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ABSTRACT
Historical itineraries, often accessible as lists or tables describing
places visited in sequence, are abundant resources and also impor-
tant objects of study for humanities scholars. This article advances
a novel method for automatically geocoding tabular itineraries,
combining approximate string matching with a cost optimization
algorithm based on dynamic programming. Experiments with a
dataset of historical itineraries, with ground-truth geocoding anno-
tations provided by domain experts and leveraging also the GeoN-
ames gazetteer, attest to the effectiveness of the proposed method.
The obtained results show that while approximate string matching
can already achieve very low median errors, with many toponyms
matching exactly against GeoNames entries, the combination with
cost optimization can significantly improve results in terms of the
average distance towards the correct disambiguations.
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1 INTRODUCTION
Historical itineraries, often accessible as tables or as sequential lists
of names for the places that were visited in a particular journey,
are abundant resources and also important objects of study for
humanities scholars [6, 24, 31], for instance providing insights into
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Figure 1: Two examples of historical itinerary.

the development of human mobility, and invaluable information re-
lated to the establishment of historical road networks. Well-known
examples include the 3rd century Itinerarium Antonini Augusti,
the 4th century Itinerarium Alexandri, the Itinerarium Burdigalense
written between the 8th and 10th centuries, or the 1191 Itinerar-
ium Cambriae, among many others1. Many historical manuscripts
and/or transcriptions containing information on itineraries, dating
from the Medieval period to the 20th century, are nowadays avail-
able in digital formats within repositories and initiatives such as
Europeana2, in the Internet Archive3, or in the context of Digital
Humanities projects like Pelagios4.

1http://www.peterrobins.co.uk/itineraries/
2http://www.europeana.eu
3http://archive.org
4http://commons.pelagios.org
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Figure 1 provides illustrative examples. The top part of Figure 1 
presents a page from a book with a transcription of the Itinerarium 
Burdigalense, which is the earliest known Christian itinerarium. 
It was written by an anonymous pilgrim, recounting his journey 
made between 333 A.D and 334 A.D from Burdigala (present-day 
Bordeaux, France) to Jerusalem and back. The bottom part of Fig-
ure 1 shows the itinerary inscribed in one of the Vicarello Cups, 
i.e. four silver cups discovered in 1852 near the baths of Aquae
Apollinares at Vicarello, Italy, having on their outside an itinerary
that goes from Gades (modern Cadiz) over land to Rome, including
104 stopping points along the way.

Few historical tabular itineraries are nonetheless directly associ-
ated with map-based representations and, in many cases, there is 
little information on the actual routes taken in between locales. As 
such, there are many interesting questions related to early travel-
ling routes. We believe that the analysis of historical itineraries (e.g., 
for consistency checking, or enabling new inquires and inferences 
about the routes) can be facilitated through the analytical tools 
of Geographical Information Systems (GIS) and/or through map-
based representations for these data. The research reported on this 
article concerns with automatically geocoding historical itineraries, 
leveraging innovative methods that explore the idea that travelers 
tend to choose the most efficient routes (e.g., itineraries will likely 
minimize the distance between locations [2, 5, 6, 21, 38]).

In brief, the proposed method is based on a sequence of four 
stages, combining string similarity search and well-known opti-
mization procedures, in order to find the most likely route. On the 
first stage, we use string similarity [25, 26] to look for candidate 
disambiguations in a large-coverage gazetteer. A state-of-the-art 
string matching method [29], leveraging supervised machine learn-
ing for combining multiple similarity metrics, can then optionally 
be used to further filter/restrict the set of candidates associated to 
each place in the itinerary. A least-cost path between pairs of candi-
dates, visited in sequence over the itinerary, is afterwards estimated 
on the third stage. For now we are only considering a geodesic 
path over the Earth’s surface (i.e., distance measured as the crow 
flies), although future developments can consider alternative path 
computation methods at this stage, e.g. leveraging terrain slope or 
historical land-coverage for estimating movement costs [3, 8, 9, 23]. 
Finally, Step 4 leverages the distance associated to each of the paths 
between pairs of candidates, which were computed in Stage 3, to 
find an overall best path for the entire itinerary, also disambiguat-
ing each of the toponyms to the most likely candidate. A dynamic 
programming algorithm, similar to Viterbi decoding in the context 
of hidden Markov models [10, 34], is used at this stage to efficiently 
compute the global path that minimizes the traveled distance.

The proposed method was evaluated through tests with man-
ually geocoded itineraries (e.g., measuring the distance between 
the estimated disambiguation and ground-truth geo-spatial coordi-
nates for the places in each itinerary). We relied on a dataset origi-
nally provided by Peter Robins5, containing a total of 24 sequences 
sub-divided into segments of varied lengths, corresponding to well-
known historical itineraries. We also used the GeoNames6 gazetteer 
for supporting the disambiguation of toponyms into geo-spatial

5http://www.peterrobins.co.uk/itineraries/list.html
6http://www.geonames.org/

coordinates, i.e. a resource which focuses on modern administra-
tive geography but that nonetheless lists many historical variants
as alternative place names. Our experiments showed that while
approximate string matching can already achieve very low median
errors (e.g., many of the toponyms in historical itineraries match
exactly with entries in GeoNames, and thus the median distance
towards the correct disambiguations is quite low), the combination
with cost optimization can significantly improve results in terms of
the average distance towards the correct disambiguations. Methods
leveraging the intuition that travelers tend to choose the least costly
routes, in combination with approximate string matching for find-
ing gazetteer entries that are likely to correspond to the historical
toponyms in the itineraries, are indeed effective for automatically
geocoding these resources. The best results, when simultaneously
looking at the mean and median errors, were achieved with the
combination of dynamic programming, for minimizing distances,
with the string matching method leveraging supervised learning.

The rest of this paper is organized as follows: Section 2 de-
scribes related work, focusing on previous methods for geocoding
itineraries. Section 3 presents the proposed method, outlining the
main stages and detailing the optimization procedure based on
dynamic programming. Section 4 presents the experimental evalua-
tion of the proposed method, detailing the evaluation methodology
and discussing the obtained results. Finally, Section 5 summarizes
our main conclusions, and presents possible paths for future work.

2 RELATED WORK
Previous research with significant similarities towards the work
that is presented in this article has been previously reported [5, 6],
e.g. in the form of preliminary studies with methods for disam-
biguating place references in the context of tabular descriptions
for historical itineraries (i.e., methods for linking each toponym,
presented in a tabular itinerary, to the correct geo-spatial coordi-
nates). These previous studies proposed to minimize the sum of
all string distances between itinerary toponyms and candidate dis-
ambiguations, whereas our approach instead leverages the idea of
minimizing geo-spatial distances between candidate disambigua-
tions. Our particular way of looking at the problem can be naturally
formulated as optimizing the cost of traversing a graph structure
corresponding to a trellis, in which the edges encode distances (e.g.,
geodesic distances or even terrain traversal costs estimated through
some other procedure) between consecutive locations.

In a first study, Blank and Henrich [5] leveraged string similarity
together with the fact that tabular itineraries often contain an ap-
proximate geo-spatial distance between each toponym, presented
in sequence, and the former toponym in the itinerary. A graph is
first created for representing the tabular itinerary. The graph con-
tains two special nodes encoding the beginning and the termination
of the itinerary, and it also contains nodes ni, j representing the
possible disambiguations tj for each toponym hi in the itinerary.
The Jaro-Winkler [36] string distance function s(hi , tj ) is applied
to each toponym hi of the itinerary table and all toponyms tj avail-
able in a gazetteer (i.e., the GeoNames gazetteer). If the distance
s(hi , tj ) ≤ argmintj s(hi , tj ) + δ , with δ representing a predefined
string distance threshold, then a nodeni, j is considered in the graph
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for representing a possible toponym disambiguation. The edges in 
the graph encode the possible sequences of the itinerary.

Besides the string distance function, the authors also considered 
filters for further restricting the sets of possible disambiguations 
for each toponym. A spatial filter is for instance applied to each 
candidate’s geo-spatial location, so as to ensure that candidates are 
contained within a given area. This area depends on the distance 
value that is registered on the input table towards the previous 
itinerary entry. Another filter checks the azimuth change in the tra-
jectory that can correspond to the disambiguated itinerary, after the 
inclusion of the candidate disambiguation. If the change is greater 
than a threshold α , then the candidate disambiguation is rejected. 
This second filter is based on the fact that itinerary trajectories are 
usually as direct as possible to get from one location to the next. 
A candidate from the gazetteer that, according to string similar-
ity, might be a good match for a toponym in the itinerary can be 
promptly rejected by either the spatial filter or the azimuth change 
filter. To perform the actual disambiguation, the shortest string 
distance path that connects the start to the end nodes is calculated, 
and the nodes involved in the shortest path are returned.

Blank and Henrich [5] evaluated the proposed method with an 
itinerary containing German place names, concluding that 40% of 
the toponyms were correctly identified. The authors also reported 
on some examples for the toponyms that were evaluated, illustrating 
that the proposed filters do indeed work properly.

In a subsequent study [6], Blank and Henrich tested different 
string similarity metrics, and they also advanced a depth-first 
branch and bound algorithm for performing the actual disambigua-
tion, thus improving the formalization of their procedure. In addi-
tion to the Jaro string distance, the authors experimented with (i) the 
Levenshtein distance, (ii) a string distance method based on n-gram 
overlap, considering bi-grams and tri-grams, (iii) a method based 
on character skip-grams, (iv) the DAS distance metric, specifically 
proposed for toponym matching [16], and (v) different phonetic en-
codings, namely (a) the Cologne phonetics, (b) Soundex, (c) Phonet, 
and (d) the New York Identification and Intelligence System Pho-
netic Code. A graph is created through the same procedure that 
was advanced in the original study, but the actual toponym dis-
ambiguation is now made through a depth-first branch and bound 
algorithm that iteratively expands the disambiguation candidates,
e.g. in decreasing order from the best to the worst.

The evaluation was made with 15 itineraries that, when com-
bined, contained 218 stopping points. The toponyms contained in
the itineraries were all in German and the best performing string
distance metric was the Cologne phonetic distance, reaching an ac-
curacy of 54.1%when leveraging string similarity alone (i.e., without
the geo-spatial filters for distance or azimuth angle). The authors
also tested different node expansion orders (i.e., in stopping order,
in reverse stopping order, and selectively picking the best candi-
date), concluding that expanding nodes in reverse order usually
grants a better accuracy, while expanding first the best candidate
grants, in most of the cases, an inferior distance between the dis-
ambiguations and the true locations (i.e., when wrong, the method
chooses candidates that are closer to the real locations).

Adelfio and Samet [2] addressed the related problem of identi-
fying and extracting itinerary tables from Web pages. Instead of

focusing on the disambiguation of the toponyms that are present
on the itineraries, these authors have instead focused on discrimi-
nating between Web tables that describe a true itinerary, and other
resources with a geographical context (e.g., demographic tables, as-
sociating place names to the corresponding number of inhabitants).
A pipeline with three steps was considered to extract itineraries
from theWeb, involving (i) a table crawler that scans a large portion
of the Web to build a dataset containing tables with a geographic
context, (ii) a geo-tagger that identifies geographic references in
the tables and disambiguates them through simple heuristics, and
(iii) an itinerary identifier that uses supervised machine learning to
decide if a table indeed represents an itinerary or not.

In Step (ii) of the proposed pipeline, Adelfio and Samet used
a geo-tagging method based on spatial coherence, inspired on a
previous publication [1]. The main contributions are in Step (iii)
of the proposed pipeline, where the authors proposed to use a
combination of multiple features as input to a classifier, under the
general assumption that itineraries are efficient in terms of how
the stopping points are ordered. The authors explored the idea of
generating small variations on the order of the original stopping
points, to determine if the variation is more efficient than the order
presented in the itinerary table being considered. Two efficiency
measures that leveraged this scheme (i.e. a local efficiency and a
general efficiency metric) were presented by the authors.

Let L = {l1l2 . . . ln } represent the ordered set of locations, and
consider that δi, j (L) is a function that returns the value of one if the
locations li and li+1 have a shorter path length than the length ob-
tained by the order given in L, or returns the value of zero otherwise.
The local efficiency metric expresses how the listed order could be
more efficient by considering a variation on consecutive stopping
points, and is defined as ϵ1(L) in Equation 1. The general efficiency
metric instead expresses how the order could be more efficient by
considering coarse variations of non consecutive stopping points,
as is defined by ϵ2(L) in Equation 2.

ϵ1(L) =
1

n − 3

n−3∑
i=1

δi,i+2(L) (1)

ϵ2(L) =
1(n−2
2
) n−3∑
i=1

n−1∑
j=i+2

δi, j (L) (2)

Besides the two efficiency measures, other features were also
considered. These include (i) a binary feature indicating if the table
describes a round trip, with the same location featured in the first
and last positions, (ii) the number of ordered date/time columns,
(iii) the number of ordered numeric columns, (iv) the number of
text columns that are sorted alphabetically, and (v) the occurrence
of words that are indicative of an itinerary (e.g., words such as
itinerary, trip or travel, among others). The aforementioned fea-
tures are provided to a binary classifier that decides if the table is
indeed an itinerary. Given the variety of feature types that were
considered, the authors experimented with different types of classi-
ficationmethods, namely with (i) a naïve Bayes model, (ii) a decision
tree, and (iii) a support vector machine. Through experiments, the
authors concluded that the decision tree classifier was more pre-
cise (i.e., they measured a precision of 0.72 when retrieving true



itinerary tables, and an F1 score of 0.73), although the support 
vector machine had a highest recall.

Moncla et al. [21] described a process for annotating spatial en-
tities in text that, taking inspiration on other studies addressing 
toponym resolution [11, 18, 22, 27, 30, 35], can geocode a natural 
language description for a route. Natural language processing is 
first employed to recognize the toponyms referenced in the input 
text, combining a cascade of transducers with the use of gazetteers. 
These toponyms are then disambiguated through an approach that 
combines clustering based on spatial density, with semantic match-
ing of geographical feature types. A graph-based method is finally 
used to find the sequence of disambiguated toponyms correspond-
ing to the order by which they are visited in the itinerary.

The graph-based method starts by building a complete graph 
from the text, using vertices to represent the mentioned locations, 
and edges to represent segments between pairs of locations. A 
multi-criteria analysis method is used to assign a weight to each 
edge of the complete graph, combining local information extracted 
from the text with physical features obtained from external datasets 
(e.g., from gazetteers or terrain elevation models). The set of con-
sidered criteria includes proximity in the source text, geo-spatial 
distance, terrain slope and motion orientation, or temporal rela-
tions extracted from the text. From the weighted graph, the authors 
compute a minimum spanning tree, in order to get an undirected 
acyclic graph connecting all vertices. The spanning tree is finally 
transformed into a partially directed acyclic graph (i.e., when avail-
able, verbs expressing motion relations, such as goes to or reach, are 
used to assign a direction to some the corresponding edges), and 
the longest path on the spanning tree is used to identify the starting 
and ending points in the sequence that represents the itinerary.

Moncla et al. evaluated their method with a set of 90 itineraries 
in different idioms, that had been previously annotated. The ob-
tained results were compared against manually produced trees, and 
also against the real trajectories associated to the itineraries. Ap-
proximately 71.4% of the inferred itineraries were within a buffer 
surrounding the geodesic path between each pair of true locations, 
with a width of 15% of the corresponding path length.

3 THE PROPOSED METHOD
Taking inspiration on the previous studies described in Section 
2, we propose a method for geocoding tabular itineraries that is 
sound, effective, conceptually s impler ( i.e., we avoid the use of 
filters for geo-spatial distance or azimuth angles, and the worse-
case computational complexity associated to the cost optimization 
procedure is now O(T × N 2) instead of NT , where N is the number 
of itinerary stops and T is the number of candidate disambiguations 
per itinerary stop), and also easily extendable (e.g., new heuristics 
for matching strings or for computing least-cost paths between 
pairs of locations can easily be integrated).

The proposed method can be seen as a sequence of four steps, 
combining string matching with a cost optimization procedure 
based on dynamic programming. The four steps are as follows:

(1) For each toponym in the itinerary, we retrieve a list of can-
didate disambiguations by searching for similar strings in a
database containing records from the GeoNames gazetteer.
Each candidate is a tuple containing a place name, a unique

identifier for the corresponding record in GeoNames, the
modern population count, and the geo-spatial coordinates
of latitude and longitude. The search for similar strings is
made through theWhoosh7 Python library, which efficiently
retrieves candidates sorted according to a metric derived
from the overlap between sets of character n-grams in both
strings. For increased computational efficiency, we restrict
the retrieved list to the top 30 most similar candidates.

(2) The list of candidate disambiguations is optionally re-ranked
through a state-of-the-art string matching procedure, which
leverages supervised machine learning for combining mul-
tiple similarity metrics, and which is detailed in a separate
publication [29]. The string matching method essentially
corresponds to an ensemble of decision trees (i.e., a random
forest classifier) that verifies if a pair of toponyms doesmatch
or not (i.e., the model checks if both toponyms correspond
to the same real-world place), leveraging a combination of
13 different string similarity metrics as the descriptive fea-
tures that are passed as input to the classifier. The model
was trained with a large dataset of 5 million toponym pairs
collected from the GeoNames gazetteer and, on 2-fold cross-
validation experiments, it achieved an accuracy of 78.67 –
see the previous publication by Santos et al. for additional
details [29]. The candidates are re-ranked according to the
confidence of the classifier on making assignments to the
positive class and, for increased computational efficiency,
we restrict the list of candidates after re-ranking to the top k
most similar candidates (i.e., in our experiments, we consid-
ered k equal to 15). Note that result re-ranking is an optional
step and, in some of our experiments, we directly used the
top 15 candidates from Step 1. The results from this step
are modeled as a trellis, i.e. a graph where the nodes corre-
spond to the disambiguation candidates for the sequence of
toponyms in the itinerary – see Figure 2.

(3) For each pair of candidates (ci , ci+1) that appear associated to
consecutive places visited in the itinerary (i.e., for each pair
(ci , ci+1) such that ci is a candidate disambiguation for place
si and ci+1 is a candidate disambiguation for a place si+1
visited immediately after si ), we estimate themost likely path
for traveling between the two locations, as well as the geo-
spatial distance associated to the path. The edges shown in
the trellis from Figure 2 are weighted with basis on these geo-
spatial distances. In the experiments that are reported on this
paper, we relied on a naive approach based on the shortest
surface-path (i.e., geodesic) between the pairs of locations,
using Vincenty’s formulae for calculating the corresponding
distance [33]. For future work, we also plan to experiment
with an approach based on least-cost path analysis, using
a cost surface built from raster datasets encoding terrain
slope and/or historical land-coverage, and using a procedure
such as the A* search algorithm to find the most likely route
between two locations in a raster grid [3, 8, 23, 37].

(4) Compute the most likely candidate for each place in the
itinerary (i.e., globally disambiguate the toponyms in the

7http://pypi.python.org/pypi/Whoosh

http://pypi.python.org/pypi/Whoosh


Figure 2: Example of a trellis encoding an itinerary that involves three different toponyms.

itinerary), by choosing the sequence of candidates that cor-
responds to the overall path of least distance. A well-known
dynamic programming approach known as the Viterbi algo-
rithm [10, 34], frequently used in the context of decoding
sequences with hidden Markov models, can be adapted to
compute the sequence of best candidate disambiguations.

Regarding Step 4 of the proposed geocoding method, we essen-
tially rely on dynamic programming for efficiently picking the best
disambiguation candidate for each place in the itinerary. The Viterbi
algorithm is a dynamic programming approach to find the most
likely path through a trellis, i.e. a graph where nodes are ordered
into vertical slices representing sequential information, and where
each node, at each position in the sequence (i.e., at each slice), is
connected to at least one node at an earlier position, and at least
one node at a later position. In our case, the trellis represents a
graph of possible paths between candidate disambiguations for the
places in the itinerary. Each node in this graph, apart for two special
nodes that were included for illustration purposes and that encode
the beginning and the termination of the sequence, represents a
candidate disambiguation for a given toponym. Each edge repre-
sents the geodesic straight line distance between two candidates
for consecutive places in the itinerary, as computed in Step 3 of our
procedure. The edges from/to the special nodes at the extremes of
the trellis can be considered to have a distance of zero towards the
subsequent/preceding nodes. An example of a trellis, encoding an
itinerary with 3 toponyms, is shown in Figure 2.

The motivation behind the use of dynamic programming arises
from the fact that, given amaximum ofN candidates per place andT
places in the itinerary, naively selecting themost likely candidate for
all places in the itinerary would involve NT calculations. However,
for any candidate at position t , there is only one most likely path to
that candidate. Therefore, if several paths converge at a particular
candidate for a toponym at position t , instead of recalculating them
all when computing the most likely path from this candidate to
candidates at position t + 1, one can discard the less likely paths,
and use only the most likely path in the calculations. When this

Algorithm 1: The dynamic programming method of Step 4.
input: a sequence S = {s1, s2, . . . , sT }, with each st equalling
a set of disambiguation candidates for the toponym at step t

output: a sequence I = {c1, c2, . . . , cT }, with each ct equalling
the estimated disambiguation for the toponym at step t

function VITERBI( S )
R1[1, · ] ← 0
for t ← 2, 3, . . . ,T do

for n ← 1, 2, . . . ,N do
R1[t ,n] ← min

k
(R1[t − 1,k] + ∆(st−1,k , st,n ))

R2[t ,n] ← argmin
k
(R1[t − 1,k] + ∆(st−1,k , st,n ))

end for
end for
zT ← argmin

k
(R1[t ,k])

IT ← szT
for t ← T ,T − 1, ..., 2 do

zt−1 ← R2[t , zt ]
It−1 ← szt−1

end for
return I

end function

is applied to each position in the itinerary, it greatly reduces the
number of calculations to T × N 2, which is much better than NT .

Concretely, the algorithm looks at each candidate for a place
at position t and, for all the paths that lead into that candidate, it
decides which of them was the most likely, i.e. it chooses the path
of least distance. In the unlikely case that two or more paths are
found to be minimum (i.e. if their distances are exactly the same),
then one of them is chosen randomly. The algorithm discards all
other paths, and it appends the source candidate, from where the
path originated, to a survivor path variable of the candidate for
the toponym at position t . The corresponding path distance is also
assigned to the toponym at position t of the itinerary.



Figure 3: Ground-truth trajectory associated to the pilgrimage of Jehan de Tournay from Valenciennes to Venice (on the left),
compared to the estimated trajectory for the same itinerary with (on the right) or without (on the middle) cost optimization
through dynamic programming for improving the results of approximate string matching in terms of the overall consistency.

The same operation is carried out on all the candidates for the
place at position t , at which point the algorithm moves onto the
candidates at position t + 1 and carries out the same operations.
When we reach time t = T (i.e., when we reach the final toponym
in the itinerary), the algorithm determines the survivor path as
before and it also has to make a decision on which sequence of
these survivor paths is the most likely one. This is carried out by
back-tracking the decisions regarding the choice of the survivor
with the least distance. The sequence of candidate disambiguations
associated to the path with the overall least distance is finally re-
turned. The pseudo-code shown in Algorithm 1 formally describes
the dynamic programming procedure used in Step 4 of the geocod-
ing method, considering that ∆(st−1,k , st,n ) represents the distance
between the candidates st−1,k (i.e., toponym k that appears as a
disambiguation candidate for the place immediately before position
t in the itinerary) and st,n (i.e., the candidate toponym n for the
place at position t ), as computed in Step 3.

4 EXPERIMENTAL EVALUATION
The experimental evaluation of the proposed method was based on
tests with a set of 24 manually geocoded historical itineraries, orig-
inally made available by Peter Robins. On average, each itinerary
contained 7 separate segments (i.e., in our tests we executed the
algorithm separately for each segment) and involved a total of 167
different toponyms, with the extremes corresponding to sequences
of 43 and 770 toponyms. Approximately 8.63% of the toponyms that
were present in the itineraries had a unique interpretation in the
considered gazetteer. Moreover, each toponym from the itineraries

had, on average, 10.2 exactly matching candidates in the gazetteer,
which confirms that these place names are highly ambiguous. The
itineraries mostly involve places in South and Western Europe, and
thus our tests involved a custom gazetteer built through a region-
based filter on the contents of GeoNames (i.e., the Python library
named Whoosh is used to index GeoNames contents from a re-
gion of the globe that discards most of Africa, Asia and America,
associating each alternative name for the gazetteer entries to the
corresponding geo-spatial coordinates and additional meta-data
elements). Notice that GeoNames is mostly covering the modern
administrative geography, but in many cases the entries are also
described with historical toponyms or transliterations in multiple
languages. The same index over the contents of GeoNames is used
by all the methods compared in our tests. For future work, we can
easily adapt our method in order to make use of other gazetteers
focusing on historical placenames [4].

Table 2 lists the different itineraries that were considered in our
tests, together with the corresponding number of places. In turn,
Figure 3 presents a map illustrating the first itinerary from Table 2
(i.e., the map presents the multiple segments that constitute the
complete itinerary) corresponding to the 1488’s pilgrimage of Jehan
de Tournay from Valenciennes, via Rome and Loreto, to Venice.

With basis on the ground-truth annotations for the itineraries
in the considered dataset, we measured the quality of the obtained
results in terms of the geo-spatial distance between the true coor-
dinates for each toponym in each itinerary, and the coordinates of
the estimated disambiguations. We specifically measured the mean
and the median geo-spatial distances, similarly to previous studies



Table 1: Experimental results for the proposed method, in comparison against simpler baselines.

Average Median Accuracy
Method Distance Distance <500m <1km <5km <50km <100km <500km

Whoosh 795.20 ± 1710.83 2.11 0.37 0.49 0.59 0.65 0.67 0.78
Whoosh + Population 440.52 ± 1273.57 0.82 0.43 0.55 0.71 0.82 0.84 0.89
Whoosh + Random Forests + Population 358.56 ± 1076.01 0.75 0.44 0.56 0.71 0.83 0.85 0.91

Whoosh + Dynamic Programming 142.29 ± 297.80 2.04 0.33 0.44 0.61 0.75 0.81 0.93
Whoosh + Dynamic Programming (Spatial+String) 146.96 ± 304.59 2.09 0.33 0.44 0.61 0.74 0.79 0.93
Whoosh + Random Forests + Dynamic Programming 126.71 ± 339.39 1.32 0.37 0.50 0.69 0.82 0.86 0.95

on toponym disambiguation and text geocoding [20, 30, 35]. Using
both metrics can better inform on cases where the disambigua-
tions are very close to the ground truth coordinates, and on cases
where the incorrect disambiguations are nonetheless very close
to the true locations. Distances were measured with Vincenty’s
geodetic formulae [33]. We also measured results in terms of disam-
biguation accuracy, thresholding the aforementioned geo-spatial
distance with values ranging from 500 Meters to 500 Kilometers.
Notice that a distance of zero is highly unlikely, given that the
coordinates for places in GeoNames will be different from the ones
considered in the ground-truth annotations for the itineraries. The
final threshold value of 500 Kilometers, although impractical for
real-world applications, can provide an estimate for the number
of cases in which the disambiguation procedure provided results
that are significantly distant from the ground-truth and from the
remaining places in the corresponding itinerary.

Table 1 presents the results obtained with the proposed method,
over the full set of annotated itineraries and contrasting the results
against simpler baselines. The first 3 rows in Table 1 correspond
to baselines that do not use dynamic programming to optimize the
total distance involved in each itinerary. These are as follows:

(1) A baseline method using Whoosh to retrieve, for each to-
ponym in each itinerary, the single most similar entry from
the GeoNames gazetteer. Recall thatWhoosh considers a sim-
ilarity metric based on the degree of overlap between sets of
character n-grams in both strings, specifically considering
character bi-grams and tri-grams.

(2) Similar to the first baseline method, but using the population
counts associated to the gazetteer entries as a second disam-
biguation criteria. For each toponym in the itinerary, if there
are multiple candidate disambiguations in the top positions
of the list retrieved by Whoosh, all with the same similarity
score, we consider the top candidate with the highest value
in terms of the population count. Notice that GeoNames
only contains modern values for the population counts, al-
though higher values in terms of modern population are also
frequently associated to important historical places.

(3) Similar to the first baseline method, but using a more sophis-
ticated procedure to rank the gazetteer entries according
to their estimated similarity. We specifically use our previ-
ously proposed state-of-the-art string matching method [29],
which leverages supervised machine learning (i.e., a random
forest classifier trained with a large set of pairs of toponyms
extracted from GeoNames) for combining multiple similarity

metrics. The classifier attempts to decide if a given pair of
toponyms (i.e., the toponym in the original data and a candi-
date retrieved by Whoosh) indeed correspond to the same
real-world location. For each toponym in the itinerary, we
return the GeoNames entry, from the list of 30 candidates
retrieved by Whoosh, for which the classifier had the high-
est confidence in saying that it matches the toponym in the
input data. In case of ties (e.g., for disambiguating candidates
sharing the exact same name, but with different geo-spatial
coordinates), the population count is used as a second-level
ranking/selection criteria.

The last three rows in Table 1 correspond to alternative methods
using dynamic programming. The middle row in this part of the
table corresponds to an approach that combines geo-spatial and
string distances (i.e., the Whoosh similarity score, transformed into
a distance function through a logarithmic transformation that at-
tempts to place the string similarity scores within the same range
of values as the geo-spatial distances) within the dynamic program-
ming algorithm, instead of just using string similarity for ranking
the top candidates. In this case, the pseudo-code given in Algo-
rithm 1 is adapted so that the update for the intermediate costs
R1[t ,n] becomes as follows:

R1[t ,n] ← min
k
(R1[t − 1,k] + ∆(st−1,k , st,n )) + d(st,n ,ot ) (3)

In the previous equation, d(st,n ,ot ) corresponds to the Whoosh
distance between the candidate st,n for the toponym at position t
in the itinerary, and the actual/original toponym ot at position t . In
our adapted version of the Viterbi procedure, these string distances
can be seen as equivalent to the emission costs that are considered
in the context of hidden Markov models.

The last row in this second part of Table 1 corresponds to the
complete method described in Section 3, whereas the first row
corresponds to a baseline method in which the top 15 candidates
retrieved by Whoosh are considered at each slice of the trellis (i.e.,
ignoring Step 2 of the method described in Section 3, and retrieving
only 15 candidates at Step 1 of the algorithm). In all cases, the ties
for the ranking scores based on string matching are again resolved
through the maximum population heuristic.

The results in Table 1 show that while approximate string match-
ing (i.e., the first baselines) can already achieve very low median
errors, the combination with cost optimization can significantly
improve results in terms of the average distance towards the correct
disambiguations. A manual inspection of the results showed that



Table 2: Results for each of the 24 itineraries, with the method that corresponds to the complete procedure given in Section 3.

# Places Average Median Accuracy
Itinerary (Segments) Dist. (km) Dist. (km) <500m <1km <5km <50km <100km <500km

Jehan de Tournay, Valenciennes-Venice 1488 104 (7) 14.34 ± 25.88 0.96 0.26 0.50 0.74 0.95 0.96 1.00
Anonymous, Bordeaux-Milan, 333 130 (7) 172.28 ± 496.95 0.76 0.39 0.49 0.66 0.79 0.81 0.93
Bertrandon de la Broquière, Ghent-Dijon, 1432-1433 51 (2) 63.91 ± 82.99 3.16 0.23 0.34 0.48 0.69 0.82 1.00
Bruges, road inventory, late 15th-century 770 (39) 97.50 ± 194.97 0.87 0.40 0.52 0.69 0.83 0.86 0.94
Nompar de Caumont, Caumont-Fisterra, 1417 61 (3) 152.3 ± 279.08 0.77 0.39 0.48 0.56 0.63 0.85 0.92
Nompar de Caumont, Caumont, 1418-1419 89 (2) 260.68 ± 1267.11 0.51 0.48 0.66 0.80 0.93 0.94 0.95
Codex Calixtinus, Aquitaine-Santiago, ca. 1140 88 (3) 137.93 ± 143.05 1.12 0.43 0.53 0.73 0.76 0.79 0.88
Emo, Frisia-Rome-Cologne, 1211-1212 43 (2) 55.79 ± 169.77 4.43 0.23 0.33 0.52 0.83 0.90 0.99
Charles Estienne, France, 1552-1553 623 (17) 212.83 ± 391.51 0.76 0.42 0.51 0.72 0.81 0.85 0.95
Arnold von Harff, Cologne-Cologne, 1496-1499 419 (6) 76.19 ± 313.06 0.50 0.48 0.62 0.79 0.89 0.91 0.96
Anonymous, Avignon-Santiago, 14th century 59 (6) 51.46 ± 112.82 0.27 0.64 0.70 0.85 0.89 0.92 0.95
Künig von Vach, Einsiedeln-Aachen, 1495 130 (2) 62.41 ± 165.44 0.48 0.50 0.61 0.80 0.91 0.92 0.94
Nikulas of Munkathvera, Iceland-Apulia, 1151 85 (5) 92.82 ± 148.20 1.15 0.28 0.41 0.58 0.65 0.71 0.97
Matthew Paris, London-Apulia, 1250 103 (8) 99.46 ± 116.17 2.62 0.27 0.37 0.58 0.76 0.81 0.93
Pvrchas his Pilgrimage, Plymouth-Calais, ca.1425 142 (6) 151.37 ± 409.42 1.96 0.32 0.43 0.68 0.87 0.90 0.95
Eudes Rigaud, Rouen-Rouen, 1253-1254 110 (2) 25.36 ± 91.76 0.58 0.45 0.58 0.74 0.92 0.95 0.99
Romweg-Karte, Germany-Rome, 1500 226 (16) 55.13 ± 53.02 1.85 0.19 0.36 0.61 0.77 0.81 0.99
Sigeric, Rome-England, 990 79 (2) 688.63 ± 1924.02 1.54 0.34 0.47 0.59 0.67 0.70 0.83
Annales Stadenses, Stade-Rome, ca.1250 217 (6) 64.73 ± 252.93 1.09 0.40 0.52 0.72 0.87 0.91 0.98
Barthélemy Bonis, Avignon-Rome, 1350 45 (1) 57.62 ± 192.18 0.39 0.53 0.62 0.73 0.89 0.89 0.96
Adam of Usk, Bergen op Zoom-Bruges, 1402-1406 49 (2) 39.90 ± 86.73 2.84 0.23 0.38 0.62 0.83 0.89 1.00
Pedro Juan Villuga, Spain, 1546 225 (8) 275.88 ± 743.25 0.95 0.38 0.48 0.74 0.77 0.81 0.91
William Wey 1st journey, Calais-Calais, 1458 104 (4) 101.05 ± 401.86 1.10 0.39 0.57 0.71 0.89 0.94 0.98
William Wey 2nd journey, Eton-Venice, 1462 47 (2) 31.52 ± 83.28 1.13 0.24 0.44 0.81 0.89 0.89 1.00

Average 167 (7) 126.71 ± 339.39 1.32 0.37 0.50 0.69 0.82 0.86 0.95

many of the toponyms in the historical itineraries match exactly
with names for entries in the GeoNames gazetteer, and thus the
median distance towards the correct disambiguations is quite low.
However, it is also often the case that Whoosh retrieves many dif-
ferent candidates, corresponding to places located far apart, whose
names match exactly with the input toponyms (e.g., GeoNames
contains many different entries for places named Rome, which
are all retrieved by Whoosh for a query using that toponym). In
these cases, the first baseline in Table 1 (i.e., the method that only
leverages the Whoosh retrieval scores) often failed to identify the
correct candidate, although the combination with the maximum
population heuristic was quite effective (i.e., the methods corre-
sponding to the second and third rows in Table 1 achieved the
overall best median distances, outperforming all methods that used
dynamic programming for optimizing costs). In cases involving
toponyms not matching exactly with GeoNames entries, and/or am-
biguous cases in which the correct disambiguation was nonetheless
retrieved in the top k candidates, the procedure based on dynamic
programming for minimizing costs lead to improved results, ef-
fectively capturing the intuition that travelers tend to choose the
least costly routes. The best trade-off between the median and the
mean errors was achieved by the method that combined dynamic
programming for minimizing geo-spatial distances with the string
matching method that leverages the random forest classifier (i.e.,
the more advanced string matching procedure helped to further
filter the candidates retrieved by Whoosh).

Table 2 summarizes the results with the complete method out-
lined in Section 3, for each of the 24 individual itineraries in the
considered dataset. In Figure 3, we also present maps illustrating
the ground-truth and the estimated trajectory for the first itinerary
in Table 2, leveraging either the best method from the first part
of Table 1, which does not use cost minimization (i.e., the map
on the middle), or the complete method described on Section 3
(i.e., the map on the right). These results again confirm that meth-
ods leveraging dynamic programming for minimizing the overall
geo-spatial distance can indeed be quite accurate, with the average
distance ranging between 14 and 364 Kilometers and leading to
overall trajectories that appear more consistent. In most of our
itineraries, more than half of the individual toponyms are disam-
biguated to places located between 1 and 5 Kilometers of the correct
coordinates, when considering the complete method.

Figure 4 presents a violin plot [15] with the distribution of the
error values measured for the alternative algorithms in Table 1, in
terms of the geo-spatial distance between the ground-truth coordi-
nates of each toponym in the different itineraries, and the coordi-
nates of the resulting disambiguations. Figure 5 presents a similar
plot, in this case illustrating the errors for the 5 individual itineraries
at Table 2 that involve a higher number of toponyms, and compar-
ing the complete method described in Section 3 against the simplest
baseline (i.e., the first row from Table 1). From the plots shown in
these figures, one can see that a large majority of the toponyms are
indeed disambiguated with a high accuracy. The distribution for the
errors is skewed, with most of the toponyms disambiguated with



Figure 4: Distribution for the errors obtained over each to-
ponym, for each of the methods shown in Table 1.

very low errors. The distributions, particularly on Figure 5, also il-
lustrate the fact that cost optimization with dynamic programming
contributed to lowering the mean errors.

5 CONCLUSIONS AND FUTUREWORK
Historical itineraries, i.e. sequences of toponyms corresponding
to particular journeys, are abundant resources and also important
objects of study for humanities scholars. Geographical text anal-
ysis (i.e., methods for addressing tasks such as document geocod-
ing [20, 35], toponym resolution [13, 22, 30, 35], or others [7, 11])
is increasingly being used in the Digital Humanities and related
fields [14, 35], although very few studies have specifically addressed
the problem of geocoding itineraries.

In this article, we described a novel approach for addressing the
specific problem of automatically geocoding historical itinerary
presented in tabular format, effectively combining string similar-
ity and cost optimization techniques. The proposed method was
evaluated with a set of manually annotated historical itineraries,
and the obtained results attest to its effectiveness. The use of dy-
namic programming to minimize the total distance between the
places involved in the journey obtained a significant improvement
in terms of the average distance towards the correct disambigua-
tions, although our experiments also showed that simpler baselines
(e.g., combining approximate string matching with a maximum
population heuristic) is already sufficient for disambiguating many
of the toponyms and achieving a low median distance.

Despite the interesting results, there are also many ideas for
future developments. Currently ongoing efforts focus on extend-
ing the method advanced in this paper in two different directions,
namely (i) improving Step 2 with a new string matching method,
leveraging a deep neural network architecture for modeling the
strings being compared [28], and (ii) improving Step 3 with a novel
approach for computing least-cost paths between consecutive loca-
tions in the itineraries, leveraging raster datasets encoding terrain
slope and/or historical land-coverage [3, 8, 23].

Figure 5: Distribution for the errors obtained over each of
the 5 longest itineraries shown in Table 2.

The idea of leveraging least-cost path analysis for reconstructing
the trajectories between pairs of locations is particularly inter-
esting in the context of geocoding historical itineraries, support-
ing a better estimation of the cost for moving between locations,
and also a detailed analysis and possible reconstruction of the ac-
tual routes. State-of-the-art least-cost path analysis methods are
based on applying search procedures such as the A* algorithm, over
anisotropic cost surfaces built through heuristics for combining
multiple sources of information. Given that we can have access to
a significant amount of itineraries already manually assigned to
the corresponding geo-spatial trajectories, a particular idea that we
would like to pursue relates to using reinforcement learning [32]
for inferring the parameters of a model capable of reconstructing
movement decisions, with basis on raster data sources (e.g., histori-
cal land-coverage information for the European territory from the
Historic Land Dynamics Assessment project [12]).

The dynamic programming algorithm used in Step 4 of the pro-
posed method takes its inspiration on Viterbi decoding for Hidden
Markov Models (HMMs). For future work, it would also be interest-
ing to test alternative methods for finding the best overall sequence
of disambiguations. In the context of HMMs, a popular alternative
is posterior decoding, based on taking the decisions that are indi-
vidually most likely for each position. These and other alternative
methods can perhaps also be adapted to our task [17].

Another objective for future work involves expanding the set
of experiments with the proposed method, for instance through
further tests involving the combination of string similarity and
geo-spatial distance when choosing the most likely paths (i.e., the
experiments in which we tried to combine geo-spatial and string
distances, within the Viterbi procedure, were limited in the sense
that we did not systematically attempt to tune the contribution
of each component), or considering different thresholds for the
number of disambiguation candidates considered for each toponym
in an itinerary. For now, we restricted our tests to 15 candidates
per toponym, although increasing this number can perhaps lead to
improvements on the overall results, by passing more disambigua-
tion options to the dynamic programming algorithm. Significantly
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increasing the number of candidates will involve additional strains 
in terms of computational performance, although we can consider 
highly optimized implementations for the dynamic programming 
method, e.g. leveraging Graphical Processing Units (GPUs) [19].

Also in terms of further extending the experimental evaluation, 
it would be interesting to evaluate the proposed method with other 
datasets besides the historical itineraries made available by Peter 
Robins, e.g. referring to different regions of the globe, and/or us-
ing other types of toponyms (e.g., involving different alphabets, 
and different challenges in terms of performing matches against 
gazetteer entries [28]). A particular example would be the dataset 
from the al-Thurayyā Gazetteer8, which includes almost 2,000 route 
sections geo-referenced from Georgette Cornu’s atlas du monde 
arabo-islamique à l’époque classique: IXe-Xe siècles.
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