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Abstract

Computational fluid dynamics codes using the density-based compressible flow

formulation of the Navier-Stokes equations have proven to be very successful for

the analysis of high-speed flows. However, solution accuracy degradation and,

for explicit solvers, reduction of the residual convergence rates occur as the local

Mach number decreases below the threshold of 0.1. This performance impair-

ment worsens remarkably in the presence of flow reversals at wall boundaries

and unbounded high-vorticity flow regions. These issues can be resolved using

low-speed preconditioning, but there exists an outstanding problem regarding

the use of this technology in the strongly coupled integration of the Reynolds-

averaged Navier-Stokes equations and two-equation turbulence models, such as

the k − ω shear stress transport model. It is not possible to precondition only

the RANS equations without altering parts of the governing equations, and
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there did not exist an approach for preconditioning both the RANS and the

SST equations. This study solves this problem by introducing a turbulent low-

speed preconditioner of the RANS and SST equations that does not require any

alteration of the governing equations. The approach has recently been shown

to significantly improve convergence rates in the case of a one-equation tur-

bulence model. The study focuses on the explicit multigrid integration of the

governing equations, but most algorithms are applicable also to implicit inte-

gration methods. The paper provides all algorithms required for implementing

the presented turbulent preconditioner in other computational fluid dynamics

codes. The new method is applicable to all low- and mixed-speed aeronauti-

cal and propulsion flow problems, and is demonstrated by analyzing the flow

field of a Darrieus wind turbine rotor section at two operating conditions, one

of which is characterized by significant blade/vortex interaction. Verification

and further validation of the new method is also based on the comparison of

the results obtained with the developed density-based code and those obtained

with a commercial pressure-based code.

Keywords: Reynolds-averaged Navier-Stokes equations, Turbulent low-speed

preconditioning, Shear Stress Transport turbulence model, Darrieus wind

turbine aerodynamics, Blade/vortex interaction

1. Introduction

Computational fluid dynamics (CFD) codes using the density-based com-

pressible flow formulation of the Euler and Navier-Stokes equations have proven

to be very successful for the analysis of high-speed flows. Many flow prob-

lems of engineering interest, however, include regions of both high and low fluid5

speeds. Other than typical aeronautical and turbomachinery examples, such

as the flow field past helicopters in slow forward flight, and the transonic flow

of high-pressure turbine stages including low-speed labyrinth seal leakage flows,

low- and high-speed regions also occur in horizontal axis wind turbine flows,

characterized by nearly stagnating flow around the blade root and the turbine10
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nacelle, and speeds close to compressible/incompressible boundary near the ro-

tor tip. In these problem types, the choice of a density-based CFD solver is also

very well suited [1]. However, the solution accuracy of these codes decreases

in the presence of low-speed flow regions where the local Mach number drops

below the threshold of 0.1 [2]. This is due primarily to improper scaling of15

the numerical dissipation components as the local Mach number tends to zero

(incompressible flow limit) [3, 4]. When solving the density-based compress-

ible flow equations using iterative integration methods with a CFL constraint

(e.g. explicit methods), low flow speeds also result in a significant reduction of

the residual convergence rate. In inviscid and, to a significant extent, also in20

high-Reynolds number flows, this occurs because of the large disparity of acous-

tic and convective speeds. The CFL constraint imposes maximum time-steps

based on the positive acoustic speed, which is the eigenvalue of the convective

flux Jacobian with the largest magnitude. As a consequence, numerical errors

propagating at the much lower convective speeds are reduced more slowly than25

numerical errors propagating at acoustic speeds, as the time step imposed by

the acoustic eigenvalue is very small with respect to that based on the convective

eigenvalue.

Low-speed preconditioning (LSP) [5] can resolve the accuracy issue by restor-

ing the balance of all terms appearing in the matrix-valued numerical dissipation30

in the incompressible flow limit, and can greatly improve the converge rate by

substantially reducing the disparity of acoustic and convective speeds. Indeed,

the re-equalization of the characteristic speeds yields convergence rates which,

for inviscid and relatively simple viscous flow problems, are independent of the

Mach number [6, 7].35

Several preconditioning matrices for the Euler and Navier-Stokes equations

have been proposed [4, 8, 9]. The main practical difference among most of these

preconditioners is their condition number, i.e. the ratio between the magnitude

of the maximum and minimum eigenvalues of the preconditioned convective flux

Jacobian. The condition number of most preconditioners is found to be of order40

1 [6], and it is thus likely that these preconditioners may result in comparable
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residual convergence rates for a given baseline CFD code.

Most LSP strategies were initially developed for the Euler equations; viscous

flow effects are usually accounted for by suitable alterations of a precondition-

ing parameter appearing in the definition of the preconditioning matrix and45

depending on local flow properties [10, 6, 11]. Some researchers also devel-

oped LSP approaches based on preconditioning separately the convective and

diffusive flux Jacobians [12]. LSP has been extended to compressible turbu-

lent flow analyses using the Reynolds-averaged Navier-Stokes (RANS) equations

and differential turbulent eddy viscosity models. For example, the one-equation50

Spalart-Allmaras model [13] was used in [14], the k− ε two-equation model [15]

was used in [16], the variant of Wilcox’s k − ω two-equation model reported

in [17] was used in [18] and [19], and Menter’s k − ω Shear Stress Transport

(SST) two-equation model [20] was used in [1].

An important and often overlooked issue arises when using LSP in the frame-55

work of the so-called strongly coupled integration of the RANS equations and

two-equation turbulence model in which the first transport equation expresses

the conservation of the turbulent kinetic energy (TKE). With the strongly cou-

pled integration, the RANS and turbulence model equations are solved concur-

rently at each step of the iterative [21, 22] or direct [23] solution process. Some60

studies [21] have shown this integration approach to yield higher convergence

rates than the loosely coupled or segregated approach [24], in which the mean

flow and turbulence equations are solved in a time-staggered fashion. In the case

of low-speed flows, an additional question arises, namely whether LSP may be

applied only to the RANS equations or should be applied also to the turbulence65

model. A recent study addressing this issue for the strongly coupled integration

of the RANS equations and the Spalart-Allmaras turbulence model shows that

applying LSP also to the turbulent model results in significant improvements

of the convergence rate [25]. The present study highlights that in the case of

two-equation turbulence models, it is impossible not to precondition the turbu-70

lence model without altering parts of the governing equations, and it presents

a novel turbulent low-speed preconditioner for the strongly coupled integration
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approach based on this type of turbulence models. The presented turbulent

precondtioner does not require any alteration of the governing equations, was

thoroughly validated in [26], and was successfully used for the turbulent low-75

speed flow analyses of horizontal axis wind turbine blade sections of [1].

The discussion below on the construction of the numerical dissipation for

strongly coupled solvers of the RANS and two-equation turbulence model equa-

tions is relevant to both explicit and implicit codes. The considered fully coupled

integration approach is the explicit multigrid integration of the finite volume80

structured multi-block COSA code [27, 28, 29], which uses the k−ω SST model

for the turbulence closure. The paper provides all the information required to

implement this approach in other CFD codes. The main numerical results re-

ported herein refer to the time-dependent COSA analysis of a Darrieus vertical

axis wind turbine (VAWT) rotor at two operating conditions, and these results85

are also compared to those of a state-of-the-art pressure-based code for further

verification and validation of the new turbulent LSP approach. Many more

validation analyses of the new LSP approach are available in [26].

The governing equations are provided in Section 2, while the space discretiza-

tion and the numerical integration of COSA are reported in Section 3, which90

also reports on the construction of the numerical dissipation in the strongly

coupled integration. The LSP method in the strongly coupled integration is

presented in Section 4. A validation study based on the analysis of a turbulent

flat plate boundary layer is provided in Section 5. The Darrieus rotor section

constituting the main test case of this study is defined in Section 6, and the95

CFD analyses of two operating conditions of this rotor, one of which character-

ized by a computationally challenging blade/vortex interaction, are presented

in Section 7. Summary and conclusions are provided in Section 8.

2. Governing equations

The system of conservation laws considered herein is made up of the com-100

pressible RANS equations and the two transport equations of Menter’s shear
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stress transport turbulence model [20]. Given a moving control volume C with

time-dependent boundary S(t), the Arbitrary Lagrangian-Eulerian integral form

of the system of the time-dependent RANS and SST equations is:

∂

∂t

(∫
C(t)

U dC
)

+

∮
S(t)

(Φc −Φd) · dS −
∫
C(t)

S dC = 0 (1)

The array U of conservative flow variables is defined as: U = [ρ ρvT ρE ρk ρω]T105

where ρ and v are respectively the fluid density and velocity vector, and E, k

and ω are respectively the total energy, the turbulent kinetic energy and the

specific dissipation rate of turbulent kinetic energy, all per unit mass. The total

energy E is given by the sum of the internal energy e, the kinetic energy of the

mean flow, and the turbulent kinetic energy k, and its expression is thus:110

E = e+ (v · v) /2 + k (2)

For the considered perfect gas case, the static pressure p is given by:

p = (γ − 1)ρ [E − (v · v)/2− k] (3)

The generalized convective flux vector Φc is:

Φc = [ ρ(v − vb) ρ(v − vb)v
T + pIpd ρH(v − vb)

ρk(v − vb) ρω(v − vb)]
T

(4)

where the superscript T denotes the transpose operator, vb is the velocity of the

boundary S, H = E + p/ρ is the total enthalpy per unit mass, and Ipd is the

identity matrix of dimension pd, the problem dimensionality. The generalized115

diffusive flux vector Φd depends primarily on the sum of the molecular stress

tensor, proportional to the strain rate tensor s, and the turbulent Reynolds

stress tensor. Adopting Boussinesq’s approximation, the latter tensor is also

proportional to s through an eddy viscosity μT . In the SST model, μT depends

on ρ, k, ω, the vorticity, and the distance from the nearest wall boundary.120

The only nonzero entries of the source term S are those of the k and ω

equations, given respectively by:

Sk = μTPd − 2

3
(∇ · v)ρk − β∗ρkω
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Sω = γρPd − 2

3
(∇ · v)γρk

νT
− βρω2 + CDω

with

Pd = 2

[
s− 1

3
∇ · v

]
∇v

CDω = 2(1− F1)ρσω2
1

ω
∇k · ∇ω

where νT = μT /ρ, σω2 is a constant, F1 is a flow state- and wall distance-

dependent function, and σk, σω, γ, β
∗ and β are weighted averages of corre-125

sponding constants of the standard k−ω and k− ε models with weights F1 and

(1− F1), respectively [20].

Further detail on the formulation of the governing equations can be found

in [29] and [30].

3. Numerical method130

3.1. Space discretization

COSA solves System (1) with a cell-centered finite volume scheme based on

structured multi-block grids. The discretization of the diffusive fluxes and the

turbulent source terms is based on second order finite-differencing [29]. The

discretization of the convective fluxes of both the RANS and SST partial differ-135

ential equations (PDEs) uses Van Leer’s second order MUSCL extrapolations,

Roe’s flux-difference splitting, and the Van Albada’s flux limiter. Denoting by

n the outward normal of the face of a grid cell, and dS the area of such a

face, the numerical approximation to the continuous convective flux component

Φcf = (Φc · n)dS through the face is:140

Φ∗
cf =

1

2

[
Φcf (UL) +Φcf (UR)−

∣∣∣∣∂Φcf

∂U

∣∣∣∣ δU
]

(5)

The superscript ∗, the subscript f , and the subscripts L and R denote numer-

ical approximation, face value, and value extrapolated from left and the right

of the face, respectively. The numerical dissipation depends on the general-

ized flux Jacobian ∂Φcf/∂U and the flow state discontinuity across each cell
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face, defined by δU = (UR − UL). Since the RANS and SST equations are145

solved concurrently, using the strongly coupled approach [21, 22], the Jacobian

∂Φcf/∂U has dimension (pd+4)× (pd+4). When using this approach, the flux

differences (i.e. the numerical dissipation) of the k and ω equations depend not

only on the discontinuities of these two variables at the cell faces, but also on

the discontinuities of the RANS variables; less expectedly, the flux difference of150

the total energy equation depends also on the discontinuities of the turbulent

kinetic energy δk. The δk term in the numerical dissipation of the total energy

equation is due to the k term in the expression of the total energy given by

Eq. (2). The convective flux Jacobian matrix for two-dimensional (2D) prob-

lems and the associated expression of the upwind flux differences are provided155

in Appendix A, and the δk contribution to the numerical dissipation of the total

energy equation is the boxed term in Eq. (A6). When using the strongly cou-

pled integration, the coupling of the total energy and the TKE equations makes

it impossible to decouple the numerical dissipation of the total energy equation

from that of the turbulence model even when no LSP is used. This feature is160

key to the following discussion on the preconditioned fully coupled integration.

For steady problems the time-derivative appearing in Eq. (1) vanishes; space-

discretizing all remaining terms on a given computational grid yields a system

of nonlinear algebraic equations of the form:

RΦ(Q) = 0 (6)

The entries of the arrayQ are the unknown flow variables at the grid cell centers,165

and the array RΦ stores the cell residuals.

3.2. Integration of steady equations

System (6), representing the discretized RANS and SST equations, is solved

with an explicit strongly coupled approach. The RANS and SST equations are

time-marched simultaneously until the sought steady state is reached. A ficti-170

tious time-derivative (dQ/dτ) premultiplied by a diagonal matrix V , the nonzero

entries of which are the volumes of the grid cells, is added to System (6), and
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this derivative is then discretized with a four-stage Runge-Kutta (RK) scheme.

The convergence rate is enhanced by means of local time-stepping, variable-

coefficient central implicit residual smoothing (IRS) and a full-approximation175

scheme multigrid (MG) algorithm. To further improve convergence, the nega-

tive source terms of the turbulence model −Dk, −Dω and, when the velocity

divergence is positive, −∇·v are handled with a point-implicit approach [21, 29].

At the mth stage of each RK cycle, the adopted smoother reads

(I + αmΔτA)Qm = Q0 + αmΔτAQm−1−
αmΔτV −1LIRS [RΦ(Q

m−1) + fMG]
(7)

where m is the stage index, αm is the mth RK coefficient, Qm is the current180

approximation to the solution Q, Q0 is the approximation to the solution Q

at the beginning of the RK cycle, V denotes the aforementioned diagonal ma-

trix of the cell volumes, Δτ is the local pseudo-time-step, LIRS denotes the

IRS operator, and fMG is the MG forcing function, which is nonzero when the

smoother (7) is used on a coarse level after a restriction step. For each cell,185

matrix A, of dimension (pd+ 4)× (pd+ 4) has only three nonzero entries in its

bottom right (2× 2) partition, given by:

A(5 : 6, 5 : 6) =

⎡
⎣ (Δ+ + β∗ω) β∗k

0 γΔ+ + 2βω

⎤
⎦ (8)

in which Δ+ = max(0, 2
3∇ · v), and all variables are evaluated at stage m − 1.

The derivation and discussion of Eq. (8) can be found in [29].

3.3. Integration of time-dependent equations190

The time-dependent (TD) equations are solved with a dual-time-stepping

approach. The physical time-derivative of System (1) is discretized with a second

order backward finite-difference. At physical time-level n+1, the sought solution

Qn+1 is computed by solving the system:

Rg(Q
n+1) =

3Qn+1 − 4Qn +Qn−1

2Δt
V +RΦ(Q

n+1) = 0 (9)
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where Rg denotes the residual vector including the source terms associated with195

the discretization of the physical time-derivative ∂U/∂t of Eq. (1), and Δt is the

user-given physical time-step. Also for TD problems with moving bodies, the

diagonal matrix V containing the cell volumes is independent of time because,

in this study, grids undergo only rigid body motion conforming to the prescribed

motion of the body. It is noted that the mass matrix that, in general, would arise200

from the integration of the time-dependent term in Eq. (1) has been lumped

into an identity matrix in System (9). This can be done without sacrificing

temporal accuracy, owing to the use of a cell-centred formulation [31].

System (9) is solved with an explicit procedure similar to that used for

the steady equations. To further improve numerical stability, however, the205

Qn+1 term resulting from the dicretization of the physical time-derivative is

treated implicitly, as suggested in [32]. Thus, the TD-counterpart of the steady

smoother (7) is:

[I + αmΔτ(1.5/ΔtI +A)]Qm = Q0 + αmΔτ(1.5/ΔtI +A)Qm−1−
αmΔτV −1LIRS [Rg(Q

m−1) + fMG]
(10)

where Qm is shorthand for Qn+1,m. For each cell, the top left (pd+2)×(pd+2)

partition of the matrix premultiplying Qm in Algorithm (10) is diagonal, and210

the bottom right (2×2) partition is upper triangular, due to the matrix pattern

highlighted by Eq. (8). Similarly to the case of the integration of the steady

equations, this structure enables a decoupled (i.e. matrix-free) update of each

RANS and SST variable, although ω needs to be updated before k due to the

triangular structure of matrix A.215

4. Low-speed preconditioning in strongly coupled integration

At low flow speeds, the accuracy loss due to improper scaling of the numerical

dissipation and, for the explicit integration, the reduction of the covergence rate

due the charasteristic speed disparity can be greatly alleviated by using LSP, the

main effects of which are restoring a proper scaling of the numerical dissipation220

in the incompressible flow limit, and replacing the physical sound speed with
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a modified or artificial sound speed of magnitude comparable to the convective

speeds.

In this study, the strongly coupled turbulent LSP approach for two-equation

turbulence models was developed following the steps outlined in [6], but the225

inviscid/viscous laminar kernel of the new turbulent preconditioner is that pro-

posed by Weiss and Smith [16]. That preconditioner was previously successfully

used for solving steady/unsteady inviscid and viscous laminar flows with the

COSA code [7, 33, 2], and the turbulent preconditioner presented below was

used for the analyses of [1].230

4.1. Numerical dissipation

To build the preconditioned algorithm, the fictitious time-derivative dQ/dτ

used to time-march both the steady and the TD equations is premultiplied by a

preconditioning matrix (Γc)
−1. By doing so, the system of ordinary differential

equations obtained after space-discretizing System (1) takes the form:235

(Γc)
−1 dQ

dτ
+R(Q) = 0 (11)

where R = RΦ for steady problems (see Eq. (6)) and R = Rg for TD prob-

lems (see Eq. (9)). The introduction of LSP modifies the artificial dissipation

appearing in the convective flux defined by Eq. (5) as follows:

Φ∗
cf =

1

2

[
Φcf (UL) +Φcf (UR)− Γ−1

c

∣∣∣∣Γc
∂Φcf

∂U

∣∣∣∣ δU
]

(12)

In the explicit strongly coupled MG solution of the RANS and SST equations,

the residual array R obtained by imposing the flux balance of the modified240

convective fluxes of Eq. (12), the diffusive fluxes, and the turbulent source terms

are premultiplied by the matrix Γc before updating the solution on the current

grid level to preserve the numerical stability of the scheme [34]. The expression

of the preconditioning matrix Γc and its inverse (Γc)
−1 are reported in Appendix

B.245

Both matrix Γc and its inverse (Γc)
−1 depend on the preconditioning param-

eter Mp. The choice Mp = 1 yields no preconditioning, since this choice results
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in both matrices reducing to the identity matrix. In low-speed flow analyses,

instead, COSA uses the baseline definition of the preconditioning parameter

proposed in [6], namely:250

Mp = min (max (M,Mpg,Mvis,Muns, ε) , 1) (13)

where M is the local Mach number, Mpg is a cut-off value based on the local

pressure gradient [14, 35], Mvis is a viscous cut-off value [2], and ε is a small

cut-off parameter that prevents (Γc)
−1 from becoming singular where Mp = 0.

The parameter Muns is a cut-off value based on the physical time-step Δt and

the characteristic lengths of the domain [6]. In the case of TD problems with255

fixed and moving grids, an effective modification of the LSP approach described

above named mixed preconditioning was developed and tested in COSA [7, 2]

and shown to further improve solution accuracy of low-speed analyses. The

design of the preconditiong parameter for low-speed viscous problems has a

strong impact on the convergence rate and accuracy of preconditioned solvers,260

and recent improvements were reported in [11, 25].

When using the strongly coupled integration of the RANS and SST equa-

tions, it is mathematically impossible to apply LSP only to the RANS equations

because the numerical dissipation of the total energy equation depends on the

TKE cell face discontinuities also when no LSP is used, as explained in sub-265

section 3.1 and highlighted by Eq. (A6). Therefore, since the unpreconditioned

strongly coupled numerical dissipation is the starting point for constructing the

LSP-enhanced strongly coupled approach, preconditioning also the turbulence

model is mandatory. This problem was first reported in [6]. These authors at-

tempted to generalize the inviscid preconditioner of [8] to a fully coupled RANS270

solver using the k − ε model, but reported that this resulted in the eigenvalues

of the preconditioned operator Γ−1
c |Γc∂Φcf∂U| becoming complex. This issue

was circumvented by including a mean turbulent pressure depending on TKE in

the definition of the sound speed. This results in the removal of the TKE term in

the total energy equation, which enables decoupling the numerical dissipation of275

the total energy and TKE equations, and thus use the fully coupled integration

12



removing the need for preconditioning the turbulence model. This approach,

however, raises concerns about the solution uncertainty due to the alteration

of parts of the governing equations. Equally importantly, preconditioning the

turbulence model has recently been shown to significantly improve the conver-280

gence rate of the strongly coupled integration using one-equation models [8]. For

these reasons, it becomes important to develop a preconditioned fully-coupled

approach for two-equation turbulence models.

The contruction of the preconditioner of [8] starts by formulating the Euler

equations in non-conservative form with respect to the set of primitive variables285

Vi
p = [p vT T ]T [6], with T denoting the fluid static temperature. One then

constructs the Jacobian matrix Γ
−1

p = ∂Ui/∂Vi
p, with Ui = [ρ ρvT ρE]T .

Choi and Merkle obtained the preconditioner (Γ−1
p )CM [8] referred to the non-

conservative form of the Euler equations written in terms of the Vi
p variables

by suitably modifying the derivative ∂ρ/∂p and setting to zero the derivative290

∂ρ/∂T [6]. Weiss and Smith obtained the preconditioner (Γ−1
p )WS [16] by mod-

ifying the derivative ∂ρ/∂p in Γ
−1

p as done in [8] but retained the derivative

∂ρ/∂T [6]. The authors of the present study found that turbulent LSP for the

strongly coupled integration can be obtained by generalizing the precondition-

ing approach of [16]. To obtain real eigenvalues of the preconditioned convective295

flux Jacobian, preserving the hyperbolic character of the convective part of the

governing equations, it is necessary to retain all occurrences of ∂ρ/∂T in the

preconditioner. The sought turbulent preconditioner Γ−1
p referred to the non-

conservative form of the RANS and SST equations written with respect to the

primitive variables Vp = [p vT T k ω]T is:300

Γp
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+γ1M
2
p

a2γM2
p

0 0 − ρ
a2 0 0

(1+γ1M
2
p )u

a2γM2
p

ρ 0 −ρu
a2 0 0

(1+γ1M
2
p )v

a2γM2
p

0 ρ −ρv
a2 0 0

2a2+ζ(1+γ1M
2
p )

2a2γγ1M2
p

ρu ρv − ρζ
2γ1a2 ρ 0

(1+γ1M
2
p )k

a2γM2
p

0 0 −ρk
a2 ρ 0

(1+γ1M
2
p )ω

a2γM2
p

0 0 −ρω
a2 0 ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)
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where, γ1 = γ − 1, δ2 = 1 − M2
p , q

2 = u2 + v2, ζ = γ1(q
2 + 2k) and a2 =

γ1(H − q2/2− k) is the sound speed squared.

It is noted that no coupling of the RANS and turbulence model, in addition

to that due to the eddy viscosity linking the turbulence model to the mean

flow equations via the Reynolds stress tensor in the momentum and total en-305

ergy equations, occurs when using one-equation turbulence models [25]. In this

circumstance, one may choose whether to precondition or not the turbulence

model when using a strongly coupled integration.

The expression of the preconditioned eigenvalues and flux differences are

reported in Appendix B. An interesting feature emerging from comparing the310

expressions of the unpreconditioned flux difference of the total energy equation

provided by Eq. (A6) and its preconditioned counterpart provided by Eq. (B6)

is that the expression of the δk term is independent of whether LSP is used or

not. However, the residual preconditioning before the solution update, required

for numerical stability [4] results in the precondtioned numerical dissipation of315

the total energy equation containing contribution of all flux differences.

It is also noted that with LSP all characteristic-based boundary conditions

undergo alterations because two characteristics are altered by the introduction

of LSP [36], as highlighted by Equations (B11) and (B12) of Appendix B.

4.2. Integration of time-dependent equations320

The point-implicit MG iteration to solve turbulent low-speed TD problems

is obtained following the derivation for the viscous laminar case reported in [2],

and reads:

[I + αmΔτΓc(1.5/ΔtI +A)]Qm = Q0 + αmΔτΓc(1.5/ΔtI +A)Qm−1−
αmΔτV −1ΓcLIRS [Rg(Q

m−1) + fMG]

(15)

For each cell, the matrix premultiplying Qm is dense due to the structure of

the preconditioner Γc highlighted by Eq. (B1). Therefore the update process325

requires the inversion of a (pd+4)×(pd+4)-matrix for each grid cell. The steady
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MG solver is retrieved by setting to zero the terms proportional to 1.5/Δt and

replacing Rg with Rφ in Algorithm (15).

As customary with explicit CFD schemes with LSP, calculating the local

time-step using the maximum preconditioned acoustic speed (value obtained330

with the + sign in Eq. (B16)) rather than the corresponding unpreconditioned

speed (value obtained with the + sign in Eq. (A17)) yields significant con-

vergence acceleration at low flow speeds, and, for relatively simple problems,

independence of the convergence rate on the Mach number [2].

5. Verification and validation335

Demonstration of the second order spatial and temporal accuracy of COSA

and validation of its predicting capabilities were reported in [37, 2, 33, 29, 30];

the code was recently validated for 3D steady and TD horizontal axis wind tur-

bine flows [38], and used also for 3D hydrodynamic analyses of oscillating wings

for tidal energy applications [28]. A comprehensive validation of the presented340

turbulent preconditioner, including low-speed COSA analyses of a backward

facing step, a wall-mounted hump, a curved wall boundary layer interacting

with a cross-flow jet and two airfoils, is available in [26].

Here, the turbulent LSP-enhanced code is verified and validated by consider-

ing the turbulent boundary layer over a flat plate for several values of M∞. The345

analyses below are carried out with COSA and are an improved and extended

version of those first reported in [1].

5.1. turbulent flat plate

A flat plate turbulent boundary layer at a Reynolds number Re of 6 ×
106 based on a unitary plate length and the freestream velocity is considered350

herein. The computational domain is rectangular and the plate lies on the

lower horizontal boundary. The plate leading edge (LE) is at the origin of the

Cartesian system, and the trailing edge (TE) is at x = 1, where the (vertical)

outlet boundary is positioned. The inlet boundary is at x = −1/3, and the upper
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horizontal side is a far field boundary at y = 1. The Cartesian grid used for the355

analyses below has 384 cells along y, whose height increases from the lower to

the upper boundary starting from a minimum value of 2.5 · 10−7. The grid has

256 equal intervals along x; 192 are on the flat plate and 64 between the LE

and the inlet boundary. A mesh refinement analysis showed that the solution

computed with the grid defined above is mesh-independent. All simulations360

discussed below have been performed using the so-called improved auxiliary

state far field BCs for internal flows [37] on the left and right boundaries of the

domain, and a standard external-flow characteristic-based far field condition on

the top boundary. Symmetry conditions are imposed on the portion of the lower

boundary between the inlet boundary and the plate LE, and a no-slip condition365

is applied on the flat plate.

To assess the effectiveness of the developed turbulent LSP technique, this test

case has been solved for three values of M∞, namely 0.1, 0.01 and 0.001, and

for each value a simulation with LSP and one without have been performed.

In all cases, the freestream turbulence intensity has been set to 0.1 percent,370

and the freestream value of the ratio of turbulent and laminar viscoisty has

been set to 0.11. From a physical standpoint, the effects of compressibility

are expected to be negligible for M∞ of order 0.1 or less, and therefore CFD

analyses using M∞ ≤ 0.1 should yield the same solution, represented in suitable

nondimensional form.375

The three profiles of the nondimensionalized velocity component parallel to

the flat plate on a line orthogonal to the flat plate itself at x = 0.5, computed

with and without LSP are reported in the left and right subplot of Fig. 1 re-

spectively (the label ’NP’ in the top left corner of the right subplot denotes sim-

ulations performed without LSP). The variable on the x-axis is the logarithm in380

base 10 of y+, the nondimensionalized wall distance, defined as y+ = (uτy)/νw,

where uτ and νw are the friction velocity and the wall kinematic viscosity re-

spectively. The variable on the y-axis is u+, the nondimensionalized velocity

component u‖ parallel to the wall, which, in this case, is the x-component of

the velocity vector. Its expression is u+ = u‖/uτ . Both subplots also report385
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Spalding’s profile, which is a power-series interpolation of experimental data

joining the linear sublayer to the logarithmic region of the turbulent boundary

layer occurring on a flat plate in the absence of a streamwise pressure gradient.

The left plot of Fig. 1 shows that the three LSP-based solutions for the three

values of M∞ are superimposed, as expected, and in very good agreement with390

Spalding’s profile. The right plot of Fig. 1 shows that the CFD solutions with-

out LSP are not independent of the Mach number, as the solution associated

with M∞ = 0.001 differs both from the other two CFD results and Spalding’s

estimate.

Figure 1: Turbulent flat plate boundary layer: comparison of Spalding’s velocity profile and

velocity profiles of CFD simulations with M∞ = 0.1, M∞ = 0.01 and M∞ = 0.001. Left:

COSA solutions with LSP; right: COSA solutions without LSP.

The values of the drag coefficient Cd obtained with the three LSP simulations395

and the three simulations not using LSP are reported in the second and third

columns of Table 1, respectively. These data emphasize that the Cd predicted

by the LSP analysis tends to a constant value of 3.12× 10−3 as M∞ decreases.

Conversely, the drag coefficient estimate of the analysis without LSP does not

converge to a constant value as M∞ is reduced, due to the numerical errors400

associated with the numerical dissipation imbalance at low Mach number. A

theoretical Cd value of 3.20× 10−3 for the considered configuration is obtained
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Table 1: Turbulent flat plate boundary layer: comparison of drag coefficient extracted from

COSA simulations with M∞ = 0.1, M∞ = 0.01 and M∞ = 0.001 with and without LSP.

M∞ LSP NP

1 · 10−1 3.11× 10−3 3.20× 10−3

1 · 10−2 3.12× 10−3 6.99× 10−3

1 · 10−3 3.12× 10−3 34.0× 10−3

using the semi-empirical relation

Cd =
0.523

log2(0.06Re)

reported in [39]. The difference of about 2.5 % between the theoretical esti-

mate and LSP-enabled CFD result is deemed quite good, because within the405

uncertainty margin affecting the semi-empirical model.

The contours of the static pressure coefficient Cp around the flat plate LE

obtained for the three values of M∞ are depicted in the six plots of Fig. 2. The

definition of the plotted coefficient is:

Cp =
p′ − p′∞
0.5M2∞

where p′ is the static pressure nondimensionalized by the product of the freestram410

density and sound speed squared. The top plots of Fig, 2 provide the Cp con-

tours of the three LSP-based solutions, and the bottom ones those without LSP.

The top plots highlight that the use of LSP yields solutions independent of M∞,

as expected on the basis of physical evidence, whereas the bottom plots under-

line that the resolution of the pressure field past the LE, the region where the415

strongest gradient of this variable occurs, becomes increasingly poor as M∞

decreases.

The comparative solution analyses just discussed provide one more example

of the necessity of using LSP to preserve the accuracy of the solution when

solving low-speed flows with the compressible density-based CFD codes. They420

also provide a first verification and validation step of the new turbulent LSP
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Figure 2: Turbulent flat plate boundary layer: comparison of contours of pressure coefficient

Cp computed by COSA with and without LSP. Left: solutions forM∞ = 0.1; middle: solutions

for M∞ = 0.01; right: solutions for M∞ = 0.001.

method presented in the paper, confirming the correctness and robustness of its

implementation.

All simulations have been run for 4, 000 MG cycles with three grid levels

and CFL = 3. The COSA residual convergence histories with and without425

LSP for the three considered values of M∞ are reported in the six plots of

Fig. 3, which provides the convergence histories of the continuity equation (plot

labeled ρ), the x−component of the momentum equation (plot labeled ρu), the

y−component of the momentum equation (plot labeled ρv), the energy equation

(plot labeled ρE), the turbulent kinetic energy equation (plot labeled ρk), and430

the specific dissipation rate equation (plot labeled ρω). In all plots, the variable

on the x-axis is the number of multigrid iterations, and the variable Δlr on the y-

axis is the logarithm in base 10 of the RMS of the cell residuals of the considered

PDE normalized by the value of such RMS after the first MG cycle. Inspection

of the residual histories of the RANS and the ω equations highlights that both435

19



the convergence rate and the overall residual drop of all three LSP simulations

is independent of M∞, as expected on the basis of theoretical analyses. The

general pattern of the convergence history of the k equation of the three LSP

simulations is also independent of M∞, but the overall drop of the residuals

of this equations decreases as M∞ decreases. This possibly occurs because of440

finite (double) precision of the simulations, and the growing level of cancellation

errors affecting the convective flux balances as M∞ decreases. This is because

the magnitude of convective fluxes of k depends on M3
∞, due to the dependence

of the background level of k on the square of the mean freestream velocity. Fig. 3

also shows that both the convergence rate and the overall drop of all residual445

of the simulations without LSP worsens as M∞ decreases, due to the increasing

disparity between acoustic and convective speeds.

Figure 3: Turbulent flat plate boundary layer: comparison of COSA residual convergence

histories with and without LSP for M∞ = 0.1, M∞ = 0.01 and M∞ = 0.001.

6. H-Darrieus rotor section

The main test case used herein to assess the effectiveness of the turbulent

LSP algorithm presented above is the periodic flow of a H-Darrieus wind turbine450

rotor section. The blade airfoils of this turbine type are stacked along straight
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lines parallel to the turbine rotational axis. Away from the blade tips, the flow

can be considered two-dimensional. The considered 3-blade rotor section has

radius RD of 515 mm, and the blades use the NACA0021 airfoil with a chord

c of 85.8 mm. The blade/spoke attachment is at 25 % chord from the airfoil455

leading edge. Two operating conditions are analyzed in Section 7, and they

differ only because of the value of the so-called tip-speed ratio (TSR). Denoting

by ΩD the rotor angular speed, the TSR definition is:

λD =
ΩDRD

W∞

Both operating conditions are characterized by a freestream velocity W∞ of 9

m/s, and they differ only for the rotor speed, which is 480 RPM (λD = 2.88) in460

one case, and 440 RPM (λD = 2.64) in the other. Using a reference density of

1.21 Kg/m3, a reference temperature of 288 K, the rotor circumferential speed

as reference velocity and the airfoil chord as reference length, the Reynolds

number at λD = 2.88 is 1.52 × 105, and that at λD = 2.64 is 1.39 × 105. The

flow field of this rotor section at λD = 3.3 was analyzed in [40] and [27], where465

the COSA code was used without LSP. The schematic of the considered rotor

section (not in scale) is depicted in Fig. 4.

Figure 4: Schematic of three-blade Darrieus rotor section.

VAWT rotor flows are inherently unsteady because the freestream condi-

tions perceived by each blade vary periodically, with frequency determined by

the rotor angular speed. Starting by temporarily neglecting the fact that the470

absolute velocity decreases across the rotor due to the energy transferred from
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the fluid to the turbine, the modulus of the relative wind velocity W r
∞ at the ro-

tor radius RD, and the angle φr
∞ between W r

∞ and the time-dependent position

of the airfoil chord are respectively:

W r
∞ = W∞

√
1 + 2λD cos θ + λ2

D (16)

475

φr
∞ = arctan

(
sin θ

λD + cos θ

)
(17)

Here the angle θ defines the azimuthal position of the reference blade. The

reference blade has θ = 0 when the directions of the absolute velocity W∞ and

the entrainment velocity ΩDRD are equal and opposite. The periodic profiles

of Mr
∞, the Mach number associated with W r

∞, and φr
∞ for the two aforemen-

tioned TSR values are reported in the left and right plots of Fig. 5, respectively.480

Both curve sets are plotted with a solid line for 0 < θ < 180o, the interval

corresponding to the reference blade traveling upwind, and with a dashed line

for 180o < θ < 360o, the interval corresponding to the reference blade traveling

downwind. This distinction is highlighted because Equations. (16) and (17) as-

sume that the absolute velocity W∞ is constant throughout the rotor. This is485

an acceptable approximation in the upwind region but is unacceptable in the

downwind region. This is because the energy transfer occurring in the upwind

region results in a reduction of the absolute velocity, yielding in turn a significant

reduction of both W r
∞ and φr

∞ in the downwind region.

The left plot of Fig. 5 reports the curves of the relative freestream Mach490

numberMr
∞ for the considered TSR values. This variable is obtained by dividing

Eq. (16) by the sound speed. The plot shows that the minimum values of Mr
∞,

achieved at θ ≈ 180o, are below 0.05. In this position, the Reynolds number

based on the relative flow velocity also achieves its minimum, resulting in thicker

boundary layer increasing the effective airfoil thickness and chordwise pressure495

gradients and causing a larger extent of flow separation. The minimum relative

Mach number decreases as TSR decreases. The curves of the right plot of Fig. 5

show that the peak values of the relative angle of attack (AoA) φr
∞ increase with

TSR, a circumstance that results in progressively higher levels of dynamic stall
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as TSR decreases. The observations above highlight that the flow complexity500

increases as TSR is reduced.

Figure 5: Left: variation of relative freestream Mach number during one rotor revolution.

Right: variation of AoA during one rotor revolution.

7. Results

Here the flow field past the Darrieus rotor section defined above at λD = 2.88

and λD = 2.64 is analyzed with both the density-based COSA code, and the

pressure-based ANSYS R© FLUENT R© code, denoted FLUENT below for brevity.505

The COSA simulations use the multigrid integration approach discussed above,

and are carried out both with and without LSP to highlight the solution accu-

racy improvements achievable by using LSP, and all density-based solutions are

compared to the FLUENT pressure-based solutions for further cross-validation.

The pressure-based solutions have been performed using the FLUENT coupled510

integration approach, whereby the momentum and the pressure-based continu-

ity equations are solved in a fully-coupled fashion. The SST transport equations

are instead integrated in a segregated or loosely coupled fashion.

The same computational grid, already shown to deliver grid-independent

solutions with both codes [40], is used for all analyses discussed below.515
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7.1. physical and numerical set-up

The physical domain containing the rotor section and its surroundings is

delimited by a far field boundary centered at the rotor axis, and is discretized

by a structured multi-block grid. The grid is highly clustered in the region

around and between the blades, has 729,600 quadrilateral cells and is made520

up of two subdomains: the circular region of radius 7RD containing the three

blades and consisting of 522,240 cells, and the annular region with inner radius

of 7RD and outer radius of 240RD consisting of 207,360 cells. The grid features

448 cells around each airfoil, and a distance of the first grid line off the airfoil

surface from the airfoil itself of 10−5c. Enlarged views of the grid around the525

rotor and the airfoil are reported respectively in the left and right images of

Fig. 6.

Figure 6: Darrieus rotor section. Left: grid in rotor region; right: grid in airfoil region.

The identification of two distinct subdomains is irrelevant for the COSA

analyses since the entire grid moves with the rotor. The circular interface be-

tween the two subdomains was introduced to also enable the simulation of this530

rotor flow with FLUENT using the same grid of COSA. FLUENT uses a rotat-

ing and a stationary domain and requires a circular sliding interface, which was

set to be the circle at distance 7RD from the rotor center. The FLUENT re-

sults presented below are obtained with the coupled pressure-based solver [41].

All COSA and FLUENT simulations do not use transition modeling and are535

fully turbulent. In all cases, the far field values of k and ω are determined by
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considering a turbulence intensity of 5 percent and a characteristic turbulence

length of 70 mm.

All COSA simulations discussed below have been performed using the MG

solver with 3 grid levels. No CFL ramping has been used, and the CFL number540

has been set to 4.

7.2. density-based and pressure-based CFD analysis

In order to assess the impact of using LSP on the solution quality of the

density-based code, the flow fields and the predicted performance associated

with λD = 2.64 and λD = 2.88 are considered. Both regimes are analyzed545

with COSA and FLUENT. The simulations of the TSR 2.88 regime used 360

time-intervals per period (TD 360), and those of the TSR 2.64 regime used

720 time-intervals per period, since these choices were found to yield time-step-

independent solutions.

The periodic profiles of the overall torque coefficient computed by COSA550

with and without LSP, and FLUENT at λD = 2.88 are reported in Fig. 7. The

variable θ on the x-axis is the circumferential position of the reference blade,

whereas the definition of the torque coefficient on the y-axis is:

Ct =
T (θ)

0.5ρ∞W 2∞ARD

in which T is the rotor torque on the reference blade due to both pressure and

viscous forces, and A is the frontal area of the rotor. In the 2D simulations555

analyzed below, T is torque per unit blade length and A = 2RD. Fairly small

differences exist between the density-based solutions obtained with and without

LSP, the most noticeable ones occurring around θ = 150o. The overall small

differences between these two results indicate that at this relatively high TSR

the use of LSP may not be essential for accurately predicting blade forces and560

rotor torque. One also notes that the pressure-based solution predicts higher

torques between the peak value at θ ≈ 90o and the lowest value at θ ≈ 180o.

This points to a faster stall recovery of the pressure-based solution after the

occurrence of stall towards the peak value of the torque. As shown below, this
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discrepancy increases as λD decreases. The origin of these differences is still565

uncertain, and possible causes include slight differences in the implementation

of the turbulence model in the two codes. As an example, COSA determines the

value of the specific dissipation rate at wall boundaries ωw using the following

expression proposed in [20]:

ωw =
60νw
βΔ2

w

(18)

where Δw is the distance to the next grid point away from the wall. The570

expression of ωw reported in the FLUENT theory manual is structurally different

from that of Eq. (18). Performing some transformations (not reported herein

for brevity) aiming to obtain comparable expressions of ωw in the two codes, it

has been found that the value of ωw used by FLUENT is about one order of

magnitude smaller than that used by COSA, a difference which may contribute575

to the differences between the two simulation sets. In fact, the COSA analyses

of an attached flat plate turbulent boundary layer reported in [29] show that

ωw variations of this order alter the value of the wall viscous stress, giving a

difference of about 4 % in the predicted viscous drag. In the same report, it is

also shown that, in the case of a stalled flow regime of the NACA4412 airfoil, the580

aforementioned variation level of ωw results in a variation of the total drag of

about 12 %. Verification of the impact of the ωw boundary condition discrepancy

on the differences between the COSA and FLUENT VAWT solutions reported

herein will be further investigated in follow-on studies. It is noted, however,

that it may not be possible to achieve conclusive answers due to the source code585

of FLUENT not being publically available.

The vorticity contours of the density-based solution without and with LSP,

and those of the pressure-based solution past the rotor at θ = 140o for λD = 2.88

are reported respectively in Figures 8-(a), 8-(b) and 8-(c). It is noticed that the

LSP-enhanced solution has smoother contours than that of the density-based590

code without LSP, and the former solution appears to have less diffusion of

the wakes. The LSP solution is also significantly closer to the pressure-based

solution. This provides a first indication of the improvements of the solution
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Figure 7: Overall torque coefficient predicted by COSA without and with LSP and FLUENT

at λD = 2.88.

quality of the density-based code achievable by using the presented LSP method.

Figure 8: Vorticity contours at θ = 140o for λD = 2.88: (a) COSA without LSP, (b) COSA

with LSP, and (c) FLUENT.

595

The periodic Ct profiles computed by COSA with and without LSP, and

FLUENT at λD = 2.64 are reported in Fig. 9. Unlike the higher TSR case,

significant differences exist between the density-based solutions obtained with
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and without LSP. Such differences are particularly large in the interval 130o <

θ < 240o, the range of azimuthal positions characterized by the lowest flow600

speeds of the revolution, as shown in the left plot of Fig. 5, and where the use of

LSP in the density code is thus expected to yield more accurate estimates than

the unpreconditioned solver. It is noted, however, that the flow velocity level in

this interval is not significantly different from that in the same range of angular

positions at λD = 2.88, indicating additional flow complexity at λD = 2.88. This605

aspect will be further investigated below. It is also noted that the LSP-enhanced

density-based solution is extremely close to the pressure-based solution in the

interval 140o < θ < 240o, which provides further evidence of the predictive

capabilities of the density-based code enhanced by the proposed LSP method.

Both density-based solutions agree fairly well with the pressure-based prediction610

until the end of the period for 240o < θ < 360o. Also in the present 2.64 TSR

case, the lower torque coefficient of both COSA predictions with respect to

the FLUENT prediction in the interval 90o < θ < 130o indicate a delay of

stall recovery of the density-based code with respect to the pressure-based code,

confirming that this phenomenon is unaffected by LSP. As previously mentioned,615

this discrepancy may be due to small variations in the implementation of the

turbulence model in the two codes.

Figure 9: Overall torque coefficient predicted by COSA without and with LSP and by FLU-

ENT at λD = 2.64.
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The torque coefficient profiles of Fig. 9 highlight that for λD = 2.64 the

agreement among the three simulations varies significantly with the angular

position of the rotor. To investigate in greater depth these variations, a more

detailed comparison of the three predictions is carried out for the three angular620

positions highlighted in Fig. 9, namely for values of θ of 122o, 137o and 209o.

The relative Mach number contours of the density-based solution without and

with LSP, and those of the pressure-based solution past the reference blade at

θ = 122o are depicted respectively in the left, middle and right images of Fig. 10.

Fairly small differences are observed between the density-based solution without625

and with LSP, whereas both solutions differ significantly from the pressure-based

prediction. The density-based solutions predict a larger recirculation zone due

to stall on the blade suction side (SS). As highlighted by the pressure torque

profiles of Fig. 9, this is due to the density-based code predicting a delayed stall

recovery following the stall onset at the peak torque achieved at θ ≈ 90o.

Figure 10: Relative Mach number contours at θ = 122o for λD = 2.64: (a) COSA without

LSP, (b) COSA with LSP and (c) FLUENT.

630

The blade pressure coefficient Cp and skin friction coefficient Cf predicted

by the three analyses at θ = 122o are compared in Fig. 11-(a) and 11-(b) re-

spectively. The definitions of these two parameters are:

Cp =
pw − p∞

0.5ρ∞(W r∞)2
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Cf =
|τw|

0.5ρ∞(W r∞)2

where pw and τw denote respectively static pressure and viscous stress at the635

airfoil surface, and the relative freestream velocity W r
∞ is defined by Eq. (16).

The Cp profiles of Fig. 11-(a) highlight negligible differences of blade loading

between the two density-based simulations, as expected on the basis of the

torque coefficient equality at this circumferential position highlighted in Fig. 9.

More noticeable differences between the loading of the density-based and the640

pressure-based solutions are instead observed. The higher pressure on the SS in

the first 20 percent of the blade predicted by the density-based code indicates a

stronger leading-edge separation in this region. The lower pressure between 60

percent chord and the trailing edge is due to the higher speed associated with

the stronger stall-induced recirculation predicted by the density-based code. As645

highlighted in Fig. 11-(b), the position of the suction side separation predicted

by the two codes is the same and is defined by the SS Cf cusp at about 4 %

of the chord. These profiles also reveal that the position of the reattachment

point on the SS shortly before the trailing edge is the same for all simulations.

The main difference between the density- and pressure-based simulations is the650

strength of the separation, due to different stall recovery rates.

Figure 11: Predictions of (a) blade pressure coefficient and (b) skin friction coefficient of COSA

without and with LSP and FLUENT at θ = 122o for λD = 2.64.

The vorticity contours of the density-based solution without and with LSP,

and those of the pressure-based solution past the reference blade at θ = 137o
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for λ = 2.64 are depicted respectively in the left, middle and right images of

Fig. 12. The region with red contours corresponds to a large counterclockwise655

vortex above the SS induced by stall, whereas the smaller region with blue con-

tours corresponds to an induced clockwise vortex. Large differences are observed

between the density-based solutions without LSP (Fig. 12-(a)) and that with

LSP (Fig. 12-(b)), particularly in the resolution of the main counterrotating vor-

tex. Conversely, the latter solution is significantly closer to the pressure-based660

prediction (Fig. 12-(c)). This is a remarkable result since the comparison of the

overall torque profiles of Fig. 9 shows that at θ = 137o the torque coefficients of

the density-based code without LSP and the pressure-based code are nearly the

same, whereas those of the LSP-enhanced density-based code and the pressure-

based code differ significantly. This occurrence underlines the importance of665

considering both integral output functions and local flow variables when carry-

ing out comparative assessments of VAWT analyses based on different numerical

and even experimental approaches, since a seemingly good agreement of integral

values may be fortuitous.

Figure 12: Vorticity contours at θ = 137o for λD = 2.64: (a) COSA without LSP, (b) COSA

with LSP and (c) FLUENT.

The left, middle and right images of Fig. 13 respectively provide the vorticity670

contours of the density-based solution without and with LSP, and those of the

pressure-based solution past the rotor at θ = 209o for λ = 2.64. An excellent

agreement between the LSP-enhanced density-based solution and the pressure-

based solution is observed. Both predictions highlight that in this rotor position
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the reference blade travels through and past strong vortices shed by the blade675

itself in the upwind and leeward region of its trajectory. The density-based

prediction without LSP, conversely, fails to properly resolve the vortex system

and the blade/vortex interactions at this angular position. A proper resolution

of the shed vortex system and its interactions with the blades is key to the

reliable estimation of the blade forces and rotor torque. These results stress the680

importance of using LSP when analyzing Darrieus wind turbine performance

and aerodynamics at low TSR with a density-code, provide further evidence of

the effectiveness of the developed LSP method, and also explain the reasons for

the excellent agreement of the torque predictions of the LSP-enhanced density-

based code and the pressure-based code for 140o < θ < 240o observed in Fig. 9.685

Figure 13: Vorticity contours at θ = 209o for λD = 2.64: (a) COSA without LSP, (b) COSA

with LSP and (c) FLUENT.

The three predictions of the blade pressure coefficient Cp and skin friction

coefficient Cf at θ = 209o for λD = 2.64 are compared in Fig. 14-(a) and

14-(b) respectively. One sees that at this angular position of the rotor, the

LSP-enhanced density-based and the pressure-based solutions are in excellent690

agreement and both predict substantially higher loading than the density-based

solution without LSP. These observations are fully consistent with the overall
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torque profiles of Fig. 9, and also the comparative analysis of the vorticity

contours of Fig. 13. The static pressure over the first half of the airfoil SS

predicted by the density-based solver without LSP is significantly higher than695

that of the other two analyses. This is because the former simulation fails to

adequately resolve the low-pressure region associated with the conterclockwise

vortex shed by the airfoil itself, which at this angular position and for this

TSR is ahead of the airfoil leading edge on the airfoil outer side (i.e. SS).

This blade/vortex interaction yielding higher blade load is instead adequately700

resolved by the other two simulations. It is also observed that this blade/vortex

interaction effect has a beneficial effect on the rotor torque. This is highlighted

by the fact that the secondary peak of the rotor torque at θ ≈ 210o for λD = 2.88

(Fig. 7) is lower than that at θ = 209o for λD = 2.64 (Fig. 9). The lower

pressure on the front portion of the reference blade predicted by COSA with705

LSP and FLUENT results in higher flow velocity in this region, which yields

thinner boundary layers with higher wall viscous stress. This explains why the

Cf profiles over the first blade half predicted by these two simulations is higher

than that of the COSA analysis without LSP.

Figure 14: Predictions of (a) blade pressure coefficient and (b) skin friction coefficient of COSA

without and with LSP and FLUENT at θ = 209o for λD = 2.64.

8. Conclusions710

When applying LSP to the strongly coupled integration of the density-based

RANS equations and the SST turbulence model equations, it is unavoidable to
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precondition both the RANS and the turbulence model equations, unless parts

of the governing equations are altered, and a case-dependent solution uncer-

tainty is accepted. This contraint stems from the TKE term appearing in the715

definition of the total energy. The paper has presented and discussed a novel and

rigorous turbulent low-speed preconditioner for the considered integration strat-

egy. Applying LSP to the strongly coupled integration of the RANS equations

and the one-equation Spalart-Allmaras has recently been shown to significantly

improve convergence rates [25], and this improvement is expected to hold also720

in the SST model case. Unfortunately, however, this improvement cannot be

quantified with numerical experiments due to impossibility of implementing the

strongly coupled integration by preconditioning only the RANS equations and

leaving unaltered all parts of the governing equations.

The turbulent preconditioner has been developed and discussed in the con-725

text of the fully coupled explicit integration of the RANS and SST equations of

the COSA code, but the presented methodology is applicable to all two-equation

turbulence models featuring a transport equation for the turbulent kinetic en-

ergy, and also to implicit fully coupled integration methods.

The presented turbulent LSP formulation has been demonstrated by ana-730

lyzing two flow regimes of a three-blade Darrieus wind turbine rotor section,

one at lower loading regime (TSR λ = 2.88) and the other at higher loading

regime (TSR λ = 2.64), characterized by significant blade/vortex interaction.

Both regimes have been analyzed with the baseline density-based code, the tur-

bulent LSP-enhanced code, and the FLUENT pressure-based solver for verifica-735

tion and validation purposes. It was found that the LSP-based solution, unlike

that of the baseline density-based solver, provides a very good resolution of the

blade/vortex interaction phenomena at λ = 2.64, due to the high-resolution of

low-speed vortical flow regions achievable by using LSP. At λ = 2.88, a regime

characterized by simpler aerodynamics, the beneficial effect of LSP is lower, and740

the density-based solutions with and without LSP are in better agreement. All

LSP-based and pressure-based solutions are in good agreement, and this pro-

vides strong evidence of the correctness of the novel turbulent LSP technology
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and of the solution accuracy enhancement of density-based codes for realistic

low-speed problems of engineering interest.745
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Appendix A. Unpreconditioned flux Jacobian and flux differences

For 2D flow problems, the Jacobian of the fluxes normal to a cell face is:

∂Φcf

∂U
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 nx ny 0 0 0

γ1

2 q2nx − uUn Un − nxγ2u nyu− nxγ1v nxγ1 −nxγ1 0

γ1

2 q2ny − vUn nxv − nyγ1u Un − nyγ2v nyγ1 −nyγ1 0

γ1

2 q2Un − UnH nxH − γ1uUn nyH − γ1vUn γUn −γ1Un 0

−Unk nxk nyk 0 Un 0

−Unω nxω nyω 0 0 Un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

where q2 = u2 + v2, γ2 = γ − 2 and Un denotes the component of the flow755

velocity along the outward (with reference to any given grid cell) face normal n,

defined by:

Un = unx + vny (A2)

The unpreconditioned flux differences are:

δf1 = α1|λ1|+ α3|λ3|+ α4|λ4| (A3)

δf2 = α1u|λ1|+ α2|λ2|ny + α3|λ3|(u+ anx) + α4|λ4|(u− anx) (A4)

δf3 = α1v|λ1| − α2|λ2|nx + α3|λ3|(v + any) + α4|λ4|(v − any) (A5)
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δf4 = (q2/2 + k)α1|λ1|+ α2|λ2|Ut (A6)

+(H + aUn)α3|λ3|+ (H − aUn)α4|λ4|+ α5|λ5|
δf5 = α1|λ1|k + α3|λ3|k + α4|λ4|k + α5|λ5| (A7)

δf6 = α1|λ1|ω + α3|λ3|ω + α4|λ4|ω + α6|λ6| (A8)

where the tangential velocity component Ut is given by:

Ut = uny − vnx (A9)

The unpreconditioned characteristic variables αi are:760

α1 =

(
δρ− δp

c2

)
(A10)

α2 = ρδUt (A11)

α3 =

(
δp

c2
+

ρδUn

c

)
/2 (A12)

α4 =

(
δp

c2
− ρδUn

c

)
/2 (A13)

α5 = ρδk (A14)

α6 = ρδω (A15)

and the eigenvalues of the Jacobian
∣∣∣∂Φcf

∂U

∣∣∣ are:
|λ1/2/5/6| = |Un| (A16)

|λ3/4| = |Un ± c| (A17)

The boxed term in Eq. (A6) is the contribution of the TKE gradient to the

numerical dissipation of the total energy equation, due to the TKE term in the

definition of the total energy provided by Eq. (2).
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Appendix B. Preconditioners and preconditioned flux differences765

The expression of the preconditioning matrices Γc and its inverse (Γc)
−1 are

respectively:

Γc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + γ1δ2q
2

2a2 −γ1δ2u
a2 −γ1δ2v

a2
γ1δ2
a2 −γ1δ2

a2 0

γ1δ2q
2u

2a2 1− γ1δ2u
2

a2 −γ1δ2uv
a2

γ1δ2u
a2 −γ1δ2u

a2 0

γ1δ2q
2v

2a2 −γ1δ2uv
a2 1− γ1δ2v

2

a2
γ1δ2v
a2 −γ1δ2v

a2 0

δ2q
2(2a2+ζ)
4a2 − δ2u(2a

2+ζ)
2a2 − δ2v(2a

2+ζ)
2a2

2a2M2
p+δ2ζ

2a2 δ2 − δ2ζ
2a2 0

γ1δ2q
2k

2a2 −γ1δ2uk
a2 −γ1δ2vk

a2
γ1δ2k
a2 1− γ1δ2k

a2 0

γ1δ2q
2ω

2a2 −γ1δ2uω
a2 −γ1δ2vω

a2
γ1δ2ω
a2 −γ1δ2ω

a2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B1)

and

(Γc)
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− γ1δ2q
2

2a2M2
p

γ1δ2u
a2M2

p

γ1δ2v
a2M2

p
− γ1δ2

a2M2
p

γ1δ2
a2M2

p
0

−γ1δ2q
2u

2a2M2
p

1 + γ1δ2u
2

a2M2
p

γ1δ2uv
a2M2

p
− γ1δ2u

a2M2
p

γ1δ2u
a2M2

p
0

−γ1δ2q
2v

2a2M2
p

γ1δ2uv
a2M2

p
1 + γ1δ2v

2

a2M2
p

− γ1δ2v
a2M2

p

γ1δ2v
a2M2

p
0

− δ2q
2(2a2+ζ)
4a2M2

p

δ2u(2a
2+ζ)

2a2M2
p

δ2v(2a
2+ζ)

2a2M2
p

2a2−δ2ζ
2a2M2

p

δ2
M2

p
+ δ2ζ

2a2M2
p

0

−γ1δ2q
2k

2a2M2
p

γ1δ2uk
a2M2

p

γ1δ2vk
a2M2

p
− γ1δ2k

a2M2
p

1 + γ1δ2k
a2M2

p
0

−γ1δ2q
2ω

2a2M2
p

γ1δ2uω
a2M2

p

γ1δ2vω
a2M2

p
−γ1δ2ω

a2M2
p

γ1δ2ω
a2M2

p
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B2)

where, γ1 = γ − 1, δ2 = 1−M2
p , ζ = γ1(q

2 + 2k) and a2 = γ1(H − q2/2− k) is

the sound speed squared.770

The six components δfi,p of the preconditioned numerical dissipation Γ−1
c

∣∣∣Γc
∂Φcf

∂U

∣∣∣ δU
are:

δf1,p = α1|λ1|+ α3|λ3|(λ3 − Un)− α4|λ4|(λ4 − Un)

aM2
p

(B3)

δf2,p = α1u|λ1|+ α2|λ2|ny + anx(α3|λ3| − α4|λ4|) (B4)

+
u [α3|λ3|(λ3 − Un)− α4|λ4|(λ4 − Un)]

aM2
p

δf3,p = α1v|λ1| − α2|λ2|nx + any(α3|λ3| − α4|λ4|) (B5)

+
v [α3|λ3|(λ3 − Un)− α4|λ4|(λ4 − Un)]

aM2
2

δf4,p = (q2/2 + k)α1|λ1|+ α2|λ2|Ut (B6)

+

(
λ3 − Un

aM2
p

H + aUn

)
α3|λ3| −

(
λ4 − Un

aM2
p

H + aUn

)
α4|λ4|+ α5|λ5|
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δf5,p = α1|λ1|k +
α3|λ3|(λ3 − Un)− α4|λ4|(λ4 − Un)

aM2
p

k + α5|λ5| (B7)

δf6,p = α1|λ1|ω +
α3|λ3|(λ3 − Un)− α4|λ4|(λ4 − Un)

aM2
p

ω + α6|λ6| (B8)

The characteristic variables αi associated with the preconditioned problem

are:

α1 = δρ− δp

a2
(B9)

α2 = ρδUt (B10)

α3 =
δp− ρδUn(λ4 − Un)

a(λ3 − λ4)
(B11)

α4 =
δp− ρδUn(λ3 − Un)

a(λ3 − λ4)
(B12)

α5 = ρδk (B13)

α6 = ρδω (B14)

The eigenvalues of the preconditioned Jacobian Γ−1
c

∣∣∣Γc
∂Φcf

∂U

∣∣∣ are:775

|λ1/2/5/6| = |Un| (B15)

|λ3/4| =
1

2

∣∣∣Un(1 +M2
p )±

√
4a2M2

p + (M2
p − 1)2U2

n

∣∣∣ (B16)

The boxed term in Eq. (B6) is the contribution of the TKE gradient to the

numerical dissipation of the total energy equation, due to the TKE term in the

definition of the total energy provided by Eq. (2). This term equals that of the

case without preconditioning. It is also noted that a) LSP modifies only the

characteristic variables α3 and α4, as concluded by comparing Equations (A10)-780

(A15) and Equations (B9)-(B14), and b) the preconditioned flux differences

equal their unpreconditioned counterparts if Mp = 1, as expected.

The interested reader is referred to [26] for the the derivation of all expres-

sions presented in this Appendix.
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