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1. Introduction
• Joule heating is controlled by the frictional interactions of charge carriers (plasma) and

neutrals in the high latitude thermosphere
• Ground based radar network, SuperDARN, can tell us about the plasma. The SCANDI Fabry-

Perot interferometer tells us about the neutrals via auroral airglow emission.
• Examples of 2D, high spatio-temporal resolution Joule heating images have been created by

finding events with high amounts of overlapping SuperDARN and SCANDI data
• SCANDI is located on Svalbard and most commonly operates in a 61 zone configuration,

obtaining a maximum of up to 61 neutral wind vectors using fitting techniques from Conde &
Smith [1998].

• Two SuperDARN radars overlook Svalbard, Hankasalmi in Finland and Pykkvibaer in Iceland.
These provide the fitted plasma velocities. Figure 1. SCANDI and SuperDARN locations adapted from

Aruliah et al. [2009]
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2. Coverage
• SCANDI has been in operation since

2007, allowing 10 years of winter-time
data

• There are not always direct SuperDARN
velocity measurements in the SCANDI
FOV, but but we use the SuperDARN
“map potential” technique to intelligently
interpolate over areas without data
[Ruohoniemi & Baker, 1998].

• After filtering SCANDI data for clear
skies and goodness of fit (0.5<𝛘2<1.5),
the number of SuperDARN plasma
vectors in the SCANDI FOV is shown in
figure 2.

Figure 2. The number of measured
SuperDARN plasma vectors within the
SCANDI FOV for a filtered dataset. There is a
peak labelled which corresponds to 8
consecutive days of excellent data coverage
for both SuperDARN and SCANDI.

Peak	at	57	vectors	corresponding	to
Feb	17th – 25th 2014	

4. February 21st, 2014 Event – Neutral flow switch
1713UT: 1914

3. Calculation

• ΣQ$ - Height Integrated Joule heating
• E - Electric field from SuperDARN: 𝐄 = −𝐕×𝐁
• 𝐕𝐧 - Neutral winds from SCANDI
• B - Magnetic field from IGRF model 

[Thébault et al., 2015]
• Σ, - Pedersen conductivity from Solar zenith 

model [Rich et al., 1987] and auroral model 
[Hardy et al., 1987].

• Joule heating is increased the stronger the 
difference between the neutral and plasma 
velocities are.

• The decrease in Joule heating indicates neutrals pulled into direction of plasma via
ion-drag – (a), (c) in Figure 3.

• The sudden change of neutral direction increases Joule heating, especially at lower
latitudes – (b) in Figure 3.

• This indicates some stronger control over neutrals than ion-neutral drag, such as
Coriolis forces or solar pressure gradients driving the neutrals from the plasma
configuration and increasing Joule heating. This is significant because Ion-neutral
drag is often seen as the dominant force affecting neutrals.

5. December 7th, 2013 Event –
Ion drag in action
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Over the 
course of 
approximately 
1 hour, strong 
plasma 
convection re-
orientates the 
neutrals into 
the same 
direction and 
as a result, 
Joule heating 
drastically 
decreases.

6. Future work
• Using the full overlapping SuperDARN and SCANDI data sets, a statistical analysis of Joule

heating in the 70-80° magnetic latitude range will be preformed and compared to previous
modelling efforts.

• All-sky auroral emission data can be used to derive high resolution 2D conductivities as a
replacement for statistical models.
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Figure 3. A time series of how the
average Joule heating changes within
the SCANDI FOV.


