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Abstract

In this paper we provide a Bayesian interpretation of the conditional value at risk, CV@R, or super-quantile regression
recently developed by Rockafellar, Royset and Miranda (2014). Computations are based on particle filtering using a special
posterior distribution consistent with the super-quantile concept. An empirical application to data used by RRM as well to
another data set on energy prices confirms their results and shows the applicability of the new techniques.
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1 Introduction

The search for a coherent measure of risk has been convincingly set by R.T. Rockafellar, see Rockaffellar (2007) for example. In
his words:

“What is risk? Everyone agrees that risk is associated with having to make a decision without fully knowing its
consequences, due to future uncertainty, but also knowing that some of those consequences might be bad, or at least
undesirable relative to others. Still, how might the quantity of risk be evaluated to construct a model in which
optimization can be carried out?” (Rockafellar, 2007, p. 44).

A single measure of risk is clearly desirable not only in regression but in wider contexts. “The core of the difficulty in optimization
under uncertainty is the fact that a random variable is not, itself, a single quantity. The key to coping with this will be to condense
the random variable into a single quantity by quantifying the risk of loss, rather than the degree of uncertainty, in it.” (Rockafellar,
2007, p. 44).

The conditional value-at-risk has been found to be a coherent measure of risk in the sense of Rockafellar and Uryasev (2000,
2002). Rockafellar, Royset and Miranda (2014, RRM) proposed an ingenious super-quantile or CV@R regression concept.
Although the concept is very appealing, computations turn out to be non-trivial for moderate sample sizes in regression.
Computations rely mainly on large linear programming problems. In this paper we provide a Bayesian interpretation of super-
quantile regression that does not require the use of large-scale linear programs. In fact, our posterior can be explored using
a basic Metropolis-Hastings algorithm in a, more or less, automatic way. For better performance we use a particle filtering
approach (Chopin, 2002). In an empirical application provided by RRM we obtain similar results but, in addition, we are able
to compute marginal posterior densities and posterior standard deviations. In RRM standard errors are not provided as the
asymptotic theory of super-quantile regression is not well developed.1

In section 2 we present the V@R and CV@R concepts and the regression model. In section 3 we describe our Particle Filtering
methodology for static models in the context of Bayesian super-quantile regression. The empirical results are presented in section
4.

2 CV@R and regression models

For a random variable X, the value-at-risk (V@R) is the α−quantile:

V@Rα(X) := qα(X) = min{z|F (z) ≥ α}, 0 < α < 1. (1)

The conditional value-at-risk (CV@R) or super-quantile of X is the expectation of X in the conditional distribution of its upper
α-tail:

CV@Rα(X) := qα(X) =
1

1− α

∫ 1

α

qγ(X)dγ. (2)

CV@R is a coherent measure of risk as has been shown by Rockafellar and Uryasev (2000, 2002). Clearly, it is an “average” of
quantiles of the random variable. Another often useful formula is the following:

qα(X) := min
C∈<
{C + 1

1−αE [max{X− C, 0}]}. (3)

CV@R is a continuous function of α with limα→1 qα(X) = supX (the essential supremum) and limα→0 qα(X) = E(X).
The concept has appeared in the literature before, see for example, Cai and Wang (2008), Chernozhukov and Umantsev

(2001), Fermanian and Scaillet (2005), Leorato, Peracchi, and Tanase (2012), Peracchi and Tanase (2008), Rockafellar and
1It must be acknowledged that RRM do suggest the bootstrapping as a possible way to obtain standard errors. It is likely that the best bootstrap

approach would be a re-centered parametric bootstrap. The problem is that huge linear programs need to be solved for each bootstrap replication and
this can be difficult, especially when the sample size is large.
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Uryasev (2002), Rockafellar, Uryasev and Zabarankin M (2008), Scaillet (2004, 2005), Wozabal and Wozabal N (2009). A
conditional value-at-risk concept known as CAViaR has been proposed by Engle and Manganelli (2004) but its meaning is
different compared to Rockafellar and Uryasev (2002), Rockafellar, Uryasev and Zabarankin M (2008), and Rockafellar, Royset
and Miranda (2014, RRM).

RRM proposed an (admittedly ingenious) super-quantile or CV@R regression concept. Suppose the regression model is:

yt = x′
tβ + ut, t = 1, · · · , n, (4)

where xt is a k × 1 vector of covariates and β is a k × 1 vector of parameters. The extension to models of the form: yt =<

β,h(xt) >for a vector of basis function h(x) = [h1(x1), · · · , hk(xk)]
′ is trivial.

The error term is assumed to have zero mean, that is E(ut) = 0, t = 1, · · · , T , so we agree to always include a column of ones
in X = [xt, t = 1, · · · , n], i.e. a constant term is included in the regression. This is standard practice in most applications. The
objective function of RRM (p. 149), after omitting a long discussion related to their error function which can be found in their
paper, is:

min
β∈<k

DT
α (β) :=

1

1− α

1w

α

qγ(ut(β))dγ − E(ut(β)), (5)

where ut(β) = yt − x′
tβ, t = 1, · · · , n, and qγ(u) := min

C∈<

{
C + 1

1−γ E [max{u− C, 0}]
}

. Since the error terms have zero mean we
can set E [ut(β)] = 0. The reason is that we always include a constant term in the regression equation.

It is well known that quantile regression in the sense of Koenker and Bassett (1978) solves the following problem:

min
β∈<k

n∑
t=1

%α(yt − x′
tβ), (6)

where

%α(z) =

 αz, z ≥ 0

−(1− α)z, z < 0.
(7)

Bayesian treatments of the problem were offered by Tsionas (2003) and Kozumi and Kobayashi (2009). The Bayesian approach
utilizes the asymmetric Laplace distribution. This approach cannot be used here as finding an error density for which the
maximum likelihood estimator coincides with the super-quantile regression estimator, seems very hard to find.2

To proceed, we propose the following density:

f(u|α, σ) ∝ σ−1 exp
{
−σ−1%α(u)

}
,−∞ < u <∞, σ > 0, (8)

where σ is a scale parameter, and

%α(u) =
1

1− α

1w

α

qγ(u)dγ, (9)

which is the equivalent of qγ(u) in super-quantile regression. The standard form of the density in (8) is: f(u|α, 1) ∝ exp {−%α(u)} .3

2This is mentioned explicitly in Chun, Shapiro and Uryasev (2012, p.742) who suggest an M-estimator. Their M-estimator includes a constraint
and linear programming is used to perform the computations. Whether the procedure is consistent with some Bayesian approach to inference remains
to be seen as the hard part is to incorporate the constraint. Presumably, a variation of empirical likelihood can be used whose Bayesian interpretation
is the exponentially tilted empirical likelihood.

3Notably the same construction is used in OLS and Lp−regression for any p > 0 and even p = ∞ known as Chebyshev regression. The construction
is based on the statistical fact that if l(u) is a “loss” function for the error u, then a density for u, say f(u|σ) can be always constructed as
f(u|σ) ∝ σ−1 exp

(
−σ−1u

)
.
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It is clear that f(u|α, σ) = K(α, σ)−1σ−1 exp
{
−σ−1%α(u)

}
, where K(α, σ) =

r ∞
−∞ f(u|α, σ)du. Given

K(α, 1) := Kα =

∫ ∞

−∞
f(u|α, 1)du, (10)

viz. the integrating constant of the standard form of the density, we have:

f(u|α, σ) = K−1
α σ−1 exp

{
−σ−1%α(u)

}
. (11)

Therefore, the integrating constant does not depend on σ (or β) and can be dropped in subsequent discussions. The likelihood
function, under the assumption of independence of {ut, t = 1, · · · , T}, can be written as:

L(β, σ;y,X, α) = σ−TK−n
α exp

{
−σ−1

n∑
t=1

%α(ut(β))

}
, (12)

where y,X denotes the data. Maximizing the likelihood with respect to β is clearly equivalent to minimizing
∑n

t=1 %α(ut(β))

for any fixed σ. In turn, this is the objective function of so-called problem Dν in RRM (page 149). Given the prior:

p(β, σ) ∝ σ−1, (13)

after combining with the likelihood function in (12) and using Bayes’ theorem we obtain the kernel posterior distribution:

p(β, σ|y,X, α) ∝ σ−(n+1) exp

{
−σ−1

n∑
t=1

%α(ut(β))

}
. (14)

We use the prior in (13) for convenience but also because this serves as a benchmark prior. Our numerical techniques can,
effortlessly, accommodate any prior for β and any inverted gamma prior for σ.4 Analytical integration with respect to σ is
possible and we have:

p(β|y,X, α) ∝
∞w

0

p(β, σ|y,X, α)dσ ∝

{
n∑

t=1

%α(ut(β))

}−n/2

, (15)

by using the integral of the inverted gamma distribution. It is, again, clear that maximizing the likelihood with respect to β

is equivalent to minimizing
∑T

t=1 %α(ut(β)). Before implementing our numerical techniques, based on Sequential Monte Carlo
(SMC) we must resolve two problems:

(i) Computing qγ(u).
(ii) Computing

r 1

α
qγ(u)dγ.

We deal with the computations (i)-(ii) as follows:
(i) As qγ(u) =

∫ 1

α
qγ(u)dγ we first have to compute quantiles qγ(u) for γ ∈ (0, 1). Since the density is continuous we have

Fu(qγ(u)) = γ, where Fu is the distribution function corresponding to (8). Without knowing the integrating constant in (10)
we approximate the distribution function as follows. Let: F̃u(ui) =

∑i
s=1 f(us), i = 1, · · · , N , where G = {ui, i = 1, · · · , N}

is a fixed grid symmetrically placed around zero, N is the number of grid points, and u[N/2] = 0. Here, [w] denotes the
integer part of number w. Next we normalize Fu(ui) = K−1F̃u(ui), where K =

∑N
i=1 f(ui) = Fu(uN ). We check whether

Fu(ui) < ε where ε > 0 is a small constant, otherwise we extend the grid in both directions. The right direction is checked using
fu(uN )/ max

i=1,··· ,[N/2]
f(ui) < ε.5

4Such priors have the form p(σ) ∝ σ−(K+1) exp
(
−Aσ−1

)
, A,K ≥ 0, and they facilitate analytical integration with respect to σ. They are considered

sufficiently flexible in the statistical literature. If a non-conjugate prior is used, our methods still go through at the expense of having σ as an additional
parameter,

5We set ε = 10−12 in all computations.
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(ii) The integral qγ(u) =
∫ 1

α
qγ(u)dγ is computed using quadrature. As α is close to one, 12-point Gaussian quadrature has

been found quite accurate.6

These computations provide us with %α(u) for u ∈ G. For u /∈ G we use interpolation. If the grid is fine and extended7

the error of approximation is trivial. Interpolation allows to compute (9) and (14) quickly and efficiently provided we sort
{ut(β), t = 1, · · · , T} in advance. This procedure has a light set up cost in terms of CPU time but afterwards the posterior can
be evaluated quickly for a large number of different values of β and σ as required by SMC procedures for Bayesian statistical
inference. It is known that using linear programming for large n, “the linear program could become large-scaled when n is large
and decomposition algorithms may be needed” (RRM, p.150).

3 Numerical techniques

The purpose of this section is to propose an approach that can be used to obtain a sample {β(s), s = 1, . . . , S} (for given α)
that converges in distribution to (14). Once we have such a sample, marginal posterior densities and moments of parameters or
functions of interest can be computed easily from the available sample. For example, posterior expectations can be computed
as:

β̄ ≡ E(β|y,X) =
w
βp(β|y,X)dβ ' S−1

S∑
s=1

β(s). (16)

The posterior covariance matrix can be approximated by:

E [(β − β̄)(β − β̄)′|y,X] ' S−1
S∑

s=1

(β(s) − β̄)(β(s) − β̄)′. (17)

The approximation can be made arbitrarily good by increase the number of simulations, S. A particularly attractive
simulation-based approach to realize such a sample is to use the Particle Filtering (PF) approach due to Chopin (2002) who
proposed a sequential PF for static models.8 This is also known as Sequential Monte Carlo (SMC). Given a target posterior
p(θ|Y ) := p(θ|Y1:T ) a particle system is a sequence {θj , wj} such that E(h(θ)|Y ) :=

r
h(θ)p(θ|Y )dθ ' limJ→∞

∑J
j=1 wjh(θj)∑J

j=1 wj
,

almost surely, for any measurable function h, provided the expectation exists. We consider the sequence of posterior distributions
pt := p(θ|Yt). The PF algorithm is as follows. For “cycles” r = 1, ..., R and m = 1, ...,M do:

Step 1. Reweight: update the weights wj ← wj
pt+1(θj)
pt(θj)

, j = 1, ..., J .
Step 2: Resampling: resample {θj , wj}Hj=1 → {θrj , 1}Jj=1.
Step 3. Move: draw θmj ∼ Kt+1(θ

r
j ), j = 1, ..., J , where Kt+1 is any transition kernel whose stationary distribution is pt+1.

Step 4. Loop: t← t+ 1, {θj , wj}Jj=1 ← {θmj , 1}Jj=1 and return to Step 1.
Chopin (2002) recommends the independence Metropolis algorithm to select the kernel, which requires a source distribution.

A possible choice, if we sampled from pn (n < T ), with respect to pn+s is N (Ên+s, V̂n+s) where

Ên+s =

∑J
j=1 wjθj∑J
j=1 wj

, V̂n+s =

∑J
j=1 wj (θj − En+p) (θj − En+p)

′∑J
j=1 wj

.

The strategy can be parallelized easily. If R processors are available, we can partition the particle system into R subsets,
say Sp, p = 1, ..., R, and implement computations for particles of Sp in processor p. The algorithm can deal with new data at a
nearly geometric rate and therefore the frequency of exchanging information between processors (after reweighting) decreases at
a rate exponential to n, which is highly efficient.

6Compared to 24- and 40-point Gauss-Kronrod rules as implemented in the IMSL Mathematical and Statistical Library. The computations were
checked using a high-accuracy Simpson’s rule with tolerance 10−7.

7We have experimented with N =100, 1,000, 5,000 and 10,000 points. We have found that 1,000 points are adequate but in all computations we
use N=10,000.

8The parallel nature of SMC implies that we can compute a number of posteriors corresponding to different values of α, in parallel.
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Resampling according to θmj ∼ Kt(θ
r
j , .) reduces particle degeneracy (Gilks and Berzuini, 2001) since identical replicates of a

single particle are replaced by new ones without altering the stationary distribution. For this application using J = 212 particles
gave a mean squared error in posterior means of 10−5 over 100 runs. Moreover, R = M = 104 worked acceptably well in our
application.

Chopin (2004) introduces a variation of SMC in which the observation dates at which each cycle terminates (say t1, ..., tL) and
the parameters involved in specifying the Metropolis updates (say λ1, ..., λL) are specified. Therefore, 0 = t0 < t1 < ... < tL = T

and we have the following scheme (we rely heavily on Durham and Geweke, 2013).
Step 1. Initialize l = 0 and θ

(l)
jn ∼ p(θ), j ∈ J , n ∈ N .

Step 2. For l = 1, ..., L:
(a) Correction phase:

(i) wjn(tl−1) = 1, j ∈ J , n ∈ N .
(ii) For s = tl−1 + 1, ..., tl:

wjn(s) = wjn(s− 1)p(ys|y1:s−1, θ
(l−1)
jn ), j ∈ J , n ∈ N .

(iii) w
(l−1)
jn := wjn(tl), j ∈ J , n ∈ N .

(b) Selection phase, applied independently to each group j ∈ J : Using multinomial or residual sampling based on{
w

(l)
jn , n ∈ N

}
, select

{θ(l,0)jn , n ∈ N}

from {θ(l−1)
jn , n ∈ N}.

(c) Mutation phase, applied independently across j ∈ J , n ∈ N :

θ
(l)
jn ∼ p(θ|y1:t, θ(0)jn , λl), (18)

where the drawings are independent and the p.d.f above satisfies the invariance condition:
w

Θ

p(θ|y1:tl , θ∗, λl)p(θ
∗|y1:tl)dν(θ∗) = p(θ|y1:tl). (19)

Step 3. θjn := θ
(l)
jn , j ∈ J , n ∈ N .

At the end of every cycle, the particles θ
(l)
jn have the same distribution p(θ|y1:tl). The amount of dependence within each

group depends upon the success of the Mutation phase which avoids degeneracy.

4 Empirical applications

4.1 Style Classification

For the sake of comparison we use the same data as in RRM. It is a case study taken from the “Style Classification with Quantile
Regression” documentation in Portfolio Safeguard (American Optimal Decisions, Inc., 2011, cited in RRM) and deals with the
negative return of the Fidelity Magellan Fund as predicted by the explanatory variables: Russell 1000 Growth Index (x1, RLG),
Russell 1000 Value Index (x2, RLV), Russell Value Index (x3, RUJ), and Russell 2000 Growth Index (x4, RUO). The indices
classify the style of the fund. There are n = 1, 264 total observations available. We start by considering a linear model:

yt = β0 + β1xt1 + β2xt2 + β3xt3 + β4xt4 + ut (20)

and compare the obtained regression coefficients for least-squares, quantile, and super-quantile regression when α is 0.75 and
0.90, as shown in Table 1. We use L = 100 and alternatively L = 200 and L = 300 for sensitivity purposes. An endogenous
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selection of L is possible along the lines of Durham and Geweke (2013). Since the algorithm is robust with L = 100 we did not
implement this and we leave it for future research.

Table 1. Empirical results

Reported results from RRM Bayesian

OLS QR (α = 0.75) SQR (α = 0.75) QR (α = 0.90) SQR (α = 0.90) SQR (α = 0.75) SQR (α = 0.90)

β0 0.0010 0.0045 0.0095 0.0089 0.0138 0.0094 (0.0012) 0.0091 (0.014)

β1 -0.5089 -0.5438 -0.5036 -0.5177 -0.4837 -0.5037 (0.015) -0.5203 (0.032)

β2 -0.5180 -0.4518 -0.4723 -0.4602 -0.4912 -0.4722 (0.015) -0.4701 (0.025)

β3 0.0484 0.0159 0.0192 0.0156 0.0223 0.0193 (0.0014) 0.0155 (0.014)

β4 0.0061 0.0173 0.0009 -0.0001 -0.0019 0.0009 (0.0004) -0.0025 (0.001)
Notes: QR stands for Quantile Regression. SQR stands for Super-quantile Regression. Numbers in parentheses are posterior standard deviations.

The results from Bayesian SQR are close to the results reported by RRM in their study. However, they did not report
standard errors, a task that is simple in the Bayesian implementation of the problem -although, as we have mentioned, they did
mention the possibility of using the bootstrap.9 Moreover, we avoid large-scale linear programming problems which for moderate
sample sizes may require specialized decomposition algorithms for their implementation. The marginal posterior densities of the
slope parameters are reported in Figure 1a through 1d.

9The following argument may be relevant: “In this sense, the bootstrap distribution represents an (approximate) nonparametric, noninformative
posterior distribution for our parameter. But this bootstrap distribution is obtained painlessly — without having to formally specify a prior and
without having to sample from the posterior distribution. Hence we might think of the bootstrap distribution as a “poor man’s” Bayes posterior. By
perturbing the data, the bootstrap approximates the Bayesian effect of perturbing the parameters, and is typically much simpler to carry out.” (Hastie,
Tibshirani, and Friedman, p.272).
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Figure 1a.
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Figure 1b.
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Figure 1c.
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Figure 1d.

Using the same X data and the estimated posterior means of the parameters, we generate y using a Student-t distribution
with 5 degrees of freedom for the errors. Our running times are reported below.

Table 2. Running times

Sample size, n → 100 200 300 400 500 1,000 1,500 2,000

Running time (hrs) 0.006 0.01 0.03 0.06 0.12 0.28 0.60 1.35
Notes: Running times are based on 10,000 iterations of the PF algorithm using 1012 particles. We use the High Performance Computing end at Lancaster

University.The combined facility offers 3000 CPU cores, 11TB of memory, 32TB of high performance filestore and 1PB of medium performance filestore. The
service combines what was the previously separately supported services of local high performance computing (HPC) users and the local Particle Physics research
group (GridPP). The cluster operating system is Scientific Linux, with job submission handled by Sun Grid Engine (SGE). The service supports a wide variety
of third-party software including numerical packages, libraries and C and Fortran compilers.

4.2 Energy prices: Rockets and feathers

It is often the case that oil companies adjust the retail gasoline prices more quickly to cost increases than to cost decreases,
creating an asymmetric adjustment path towards the long-run equilibrium, known as the “rockets and feathers” hypothesis. This
perceived asymmetry in retail price adjustment to changes in crude oil prices is commonly attributed to “gouging” engaged by
vertically integrated firms in an effort to increase retail profits, which in turn is made possible by their market power (Borenstein,
et al, 1997, Deltas, 2008).
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Hence many important papers have tried to investigate the existence of price asymmetry across countries or even regions
with conflicting results. Bacon (1991), for example, provided sufficient evidence in favor of the price asymmetry debate in the
UK. Similarly, Borenstein et al. (1997) argued that retail prices in the UK over the period 1986 to 1992 responded more quickly
to crude oil price increases than to decreases. Galeotti et al. (2003) studied trends in Germany, France, UK, Italy and Spain
from January 1985 to June 2000 and concluded that “rockets and feathers” appear to dominate the price adjustment mechanism
of gasoline markets in many European countries. Deltas (2008) reported that U.S. states with high average retail-wholesale
margins experienced a slower adjustment and a more asymmetric response in retail prices. Lewis and Noel (2011) use panel data
from U.S. cities with and without Edgeworth price cycles, and demonstrate that prices in markets without cycles respond much
more slowly to wholesale cost fluctuations than in cities with cycles. Greenwood-Nimmo and Shin (2013), in contrast, did not
support the existence of “rockets and feathers” in the UK gasoline market. Similarly, Lamotte et al (2013) argued that the retail
price of gasoline in the U.S and France respectively did not respond contemporaneously to crude oil shocks.

Our empirical analysis is based on a panel data set of 9,888 monthly observations spanning the period from January 1994
to February 2011. The sample includes 48 contiguous US states except for Maine and Connecticut where no data is available.
Retail and wholesale (rack) motor gasoline prices before taxes and duties are obtained from the EIA of the U.S. Department of
Energy. Spot prices of conventional gasoline (measured in dollars per gallon) traded in New York Harbor are taken also from
the EIA. The price of bulk unleaded gasoline delivered to New York Harbor is considered a good proxy for the input cost since,
on average, 96% of the wholesale price is represented by the cost of gasoline at the hub.10 Crude oil price measured in dollars
per barrel accounts for the Cushing, OK WTI Spot Price FOB extracted also from EIA.

The model is an extension of Greenwood-Nimmo and Shin (2013) to a panel data framework. Specifically, the model is as
follows. Suppose we have an asymmetric long-run relationship of the form:

yit = µi + χ+
it
′α+ + χ−

it
′α− + uit, ∀i = 1, ..., n′, t = 1, ..., T (21)

where µi represents fixed effects, xit is a k×1 vector of original regressors, and χ+
it =

∑t
j=1 max (∆xij ,0), χ−

it =
∑t

j=1 min (∆xij ,0)

are partial sum processes representing positive and negative changes respectively. Moreover ∆χit = vit so that χit ≡
χi0 + χ+

it + χ−
it follows a unit root process. The dependent variable, yit, is the the retail price of unleaded petrol, derv,

kerosene, or gasoline, both pre tax and duty.
We have the following conditional Panel Vector-Error-Correction Model (PVECM) also known as nonlinear ARDL (autore-

gressive distributed lag model, Pesaran and Shin, 1998 and Pesaran et al, 2001):

∆yit = ρyi,t−1 + δ+′χ+
i,t−1 + δ−′χ−

i,t−1 +
∑p−1

j=1 γj∆yi,t−j+∑q−1
j=0

(
π+

j
′∆χ+

i,t−j + π−
j
′∆χ−

i,t−j

)
+ eit, i = 1, ..., n′, t = 1, ..., T.

(22)

The nonlinearity refers to the asymmetry of both the long-run relationship and the short-run error correction mechanism. A
stable long-run relationship requires ρ = 0, δ+ = δ− = 0. Short-run symmetry requires the following parameter restrictions:

π+
j = π−

j ,∀j = 0, ..., q − 1,

or alternatively: ∑q−1

j=0
π+

j =
∑q−1

j=0
π−

j . (23)

We can include a constant in (22) assuming there are deterministic trends in (21) which is a reasonable assumption. If we
stack all time and state observations in (22) we obtain:

y = Xβ + e, (24)
10The author is grateful to Michael Polemis for providing and explaining the data.
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where y = [∆yit, i = 1, ..., n, t = 1, ..., T ], X denotes all right-hand-regressors in (22) and β denotes the associated vector of
coefficients. Our empirical results are summarized in Table 3.

Table 3. Empirical results

unleaded derv kerosene gasoline

ρ -0.34
(0.22)

-0.32
(0.20)

-0.30
(0.27)

-0.30
(0.30)

β+ 0.71
(0.044)

0.79
(0.035)

0.85
(0.051)

0.92
(0.048)

β− 0.69
(0.039)

0.73
(0.030)

0.77
(0.018)

0.89
(0.014)

π+
0 0.41

(0.025)

0.45
(0.032)

0.47
(0.018)

0.51
(0.025)

π−
0 0.38

(0.021)

0.20
(0.013)

0.37
(0.018)

0.41
(0.016)∑q−1

j=1 π
+
j 0.79

(0.033)

0.44
(0.040)

0.80
(0.035)

0.95
(0.041)∑q−1

j=1 π
−
j 0.63

(0.038)

0.20
(0.014)

0.45
(0.012)

0.32
(0.011)

Bayes factors (BF) favoring symmetry
β+ = β− 0.98 1.34 12.22 41.50
π+
0 = π−

0 1.22 17.44 21.36 38.12∑q−1
j=1 π

+
j =

∑q−1
j=1 π

−
j 1.17 19.20 25.43 44.57

Notes: Posterior standard deviations appear in parentheses. Reported are posterior means of the parameters. We set the number of lags to q = 4 using
Akaike’s information criterion after a preliminary least squares examination of the data. All computations are based on 20,000 iterations of the particle filter
algorithm using 106 particles. Bayes factors (BF) are computed using the Particle Filter approximation in section 2 which delivers automatically the marginal
or integrated likelihood of the model, viz. if the data are denoted by D then p(D) =

∫
Θ

L(θ;D)p(θ)dθ, where L(θ;D) is the likelihood and p(θ) is the prior.

Our interest, naturally, centers on the symmetry hypothesis which refutes the rockets-feathers hypothesis. The best way to
discriminate between the two hypotheses is, probably, to examine further the parameter

δ =

q−1∑
j=1

π+
j −

q−1∑
j=1

π−
j , (25)

which is the total effect from a price increase and price decrease, as it relies on the short-run dynamic multipliers. The impact
multipliers are simply π+

0 , π
−
0 . To show some light on the issues, we compare marginal posterior densities of δ in (25) with i)

a normal approximation (which relies on an explicit assumption of normality of the error terms of (22), and ii) a bootstrap
approximation using the Dν linear program proposed by RRM. For the bootstrap implementation, we use 10,000 replications of
a parametric bootstrap using re-centering of the residuals (Horowitz, 2001). The relevant densities are reported in Figures 2a
through 2d, and correspond to the type of the dependent variable (unleaded, derv, kerosene and gasoline).
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Figure 2a.
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Figure 2b.
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Figure 2c.
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Figure 2d.

From the evidence in Figures 2a-2d the marginal posterior densities of asymmetry parameter, δ, have negligible probability
mass around zero and they are concentrated in positive values. This is substantive evidence in favor of the “rockets and feathers”
hypothesis.

5 Robustness

As our interpretation of CV@R regression rests upon a particular assumption concerning the error terms, it is reasonable to ask
whether alternative error generating mechanisms affect the Bayesian CV@R regression in important ways. This effect, if one exists
to begin with, should be more pronounced in relatively small samples. Under broad regularity conditions, posterior distributions
as well as the bootstrap converge to the same asymptotic normal distribution. As the data and model in (22) represent a realistic
scenario, we keep the same X and, for different sample sizes n, we assume alternative generating mechanisms for the errors in
e. The true values of the parameters, β, are set to their posterior means, estimated and reported in the previous section. We
consider the following alternative distributions for the error term: i) A normal distribution. ii) A Student-t distribution with
1,3,5 and 10 degrees of freedom. iii) A Laplace distribution, in which the maximum likelihood estimator coincides with the
least absolute deviations (LAD) regression estimator. iv) Two- and three-component mixtures of normals. The two-component
mixture is, in obvious notation, 1

2×N (−1, 0.12) + 1
2×N (1, 0.32). The three component mixture is 0.25×N (−1, 0.12) + 0.10 ×

N (0, 0.32) + 0.65 × N (2, 0.52). In all cases, the errors are re-scaled using the same parameter, the standard deviation of the

17



dependent variable in (22) or (24).
The sample size is set to n =25, 50, and 100. The Bayes CV@R estimators are applied to 10,000 different data sets (in which

the true parameters β and the regressors X are kept fixed). For each replication, the Bayes CV@R estimator relies on 15,000
iteration the first 5,000 of which are discarded to mitigate the possible impact of start-up effects. It is based on the Particle
Filter using 1012 particles.

The simulation results in terms of root mean squared error (RMSE) are reported in Table 4.

Table 4. RMSE results for CV@R
n = 25 n = 50 n = 100

normality 0.031 0.014 0.0029
Student-t, df=1 0.028 0.012 0.0025
Student-t, df=3 0.029 0.015 0.00027
Student-t, df=5 0.031 0.014 0.0028
Student-t, df=10 0.031 0.014 0.0029

Laplace 0.025 0.012 0.0017
mixture, two normals 0.027 0.016 0.0021

mixture, three normals 0.026 0.012 0.0020
Notes: “df” stands for degrees of freedom of the Student-t distribution. The error terms are scaled using the same parameter, the standard deviation of the

dependent variable in (22) or (24). The Bayes CV@R estimators are applied to 10,000 different data sets (in which the true parameters β and the regressors X

are kept fixed). For each replication, the Bayes CV@R estimator relies on 5,000 iteration the first 1,000 of which are discarded to mitigate the possible impact
of start-up effects. It is based on the Particle Filter using 106 particles.

From the evidence in Table 4, it turns out that Bayesian CV@R regression has a small bias in samples of size near 25 but
the bias largely disappears in samples of size 50 and 100. Moreover, the behavior is similar across different distributions of the
error term, although somewhat better for the Cauchy distribution (Student-t with one degree of freedom) for n =25 and 50.

Concluding remarks

In this paper we have developed a Bayesian approach to the problem of super-quantile or CV@R Regression recently introduced
by Rockafellar, Royset and Miranda (2014, RRM). Although the concept is very appealing, computations in RRM turn out to
be non-trivial for moderate sample sizes in regression. Computations rely mainly on large linear programming problems. The
Bayesian interpretation of super-quantile regression does not require the use of large-scale linear programs. In fact, our posterior
can be explored using a particle filtering approach (Chopin, 2002) for static models. In an empirical application provided by
RRM we obtain similar results and, in addition, we are able to compute marginal posterior densities and posterior standard
deviations. In RRM standard errors are not provided as the asymptotic theory of super-quantile regression is not well developed.
In future research, it would be worthwhile to examine the application of super-quantile or CV@R Regression in the context of
Seemingly Unrelated Regressions Equations and related models like the Vector Autoregression. The concept of super-quantile
tracking would be particularly suitable in this context along with applications in forecasting using the concept of LASSO priors
(Tibshirani, 1996, Park and Casella, 2008).
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Appendix

Lemma 1. The posterior in (15) is finitely integrable.
Proof. The posterior in (15) is:

p(β|y,X, α) ∝

{
n∑

t=1

%α(ut(β))

}−n/2

.

Suppose %α(uT (β)) = min
t=1,··· ,n

%α(ut(β)). Then {
∑n

t=1 %α(ut(β))}
−n ≤ {n%α(uT (β))}−n/2. By the mean value theorem for

integrals, (9) and (2) we have %α(uT (β)) = qγ∗(uT (β)), for some γ∗ ∈ [α, 1). Existence of
r
<K {qγ∗(uT (β))}−n/2

dβ follows from
the fact that the posterior distribution of quantile regression models is finitely integrable with respect to β as shown in Appendix
C of Tsionas (2003).

Lemma 2. Any proper prior for β leads to a proper posterior.

Proof. Assume the prior of β is proportional to p(β). From (15) we have:

w
{

n∑
t=1

%α(ut(β))

}−n/2

p(β)dβ < c ·
w
p(β)dβ <∞,

for some positive and finite constant c as
∑n

t=1 %α(ut(β)) is strictly positive and, therefore, bounded below by c, in any given
data set.
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