-opint

References 258

[207] Scheer, I.D.S. (1992). ARIS (Architecture of integrated Information Systems).

[208] Schmerl, B. R., Aldrich, J., Garlan, D., Kazman, R., and Yan, H. (2006). Discovering
architectures from running systems. IEEE Trans. Software Eng., 32(7):454–466.

[209] Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. IEEE
Computer, 39(2):25–31.

[210] Schonenberg, H., Jian, J., Sidorova, N., and van der Aalst, W. M. P. (2010). Business
trend analysis by simulation. In Advanced Information Systems Engineering, 22nd In-
ternational Conference, CAiSE 2010. Proceedings, volume 6051 of Lecture Notes in Com-
puter Science, pages 515–529. Springer.

[211] Schonenberg, H., Mans, R., Russell, N., Mulyar, N., and van der Aalst, W. M. P. (2008).
Process flexibility: A survey of contemporary approaches. In Advances in Enterprise En-
gineering I, 4th International Workshop CIAO! and 4th International Workshop EOMAS,
volume 10 of Lecture Notes in Business Information Processing, pages 16–30. Springer.

[212] Seidewitz, E. (2003). What models mean. IEEE Software, 20(5):26–32.

[213] Selic, B. (2003). The pragmatics of model-driven development. IEEE Software,
20(5):19–25.

[214] Simchi-Levi, D., Simchi-Levi, E., and Kaminsky, P. (1999). Designing and Managing
the Supply Chain: Concepts, Strategies, and Cases. McGraw-Hill United-States, New
York.

[215] Simmonds, J., Ben-David, S., and Chechik, M. (2010). Monitoring and recovery of
web service applications. In The Smart Internet - Current Research and Future Applica-
tions, volume 6400 of Lecture Notes in Computer Science, pages 250–288. Springer.

[216] Simon, H. A. (1996). The Sciences of the Artificial (3rd Ed.). MIT Press, Cambridge,
MA, USA.

[217] Sobral, J. L. and Monteiro, M. P. (2008). A domain-specific language for parallel and
grid computing. In Proceedings of the 2008 AOSD workshop on Domain-specific aspect
languages. ACM.

[218] Software AG and Charles Sturt University (2014). Aris standards and conventions
manual. https://www.csu.edu.au/__data/assets/pdf_file/0020/1314173/CSU_ARIS_
Modelling_Standards_and_Conventions_Manual_V1_0.pdf (accessed November 02th
2017).

[219] Solé, M. and Carmona, J. (2010). Incremental process mining. In Proceedings of
the Workshops of the 31st International Conference on Application and Theory of Petri
Nets and Other Models of Concurrency (PETRI NETS 2010) and of the 10th International
Conference on Application of Concurrency to System Design (ACSD 2010), volume 827 of
CEUR Workshop Proceedings, pages 175–190. CEUR-WS.org.

[220] Solomon, A. and Litoiu, M. (2011). Business process performance prediction on a
tracked simulation model. In Proceedings of the 3rd International Workshop on Prin-
ciples of Engineering Service-Oriented Systems, PESOS ’11, pages 50–56, New York, NY,
USA. ACM.

[221] Solomon, A., Litoiu, M., Benayon, J., and Lau, A. (2010). Business process adapta-
tion on a tracked simulation model. In Proceedings of the 2010 conference of the Centre
for Advanced Studies on Collaborative Research, pages 184–198. ACM.

https://www.csu.edu.au/__data/assets/pdf_file/0020/1314173/CSU_ARIS_Modelling_Standards_and_Conventions_Manual_V1_0.pdf
https://www.csu.edu.au/__data/assets/pdf_file/0020/1314173/CSU_ARIS_Modelling_Standards_and_Conventions_Manual_V1_0.pdf

References 259

[222] Song, H., Huang, G., Chauvel, F., Xiong, Y., Hu, Z., Sun, Y., and Mei, H. (2011a).
Supporting runtime software architecture: A bidirectional-transformation-based ap-
proach. Journal of Systems and Software, 84(5):711–723.

[223] Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., and Mei, H. (2011b).
Instant and incremental QVT transformation for runtime models. In Model Driven En-
gineering Languages and Systems, 14th International Conference, MODELS 2011. Pro-
ceedings, volume 6981 of Lecture Notes in Computer Science, pages 273–288. Springer.

[224] Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer-Verlag.

[225] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009). EMF: Eclipse Mod-
eling Framework 2.0. Addison-Wesley Professional, 2nd edition.

[226] Striewe, M., Balz, M., and Goedicke, M. (2008). Embedding state machine models
in object-oriented source code. Proceedings of the 3rd Workshop on Models@run.time
at MODELS 2008, pages 6–15.

[227] Szvetits, M. and Zdun, U. (2013). Systematic literature review of the objectives, tech-
niques, kinds, and architectures of models at runtime. Software & Systems Modeling,
pages 1–39.

[228] Tsymbal, A. (2004). The problem of concept drift: definitions and related work.

[229] Turner, C. J., Tiwari, A., and Mehnen, J. (2008). A genetic programming approach
to business process mining. In Genetic and Evolutionary Computation Conference,
GECCO 2008, Proceedings, pages 1307–1314. ACM.

[230] van der Aalst, W. M. P. (2007a). Challenges in business process analysis. In Enterprise
Information Systems, 9th International Conference, ICEIS 2007, Revised Selected Papers,
volume 12 of Lecture Notes in Business Information Processing, pages 27–42. Springer.

[231] van der Aalst, W. M. P. (2007b). Trends in Business Process Analysis - from Verifica-
tion to Process Mining. In ICEIS 2007 - Proceedings of the Ninth International Confer-
ence on Enterprise Information Systems, pages 5–9.

[232] van der Aalst, W. M. P. (2010). Business process simulation revisited. In Enterprise
and Organizational Modeling and Simulation - 6th International Workshop, EOMAS
2010, held at CAiSE 2010. Selected Papers, volume 63 of Lecture Notes in Business Infor-
mation Processing, pages 1–14. Springer.

[233] van der Aalst, W. M. P. (2011a). Process Mining - Discovery, Conformance and En-
hancement of Business Processes. Springer.

[234] van der Aalst, W. M. P. (2011b). Process mining: discovering and improving
spaghetti and lasagna processes. In Computational Intelligence and Data Mining
(CIDM), 2011 IEEE Symposium on, pages 13–20.

[235] van der Aalst, W. M. P. (2015). Business process simulation survival guide. In
Handbook on Business Process Management 1, Introduction, Methods, and Information
Systems, 2nd Ed., International Handbooks on Information Systems, pages 337–370.
Springer.

[236] van der Aalst, W. M. P., Adriansyah, A., and van Dongen, B. F. (2012). Replaying
history on process models for conformance checking and performance analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(2):182–192.

References 260

[237] van der Aalst, W. M. P., Barros, A. P., ter Hofstede, A. H. M., and Kiepuszewski, B.
(2000). Advanced Workflow Patterns. In Cooperative Information Systems, 7th Inter-
national Conference, CoopIS 2000, volume 1901 of Lecture Notes in Computer Science,
pages 18–29. Springer.

[238] van der Aalst, W. M. P. and Jablonski, S. (2000). Dealing with workflow change: iden-
tification of issues and solutions. International Journal of Computer Systems Science
and Engineering, 15(5):267–276.

[239] van der Aalst, W. M. P., Nakatumba, J., Rozinat, A., and Russell, N. (2008). Busi-
ness process simulation : how to get it right? Technical Report BPMcenter.org, Bris-
bane/Eindhoven.

[240] van der Aalst, W. M. P., Pesic, M., and Schonenberg, H. (2009). Declarative Work-
flows: Balancing between Flexibility and Support. Computer Science - R&D, 23(2):99–
113.

[241] van der Aalst, W. M. P., Pesic, M., and Song, M. (2010a). Beyond process mining:
From the past to present and future. In Advanced Information Systems Engineering,
22nd International Conference, CAiSE 2010. Proceedings, volume 6051 of Lecture Notes
in Computer Science, pages 38–52. Springer.

[242] van der Aalst, W. M. P., Reijers, H. A., and Song, M. (2005a). Discovering social net-
works from event logs. Computer Supported Cooperative Work, 14(6):549–593.

[243] van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen, B. F., Kindler, E.,
and Günther, C. W. (2010b). Process mining: a two-step approach to balance between
underfitting and overfitting. Software and System Modeling, 9(1):87–111.

[244] van der Aalst, W. M. P., Schonenberg, M. H., and Song, M. (2011). Time prediction
based on process mining. Inf. Syst., 36(2):450–475.

[245] van der Aalst, W. M. P. and ter Hofstede, A. H. M. (2005). YAWL: Yet Another Work-
flow Language. Inf. Syst., 30(4):245–275.

[246] van der Aalst, W. M. P., ter Hofstede, A. H. M., and Weske, M. (2003). Business Pro-
cess Management: A Survey. In Business Process Management, International Confer-
ence, BPM 2003, Proceedings, volume 2678 of Lecture Notes in Computer Science, pages
1–12. Springer.

[247] van der Aalst, W. M. P. and van Hee, K. M. (1995). Framework for business process
redesign. In 4th Workshop on Enabling Technologies, Infrastructure for Collaborative
Enterprises (WET-ICE’96), Proceedings, pages 36–45. IEEE Computer Society.

[248] van der Aalst, W. M. P. and Weijters, A. J. M. M. (2004). Process mining: a research
agenda. Computers in Industry, 53(3):231–244.

[249] van der Aalst, W. M. P., Weijters, T., and Maruster, L. (2004). Workflow mining: Dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–
1142.

[250] van der Aalst, W. M. P., Weske, M., and Grünbauer, D. (2005b). Case handling: a new
paradigm for business process support. Data Knowl. Eng., 53(2):129–162.

[251] van der Aalst, Wil et al. (2012). Process Mining Manifesto. In Daniel, F., Barkaoui, K.,
and Dustdar, S., editors, Business Process Management Workshops, volume 99 of Lecture
Notes in Business Information Processing, pages 169–194. Springer.

References 261

[252] van Dongen, B. F., Crooy, R. A., and van der Aalst, W. M. P. (2008). Cycle time pre-
diction: When will this case finally be finished? In On the Move to Meaningful Internet
Systems: OTM 2008, OTM 2008 Confederated International Conferences, CoopIS, DOA,
GADA, IS, and ODBASE 2008, Proceedings, Part I, volume 5331 of Lecture Notes in Com-
puter Science, pages 319–336. Springer.

[253] van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H. M. W., Weijters, A. J. M. M., and
van der Aalst, W. M. P. (2005). The prom framework: A new era in process mining tool
support. In Applications and Theory of Petri Nets 2005, 26th International Conference,
ICATPN 2005, Proceedings, volume 3536 of Lecture Notes in Computer Science, pages
444–454. Springer.

[254] van Dongen, B. F., de Medeiros, A. K. A., and Wen, L. (2009). Process mining:
Overview and outlook of petri net discovery algorithms. T. Petri Nets and Other Models
of Concurrency II, 5460:225–242.

[255] van Dongen, B. F. and van der Aalst, W. M. P. (2004). Multi-phase process mining:
Building instance graphs. In Conceptual Modeling - ER 2004, 23rd International Confer-
ence on Conceptual Modeling, Proceedings, volume 3288 of Lecture Notes in Computer
Science, pages 362–376. Springer.

[256] van Dongen, B. F. and van der Aalst, W. M. P. (2005). A meta model for process
mining data. In Proceedings of the CAiSE’05 Workshops (EMOI-INTEROP Workshop),
volume 160 of CEUR Workshop Proceedings. CEUR-WS.org.

[257] Vázquez-Barreiros, B., Mucientes, M., and Lama, M. (2014). A genetic algorithm
for process discovery guided by completeness, precision and simplicity. In Business
Process Management - 12th International Conference, BPM 2014. Proceedings, volume
8659 of Lecture Notes in Computer Science, pages 118–133. Springer.

[258] Verbeek, H. M. W., Buijs, J. C. A. M., van Dongen, B. F., and van der Aalst, W. M. P.
(2010). Xes, xesame, and prom 6. In Information Systems Evolution - CAiSE Forum 2010,
Selected Extended Papers, volume 72 of Lecture Notes in Business Information Process-
ing, pages 60–75. Springer.

[259] Verbeek, H. M. W. E., Basten, T., and van der Aalst, W. M. P. (2001). Diagnosing
workflow processes using woflan. Comput. J., 44(4):246–279.

[260] Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R. C. (2005a).
Probabilistic finite-state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell.,
27(7):1013–1025.

[261] Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R. C. (2005b).
Probabilistic finite-state machines-part II. IEEE Trans. Pattern Anal. Mach. Intell.,
27(7):1026–1039.

[262] Vogel, T. and Giese, H. (2010). Adaptation and abstract runtime models. In
2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2010, pages 39–48. ACM.

[263] Vogel, T. and Giese, H. (2014a). Model-driven engineering of self-adaptive software
with EUREMA. TAAS, 8(4):18.

[264] Vogel, T. and Giese, H. (2014b). On unifying development models and runtime
models. In Proceedings of the 9th Workshop on Models@run.time co-located with 17th
International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2014), volume 1270 of CEUR Workshop Proceedings, pages 5–10. CEUR-WS.org.

References 262

[265] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009a). Incre-
mental model synchronization for efficient run-time monitoring. In Models in Software
Engineering, Workshops and Symposia at MODELS 2009, Reports and Revised Selected
Papers, volume 6002 of Lecture Notes in Computer Science, pages 124–139. Springer.

[266] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009b). Model-
driven architectural monitoring and adaptation for autonomic systems. In Proceedings
of the 6th International Conference on Autonomic Computing, ICAC 2009, pages 67–68.
ACM.

[267] Vogel, T., Seibel, A., and Giese, H. (2010). The role of models and megamodels at
runtime. In Models in Software Engineering - Workshops and Symposia at MODELS
2010, Reports and Revised Selected Papers, volume 6627 of Lecture Notes in Computer
Science, pages 224–238. Springer.

[268] von Ammon, R. (2009). Event-driven business process management. In Encyclope-
dia of Database Systems, pages 1068–1071. Springer US.

[269] von Ammon, R., Emmersberger, C., Ertlmaier, T., Etzion, O., Paulus, T., and Springer,
F. (2009a). Existing and future standards for event-driven business process manage-
ment. In Proceedings of the Third ACM International Conference on Distributed Event-
Based Systems, DEBS 2009. ACM.

[270] von Ammon, R., Ertlmaier, T., Etzion, O., Kofman, A., and Paulus, T. (2009b). In-
tegrating Complex Events for Collaborating and Dynamically Changing Business Pro-
cesses. In ICSOC/ServiceWave 2009, Revised Selected Papers, volume 6275 of Lecture
Notes in Computer Science, pages 370–384.

[271] Waignier, G., Meur, A. L., and Duchien, L. (2009). A model-based framework to de-
sign and debug safe component-based autonomic systems. In Architectures for Adap-
tive Software Systems, 5th International Conference on the Quality of Software Architec-
tures, QoSA 2009, Proceedings, volume 5581 of Lecture Notes in Computer Science, pages
1–17. Springer.

[272] Weber, B., Reichert, M., and Rinderle-Ma, S. (2008). Change patterns and change
support features - enhancing flexibility in process-aware information systems. Data
Knowl. Eng., 66(3):438–466.

[273] Weber, B., Rinderle, S., and Reichert, M. (2007). Change patterns and change sup-
port features in process-aware information systems. In Advanced Information Systems
Engineering, 19th International Conference, CAiSE 2007, Trondheim, Norway, June 11-
15, 2007, Proceedings, volume 4495 of Lecture Notes in Computer Science, pages 574–
588. Springer.

[274] Weber, P., Bordbar, B., and Tiño, P. (2011a). A principled approach to the analysis of
process mining algorithms. In Intelligent Data Engineering and Automated Learning -
IDEAL 2011 - 12th International Conference. Proceedings, volume 6936 of Lecture Notes
in Computer Science, pages 474–481. Springer.

[275] Weber, P., Bordbar, B., and Tiño, P. (2011b). Real-time detection of process change
using process mining. In 2011 Imperial College Computing Student Workshop, ICCSW
2011. Proceedings, volume DTR11-9 of Department of Computing Technical Report,
pages 108–114. Imperial College London.

[276] Weber, P., Tiño, P., and Bordbar, B. (2012). Process mining in non-stationary envi-
ronments. In 20th European Symposium on Artificial Neural Networks, ESANN 2012.

References 263

[277] Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., and Desai, N. (2011).
Event-based monitoring of process execution violations. In Business Process Manage-
ment - 9th International Conference, BPM 2011. Proceedings, volume 6896 of Lecture
Notes in Computer Science, pages 182–198. Springer.

[278] Weijters, A. J. M. M., van der Aalst, W. M. P., and Alves de Medeiros, A. K. (2006).
Process mining with the heuristics miner-algorithm. volume WP 166 of BETA Working
Paper Series. Eindhoven University of Technology.

[279] Wen, L., van der Aalst, W. M. P., Wang, J., and Sun, J. (2007). Mining process models
with non-free-choice constructs. Data Min. Knowl. Discov., 15(2):145–180.

[280] Wen, L., Wang, J., van der Aalst, W. M. P., Huang, B., and Sun, J. (2009). A novel
approach for process mining based on event types. J. Intell. Inf. Syst., 32(2):163–190.

[281] Westergaard, M. and Maggi, F. M. (2011). Declare: A Tool Suite for Declarative Work-
flow Modeling and Enactment. In Proceedings of the Demo Track of the Nineth Confer-
ence on Business Process Management 2011, volume 820 of CEUR Workshop Proceed-
ings.

[282] Wetzstein, B., Ma, Z., and Leymann, F. (2008). Towards measuring key performance
indicators of semantic business processes. In Business Information Systems, 11th In-
ternational Conference, BIS 2008. Proceedings, volume 7 of Lecture Notes in Business
Information Processing, pages 227–238. Springer.

[283] Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and Bruel, J. (2009). RELAX:
incorporating uncertainty into the specification of self-adaptive systems. In RE 2009,
17th IEEE International Requirements Engineering Conference, pages 79–88. IEEE Com-
puter Society.

[284] Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23(1):69–101.

[285] Winkler, U., Gilani, W., and Marshall, A. (2012). Business driven BCM SLA trans-
lation for service oriented systems. In Measurement, Modelling, and Evaluation of
Computing Systems and Dependability and Fault Tolerance - 16th International GI/ITG
Conference, MMB & DFT 2012. Proceedings, volume 7201 of Lecture Notes in Computer
Science, pages 206–220. Springer.

[286] Winkler, U., Gilani, W., and Redlich, D. (2013). Model-based business continuity
management. US Patent 8,457,996.

[287] Woods, D. and Word, J. (2004). SAP Netweaver for Dummies. Wiley Hoboken, Hobo-
ken, New Jersey.

[288] Workflow Management Coalition (WfMC) (2008). Business Process
Analytics Format (BPAF) - Draft Specification. Document Number TC-
1015, 2.0. http://www.bpm-research.com/wp-content/uploads/2009/02/
2009-02-20-wfmc-tc-1015-business-process-analytics-format-r1.pdf, (accessed
April 06, 2015).

[289] Workflow Management Coalition (WfMC) (2012). XML Process Definition Lan-
guage (XPDL) 2.2. http://www.xpdl.org/, (accessed Dec. 12, 2014).

[290] Wynn, M. T., Dumas, M., Fidge, C. J., ter Hofstede, A. H. M., and van der Aalst, W.
M. P. (2007). Business process simulation for operational decision support. In Busi-
ness Process Management Workshops, BPM 2007 International Workshops, BPI, BPD,
CBP, ProHealth, RefMod, semantics4ws, Revised Selected Papers, volume 4928 of Lecture
Notes in Computer Science, pages 66–77. Springer.

http://www.bpm-research.com/wp-content/uploads/2009/02/2009-02-20-wfmc-tc-1015-business-process-analytics-format-r1.pdf
http://www.bpm-research.com/wp-content/uploads/2009/02/2009-02-20-wfmc-tc-1015-business-process-analytics-format-r1.pdf
http://www.xpdl.org/

References 264

[291] zur Muehlen, M. (2007). Business Process Management Standards Tutorial. Tutorial
at the 5th International Conference on Business Process Management.

[292] zur Muehlen, M. and Shapiro, R. (2015). Business process analytics. In Handbook on
Business Process Management 2, Strategic Alignment, Governance, People and Culture,
2nd Ed., International Handbooks on Information Systems, pages 243–263. Springer.

[293] zur Muehlen, M. and Swenson, K. D. (2010). BPAF: A standard for the interchange of
process analytics data. In Business Process Management Workshops - BPM 2010 Inter-
national Workshops and Education Track, Revised Selected Papers, volume 66 of Lecture
Notes in Business Information Processing, pages 170–181. Springer.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Problem Domain
	1.2 Problem Statement
	1.3 Overall Goal and Objectives
	1.4 Research Questions
	1.5 Research Strategy
	1.6 Research Philosophy & Research Method
	1.7 Main Contributions
	1.8 Thesis Roadmap

	2 State of the Art: Business Processes and Model-Driven Engineering
	2.1 Business Processes
	2.2 Business Process Management
	2.2.1 Business Process Languages and Modelling Standards
	2.2.2 Process Execution Event Logs
	2.2.3 Overview of Business Process Analyses

	2.3 Flexibility in Business Processes
	2.3.1 Taxonomy of Business Process Flexibility
	2.3.2 Build-time vs. Run-time Business Process Flexibility

	2.4 Process Discovery
	2.4.1 The Process Discovery Problem
	2.4.2 Process Discovery Algorithms
	2.4.3 Concept Drift in Process Mining
	2.4.4 Online Process Discovery

	2.5 Performance Decision Support for Business Processes
	2.5.1 Process Performance Indicators
	2.5.2 Process Performance Prediction
	2.5.3 Performance Prediction from Event Logs

	2.6 Model-Driven Engineering
	2.6.1 Models
	2.6.2 Domain-specific Modelling
	2.6.3 Methods and Techniques in Model-Driven Engineering

	2.7 Models at Run-time
	2.7.1 Objectives
	2.7.2 Techniques
	2.7.3 Architectures and Megamodels
	2.7.4 Generalising Models at Run-time
	2.7.5 Descriptive Models at Run-time

	2.8 Summary

	3 Gap Analysis: Descriptive Models at Run-time in Business Process Management
	3.1 Models at Run-time meets Business Process Management
	3.1.1 Special Characteristics in Business Process Management
	3.1.2 Business Process Models at Run-time

	3.2 Descriptive Business Process Models at Run-time
	3.3 Process Discovery at Run-time
	3.3.1 Gap Analysis: Process Discovery Algorithms
	3.3.2 Gap Analysis: Online Process Discovery

	3.4 Process Performance Prediction at Run-time
	3.5 Summary

	4 Descriptive Business Process Models at Run-time
	4.1 Identification of Characteristics for DBPMRTs
	4.1.1 Characteristics for Run-time BP Models
	4.1.2 Concrete Requirements for DBPMRTs

	4.2 Descriptive Business Process State Model at Run-time
	4.2.1 Control-Flow Perspective
	4.2.2 Resource Perspective
	4.2.3 Performance Perspective
	4.2.4 Process Instance Perspective
	4.2.5 Holistic DBPMRT

	4.3 Descriptive Business Business Process Evolution Model
	4.3.1 Structure of Evolution DBPMRT
	4.3.2 Temporal Relations for Evolution DBPMRT

	4.4 Qualitative Evaluation
	4.5 Summary

	5 Establishment of Causal Connection
	5.1 Detailed Problem Definition
	5.2 Static Construct Competition Miner
	5.2.1 Preliminaries
	5.2.2 Divide and Conquer
	5.2.3 Footprint
	5.2.4 Suitability of BP-Constructs
	5.2.5 Competition Algorithm

	5.3 Dynamic Process Discovery Framework
	5.3.1 Concept
	5.3.2 Event Hub and Global, Standardised Events
	5.3.3 Dynamic Footprints
	5.3.4 Modified Methodology for the Control-flow Perspective: The Dynamic Construct Competition Miner
	5.3.5 Description of other Framework Artefacts
	5.3.6 Computer- vs. Human-oriented Run-time Models

	5.4 Dynamic Footprint Update
	5.4.1 Control-Flow Footprint
	5.4.2 Resources Footprint
	5.4.3 Performance Footprint

	5.5 Dynamic Footprint Interpretation
	5.5.1 Control-Flow
	5.5.2 Roles and Resources
	5.5.3 Performance

	5.6 Process Instance State Tracking
	5.6.1 Additional Preliminaries
	5.6.2 Method Specification

	5.7 Overview of Mapping from Event Lifecycle Type to BP Perspective
	5.8 Evaluation
	5.8.1 Evaluation of Constructs Competition Miner
	5.8.2 Evaluation of Dynamic Constructs Competition Miner
	5.8.3 Qualitative Evaluation

	5.9 Summary

	6 Reasoning on Descriptive Business Process Models at Run-time
	6.1 DBPMRT Reasoning Framework
	6.1.1 Concept of DBPMRT Reasoning Framework
	6.1.2 Event to Performance Processing (External Component)
	6.1.3 Performance Prediction via Simulation

	6.2 Case Study Scenario: Akron Heating Retailer
	6.2.1 Organisational Structure
	6.2.2 IT-supported Business Processes

	6.3 Analysis Results
	6.3.1 Roles and Resources
	6.3.2 Business Processes
	6.3.3 Performance Predictions

	6.4 Summary

	7 Conclusion and Future Research
	7.1 Results of the Thesis
	7.1.1 Research Questions Revisited
	7.1.2 Main Contributions

	7.2 Future Research Agenda
	7.3 Final Remarks

	Appendix A Publications
	Appendix B Example Footprint Update with Ageing
	Appendix C Visualisation Tools
	C.1 DBPMRT Visualisation
	C.2 KPI/PPI Visualisations

	Appendix D Additional Processes in Case Study
	D.1 Expense Payment
	D.2 Refill Stock
	D.3 Return Item

	Appendix E Additional Evaluation Results for Case Study
	E.1 Business Processes
	E.1.1 Expense Payment
	E.1.2 Refill Stock
	E.1.3 Return Item

	E.2 Performance

	References

