Study of the material of the ATLAS inner detector for Run 2 of the LHC

Barton, Adam Edward and Beattie, Michael and Bertram, Iain Alexander and Borissov, Guennadi and Bouhova-Thacker, Evelina Vassileva and Dearnaley, William and Fox, Harald and Grimm, Kathryn Ann Tschann and Henderson, Robert Charles William and Hughes, Gareth and Jones, Roger William Lewis and Kartvelishvili, Vakhtang and Long, Robin Eamonn and Love, Peter Allan and Muenstermann, Daniel Matthias Alfred and Parker, Adam Jackson and Skinner, Malcolm and Smizanska, Maria and Walder, James William and Wharton, Andy and Whitmore, Ben (2017) Study of the material of the ATLAS inner detector for Run 2 of the LHC. Journal of Instrumentation, 12 (12). ISSN 1748-0221

Full text not available from this repository.

Abstract

The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb−1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Instrumentation
Additional Information:
Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Funded by SCOAP3
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2610
Subjects:
ID Code:
124081
Deposited By:
Deposited On:
16 Mar 2018 11:16
Refereed?:
Yes
Published?:
Published
Last Modified:
24 Mar 2020 07:37