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Usage control models provide an integration of access control, digital rights, and trust management.
To achieve this integration, usage control models support additional concepts such as attribute mu-
tability and continuity of decision. However, these concepts may introduce an additional level of
complexity to the underlying model, rendering its definition a cumbersome and prone to errors pro-
cess. Applying a formal verification technique allows for a rigorous analysis of the interactions
amongst the components, and thus for formal guarantees in respect of the correctness of a model.
In this paper, we elaborate on a case study, where we express the high-level functional model of the
UseCON usage control model in the TLA+ formal specification language, and verify its correctness
for ≤ 12 uses in both of its supporting authorisation models.

1 Introduction

Access control systems offer the mechanisms to control and limit the actions or operations that are
performed by a user or process – referred to as subjects – on a set of system objects. Specifically, an
authorisation process is required to take a decision for granting or denying a subject to access an object
of the system, based on a set of existing policy rules. Thus, access control systems are considered to be
amongst the most critical of security components. Their importance is recently highlighted in NIST’s
special publication [4], where verification approaches for various access control models are examined.

New computing paradigms, e.g., the cloud [2], require further investigation of access control systems.
This eventually introduces the need for models, such as usage control [3], to cope with complex high-
level requirements set by new computing paradigms. Usage control models provide an integration of
access control, digital rights, and trust management, which may be applicable in environments such
as the cloud. To achieve this integration, usage control models support additional concepts such as
attribute mutability and continuity of decision. Attribute mutability is responsible for updating the values
(e.g., attribute values) of the participating entities (e.g., subjects, objects), which results in having a
dynamic – usage – control model. Continuity of decision considers that access to an object is no longer
an instantaneous access or action, but it may last for some time. Consequently, decision factors are
evaluated not only before (i.e., pre-authorisation), but also during the exercise of an access (i.e., ongoing-
authorisation), and thus evolving the concept of access control to that of usage control.
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2 Formal Verification of Usage Control Models

Temporal logic is applied to provide unambiguous semantics to functions supported by usage models,
such as attribute mutability and continuity of decision [6]. Usage control systems are concurrent and
characterised by non-determinism due to the potential of a subject to arbitrarily request or terminate using
an object during the operation of a system. As discussed in [10], a number of usage control formal models
are limited to the specification of a single use, which is isolated and has no interference with other uses.
UseCON [3] is a usage model that provides enhanced expressiveness compared to existing access/usage
control models and applicable in new computing paradigms [3]. This is achieved by introducing a new
entity entitled use, which enables the use of historical information in usage control decision. To ensure
the correctness of the UseCON model, we used an existing formal language to verify the correctness of
its supported use management procedures. For example, ensure out of bound values are not assigned to
attribute values, and that authorisation states of the usage model always comply with certain behaviours
and follow predefined authorisation transitions (e.g., an authorisation must always be requested before
changing into another state). The enhanced version of Temporal Logic of Actions (TLA+) [5] is selected
for the formal specification of UseCON – TLA+ has been selected also in formal definitions of other
usage models (e.g., UCON [11]). In this paper, we anticipate that the formal specification and verification
of UseCON using an automated and error-free model checking technique will provide a comprehensive
and unambiguous understanding of the concepts introduced in UseCON and ensure its correctness for a
number of uses, depending on the authorisation model (pre-authorisation and ongoing-authorisation).

The remainder of this paper is organised as follows: Section 2 provides a specification of UseCON’s
high-level requirements in TLA+, and the verification of its system model is described in Section 3. A
performance evaluation of the TLC model checker to verify deadlock, safety and liveness properties is
given in Section 4. Concluding remarks and future work are provided in Section 5. Although not a
prerequisite, we provide a brief overview of UseCON and TLA+ specifications in Appendix A and B,
respectively.

2 Specification of UseCON in TLA+

UseCON is a usage control model that is characterised by extended expressiveness when compared with
existing usage-based models (e.g., UCON [11]). Specifically, it may support authorisations that have
logical relations between entities (see direct and indirect entities in Appendix A and [3]), as well as his-
torical information, and can express complicated requests between subjects and objects through simple
policies (see automated management of use entities in [3]). In the following, we provide a formal speci-
fication of the UseCON model in TLA+ (see Appendix B). This includes the specification of UseCON’s
main elements, decision making rules, and procedures for managing use elements. Furthermore, we
describe two transition systems (T S) of UseCON, i.e., one T S for the pre and one T S for the ongoing
authorisation model, which are used for supporting concurrent operations amongst uses in UseCON.

2.1 Main Elements

A use in UseCON represents a request to execute an action (a) from a subject (s) on an object (o). All
subjects, objects and actions used in the usage control system define the sets of subjects (S), objects (O),
and actions (A), respectively. The set of subjects S, objects O, and actions A are defined, as follows:

S, {s1, . . . ,si},O, {o1, . . . ,o j},A, {a1, . . . ,ak}
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The set of entities E is defined as the union of S, O and A sets, as follows:

E , S∪O∪A

The characteristics of an entity are represented through its attribute values. An attribute is a function
whose domain is a particular set (S or O or A) and its range is composed of specific attribute values, as
follows:

atti : X 7→ RangeAtti

where X = S, or X = O, or X = A. For every system’s entity, an identification attribute id is defined
for assigning a unique value to the entity. The id value remains the same throughout the life-time of the
usage control system. Thus, the following invariant is valid for all the behaviours of the usage control
system:

∀ e1,e2 ∈ E : id[e1] = id[e2]⇒ e1 = e2

In UseCON, the operation of the usage control system does not modify automatically the attribute
values of system entities. Thus, attribute values of system entities are proposed to be updated manually
by the usage control administration model. Consequently, a system entity is represented with a constant
record having as fields the entity’s attribute values, as follows:

e, [id(e) = k,att1(e) = l1,att2(e) = l2, . . . ,attn(e) = ln]

where e ∈ E is a system entity and atti(e), with i ∈ 1, . . . ,n, represents the value li of one of its attributes.
The first record field of each entity is an id attribute.

A use request in UseCON results into the creation of a use. A use is an entity instantiated by UseCON
and describes all the usage requests in a system and it is described with attributes. More specifically,
every use must contain a use id attribute having a tuple composed of the attribute values sid, oid, aid that
describe the identities of the subject, object, and action participating in the instantiated use. A special
attribute st is associated to every use instance representing the status of the use. Its value may be one of
the following: ’requested’, ’activated’, ’denied’, ’stopped’, and ’completed’.

A use u that instantiates a specific use request from subject s to object o for action a is represented in
the specification of the model with a variable record, having as fields its attribute values as follows:

u, [sid(u) = s.id,oid(u) = o.id,aid(u) = a.id,st(u) = state,att1(u) = v1,att2(u) = v2, . . . ,attn(u) = vn]

where s.id, o.id and a.id are the identity values of the subject, the object, and the action, respectively. The
state attribute st gets a value state which belongs to the following set: state ∈ { ’requested’, ’activated’,
’denied’, ’completed’, ’stopped’ } and atti(u), i = 1,2, . . . ,n are use attribute values. The set of all system
uses is U . During the operation of the usage control system, U is populated due to the use requests.
Moreover, as these use requests are served by the usage control system, the use attribute values are
modified. Specifically, the U is altered when a new use is requested or change its progress status (e.g.,
from ’activated’ to ’stopped’). Consequently, the only variable utilised in the specification is U , which
is the set containing all the uses operated in the UseCON model and it is declared as follows:

VARIABLES U
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In the beginning of a TLA+ specification, several modules may be included for supporting different
operators. Our specification includes Integers and FiniteSets modules, which encompass arithmetic and
set-related operators, like Cardinality. This is declared as follows:

EXT ENDS Integers,FiniteSets

2.2 Decision Making in UseCON

Policy rules in UseCON provide an enhanced utilisation of information from entity and use attribute
values. More precisely, the general form of a UseCON policy rule that governs the allowance of a use
request from a subject s on an object o with an action a, is a boolean valued expression defined as
follows:

Policy Rule(s,o,a,S,O,A), expression(e1, . . . ,en)

where s,o,a are the particular direct entities of the use. In addition, two or more UseCON policy rules
can be combined together with logical operators as follows:

p = p1⊗ p2⊗ . . .⊗ pn

where ⊗ is a logical operator (e.g., AND, OR), and pi is a policy rule, where i = 1, . . . ,n.
The parameters ei : i ∈ 1, . . . ,n of a policy rule that are utilised for the evaluation of the expression

may have various origins, and thus lead to the creation of the following categories of policy rules:

• Direct Policy Rules: The parameters ei in the expression of a direct policy rule are values only
from attributes of direct entities or constant values. Specifically, all parameters ei, are defined by
the following formula:

ei ∈ {s,o,a} or ei , l

where l is a constant value.

• Indirect Policy Rules: The expression of an indirect policy rule consists of attribute values stem-
ming not only from direct, but also from indirect entities. In this case a logical relation exists
between the two types of entities, which can be retrieved by a select expression. The definition of
such an expression is as follows:

ei ,CHOOSE x ∈ E : select(x,s,o,a, l)

An example of an indirect policy rule could be an expression that evaluates into true or false, if the
father of a child has a premium membership. In this example, the child is a direct entity, while the
father is an indirect. The select expression should take into account the fact that there is a ’father’
attribute in the child entity having the attribute value of her father’s identity.

• Complex Indirect Policy Rules New computing paradigms introduce complex access control poli-
cies, where the usage decision is based on information related not only to a single entity, but with
a subset of entities. Such complex policies can be supported in UseCON through complex indirect
policy rules. More specifically, a parameter ei of a complex indirect policy rule can be, apart from
a single (i.e., direct or indirect) attribute value, an aggregation of information. This information is
derived from all the entities that satisfy a desired (select) predicate. The semantics of a parameter
ei of a complex indirect policy rule is as follows:
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ei , aggregation({e ∈ E : select(e)})

An example of a complex indirect policy rule is one that confirms that the balance sum of all the
accounts of a bank customer is over a specific amount. Information that is related with a set of
bank accounts, those belonging to the corresponding user, is required for the evaluation of the
aforementioned policy rule. Consequently, the selection expression defines the subset of the bank
accounts that belongs to the specific customer.

2.3 Use Attribute Update Procedures

Attribute values are utilised by UseCON policy rules through the usage decision making process. Con-
sequently, the implementation of a high level policy should also cope with the definition of use attribute
value update procedures because these values determine the outcome of the policy rule. In UseCON
the mutation of attribute values only records security related information that are related with the use.
Moreover, a categorisation of the use attributes according to the nature of information they record is as
follows:

• Induced Attributes: Information that can be inferred from entities involved in a use (i.e., subject,
object, and action) that a specific use instantiates.An example of an induced use attribute could be
the price of an offered service.

• Observed Attributes: Information recorded during the exercise of a use. Such info cannot be
derived directly from the entities involved in the use. Examples of observed use attributes are the
duration of a use, etc.

Update procedures for induced attributes can be specified during the definition of the implementation
of a high level policy by the policy administrator. However, update procedures for observed attributes
require the existence of a system function that returns the required value. For example, the specification
of a policy, which requires recording the system time whenever a use is permitted, is as follows:

preU pdate, [u EXCEPT !.st = “activated”, !.allowedtime = SystemTime()]

where SystemTime() is an internal function provided by the system framework that provides the current
time. In TLA+, EXCEPT is a special purpose operator representing the modification of a function from
a state to the next. In that next state all function values are left unchanged unless stated otherwise 1.

Attribute update procedures in UseCON are performed whenever a use changes its state (e.g., from
‘requested’ to ‘activated’). Therefore, during the execution of a use, the times of use attribute update in
UseCON are represented in Figure 1.

2.4 Transition Systems

Actions in the UseCON model are categorised to those triggered by a subject’s request and those operated
automatically by the usage control system. More specifically, for every use supervised by the usage
control system the following actions can be triggered by a subject.

• Request: This action performs the transition from the ‘init’ state of the use to ‘requested’. More-
over, request creates a particular use instance that instantiates the requested use and also assigns
values to the id attribute of the use.

1For a comprehensive definition of EXCEPT operator we refer the reader to [5].
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Figure 1: Use attributes updates during the exercise of a use in UseCON

Figure 2: Transition system of a single use pre-authorisation UseCON model

• Complete: This action changes the state of the use from ’activated’ to ’completed’.

The actions performed automatically by the usage control system, follows:

• preEvaluate: This action is performed by the usage control system only when the allowance of
the use is governed by a pre-authorisation rule. This action changes the state of the use to either
’activated’ or ’denied’, depending on the outcome of the examined policy rule.

• onEvaluate: In case the allowance of a use is governed by an ongoing authorisation rule, the
onEvaluate action is performed by the usage control system. If the particular policy rule is satisfied
then the state of the use does not change. In case the policy rule is not satisfied, the state of the use
is changed to ’stopped’.

• Activate: This action is performed only when the allowance of the use is governed by an ongoing
authorization rule. It follows the execution of the Request action and changes the state of the use
from ‘requested’ to ‘activated’.

Any of the previous actions, apart from modifying the st attribute value, may also update other use
attribute values. Such modifications in the use attribute values are considered to be implementation
specific, as already described in Section 2.3. Moreover, despite the existence of a great number of
updates on attribute values, the execution of any of the previous actions is considered to be atomic 2, i.e.,
a single behavioural step. The transition system for a single use UseCON system controlled by a pre and
an ongoing authorisation policy rule is depicted in Figures 2 and 3, respectively.

In its initial state, no uses are exercised in the system, and thus the first state of every behaviour must
satisfy the TLA+ predicate init, which defines that the set-variable U is an empty set:

Init ,U = {}
2This constraint is realistic due to the fact that a use is recorded centrally on the policy decision point and there is no need

for attribute updates of other entities (subject or object).
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Figure 3: Transition system of a single use ongoing authorisation UseCON model

Moreover, according to the time period that a use request evaluation is performed, a pre-authorisation
and ongoing-authorisation transition systems is created.

2.4.1 Pre-authorisation

The possible actions that can be performed on a pre-authorisation UseCON system are the use request for
a new use, the evaluation of an already requested use, or the termination of a use that is already executed.
Therefore, the next action, that describes all the possible next states could be a request, evaluate, or
complete action, described as follows:

Next , Request ∨ preEvaluate∨Complete

More specifically, the Request action selects non-deterministically 3 a new use x. This is verified
by searching the set of uses U , and returning one that has not already been requested by the subjects or
processed by the usage control system. Consequently, in case that this particular x exists, the request
action creates the corresponding use instance that instantiates use x and inserts it to the set U . The
definition of the Request action is as follows:

Request , ∃u ∈ (S×A×O) : (

∧ ∀ x ∈U : (x.sid 6= u[1].id∨ x.aid 6= u[2].id∨ x.oid 6= u[3].id)

∧U ′ =U ∪{createUse(u)})

The preEvaluate action examines if there are any uses that have been requested but have not been
processed by the usage control system. More specifically, preEvaluate examines if there is any use
instance with state attribute value equals to ‘requested’. Consequently, the action evaluates the policy rule
that governs the allowance of the use that the specific use instance instantiates. Based on the outcome of
that policy rule the action modifies the state of the use either to ‘activated’ or to ‘denied’ with preUpdate

3The non-determinism property is implied by the use of ∃ operator. For comprehensive information refer to [5].
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and denUpdate use attribute update procedures respectively as follows:

preEvaluate, ∃u ∈U : (∧ u.state = “requested”

∧ IF(PolicyRule)T HEN

U ′ = (U \{u})∪{preU pdate(u)}
ELSE

U ′ = (U \{u})∪{denU pdate(u)})

The Complete action simulates a subject’s request to terminate the execution of a currently active use.
If such a use exists, its state attribute value should be equal to ’activated’. Consequently, the completed
action modifies the state attribute value from ’activated’ to ’completed’ with the comUpdate use attribute
update procedure. The Complete action is defined as follows:

Complete, ∃u ∈U : (∧ u.state = “activated”

∧U ′ = (U \{u})∪{comU pdate(u)})

CreateUse is the procedure that creates a use instance that has the identities of the direct subject, object,
action. The definition of the createUse procedure follows:

createUse(x), [sid(x) = x[1].id,aid(x) = x[2].id,oid(x) = x[3].id,

state(x) = requested,att(x) = k]

All the other use attribute update procedures perform a dual role. Firstly, they alter the state use
attribute to the desired value (e.g., preUpdate to ‘activated’ or comUpdate to ‘completed’). Secondly,
the use attribute update procedures modify the values of other use attributes according to the requirements
of the usage control system that they are called to describe. For example, a possible preUpdate procedure
can be the following:

preU pdate, [u EXCEPT !.st = “activated”, !.att = value]

The same definitions apply to the denUpdate, comUpdate procedures.

2.4.2 Ongoing-authorisation

The transition system of the ongoing-authorisation UseCON model is differentiated from the pre-authorisation
model in a number of ways. Firstly, in an ongoing model, a use that is requested is permitted to be acti-
vated without the evaluation of any policy rule. Secondly, at a given time interval 4, an ongoing action is
executed onEvaluate. Thus, the specification of the Next action on an ongoing authorisation model has
the following definitions:

Next , Request ∨Activate∨onEvaluate∨Complete

4The determination of the exact interval is left open as an implementation issue.



A. Gouglidis, C. Grompanopoulos, & A. Mavridou 9

The Activate action searches for the existence of a use with state attribute value equal to ’requested’
and consequently updates it to ‘activated’ by executing the preUpdate procedure.

Activate, ∃u ∈U : (∧ u.state = “requested”

∧U ′ = ({U \{u})∪{preU pdate(u)})

Whereas onEvaluate action evaluates an ongoing policy rule, based on this result it either leaves use
to ‘activate’ state, but it can possibly update the rest use attribute values with onUpdate procedure, or
modify its state attribute value to ‘stopped’ with termUpdate use attribute update procedure as follows:

onEvaluate, ∃u ∈U : (∧ u.state = “activated”

∧ IF(PolicyRule)T HEN

U ′ = ({U \{u})∪{onU pdate(u)}
ELSE

U ′ = ({U \{u})∪{stopU pdate(u)})

Moreover, in the case where there is no need for an ongoing use attribute update procedure, the onUp-
date procedure can be substituted with the UNCHANGED U TLA+ operator that leaves the variable U
unmodified. Here, the semantics of ‘request’ and ‘complete’ actions are considered to be the same with
the pre-authorisation model.

3 Model Checking with TLC

Toolbox is an Integrated Development Environment (IDE), which is designed for the definition and veri-
fication of TLA+ specifications [1]. Specifically, the toolbox editor provides functionality for the defini-
tion and alteration of TLA+ specifications, and supports syntax highlighting. Additionally, an automatic
parser checks the defined specifications for syntax errors and presents them accordingly by marking them
in the used modules.

The tool in use for the verification of a TLA+ specification in toolbox is the TLC model checker.
Specifically, TLC explicitly generates and computes all the possible states of a system. However, many
times the specification of a system might contain an infinite number of states. TLC handles such spec-
ifications, by choosing a finite model of the system and in turn checks it thoroughly. Specifically, the
creation of a system’s model in TLC requires the definition of its specifications, properties and values of
constant parameters [1]. A specification represents all the behaviours that have to be checked. Moreover,
the values assigned to constant parameters are utilized for the instantiation of a specification. TLC can
check a model for deadlocks, invariants and properties [1]. A deadlock occurs when the model reaches a
state in which its next-state action allows no successor states. An invariant is a predicate that is evaluated
on a system state. Consequently, an invariant holds on a system specification, if and only if, every state
of all the behaviours of a system satisfy that predicate. Properties are temporal formulas that must be
evaluated to true for all the behaviours of the model. TLC has some limitations regarding the handling
of a subclass of TLA+ specifications and properties that it can check [5]. A very helpful feature of TLC
is the fact that when it identifies an error during the verification process, it provides an error trace viewer
that allows the exploration in a structured view of the debugging information. Moreover, TLC supports
an arbitrary evaluation of states and action formulas in each step of the trace.
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Table 1: Safety and liveness properties in UseCON
Safety Liveness

Former state Latter state Former state Latter state

Pre
Completed Any other state Requested Activated or Denied
Activated Requested or Denied Requested Completed or Denied
Denied Any other state Activated Completed

Ongoing
Completed Any other state Requested Activated
Activated Requested Requested Completed or Stopped
Stopped Any other state Activated Completed or Stopped

3.1 Use management

One of the fundamental properties that can be verified in a system is that of type correctness. Specifically,
type correctness is considered to be an invariant which determines that all the variables of the system are
assigned with values originating only from a specific set of values. The UseCON specification uses a
single variable U which corresponds to the set of system uses. The invariant property that defines type
correctness in the UseCON model, is defined as follows:

TypeCorrectness,U ⊆Uses

where Uses is the set of all records that have the following form (i.e., all the record fields are assigned
with values originating from their domains):

[s.id : Sub jectIDS,o.id : Ob jectIDS,a.id : ActionIDS,st : USTAT E,att : AT T DOMAIN]

Moreover, the definition of the domains SubjectIDS, ObjectIDs, ActionIDs and USTATE is:

Sub jectIDs, {s.id : s ∈ S},Ob jectIDs, {o.id : o ∈ O},ActionIDs, {a.id : a ∈ A}

where

USTAT E , {requested, activated, denied, stopped, completed}

A use is capable of recording detailed historical information about the operation of uses in the sys-
tem. Consequently, a valid implementation of the UseCON model, where multiple use processes are
operating concurrently, depends on a proper management of the use instances that represent these uses.
Specifically, all use instances must adhere only to the state transitions depicted in Figures 2 and 3 for
the pre-authorisation and ongoing-authorisation models, respectively. Based on that, a number of safety
and liveness properties can be defined. For example, a safety property (a faulty state cannot be reached)
states that a use instance cannot be evaluated as ’requested’ in its st attribute, if it has previously been
evaluated as ’completed’. The semantics, expressed in TLA+, which verify the previous property for all
the uses of a system are defined by the following temporal formula:

Safety,�(∃u ∈U : u.st = “completed” =⇒ �(u.st 6= “requested”))
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Figure 4: Violation of safety properties

Similar safety properties can be defined for all the possible prohibited state transitions. The complete
set of prohibited state transitions is depicted in Table 1 under the header ‘safety’. Moreover, two examples
that illustrate the violation of safety properties are depicted in Figure 4. Specifically, the transition of the
use instance u1 from ‘completed’ into ‘requested’ results in a violation of a safety property. A similar
violation is considered during the transition of the use instance u2 if the state transits from ’activated’
to ‘requested’. In addition, the definition of liveness properties in the UseCON model determine all the
valid state transitions regarding any use instance. For example, Figure 2 presents that a use instance that
has at any given state an st attribute value that is evaluated to ‘activated’, then its attributed value must
be eventually evaluated as ’completed’. All the possible state transitions that are eligible to be performed
are depicted in Table 1 under the header ’liveness’. This property is defined in TLA+ as follows:

Liveness, ∀u ∈U : u.st = “activated” u.st = “completed”

4 Performance Evaluation

The verification of the examined model was performed on a MacBook Pro (Mid 2014) using TLA+ Tool
version 1.5.6 and running TLC version 2.12. The system operates on OS X El Capitan and its hardware
specifications are: 2.5GHz Intel Core i7 with 16GB 1600 MHz DDR3.

A first set of results were collected by verifying deadlock-freedom for the model of UseCON. Specif-
ically, in a pre-authorisation UseCON model, we consider all the uses of the model to be requested, and
therefore, to be in either the state of ‘activated’ or ‘denied’. The uses being activated were finally com-
pleted. Therefore, the final state in every use must be ‘denied’ or ‘completed’. The TLC model checker
evaluates all the behaviours of the model and terminates when it reaches to a deadlock, and the actions
of the deadlocked behaviour are presented along with the attribute values in each state. Moreover, we
performed a verification of the model against safety and liveness properties described in Section 3.1.
The verification was finished without raising any errors, but this applies only for the verification of ≤ 12
uses for both the pre and ongoing authorisation models. Although higher numbers of uses were consid-
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Table 2: Performance evaluation
Authorisation Uses Diameter States Distinct Deadlock Safety and Liveness

model found states (seconds) (seconds)

Pre
2 6 21 12 1 3
8 23 277969 16832 2 5

12 31 45533665 560128 53 138

Ongoing
2 7 33 16 1 3
8 25 367873 23808 2 7

12 37 79112449 1224704 118 241

ered, the verification process had to be interrupted due to the excessive amount of time required for its
completion given the number of uses. The collected verification results (see Table 2) requires a better
understanding of the internal procedures TLC is applying to compute the behaviours of the model (i.e.,
generation of the transition system). Initially, TLC computes the states that verify the Init predicate and
inserts them into a set G. For every state s ∈ G, TLC computes all the possible states t that s 7→ t can
be a step in a behaviour. Specifically, TLC substitutes the values assigned to variables by state s for the
unprimed variables of the Next action, and then it computes all the possible assignment of values to the
primed variables that makes the Next action true. For every state t found by the former procedure it is
added to set G if it does not already exists. The previous two actions are repeated until no new states can
be added in G. Therefore, the verification results produced by TLC, are: Diameter expresses the number
of states in the longest path of G in which no state appears twice; States found expresses the number of
examined states; Distinct States expresses the number of examined distinct states. The verification re-
sults produced by TLC for the pre and ongoing UseCON models are presented in Table 2. An additional
column presents the actual running time of the TLC model checker in seconds.

5 Conclusion and Future Work

The application of model checking as a technique resulted in formally verifying the use management
functions of UseCON. The trace of the deadlock errors verifies that the defined specifications of the
system operate correctly. An advantage of using model checking techniques for the verification of usage
control models is the provision of formal guarantees with regards to the correctness of the model, without
requiring an implementation of it. Nevertheless, known issues of model checking, i.e., state explosion
problem, prevented the timely verification of uses when these increase in number. This resulted in
providing formal guarantees for the correctness of UseCON for ≤ 12 uses for both the pre-authorisation
and ongoing-authorisation models, as depicted in Table 2.

In the future, we aim to demonstrate the verification of complex policy rules supported by UseCON,
and specifically investigate the verification of ongoing policy rules. This is of interest since a use request
might lead to a policy violation in other concurrent uses. Thus, any use request should be followed by
an evaluation of all policy rules in all uses in the system to avoid conflicts and violations. Finally, we
are considering frameworks, such as secBIP [9], that will allow us to compositionally analyse security
properties and generate secure-by-construction systems. Also, we would like to explore guaranteeing
security properties by-construction for any number of uses in our model through the application of ar-
chitectures from predefined architecture styles [7] that capture properties of specific access and usage
control policies.
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A An Overview of UseCON

The UseCON model is composed by three entities, namely subjects, objects, and actions. These three
entities, together with uses, are the core components of UseCON. Decision factors in UseCON are the
attribute dependent authorisations and the usage dependent authorisations.

Subjects and objects are fundamental concepts, proposed already by access control models. Specifi-
cally, a subject is an entity that requests the execution of an operation on object entities. An action entity
represents the novel and complicated operations imposed by new computing paradigms. All the secu-
rity relevant characteristics, including related contextual information of subjects, objects, and actions are
described through their attributes. An example of an action entity is a money transfer operation from a
bank account, where the attributes describe the amount being transferred, the date of the transaction, the
currency, etc. A core component of the UseCON model is the use component that represents the secu-
rity related semantics of a use. A use, is created when a subject requests the execution of an action on
an object. A use is described through attributes that record the detailed security-relevant characteristics
and capabilities that are associated with the requested use. Each use is further associated with a ’state’
attribute, which embodies the status of the use in progress (see Figure 5). The ’state’ attribute is assigned
each time one of the following values:

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
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Figure 5: Accomplishment status of a single use

• Requested: Upon request for a use, the appropriate attributes are associated with the use and proper
values are assigned to them. The pre-authorisation policy rules, which govern the requested use,
has not been evaluated yet.

• Activated: The requested use has been allowed, as a result of successfully fulfilled pre-authorisation
policy rules, and is being executed.

• Denied: The requested use has been denied, because it failed to satisfy the pre-authorisation rules.

• Stopped: The allowed/ongoing use has been terminated by the system due to a violation of an
ongoing authorisation rule.

• Completed: The use that has been completed due to a subjects intervention.

An authorisation is the only decision factor in UseCON. However, for the creation of a usage deci-
sion, the UseCON model utilises three criteria viz. the (properties) of the entities, contextual information,
and historical information about uses. Therefore, authorisations are categorised into Attribute dependent
Authorisations (AdAs) and Usage dependent Authorisations (UdAs) as follows:

• Contextual information and properties that describes an entity are associated with the correspond-
ing entity’s attributes. The values of these attributes in turn are utilised by AdAs policy rules for
the creation of a use decision.

• Historical information of uses is utilised by UdAs. Specifically, in UseCON, uses can record all
the information regarding the previous or concurrent uses exercised in the system. Consequently,
an UdA policy rule utilises the historical information contained into the use attribute values to
allow or deny a use request.

Integrating authorisations with continuity of decision results into two UseCON sub-models. These
are the pre-authorisations and the ongoing-authorisations sub-models. The UseCON elements and the
relations between them are depicted in Figure 6.

UseCON presents extended expressiveness, as required by new computing paradigms, not only due
to the fact that is able to utilise all the three criteria (i.e., contextual information, properties and historical
information), but also because these criteria can be related to either direct or indirect entities or even to
any subset of the usage control system entities, e.g. a bank should issue new loans to a customer if and
only if the sum of the existing loans of all customers is lower than a given amount. Moreover, UseCON
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Figure 6: UseCON usage control system

inherently supports the utilisation of historical information of uses. Consequently, there is a strict dis-
tinction between the functional components of the internal usage control model (e.g., creation and state
transition actions of use entities) and the components that define the specific policy implementations of
the model (e.g., the creation of the usage decision policy rules).

B Specifications in TLA+

A system’s specification in TLA+ follows the Standard Model, which is the description of a set of
behaviours each representing a possible execution of the system. Every TLA+ specification is composed
of predicates, actions and temporal formulas.

Specifically, a predicate is a boolean-valued expression built from variables and constants and is
evaluated on a state. The evaluation of a predicate in a state is performed by calculating the predicate
expression with the assigned values of the included variables in this state. A formal definition follows:

s[[p]] = p(∀ ’u’ : s[[u]]/u)

where p(∀’u’ : s[[u]]/u) denotes the evaluation of predicate p by substituting every variable u with the
assigned value in state s (s[[u]]). If a predicate p is evaluated as true in state s it denotes that predicate p
satisfies state s.

An action denotes a relation between pairs of states of the system (denoted as system steps). More-
over, an action is a boolean-valued expression built from constants and primed and unprimed variables.
Primed variables refer to new states while unprimed refer to old states. A formal definition of actions
follows:

s[[a]]t = a(∀ ’u’ : s[[u]]/u, t[[u]]/u′)

We say that action a satisfies states s,t, or that s,t is an a-step if the evaluation of the action, with
unprimed variables assigned value from state s and primed variables assigned value from state t, is true.
A predicate can be considered as a special action that is evaluated only on the first state of a step.

A temporal formula in TLA+ is a boolean valued expression that is evaluated on behaviours. More
specifically, a temporal formula F is composed by action and predicates combined with logical and tem-
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poral operators. An action / predicate can be considered as a special temporal formula that is evaluated
on the first step / state of the behaviour. Some of the fundamental temporal operators in TLA+ follow:

• Always �. The formula F must satisfy every suffix of the behaviour. The semantics of the always
temporal operator follows:

< s0,s1, . . . > [[�F ]], ∀n≥ 0: < sn,sn+1, . . . > [[F ]]

where the , operator utilised in an expression id , exp defines id to be synonymous with the
expression exp. Replacing id by exp does not change the meaning of the specification.

• Eventually ♦. The formula F must satisfy some states of the behaviour. The semantics or eventu-
ally can be defined by utilizing the always temporal operator as follows:

♦F , ¬�¬F

• Leads to . The formula F G asserts that whenever F is true, G is eventually true. That is G is
true at the same time with F or some time later. The leads to operator can be defined utilizing the
previous temporal operators as:

F  G,�(F =⇒ ♦G)

Consequently, all the accepted behaviours of a system can be specified in TLA+ with a temporal
formula called specification of the following form:

Spec, Init ∧�Next

where Init is a predicate and Next is an action. A behaviour satisfies Spec if the first state of the behaviour
satisfies Init and every consequent step satisfies Next. However, a well-defined specification should
allow stuttering steps (steps that leave the system variables unchanged). Thus, the specification has the
following form:

Spec, Init ∧�[Next]<v1,...,vn> (1)

where [Next]<v1,...,vn> is defined as:

[Next]<v1,...,vn> , Next ∨ ((v′1 = v1)∧ . . .∧ (v′n = vn))

Formula (1) demands that the transition from one state to another is either a Next-step or a stuttering
step that leaves the system variables unchanged.

However, the TLA+ specification expressed in (1), also describes behaviours that may stop at any
point, including a behaviour that starts in a valid initial state and takes no step. Weak fairness property
of the action Next (WFvars(Next)) asserts that behaviours are not allowed to stop in a state in which
Next action is enabled (Action A is enabled in a state s if there exists a state t such that s→ t is an
Next-step). Therefore, the specification of a system that permits stuttering steps and supports the weak
fairness property for action Next has the following form:

Spec, Init ∧�[Next]<v1,...,vn>∧WFvars(Next)
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A property in TLA+ is described together with a system’s specification and has the form of an invari-
ant or a temporal formula. An invariant is a predicate that is evaluated on a system state. Consequently,
an invariant holds on a system specification, if and only if, every state of all the behaviours of a system
satisfy that predicate. Moreover, a temporal formula is evaluated on a system behaviour. Consequently, a
temporal formula hold on a specification, if and only if, it is satisfied by all the behaviours of the system.


	Introduction
	Specification of UseCON in TLA+
	Main Elements
	Decision Making in UseCON
	Use Attribute Update Procedures
	Transition Systems
	Pre-authorisation
	Ongoing-authorisation


	Model Checking with TLC
	Use management

	Performance Evaluation
	Conclusion and Future Work
	An Overview of UseCON
	Specifications in TLA+

