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Abstract

A challenging goal in neuroscience is that of identifying specific brain patterns charac-

terising autistic spectrum disorder (ASD). Genetic studies, together with investigations

based on magnetic resonance imaging (MRI) and functional MRI, support the idea that

distinctive structural features could exist in the ASD brain. In the developing brains of ba-

bies and small children, structural differences could provide the basis for different brain

connectivity, giving rise to macroscopic effects detectable by e.g. electroencephalogra-

phy (EEG). A significant body of research has already been conducted in this direction,

mainly computing spectral power and coherence. Perhaps due to methodological limita-

tions, together with high variability within and between the cohorts investigated, results

have not been in complete agreement, and it is therefore still the case that the diagnosis

of ASD is based on behavioural tests and interviews.

This thesis describes a step-by-step characterisation and comparison of brain dynamics

from ASD and neurotypical subjects, based on the analysis of multi-probe EEG time-

series from male children aged 3-5 years. The methods applied are all ones that take

explicit account of the intrinsically non-linear, open, and time-variable nature of the sys-

tem.

Time-frequency representations were first computed from the time-series to evaluate the

spectral power and to categorise the ranges encompassing different activities as low-

frequency (LF, 0.8-3.5 Hz), mid-range-frequency (MF, 3.5-12 Hz) or high-frequency (HF,

12-48 Hz). The spatial pathways for the propagation of neuronal activity were then in-

vestigated by calculation of wavelet phase coherence. Finally, deeper insight into brain
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connectivity was achieved by computation of the dynamical cross-frequency coupling

between triplets of spatially distributed phases. In doing so, dynamical Bayesian infer-

ence was used to find the coupling parameters between the oscillators in the spatially-

distributed network. The sets of parameters extracted by this means allowed evaluation

of the strength of particular coupling components of the triplet LF, MF→HF, and en-

abled reconstruction of the coupling functions. By investigation of the form of the cou-

pling functions, the thesis goes beyond conventional measures like the directionality and

strength of an interaction, and reveals subtler features of the underlying mechanism.

The measured power distributions highlight differences between ASD and typically de-

veloping children in the preferential frequency range for local synchronisation of neu-

ronal activity: the relative power is generally higher at LF and HF, and lower at MF, in

the ASD case. The phase coherence maps from ASD subjects also exhibited differences,

with lower connectivity at LF and MF in the frontal and fronto-occipital pairs, and higher

coherence at high frequencies for central links. There was higher inter-subject variability

in a comparison of the forms of coupling functions in the ASD group; and a weaker cou-

pling in their theta-gamma range, which can be linked with the cognitive features of the

disorder.

In conclusion, the approach developed in this thesis gave promising preliminary results,

suggesting that a biomarker for ASD could be defined in terms of the described patterns

of functional and effective connectivity computed from EEG measurements.
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Chapter 1

Introduction

Networks of interacting oscillators abound in nature (Strogatz, 2001), ranging from large-

scale climatic interactions (Donges et al., 2009), to small-scale coupled molecular sys-

tems (Dolmetsch et al., 1997). The firing of ensembles of neurons in the brain is also

regulated by network dynamics (Achard et al., 2006). Measures like electroencephalog-

raphy (EEG) provide a mean-field global observable that describes their synchronous

oscillating dynamics (Deco et al., 2008) by picking up the activity underneath individual

probes on the scalp. The macroscopic behaviour of these synchronised oscillators has

been observed ever since the very first EEG recordings (Berger, 1929), with the brain’s

electrical activity emerging in waves (Buzsáki and Draguhn, 2004).

A diversity of signal processing methods has been applied over the years to characterise

the features of these brain waves in terms of their frequency range and amplitude, with

different brain states and functions being associated with EEG waves having specific fre-

quencies and emerging at particular locations (Buzsáki, 2006). One of the current chal-

lenges for the applications of nonlinear methods of analysis to EEG is to detect specific

brain patterns characterising autistic spectrum disorder (ASD).

Historically, the high occurrence of multiple cases of ASD among siblings resulted in

the disorder being attributed to bad parenting. Thanks to the advent of genetic studies

1
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this view was subsequently rejected (Bailey et al., 1995, Fatemi et al., 2005). In partic-

ular, it was found that genes associated with ASD are preferentially expressed in brain

synapse proteins (Berkel et al., 2010, Durand et al., 2007, Gilman et al., 2011). This

fact, together with MRI (Hazlett et al., 2017) and fMRI-based investigations (Just et al.,

2004), suggested a genetic predisposition for ASD that could result in an altered anatomi-

cal and functional development of the brain (Belmonte et al., 2004). The correspondingly

different “wiring” of the brain is likely to give rise to specific brain dynamics.

A considerable body of research has already been conducted in this direction. In par-

ticular, the EEG signal has been analysed with the aim of identifying ASD signatures,

especially in the distribution of spectral power and in coherence measures (Belmonte

et al., 2004, Bosl et al., 2011, Coben et al., 2008, Duffy and Als, 2012, Khan et al., 2013,

Murias et al., 2007). The results in the literature are not in complete agreement as to

what best describes the EEG of an autistic child. There are many factors that may have

played roles in generating the mixed outcomes, for example the ages of the subjects, the

reference channel used, and the type of activity or resting state used. It could also be the

case that the signal processing tools used were unable to describe the system at a level

deep enough to disclose the fundamental differences between the groups.

These could be some of the reasons why, despite much scientific effort, the diagnosis

of ASD still rests solely on behavioural tests and interviews with the children’s families

(Gotham et al., 2009). The diagnostic process can take years, thereby preventing early

intervention in cases where the presence of ASD has not been obvious from an early age.

Finding specific signatures of ASD in a test as clinically common and globally widespread

as EEG could therefore help physicians in the diagnostic process, thereby improving both

the efficacy of intervention strategy and the quality of life for both the children and their

families.

In the work described below, EEG time-series from a cohort of male children aged 3-5

years have been studied. The 10-20 multi-probe montage was used. Because biological

processes are intrinsically nonlinear, open, and time-variable (Suprunenko et al., 2013),
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all of the methods applied here for characterisation of EEG time-series took these features

explicitly into account. The brain dynamics was characterised systematically, step-by-

step, by tackling the problem through sequential levels of analysis (Clemson et al., 2016).

First, time-frequency representations were obtained by the mean of the wavelet transform

(Daubechies, 1990), in order to evaluate how the overall spectral content was generated

by non-stationary processes happening at different frequencies. The ranges encompass-

ing different activities were categorised as low frequency (LF, 0.8-3.5 Hz), mid-range

frequency (MF, 3.5-12 Hz) or high frequency (HF, 12-48 Hz).

The spatial pathways for the propagation of neuronal activity were then investigated. This

was achieved by computing the wavelet phase coherence (Sheppard et al., 2011, 2012),

allowing us to detect matching phase dynamics in pairs of probes. This measure of co-

herence provides a value at each frequency. It is important to stress that phase coherence

is a state of the system which does not necessarily imply any underlying coupling.

A detailed study of the coupling means going beyond the conventional description in

terms of phase and amplitude values. It requires reconstruction of the nonlinear dynamics

of the system, with the goal of revealing the underlying neuronal mechanisms generating

the measured EEG data. This kind of knowledge can be achieved by considering the

brain as a collection of oscillators whose activities project on space, i.e. on various parts

of the scalp, and whose phase and amplitude can be extracted from the EEG at certain

points (i.e. probe locations) and for certain frequency ranges. The interactions between

the oscillators can be inferred by coupling the time evolution of their spatially-distributed

activity according to a certain model. This approach has been already applied to study

some cases of amplitude-to-amplitude (Bruns et al., 2000, De Lange et al., 2008), phase-

to-phase (Jirsa and Müller, 2013, Stankovski et al., 2015, 2017b) and phase-amplitude

(Axmacher et al., 2010, Jensen and Colgin, 2007, Schack et al., 2002, Tort et al., 2010,

Voytek et al., 2010) coupling.
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In this thesis, the focus has been placed on phase-to-phase interactions and, for the first

time, cross-frequency phase coupling functions have been inferred from the multidimen-

sional EEG data of neurotypical and ASD children, going beyond functional brain con-

nectivity and describing the underlying effective connectivity. In order to do so, the time

evolutions of the collective LF, MF and HF phases were extracted from each time-series

by Butterworth filtering and Hilbert transformation. Then, for each pair of probes, a triplet

of phases was built by taking the LF and MF phases from one source and the HF from the

other. This design of the coupling network allowed the study of the spatial propagation

of the phenomena regulating the low-to-high phase-to-phase coupling, which had already

been found to be of central importance for the eyes-open eyes-closed brain states (Jirsa

and Müller, 2013, Stankovski et al., 2017b), as well as for cardio-vascular regulation (Iat-

senko et al., 2013, Rosenblum et al., 2002, Ticcinelli et al., 2017). Each triplet was treated

as a system of coupled phase oscillators subject to noise, and the time-variable coupling

parameters were inferred by dynamical Bayesian inference (Smelyanskiy et al., 2005,

Stankovski et al., 2012, 2017b). The strength of specific coupling components was calcu-

lated from the inferred parameters (Rosenblum and Pikovsky, 2001). Moreover, the latter

allowed reconstruction of the coupling functions describing the interactions (Stankovski

et al., 2017a). By mapping the value of the coupling as a function of the two phases in-

volved, coupling functions go beyond the directionality and strength of an interaction, to

describe in more subtle detail the mechanism underlying it. In order to quantify such mor-

phological features, the form of the coupling functions LF, MF→HF from the ASD and

control group were compared by computation of indices like polar similarity (Stankovski

et al., 2017a, Ticcinelli et al., 2017), or similarity with average functions (Kralemann

et al., 2013, Stankovski et al., 2017a).
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Thesis structure

In order to define the context and describe the background, current knowledge of brain

dynamics is briefly reviewed (Chapter 2). The commonest approaches undertaken to de-

scribe connectivity and causality are also described (Section 2.2). The methods of analy-

sis that will be applied to the dataset are then presented, together with their applications

to simulated data (Chapter 3). To set the background for applications to the autistic case,

the outcomes of recent studies of ASD signatures in children EEG are reviewed (Chapter

4). Nonlinear methods are then discussed in Chapter 3. They are then applied to mul-

tidimensional EEG data recorded from ASD and non-ASD children, and the results are

presented (Chapter 5). The potential significance of the results as a biomarker for ASD

is finally discussed (Chapter 6). In conclusion, limitations due to the specific set of data

used, and to EEG measures in general, are listed together with suggestions for possible

improvements and future developments (Chapter 7). In Appendix A, a brief description

of the anatomo-physiology of the brain is provided to explain the cellular and anatomical

terms used in the thesis.



Chapter 2

Brain dynamics

2.1 Neuronal oscillations

The human brain is composed by about 100 billion neuronal cells connected in a complex

network, with an estimated number of 200 trillion connections between them (Buzsáki,

2006).

Neurons are electrically excitable cells. They maintain cross-membrane voltage by means

of ion pumps and channels placed within their membranes. If the cross-membrane voltage

reaches a specific threshold, an electrochemical pulse is generated and travels along the

neuron and propagates to downstream neurons via synaptic interactions (Kandel et al.,

2000).

Single neurons can also display self-paced electrical oscillatory properties as a further

developed form of ionic conductance (Buzsáki and Draguhn, 2004). These autorhythmic

neurons may act as pacemakers (by firing with a specific frequency) or as resonators

(by having a preferential response to certain firing frequencies) (Llinás, 1988). Within a

network of neurons, such cells can give rise to coherent network oscillations. Such waves

propagating in the network are believed to be the mechanism by which information is

represented in the brain (Wang, 2010).

6
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Specific patterns of synchronisation in the neuronal networks can achieve complex brain

functions such as perception, memory and consciousness (Engel et al., 2001, Varela et al.,

2001). Those are not only responses to incoming stimuli (bottom-up mechanism), but are

also based on the memory of previous experience, stored in the architecture of cortical

and subcortical networks (top-down mechanism) (Engel et al., 2001). Bottom-up and top-

down mechanism are simultaneously implemented by large-scale networks that integrate

both incoming and endogenous activity (Varela et al., 2001).

The most efficient way to achieve synchronous firing of ensembles of neurons is to have

them temporally coordinated so that their membrane potential reaches a value close to

threshold in a specific time-window (Mirollo and Strogatz, 1990). In such a setting, an

input that is not timed with the basic rhythm is less likely to cause a response. More-

over, the energetic cost of propagating the action potential is lower if contiguous neurons

are regulated by oscillating membrane potential with similar frequencies (Mirollo and

Strogatz, 1990).

Rhythms with different frequencies can not only exist simultaneously on the same net-

work, but also interact with each other (Klimesch, 1999), giving rise to the extremely

complex, powerful and plastic brain networks, and networks of networks.

2.1.1 Electroencephalogram

In summary, within the cortex, neurons are interconnected and organised in specialised

networks, and in networks of networks. The collective, timed behaviour of ensembles

of neurons generates waves of electrical activity travelling within the system: bodies of

single units firing in a synchronised or unsynchronised fashion lead to the emergency or

disappearance of rhythms in the sum of action potentials, centred around specific frequen-

cies.

The portion of this electrical activity which reaches the surface of the brain can be picked

up from the scalp by means of electroencephalographic (EEG) probes. Since the very

early days of neuroscience, it has been clear that different states and functions of the



Brain dynamics 8

brain are associated with the presence- or the absence- of specific frequency contents in

the EEG signal, and a lot has been done in order to characterise these correspondences.

In the following section, the origin and characterisation of EEG signal will be briefly

introduced.

2.1.1.1 Origin of EEG

It was 1875 when Richard Caton published in the British Medical Journal a paper in

which he described how he observed and measured specific electrical activities on the

cerebral cortex of dogs and apes by using unipolar electrodes and a galvanometer (Caton,

1875).

Nevertheless, it took almost 45 years from then to get the first human electroencephalo-

graphic recording, obtained by the German psychiatrist Hans Berger in 1929. Berger was

profoundly convinced that human beings are the source and means of propagation of what

he called ’psychische energie’, some kind of mental energy that was, according to him,

ubiquitous within the human body, and even able to travel between individuals, allow-

ing non-verbal, telepathic communication. Inspired by Caton’s work, he put together the

EEG machinery with the goal to find a signature of this energy, and prove his theories

(Niedermeyer and da Silva, 2005).

2.1.2 First band separations of EEG

It was Berger himself to identify and name the alpha (α) and beta (β) rhythms in his

first EEG studies. In his first report he wrote: "The electroencephalogram represents a

continuous curve with continuous oscillations in which... one can distinguish larger first

order waves with an average duration of 90 milliseconds and smaller second order waves

of an average duration of 35 milliseconds." (Berger, 1929). He then named both rhythms

in his second report: "For the sake of brevity I shall subsequently designate the waves

of first order as alpha waves = α-w, the waves of second order as beta waves = β-w,

just as I shall use “E. E. G.” as the abbreviation for the electroencephalogram."(Berger,
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1931). The alpha-blocking response caused by eyes-opening was described in the second

report too, with beta activity becoming observable in the time domain when alpha wave

disappeared.

The gamma (γ) frequency range was introduced by Jasper and Andrews (Jasper and An-

drews, 1938), observed as superimposed to occipital alpha activity. However, it was kept

unified with the beta range till the 90s, when the sampling frequencies of EEG instrumen-

tation improved and the gamma band became the centre of many studies about cognition

(Llinas et al., 1991).

The delta (δ) band was named in 1936 by Grey Walter (Walter, 1936), and included all

the frequencies slower than alpha range.

The theta (θ) band was the last one to be introduced, and named after the hypothesis of

its thalamic origin (Walter, 1936).

2.1.3 Functional meaning and spatial location

Many studies along the years went beyond the definition of bands, and tried to charac-

terise more deeply their connection with brain states.

2.1.3.1 Alpha band

As previously mentioned, alpha wave has been the first to be discovered (Berger, 1929)

and has been intensively studied ever since. It is the most easily observable oscillatory

component of the EEG, and its strength adjusts sensibly when the subject’s state changes:

the most evident drop of alpha wave amplitude is observed when the subject opens their

eyes after a period with eyes closed. Because this phenomenon was already described in

Berger’s second EEG report (Berger, 1931), it is often refereed to as ’Berger effect’.

It has been also observed that engaging into a task causes a further drop of alpha activ-

ity (Klimesch, 1999). Therefore, alpha oscillation has been targeted as ’idling’ rhythm

(Pfurtscheller and Aranibar, 1977), and its disappearance in the EEG has been associated
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with some form of brain activation. Recently, it has been suggested that the emergence

of alpha oscillation could not only indicate a state of inactivity, but on the contrary it

could actively perform a selective inhibitory action over some cognitive and motor tasks,

especially when they involve a top-down control. Under this interesting perspective, the

disappearance of the wave indicates the release of the inhibition allowing for the emer-

gency of other activities (Klimesch et al., 2007).

Since Berger’s studies, it has been clear that the highest alpha rhythm is picked up over the

occipital cortex: combined fMRI/EEG studies have deepened the picture of the occipital

prevalence of this rhythm, and indicated the thalamus as the main subcortical generator of

alpha rhythm (Feige et al., 2004), through thalamo-cortical loops with the visual cortex.

The inverse proportionality of alpha power and brain activity was also observed by other

fMRI-EEG combined studies (Goldman et al., 2002, Laufs et al., 2003).

2.1.3.2 Beta band

The beta band was identified in Berger’s first report and named in the second (Berger,

1931). The smaller amplitude wave within the beta frequency range could be observed

with eyes open, when alpha activity diminished. Berger hypothesised that is could be

beta and not alpha wave to be the expression of mental activity (Berger, 1938), and in the

same year Jasper and Andrews disclosed the different nature of alpha and beta rhythms

(Jasper and Andrews, 1938) documenting their distinct emergence, spatial distribution

and independent frequency patterns. In this work, they also first identified the need to put

a higher limit to the beta band, and called ’gamma’ the range above 30-35Hz.

In 1985, a study by Cole isolated attentional from cognitive tasks, and observed how the

drop of alpha activity reflected attentional demands toward the environment, while the

emergence of beta activity reflected the initiation of emotional and cognitive processes

(Cole and Ray, 1985).

The beta rhythm has been intensively studied even in relation to movement: a consistent

pool of research agreed in detecting the de-synchronisation of firing at beta range during
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the action, with consequential re-synchronisation after the completion of the task (McFar-

land et al., 2000). It has therefore been proposed that the beta oscillation could have the

functional role to maintain the motor-sensorial feedback loop (Engel and Fries, 2010).

2.1.3.3 Gamma band

The gamma activity was first identified and named by Jasper and Andrews in their work

dated 1938 (Jasper and Andrews, 1938). However, the term ’beta’ encompassed all the

frequencies above 40Hz till the 90s. Just then, when many studies focused on high-

frequency waves induced by mental and motor tasks, the term ’gamma’ was brought back

under the spotlight (Llinas et al., 1991).

The emergence of gamma activity in temporal-occipital sites during visual perception and

object representation has been identified in the ’90s (Tallon-Baudry and Bertrand, 1999).

Later on, deep-EEG studies allowed to precisely identify that gamma activity as response

to a visual stimulus firstly appears in specific cortex gyri within the occipito-temporal

sites and then propagates to parietal locations (Lachaux et al., 2005). The emergence of

gamma oscillations during cognitive tasks such as object recognition (Rodriguez et al.,

1999), learning (Miltner et al., 1999) and emotional evaluation (Müller et al., 2000) has

been detected by numerous studies.

Several biochemical time-constant processes involved in the interaction of an ensemble

of neurons manifest with time-constants falling into the gamma band. These parame-

ters determine if the inputs from multiple upstream sources can be integrated as a single

event (Buzsáki, 2010), suggesting that the dynamics of ensembles of cells can be organ-

ised in gamma cycles (Buzsáki and Wang, 2012). As the regions of the brain in which

gamma activity is detected are characterised by the presence of inhibitory interneurons

with GABA synapses, is has been suggested that the synchronisation in gamma band

could be achieved by summing inhibitory more than excitatory potentials (Buzsáki and

Wang, 2012).
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This description pictures gamma oscillation like a local phenomenon, but spatially sepa-

rated patches of synchronised gamma activity can interact with each other through direct

neuronal connections like interneurons (Buzsáki and Draguhn, 2004). Also, slower tem-

poral coordination among oscillators at gamma frequencies may be achieved by modula-

tion from the phase of slower rhythms (Canolty et al., 2006, Jensen and Colgin, 2007).

2.1.3.4 Theta band

In the years, the term ’theta rhythms’ has been referring to two different phenomena shar-

ing similar frequency range. On one hand, it defined a strong regular oscillation of 4-6 Hz

which has been detected from the hippocampus of several mammals. It has been hypoth-

esised that the rhythm could reflect the readiness of the hippocampus to process external

inputs, especially during exploration and state of alert (Buzsáki, 2005). On the other hand,

in humans, the term ’theta’ usually refers to EEG oscillations in the 4–7 Hz frequency

range, regardless of the location. The functional significance of this rhythm is mainly as-

sociated with memory tasks (Jensen and Tesche, 2002) and cognition (Klimesch, 1999).

It has not been fully established if there is a direct link between the hippocampal and the

cortical theta activity in humans. A study with EEG and MEG observed the emergence

of the theta rhythm in the hippocampus before the presentation of a memory task (Tesche

and Karhu, 2000), confirming the founding of animal studies (Buzsáki, 2005).

2.1.3.5 Delta band

The delta wave has been observed since its discovery in the EEG during deep sleep. It has

been later found that within the delta frequency band there are at least 3 oscillations with

distinct mechanisms and sites of origin: the slower <1 Hz cortical oscillation, a thalamic

oscillation (1–4 Hz), and a faster cortical oscillation (1–4 Hz).

A study conducted on both anaesthetised animals and in naturally sleeping humans dis-

closed how spatially distributed synchronization of the slow oscillation can modulate the

phase of thalamic and cortical faster delta (1–4 Hz) oscillations (Amzica and Steriade,
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Age δ band θ band α band β band γ band
(years) (Hz) (Hz) (Hz) (Hz) (Hz)

Standard Adults 4 8 13 40 40+
Stroganova et al. (1999) 0.5-1 5.2 9.6
Marshall et al. (2002) 1-4 6 9
Boersma et al. (2011) 5-7 4 6 11 25
Boersma et al. (2013) 2-5 4 10 25
Orekhova et al. (2007) 3-8 13.2 24 70
Clarke et al. (2016) 8-12 3.5 7.5 12.5 25
Duffy and Als (2012) 2-12 2 8 12 30
Cantor et al. (1986) 4-12 3.5 7.5 12 30
Coben et al. (2008) 6-11 3.5 7.5 12.5

TABLE 2.1: Upper limits of EEG bands standards for adults and as adjusted for children
studies

1998). Other studies focusing on the lower-amplitude delta wave still observable in awake

subjects identified its possible rule in governing cognitive processes (Başar et al., 2001).

2.1.4 Children EEG

When dealing with children, the traditional limits of EEG bands have to be re-discussed.

It has been found that during the development years brain activity undergoes changes

together with the maturation of cellular substrates (Hudspeth and Pribram, 1992). In

particular, it seems like the alpha wave spectral peak occurs at slower frequencies (8

Hz instead of 10 Hz) in younger children (Boersma et al., 2011, Marshall et al., 2002,

Stroganova et al., 1999).

Considering the maturation of EEG in early childhood, in order to prevent splitting the

same activity in different bands across the groups, authors adapted the limits of the bands

according to the spectral content of the time-series they analysed (Table 2.1 shows some

examples). Some studies joined consecutive bands for spectral investigations (Boersma

et al., 2013).

2.1.5 The reference probe

When analysing EEG recordings, it must be bared in mind that what is measured by each

probe is a voltage, i.e. a difference of electric potential energy between two probes.
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With a bipolar setting, pairs of electrodes share the same amplifiers, and each pair records

the corresponding voltage within the locations where the two poles are placed. For unipo-

lar settings, every electrode has an amplifier, and the voltage is measured between each

active probe and a reference, which is common to all active electrodes. In other words, if

the reference is the probe X, the times series VA of the probe A is a voltage derived from

the difference of electric potential energy EA and EX .

Common choices for the on-line reference probe are the apex of the head (probe Cz),

linked or single earlobes (Mantini et al., 2007), the electric potential energy from one

mastoid (Delorme and Makeig, 2004, Marinazzo et al., 2011), and linked mastoids (Faes

et al., 2015).

For EEG measures, the choice of the reference is a procedure that can be performed off-

line. For example, in the case of the off-line common average (CA) (Andrzejak et al.,

2001, Lehnertz and Elger, 1995), the idea is to generate for every probe Ai a new voltage

time-series V ′Ai by subtracting the average time-series VCA from each original VAi . This

linear transformation should reduce the bias in the spatial distribution of the voltages

coming from the position of the reference probe during the recording. For example, for

the probe A1 the transformation acts as follows:

VA1 = E1 − Ex

VCA = 1/N
∑
i

VAi = 1/N
∑
i

(Ei − Ex)

= 1/N
∑
i

Ei − Ex

V ′A1
= VA1 − VCA = E1 − Ex − (1/N

∑
i

Ei − Ex)

= E1 − 1/N
∑
i

Ei , (2.1)

which is not dependent on Ex.

In the case of re-referencing to one of the active probes (named here B), or to 2 linked

probes, an analogue transformation removes the dependence on the original reference and
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shifts it to the new one:

VA1 = E1 − Ex

VB = Eb − Ex

V ′A1
= VA1 − VB = E1 − Ex − (EB − Ex) = E1 − EB . (2.2)

Arguably, every choice of reference has its implication on the analysis, and defining which

is the best choice for each investigation is not a trivial problem (Hagemann et al., 2001,

Hu et al., 2010, Yao et al., 2005). In order to overcome this limitation, several transfor-

mations involving realistic head models have been implemented in order to reconstruct

the topographic map of the electric field potential at its sources starting from the scalp

EEG (Michel and Murray, 2012).

2.1.6 Types of connectivity

Connectivity can be investigated under a structural, functional and effective point of view

(Friston, 2011). The first provides information on the actual anatomical connections

running between different areas of the brain, and can be investigated with great space-

resolution by MRI studies. In the recent years a global project has started with the aim

to map the human connectome via MRI imaging (Van Essen et al., 2012). The second

provides information about timed patterns of brain activation emerging in resting state or

triggered by a task. It can be investigated with fMRI (Friston et al., 1999), fNIRS (Ferrari

and Quaresima, 2012), or EEG techniques (Varela et al., 2001) by detecting simultane-

ous brain activation on different areas of the brain. The third aims to provide insight

on the mechanism generating the connection, going beyond the structural and functional

description of it. It requires the application of a model and the characterisation of its

parameters (Aertsen et al., 1989, Friston, 2011).

While MRI and fMRI based studies can disclose with great space-resolution differences

in the structural and low-frequency functional connectivity, EEG is the optimal method
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to investigate higher frequency functional and effective connectivity.

2.1.7 Cross-frequency interactions

As already mentioned in the description of gamma oscillation, it has been shown that

interactions can occur in the brain network between oscillations with different frequencies

(Canolty et al., 2006).

The speed of neuronal communication is limited by the physical time needed for the

action potential to travel through the axon, and by synaptic delays. The period of an

oscillation is therefore proportional to the number of neurons engaged in series in the

transmission. Because most neuronal connections are local, higher frequency oscillations

can happen in small groups of neurons, while slower oscillations propagate on a longer

neuronal chain (Buzsáki and Draguhn, 2004, Steriade, 2001). To integrate these phenom-

ena happening at different scales, it has been suggested that slower oscillations that can

propagate on longer distances could function as a means to synchronise faster oscillations

emerging in spatially separated networks (von Stein et al., 2000).

For instance, slower cross-frequency couplings were investigated during auditory novelty

oddball task, with increased bi-coherence coupling for delta-theta bands and delta-alpha

bands over several areas of the cortex (Isler et al., 2008). The delta-alpha coupling was

also compared in eyes-open and eyes-closed EEG with bispectra and bicoherence (Jirsa

and Müller, 2013) and with coupling functions (Stankovski et al., 2017b), showing a

prominent delta-alpha coupling in eyes closed.

2.2 Coupling and causality in the neuronal network

One of the aims of estimating brain interactions is to investigate the connectivity pathways

of the information flow among cortical area. The coupling among brain waves responsible

for such interactions can be described with its strength and directionality. Estimating the

directionality of coupling introduces the concept of causality: by abstracting from the
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physical mechanism underlying the connection, methods like Granger causality (Granger,

1969) have been applied very popularly in applications to biophysics and neuroscience.

According to this approach, a time series X is causal to another time series Y if the past

values of X can be useful to predict the future values of Y . This method can be very

powerful to detect a linear statistical relationship between time series. Several extensions

of Granger causality have been proposed in order to encompass the presence of nonlin-

ear relationships within the time-series (Marinazzo et al., 2011), including the possibility

to detect causality between time-series by using any polynomial kernel function (Mari-

nazzo et al., 2008). The major limitation of this approach is the assumption that temporal

sequence implies causality, which may or may not be correct.

A similar approach to detect causality relies on entropy-based measures of information

Information stored in a time series is quantified by its own entropy. Causality in this

framework is seen as joint transfer entropy, or information transfer, obtained with Granger

causality applied in a probabilistic framework (Vicente et al., 2011). However, this ap-

proach does not allow one to draw any conclusion on how the observed activity is gener-

ated at a network level.

A different approach in the determination of causality within neural networks consists in

the application of dynamical causal modelling. The central idea behind dynamic causal

modelling is to treat the brain as a deterministic nonlinear dynamical system that is subject

to inputs and produces outputs (Friston et al., 2013). The inputs are given to the system

in form of perturbations, and the outputs are the measured responses. The coupled -

unobserved - brain states responsible for this mechanism constitute the model for the

detected brain connectivity. The objective of the analysis is to estimate the parameters of

the coupling by perturbing the system and measuring the response. Bayesian inference of

connections is made using the posterior density, computed using the likelihood and prior

densities.
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As discussed in a recent comparative review (Friston et al., 2003), Granger causality and

dynamical causal modelling complement each other in the framework of detecting cau-

sation as time- dependence. If the first can be applied empirically to detect the coupling

strength and directionality in time series from resting states or in comparing different

conditions, the latter, on the contrary, requires specific tailor-made models of the system

as hypotheses to be tested. However, also Granger causality is not completely model-

free, as the model selection is implicit for its application (linear time dependence) and

also explicit in the selection of the differential equations’ order. Granger causality and

dynamical causal modelling as described above can be applied to detect amplitude re-

lationship between time-series. Generalisations of the methods have been developed in

order to investigate phase dynamics, by applying the first to spectra (Brovelli et al., 2004),

and the latter to phase-time series (Penny et al., 2009).

Coupling as a form of interaction has been also formalised and studied in a more physical

sense. Back to 1673, Huygens first observed that two pendulum clocks sharing a beam as

support would synchronise their rhythms (Huygens, 1673). The coupling in this case was

represented by the nature of the beam, whose elastic behaviour functioned as a means of

interaction between the movements of the pendula, allowing mutual adjustments between

their phases. However, a theoretical definition of phase coupling was first introduced a

couple of centuries later by Winfree, in the context of population dynamics as interacting

phase oscillators (Winfree, 1967). He defined the coupling function between the phases

as the product of influence and sensitivity functions.

Later on, in a famous work by Kuramoto, the synchronisation phenomena in a large pop-

ulation of oscillators was fully described by reducing the complex multivariate oscillatory

dynamics to phase dynamics (Kuramoto, 1984). Rather than local coupling, Kuramoto

built his model by introducing an all-to-all coupling in the system. The coupling was

modelled as a sinusoidal function of the phase difference i.e. diffusive coupling. The

phase difference is particularly convenient in studying synchronisation, as it reduces the

dimensionality of the problem.
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It was only with the new millennium that computational power became strong enough

to allow coupling functions to be inferred from data. Based on Kuramoto’s theoreti-

cal model, reconstructed coupling functions can allow one to detect the directionality,

strength and mechanism of each interaction (Rosenblum and Pikovsky, 2001). In the fol-

lowing years, different methods for the inference of coupling functions from data were

developed. Phase dynamics were investigated in chemical oscillators and it was demon-

strated that a model obtained from experiments on a single oscillator can predict synchro-

nisation in large populations of interacting oscillators (Kiss et al., 2005). The inference

was later extended within a Bayesian framework, in order to propagate the information on

estimated coupling parameters between consecutive windows, and therefore follow time-

variability both in the coupling rule and in the oscillators dynamics (Stankovski et al.,

2012).



Chapter 3

Materials and methods

3.1 Spectral analysis

In order to introduce the bases of spectral analysis, the concept of analytic decomposition

of a time series is briefly introduced, together with some terminology.

3.1.1 Analytic decomposition

A real signal s(t) can be approximated by braking it down into a sum of sinusoidal com-

ponents ŝ(t), of the form

ŝ(t) = A(t) cos
(
ω(t) · t+ θ

)
= A(t) cos

(
2πf(t) · t+ θ

)
= A(t) cos φ(t) ,

(3.1)

where A(t) is the instantaneous amplitude, θ the initial phase shift, and ω(t) = 2πf(t)

the instantaneous frequency, in rad/s or Hz, respectively. The cosine argument ω(t) · t+θ

forms the instantaneous phase φ(t), therefore ω(t) = φ̇(t).

20
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Each component can be also analytically expressed as a time-series of complex numbers

u(t) = <[u(t)] + Im[u(t)], or u(t) = A(t)eiφ(t), where

A(t) = |u(t)| =
√
<[u(t)]2 + =[u(t)]2

φ(t) = 〈u(t)〉 = arctan
(=[u(t)]

<[u(t)]

)
.

(3.2)

The EEG signal, for example, generates from the superposition of components having

different frequencies. The components are affected by noise and their frequencies and

amplitudes are time-variable. Therefore, trying to characterise features and dynamics of

such signals by observing their time-domain can be an arduous task. In this case, trans-

forming to the frequency domain can lead to a simpler representation of the information

contained in the signal.

Historically, the most wide-spread tool to perform this task is the Fourier transform (FT)

(Fourier, 1822), along with its time-localised version, the windowed-Fourier transform

(WFT) (Gabor, 1946). Another tool to expand a signal into its time-frequency domain is

the Wavelet transform (Daubechies, 1990, Stefanovska et al., 1999). In the next section

the performance of the 3 methods will be compared on numerically simulated EEG sig-

nals (Clemson et al., 2016). The most suitable method will then be applied on the real

data.

3.1.2 Fourier transform

The FT dates back to 1822, when Joseph Fourier proved how some functions could be

decomposed into an infinite sum of harmonics (Fourier, 1822). Each point- in frequency-

of the FT is proportional to the amplitude of the corresponding frequency component, and

is given by the following integral:

FT (f) =

∫ +∞

−∞
s(t)e−i2πftdt . (3.3)
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The FT does not take into account time-variability, and it is reliably applicable only un-

der the assumption of infinite and stationary signals. In real life, this is never the case.

Therefore, even if the FT can give an initial glance to the spectral content of a time-series,

artefacts due to non-infinity and non-stationarity are likely to mask the real spectral infor-

mation.

The transformation from time to frequency domain in the FT preserves the number of

points in the signal, so that a time-series s(t1:N ) with N samples is converted into a

FT (f1:N ), with also N samples. For real signals, FT (fn) is symmetric, hence the in-

formative samples are n = 1 : N/2. In summary, the frequency axes of FT is linearly

divided in bins with width ∆f = Fs/N , and ranges from the slower detectable compo-

nent having fmin = Fs/N to the highest with fmax = Fs/2.

3.1.3 Windowed Fourier transform

An extension of the FT is the Windowed Fourier transform (WFT) (Gabor, 1946). By

computing the FT on consecutive epochs of the time-series, it allows one to expand the

signal in both time and frequency domain. It is defined as:

WFT (f, t) =

∫ +∞

0
s(u)g(u− t)e−i2πfudu , (3.4)

and it consists, for every frequency step, in the FT of the convolution of the signal s(t)

with a windowing function g(t).

A common choice for g(t) is a Gaussian function:

g(t) =
1√

2πf0

e
−t2

2f20 , (3.5)

where the adimensional parameter f0, called resolution parameter, defines the width of

the window, and therefore tunes the ratio between time and frequency resolution.

Fig. 3.1 shows how the parameter f0 acts over the extension of the Gaussian window-

ing function, which is independent of the investigated frequency f . The frequency step
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FIGURE 3.1: Effect of the f0 parameter in the construction of the windowing function
of the WFT for different frequencies f . Note the length of the window does not depends

on the investigated frequency f . Vertical axes are adimensional.

is linear, therefore every frequency step is equal to the previous step +∆fw. The fre-

quency discretisation is obtained by choosing ∆fw = Fs/Nw, where Nw is the number

of samples included in the windowing function.

Time-frequency resolution is a crucial in time-frequency analysis. As a matter of fact, the

indetermination principle puts a limit on how precisely the frequency and time-localisation

of a specific component can be detected. This is due to the need of using a higher number

of samples N to achieve a smaller ∆f (as ∆f = Fs/N ). At the same time, a longer

window will insert uncertainty on where exactly –in time– the oscillation is placed. The

lower frequency limit is also affected by the length of the chosen windowing function, as

fmin = Fs/N .

3.1.4 Continuous Wavelet transform

The last method for time-frequency representation presented here is the continuous Wavelet

transform (WT). Similarly to the WFT, it involves a windowing function (in this case

called wavelet function, ψ(u)), and allows one to investigate the components of a time

series in the time-frequency domain. The main difference between the two methods is the

presence of a scaling factor of the wavelet which allows one to adjust the length of the

window (i.e. the time/frequency resolution) to each investigated frequency, with logarith-

mic spacing. In this work, the fineness of the frequency discretisation is determined by the



Materials and methods 24

number-of-voices parameter µ, so that the next frequency equals the previous one multi-

plied by 21/µ. The choice of µ is linked with the analytical limit of frequency resolution

depending on the length of the wavelet function (Iatsenko et al., 2015).

The WT is defined as

WT (a, t) =

∫ ∞
0

s(u)ψ
(u− t

a

)du
a
, (3.6)

where the scale a is inversely proportional to the investigated frequency f , with a rela-

tionship depending on the specific ψ. A common choice for ψ is the complex Morlet

wavelet, defined as:

ψM (x) =
1√
2π

(ei2πf0x − e−
(2πf0)

2

2 )e
−x2
2 , (3.7)

where f0 is the resolution parameter and x is the adimensional quantity (u − t)/a of

Equation 3.6. Similiarly to the WFT, f0 it adjusts the time/frequency resolution. A con-

venient feature of the complex Morlet wavelet is that there is a direct relationship between

scale and frequency, being a = f0/f . Considering this, the equation for the WT becomes

WTM (f, t) =

∫ ∞
0

s(u)ψM

(f(u− t)
f0

) f
f0

du . (3.8)

Figure 3.2 shows how the parameter f0 determines the number of oscillations embedded

underneath the Gaussian window. Note that, regardless of f0, the same number of periods

of the oscillation with frequency f are included in the wavelet, therefore a higher f0

generates a longer wavelet function. This was not the case for the WFT (Figure 3.1).

3.1.5 Simulated EEG to compare time-frequency representations

A synthetic signal s(t) has been generated by simulating the EEG frequency content, i.e.

by the overlapping of 5 oscillations having time-variable frequencies centred around Fi =

[2, 5, 10, 20, 40] Hz and amplitude Ai = [6, 5, 4, 3, 2] µV . For simplicity, no coupling
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FIGURE 3.2: Effect of the f0 parameter in the construction of the wavelet function of
the WT for different frequencies f . Note that the length of the window depends on the

investigated frequency f . Vertical axes are adimensional.

has been set between them. To simulate the dataset analysed in this work, the length

of the signal was 60s, and the sample frequency Fs = 256 Hz. Each component xi(t),

with i = 1 : 5, was generated so that both the speed and amount of the variability, were

proportional to the average frequency Fi with fi(t) = Fi−0.2Fi sin(2π 0.025 Fi t). The

phase of each component was computed by adding noise to the time variable frequency,

by the relation

φi(t) =
(
2πfi(t) + ξ(t)

)
· t , (3.9)

including the noise ξ(t) modelled as white Gaussian 〈ξ(t)ξ(τ)〉 = δ(t − τ)D. The

simulation was run twice: (i) with no noise (D = 0) and (ii) with noise intensity D = 5.

Finally the simulated signal was reconstructed as

s(t) =
∑5

i=1Ai cos(φi(t) + θi) , (3.10)

with θi random initial phase shifts.

The capability of the methods to correctly resolve the different components of s(t) have

been tested for the classical FT and for both WFT and WT (with resolution parameters

f0 = [1, 2, 3]). Power spectra from WFT and WT are calculated by time-averaging the

square of the absolute values of the time-frequency representation, i.e. by 〈|WFT (f, t)|2〉t
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and 〈|WT (f, t)|2〉t.

A window of 2s of each xi is plotted in the first panel of Figure 3.3, with the corresponding

simulated EEG obtained by their summation (in the second panel). The FT power of the

full signal is shown in the third panel, where the groups of spikes corresponding to each

component are still recognisable.

Middle panels in Figure 3.3 show the performance of WFT. It can be seen how, with the

increasing of f0, the time resolution becomes more blurred. Especially for the higher

frequency component, the average spectra resemble the spikes in the FT.

Bottom panels in Figure 3.3 show the performance of WT. The effect of f0 is more evident

here, with the ridges being better resolved in the time-frequency domain for higher values

of f0. However, in the time-averaged domain the higher frequency resolution leads to the

emergence of ’double-bumps’ in the spectra, which could trick the observer in splitting a

single mode into two.

The effect of noise is evident in the time-evolution of the single components in the first

panel of Figure 3.4, and not so clear in the time-evolution of the signal s(t) in the sec-

ond panel. In the FT of the whole signal, the presence of specific components is barely

distinguishable underneath the noise.

The time-frequency representations give a better insight into the power distribution. Even

if the evolution of the ridges is less clear in presence of noise, the time-average spectra are

all able to isolate the single components. For the WFT, the main effect of increasing the

resolution parameter is a more spike-like frequency resolution. For the WT, increasing f0

gives two-fold effects: it improves the resolution of the individual components, and at the

same time amplifies the ’double bump’ effect for each of them.

3.1.6 Conclusions about the time-frequency representation

An important consideration on the choice between WT and WFT regards the number of

points included in each frequency band. In the case of EEG, the frequency range 0.8-48
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FIGURE 3.3: Simulation of EEG signal from Equation 3.10 with time-variable frequen-
cies and no noise. Individual bands, summed time series and FT power spectra (on a
logarithmic frequency scale) are shown on the top panels. To compare the performance
of the two methods, WFT and WT are computed for different values of the resolution
parameter f0. Note how f0 modulates the compromise between time and frequency

resolution of the ridges.
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FIGURE 3.4: Simulation of EEG signal from Equation 3.10 with time-variable frequen-
cies and noise intensity E = 10. Individual bands, summed time series and FT power
spectra (on a logarithmic frequency scale) are shown on the top panels. To compare the
performance of the two methods, WFT and WT are computed for different values of
the resolution parameter f0. Note how f0 modulates the compromise between time and

frequency resolution of the ridges.
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Hz is conventionally divided in 5 intervals: delta (0.8-3.5 Hz), theta (3.5-8 Hz), alpha

(8-13 Hz), beta (13-30 Hz) and gamma (30-48 Hz) bands, which are respectively 2.7,

4.5, 5, 17, 18 Hz wide. In the case of the WFT, as the frequency resolution is linear, the

delta interval contains about 1/7 of the samples contained in gamma band. For the WT,

with the number-of-voices parameter µ = 33, the number of point for each interval are

respectively 70, 39, 23, 40, 22. Therefore, for this case, the logarithmic resolution allows

for a more uniform distribution of the information between the intervals of interest.

For this reason, and for its capability of better resolving closer components at mid-high

frequency, the further analysis will be performed with WT and f0 = 2.

For the real data, the relative power is also computed in order to investigate how spectral

content is distributed, regardless of its amplitude. Relative power is computed by dividing

each frequency sample by the sum of the total spectra, and therefore has unitary area. It

is better to talk about area instead of integral because the logarithmic spacing of the

frequency axes could lead to a misleading interpretation. As a matter of fact, the WT is

defined on the logarithmic scale, therefore bins on the lower part of the spectra have a

narrower base than the ones on the higher counterpart. This effect is counterbalanced by

the stretch due to the logarithmic representation. Talking about ’integral’ would imply

weighting each bin by the absolute extension of its base, which in this case is non correct.

3.2 Wavelet phase coherence

Defining the phases φ as the angle of the WT coefficient, i.e. φ(f, t) = arctan(=(WT (f,t))
<(WT (f,t) ),

the Wavelet phase coherence (WPC) between two signals was determined as

WPC(f) =
1

N
|
N∑
n=1

ei(φ1(f,tn)−φ2(f,tn))| , (3.11)

which is equivalent to

WPC(f) =

√√√√( 1

N

N∑
n=1

sin
(
∆φ(f, tn)

))2
+
( 1

N

N∑
n=1

cos
(
∆φ(f, tn)

))2
, (3.12)
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where ∆φ is equal to φ1 − φ2 (Sheppard et al., 2012).

For signals which perfectly preserve the phase difference in time, i.e. ∆φ(f, tn) =

δconst(f), the value of WPC will be

WPCconst(f) =
√
〈sin(δconst(f)) 〉2t + 〈cos(δconst(f)) 〉2t

=
√

sin(δconst(f))2 + cos(δconst(f))2 = 1 . (3.13)

On the contrary, for signals with perfectly random phase difference in time, i.e. ∆φ(f, tn) =

rand[0 2π] = δrand(f, t), WPC will assume the value of

WPCrand(f) =
√
〈sin(δrand(f, t)) 〉2t + 〈cos(δrand(f, t)) 〉2t

=
√

0 + 0 = 0 . (3.14)

More complicated relationships give intermediate coherence between 1 and 0.

By definition, WPC depends strictly only on the phases, and is therefore independent of

the amplitude of the signals.

Time-localised Wavelet phase coherence WPCTL (Sheppard et al., 2012) was computed

for simulated time-series as well, by applying equation 3.11 to windows of the signals

containing 10 periods of the corresponding frequency. This computation, albeit having

the advantage of making time-localisation of coherent epochs possible, is based on a

lower number of samples than the non-time-localised one, and therefore produces values

of coherence which are more susceptible to the effect of random phenomena.

3.2.1 Simulated EEG to test coherence analysis

Two synthetic signals s1(t), s2(t) have been generated, characterised by central frequen-

cies of f1 = 10 Hz and f2 = 11 Hz. This time, the signals were coupled with a diffusive

coupling acting from s1 to s2, which by construction increases in strength the more the
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phases of the two oscillators differ. In other words, the diffusive coupling acts to synchro-

nise the two oscillators by making their phases more coherent against the difference in

the oscillators’ natural frequencies. This type of coupling has been extensively studied,

and it is the base of the Kuramoto model for coupled phase oscillators (Kuramoto, 1984).

The described system was constructed as:


φ̇1(t) = 2πf1(t) + ξ1(t),

φ̇2(t) = 2πf2(t) + C(t) sin
(
φ1(t)− φ2(t)

)
+ ξ2(t) ,

(3.15)

where the dynamical noise ξ(t) was again modelled as white Gaussian 〈ξ(t)ξ(τ)〉 =

δ(t− τ)D (Stankovski et al., 2012).

Here and in what follows, the differential equations are integrated by applying the Heun

method: calling φ̇(t) = f(t, φ(t)), h the time sampling and ti+1 = ti + h, the algorithm

calculates at each integration step a temporary value φ̃i+1 = φi + hf(ti, φi) and then the

final approximation φi+1 = φi + h
2 [f(ti, φi) + f(ti+1, φ̃i+1)] at the next step.

The simulation was run twice: (i) with time-constant coupling strength C(t) = 6 Hz, and

(ii) with time variable strength C(t) = 6 + 6 · sin(0.2 t) Hz (which has time average

〈C(t)〉 = 6 Hz). The noise was set low, for simplicity, with strengthD = 0.0002. Finally

the simulated signals were reconstructed with time variable amplitudes A1(t), A2(t), so

that the envelope of the signal was uniformly and randomly varying at 10 and 11 Hz

respectively. This was achieved by linearly interpolating a random sequence of amplitude

values (between 0 and 1, 10 and 11 values for every second of the time series s1 and

s2 respectively) with the Matlab function spline to match the signal sampling and by

multiplying them to the sinusoidal, i.e.


s1(t) = 2A1(t) cos(φ1(t))

s2(t) = A2(t) cos(φ2(t)) .

(3.16)
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FIGURE 3.5: A 5s window of the simulated time-series of Equation 3.16, and their full-
length wavelet transform. Note the uncorrelated amplitude of the signals, and the effect

of the coupling in the frequency variability of the ridge in the WT of s2

A window of 5s of the time-series is plotted in Figure 3.5, together with the WT, for the

time-variable coupling case (with resolution parameter f0 = 1). Note how, in the top

panel, the amplitude of the signals is uncorrelated, and the phases are transitioning from

a state of incoherence to a state of coherence. This happened because the time-window

corresponds to the ascending part of the coupling strength, as will be discussed in Figure

3.8. Also note how the ridge in the Wavelet transform of s1 was stable in time around

10Hz, while for s2 the frequency slightly varied in time because of the variable strength

of the coupling.

The case with constant coupling C(t) = 6 Hz is analysed first. Figure 3.6 shows the

time series, the value of the coupling, and the time-localised plots of WPCTL, with the

coherent ridge correctly centred around 10 Hz.

The time average of WPCTL (in purple) is presented on the top left panel in Figure 3.7.

The results for the non-time-localised computation are reported on the right-side panel.

The threshold generated by 100 Fourier transform surrogates (as explained in Section 3.5)

is shaded in corresponding colours. The bottom panels show the effective coherence, i.e.

the positive results of the subtraction between a coherence plot and the corresponding

surrogates. It can be noted how both time-localised and non time-localised computa-

tions correctly isolated the coherent frequency band centred around 10 Hz. However, the

time-localised computation produced both higher spurious coherence outside the relevant
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FIGURE 3.6: Simulation of time series of Equation 3.16 with constant coupling. Note
that the ridge around 10 Hz in the time-localised Wavelet phase coherence corresponds

to the frequency of the coupled oscillators.

frequency interval and a higher surrogate threshold within the coherent frequency band.

This led to a less pronounced effective coherence for the time-localised case.

For the time-variable coupling (C(t) = 6 + 6 sin(0.2 t) Hz), results were similar. Figure

3.8 illustrates the time series, the time-evolution of the variable coupling and WPCTL.

The latter shows how the coherent ridge centred around 10 Hz was not maintained in

FIGURE 3.7: Comparison between time-localised (in purple) and non-time-localised
Wavelet phase coherence (in orange) for a time-constant coupling. On the top, the
surrogate level is shaded in same colours. On the bottom panels, the surrogate level
is subtracted from the coherence, and only the positive parts (effective coherence) are

shown. Note that the peak at 10 Hz is higher for the non time-localised version.
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FIGURE 3.8: Simulation of time series of Equation 3.10 with time-variable coupling.
The ridge around 10 Hz in the time-localised Wavelet phase coherence corresponds to
the frequency of the coupled oscillators, and appears in correspondence of the time-

windows with higher coupling.

time, like in the case of constant coupling, but appeared when the coupling strength went

above ∼5 Hz. Being the average value of the time-variable coupling strength equal to

the previously discussed case of constant coupling strength, the time-average values of

Figure 3.9 are comparable to the values shown in Figure 3.7. The non-time localised case

produced lower coherence in the band of interest when compared to the constant-coupling

FIGURE 3.9: Comparison between time-localised (in purple) and non-time-localised
Wavelet phase coherence (in orange) for a time-variable coupling. On the top, the sur-
rogate level is shaded in same colours. On the bottom panels, the surrogate level is sub-
tracted from the coherence, and only the positive parts (effective coherence) are shown.

Note that the peak at 10 Hz is higher for the non time-localised version.
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case, together with some spurious effective coherence at lower frequencies.

3.2.2 Conclusions about the coherence investigations

The numerical simulation highlighted the loss of effective coherence when the time-

localisation is requested. This effect is probably due to the reduced number of periods

of the oscillations included in each time-window. Because the EEG signals involved in

this study are recorded in resting state, and there is no time-correspondence between data

obtained from different subjects, coherence computation will be performed with non-time

localised wavelet phase coherence. In order to compare the results, the values of coher-

ence reported in this work correspond to the average value of WPC both in time and

within each investigated frequency interval.

3.3 Cross-frequency coupling

As introduced in Section 3.2, the mutual adjustments of oscillating rhythms can be ex-

pressed as an inter-dependence between the phases and frequency of the oscillators in-

volved. However, albeit the coherence analysis can detect the presence and strength of

same-frequencies relationship (Sheppard et al., 2012, Varela et al., 2001), it can not pro-

vide any information about the mechanism of the coupling. As a matter of fact, two

oscillators can be highly coherent, i.e. evolving with the same frequency, without being

actually coupled.

In what follows, the focus will be directed on coupling existing between different frequen-

cies (cross-frequency coupling) by modelling the data as systems of interacting phase os-

cillators (Kuramoto, 1984, Stankovski et al., 2015). The coupling information from such

systems can be expressed in the form of a coupling function (Rosenblum and Pikovsky,

2001, Stankovski et al., 2012).

The coupling function’s decomposition enables one to isolate the functional contribution

of each component of the system to the overall coupling relationship (Iatsenko et al., 2013,

Stankovski et al., 2015). Therefore, the study of coupling functions not only provides
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information of existence and strength of the coupling, but also enables one to go deeper

in the characterisation of an interaction by describing the mechanisms underlying the

functional connectivity of a network.

For these reasons, extraction and reconstruction of coupling functions between interacting

oscillatory processes has been recently performed on multiple fields of science, including

brain dynamics (Stankovski, 2017), cardiorespiratory interactions (Iatsenko et al., 2013,

Kralemann et al., 2013, Stankovski et al., 2012, Ticcinelli et al., 2017), chemistry (Kiss

et al., 2005, Miyazaki and Kinoshita, 2006, Tokuda et al., 2007), and secure communica-

tions (Stankovski et al., 2014b).

In this section it will be also shown how, by the means of the Dynamical Bayesian Infer-

ence, it is possible to infer the coupling parameters characterising the existent interactions

from the data (Duggento et al., 2012, Stankovski et al., 2012).

3.3.1 Coupling decomposition

The diffusive coupling applied in Section 3.2 is one of the possible types of cross-frequency

phase interaction. As a matter of fact, the same mathematical framework can be extended

to a network of N interacting units subject to dynamical noise and governed by different

time-varying relationships.

Assuming that the coupling is weak enough, such systems can be investigated by studying

their phase dynamics (Kuramoto, 1984, Pikovsky et al., 2001). To do so, a system of N

stochastic differential equations with time varying parameters can be built as

φ̇i(t) = ωi(t) + qi(φ1, . . . , φN , t) + ξi(t) , (3.17)

with i = 1, . . . , N . The equation shows how the instantaneous frequency of each os-

cillator φ̇i(t) is generated by the sum of a deterministic part, composed by the natural

frequency ωi and the coupling function qi, and a stochastic part represented by ξi, which
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is modelled as Gaussian white noise such that 〈ξr(t)ξs(τ)〉 = δ(t − τ)Dr,s (Stankovski

et al., 2015).

By focusing on the deterministic part, it is evident how the natural frequency ωi undergoes

an additive modulation by the means of the coupling function qi. Note that this form of

coupling has been used in Equation 3.15 to model the diffusive coupling. The difference

is that, this time, the coupling function qi is general, and depends both on time and on the

phases φ1,...,N of the oscillators composing the network – including the self-dynamics.

In this configuration, the diffusive pairwise coupling previously discussed is one of the

several interactions inferred from the network.

3.3.1.1 Decomposition according to the coupling order

The coupling function qi in Equation 3.17 encompasses all the frequency-modulation act-

ing on the oscillator i. One of the possibilities to gain detailed insights into the mechanism

of the interaction is to decompose qi into the sum of partial contributions. This can be

done according to the different order of coupling (Iatsenko et al., 2013, Stankovski et al.,

2014a), where the coupling of order k depends on the phases of k oscillator, i.e.

φ̇i(t) = ωi(t) +
∑
l

q′i(φl, t) +
∑
lm

q′′i (φl, φm, t) +

+
∑
lmn

q′′′i (φl, φm, φn, t) + . . .+ ξi(t) . (3.18)

In Equation 3.18, q′i represents the coupling from one oscillator, q′′i the coupling from two

oscillators, and so on.

Under the assumption that the deterministic part of the differential Equation 3.17 is

quasiperiodic, it can be decomposed by the means of Fourier approximation into a sum of

base functions Φk = exp[ı(k1φ1 + k2φ2 + . . .+ kNφN )] (Duggento et al., 2012, Krale-

mann et al., 2011), where k1:N can assume the value from -K to K, where K is the order

to which the Fourier approximation is stopped.



Materials and methods 38

The base functions are modulated by the set of time-varying parameters c
(i)
k

φ̇i(t) =

K∑
k=−K

c
(i)
k Φk(φ1, φ2, . . . , φn) + ξi(t) . (3.19)

By decomposing Equation 3.19 in the same way as in in Equation 3.18, it is possible to

isolate the different orders of the network coupling:

φ̇i(t) = c
(i)
0 +

K∑
k=−K

c′
(i:l)
k Φk(φl) +

K∑
k=−K

c′′
(i:l,m)
k Φk(φl, φm)

+
K∑

k=−K
c′′′

(i:l,m,n)
k Φk(φl, φm, φn) + . . .+ ξi(t) , (3.20)

where k 6= 0 and the sums over l,m, n = 1, . . . , N with l 6= m 6= n are implicit.

In this configuration, for each oscillator i the vector of coefficients c(i) assumes different

functional meanings with the different superscripts:

• c
(i)
0 represents the natural frequency ωi of the oscillator (one element)

• c′(i) groups the coefficients of all the couplings coming from one oscillator, of the

type sin
cos (k1φl). It defines 2 ·K ·N elements

• c′′(i) contains the coefficients of all the combinations of couplings from two oscil-

lators, of the type sin
cos (k1φl ± k2φm). It defines 22 ·K2 ·

(
N
2

)
elements

• c′′′(i) contains the coefficients of all the combinations of couplings from three os-

cillators, of the type sin
cos (k1φl ± k2φm ± k3φn). It defines 23 ·K3 ·

(
N
3

)
elements.

The maximum values of the superscript that c(i) assumes indicates the order of coupling

assumed for the network, i.e. the maximum number of oscillators involved into a coupling

action. Considering this, the overall number ν of elements for the matrix c characterising
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a coupled network where the coupling order is stopped at the value Λ is given by

ν = N ·
Λ∑
λ=0

2λ ·Kλ ·

 N

λ

 . (3.21)

3.3.1.2 Decomposition according to the oscillators involved

A further coupling classification could be performed based on the distinction between

couplings coming from a group of oscillators which includes - or does not include- the one

on which the coupling is acting on (Stankovski et al., 2015). The following terminology

will be used:

• In the case of coupling coming from a single oscillator

– if the source and the target of coupling are the same qA(φA)→ self-coupling

– If the source and the target of coupling are different qB(φA)→ direct-coupling

• When the coupling comes from two (or more) oscillators:

– If the target oscillator is among the sources qB(φA, φB)→ common from two

(or more)

– If the target oscillator is not among the sources qB(φA, φC) → direct from

two (or more)

In order to appreciate the physical meaning of the different coupling components, in what

follows some examples of time series coupled uniquely by self and direct coupling will

be presented. The time series are reconstructed from the phases simply by the relations:

s1(t) = sin
(
φ1(t)

)
and s2(t) = sin

(
φ2(t)

)
.

In the following examples, the ci:σ sin(φσ + 0.3π) coupling to the oscillator i from the

group of oscillators σ will be introduced in the differential equations. The choice of

sin over cos, and the phase shift +0.3π are purely arbitrary. Intuitively, one could be
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tricked in thinking that the effects of sin coupling and cos would cancel out each other,

but this is not true. The presence of the ci:σ cos(φσ) would produce analogue effect

on the time series, 0.5π-shifted in the evolution of the driving wave. The simultaneous

presence of both would result into a superimposed effect, by affecting the instantaneous

frequency of driven oscillator both at the ±0.5π (for ci:σ sin(φσ) coupling) and 0, 2π

(when ci:σ cos(φσ) coupling is present) phase of the driver.

Self-coupling

In this section, the physical meaning of self coupling in the case of coupled phase oscil-

lators will be discussed. In order to appreciate the effect of this specific component, a

system is constructed as


φ̇1(t) = 2πf1(t) + c1:1 sin

(
φ1(t) + 0.3π

)
+ ξ1(t)

φ̇2(t) = 2πf2(t) + ξ2(t) ,

(3.22)

with f1 = 1 Hz, f2 = 4 Hz, and c1:1 assuming iteratively the values [0, 1, 2, 3, 4, 5]. For

simplicity, the Gaussian noise ξ1 = ξ2 was kept very low with noise strengthD = 0.0002.
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FIGURE 3.10: Effect of self-coupling function q1(φ1) = c1:1 sin
(
φ1(t) + 0.3π

)
in

the time domain. Different strength of the coupling parameter c1:1 are colour-coded
from blue c1:1 = 0 to yellow c1:1 = 1. Note how a higher self-coupling increases the

nonlinearity of s1, while s2 is not affected by the different coupling strengths.
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Figure 3.10 illustrates the time evolution of the time series s1, s2 and of the coupling

function q1(φ1). Note how the amplitude of the coupling function increases with the

strength of c1:1.

It can be seen in Figure 3.10 how the increasing of the self-coupling component acts on

the time series by making it less ’linear’, i.e. by deforming the purely sinusoidal shape of

the oscillation. Note how, for purely explanatory reasons, the value of the self-coupling

is pushed to 100% of the corresponding natural frequency in order to achieve a visible

effect. The self-coupling part of the phase interactions carries limited physical meaning

when looking for cross-frequency couplings.

Direct coupling

This section investigates the effect of unidirectional direct coupling. Both the cases of

low-to-high frequency coupling and high-to-low will be generated with f1 = 1 Hz, f2 =

4 Hz, and c1:2 and c2:1 assuming iteratively the values [0, 2, 4, 6, 8, 10]. For simplicity,

the Gausian noise ξ1 = ξ2 was again kept very low with noise strength D = 0.0002.
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FIGURE 3.11: Effect of direct low-to-high coupling function q2(φ1) = c1:2 sin
(
φ1(t)+

0.3π
)

in the time domain. Different strength of the coupling parameter c1:2 are colour-
coded from blue c1:2 = 0 to yellow c1:2 = 10. Note how higher direct-coupling
increases the instantaneous frequency of s2, while s1 is not affected by the different

coupling strengths.
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In order to appreciate the effect of the low-to-high direct coupling, the system is con-

structed as 
φ̇1(t) = 2πf1(t) + ξ1(t)

φ̇2(t) = 2πf2(t) + c2:1 sin
(
φ1(t) + 0.3π

)
+ ξ2(t) ,

(3.23)

with c2:1 as the only non-zero coupling coefficient. Figure 3.11 shows the effect of this

coupling on the time series. In the plot, s1(t) results are unaffected by the different

coupling strength and the coupling function q2(φ1) corresponds to q1(φ1) of Figure 3.10.

The analysis of the coupling function’s effects on s2, however, brings more interesting

observations, as it is more clear how the position of the ridge and valley of q2(φ1) =

c2:1 sin
(
φ1(t) + 0.3π

)
are reflected on the time-evolution of the driven signal.

In Figure 3.11, the time-series s2 evidently changes according to the value of the param-

eter c2:1. The mechanism of this change can be understood by bearing in mind that the

coupling function is added to the frequency of φ1, and by following the time evolution of

the two plots. In the first part of the plot, when q2(φ1) increases, the coupling accelerates

the oscillation s2, making it reach its maximum frequency when q2(φ1) has a maximum

(which is at 0.5π−0.3π) in terms of phase evolution of φ1). Then, q2(φ1) start decreasing,

and as a consequence the frequency of s2 decreases too, reaching its minimum at the min-

imum of q2(φ1) (or 1.75π − 0.3π in terms of phase evolution of φ1). When q2(φ1) = 0,

the coupling has no effect on the instantaneous frequency of s2: the curves corresponding

to different values of c2:1 are parallel around these time values. This type of coupling has

a crucial physical meaning, as it is at the core of the cross-frequency phase modulation.

Very different scenario emerges when the direction of the direct coupling is inverted,

i.e. when the high-to-low phase coupling is introduced into the system. To do so, the

equations become:


φ̇1(t) = 2πf1(t) + c1:2 sin

(
φ2(t) + 0.3π

)
+ ξ1(t)

φ̇2(t) = 2πf2(t) + ξ2(t) ,

(3.24)
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with c1:2 the only coupling coefficient present in the system.

By examining Figure 3.12, it can be seen how in this case s2 is not influenced by the

different coupling strength, while the effect of the coupling is reflected on s1. The phys-

ical nature of this coupling corresponds to the previously investigated case, with the

instantaneous frequency of s1 being increased and decreased according to the value of

c1:2 sin
(
φ2(t) + 0.3π

)
. However, in this case several periods of s2 are contained within

one full oscillation of s1, and therefore the effect of this coupling exhausts itself within

single periods of the slower oscillation. This mean that this type of coupling is not able to

affect the fundamental frequency of the driven oscillator. Its effect on the time-evolution

of s1 is comparable to adding to the pure sinusoidal with frequency f1 a higher frequency

component (with frequency f2).

The physical meaning of this type of phase coupling is therefore more limited than its

corresponding counterpart. This is especially true when oscillations with very different

fundamental frequencies need to be filtered out from a time series: in this case, the high-

to-low coupling, even if present, is very likely to get filtered out.
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FIGURE 3.12: Effect of direct high-to-low coupling function q1(φ2) = c2:1 sin
(
φ1(t)+

0.3π
)

in the time domain. Different strength of the coupling parameter c2:1 are colour-
coded from blue c2:1 = 0 to yellow c2:1 = 10. Note how higher direct-coupling
increases the instantaneous frequency of s1, while s2 is not affected by the different

coupling strengths.
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3.3.2 Form of the coupling function

The coupling functions described above depended on only one phase, and therefore were

fully representable on a 2-dimensional plot as function of time. But what if the coupling

function is of the type qA(φB, φC)? In this case, a 3-dimensional plot is needed to en-

compass the information carried out by the form of the coupling function (Rosenblum

and Pikovsky, 2001, Stankovski et al., 2012). Moreover, as the coupling is a periodic

function of the phases, its plot could be limited to the 0 − 2π evolution of the involved

phases without loss of information.

In Figure 3.13, examples of form of the coupling function for qA = sin(φB, φC) will

be shown for different types and order of coupling. The analytical form of the coupling

function is general, and can therefore be a function of N > 2 phases. The reason why

coupling functions of order higher than 2 are not shown is that they would need a 4-(or

higher)-dimensional representation, not easy to achieve on paper.

The form of the self coupling qA(φA, φX) shown in Figure 3.13-a corresponds to the

case discussed in Figure 3.10. The dimension of φX does not take part into the coupling

mechanism, and therefore the form of the function is a purely sinusoidal wave propagating

along the φA dimension.

FIGURE 3.13: Schemes and forms of coupling components: (a) self-coupling; (b) di-
rect coupling – from one oscillator; (c) common coupling – from two oscillators; (d)
direct coupling – from two oscillators. Note that the labels on the horizontal axes of
graphs indicate the sources of coupling, while the vertical axis label indicates the target

oscillator in each case.
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The form of the direct coupling qB(φA, φB) shown in Figure 3.13-b corresponds to the

case discussed in Figures 3.12 and 3.11. There is no self-coupling in the system, therefore

the dimension of φB does not add any information to the function. The form is again a

purely sinusoidal wave propagating along the φA dimension.

The form of the common coupling qB(φA, φB) shown in Figure 3.13-c represents the

first case of bivariate coupling function. The diagonal form of the function mirrors the

dependence of the coupling on both phases, and originates from a function of the type

qB = sin(φA − φB).

In Figure 3.13-d the form corresponding to a direct-from-two type of coupling is shown,

i.e. qC(φA, φB). In this case, the diagonal form emerges from a coupling of the type

qC = sin(φA+φB). Note how this produces a diagonal oriented in the opposite direction

than in Figure 3.13-c.

Even if higher orders of coupling cannot be plotted because they have dimensionality

higher than 3, the nomenclature for classification can be analogously extended, so that

qC(φA, φB, φC) is called common from three and qD(φA, φB, φC) direct from three, and

so on.

Such simple and deterministic cases of coupling are unlikely to be found in real data, but

it is useful to bare in mind their form, as a more complex coupling interaction can be

described qualitatively by similarity with them. For example, a coupling function which

resembles the form of Figure 3.13-b could describe a situation where the direct coupling

is the prevalent source of interaction.

3.3.3 Dynamical Bayesian inference

Till this point, it has been shown how the phase dynamics of a network of coupled phase

oscillators can be decomposed and investigated. Equations 3.17 and 3.19 describing such
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a system and a possible parametrisation are reported here for convenience:

φ̇i(t) = 2πfi(t) + qi(φi, φj , φk, . . . , φN , t) + ξi(t)

=
∑K

k=−K c
(i)
k Φk(φ1, φ2, . . . , φn) + ξi(t) . (3.25)

Characterising such a network, starting from data, means to infer for each oscillator the

coupling parameters c(i) of Equation 3.25. Also, the noise ξi, which is modelled as white

Gaussian 〈ξ(t)ξ(τ)〉 = δ(t− τ)D, must be characterised and extracted. In what follows,

it will be explained how this problem can be tackled by applying the dynamical Bayesian

approach (Smelyanskiy et al., 2005, Stankovski et al., 2012), with the Fourier components

Φ of the model Equation 3.25 constituting the base functions for the inference.

3.3.3.1 The Bayesian theorem

In order to understand the mechanism of the inference, one should remember a few con-

cepts of the Bayesian probability. Quite generally, the Bayesian statistics expresses the

state of a system in terms of ’degrees of belief’: in other words, the estimation of the prob-

ability of an hypothesis H includes a term which reflects the influence of prior beliefs, or

evidences, E.

In its most classical form (Bayes, 1763), the Bayesian theorem can be expressed as

P (H|E) =
P (E|H) P (H)

P (E)
. (3.26)

This famous equation allows one to evaluate P (H|E), the posterior probability of H ,

givenE. In the equation, the ’degrees of belief’ is introduced by multiplying the probabil-

ity of the hypothesis P (H) (called prior probability), by a term which takes into account

the impact of E. This term if formed by the nominator P (E|H), which is the probability

of the evidence given the hypothesis (called likelihood function), over the probability of

the evidence regardless of the hypothesis, P (E).



Materials and methods 47

By applying the law of total probability, P (E) can be expressed as the sum over all

possible j hypothesis, i.e. P (E) =
∑

j P (E | Hj)P (Hj)). In the case of a continuous

distribution, the theorem can be expressed as

pE(H|E) =
`(E|H) pprior(H)∫
`(E|H) pprior(H)dH

, (3.27)

where ` stands for likelihood and represents the pE(E|H), i.e. the probability density to

observe the evidence given the hypothesis.

3.3.3.2 The inference algorithm

The output of the inference is a set of parametersM = {c,D} which describe the cou-

plings (with c) and noise (with D) characterising the network of Equation 3.25. c is a

group of matrices having ν elements (as from Equation 3.21): one for every time-window

considered. D also is a group of matrices, one for each time-window: they are square ma-

trices having N · N elements. The diagonal of each matrix expresses the noise strength

extracted for each oscillator, while the other elements determine how much the noise

from pairs of different oscillators is correlated (Duggento et al., 2012). The input of the

process are the phase time series related to the data X = {xl ≡ x(tl)} (tl = lh), with

l = 1, . . . , L and h sampling step.

With hypothesisM and evidenceX , The Bayes’ theorem of Equation 3.27 would assume

the form

pX (M|X ) =
`(X|M) pprior(M)∫
`(X|M) pprior(M)dM

. (3.28)

This allows one to obtain the posterior density pX (M|X ) of the unknown M starting

from the information contained in X and from the prior knowledge that one has on

the parameters pprior(M). The process also need to reconstruct the likelihood function

`(X|M), which is the probability density to observe X given the current choice of X .

As consecutive samples of white Gaussian noise are statistically independent events, the
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likelihood at each time can be considered as the probability of observing φi,l+1 times the

number of samples l.

In order to reconstruct the likelihood function, the noise term for each time sample for the

oscillator i is quantified with the integral ξi(tl) ≡
∫ tl+1

tl
ξi(t) dt. By expressing the matrix

D (describing the noise strength) with its Cholesky decomposition H1, the noise at each

sample can be calculated as ξi(tl) =
√
hH zi, and zi is a vector of random variables

(normally distributed) (Duggento et al., 2012).

The likelihood function, for a series of independent samples, can be written as `(X|M) =∏
l `(xl|M). Passing to the logarithm of such quantity turns the product into a sum, so

that ln `(X|M) =
∑

l log `(xl|M). Assuming normal distribution, the likelihood as-

sumes the form

`(x|M) =
1

(
√

2π)
√

det D
e−

1
2

(x−µ)TD−1(x−µ), (3.29)

with µ being the vector of means and D being the covariance matrix. The logarithmic

transformation allows one to avoid the computation of the exponential in Equation 3.29,

i.e.

ln `(x|M) = −1

2
ln(2π)− 1

2
ln det D− 1

2
(x− µ)TD−1(x− µ) (3.30)

(Smelyanskiy et al., 2005).

Assuming that h is small enough to follow the dynamical evolution of the time-series,

the Euler midpoint discretisation can be used to approximate the phase dynamics using

φ∗i,l = (φi,l + φi,l+1)/2 as midpoint and φ̇i,l = (φi,l+1 − φi,l)/h as derivative.

The joint probability density of the phase dynamics φ̇i,l in respect of [φi(tl+1)−φi(tl)] is

calculated from the joint probability density of zi. This is possible by imposingP [φi(tl+1)] =

det(Jφξ )P (ξ), where Jφξ is the Jacobian term of the transformation of variables that can

be calculated from the base functions Φi,k. In particular, Jφξ will have ∂Φi,k(φ·,l)
∂φi

on the

diagonal, and under the assumption that h is small, the determinant can be approximated

with the product of such terms (Duggento et al., 2012).
1The Cholesky decomposition of the matrix D is the upper triangular matrix H so that D = HHT .
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This transformation adds one term to the log-likelihood function ln `(X|M), which, mi-

nus the un-relevant term 1
2 ln(2π) becomes for each oscillator

S =
L

2
ln |D|+ h

2

L−1∑
l=0

(
ck
∂Φk(φ·,l)

∂φ
+

+ [φ̇l − ckΦk(φ
∗
·,l)]

T (D−1)[φ̇l − ckΦk(φ
∗
·,l)]
)
,

(3.31)

where summation over the repeated indices k is implicit, and the dot index in φ· is sub-

stituted with the relevant index.

Assuming the normality of the prior probability pprior(M), and considering that the minus-

log-likelihood of 3.31 is a quadratic form, the posterior probability pX (M|X ) will also

be normally distributed. The pairM = {c,D} constituting the stationary point of S, is

calculated recursively from Equation 3.28 (Duggento et al., 2012), by splitting it into the

Equations

D =
h

L

(
φ̇l − ckΦk(φ

∗
·,l)
)T (

φ̇l − ckΦk(φ
∗
·,l)
)

rw = (Ξprior)kw cw + hΦk(φ
∗
·,l) (D−1) φ̇l+

− h

2

∂Φk(φ·,l)

∂φ

Ξkw = (Ξprior)kw + hΦk(φ
∗
·,l) , (D

−1) Φw(φ∗·,l)

ck = (Ξ−1)kw rw ,

(3.32)

where Σprior ≡ Ξ−1
prior is the covariance matrix of c and the summations over l =

1, . . . , L and over the repeated indices k and w, is implicit. The recursion is stopped

then the current estimation of the parameters differs from the prior by a value higher than

a set threshold.

This procedure is applied to sequential time-windows of the data, so that the computation

of the current probability distribution of the parameters is based on the informative priors

coming from the previous block of data, i.e. at each iteration the current prior depends
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on the previous posterior. For the first time window, the prior is set to a flat normal

distribution with Ξprior = 0 and c̄prior = 0.

The propagation of information between consecutive blocks of data must take into ac-

count the possible time-variability of the interacting dynamics (Stankovski, 2017, Stankovski

et al., 2012). This is achieved by convolving the current posterior distribution with a

diffusion normal distribution having covariance matrix Σl
diff. This measure adjusts how

much the parameters can change between consecutive windows, and results in a prior

distribution having covariance matrix Σl+1
prior = Σl

post + Σl
diff.

3.3.4 Quantitative measures

Once the matrix of parameters describing the network coupling c is inferred, it can be

used to quantify –and compare– the characteristics of the specific coupling relations

within the network. Those measures can be either based on the numerical values of

subsets of the c, or on morphological features of the coupling functions.

3.3.4.1 Coupling strength

The coupling strength quantifies the amplitude of the coupling coefficients. It is defined as

the Euclidean norm of the inferred parameters corresponding to the Fourier components

of a specific link –or ensembles of links– within the network (Rosenblum and Pikovsky,

2001). To quantify the coupling acting on the oscillator i from the combination of oscil-

lators σ, the coupling strength ‖qi:σ‖ would be:

‖qi:σ‖ =

√√√√ K∑
k=−K

(c
(i:σ)
k )2 , (3.33)

with K limit of the Fourier decomposition. One can think that each row of c corresponds

to the coupling coefficients relative to the coupling acting on the oscillator i. With this

configuration, for a network of N oscillators, in each row the indices relative to the cou-

pling from links of order 1 (c′ part of the c(i) vector) is composed of 2 ·K ·N elements;
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the strength of coupling of order 2 (from two oscillators) is indexed into the c′′(i) part of

the vector, and it is composed of 22 ·K2 ·N elements; the strength of the coupling of order

3 (from three oscillators) is indexed into the c′′′(i) part of the vector, and is composed by

23 ·K3 ·N elements, and so on (Stankovski et al., 2015).

Within each row, one could be for example interested in quantifying the strength of the

direct coupling acting on i from j. In this case the norm ‖qi:j‖ would include 2 · K

elements. Instead, the overall network strength of the coupling acting on i, ‖qi‖, would

encompass the whole row of coefficients.

3.3.4.2 Similarity of the form

The coupling strength is enough to detect the presence and amount of coupling charac-

terising an interaction. However, by observing the form of the coupling function, one can

go beyond this and extract information about the mechanism of the interaction.

Starting by calculating the two-dimensional correlation between two coupling functions,

it is possible to evaluate the similarity of their forms, irrespective of their amplitudes

(Kralemann et al., 2013). This way it can be quantified how close the form of the coupling

functions are to one another.

The similarity index is defined as

ρi,j =
〈q̃i q̃j〉
‖q̃i‖ ‖q̃j‖

, (3.34)

where 〈·〉 denotes averaging over the 2π · 2π phase grid, and q̃i is the deviation from the

mean q̃i = qi − 〈qi〉 (Kralemann et al., 2013).

The correlation ρ can be applied to quantify the similarity between:

• Two inferred coupling functions
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• An inferred coupling function, and the average of an ensemble of coupling func-

tions to which it belongs. This way it is possible to quantify for example inter-

subject variability of a form, or the intra-subject variability of coupling functions

quantified on different anatomical locations

• A coupling function inferred from a single time-window, and the time-average.

This allows one to quantify the time-variability of the coupling function

• One inferred coupling function, and a coupling function having some numerically

generated features (like the ones in Figure 3.13). This comparison allows one to

quantify the prevalence of a specific type of coupling (e.g. direct, self, common)

within a coupling function

The first three points are self explanatory. The latter is further explained in what follows.

3.3.4.3 Polar similarity

The concept of similarity has been extended from its original version (Kralemann et al.,

2013) to extract information about the predominant functional source of the coupling

(Stankovski et al., 2017b, Ticcinelli et al., 2017) within an inferred function q.

This can be achieved by numerically generating a coupling function Q resembling a spe-

cific partial coupling component, like in the examples shown in Figure 3.13. Possible

phase-shift of the coupling functions is taken into account by generating a set of phase-

shifted versions of Q. This similarity value is calculated as

ρq,Q = max
ϑ

(
〈q̃ Q̃ϑ〉
‖q̃‖ ‖Q̃ϑ‖

)
, (3.35)

where the correlation in Equation 3.34 is computed iteratively between the coupling func-

tion q and a series of phase-shifted versions of Q, characterised by their phase shift ϑ

ranging between [0− 2π].
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Also, the numerical formQϑ generating the highest ρ carries dual information: the extent

of the similarity (described by ρ itself) and the corresponding phase shift, given by ϑ.

The value of ϑ in this case indicates on which point of the phase evolution of the driving

oscillator the driven oscillator undergoes the strongest acceleration. In the case of the

coupling discussed in Figure 3.11, ϑ would have been 0.3π.

A natural way of presenting this information is by unifying the value of the similarity

index ρ and the similarity phase ϑ into a complex number P = ρeiϑ. This number,

called polar similarity index can then be plotted on the complex plane to provide a polar

representation of the quantity.

Figure 3.14 illustrates the concept: two coupling functions extracted from real data (cor-

responding to delta→alpha coupling in brain waves (Stankovski et al., 2017b)) are shown

in purple, with the small squares providing a top-view. They have been selected as ex-

amples for being very similar (in A) and very dissimilar (in B) to the form of a perfectly

direct coupling. The numerical forms generating the highest values of ρ are overlapped

with an orange grid. Note how in 3.14-A the real and the numerical functions better over-

lap than in 3.14-B, generating a similarity index with bigger module. The dashed lines

FIGURE 3.14: The meaning of the polar similarity index. Two examples of coupling
functions, plotted in purple, are compared with numerically-generated sinusoidal func-
tions, plotted in orange. The latter have been selected for being as similar as possible
to the coupling functions: the only degree of freedom in the selection was the shift in
phase (marked by the orange dashed lines). The arrows in the polar planes in the top
right corners are the similarity indices, and point to the corresponding phase values for:
(A) a coupling function with high similarity (ρ = 0.82) and (B) one with a low value
(ρ = 0.23). A complementary 2D colour-contour plot of the coupling function is given
in the bottom right-hand corner of each panel (figure modified from (Stankovski et al.,

2017b)).
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indicate the corresponding phase-shifts ϑM and ϑm, which are close to π for the form A

and to 3/2π for B. The polar similarity indices are represented in the polar planes, with

arrows having module equal to ρ and phase equal to ϑ.

3.3.5 Simulated EEG to test cross-frequency coupling analysis

In this section, the method is applied to a numerically simulated system with time-varying

parameters in order to evaluate the accuracy of the inference procedure. In what follows,

a single-source coupling from φ1 to φX will be indicated by φ1 → φX . To indicate

a coupling link originating from a specific subset of sources, the notation φ1, φ2, . . .,

φN→φX will be used.

The simulated network of coupled phase oscillators is composed of five units, coupled as

illustrated in Figure 3.15(a):

• X1 oscillates without being influenced by any other, and with a time-varying natu-

ral frequency (dashed circle).

• X2 is driven by the direct from two coupling X1, X3→X2 (pink link)

• X3 is driven by the direct from three coupling X1, X4, X5→X3 (purple link)

• X4 is driven by the common from three coupling X1, X2, X4→X4 (orange link)

• X5 is driven by the common from two coupling X3, X5→X5 (yellow link).

The system of stochastic differential equations associated with the network is



φ̇1 = ω1(t) + ξ1(t)

φ̇2 = ω2 + c2:1,3(t) · sin(φ1 + φ3) + ξ2(t)

φ̇3 = ω3 + c3:1,4,5(t) · sin(φ1 + φ4 + φ5) + ξ3(t)

φ̇4 = ω4 + c4:1,2,4(t) · sin(φ1 + φ2 + φ4) + ξ4(t)

φ̇5 = ω5 + c5:3,5(t) · sin(φ5 + φ3) + ξ5(t) ,

(3.36)
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where ξi represents addictive white Gaussian noise. the length of the time-series is 2000s

and the sampling step is set as h = 0.01. All the coupling coefficients ci:σ, plus the

natural frequency ω1, are built as time-varying and are defined by

ω1(t) = 2πf1 + sin(2π · 0.03 · t)

c2:1,3(t) = 1 + sin(2π · 0.0008 · t)

c3:1,4,5(t) = 1.8− 0.001 · t

c4:1,2,4(t) = 0.5 + 0.001 · t

c5:3,5(t) = 1.2 + 1.2 · cos(2π · 0.001 · t) ,

(3.37)

with f1 = 2.4. The natural frequencies of the other oscillators were set as constant,

i.e. ωi = 2πfi with fi = [5, 10, 20, 40]. The time window for the dynamical Bayesian

inference is set equal to 50 s. Such length ensure to include in each window enough

FIGURE 3.15: (a) The network scheme simulated. (b) Coupling strength of the inferred
parameters for existing connections (on the left, bars coloured as in (a)) and non-existing
connections (on the right, blue bars) compared with surrogates (grey bars).Note that the
grey bars validate the numerical links and invalidate others non present. (c) The inferred
time-varying parameters (dashed lines) compared with their numerically determined
values (solid lines), coloured as in (a) and (b). Note how well the inferred set follows

the numerical time-evolution (Figure modified from (Stankovski et al., 2017b)).
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information about the dynamics of the system (i.e. 75 periods of the slower oscillation

– 5000 samples), while allowing high-enough resolution to follow the time variability of

the parameters (i.e. 40 windows are inferred).

In order to validate the results for the time-average coupling strength, a set of 100 surro-

gates of the original network was generated by randomly shuffling the phases of the time-

series φi (Schreiber and Schmitz, 2000). This technique allows one to destroy phase-to-

phase correlation within the network, without altering too much the statistical properties

of the time-series. For each link, the 95% higher values from each distribution of 100

strengths is chosen as surrogate threshold.

Figure 3.15(b), on the left, shows the time-average coupling strength of the links ef-

fectively present in the net (with same colours as in the network scheme of panel (a)).

It can be seen that the surrogates (grey bars) validate the coupling strengths of the links

present in the network, by being lower than the inferred values with coloured bars. On the

right, the coupling strengths computed for 3 links not present in the network (X4→X2,

X4→X3, X3→X1), overlapped with grey bars for corresponding surrogates are shown

on a lower scale. It can be seen that, in this case, the surrogates reach significantly higher

values than the calculated couplings, implying that a coupling is (correctly) inferred to be

below the significance level in cases when it is actually absent.

But how well does the inference follow the time varying dynamics of the system? The

numerically set time-evolution of the coupling parameters, and of the natural frequency

of X1, are shown in Figure 3.15(c)), with solid thin lines colour-coded as before. The

corresponding time evolution – sampled each 50 s – of the parameters provided by the

dynamical Bayesian inference is plotted with dashed lines (and same colours). It can be

deduced by the close overlapping of the curves that the method is also able to follow

very well the time evolution of the parameters, besides being able to detect correctly the

presence and strength of the links characterising the topology of the network (as indicated

by the bars in Figure 3.15(b)).
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FIGURE 3.16: On the left column, inference performance for the coupling parameter
of network of Equation 3.36 when 60 s of data are provided and the time window is
reduced to 10 s. On the right column, inference performance on the same length of data,
but with a simplified network. Note how the performance improves in the latter case.

It must be taken into account that in the case of shorter recordings, the performance of

the inference is worse for a network of this order of complexity. Figure 3.16(a) shows

the performance of the inference on the same network but for 60 s recording, sampled at

256 Hz. Note how both the inferred frequency of the first oscillator, and the estimation

of the coupling parameters loses accuracy. However, when the complexity of the network

is reduced and just 3 oscillators are coupled as shown in figure 3.16(b) (with same natural

frequencies and coupling parameters as in Equation 3.36), the amount of information is

sufficient to reach a more precise estimation.
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3.4 Phase extraction

So far, simulations have been run starting from numerically generated phases to build syn-

thetic time series (for the time-frequency representation of Section 3.1.5 and coherence

discussions of Section 3.2.1) or to be used as input of the dynamical Bayesian inference

for the estimation of cross-frequency coupling in Section 3.3. However, in real life, what

is usually measured is the time series, not the phase evolution, and therefore the first prob-

lem one has to face when they wish to evaluate cross-frequency phase coupling is how to

extract the phases themselves.

3.4.1 Filtering

Firstly, the frequency bands of interest need to be filtered out of the time series. The trans-

fer function H of a N-order digital filter can be expressed in terms of transfer function

coefficients a1...N+1 and b1...N+1 as

H(ei2πf ) =
b1 + b2e

−i2πf + b3e
−2i2πf + · · ·+ bNe

−(N−1)i2πf

a1 + a2e−i2πf + a3e−2i2πf + · · ·+ aNe−(N−1)i2πf
. (3.38)

One of the possible choices is the finite-impulse-response Butterworth filter(Butterworth,

1930).

The transfer function coefficients a1...N+1 and b1...N+1 for the Butterworth filter are com-

puted by running the Matlab function butter. In order to obtain a band-pass filter with

low (fl) and high (fh) cut-off frequencies, the non-dimensional frequencies used for the

construction are fl/fN and fh/fN respectively, with fN the Nyquist frequency. Given

the coefficients, the function filtfilt performs zero-phase digital filtering by process-

ing the input data in both the forward and reverse directions. This strategy allows one to

obtain zero phase distortion in the filtered time-series. It is worth noting that the choice

of the filter type is not fundamentally impacting the analysis, as long as particular care is

taken to avoid phase distortion and overlapping between bands.
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Figure 3.17 shows the magnitude frequency response of Butterworth filters centred around

the EEG frequency bands introduced in Section 3.1.5. Different orders of the filter are

shown by different colours as explained in the colour-bar.

The order of the filter needs to be adjusted to different frequencies of interest, as higher

frequencies require a quicker roll-off at the cut-down frequency. On the other hand, the

higher limit of the possible filter order is proportional to the frequency where it is centred.

If the order is pushed beyond that limit, the filter looses the linear response in the pass-

band, i.e. becomes unstable. One way to select the optimal order for a specific frequency

band is to push the order till the filter becomes unstable, and then select the stable value

of the previous step. Figure 3.17 on the left shows the example of the first instability of

the delta band filter, when the order is pushed to 5 (black dotted line). Note how the order

5 is fine for higher frequency intervals. In particular, the selected orders for this case are

4 for delta, 5 for theta, 5 for alpha, 8 for beta, 12 for gamma bands.

It can be seen in Figure 3.17 how the frequency response in the band-passing intervals
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FIGURE 3.17: Magnitude frequency response for different orders of Butterworth filters,
centred on the EEG bands of interest. Note how the cut-off slope becomes steeper with
increasingly high orders. The order increses of 1 for each line plotted, according to the
colormap. The maximum order corresponds to 4 for the delta and 12 for the gamma
bands. On the left, as an example, it is shown that the filter for the δ band becoming

unstable at order 5 (black dotted line).
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FIGURE 3.18: The performance of the selected filters when applied to the time series
s(t) =

∑5
i=1 si(t) built with Equations 3.9 and 3.10. Each filtered component is plotted

with a coloured line over the corresponding numerically generated si(t) (thin black
lines). The length of the window is chosen to include around 10 periods of the oscillation
of interest. Fourier transforms of each filtered bands are shown with same colours in the

right-bottom panel.

stays constant around 1. This flat frequency response is an important feature of Butter-

worth filters, when compared to other filers like elliptic or Chebyshev which introduce

ripples around the cut-off frequencies (Parks and McClellan, 1972). Moreover, being a

zero-phase filter, Butterworth has the advantages of not introducing phase distortions in

the filtered bands. This means that features in a filtered output appear exactly where they

occur in the unfiltered signal, which is a crucial feature for the investigation of phase

coupling. A downside of the Butterworth filter is overshooting at step-response for or-

ders >1. However, when dealing with biomedical time-series, the occurrence of ’steps’ is

rather unlikely, and this feature is not considered as a possible issue.

The performance of the selected filters when applied on the time series s(t) =
∑5

i=1 si(t)

built with Equations 3.9 and 3.10 are shown in Figure 3.18. Each filtered component is

overlapped to the corresponding original numerically generated si(t). The length of the

window is choosen to include around 10 period of the oscillation of interest. Note how

the filter succeeds in tracing back the original component –minus the noise– without

introducing any phase-delay or major distortions of the oscillations.
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During this preprocessing procedure, particular care must be taken to minimise the over-

lap between the spectra of the filtered time-series (Lehnertz et al., 2014): overlaps of

consecutive frequency intervals would result in overestimating the corresponding phase-

to-phase coupling. Spectra of the filtered bands are shown in the last panel of Figure

3.18. In this case, for example, the shared information due to the overlapping between

alpha and beta bands’ spectral content could cause over-estimation of the coupling be-

tween these two frequency bands. A possible way to do so is narrowing the band-passing

frequency bands in order to set the cut-off frequencies apart.

With regard to the possible time-variability of the frequency content in the real time-

series, the described filtering setting can extract it as long as it is limited into the corre-

sponding cut-off values of each band.

3.4.2 Hilbert transform

Once the filtered time-series are obtained, the corresponding phase evolution can be ex-

tracted by computing the Hilbert transform H(t) (Gabor, 1946). This linear transforma-

tion allows one to expand a time-series s(t) into the complex plane, obtaining the analyt-

ical representation u(t) = s(t) + H(t) = <[u(t)] + i=[u(t)] = A(t) · eiφ(t) introduced

in Section 3.1.1.

The Hilbert transform H(t) of the time series s(t) is given by the transformation

H(t) = − 1

π
lim
ε→0

∫ ∞
ε

s(t+ τ)− s(t− τ)

τ
dτ , (3.39)

which is equivalent to the convolution of s(t) and 1/(πt). Because =[u(t)] = H(t) and

<[u(t)] = s(t), it follows that amplitude and phase of the polar representation of the

analytical form u(t) can be computed as

A(t) = |(s(t) + iH(t)|

φ(t) = arg
(
s(t) + iH(t)

)
.

(3.40)
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Figure 3.19 on the left depicts in the complex plane the analytical representation u(t) of

a simulated time series built as s(t) = t2 sin(2πt). The plot is achieved by plotting s(t)

against H(t). On the right, the time evolutions of s(t), H(t), A(t) and φ(t) are shown.

Note how A(t) constitutes the envelope of s(t), and φ(t) defines the phase of s(t). The

values ±π in the phase corresponds to the lower point of each period of s(t).

It can be also noted in Figure 3.19 how the first periods of φ(t) are not well defined. This

is an artefact due to the border effect. To avoid affecting the further steps of the analysis,

the beginning and end of the Hilbert transform are discarded from the data, shortening

the data for a length of 4 periods of the slower oscillation of interest.
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FIGURE 3.19: Analytic representation of the signal s(t) = t2 sin(2πt) achieved with
the Hilbert transform on the complex plane. Time series are plotted in black, and its
Hilbert transform in orange. The envelope of the two is the module of the analytic
representation. The phase φ(t), wrapped between −π and π is the angle of the analytic

representation u(t).

3.4.3 Protophase to phase

The phase φ(t) extracted by means of the Hilbert transform should be monotonically

increasing for a time series characterised by a dominant natural frequency and a small

amount of noise. However, for its construction, it is not secured that φ(t) grows uniformly

with the instantaneous frequency ω(t). As a matter of fact, it could contain a spurious

part due to repeated non-linearities present in each period of the oscillation of interest

which could mask the actual coupling functions. For this reason, φ(t) is usually called

protophase (Kralemann et al., 2008). For noise-free systems, the real phase ϕ(t) can be
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reconstructed so that it fulfils the relation ϕ̇ = ω with the transformation

dϕ

dt
= ω → dϕ

dφ

dφ

dt
= ω → dϕ

dφ
=
ω

φ̇
→ ϕ =

∫ φ

0

ω

φ̇
dφ . (3.41)

For noisy time series, one should average ω
φ̇

, obtaining

dϕ

dφ
= ω

〈 dt
dφ

〉
φ

= σ(φ) → ϕ =

∫ φ

0
σ(φ)dφ , (3.42)

where σ/2π is the probability density of φ and can be written as an integral along the

trajectory (Kralemann et al., 2008).

By approximating σ(φ) with a k-order Fourier series
∑

k Spe
ikφ with coefficients Sp(k) =

1
N

∑
t e
−ikφ(t), the real phase ϕ(t) can be obtained from the protophase φ(t) with the

transformation ϕ(t) = φ(t) + 2
∑

k =[
Sp(k)
k (eikφ(t) − 1)], where N is the time series’

number of points.

This transformation is particularly important when dealing with noisy data or with time-

series having complicated waveforms. In the next section the effect of the transformation

on band-pass filtered time-series will be evaluated and discussed.

3.4.4 Effect of phase extraction and filtering

In this section a numerical simulation has been run with two coupled oscillators resem-

bling a delta-alpha bidirectional interaction:


φ̇1(t) = 2πf1(t) + c1:2 sin

(
φ2(t)

)
+ ξ1(t)

φ̇2(t) = 2πf2(t) + c2:1 sin
(
φ1(t)

)
+ ξ2(t) ,

(3.43)

with natural frequencies f1 = 1 Hz, f2 = 8 Hz, and c1:2 = 5, c2:1 = 10 and Gausian

noise ξ1 = ξ2 with noise strength D = 0.0002. The phase extraction and filtering have
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FIGURE 3.20: Diagram of computational steps from the initial set of parameter to
the coupling functions for the 5 sets of phases: (i) numerical phases (orange path),
(ii,iii) signal reconstructed from the numerical phases, Hilbert transformed (black solid
path) and undergoing proto-phase to phase correction (black dashed path), (iv,v) signal
reconstructed from the numerical phases, bandpassed, Hilbert transformed (purple path)

and undergoing proto-phase to phase correction (purple dashed path).

been performed as explained in the Sections 3.4.1 and 3.4.2. In order to evaluate the

specific effect of both steps, they have been applied separately to the numerical data as

shown in the diagram of Figure 3.20.

First, the phase extraction using Hilbert transform has been applied to the numerically

generated time series, and then the protophase-to-phase transformation has been per-

formed.

Line plots in Figure 3.21 show a period of φ1 and φ2, with the numerical phases (black

lines), the output of Hilbert transform (golden line) and of the transformation (purple

line) vertically shifted for easier visual comparison. Note how, for the slower phase φ1,

the numerical output (black line) clearly contains nonlinearity due to the direct coupling

X2 → X1. The nonlinearities were still visible in the Hilbert transform applied to the

reconstructed time series s1 = cos(φ1) (golden line), even if less defined. The output

of the transformation (purple line) still showed some small indentations but was almost

linear. The corresponding coupling functions on the first row of Figure 3.21 showed

different morphology. The sinusoidal wave propagating along the φ2 axes due to the direct

coupling was clearly present in the form computed from numerical phases. The functions

reconstructed from the proto-phases and the corrected phases had smaller amplitude and

became more diagonal.
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FIGURE 3.21: Effect of Hilbert transform and protophase-to-phase transformation on a
bidirectionally coupled system of phase oscillators. One period of the numerical phases
are shown in black, the proto-phases extracted with Hilbert transform in yellow, and the
corrected protophase-to-phase in purple. A vertical shift is added for easier comparison.
The coupling functions q1 and q2 are computed for the 3 sets of phases. Note how the

shape of q1 is lost after the phase extraction.

For the faster oscillator X2 the effect of the phase extractions were far less marked. On

the second row of Figure 3.21, despite the direct couplingX1 → X2, the black line for the

numerical phase evolution did not show evident nonlinearities. Therefore, phase extrac-

tion and protophase-to-phase transformation did not add any significant distortion to the

numerical phase. Similarly, the forms of the coupling functions were qualitatively simi-

lar, with a slightly less sharp form in the function computed from the corrected phases.

This effect could be due to a further –visually unnoticeable– linearisation of the phases

introduced by the transformation.

A similar procedure has been followed in order to assess also the effects of filtering in a

bidirectionally coupled system. The signals s =
∑2

i=1 cos(φi) has been decomposed in

s̃1 and s̃2 by applying Butterworth filter as discussed in Section 3.4.1. The time-series

si = cos(φi), with i = 1, 2 are plotted on the top panel in Figure 3.22 in orange lines,

and the filtered oscillations are overlapped in thin purple lines. Note how in s1 the effect

of the coupling was marked in the orange line, but got smoothed out in the filtered signal.
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On the contrary, the two lines almost overlapped for s2, with the effect of the coupling

still visible in the frequency modulation of the oscillation.

In Figure 3.22, one period of the phases and the corresponding coupling functions have

been shown as in Figure 3.21. Note how the filtering step already linearised the proto-

phase of φ1 gold line), and therefore the transformation protophase-to-phase did not evi-

dently modify it any further (purple line).

The effect of filtering is clear also in the coupling functions. The flat coupling functions

q1 for the proto-phases and corrected phases indicates that the coupling from the higher to

the lower frequency oscillator was erased from the filtered time-series. On the contrary,
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FIGURE 3.22: Effect of filtering on a bidirectionally coupled system of phase oscilla-
tors. The original time-series are plotted in orange lines, and the filtered oscillations are
overlapped in thin purple lines. Below, one period of the numerical phases are shown in
black, the proto-phases extracted with Hilbert transform from the filtered time-series in
yellow, and the corresponding corrected protophase-to-phase in purple. A vertical shift
is added for easier comparison. The coupling functions q1 and q2 are computed for the

3 sets of phases: note how the shape of q1 is lost after the filtering is performed.
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the form of the coupling function q2 was again almost identical for the filtered and un-

filtered cases. The protophase-to-phase step does not bring any substantial changes once

filtering was performed upstream.

These examples highlighted how consideration upon bidirectional cross-frequency cou-

pling from real data must take account of the preprocessing steps. The simulations run in

this sections showed how the high-to-low coupling components, even if present, are likely

to be cancelled by the filtering procedure. Also, the protophase-to-phase transformation

was shown to be almost irrelevant when applied to narrow-band filtered time-series. For

the sake of correctness, however, this step will be always undertaken in the upcoming

calculations.

3.5 Surrogates analysis

In the current chapter, numerical simulations have been performed in order to illustrate

the measures that will later be applied in the studies. However, when dealing with real

data, usually only one realisation of the process is available. The inner parameters ruling

the model are unknown, and they are what have to be estimated by the analysis. It is

therefore not possible to vary those parameters and see how the system reacts.

Moreover, from the simulation introduced in this chapter, it emerged that even indepen-

dent time series will generate non-zero values of coherence and coupling. The problem

is then to determine a threshold above which a measure represents an actual dynamical

property of the system and not a signature of noisy process arising by chance.

The idea is to generate, starting from the data, surrogate time series which preserve some

features of the original data, but not the dynamical property that is to be measured (Break-

spear and Terry, 2002, Schreiber and Schmitz, 2000, Theiler et al., 1992). The surrogates

must therefore satisfy the null hypothesis which has to be tested. As an example, in this

introduction, it will be assumed that the task is validating coupling measures. The null
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hypothesis would then be ’the time-series are uncoupled’. Therefore, the surrogate sig-

nals are constructed by destroying in the time series those relationships which make the

null hypothesis false, while still preserving other statistics of the data, e.g. power spectra,

amplitude, localised time evolution or others.

Once a number of surrogates is created, the measure is computed on each of them. From

the distribution of the resultant values, which will be here called ζ, a threshold Z is

marked, above which the measure from real data are considered valid.

But how many surrogates to compute and which threshold to choose? The latter depends

on the confidence level one wants to achieve on the results of the testing. Conventionally,

a confidence level of 95% is expressed as (1−α), with α = 0.05. If N = 100 surrogates

are generated, then the (1 − α)N = 95th value of the resultant distribution ζ is to be

considered as the threshold Z. If the measure on real data exceeds Z, it can be claimed

with (1−α) · 100% = 95% confidence that data are inconsistent with the null hypothesis

(e.g. the time series are coupled).

Such estimation of significance level is called rank ordering. In case of a Gaussian distri-

bution of the results, the 95% threshold corresponds to themean+2 standard deviations

of ζ. However, surrogate distributions are not always Gaussian, therefore the non-parametric

rank ordering has to be preferred when a test for normality fails, or is not performed.

For one-side testing (i.e. when just the upper threshold for ζ is considered) the minimum

number of surrogates to generate is K/α − 1, where K is some positive integer number

depending on how spread ζ is (Schreiber and Schmitz, 2000). The threshold Z has to

be picked as the Kth highest value of ζ. The previous example of 100 surrogates and

α = 0.05 reflects the case ofK = 5. For compactly distributed ζ, it may be enough using

K = 1. For α = 0.05, this choice would require generating only 19 surrogates and then

taking as significance level Z the maximum value of them.

Finally, it should be emphasized that surrogate testing is a tool to invalidate a null hypoth-

esis (e.g. it can prove that the time series are NOT uncoupled, i.e. it can prove coupling).
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However, if it fails to reject the null hypothesis, nothing can be said about it (e.g. a result

below the threshold Z does not imply that the time series are uncoupled, i.e. it can not

prove uncoupling).

In what follows, numerical examples will explore the performances of different surrogates

technique in validating coupling parameters for numerical oscillators.

3.5.0.1 Surrogates for coupling

To search for significant coupling between oscillators, we need to generate surrogates

in which there is no coupling. Three different types of surrogates are briefly introduced

below, and their performance is tested on simulated data.

Cyclic phase permutation (CPP) surrogates

Cyclic phase permutation surrogates are surrogates acting on the phases. The time evo-

lution of the phases is wrapped between 0 − 2π, generating a sequence of slopes cor-

responding to distinct periods (growing from 0 to 2π). The initial and final incomplete

periods are then discarded, and the rest are rearranged in a random order.

This procedure allows one to destroy the time dependence between two time-series, whilst

preserving the within-phase dynamics of each of them. These surrogates are therefore

very powerful in testing for interdependence between phase dynamics (Vejmelka and

Paluš, 2008). As the dynamical Bayesian inference technique works directly with the

phase of oscillators, cyclic phase permutation surrogates seem to be a promising choice

(Stankovski et al., 2017b). Moreover, the calculation of CPP surrogates is very fast.

A downside of CPP surrogates is that, if used to test for phase coherence, they might

fail to reject the null hypothesis if the time series involved are coherent by sharing a

steady frequency. For the same reason, the CPP are able to validate the process of phase

synchronization and distinguish it from simple coincidence of rhythms. (Mezeiová and

Paluš, 2012, Vejmelka and Paluš, 2008)
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Fourier transform (FT) surrogates

Fourier transform (FT) surrogates work by randomising the phase information in the orig-

inal data while preserving the spectral amplitude. The phase randomization serves to pre-

serve linear features, i.e. the power spectrum and autocorrelation, but should destroy any

nonlinear behaviour. Therefore, the null hypothesis is the data do not contain any nonlin-

ear structure (Schreiber and Schmitz, 2000). They are widely used, and computationally

very cheap.

They are generated by calculating the Fourier transform F (f) of the original time-series

s(t). Being s(t) real, F (f) is symmetrical, therefore the surrogates are generated by

operating on the first half of it, F1/2(f). Namely, F1/2(f) is multiplied by eiφ̃, where

φ̃ is a sequence of random phases. This step generates F̃1/2(f). The second half of

the transform is created by flipping horizontally the complex conjugate of F̃1/2(f). The

final FT surrogate is the real part of the inverse Fourier transform of F̃ (f) (Schreiber and

Schmitz, 2000).

In order to be generated correctly, s(t) must contain an integer number of periods of os-

cillations. In real, noisy, wide spectra time series this can be approximated by truncating

the series so that the last sample matches the value and the first derivative of the first. This

preprocessing step shortens the data available, and is therefore one of the drawbacks of

the FT surrogates.

Wavelet iterative amplitude adjusted Fourier transform (WIAAFT) surrogates

Wavelet iterative amplitude adjusted Fourier transform (WIAAFT) surrogates were also

tested, as they are a more sophisticated and computationally very expensive technique

capable of generating signals which look very similar to the original data (Keylock, 2006).

Wavelet surrogates are based on the discrete Wavelet transform (DWT). Similarly to the

FT surrogates, they rely on some manipulation of the DWT coefficients, and then on the

use of the inverse Wavelet transformation to recover a time-series (Keylock, 2006). In

particular, a number of FT surrogates is computed on the coefficients of each scale of
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the DWT. A further step is performed so that also the distribution of the amplitude of the

surrogates matches the one of the original coefficients (Schreiber and Kantz, 2003). From

the computed surrogates, the version which most closely matches the original coefficients

is chosen by applying a least squares algorithm. Finally, the inverse DWT is computed to

reconstruct the final surrogate time series.

The main feature of the WIAAFT surrogates is that they produce a time series which

‘looks like’ the original data in terms of its temporal evolution. This means that, in case

of non-stationary behaviour of the data, the non-stationarieties in the time-evolution of

the real series are reproduced in the same temporal locations in the surrogates too.

Comparison between the surrogate techniques

To simulate the coupled system, phase oscillators X1, X2 are generated by the usual

system of stochastic differential equations as


φ̇1(t) = 2πf1(t) + c1:1 sin(φ1(t)) + c1:2 sin(φ2(t)) + ξ1(t)

φ̇2(t) = 2πf2(t) + c2:1 sin(φ1(t)) + c2:2 sin(φ2(t)) + ξ2(t).

(3.44)

FIGURE 3.23: Diagram of computational steps from the initial set of parameter to the
output of the inference for the 5 sets of phases: (i) numerical phases (dashed black path),
(ii) signal reconstructed from the numerical phases (black solid path), (iii) WIAAFT sur-
rogates (yellow path), (iv) FT surrogates (orange path) and (v) CPP surrogates (purple
path). Boxes indicate the processing steps. Note that CPP surrogates are computed on a

further level of the process than WIAAFT and FT surrogates
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The frequencies were set as f1 = 1 and f2 = 8 Hz. The initial set of coupling parameters

were set as c1:1 = c2:2 = 0.2, c2:1 = C · (1 + 0.3 sin(2π0.006t)), +c1:2 = 0, with C =

[0, 0.6, 6]. This produced a system with constant weak self couplings and a unidirectional

time-varying coupling from the slower oscillator X1 to the faster oscillator X2.

Figure 3.23 illustrates the sequence of steps undertaken for the analysis, and highlights

the point in the stream where surrogates are applied. The black-dashed path indicate the

sequence of steps required to infer the coupling parameters from the numerically gener-

ated phases. As before, in order to simulate real time-series, s1(t) and s2(t) were created

by applying the cosine function to the phases, and the final simulated signal was recon-

structed as s(t) = s1(t) + s2(t). The output of this step constitutes the input of the

WIAAFT (yellow path) and FT surrogates (orange path). The components were then

reconstructed from numerical, WIAAFT and FT time series by Butterworth bandpass

filtering, and the phases recovered with Hilbert transform and protophase-to-phase trans-

formation. The numerical output of this step (black solid path) constituted the input for

the CPP surrogate (purple path). All the four sets of phases were then used as input of the

dynamical Bayesian inference, and the 5 inferred sets of parameters were compared.
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FIGURE 3.24: 2 s time windows of the time series s(t) (top row), generated by
s1(t) (middle row) and s2(t) (bottom row) for the system with strongest coupling
(〈c2,1〉 = 6). The original numerically generated time series are shown as solid black
lines lines. The corresponding filtered oscillations are overlapped as dotted black lines.
The surrogates of s(t) are shown in orange for FT and yellow for the WIAAFT, with

the corresponding bandpass filtered oscillations.



Materials and methods 73

Figure 3.24 shows the time series resultant from the numerically generated phases in thin

black lines and the ones recovered from the filtering procedure in dashed black lines. The

surrogates generated from the original time series are shown in orange for FT and yellow

for WIAAFT. Both methods aim to preserve the spectral content of the signal, and it can

be seen in the bottom panels how the frequency modulation of s2 is, in both surrogate

cases, less evident. The coupling seems to be converted into a more complicated wave-

form with variable amplitude. This feature is not relevant for the dynamical Bayesian

inference, which is based solely on the phase and independent of the amplitude.

Results of the dynamical Bayesian inference for the 5 sets of phases are shown in Figure

3.25. The numerical values of the coupling parameter are plotted with grey lines, the

values inferred from the numerically generated phases are shown with solid black, and

FIGURE 3.25: Results of the dynamical Bayesian inference for the 5 sets of phases
shown with arrows in Figure 3.23: the numerical values of the coupling parameter
(grey solid lines), the values inferred from the numerically generated phases (solid black
lines), and from the filtered phases (dashed black lines). The surrogate thresholds are
shaded with transparency in yellow for WIAAFT, orange for FT, and purple for CPP.
The computation has been performed with both a set of 20 surrogates (100 percentile
threshold) and with a set of 100 (95 percentile threshold). Each column of panels cor-

responds to a different values of 〈c2,1〉, i.e. null, weak and strong direct coupling.
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the valeus inferred from the filtered phases with dashed black lines. Surrogate thresholds

are shaded with transparency in yellow for WIAAFT, orange for FT, and purple for CPP.

The computation has been performed with both a set of 20 surrogates by setting the

threshold as the maximum value of the distribution (first row of Figure 3.25) and with

a set of 100 surrogates, with the threshold at 95 percentile (second row). Each column of

panels in the figure corresponds to a different values of 〈c2,1〉, i.e. null, weak and strong

direct coupling.

The comparison between vertically aligned panels shows how the thresholds are similar,

with less variability between time windows when 100 surrogates are performed. The

horizontal comparison allows one to evaluate the performance of the different surrogate

techniques for different levels of coupling strength.

For the null direct coupling, numerical and filtered series assume a value very close to

zero, lower than surrogate thresholds. In other words, all the 3 surrogate methods succeed

to indicate that the inferred values does not correspond to an actual coupling.

For both weaker and stronger direct coupling, the inferred parameters for the numerical

and filtered phases (black solid and dashed lines) not only resemble the set value (grey

lines) of 〈c2,1〉, but also correctly follow its time evolution. The performances of FT

and WIAAFT surrogates are similar in the case of 〈c2,1〉 = 0.8, generating thresholds

comparable the actual value of the coupling. For 〈c2,1〉 = 8, the FT succeed in validating

the inferred coupling strength, while the WIAAFT still generate a value not lower than

the actual coupling.

On the contrary, the CPP surrogates succeed in both cases to validate the inferred value

of the coupling parameter, with a lower threshold and also a lower time-variability than

the other techniques.
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3.5.0.2 Conclusions about the surrogate techniques

For validating phase-coupling between oscillation, it is crucial to generate surrogates

which fit the null hypothesis of being uncoupled. Among the surrogates here tested, the

CPP techniques gave the most consistent results, validating (or invalidating) with more

ample margins the cases in which coupling was present (or absent). They intuitively rep-

resent the perfect compromise between destroying the phase-coupling and maintaining

the other features of the time series, as the overall time evolution is randomised whilst

preserving the within-phase evolution.

It emerged from this investigation that the approach of FT surrogates, by preserving the

spectra, could maintain traces of coupling in the reconstructed surrogates. Similarly, the

approach of WIAAFT surrogates resulted too conservative in respect of the nonlinear

features of the time-series, and was not appropriate for this specific application.

It should be mentioned that another possible technique is to compute inter-subjects sur-

rogates, when data from more than one subject is available. They create a set of different

realisations of similar processes by merging time-series from different subjects in the

same condition. Independence between each of them is guaranteed by considering time-

series from different individuals involved in the experiment. However, inferred coupling

parameters are not completely independent of subject-specific features of the signals, in

particular from the subject-specific natural frequencies. It will be seen when dealing

with real data that the surrogate thresholds for coupling are strongly subject-dependent.

Therefore, it seems more appropriate to test each subject with their own specific set of

surrogates in order to validate whether a value of coupling is or not to be considered

relevant.

The inter-subject surrogate technique is instead appropriate for the validation of phase-

coherence, as the computation is performed point-by-point in the frequency space and

therefore should be not biased on the subject-specific spectral distribution.
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3.5.1 Statistical tests

In order to test for significant differences between distributions, two-sided Wilcoxon

tests are applied to the data (Gibbons and Chakraborti, 2011). Wilcoxon tests are non-

parametric, which is a fundamental feature when dealing with non-normal distributions,

e.g. when the t-test is not suitable to be applied. These tests compare the median of the

distributions by applying a ranking-based algorithm. The test’s result is independent from

the actual values of the distributions’ points, and depend strictly on their ranking.

In case of unpaired distributions, the Wilcoxon rank sum test (also known as Mann–Whitney

U test) was applied. In this version of the test, the sample points from both groups

g = 1 : 2 are ranked and Rg for each group is calculated as the sum of the corresponding

ranks. Calling ng the number of samples for each group,

Ug = Rg − ng(ng + 1)/2 . (3.45)

The smallest value between the two Ug is used to calculated the p-value, according to

significance tables (Lowry, 2014).

For cases in which intersubject distributions on data referred to the same probe/combina-

tion of probes the paired version of the test (the Wilcoxon sign rank test) has been used.

The test is performed by the ranking the absolute differences between the group values of

each pair and by considering the sign of the difference. This means calculating the score

W =

N∑
i=1

[sgn(x2,i − x1,i) ·Ri] , (3.46)

where N are the number of pairs, andR the rank. Tables provide guidelines on the p-value

of W as function of the sample size N (Lowry, 2014).

The significance value for rejecting the null hypothesis of equal medians is set as α=0.05.



Chapter 4

ASD features

Autistic Spectrum Disorder (ASD) is a neurodevelopemental condition affecting around

700,000 individuals in the UK: more than 1 in a 100 (Brugha et al., 2012). Currently,

the diagnosis of this disorder is based on behavioural criteria: the evaluation score is

based on the presence of impaired verbal communication, sensory dysfunctions and so-

cial interactions (Gotham et al., 2009). People in the spectrum often have a preference

for unchanging and predictable situations, which they recreate by a pattern of repetitive

behaviours and by keeping restricted, often very focused, fields of interests. Individuals

with ASD can have great difficulties in dealing with social interactions, and in general

with unstructured, unpredictable situations (Gomot and Wicker, 2012).

Being a spectrum, the disorder can manifest with extremely variable characteristics and

degrees of severity. The spectra of people with ASD diagnosis range from non-verbal to

high functioning individuals (Lord et al., 2000).

In the past, it has been theorised that ASD subjects could be defined as cases of ’extreme

male brain’. The theory was first suggested by Hans Asperger in 1944, when he wrote:

‘The autistic personality is an extreme variant of male intelligence. Even within the nor-

mal variation, we find typical sex differences in intelligence. In the autistic individual,

the male pattern is exaggerated to the extreme’ (Asperger, 1944).

77
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The theory has been more formally revised in recent years by Baron-Cohen (Baron-

Cohen, 2002). The author suggested to score the prevalence of male and females brain

features in individuals according to their ability to ’systemising’ and ’empathising’, in-

stead of the more classically applied gender classification based on verbal and spatial

abilities. The male brain in this psychometric scale is found in those individuals in whom

systemising is significantly better than empathising. The female brain is defined as the

opposite profile. Using these definitions, the author suggests that autism could be consid-

ered as an extreme of the normal male profile.

The disorder is highly inheritable and spans in a wide range of severity. Being a spectrum

ASD comprehends an extremely heterogeneous population, spamming from non-verbal

to high functioning individuals. Studies of infants at high risk of autism have shown

that characteristic social deficits in ASD can emerge in children as young as 1–2 years

(Ozonoff et al., 2010). However, the current diagnosis process usually requires longer,

with subjects on the ASD spectrum being diagnosed even in early adolescence.

4.1 Current diagnosis procedure

Despite the huge effort spent by the scientific community to explain and characterize

genetic (De Rubeis et al., 2014, Ronemus et al., 2014) and neuroanatomical (Barnea-

Goraly et al., 2004, Casanova et al., 2002) features of the disorder, the diagnosis procedure

is currently still based on behavioural tests and interviews (Gotham et al., 2009).

The criteria taken into account in order to assess the presence of ASD are mainly the

presence of impaired verbal communication, limited interest for social interactions and

sensory dysfunctions. Some of the scales used are:

• Childhood Autism Rating Scale (CARS) (Ozonoff et al., 2005)

• Autism Behavior Checklist (ABC) (Oro et al., 2014)

• Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 1989)
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• Autism Diagnostic Interview (ADI)(Lord et al., 1994)

• Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)(Spitzer and Williams,

1980)

4.2 From genetic to anatomical characterisation

Under a genetic point of view, a growing body of research suggests that ASD could be

associated with changes in genes playing a role in synaptic brain functions (Berkel et al.,

2010, Durand et al., 2007, Gilman et al., 2011).

Alterations in the genes coding for the protein Reelin is believed to affect the migration

and formations of layers during cortical development (Fatemi et al., 2005). Also, defi-

ciencies in GABA-receptor expression or function are likely involved in ASD (Ruben-

stein and Merzenich, 2003). A reduced activity of the inhibitory GABAergic activity

could lead to hyperexcitability in neural networks. This lack of balance between excita-

tory and inhibitory signals is likely to be a cause of the typically impaired ability to ignore

background stimuli or excessive sensorial input in ASD (Lord et al., 2000).

At a developmental stage, when pruning and synaptogenesis are most dynamically shap-

ing the neural network, different genetic expression within synapses could play a crucial

role in generating an alternative wiring. Specific neuroanatomical features are logical to

follow, and recent findings claim that, from hundreds of genes linked with ASD, as few

as 10 subgroups of anatomical features could be definable (Donovan and Basson, 2016).

Several studies reported brain enlargement has been observed in children with ASD

(Amaral et al., 2008, Courchesne et al., 2001, Schumann et al., 2010). In particular,

studies on retrospective head circumference and longitudinal brain volume studies of 2

years old at high risk of autism shed some light on the timing of this phenomena, linking

also brain volume overgrowth with severity of the disorder (Hazlett et al., 2005).
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More recently, the same authors focused on MRI scans of 6 and 12 months of age in

order to detect features preceding the brain volume overgrowth. They found that hyper-

expansion of the cortical surface area was found in infants who were later diagnosed with

autism (Hazlett et al., 2017).

The overgrowth of cerebral cortex is in line with the hypothesis which describes the

autism brain having an excessive number of mini-columns (Casanova et al., 2002). Such

over-populated cortex might result in a local overconnectivity and a more sensitive ac-

tivation process. This may play a role in the impairment of cognitive processes typical

of ASD, as well as in the high co-morbidity of epilepsy and ASD (Tuchman and Rapin,

2002). The mini-columns hypothesis also suggested that the overgrowth of cortical cells

could result in decreased pruning and reduced synaptogenesis (Marchetto et al., 2016),

phenomena which both can led to a topologically different brain network.

A recent comparative study was performed on Autism Brain Imaging Data Exchange,

including about 1000 participants aged 6–65 years (Haar et al., 2016). Thicker cortex

was one of the anatomical features that can still be detected when comparing brains of

ASD and CG adults, while other differences (such as the volumetric overgrowth of the

brain which characterize the brain of ASD toddler) were found to be later on compensated

for.

4.3 EEG results from literature

At a higher level of abstraction from genetics and cellular dynamics, it is a generally

agreed that ASD can be pictured by maps of brain synchronisation patterns that are distin-

guishable from control groups, in an interplay of under- and over-connectivity (Belmonte

et al., 2004, Wass, 2011).

The importance to involve objective measures in the diagnosis process is evident. In the

last 15 years, several possible biomarkers of ASD from EEG signals have been identified
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(Billeci et al., 2013, Gurau et al., 2017). Studies focused mainly on differences in func-

tional connectivity and spectral power evaluated by time-frequency methods. Being such

a diversity of condition, it is not surprising that the outcomes were not univocal.

In this section, a brief review of literature results is presented. Studies included in this list

were chosen for analysing EEG of ASD young children in resting state, with measures

like spectral power and coherence. For comparison, information on reference technique,

age of the subjects, experimental design and method applied have been reported in this

review, together with the main results.

4.3.1 Power

Investigations on spectral features of EEG from ASD children gave variable results. The

information of the studies and outcomes are shown in Table 4.1.

4.3.1.1 Type of measures

Most of the studies investigated the spectral content of the EEG by applying Fourier

transform on short epochs of the time-series, and by averaging the result. The exceptions

were only two: one applied a method called ’multi-taper’ (Thomson et al., 2000), which

simulates multiple realisations of the same time series sample. The other applied the

Welch transform, a modified version of the short time Fourier transform using window

function on overlapping segments of data.

4.3.1.2 General outcomes

Results for the power investigations are not in complete agreement. From the corre-

sponding columns in Table 4.1, it can be hypothesised that age of the subjects, reference

channel, type of activity or resting state might have again played a role in generating the

mixed outcomes. One should also bear in mind that inter- and intra-subjects variability

are hypothesised to be a key-feature themselves (David et al., 2016).
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Author
Year

Refe-
rence

Age Subjects
number

Setting Method Result

Tierney et al.
(2012)

CA-
eyes

0.5-2
years

65 HRA
57 CG

Eyes open FT ⇓ all bands absolute
power in HRA at 6
months

Pop-Jordanova
et al. (2010)

NA 3-6
years

9 ASD
intragroup

Attention
tasks

FT ⇑ δ ⇑ θ absolute
power in F region

(Stroganova
et al., 2007)

LE 4-6
years

40 ASD
40 CG

Visual
attention

FT ⇑ δ absolute power
in Fp region

Lushchekina
et al. (2012)

LE 4-7
years

27 ASD
24 CG

Eyes closed FT ⇓ θ and ⇑ γ
absolute

Orekova et al.
(2006)

LE 3-8
years

37 ASD Visual
attention

FT ⇑ γ absolute power

Matlis et al.
(2015)

BP 4–8
years

27 ASD
55 CG

Eyes open MT ⇓ α posterior/ ante-
rior power ratio

Machado et al.
(2015)

LE 4.5-8
years

11 ASD
14 CG

Eyes open WP ⇓ δ, θ PSD in the C
region
⇓ β in P region, lat-
eralised to the R

Cantor et al.
(1986)

LE 5-9
years

11 ASD
13 CG

Eyes open FT ⇑ δ, ⇓ α absolute
power

Coben et al.
(2008)

LE 6-10
years

20 ASD
20 CG

Eyes closed FT ⇓ δ absolute power
in F(L) region
⇑ β in Z region
⇑ θ in O(R) region

Sheikhani et al.
(2009)

LE 6-11
years

11 ASD
17 CG

Eyes open FT ⇑ γ absolute power

Elhabashy et al.
(2015)

LE 4-12
years

21 ASD
21 CG

Eyes open FT ⇑ δ and θ absolute
power especially in
F region

Chan et al.
(2007)

LE 6-12
years

66 ASD
48 CG

Eyes open FT ⇑ δ, ⇓ α relative
power

TABLE 4.1: Review of spectral power studies in ASD children, ordered by age of
the participants (HRA=high risk of autism, BP= bipolar, LE=linked ears, PSD=power
spectral density, P=parietal, Fp=prefrontal, F=frontal, C=central, O=occipital, L=left,

R=right, Z=mid-line, MT=multitaper, WP=Welch periodogram).
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ww� power in ASD

δ

absolute F
(Pop-Jordanova et al., 2010)

(Elhabashy et al., 2015)

absolute Fp
(Stroganova et al., 2007)

absolute
(Cantor et al., 1986)

relative
(Chan et al., 2007)

absolute C
(Machado et al., 2015)

absolute F L
(Coben et al., 2008)

θ

absolute F
(Pop-Jordanova et al., 2010)

(Elhabashy et al., 2015)

absolute O R
(Coben et al., 2008)

absolute
(Lushchekina et al., 2012)

absolute C
(Machado et al., 2015)

α

relative
(Chan et al., 2007)

posterior/anterior ratio (Matlis
et al., 2015)

absolute
(Cantor et al., 1986)

β
absolute Z

(Coben et al., 2008)
absolute P, R

(Machado et al., 2015)

γ

absolute
(Lushchekina et al., 2012)

(Sheikhani et al., 2009)
(Orekova et al., 2006)

TABLE 4.2: Summary of outcome of coherence studies in ASD children, grouped by
frequency bands (P=parietal, F=frontal, Fp=prefrontal, C=central, O=occipital, L=left,

R=right, Z=midline).

However, for some frequency bands, the results are unanimous. Table 4.2 shows how,

within the studies, absolute and relative power in the alpha band where never higher for

the ASD group. On the contrary, gamma power never resulted lower for the ASD.

For the theta band, the results are mixed. However, the studies detecting higher power for

the ASD had been conducted on older children, in respect to the studies showing a higher

theta power for the CG. No obvious discriminant could be found for the mixed results

obtained for the delta and beta bands.
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4.4 Coherence

A recently reviewed substantial body of evidence (Gurau et al., 2017, Schwartz et al.,

2016), which includes a study on a big population of children (Duffy and Als, 2012),

suggests that analysing the coherence of EEG activity across the scalp could be a promis-

ing way to depict the inner neural circuitry which could be characteristic of the disorder.

Nevertheless, details of the typical ASD-connectivity emerging from different studies are,

once again, rarely converging to a unique picture.

However, this divergence should not be seen as contradictory: as for the spectral power

investigations, different group age, experimental settings and analysing methods could

have led to apparently contradictory coherence results.

4.4.1 Experimental diversity

EEG recordings for the coherence studies were performed under resting state conditions,

with eyes either open or closed, during sleep or during task performance. The age of the

subjects varied from few months to 12 years of age.

As for the power, also the choice of reference electrode was not consistent between coher-

ence studies. Among all the choices, linked ears (LE) and common average (CA) where

the most common. Few studies adopted current source density (CSD) reconstruction,

bipolar montages, single ear, nose, right leg and linked mastoids references.
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Author
Year

Refe-
rence

Age Subjects
number

Setting Result

Keehn et al.
(2015)

CA 6-12
months

11 HRA+
30HRA-
46CG

View images of fa-
miliar or unfamiliar
face

⇑ L lateralization of intra-
hemispheric γ MSC at 12
months

Righi et al.
(2014)

CA 6-12
months

26 CG
17HRA-
5HRA+

Listen to speech
sounds

⇓ average γ LC at 12
months

Orekhova et al.
(2014)

CA 12-17
months

26 CG
18HRA-
10HRA+

Watch social and
non-social video

⇑ α PL over the F and C ar-
eas, in both video condition

Catarino et al.
(2011)

Nose 29
months

11 ASD
15 CG

Object recognition ⇓ α and θ MSC

Domínguez
et al. (2013)

CSD 2-5
years

72 ASD
31 CG

View emotional
faces

⇑ IC in δ and θ over P re-
gion and in shortrange con-
nections in L hemisphere in
δ θ and α

Boersma et al.
(2013)

RL 2-5
years

12 ASD
19 CG

Viewing pictures of
cars and faces

⇑ global PL in high-α, β

Buckley et al.
(2015)

LE 3-6
years

87 ASD
29CG

Eyes-open resting ⇑MSC in deep sleep
No difference in awake

Lushchekina
et al. (2016)

LE 4-7
years

27 ASD
24 CG

Eyes closed ⇓ δ and θ MSC in F-P con-
nections
⇓ α for F-T connections
⇑ β and γ MSC

Machado et al.
(2015)

LE 4.5-8
years

11 ASD
14 CG

Eyes open ⇑ δ MSC L short-range
⇑ δ β, and γ MSC
medium/long-range
⇑ interhemispheric short/
medium-range in P region

Coben et al.
(2008)

LE 6-11
years

20 ASD
20 CG

Eyes closed ⇓ δ and θ MSC long-range
for F-P connections and
globally at short-range

Carson et al.
(2014)

LM 8-11
years

19 ASD
13 CG

Eyes open, watch
blank screen

⇓ α MSC in interhemi-
spheric T-P and F regions

Elhabashy et al.
(2015)

LE 4-12
years

21 ASD
21 CG

Eyes open ⇓ δ, θ, and α MSC intra-
hemispheric
⇓ θ MSC interhemispheric
over C/P/O regions
⇑ δ MSC interhemispheric
over T regions
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Author
Year

Refe-
rence

Age Subjects
number

Setting Result

Clarke et al.
(2016)

LE 7-12
years

20 ASD
20 CG

Eyes closed ⇓ α and β MSC in F short/
medium interhemispheric

Cantor et al.
(1986)

LE 4-12
years

11 ASD
13 CG

Eyes open ⇑ α and δ MSC inter-/
intra-hemospheric

Chan et al.
(2011)

LE 4-12
years

11 ASD
13 CG

Object recognition ⇑ θ MSC in F (L) region

Sheikhani et al.
(2012)

LE 8-12
years

17 ASD
11 CG

Eyes open ⇑ γ MSC between T and
other brain regions
⇓ β MSC over T-P L
regions

Duffy and Als
(2012)

CSD 2-12
years

430 ASD
554 CG

Eyes open ⇓ θ, α, β MSC short-range
⇑ δ and β MSC in
medium/long-distance

Lazarev et al.
(2015)

SE 6-16
years

14 ASD
16 CG

Eyes closed No difference

TABLE 4.3: Review of coherence studies in ASD children, ordered by age of the partic-
ipants (CSD=current source density, CA= common average, RL=right leg, LE=linked
ears, LM=linked mastoids, SE=single ear, HRA+=autism developed from high risk sit-
uation, HRA-=autism not developed from high risk situation, MSC= magnitude square
coherence, LC= linear coherence, PL=phase lag, IC=imaginary coherence, P=parietal,

F=frontal, C=central, T=temporal, O=occipital, L=left).

As proved by several studies (Nunez et al., 1997, Qin et al., 2010, Yao et al., 2005),

the choice of reference has a significant impact on the outcome especially in coherence

studies. The linear transformation, by subtracting the reference time series from all the

probes, inevitably reduces the coherence between electrodes containing similar informa-

tion than the reference time series, while enhancing at the same time the impact of the

opposite scenario.

In what follows, the different experimental settings from literature will be discussed. The

results of the studies will then be compared in the light of the non-homogeneous experi-

mental frameworks.
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4.4.1.1 Coherence measures

Analogously to the power investigations, Table 4.3 reports the information and results of

coherence studies on EEG of autistic children. Within the literature studies, the definition

of coherence was not unique: even if most of them apply magnitude-squared coherence

(MSC), few studies used other parameters like linear coherence (LC) (Righi et al., 2014),

imaginary coherence (IC) (Domínguez et al., 2013) or phase lag (PL) (Boersma et al.,

2013, Orekhova et al., 2014). Although all the methods provide a measure of the co-

herence of phase at different frequencies, there are some differences. The methods are

briefly introduced below.

• MSC: It considers both magnitude of the spectral power and phase relationship.

Given two signals x1(t) and x2(t) with time frequency representation Xi(t, f) and

Xj(t, f), the cross spectrum at every frequency bin will be

Sij(f) = 〈Xi(t, f)X∗j (t, f)〉t . (4.1)

Based on this measure, the MSC is computed as (Bendat and Piersol, 1986)

MSCij(f) =
|Sij(f)|2

|Sii(f)Sjj(f)|
. (4.2)

It is similar to the Wavelet phase coherence (WPC) discussed in Section 3.2, de-

fined as WPC(f) = |〈ei∆φ(f,t)〉t|, with ∆(φ) = φi − φj (Mormann et al., 2000,

Sheppard et al., 2012).

• PL: Based on the phases extracted by frequency transformations (like FT or WT),

or on the Hilbert transform, it expresses the level of asymmetry of the instanta-

neous phase difference between two EEG signals. It is computed as PL(f) =

|〈sign
(
∆φ(f, t)

)
〉t| (Stam et al., 2007). The asymmetry implies the presence of a

time preserved, non-zero phase lag. Compared to the other measures of coherence,

it has the advantage to be less affected by the influence of volume conduction and
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the choice of the reference electrodes (Boersma et al., 2013). On the other hand,

symmetrical lags due to mutual interactions are discarded by this measure.

• LC: Based on discrete wavelet transform, it is an event-related measure of spec-

tral correlation, computed on few-cycles-long time epochs (Delorme and Makeig,

2004). It allows one to detect whether an event triggers a phase locked response in

a time series. It can be computed comparing time series from different trials, or on

from different locations.

• IC: Instead of the coherence module of LC, it extracts the value of the phase differ-

ence (Nolte et al., 2004). A high value of IC can not be caused by a linear mixing

of uncorrelated sources, and therefore is not sensitive to volume conduction effects

(Stam et al., 2007). However, IC can not be interpreted as a measure of interaction,

since it depends both on the strength of the coupling and the value of the phase

difference.

4.4.1.2 General outcome

Although the outcomes of the studies are quite variable, some common thread can be

found (summarised in Table 4.4).

Three studies detected for the delta band significantly lower fronto-parietal coherence in

ASD for young children (Coben et al., 2008, Lushchekina et al., 2016). In the same band,

shorter connections have been found stronger in the same age ASD group (Domínguez

et al., 2013, Machado et al., 2015). Three studies found on the contrary higher coherence

in delta band for long distance and/or inter-hemispheric connections, but all of them had

been performed on a set of subjects including older children (Cantor et al., 1986, Duffy

and Als, 2012, Elhabashy et al., 2015).

Similar pictures emerge for the theta band, with most of the studies detecting lower co-

herence for the ASD group in long distance connections (Catarino et al., 2011, Coben

et al., 2008, Elhabashy et al., 2015, Lushchekina et al., 2016), and higher coherence for

shorter links (Chan et al., 2011, Domínguez et al., 2013).
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For alpha activity, the majority of the studies detected a lower coherence in the ASD

group (Carson et al., 2014, Catarino et al., 2011, Clarke et al., 2016, Duffy and Als, 2012,

Elhabashy et al., 2015, Lushchekina et al., 2016). However, the age of the participants

could again have played a role in the different outcome: studies finding lower coher-

ence within alpha oscillations in the CG had been mostly performed on younger children

(Boersma et al., 2013, Domínguez et al., 2013, Orekhova et al., 2014).

Outcomes are quite consistent for the beta band. Across the different studies, it has been

found that the coherence is higher in the ASD group both generally and in medium-long

distance connections (Boersma et al., 2013, Duffy and Als, 2012, Lushchekina et al.,

2016, Machado et al., 2015), while it is lower for shorter distances (Clarke et al., 2016,

Duffy and Als, 2012, Sheikhani et al., 2012).

The gamma band again seems to generate almost unanimous outcome, with only one

study (based on LC) detecting a lower coherence (Righi et al., 2014) and four studies

reporting higher degrees of coherence in this band for the ASD group (Keehn et al., 2015,

Lushchekina et al., 2016, Machado et al., 2015, Sheikhani et al., 2012).

To our knowledge, ASD brain connectivity has been described exclusively by detecting

coherence within the same frequency range. However, the phase modulation acting from

the slower wave to the faster is believed to play an important role in brain processes

(Jensen and Colgin, 2007). To assess if this phenomenon is somehow impaired in ASD,

cross frequency phase interactions in EEG data will be quantified in this work.
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δ

P short
(Domínguez et al., 2013)

short L
(Machado et al., 2015)

inter-H T
(Elhabashy et al., 2015)

inter-H, intra-H
(Cantor et al., 1986)

long-med
(Duffy and Als, 2012)

F-P
(Lushchekina et al., 2016)

F-P long
(Coben et al., 2008)

intra-H
(Elhabashy et al., 2015)

θ

P, short L
(Domínguez et al., 2013)

F L
(Chan et al., 2011)

generally
(Catarino et al., 2011)

F-P
(Lushchekina et al., 2016)

F-P long
(Coben et al., 2008)

C-P-O inter-H
(Elhabashy et al., 2015)

short
(Duffy and Als, 2012)

α

F,C
(Orekhova et al., 2014)

short L
(Domínguez et al., 2013)

generally
(Boersma et al., 2013)

inter-H and intra-H
(Cantor et al., 1986)

generally
(Catarino et al., 2011)

F-T
(Lushchekina et al., 2016)

intra-H, T-P F inter-H
(Carson et al., 2014)

intra-H
(Elhabashy et al., 2015)

F short-med inter-H
(Clarke et al., 2016)

short
(Duffy and Als, 2012)

β

generally
(Boersma et al., 2013)

(Lushchekina et al., 2016)

med-long
(Machado et al., 2015)

(Duffy and Als, 2012)

F short-med inter-H
(Clarke et al., 2016)

T-P L
(Sheikhani et al., 2012)

short
(Duffy and Als, 2012)

γ

intra-H L
(Keehn et al., 2015)

generally
(Lushchekina et al., 2016)

med-long
(Machado et al., 2015)

T-other regions
(Sheikhani et al., 2012)

generally
(Righi et al., 2014)

TABLE 4.4: Summary of outcome of coherence studies in ASD children, grouped by
frequency bands (P=parietal, F=frontal, C=central, T=temporal, O=occipital, L=left,

H=hemispheric).



Chapter 5

Application to ASD data

5.1 Participants

A total of 22 boys and 10 girls were recruited for this study within the Blackpool Teaching

Hospitals. Inclusion criteria were:

• Clear diagnosis of ASD or normal development

• Age between 3 years 0 months and 5 years

• Parents able and willing to provide informed consent

Exclusion criteria were:

• Medications known to affect brain function

• Structural brain and chromosome abnormalities

• Uncertainty re-diagnosis or developmental progress

• First degree relative with ASD diagnosis (for neurotypical only)

• Epilepsy or undiagnosed seizure episodes

91
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ASD males

Subject
number

Age
[months]

ADOS
score

Hand
Preference

Summary

#1 42 19 ND
#2 45 19 ND Age=50±6
#4 50 19 Right ADOS=17.6±3.5
#10 56 11 ND Right= 53.8%
#13 50 22 ND Left=7.7%
#14 50 20 ND ND=38.5%
#15 52 20 Right
#17 47 21 ND
#18 56 13 Left
#19 43 19 ND
#24 58 16 Right
#36 46 18 Right
#39 58 12 Right

CG males

#7 55 0 Right
#8 45 2 Right Age=46±7
#23 53 0 Right ADOS=1±1
#25 55 0 ND Right=55.6%
#26 44 2 ND Left=0%
#28 44 0 Right ND=44.4%
#29 47 1 Right
#31 36 2 ND
#33 36 2 ND

TABLE 5.1: Summary of the male subjects’ characteristics (ND=Not Determined)

Sbj# Setting Activity State

On lap
On

chair

No
visible
activity

Looking
at a

screen

Bub-
bles

Sleepy Quiet
Some
move-
ments

#1 X X X
#2 X X X
#4 X X X

#10 X X X
#13 X X X
#14 X X X
#15 X X X
#17 X X X
#18 X X X
#19 X X X
#24 X X X
#36 X X X
#39 X X X
#7 X X X
#8 X X X

#23 X X X
#25 X X X
#26 X X X
#28 X X X
#29 X X X
#31 X X X
#33 X X X

TABLE 5.2: Summary of male subjects’s state during the selected time-window
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FIGURE 5.1: Age of the males subjects: ASD individuals are marked with the red
crosses, and CG with blue circles. Black line mark the threshold of 3, 4, 5 years of age,

and dashed lines show the average age for both groups (p-value=0.18).

Subject
number

Age
[months]

ADOS
score

Hand
Preference

Summary

CG females

#5 38 0 Right
#6 50 0 Right Age=46±7
#11 41 0 Left ADOS=0±0
#12 47 0 ND Right=55.6%
#16 52 0 Right Left=0%
#20 43 0 ND ND=44.4%
#34 41 0 Right
#37 41 0 Right

ASD females
#21 49 MIS Right
#22 51 MIS Left

TABLE 5.3: Summary of the female subjects’ characteristics (ND=Not Determined)

Sbj# Setting Activity State

On lap
On

chair

No
visible
activity

Looking
at a

screen

Bub-
bles

Sleepy Quiet
Some
move-
ments

#21 X X X
#22 X X X
#5 X X X
#6 X X X

#11 X X X
#12 X X X
#16 X X X
#20 X X X
#34 X X X
#37 X X X

TABLE 5.4: Summary of female subjects’ state during the selected time-window

Informed consent was obtained from all subjects’ parents, and the clinical trial was reg-

istered as UKCRN ID 14936.
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Because of the rare incidence of ASD in females, it was not possible to recruit a sufficient

number of ASD girls to either match the ratio of females in the control group or to perform

separate comparisons by gender. Characteristics of male subjects are reported in Figure

5.1 and Table 5.1, and the experimental setting in Table 5.2. Corresponding summary has

been made for the female subjects, in Tables 5.3 and 5.4.

Within the males, 13 subjects (aged 50±6 months) had a diagnosis of ASD (ADOS

score 17.6±3.5). Mothers of 7/13 of the ASD children (38.5%) declared that no hand-

preference emerged yet for their child, 5/13 declared a right-hand preference (53.8%),

and 1/13 (7.7%) had left-hand preference. The control group was composed of 9 sub-

jects (aged 46±7 months), selected for having no signs or familiar risk of autism (ADOS

score 1±1). For the control group, 4/9 (44.4%) were still undecided about their hand

preference, and 5/9 (55.6%) were right-handed.

5.1.1 Signal recording

EEG signals were recorded by using the Nicolet cEEG machine (Viasys Healthcare,

USA). 19 probes -plus the reference and the ground channels- where placed on the chil-

dren’s scalps with the standard 10-20 montage (Fig.5.2). recordings were acquired at a

sample frequency of 256 Hz. A video-footage of each acquisition was recorded by a

camera fixed at a distance of 2 meters in front of the children. The recording sessions

FIGURE 5.2: Side and top view of the 10-20 EEG standard montage.
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lasted for around 20 minutes, with the children sit on a chair (or their stroller) or on their

parent’s lap.

Some children accepted the situation calmly, and needed no distraction for the whole

length of the recording, while others showed signs of distress or drowsiness as a response

to the unusual lack of activity and interactions. In order to keep them as relaxed as

possible, the children were -when needed- entertained with a video played on a smart-

phone, or by the means of soap bubbles. A summary of the experimental settings for each

subjects is shown in Table 5.2.

5.2 Preprocessing

The time series were visually inspected while simultaneously playing the video-recording

of the experiment in order to identify the best continuous time-window of relaxed resting

state containing as few artefacts as possible.

The best compromise between presence of artefacts due to movements of the subjects

(never more that 5s) and length of the signal was met by carefully selecting within the

resting state epochs a time-window of 1 minute from all the recordings. An example of a

selected time-window is shown in Figure 5.3. In the time series, the spikes are artefacts

due to muscle activation (i.e. eye-movements and facial expressions). The bigger low

frequency artefacts visible in F7 and F8 are possibly due to the movement of the cables.

The selected signals were then band-passed within the range of interest (0.8-48Hz). Any

residual trends were removed by subtracting the 3rd order polynomial better fitting to the

signals.

In order to preserve the original local features of the signals, it was chosen not to perform

any manipulation in the shorter time domains, like de-spiking or linearising artefactual-

looking epochs.
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FIGURE 5.3: Example of a selected 1 min time window of all the probes from the data
of a CG male.

5.3 Selection of frequency bands limits

After visualising the power spectra, it was noticed that the presence of the 5 classic fre-

quency bands was not obvious in them. Moreover, it was not possible to trace a demar-

cation line between theta and alpha bands and between beta and gamma bands without

crossing a peak in the spectra of some subject. Also, theta-alpha bands and beta-gamma

bands showed uniform features between the two groups, as it will be shown in the next

Sections.

For these reasons, it was decided to merge theta-alpha and beta-gamma in two unique

bands. The frequency limits sets for the low frequency (LF), middle-range frequency

(MF) and high frequency (HF) are shown in Table 5.5.
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Band name Lower limit (Hz) Higher limit (Hz)
LF
δ

0.8 3.5

MF
θ − α 3.5 12

HF
β − γ 12 48

TABLE 5.5: Limits for the EEG bands selected for this study

5.4 Summary of the methods

The methods discussed in Chapter 3 were applied in order to characterise the features and

dynamics of the EEG time series. In particular, the measures were applied to the data and

visualised as follows:

• The Wavelet transform (WT) of Equation 3.6 discussed in Section 3.1.4 was applied

on the time series, with a central frequency of f0 = 2.

– The power spectra were obtained by averaging |WT 2| along the time dimen-

sion. In the figures, shaded portions of the spectra indicates frequency bins

for which the group distributions resulted significantly different.

– In order to compare between subjects the ratio of each spectral component

within the total spectral power, the relative power was also computed. The

normalisation was performed so that the sum of all the frequency samples in

a relative spectrum equals to 1.

– Interval comparisons were performed by averaging the spectra within each

band, for each subject. The resultant 19 values were used to generate an

interpolated group-specific head-map for each frequency band. Similar head-

maps were used to indicate the significance of differences between the groups,

with discrete un-interpolated shades of blue and red indicating with a lighter

colour a p-value<0.05 and with a darker colour p-value<0.01.
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• The Wavelet phase coherence was computed for all the undirected pairs of probes,

as discussed in Section 3.2. The average value within each interval was used for

group-comparisons.

– Fourier transform surrogates were used to validate each combination of probes,

as discussed in Section 3.5.

– Head-maps were used to indicate significant differences between the groups,

with non-directional lines in two shades of blue and red indicating with a

lighter colour a p-value<0.05 and with a darker colour p-value<0.01. Only

comparisons with the higher value above the surrogate threshold are shown.

• Wilcoxon rank sum test or Wilcoxon sign rank test were used to evaluate the statis-

tical significance, as explained in Section 3.5.1.

5.5 Measurement bias in the recordings

FIGURE 5.4: Side and top view of the 10-20 EEG standard montage, showing the
accidentally different placements of the reference probe.

After the whole set of subjects underwent the recording, it was noticed that a strong corre-

lation existed between the EEG features emerging from the dynamical characterisation of

the time series and date of the experiment. Further investigations revealed that the EEGs

were measured with two different positions for the reference probe: anteriorly (group 1)
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and posteriorly (group 2) of Fz. The difference between the settings is shown in Figure

5.4. The composition of the groups is reported in Table 5.6.

This inconsistency in the protocol introduced a bias in the brain dynamics investigations.

Absolute power and wavelet phase coherence were the most clearly affected and therefore

are discussed in this section.

How much this bias affected the results was obvious when applying the methods of power

and coherence on mixed groups of subjects divided by the location of the reference. With

these criteria, each group contained ASD, CG, males and females subjects. It was there-

fore unlikely that the significance of the outcome could reflect a real difference in brain

dynamics of groups distinguished by anything else than the reference placement.

Figure 5.5 shows the result of this test. The significance for this comparison is spread

across all the frequency spectrum and over the vast majority of probes (for power) and

pairs of probes (for coherence).

It can be also noticed that both the absolute power and coherence were significantly lower

in the areas closer to the reference electrode’s position. In particular, group 1 had higher

power and coherence centrally (further form the anterior position of the reference probe)

and group 2 had higher power and coherence frontally (further form the central position

of the reference probe).

This can be explained remembering that for unipolar electrodes referenced to the probe

X, the times series VA of the probe A is a voltage derived from the difference of electric

potential energy EA and EX . For closer probes, the electric potential energy in each

time sample is more likely to be more similar than for probes placed further away, and

therefore the recorded voltage would be less informative. In particular, similar electrical

activity which is collected both by the probe A and by the reference will be subtracted-out

in the time series of probe A, resulting in lower absolute power and coherence between

nearby probes.
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Absolute power

Phase coherence

FIGURE 5.5: Significant differences in absolute power and coherence for LF, MF and
HF bands for the recordings with different locations of the reference probe: red for
group1 and blue for group 2. On heads, brighter colour indicate a p-value <0.05, while
darker colour indicate a p-value <0.01. Note the extension of the significant differences,

located further from the corresponding reference-placement.
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ASD males CG males ASD females CG females
Group 1 10 2 0 6
Group 2 3 7 2 2

TABLE 5.6: Composition of the subgroups measured with different location of the ref-
erence probe

5.5.1 Normalisation strategies

In order to minimize the bias due to different placements of the reference probes from the

recordings, power and coherence analysis has been performed on the data by subtracting

different reference signals. Two re-referencing strategies has been tested: subtraction of

the common average (CA) and of the apex electrode’s signal (Cz).

The effect that different referencing choices cause to the analysis has already been briefly

introduced in Section 2.1.5. Following the notation introduced therein, the CA re-referencing

procedure on the probe A would generate from VA a new time series V ′A by subtracting

the time series VCA. If A was referenced to X , and B to Y , this process should remove

the dependence in VA and VB on the different positions of X and Y , because

V ′A = VA − VCA = (VA − VX)− (1/N
∑

Vi − VX) = VA − VCA

V ′B = VB − VCA = (VB − VY )− (1/N
∑

Vi − VY ) = VB − VCA . (5.1)

Similar mechanism would apply when choosing to reference to Cz. This time a new time

series V ′A would be produced by subtracting the time series VCz . This process should

again remove the dependence in VA and VB on X and Y , because

V ′A = VA − VCz = (VA − VX)− (VCz − VX) = VA − VCz

V ′B = VB − VCz = (VB − VY )− (VCz − VY ) = VB − VCz . (5.2)

Figure 5.6 shows the same time series from the CG male shown in Figure 5.3, after the

re-referencing transformation. It can be noticed how the diffused muscle artefacts were

attenuated by both techniques. It can also be noticed how the two linear transformations
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FIGURE 5.6: Selected 1-minute time window of all the probes from the time series of
Figure 5.3, after the re-referencing. Note that the overlapped time series are similar in

the overall time evolution, but not identical at a local scale.

generate, at the visible level similar results. However, the dynamical interactions will be

affected by the choice, as discussed below.

5.5.2 Comparison of re-referencing to common average and to Cz

The performance of the two transformations in reducing the bias on power and coherence

are here shown and commented. Neither of the re-referencing completely erases the dif-

ferences for power and coherence between the groups. The remaining differences could

be actually due to the different populations composing them. This is a realistic scenario,

because (as shown in Table 5.6) data from 10 ASD males, 2 CG males, 6 CG females

were acquired with the more anterior reference (group 1) and data from 3 ASD males, 2
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ASD females, 7 CG males, 2 CG females were acquired with the more central reference

(group 2).

5.5.2.1 Wavelet absolute power

Absolute power: re-referenced to Cz

Absolute power: re-referenced to CA

FIGURE 5.7: Performance of the re-referencing to Cz and CA in diminishing the mea-
surement bias for absolute power. Panels show significant differences in absolute power
spectra for the recordings grouped by different locations of the reference probe: red for

group 1 and blue for group 2.
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FIGURE 5.8: Performance of the re-referencing to the probe Cz and CA in diminishing
the measurement bias for absolute power. Significant differences for LF and HF bands
for the recordings grouped by different locations of the reference probe: red for group1

and blue for group 2.

However, by comparing the absolute power panels of Figure 5.7 with Figure 5.5 it is

evident that the significant differences between the group 1 and group 2 were heavily

reduced after re-referencing the time series both to the CA or to Cz. Moreover, the trend

of higher pre-frontal power for group 2 is inverted, suggesting that the features due to the

subjects composing the groups overcame the effect of the bias after the re-referencing.

A summary for the residual absolute power differences between group 1 and group 2

is shown on the head-map in Figure 5.8. For both Cz and CA, the differences after re-

referencing were found significantly higher on Fz and Fp1 for group 2 and on F8 for

group 1.

The main difference between the re-referencing methods found in the absolute power re-

sides at LF frequencies, with a residual significant group-difference in the parietal probes

remaining only when re-referencing to Cz.

5.5.2.2 Wavelet phase coherence

For phase coherence, removing the CA from the time series did not seem to erase the

reference bias as effectively as for the power spectra (first row of Figure 5.9). However,

the number of significantly different pairs got still strongly reduced after the procedure.
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Also, by comparing coherence maps in Figure 5.5 and 5.9, it emerges that the pattern

of differences changed after the re-referencing to CA, with the appearance of LF fronto-

posterior links for group 2 and MF and HF links involving the outer probes for group 1.

This fact could again be due to the different composition of the groups, with majority of

ASD males in group 1 and CG males in group 2 (Table 5.6).

Among the two strategies, re-referencing to Cz generated the lowest number of links with

residual significance, as it can be seen by comparing rows in Figure 5.9. However, most

of the links appearing significant after the Cz transformation were also detected after the

CA re-referencing.

For LF and MF, higher frontal coherence was detected by both normalisations for group

1, with the main difference that the long-distance fronto-posterior coherences were not

significant after Cz was removed.

FIGURE 5.9: Performance of the re-referencing to the common average time series (top
row) and to the probe Cz (bottom row) in diminishing the measurement bias for phase
coherence. Significant differences for LF, MF and HF bands for the recordings grouped

by different locations of the reference probe: red for group1 and blue for group 2.
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This investigation highlighted how, while the local features of the time series (like power)

do not seem to be heavily influenced, some non trivial effects can appear in the connec-

tivity maps for different re-referencing choices.

In order to understand in more detail this phenomenon, the changes in coherences due to

different re-referencing will be investigated here for individual subjects. The pair Fp1-Fz

(which showed higher coherence for group 2 in the original time series) was chosen for

Original time series

Re-referenced to Cz

Re-referenced to CA

FIGURE 5.10: Effect of re-referencing on phase coherence between Fp1-Fz, for all the
subjects, divided by group of belonging. Different reference positions are indicated by
yellow and purple lines. Last panels on the right show the groups average. First row
shows the original reference, the second row the Cz reference, and the last row the CA
reference. Note how the yellow and purple subgroups of coherence are clearly separated

in the original data and become less distinguishable after re-referencing.
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the comparison.

In Figure 5.10, coherences from group 1 subjects are plotted in yellow and group 2 in

purple. First row shows the original reference, the second row the Cz reference, and the

last row the CA reference. For each row, different panels show different types of subjects

(for gender and presence of autism). The last panels on the right show the group-averages.

It can be noted how the yellow and purple subgroups of coherences are clearly sepa-

rated in each panel for the original data (first row), and became less distinguishable after

re-referencing (second and third row). In particular, re-referencing to Cz (second row)

generates generally higher coherences than the CA (third row), especially at lower fre-

quencies.

The group averages on the right panels show how the initial bias due to prevalence of

ASD males and CG females in group 1 and CG males and ASD females in group 2 was

evened out by both re-referencing strategies, even if in a different fashion.

5.5.2.3 Conclusion about re-referencing

In the investigation performed on the effects of re-referencing, it emerged that the differ-

ent approaches do not seem to introduce significant biases on the power content of the

time series. On the contrary, the computation of phase coherence gives slightly different

results according to the re-reference technique chosen.

The Cz normalisation seems to perform better in order to reduce the bias in phase co-

herence when compared to the CA (Figure 5.9). However, because of the high number

of variables included in this situation (among which the different reference and different

groups composition), it is hard to define what actually generates this difference.

Also, by using Cz as a reference, connectivity investigations are biased toward a specific

location. By removing the CA, on the contrary, the effect of re-referencing is more uni-

formly distributed across all the probes. It is worth mentioning that, in any case, the dis-

tribution of re-referencing effect is still not perfectly uniform for the CA re-referencing,
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as probes with more consistent voltage contribute more to the average. Despite this, CA

re-referencing is a widely applied technique in EEG studies (Table4.3).

In the light of these considerations, CA re-referencing was preferred over Cz, and applied

for the comparisons performed on the time series for the ASD investigation.

5.6 Results for spectral power and phase coherence

The methods listed in Section 5.4 are now applied to compare data from ASD and CG

males, re-referenced to the common average. In the following figures, blue colour indi-

cates the CG and red the ASD group.

5.6.1 Power

An example of the time-frequency representation of the WT power is shown in Figure

5.11, for the complete multichannel recording of Figure 5.6. Each panel is placed on

the corresponding probe-position on the head. For better visualisation the colormap was

re-scaled for each panel.

FIGURE 5.11: Example of time-frequency representation of the Wavelet power for the
time series shown in Figure5.6. Each panel is placed on the corresponding probe posi-

tion.
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In the example shown in Figure 5.11, artefacts affected the LF content of the WT in the

pre-frontal probes. Most likely, they are due to ocular movements like blinking. They

occur every few seconds, and propagate also into the MF range. Despite this distorted

distribution of the spectral content due to non-neuronal electrical activity, a ridge of HF

neuronal activity is still visible for both probes.

The alpha wave (included in the MF range) was for this subject the brain activity that was

sustained more constantly in time: the ridge corresponding to alpha activity emerged in

most of the probes, especially around the visual cortex (electrodes O1 – O2 and P4 – P3).

HF activity on the beta-gamma range was better distinguishable on the frontal electrodes,

located over the association areas of the cortex.

The group-medians of the time-averaged WT absolute power are shown in Figure 5.12,

with axes sharing the same vertical scale. For both groups, due to the ocular artefacts

present across all the subjects, the pre-frontal probes displayed the higher absolute power

on LF and MF bands. Also for both groups, the alpha band spectral peak was visible

in most probes within the MF band. HF activity was more prevalent on the temporal

channels.

FIGURE 5.12: Absolute power group-median spectra shown over the probes location,
compared between ASD (red) and CG (blue) groups. Significant results (p<0.05) are

shown, when present, with blue shading indicating CG>ASD and red CG>ASD.
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Almost no significance was found in the LF band, with some narrow-band exceptions of

higher CG power in the posterior part of the head. Contiguous intervals within the MF

band resulted significantly higher for the CG, in theta and alpha ranges for all the probes

except for the anterior-temporal and pre-frontal probes. At HF, some narrow band where

found higher for the ASD group, on Fz and T5.

The head-maps help depicting the spatial distribution of EEG spectral power. The maps

ASD CG p<0.05

LF

MF

HF

FIGURE 5.13: Results for the group-median absolute power over the probes distri-
bution, compared for the 3 frequency bands, between ASD and CG subjects. Each
band shares the same colormap for better comparison. On the right, significant results

(p<0.05) are shown when present, with blue indicating CG>ASD and red CG>ASD.



Application to ASD data 111

are generated by spatially interpolating the band-average values measured underneath

each probe.

Figure 5.13 summarises the absolute power results. In the first row, the LF content due

to eye movements on the pre-frontal area was present for both groups. Also the visual

cortex underneath the occipital probes generated LF content in the EEG, for both groups.

No significance in group comparisons was found for this interval. On the contrary, some

significant differences due to the higher alpha spectral peaks in the CG emerged from the

MF band, with higher absolute power for multiple probes on the central and occipito-

temporal areas. No significance was pictured by the HF comparison, although the ASD

group generated an area of asymmetrically high power on the left temporal probes.

Outcomes were similar for the relative power, and are shown in Figure 5.14. The alpha

spectral peak became more evident in this representation, and again it was mostly higher

for the CG. Intervals within HF had significantly higher relative power for the ASD group

on Fz, and on very narrow intervals within the LF band across the scalp.

For the relative power, significant differences emerged in each of the three bands by inves-

tigating the band-average content, as shown in Figure 5.13. A higher LF relative power

FIGURE 5.14: Relative power spectra shown over the probes location, compared be-
tween ASD (red) and CG (blue) groups. Significant results (p<0.05) are shown, when

present, with blue shading indicating CG>ASD and red CG>ASD
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was found for the ASD group on the central probes. On the contrary, the MF relative

power was higher for the CG over the whole central area, extending to the posterior-

temporal probes and to the lateral-parietal probes. For the HF band, only the Fz relative

power resulted significantly different, i.e. higher in the ASD group. Again, some non-

significant left asymmetry was present in this band for the ASD group.

ASD CG p<0.05

LF

MF

HF

FIGURE 5.15: Results for the group-median relative power for time series re-referenced
to the CA over the probes distribution, compared for the 3 frequency bands between
ASD and CG subjects. Each band shares the same colormap for better comparison.
On the right, significant results (p<0.05) are shown when present, with blue indicating

CG>ASD and red CG>ASD.



Application to ASD data 113

FIGURE 5.16: Box-plots for the absolute and relative power for time series re-
referenced to the CA over the probes distribution, compared for the 3 frequency bands
between ASD and CG subjects. Significant results (p<0.05) are shown when present,

with blue indicating CG>ASD and red CG>ASD.

Box-plots in Figure 5.16 summarise the band-average results of both the absolute and

relative power analysis. In the figure, shaded background indicates significantly different

group distributions. By comparing absolute and relative power panels, it emerged that the

pattern of differences was consistent across the two measures.

The relative power enhanced the differences especially at a global level (first panel), de-

tecting significantly different distributions in all three frequency bands. In particular, LF
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and HF relative power was higher for the ASD subjects, while the MF was higher for

the CG. For the probe-by-probe comparisons, only two occurrences of significance in the

absolute power were lost in the relative power (O1 and O2 on the MF band).

From Figures 5.13 and 5.15, it emerged that some asymmetric distribution was present

for the ASD group, especially at HF. As this result was also reported in the literature

(Table 4.2), it was decided to investigate if any significant differences were present in

the spectra of corresponding probes on the left and right side of the head, within the

groups. In this case, the statistical test used was the Wilcoxon sign rank test, which

allowed paired comparisons. No extended differences emerged from this investigation

(Figure 5.17), with only some few-bins-wide power intervals within the LF and MF band

which resulted higher in the left side of the head for the ASD group (marked with bright

red for the sake of visibility).

FIGURE 5.17: Comparison of the relative power spectra for longitudinally symmetrical
probes for time series re-referenced to the CA, for ASD (red, on the left) and CG (blue,
on the right) subjects, shown over the probes’ location. No significant differences, i.e.

significant asymmetry, emerged (p<0.05).
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5.6.2 Phase coherence

FIGURE 5.18: Values of group-average effective phase coherence for LF, MF and HF
bands. The bottom-left left half of the matrices contain values for ASD group, and the
top-right for CG. White lines divide brain areas (top). Box-plots for group comparison
(bottom). Note how matrices are qualitatively symmetrical, ans no group difference

emerges for the overall effective coherence.

By computing the Wavelet phase coherence, it was possible to investigate the spatial

pattern of propagation of brain activity, i.e. functional connectivity, in each frequency

interval.

Matrices mapping the group-average effective coherence values for each frequency band

for all the undirected pairs of probes are shown on the top in Figure 5.18, with the same

colormap. As the matrices are symmetrical for each group, ASD values are shown in the

bottom-left halves, and CG in the top-right. Brain areas in the matrices are grouped by

white lines.

The symmetrical aspect of the matrices suggests that the propagation of brain activity

was generally similar between the ASD and CG groups, and some considerations can
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be drawn regardless of the group of belonging. For instance, by comparing the colour

distributions within the matrices for different frequency ranges, it can be observed that in

LF and MF the highest coherence was found in short-distance pairs within the occipital

and pre-frontal and between occipito-temporal areas. Long-range high coherence was

found in both LF and HF bands, for pairs linking frontal with occipital and parietal areas.

For the HF band, on the contrary, the highest coherence values were found for short-

distance links like Cz-Fz and O1-O2, but also for pairs within the frontal area and within

and between posterior and central areas, tracing more centralised connectivity maps.

For the group comparison, plots in Figure 5.19 show the median time-average Wavelet

phase coherence only for those pairs of probes generating significantly higher values for

ASD (first row) and CG (second row). Each frequency band is considered separately,

and shaded with the corresponding group’s colour, for clarity. The figure shows also the

thresholds for both FT (dark grey) and inter-subject (light grey) surrogates.

FIGURE 5.19: Group average frequency evolution of the phase coherence for links sig-
nificantly different in the LF, MF and HF range, plotted over the corresponding intersub-
ject (light grey) and FT (dark grey) surrogate thresholds. Blue and red shades highlight
the band of interest. The top row indicates pairs for ASD >CG, and the bottom row CG

>ASD.
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FIGURE 5.20: Actual values of the significantly different coherences for LF, MF and
HF bands, plotted over the corresponding inter-subject (light grey) and FT (dark grey)

surrogate thresholds.

The band-average values for phase coherence and surrogates for each of the significantly

different pairs are shown in Figure 5.20. There, it can be seen that only three pairs gen-

erated higher phase coherence in the ASD group for both the LF and MF band. Also, out

of these six values, three were very close to the surrogates threshold.

Most of the significantly different values, both in the LF and the MF range, were higher

for the CG. In this case, the differences in coherence between the groups were more

consistent, and further from the surrogate thresholds. The corresponding plots in Figure

5.19 for the two panels in the bottom row show how the blue curves stay a 0.1-step above

the ASD red curves in the LF and HF coherence, for then becoming more overlapping in

the HF range.

On the contrary, for the HF band, the majority of the significantly different values of co-

herence were higher for the ASD group, generating also the biggest differences from the
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FIGURE 5.21: Pairs with significantly different phase coherence values for time series
for LF, MF and HF bands, with blue indicating CG>ASD and red CG>ASD (p<0.05 in

lighter and p<0.01 in darker colour)

CG values and from the surrogates (5.20). The corresponding plot on the top-right panel

in Figure 5.19 reflects this difference, with the curves starting to go apart in correspon-

dence of the HF range.

In order to evaluate the spatial distribution of the differences, the pairs of probes gener-

ating significantly different values of band-average between the groups are connected by

lines on the head-maps in Figure 5.21, for each frequency bands. The intensity of the

colour in the figure indicates the significance level.

By comparing the different topography of the connectivity maps for the LF range, it

can be noticed that the long distance fronto-occipital and fronto-posterior links already

discussed for Figure 5.18 generated higher coherence for the CG group.

Also the values of a cluster of short-distance pairs within the frontal and pre-frontal areas

were higher for the CG in the LF band. These frontal links remained higher for the CG

group in the MF band, but the significance disappear in the HF range. There, the majority

of the significantly different coherences were higher for the ASD group and involved

shorted links revolving around the central area of the scalp.

Figure 5.22 presents the values of coherence differences (∆WPC) between the CG and

ASD group for the significant links, grouped on the horizontal axes by brain areas in-

volved. Areas are ordered on the axes longitudinally from frontal to occipital. The colour
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of the dots indicates the frequency band (purple for LF, orange for MF and yellow for

HF).

It is clear from this representation how the ∆WPC between the groups in the LF and MF

were higher for CG group in the frontal areas and decreasing toward the central one. On

the contrary, for the HF band, the ∆WPC were higher for the ASD group on the central

area, decreasing toward both frontal and occipital zones.

On the top-right panel of Figure 5.22, similar graph groups the dots according to which

brain sides they linked. This representation highlights how the inter-hemispheric coher-

ences (L-R column) was mostly higher for the CG group in the LF and HF range. Also, for

the CG, the intra-hemispheric links were preferentially located within the right side (R-M

and R-R columns). For the ASD group, on the other hand, higher coherence was found

between probes placed mostly within the same hemisphere or involving the middle-line.

On the bottom left panel of Figure 5.22 the dots are grouped by distance (in arbitrary

units ranging from 0 to 10). Again, a trend could be be identified, with higher ∆WPC

FIGURE 5.22: Values of the difference between ASD and CG median coherence, for
significantly different pairs. Each dot corresponds to a line in Figure 5.21. Different
colours indicate different frequency bands. Values are grouped by distance, brain sides

and brain areas linked.



Application to ASD data 120

Lower freq.
limit (Hz)

Higher freq.
limit (Hz)

Order of
Butterworth filter

LF 0.8 3.4 4
MF 3.6 11.5 5
HF 12.5 48 10

TABLE 5.7: Filtering parameters for the EEG data
Note that the higher and lower frequency boundaries of consecutive bands are not

exactly matching in order to minimize overlapping of the filtered content.

for short-range connections decreasing with the distance for both groups. For the CG,

LF, MF and HF the dots were spread on the whole axes, while for the ASD group the

significantly higher coherences were almost uniquely found between short-medium range

connections. Few links with higher coherences for ASD were found also in the MF-HF

ranges. However, those links generated very small ∆WPC .

The bottom-right panel of Figure 5.22 shows the box-plot distributions of both the dis-

tance between the probes generating significantly different links, and of |∆WPC | for the

significantly different pairs. A prevalence of longer distance links within the pairs having

significantly different coherence emerged for CG (p<0.05). Also the absolute values of

∆WPC were higher for the CG (p<0.0005).

5.7 Cross-frequency coupling comparison

The dynamical Bayesian inference (discussed in Section 3.3) was applied to in order to

reconstruct and compare the phase coupling functions from the ASD and CG.

5.7.1 Summary of the methods

A brief summary of methods applied to reconstruct and assess the coupling functions is

provided below.

• The time series were filtered as discussed in Section 3.4.1, with the parameters for

each band indicated in Table 5.7.
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• The Hilbert transform was applied to the filtered time series to obtain the corre-

sponding collective neuronal phases. The protophase-to-phase transformation was

also applied to the series, as discussed in Section 3.4.2. An example of filtered

bands and extracted phase is shown (with the corresponding FT power spectra) in

Figure 5.23.

• The dynamical Bayesian inference (Section3.3.3) was run to reconstruct the cou-

pling for triplet of LF, MF and HF phases. For each directed combination of probes

A → B, the LF and MF phases from A were coupled with the HF phase from B.

This design allowed to reconstruct how the low-to-high coupling acted and propa-

gated over the brain network. Local coupling was also reconstructed by computing

the inference with LF, MF and HF phases from the same probe.

• The coupling strength for each partial component of the LF, MF→HF coupling

was calculated from the matrices of coupling coefficients, as explained in Section

3.3.4.1.

FIGURE 5.23: On the left, example of the Fourier spectra of the time series from the
probe T6 from the time series of Figure 5.3 (black line) and of the corresponding filtered
components (blue for LF, orange for MF, yellow for HF). On the right, time-windows
of the filtered time series (in the same colour-scheme) and the corresponding extracted
phases (in pink). Different lengths of the window shown: 10 s for LF, 4 s for MF, 1 s

for HF.
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– Phase shuffling surrogates were computed for each inference (25 repetitions),

and the maximum value of the strength generated by each individual, probes-

specific surrogates distribution was used as a threshold to validate the corre-

sponding real outcome for each investigated coupling component.

– The results validated from the surrogates were analysed according to the fol-

lowing criteria: .

∗ By considering, for each probes combination, which percentage of sub-

jects from the ASD and CG groups had a value of the coupling strength

higher than the corresponding surrogate threshold.

∗ By considering the median effective value of the coupling strength (i.e.

above the surrogates) for the ASD and CG.

• The form of the coupling functions for the LF, MF→HF coupling was reconstructed

from the matrices of coupling coefficients, as explained in Section 3.3.2. Forms

were investigated both for local and for spatially-propagated networks. Surrogate

distributions were used to validate the results.

• Quantitative comparisons between the forms were performed by calculating both

the polar similarity index, discussed in Section 3.3.4.2 and the similarity with av-

erage functions, in particular:

– Intra-subject variability was assessed by computing the similarity between

single forms and the subject-average.

– Inter-subject variability was assessed by computing the similarity between

single forms and the group-average.

• For group-comparisons of the distributions, the Wilcoxon sign-rank test is applied

as explained in Section 3.5.1.

5.7.2 Coupling strength

The net and partial contributions to the coupling strength are here discussed.
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5.7.2.1 Net coupling

The coupling coefficients inferred by the dynamical Bayesian technique were grouped in

order to assess to total (net) strength of the LF, MF→HF coupling. In other words, all the

coefficients corresponding to base functions of the type

sin(K1φLF (t)±K2φMF (t)±K3φHF (t)) and

cos(K1φLF (t)±K2φMF (t)±K3φHF (t)), (5.3)

with K1,K2,K3 assuming values among 0, 1 and 2, are included in the Euclidian norm

of Equation 3.33.

The head-maps in Figure 5.24 show the different prevalence of significant coupling in

ASD and CG. Arrows link the probes for which the phase coupling between LF, MF

(start) and HF (end) bands was higher than surrogates. Circles indicate locally significant

coupling. Colour intensity codes for the actual percentage of subjects showing signifi-

cance. For clarity, only values above the 15% thresholds are shown on these head-maps.

The box-plot on the top right panel in Figure 5.24 shows the distribution of values above

the threshold. Low values of the median for the boxes indicates inter-subject variability

for the phase coupling (many links with low percentage of subjects each). On the contrary,

outliers on the top of the boxes appear when a high percentage of subjects had the strength

of a specific link above the surrogates. On the second row, matrices show the complete

distribution of these values (with no threshold).

Panels in both rows indicates how ASD and CG resulted to have different patterns of

phase coupling modulating the HF activity. In particular, ASD subjects showed a preva-

lence of significant coupling starting from the mid-line (probe Pz), while for the CG the

significant interactions were mostly happening on the outer areas of the head-map (tem-

poral, occipital and side frontal probes).
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FIGURE 5.24: On the top, head-maps for the phase coupling for CG (blue) and ASD
(red) groups for the net coupling are shown: arrows link the probes for which the phase
coupling between LF and/or MF (start) and HF (end) bands was higher than surrogates.
Circles indicate locally significant coupling. Colour intensity codes for the actual per-
centage. For clarity, values above the 15% threshold are shown. The box-plot on the
top-right summarises the content of the head-maps. Matrix-maps and corresponding
box-plot on the second row show the complete distribution for the percentage values.
On the third row, values of effective coupling strength are shown for each pair (signifi-

cantly higher for the ASD group).
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In this case, two links (F3→Fz and P3→O1) were significant for almost 45% of the CG

subjects, while only C3→F8 was significant for more than 35% of the subjects in the

ASD group. Also the more consistent number of links having a low-value of percentage

in the diagrams indicate that the ASD group had higher inter-subject variability in the

net coupling. In general, the complete distribution of percentages was not significantly

different between the groups (p>0.05 in the box-plot on the middle-right), indicating that

albeit being more variable, the overall amount of significantly coupled links was not lower

for the ASD group.

On the bottom of Figure 5.24, matrix-maps show the actual values of effective coupling

strength (above the individual surrogates) for each pair. In this case, the comparison

resulted significant, with the ASD group summing up in a higher value than the CG

(p<0.001). The columns corresponding to the posterior and occipital areas were the most

populated for the ASD group in the matrices of both rows indicating common sources of

coupling generating from those areas.

5.7.2.2 Direct LF→HF coupling

By isolating the coefficients related to the base functions involved in partial contribution

to the coupling like

sin(KφLF (t)) and

cos(KφLF (t)), (5.4)

withK assuming values among 1 and 2, it was possible to assess the specific contributions

to the overall coupling due to the direct modulation of LF to HF (simulated in Figure

3.11).

Head-maps in Figure 5.25 show a high prevalence of this type of coupling for both groups.

The threshold for visualisation was here put to 30%. No evident pattern emerged from
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FIGURE 5.25: On the top, head-maps for the phase coupling for CG (blue) and ASD
(red) groups for the LF→HF coupling are shown: arrows link the probes for which
the phase coupling between LF (start) and HF (end) bands was higher than surrogates.
Circles indicate locally significant coupling. Colour intensity codes for the actual per-
centage. For clarity, values above the 30% threshold are shown. The box-plot on the
top-right summarises the content of the head-maps. Matrix-maps and corresponding
box-plot on the second row show the complete distribution for the percentage values.

On the third row, values of effective coupling strength are shown for each pair.
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the maps, except for a cluster of high values directed from central to temporal and to pre-

frontal areas in the CG (visible in both the head-maps and in the corresponding matrix-

map on the second row).

The actual values of the effective strength in the bottom row also did not indicate any

evident trend. Interestingly, the columns corresponding to the coupling from the central

area in CG did not include any high value of effective strength, which were high in the

matrix of significant percentages. This means that the significant couplings mentioned

above did not correspond to particularly high values of effective strength. Box-plots in

Figure 5.25 confirmed that no overall difference was found between the groups in both

cases.

5.7.2.3 Direct MF→HF coupling

The coefficients modulating base functions like

sin(K1φMF (t)) and

cos(KφMF (t)), (5.5)

with K assuming values among 1 and 2, describe the direct coupling acting from the MF

to the HF.

The head-maps and matrices in Figure 5.26 indicate a substantial inter-subject variability,

especially for ASD. A significantly lower distribution of percentage of subjects above

the 15% threshold was found for the ASD group (p<0.01, in the box-plot). On the con-

trary, some general patterns valid across the subjects can be recognised for the CG. For

examples, the matrix on the second row highlights how a high percentage of subjects

had significant coupling starting from the temporal areas, in particular from the probe

T4. Also, more than 30% of the subjects had significant T3→Fp1 and T3→Fp2 partial

coupling.
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FIGURE 5.26: On the top, head-maps for the phase coupling for CG (blue) and ASD
(red) groups for the MF→HF coupling are shown: arrows link the probes for which
the phase coupling between MF (start) and HF (end) bands was higher than surrogates.
Circles indicate locally significant coupling. Colour intensity codes for the actual per-
centage. For clarity, values above the 15% threshold are shown. The box-plot on the
top-right summarises the content of the head-maps (significantly higher for the CG).
Matrix-maps and corresponding box-plot on the second row show the complete distri-
bution for the percentage values. On the third row, values of effective coupling strength

are shown for each pair.
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No overall difference between the percentages was found between the groups (box-plot

on the middle row), indicating that the higher variability in the ASD group compensated

for the lower percentages found.

With regards to the effective strength, the matrices on the bottom row of Figure 5.26

clearly indicate a prevalence of coupling exerted from the probe C4 for ASD subjects

and from P3 and C4 for the CG. Also, the columns corresponding to the coupling from

the occipital probes were virtually empty for the CG and more densely populated for the

ASD group, both for the percentage of subjects and for the effective strength.

5.7.2.4 Direct LM, MF→HF coupling

A very high inter-subject variability was also found in the coupling component due to the

combined effect of LF and MF activity, i.e. relative to base functions like

sin(K1φLF (t)±K2φMF (t)) and

cos(K1φLF (t)±K2φMF (t)), (5.6)

with K1,K2 assuming values among 1 and 2.

Head-maps of Figure 5.27 show a very diffused pattern of coupling for both groups.

However, the CG had few links which were significant for almost 60% of the subjects.

Among them, the highest were from T4 and T5 to P4. Such popular connections were not

present in the ASD group, which presented once again a more pronounced inter-subjects

variability.

For the effective strength, two high values were found for the ASD group or the links

Fp1→O2 and Fp2→O1.
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FIGURE 5.27:
On the top, head-maps for the phase coupling for CG (blue) and ASD (red) groups for the
LF, MF→HF coupling are shown: arrows link the probes for which the phase coupling
between LF, MF (start) and HF (end) bands was higher than surrogates. Circles indicate
locally significant coupling. Colour intensity codes for the actual percentage. For clarity,
values above the 15% threshold are shown. The box-plot on the top-right summarises
the content of the head-maps. Matrix-maps and corresponding box-plot on the second
row show the complete distribution for the percentage values. On the third row, values of
effective coupling strength are shown for each pair.
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5.7.3 Form of the coupling functions

The coupling coefficients inferred by the dynamical Bayesian technique, corresponding

to coupling functions like

sin(K1φLF (t)±K2φMF (t)) and

cos(K1φLF (t)±K2φMF (t)), (5.7)

with K1,K2 assuming values among 0, 1 and 2, were used to reconstruct the form of the

coupling function LF, MF→HF for each pair of probes, for each subject.

To do so, as explained in Section 3.3.1, the coefficients were multiplied by their corre-

sponding base functions, on the bi-variate φLF − φMF space. The form of the resultant

three-dimensional function integrates the information carried by the coefficients, and give

an insight into the mechanism underlying the coupling beyond its strength.

To allow quantitative comparisons between the forms, the polar similarity index is com-

puted for the four main direction of coupling showed in Figure 3.13.

5.7.3.1 Form of the local coupling functions

For each subject, 19·19 coupling functions are computed. Investigating the local coupling

reduces the number to 19 for each subject, allowing to visualise their forms on the corre-

sponding probe location. To do so, the coupling mechanisms within each probe is evalu-

ated by considering only the interactions LF, MF→HF, with the phases φLF , φMF , φHF

extracted from the same probe.

Figure 5.28 shows in red and blue colormap the forms of the local coupling functions

for ASD and CG, on the corresponding probe position. Group-average forms from the

surrogates time series are also shown – in grey– for both groups. The forms from the

figure express complex interactions between the phases, with no visually distinguishable

predominance of any of the ’deterministic’ forms shown in Figure 3.13.
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ASD CG

Surrogates

FIGURE 5.28: Forms of the group-average coupling functions, on the corresponding
probe position. Red colormap indicates ASD group, blue CG, and gray colormap indi-

cate the group-average forms from the surrogates time series for each group.

The computation of the polar similarity index helps in summarising the morphological

information of such functions, by computing the similarity between them and the four

numerical forms shown at the bottom of Figure 5.29. The numerical forms develop in the

directions parallel to the φLF axes (p1, in blue), parallel to the φMF axes (p2, in red), and

along the two diagonals (d1 in pink and d2 in black).

In terms of the meaning of the numerical forms, it is important to remember that the

direction p1 is associated with the direct coupling LF → HF , the direction p2 is with
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ASD CG

FIGURE 5.29: Polar similarity indices of the group-average coupling functions, on
the corresponding probe position. The colour of the arrow indicated the direction of
coupling tested with the numerical forms, shown below. Values above the corresponding
surrogate polar similarity are shown. For better visualisation the scale of the polar-plots

is [0 0.5].

the direct coupling MF → HF , and the directions d1 and d2 with the LF,MF → HF

couplings.

Values of the similarity index corresponding to each of the directions are plotted in the

polar planes on the head-maps at the top of Figure 5.29, for both ASD and CG group. The

module of the surrogate similarity was subtracted from the real result, in order to show

only the effective similarity.

The plot highlights how in both groups the module of the similarity for the direction p1

(blue arrows) survived the surrogates test for most of the probes, while, on the contrary,

p2 (red arrows) was less present. Effective similarity for direction d1 and d2 emerged

more frequently for the CG.
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5.7.4 Form of the spatially distributed coupling functions

Similarly to what has been done for the coupling strength, results from each direction of

similarity were investigated both in terms of how many subjects provided a value higher

than surrogates, and of the actual values.

Direction p1

Results for the direction p1 are shown in Figure 5.30. The head-maps on the top indicate

that, for most pairs of probes, the form of the similarity to p1 was higher than the surro-

gates in more than 70% of the subjects, with a case of 100% for the CG. In particular, it

emerged that the HF activity in the occipital area received very frequently a modulation

from more anterior LF waves. Pz→ O2 was one of the most popular links for the ASD

group. For the CG the most common links were C4→O1 and Pz→O2.

No significant difference between the groups emerged both from the links shown on the

heads, and for the complete distribution shown in the second-row matrices. Also the

median values of effective similarity to p1 were not significantly different between the

groups.

It is worth noting that, for the CG, high values of effective similarity were found in the

posterior part of the head, within and between the temporal, parietal and occipital areas.

Direction p2

Outcomes of the similarity with the numerical p2 are reported in Figure 5.31. In this case,

less subjects showed a value higher than the surrogates, with a maximum around 90%

and more scarcely populated head-maps. A preferential posterior-to-anterior direction of

coupling emerged for the CG, with F3 and T3 receiving several incoming arrows in more

than 80% of the subjects. Also the prefrontal area received very frequently a modulation

from long distance probes in the CG. In the case of the ASD group, the posterior-to-

anterior preferential direction was less obvious and counterbalanced for example by Cz

being modulated by anterior sources.
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FIGURE 5.30: Head-maps for the polar similarity of the CG (blue) and ASD (red)
coupling functions with the form p1, describing the LF→HF coupling. Arrows link the
probes for which the similarity was higher than surrogates and circles indicate locally
significant coupling. Colour intensity codes for the actual percentage. For clarity, only
value above the 65% threshold are shown. The box-plot on the top-right summarises
the content of the head-maps. Matrix-maps and box-plot on the second row show the
complete distribution for the percentage values. Matrix-maps and box-plot in the third

row show the distribution of the effective similarity for each pair.
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FIGURE 5.31: Head-maps for the polar similarity of the CG (blue) and ASD (red) cou-
pling functions with the form p2, describing the MF→HF coupling. Arrows link the
probes for which the similarity was higher than surrogates and circles indicate locally
significant coupling. Colour intensity codes for the actual percentage. For clarity, only
value above the 65% threshold are shown. The box-plot on the top-right summarises
the content of the head-maps. Matrix-maps and box-plot on the second row show the
complete distribution for the percentage values (significantly higher for the ASD group).
Matrix-maps and box-plot in the third row show the distribution of the effective similar-

ity for each pair (significantly higher for the ASD group).
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FIGURE 5.32: Individual average-coupling-functions directed to the probe T3 for the
CG. The probe T3 was chosen for generating high values of effective similarity with p2
for a consistent percentage of subjects. Note how the sinusoidal form develops consis-

tently along φMF with smaller perturbations along φLF , especially for the CG.

Matrix-maps and box-plot in the middle row of Figure 5.31 indicate how the overall

percentage of subjects with a effective value of p2-similarity was higher for the ASD

group (p<0.001). ASD subjects showed a more spread distribution of significant links for
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around 50% of the subjects, especially for the ones directed to the central, occipital and

parietal areas.

Also the values of effective similarity to p2 were slightly higher for the ASD group, as

shown in the last row of panels in Figure 5.31. In particular, high values were found for

connections toward T4 and T5 in the ASD group, and T3 and F3 for the CG. The latter

outcome overlaps with results discussed for the percentage of subjects shown in the panel

above.

This particular case was investigated more deeply, as an example, by visualising for each

subject the average forms of the coupling functions acting on the probe T3, shown in

Figure 5.32.

In most of the functions, the dominant feature emerging from the form was indeed the

p2 component, with the sinusoidal shape along φMF propagating relatively unchanged

along the φLF axes. This was true especially for the CG. In the case of the ASD group,

this propagation was more often interrupted by some contributions from φLF .

Direction d1

Figure 5.33 shows the results from the investigation about the similarity to the diagonal

form d1. For the ASD, Pz and P4 often received modulation from the pre-frontal probes.

In the CG, C4 and Cz seemed to modulate the HF content of both temporal and frontal

probes. The only significant difference found between the groups was in the effective

similarity, with clusters of high values for couplings within the frontal area and from the

central and frontal to the temporal area in the CG.

Direction d2

Results for the second diagonal direction of similarity d2 are represented in Figure 5.34.

No significant difference was found for this comparison between ASD and CG. The head-

maps and matrices of percentage showed how, for both groups, frontal and temporal
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probes frequently received incoming modulation from diffused areas. For the CG, the

modulation was coming especially from occipital and parietal probes.

Results for the effective similarity showed that, for the CG, high values were found in

links directed to the probe C4 and on short distances on local links in temporal and frontal

areas.
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FIGURE 5.33: Head-maps for the polar similarity of the CG (blue) and ASD (red)
coupling functions with the form d1, describing the diffusive LF, MF→HF coupling.
Arrows link the probes for which the similarity was higher than surrogates and circles
indicate locally significant coupling. Colour intensity codes for the actual percentage.
For clarity, only value above the 65% threshold are shown. The box-plot on the top-right
summarises the content of the head-maps. Matrix-maps and box-plot on the second row
show the complete distributions for the percentage values. Matrix-maps and box-plot in
the third row show the distributions of the effective similarity for each pair (significantly

higher for CG).
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FIGURE 5.34: Head-maps for the polar similarity of the CG (blue) and ASD (red)
coupling functions with the form d1, describing the additive LF, MF→HF coupling.
Arrows link the probes for which the similarity was higher than surrogates and circles
indicate locally significant coupling. Colour intensity codes for the actual percentage.
For clarity, only value above the 65% threshold are shown. The box-plot on the top-right
summarises the content of the head-maps. Matrix-maps and box-plot on the second row
show the complete distributions for the percentage values. Matrix-maps and box-plot in

the third row show the distributions of the effective similarity for each pair.
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5.7.4.1 Intra-subject variability

In order to evaluate the intra-subject variability of the form of the coupling functions, all

the forms for each subject were compared with the subject’s average form by applying

the similarity measure based on 2-dimensional correlation between two forms. Therefore,

high values of this similarity indicate lower intra-subject variability.

Forms in Figure 5.35 explain the meaning of this type of similarity. On the left, the intra-

subject average coupling functions are shown for one CG and one ASD subject. On the

right, the forms generating, respectively, the highest and the lowest values of the similarity

are shown. The polar plots on the corners summarise the morphological features of form

of the functions.

For the case selected for the CG on the top panels of Figure 5.35, the forms do not have

any obvious preferential component, as it is indicated by the small arrows in the polar

FIGURE 5.35: In the left column, two example of two intra-subjects coupling functions
are shown. In the right column, the forms generating respectively the lowest and highest
intra-subjects similarity indices are presented. On the side of each coupling function,

the polar plots show the similarity indices describing its form.
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plots. Also, corresponding arrows between the average and the C4→F8 form have differ-

ent modules and phases. The resultant similarity value is very small (|ρ| = 0.00001).

On the contrary, in the case shown for the ASD subject on the bottom panels of Figure

5.35, the forms generated a similarity of |ρ| = 0.7. The resemblance is clear by qualita-

tively observing the forms, with the p2 as prevalent component and a smaller second-order

modulation along φLF . The polar plot quantifies this resemblance, by indicating for both

forms a p2 arrow with modules significantly bigger than the others, and similar phases.

Figure 5.36 shows the group-average values of the intra-subject similarity, for each com-

bination of probes. The overall value was not significantly different between the groups.

For both ASD and CG, the highest similarities emerged grouped by rows, i.e. in functions

directed to a specific probe.

In particular, for both groups, interactions acting on F3 seemed to be the most similar

to the group average. P4 also contained high values of intra-subject similarity for both

groups. The group maps were different with regards to the C4 and T5 rows, which con-

tained, respectively, high values only for the ASD and for the CG.

FIGURE 5.36: Intra-subject variability of the form of the coupling function, evaluated
as group average similarity between each coupling functions and the subject’s average.
Martix-maps show the values of intra-subject similarity, and the box-plot their distribu-

tions.
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5.7.4.2 Inter-subject variability

Similar procedure allowed to quantify the inter-subject variability within the groups. This

time, the average form was calculated between coupling functions from corresponding

pairs of probes, in each group. The similarity was then computed for each pair between

individual subject’s form and the group average.

Results of this computation are shown if Figure 5.37. Significant difference between the

groups emerged from the matrices, as shown in the box-plot on the side. In particular,

the ASD group resulted having a much lower inter-subject similarity of the coupling

functions, i.e. higher variability spread across all the pairs.

The highest values of inter-subject similarity were found in links within the central area of

the ASD group, for the link T4→P4, and generally for the frontal to parietal and temporal

to parietal zones.

The most and the least variable inter-subjects average coupling functions are shown in

Figure 5.38. The most variable inter-subject coupling function was the T4→T3 for the

ASD group, shown on the left, in red. It generated a |ρ| < 0.2. The polar plots under-

neath it are divided for each direction of similarity, showing with an arrow the index of

the visualised function, and with dots the indices relative to the individual subjects’ forms

FIGURE 5.37: Inter-subject variability of the form of the coupling function, evaluated as
group average similarity between each coupling function and the corresponding group’s
average. Martix-maps show the values of inter-subject similarity, and the box-plot their

distributions, resulting significantly higher for the CG group.
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(generating the shown average). The biggest arrows emerged for the d1 direction, con-

sistently with the qualitative aspect of the form having a slightly preferential component

along the φMF axes. The scattered dots around the arrow explains both the inter-subject

variability and the not obvious form of the shown function, which generated as average

of very different forms, hence the high inter-subject variability.

On the right, the case with the highest similarity |ρ| > 0.45 is shown, which corresponds

to the pair of probes C3→C4 from the CG. The form has an evident preferential compo-

nent along the φLF axes, which is depicted by the long blue arrow in the d1 polar plot. The

dots in this case are clustered around a specific phase in the polar plane of each similarity

direction: this indicates that the average form (shown) originates from a distribution of

functions having similar morphological features, hence the low inter-subject variability.

FIGURE 5.38: Example of two group-average coupling functions generating respec-
tively the lowest and highest inter-subjects similarity indices. On the bottom, the polar
plots show the similarity indices describing the form of the individual coupling function
(with dots) and of the inter-subject’s form shown on the top (with arrow). Note how

coherent dots distributions generated the form with higher inter-subject similarity.



Chapter 6

Discussion

The outcomes of the comparison of brain dynamics between ASD and CG are here

summarised, in order to discuss the possible meaning of the identified discriminants as

biomarkers for ASD.

6.1 Power

Power results can be summarised as follows:

• Generally, the power was higher for the ASD group in the LF and HF range, and

for the CG in the MF range.

• Relative power provided a better discrimination between the groups than the abso-

lute power.

• Higher absolute power for CG in the MF was found on the occipital probes.

• CG showed higher relative MF power on central, parietal and temporal areas.

• ASD had higher relative power for the LF band on central areas and for HF on Fz.

These outcomes are in line with what has been reviewed in Section 4.3.1 about literature

results for resting state EEG features in autistic children.

146



Discussion 147

For the LF band, even if no specific probe generated higher delta power, the overall power

was higher for ASD in the LF interval. Higher LF power – in the delta range – was also

detected by several other studies (Cantor et al., 1986, Chan et al., 2007, Clarke et al., 2016,

Elhabashy et al., 2015, Pop-Jordanova et al., 2010, Stroganova et al., 2007). For the MF

bands, outcomes of this work showed higher power for the CG in the MF band. Studies

gave mixed results for the theta band, but found generally lower alpha band (Cantor et al.,

1986, Chan et al., 2007, Matlis et al., 2015). For the HF band, the higher power of the

ASD group confirmed literature findings for the beta-gamma bands (Coben et al., 2008,

Orekova et al., 2006, Lushchekina et al., 2012, Sheikhani et al., 2009).

As suggested (Wang et al., 2013), the origin of this different distribution of power could

reside in neurochemical abnormalities within synaptic receptors. This could be the case

because power in HF and LF bands is believed to be modulated by the inhibitory circuitry

within the pyramidal cells (Tierney et al., 2012). As discussed in Section 4.2, genes

coding for GABA receptors appear to be different in ASD, contributing to increased neu-

ronal excitability, particularly during development (Ma et al., 2005). Impairment of the

same GABAergic inhibition was also linked to the HF activity emerging during epileptic

seizures (Wendling et al., 2002).

GABAergic activity has also been suggested to play a role in generating the power in the

alpha band (within the MF range) by active inhibition (Jensen and Mazaheri, 2010). This

processes, contributing to the ‘idling’ effect (Klimesch et al., 2007) of alpha, are involved

in the top-down control of sensorimotor responses, which include the ability to adjust

the behaviour according to the environmental contest. For the alpha band, an increased

power is believed to be connected with an attentive restful state, and ability to concentrate

despite stimuli coming from a distracting environment (Klimesch et al., 2007, Sauseng

et al., 2005). The detected lower power in the MF could therefore be linked with some

ASD behavioural features.

The lower MF power in temporal and posterior areas could be also explained by the more
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densely packed minicolumnar structure (Casanova et al., 2002), preventing the GABAer-

gic interneurons from propagating a proper idling effect.

6.2 Coherence

The main points emerging from the coherence investigation are:

• Generally, HF activity was coherent at shorter distances, while LF and MF activity

were found more coherent across longer distances.

• ASD and CG showed an opposite trend in having preferentially more short-distance

HF coherence and more long-distance LF and MF coherence.

• The CG showed a relevant number of higher inter-hemispheric coherences for the

LF and MF ranges, while the ASD group had higher intra-hemispheric HF coher-

ence.

• For the CG, the coherence was higher especially for the frontal-prefrontal links,

while the ASD group had more coherent links between the centro-frontal zones.

With regards to the distance, the most agreed traditional theory based on fMRI studies

depicts the autistic brain with a pattern of under-connectivity between distant brain re-

gion, and over-connectivity between more proximal areas (Belmonte et al., 2004, Courch-

esne and Pierce, 2005, Just et al., 2004). However, recent studies did not find any rela-

tion between the distance of the probes generating coherent links and the presence of

ASD, showing a more variate and complex scenario (Duffy and Als, 2012, Mohammad-

Rezazadeh et al., 2016). Coherence results presented in this work are in agreement with

the traditional approach, detecting significant group differences in the length of coherent

links.

Results presented in this study also indicated for ASD a strong pattern of diminished co-

herence within the prefrontal-temporal lobes in the LF and MF, counterpoised to a higher

coherence between frontal, parietal and central area of the scalp for the HF ranges. The
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under-connectivity of MF in the frontal areas (where processing of sensorial functions like

hearing is located) could signify an impairment on the ’idling-effect’ of alpha for ASD,

contributing to the reduced ability of an ASD individual to cope with noisy environmental

inputs.

According to the theory of minicolums (Casanova et al., 2002), in autism the development

and interconnections between GABAergic interneuron could be disrupted by the densely

packed cortical cellular structure, especially in the prefrontal and temporal areas. In line

with this theory, those areas showed a lower phase coherence in LF and MF frequency

range in ASD, potentially reflecting impaired connectivity for the GABAergic interneu-

rons.

On the other hand, the higher centro-frontal and centro-occipital HF range coherence

of the ASD group, partially overlapping with an increasing in the power, may reflect

structural hyper-connectivity. This increased synchronisation of the HF activity is also in

line with the mini-columns theory, and with the early over-growth of brain matter reported

in children with ASD (Billeci et al., 2013). This hypothesis of over-synchronisation in

the HF range could also be an explaination for the >40% co-morbidity of epilepsy with

autism (Palmen et al., 2004).

Finally, inter-hemispheric coherence appeared to be reduced in ASD when compared to

the CG. On the contrary, ASD showed a more extended intra-hemispheric coherence. A

recent fMRI study comparing males and females’ brain functional connectivity (Ingalha-

likar et al., 2014) showed similar differences for males and females brains, respectively.

According to this representation of males and females brain features, what emerged from

this work is in agreement with the ’extreme male brain’ theory of the autistic brain (Baron-

Cohen, 2002).

6.3 Coupling functions

The investigations of phase-to-phase coupling brought the following results:
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• LF→HF component: no overall significant differences were found in strength and

similarity.

• MF→HF effective coupling strength was detected in a significantly higher percent-

ages of subjects for CG.

• p2 similarity was significantly higher both in percentage of subjects and effective

values for ASD.

• d1 similarity had significantly higher values for CG.

• Net HF had significantly higher values for ASD.

• Significantly higher inter-subject variability was found for ASD group.

The cross-frequency coupling investigation performed in this study sheds for the first

time light on the differences between the effective connectivity in ASD and CG young

children.

The analysis of strength and similarity of the coupling allowed us to evaluate two com-

plementary types of information. The strength quantified the amount of cross-frequency

modulation by linearly combining the inferred coefficients, averaged in time. On the other

hand, investigations on the forms allowed to assesses the combined modulation mecha-

nism generated by the collective effect of the single coefficients and their base functions.

In other words, the strength is linked to the amplitude of the coupling function, while the

form of it is related to the mechanism of the coupling. Therefore, a high value of coupling

strength could generate a surrogate-looking form of the coupling function in which the

mechanism of the interaction is unclear. On the contrary, a low value of strength could

lead to a small-amplitude coupling function describing a clear, albeit weak, coupling

mechanism.

Within the triplet LF, MF→HF, the most interesting results were given by the partial com-

ponent MF→HF. This includes the well known theta→gamma coupling, summarised in
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Section 2.1.7. In this interaction, the slower theta wave travelling from different func-

tional networks is believed to integrate the information coded by gamma in HF local

networks across longer distances and periods of time (Jensen and Colgin, 2007).

Theta-gamma phase-to-power coupling was detected during memory tasks (Schack et al.,

2002), in electrocortigrams of epileptic patients during cognitive tasks (Canolty et al.,

2006), on the hippocampus during a working memory task (Axmacher et al., 2010), dur-

ing visual tasks (Voytek et al., 2010).

It follows that a weaker coupling from theta band (in the MF) could lead to a brain

network in which the HF activity propagates on medium-long distances in a different,

less controlled way. Results of this investigation showed that most of the CG subjects

shared a specific subset of links in which MF→HF coupling strength was above the sur-

rogate threshold. The overall percentage of subjects with effective coupling strength for

MF→HF was not different between the groups, with the ASD subjects presenting more

variable maps.

Under a topological point of view, the ASD group had MF→HF coupling acting preva-

lently on the HF of the central probes, while for the ASD group the direction was op-

posite (MF from Cz modulating the HF in the periphery). This difference could indicate

the preferential direction of information flow in the cortico-thalamic circuitry (Alexander,

1986).

By observing the matrices of the effective coupling strength for MF, it emerges how,

preferentially, high values are grouped in columns. This could indicate how, especially

for the CG, the source of MF acts as a ’coupling mean’ travelling through the network and

integrating the clusters of HF activity along the way. Rows of high values in the coupling

strength’s matrix, like for the Cz probe for the ASD in the MF→HF coupling, indicates

a less physically meaningful coupling generating from mixed sources and directed to the

same target. This difference in the prevalent direction between ASD and CG was found

also in the LF→HF coupling-maps, both for strength and similarity.
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However, the forms of the coupling functions have been found to be significantly more

similar to the p2 numerical form (associated with MF→HF) for the ASD group. The

significance indicates the presence of the mechanism for the MF→HF coupling in the

ASD group, which nevertheless transmits weaker interactions than in the CG. Again, a

mixed map of periphery-to-central links emerged from the ASD group when compared

to a more homogeneous posterior-to-anterior CG map defining a clear direction for the

propagation of the coupling.

With regards to the net HF coupling, encompassing all the coupling coefficients defining

the triplet LF, MF→HF, the head maps for the coupling strength described a fundamental

difference between the groups. Parietal and occipital probes acted as starting points for

long distance connections for the ASD group, while the CG map was characterised by

shorter distance links developing around the periphery of the head. The effective values

of the strength were significantly higher for the ASD group.

This result is apparently in contradiction with what shown and discussed for the partial

LF→HF, MF→HF and LF, MF→HF components of the coupling. However, one should

bear in mind that those partial components, which carry the most physically meaningful

parts of the interaction, are not the only ones generating the total coupling. Other com-

ponents contain the self-dynamics HF→HF and the common LF, HF→HF, MF, HF→HF

and MF, LF, HF→HF components are included in the net coupling strength.

Because of the filtering and the proto-phase-to-phase transformations, self dynamics should

not emerge from the analysis. Residual traces of self-dynamics could be due to a small

overlapping in the spectral content of the MF and HF filtered bands, and therefore should

not carry a relevant physical meaning. This should not have influenced investigations on

the form of the coupling, as the similarity analysis presented in this work does not include

dependences on φHF : the investigated forms are uniquely a function of φLF and φMF .

Other interesting outcomes of the coupling investigation regarded the intra- and inter-

subject variability. It emerged that, within each subject, the forms of the coupling exerted

on the probe F3 were generally the most similar to the group average. P4 followed for
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the ASD group, and T5 for the CG. The probe F3 is also a frequent target of the MF→HF

coupling. This result highlights once again how the MF→HF component is of central im-

portance for the investigated brain dynamics. No statistical difference emerged for intra-

subject variability of the coupling functions, indicating that ASD does not either enhance

or reduce the propagation of similar coupling mechanisms within the brain network.

On the contrary, ASD seemed to be associated with a higher inter-subject variability of

the coupling function, when compared to the CG. Among the CG, it is worth noting that

the most similar function detected between the subjects was the T4→P4, which was also

found similar to the numerical forms in a considerable percentage of subjects for all the 4

investigated directions (p1, p2, d1 and d2). This suggests that the most common features

of coupling functions underlie a specific mechanism and not a surrogate-like form.

The higher in inter-subject variability for ASD was the most significant difference found

in this study, with a overall 5% lower similarity to the group average for the ASD group

(p=3·10−32). This result remarks how the variability between individuals can be consid-

ered as a feature of ASD. The spectral nature of the disorder and the many different ways

in which it manifests might play a role in such variability. As it has been recently sug-

gested (David et al., 2016), that inter- and intra-subjects variability could be a key-feature

of ASD even between individuals belonging to similar areas of the spectrum.



Chapter 7

Conclusions

In conclusion, the methods applied allowed us to describe in detail the different brain

dynamics associated with the presence of ASD in young children.

The outcome of the analysis confirmed previous results for power and coherence investi-

gations in EEG of young children, with the novelty of applying wavelet-based methods

for both.

The main advantage in the power investigation introduced by the wavelet transform is the

logarithmic resolution of the frequency axes, which fits the spectral distribution of the

EEG signal well. Moreover, the adjustment of the central frequency allows to optimally

set the compromise between time and frequency resolution.

For the coherence analysis, the wavelet transform allows once again to work on logarith-

mically distributed frequency steps, and to consider the evolution of the phases in time.

Also, the phase-defined coherence excludes effects due to the amplitude of the time-series

which are not completely excluded in more commonly applied techniques like the mag-

nitude squared coherence.

In this work, cross-frequency phase coupling has been evaluated for the first time from

the EEG of ASD and CG children. The brain has been modelled as a multidimensional
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network of coupled phase oscillators subject to noise, whose time-variable coupling pa-

rameters were inferred by means of the dynamical Bayesian inference.

The reconstructed coupling functions bring a novel perspective to neuroscience by pro-

viding unique insight into the effective connectivity from EEG signals. Moreover, the

polar similarity index that has been specifically developed here allows one to describe

the form of the functions in quantitative detail. The comparisons of LF, MF→HF phase

coupling functions in the ASD and CG demonstrate how neural coupling functions can

be reconstructed from spatially distributed sources, and what benefits and possibilities

are introduced by their assessment. In principle, the method can equally be applied to the

time series created by any pair of coupled oscillatory processes (Stankovski et al., 2015,

2017b, Ticcinelli et al., 2017).

In summary, the analysis disclosed the following main results for the ASD – CG compari-

son. Power investigations detected higher neuronal synchronisation for the ASD group in

the LF and HF range, and for the CG in the MF range. Functional connectivity assessed

with wavelet phase coherence disclosed patterns of higher coherence for ASD in short

distance HF connections on the central area of the scalp, which could be linked to the

over-synchronised activity of local ensembles of neurons, reflected also in the high HF

power on the same areas in the ASD. The higher coherence on longer LF connections

in CG was on the contrary not linked with the emergence of higher power, and could

have reflected more the propagation of coherent waves between different networks than

the neuronal synchronisation within local neuronal ensembles. For the CG, short-range

coherence was higher especially for the frontal-prefrontal links in LF and MF bands,

suggesting a cognitive function of the coherent links.

Coupling functions allowed to study the effective connectivity. The MF→HF compo-

nent of the coupling disclosed topological network differences in the frequency-range

including the well known theta-gamma modulation. A higher percentage of subjects with

significant coupling strength in the CG was counterpoised to a more deterministic form

of the coupling function in the ASD group, suggesting an impairment in the amount of
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effective modulation performed more than a lack of pathways for it. Also higher inter-

subject variability emerged from the comparison of forms of the coupling functions in

the ASD group, in line with the theory of autism as an idiosyncratic brain (David et al.,

2016, Hahamy et al., 2015). Especially for the CG, LF and MF modulation were found

to travel from the sources through the network on preferential directions (often posterior-

to-anterior), while the ASD displayed more variable and often peripheric-to-central pat-

terns. This difference suggested the presence of a less structured theta-to-gamma cou-

pling, which would be in line with the cognitive features of ASD.

7.1 Personal contribution

For the preparation of this PhD thesis, an introductory research on brain anatomical and

functional features has been undertaken, followed by a research on the meaning and origin

of the brain waves recorded in the EEG.

Bibliographical research on the current knowledge about brain features and EEG dynam-

ics in children with ASD has been performed and summarised.

Numerical simulations have been performed in order to fully understand the mechanisms

behind each method of analysis applied for the characterisation of the brain dynamics,

including the surrogate techniques. The relevant parameters of each method have been

tuned to achieve an optimal application to this specific investigation. The methods of

wavelet phase coherence and dynamical Bayesian inference developed by the group have

been applied for the first time to a all-to-all multidimensional network (having 19 nodes).

For the Bayesian inference, the numerical program for the method has been generalised

in order to encompass any number of oscillators, and its performance on networks with

different orders has been numerically evaluated.

The polar similarity index has been developed to allow quantitative comparisons of the

form of the coupling, and its usefulness has been proven within the investigation.
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Analysis of effective coupling in the EEG of ASD children has been performed for the

first time, and the results have been interpreted under the light of what is known about

brain dynamics and ASD.

7.2 Limitations

The greatest care has been taken in order to pre-process the data in the most suitable way

before performing the analysis.

However, the bias in the data discussed in Section 5.5 might still have played a role in

enhancing the differences detected by the methods applied. Because of the unfortunate

mixed composition of the same-reference groups reported in Table 5.6, it was not possible

to perform any statistical comparison between sets which were reference-wise homoge-

neous.

Also, the different strategies undertaken by the EEG technicians in order to keep the

children still and quiet (letting them look at a screen, or listen to the parent’s voice) might

have influenced the brain activity of each subjects.

Finally, the limited number of subjects involved, especially in the CG, limits the statistical

validity of the outcomes.

Despite these limitations, the procedure followed for this investigation has been thor-

oughly developed, and led to promising preliminary outcomes. For these reasons, the

publication of the results outside of this thesis is in plan only after additional data are

collected.

Also, few methodological limitations should be mentioned.

When studying brain connectivity from EEG, one should bear in mind that volume con-

duction on the scalp affects measures of functional connectivity. In order to reduce this

effect, several models have been proposed to reconstruct the source time-series. However,

a more dense array of EEG probe than the one used in this study (e.g. 128 channels) is
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recommended in order to apply such techniques. However, this type of artefacts are likely

to affect the measures of coherence in similar fashion between the groups, and therefore

comparative results should still be reliable.

In the applied methods, a set of parameters must be chosen, which inevitably inserts some

degrees of subjectivity in the measures. Among them:

• The choice of the re-referencing system.

• For the Wavelet transform, the choice of the type of Wavelet and of the central

frequency f0.

• For the filtering, the type and shape of the filter, and the bands definition.

• For the dynamical Bayesian inference, the length of the window used for each cycle

of the computation and the propagation constant.

No golden standard exists for the optimal extraction of phases from a time-series with

complex spectral content. In this case, a compromise between the identification of con-

sistent bands of activity and the width of such bands has been undertaken. However, the

division in wider frequency bands leads to a less precise extraction of the phase evolution

with the Hilbert transform.

7.3 Further developments

The validity of the presented results is planned to be verified in the near future by applying

the procedure developed for the drawing of this thesis to a more consistent cohort of data.

Confirming the presented results –or disclosing different ones– would allow one to se-

lect the best discriminants among the differences emerged, and to finalise the algorithm

providing a biomarker for ASD from EEG time series.

Under a methodological point of view, some improvement could be performed in the

steps preceeding the application of the dynamical Bayesian inference. For example the
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limits of the frequency bands could be customised for each participant, allowing the use

of narrower bands centred on the most prevalent frequencies. Also, a systematic way to

evaluate the quality of the phase extraction could be implemented.

The applied methods are suitable to be extended in many ways. Among them, for exam-

ple, the dynamical Bayesian inference could be modified in order to reconstruct also the

amplitude coupling.



Appendix A

Brain structure

A.1 Structure

In order to better understand what is the physical structure underlying the EEG signal, a

brief introduction on the human brain and its main parts (Figure A.1), is here provided.

When not otherwise indicated, the anatomical and functional notions reported in this

section have been extracted from Kandel’s Principles of Neural Science (Kandel et al.,

2000), (Chapters 1-2,4).

The cerebellum

Located occipitally, this structure has been known to play a fundamental role in the coor-

dination and precision of movements, but also in other cognitive functions (Middleton and

Strick, 2000). It is connected to the cortex through circuits involving the inner structures

of the brain (basal ganglia).

The thalamus

The thalamus is a large mass of gray matter into the inner brain. It allows interactions be-

tween the cortex, sensorial organs and subcortical structures. In particular, each sensory

system (except for the olfactory) is associated with a specific nucleus of the thalamus,
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FIGURE A.1: An anatomical illustration of the human brain, longitudinal view (Public
domain figure).

which is at its turn connected to the specific areas of the cortex via thalamocortical fibers.

For example, the visual information captured by the retina is sent to the latero-cingulate

nucleus of the thalamus, which is then connected to the visual cortex where the informa-

tion is processed.

Thalamocortical fibers extending from the thalamus reach the cortex at different layers.

Connections are usually reciprocal, forming thalamo-cortico-thalamic circuits. These

loops form the functional units responsible to parallel processing of different types of

information (Alexander, 1986, Parent and Hazrati, 1995) constantly happening in the

brain.

A.1.1 The Cortex

The cerebral cortex is the outer and largest part of the human brain. The most outer

layers of the cortex mostly contain bodies, dendrites and axonal termination of neurons,

forming what is called grey matter in counter-position to the deepest layer, the white

matter composed by the axons. The ratio surface/volume of the cortex is very high, thanks

to the multiple folds generating ridges (gyri) and a grooves (sulci). This layout allows to
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generate several functionally differentiated areas in a relatively restricted volume. The

modular functionality of the cortex is provided both by this differentiation of areas and

by a layered cellular structure. The connectivity of cortical neurons both on short and

long distance develops within the cortex layers.

The cortex is divided in two hemispheres, connected in the mid-line at the longitudinal

fissure by the corpus callosum, composed by the neuronal axons and their myelinic out-

layers. According the the number of layers that compose it, the cortex also can be divided

into neocortex, where most of he high order brain functions take place (6 layers) and

the allocortex, responsible to process information coming from the olfactory system (4

layers).

A.1.1.1 Layers

Each layer of the cortex is characterised by specific neuronal cell types. Cortical cells

can be connected both between cortical regions or with subcortical regions. Neuronal

pathways in the cortex can therefore be either direct, or passing from other structures,

like the thalamus.

Within the neocortex, six main layers can be distinguished, from the outer (pial surface)

to inner part (white matter):

• Layer I contains glial cells, dendrites of pyramidal neurons and horizontal axons.

• Layer II, contains small pyramidal neurons.

• Layer III, contains small and medium-size pyramidal neurons. Layers I through III

are the main target of inter-hemispheric cortical connections.

• Layer IV, contains different types of stellated and pyramidal neurons. This layer is

the principal target of thalamocortical fibres and intra-hemispheric cortical connec-

tions.
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• Layer V, contains large pyramidal neurons whose axons are connected to subcorti-

cal structures.

• Layer VI, contains few large pyramidal neurons and many small spindle-like neu-

rons. It sends efferent fibres to the thalamus, establishing a reciprocal interconnec-

tion between the cortex and the thalamus.

FIGURE A.2: Drawings of cortical lamination by Santiago Ramon y Cajal, with the
surface of the cortex at the left. Top: slice of visual cortex of a human adult. Bottom:

slice of motor cortex of a human adult (Public domain figure).

Information processing within each layer is determined by different temporal dynamics.

A study on the visual cortex of rats showed for example that layers II/III generate a slower

2 Hz oscillation while a fast 10–15 Hz rhythm can be observed in layer V (Sun and Dan,

2009).

A.1.1.2 Minicolumns

Cortical microcircuits developing perpendicularly to the neocortical surface form the

minicolumns. These groups of 80-100 neurons are believed to constitute the unit of the

extensively complex brain network.

The cells in the mid-layer of the columns are the target of thalamic inputs, which can

propagates both toward the surface and toward the inner brain. This type of connectivity
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reduces the time delay needed for all the cells from a specific area to respond to a stim-

ulus (Jones, 2000). Complex dynamics of inhibitory and excitatory responses modulate

the propagation of the action potential. The stimulus propagates both within a column

and between different columns linked by pyramidal dendrites and interneurons. Differ-

ent areas of the brain are characterised by minicolumns with specific horizontal layers.

This specialisation of individual columns increases the selectivity for propagation and

processing of information.

A different organisation within the layers of the minicolumns is believed to be connected

with autism and schizophrenia (Casanova et al., 2002). It is still not clear however if the

different morphology of minicolumns is a cause or a consequence of the disorders.

A.1.1.3 Areas

The cortex is traditionally divided into areas according to the function which is fulfilled,

i.e. sensory, motor, and associative.

The sensory areas receive and process information coming from sensory organs. If the

sensorial inputs are transmitted by the thalamus, the targeted areas go under the name of

primary sensory areas. They are involved in vision, hearing and touch.

The motor areas are responsible both for coordinating voluntary movements in space, and

of deciding which voluntary movements to perform according to higher-order processing.

The association areas are the parts of the cerebral cortex that are not involved in sensory

and motor functions. They allow interactions with the environment by providing abstract

thinking, memory and language abilities. Within the association areas, the parietal, tem-

poral, and occipital lobes are believed to integrate motor and sensory input with memory

information. The frontal lobe is believed to be involved in action planning and abstract

thoughts. The association areas are organised as distributed networks, connecting differ-

ent areas of the cortex. Association networks do not work in isolation, but are coupled in
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a complex system of hierarchical relationships, interactions and competition (Yeo et al.,

2011).

A.2 Cellular level

FIGURE A.3: Schematic illustration of the different parts of a neuron (Public domain
figure).

The units of cerebral functions are complex cells called neurons (Figure A.3). A neuron

is composed by a cellular body (soma) from which the dendrite protrudes, and an axon

which terminates with synapses. Dendrites are thin branch-like structures hundreds of µm

long, ending with receptors. The axon is a prolongation of the soma covered by a myelinic

insulation, and travels for a distance so that its synapses can reach other cells. Axonal

synapses of a neuron connect with dendritic receptors of another, allowing pathways for

the electrochemical signal to travel into the network. The human brain is composed by

about 100 billion cells connected in a complex network, with an estimated number of 200

trillion connections between them.
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Neurons are electrically excitable cells. They maintain voltage gradients by means of the

interaction between ion pumps and channels placed within their membranes. Ions such

as sodium, potassium, chloride, and calcium kept with different concentrations inside and

outside of the cell give rise to the cross-membrane voltage.

The signal is transmitted from a cell to another basing on a all-or-none mechanism. If

the cross-membrane voltage reaches a specific threshold, an electrochemical pulse is gen-

erated. From the soma, this action potential travels along the axon till it reaches the

axonal terminals. There, at the pre-synaptic terminal, the pre-synaptic neuron releases

neurotransmitters, which may bind to the receptors of the post-synaptic neuron.

Synaptic signals can have both positive or negative charge, and therefore be either excita-

tory or inhibitory. The excitatory and inhibitory contributions reaching a neuron sum up

into the soma. If the net effect is inhibitory, the neuron will be in a state further from its

threshold potential, therefore less likely to fire. If the net effect is excitatory, the potential

will be closer to the threshold and neuron will be more likely to fire. According to the

type of expressed receptors, synapses can be prevalently excitatory (Type I) or inhibitory

(Type II). Type I are typically located within the dendrites, while Type II are usually

found on the cell body. To promote signal propagation, the surface of excitatory synapse

is larger than their inhibitory counterparts.

Neurotransmitters can be synthesised in the cell body or in the axon, and are then stored

into vesicles in the axon terminal. Released neurotransmitters can either be metabolised

by specific enzymes, or enter again the axon terminal. More than 100 neurotransmitters

have been identified. In human brains, glutamic acid, or glutamate, is the main excita-

tory neurotransmitter, while gamma-Aminobutyric acid (GABA) is the main inhibitory

neurotransmitter.

Different types of neurons exist in the human brain. Among them, pyramidal cells are

the primary excitatory units of the cerebral cortex. The complexity of pyramidal cells

increases from posterior to anterior brain regions (Elston, 2003), with the pre-frontal

cells implicated in cognitive ability. Basket cells are inhibitory GABAergic interneurons,
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found throughout different regions of the cortex and cerebellum. Spindles cells are large

cells permitting fast information processing, and are found exclusively in specific regions

of the cortex. Neurons linking the input (sensory) with the output (motor) functions of

the brain are called interneurons (Markram et al., 2004). Local interneurons are char-

acterised by short axons. They connect nearby neurons to transmit information locally.

Relay interneurons have long axons and connect circuits of neurons in different regions

of the brain. In the human brain, approximately 20% of neurons are interneurons. They

are primarily inhibitory, and use the neurotransmitters GABA or glycine.

The brain also contains diverse non-neuronal cells: the glial cells. Among them, oligo-

dendrocytes provide support and insulation to axons; Astrocytes perform many functions,

including extra-provision of glucose to neurons and regulation between neural activity

and blood flow (Parri and Crunelli, 2003); Microglia provide the main form of active

immune defense in the brain.

The blood–brain barrier is formed by a layer of brain endothelial cells that line the cere-

bral capillary bed. Coupled with neurons and astrocytes, it controls the osmotic passage

of water and gases and selective transport of substances like glucose and aminoacids from

the vascular system into the brain (Abbott et al., 2006).
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EEG glossary

In 1974 a first glossary of EEG terminology was published by International Federation of

Societies for Electroencephalography and Clinical Neurophysiology (IFSECN). A second

updated version came out in 1999, but the definition of bands did not change across the

two publications. Some key-terms are reported below:

• Rhythm: EEG activity consisting of waves of approximately constant period.

• Wave: Any change of the potential difference between pairs of electrodes in EEG

recording.

• Band: Portion of EEG frequency spectrum, i.e. delta, theta, alpha, beta bands.

• Delta: Frequency band under 4 Hz. Comment: for practical purposes lower fre-

quency limit is 0.5 Hz, as DC potential differences are not monitored in conven-

tional EEGs.

• Theta: Rhythm with a frequency of 4 to under 8 Hz.

• Alpha: Rhythm at 8-13 Hz occurring during wakefulness over the posterior regions

of the head, generally with maximum amplitudes over the occipital areas. Ampli-

tude varies but is mostly below 50 mV in the adult. Best seen with the eyes closed
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and during physical relaxation and relative mental inactivity. Blocked or attenuated

by attention, especially visual, and mental effort.

• Beta: in general: any EEG rhythm between 14 and 40 Hz. Most characteristically:

a rhythm from 14 to 40 Hz recorded over the fronto-central regions of the head

during wakefulness. Amplitude of fronto-central beta rhythm varies but is mostly

below 30 mV. Blocking or attenuation by contralateral movement or tactile stim-

ulation is especially obvious in electrocorticograms. Other beta rhythms are most

prominent in other locations or are diffuse.

• Gamma: Frequency band above 40 Hz.
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E. Başar, C. Başar-Eroglu, S. Karakaş, and M. Schürmann. Gamma, alpha, delta, and

theta oscillations govern cognitive processes. International Journal of Psychophysiol-

ogy, 39(2):241–248, 2001.

T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical

Transactions of the Royal Society of London, 53:370–418, 1763.

M. K. Belmonte, G. Allen, A. Beckel-Mitchener, L. M. Boulanger, R. a. Carper, and

S. J. Webb. Autism and abnormal development of brain connectivity. The Journal of

Neuroscience, 24(42):9228–9231, 2004.

J. S. Bendat and A. G. Piersol. Random data analysis and measurement techniques. J.

Wiley Interscience, pages 134–135, 1986.

H. Berger. Ueber das Elektroenkephalogramm des Menschen. Archiv Fur Psychiatrie

Und Nervenkrankheiten, 87:527–570, 1929.



Bibliography 172

H. Berger. Über das elektrenkephalogramm des menschen. Archiv Fur Psychiatrie Und

Nervenkrankheiten, 94(1):16–60, 1931.

H. Berger. Über das elektrenkephalogramm des menschen. Archiv Fur Psychiatrie Und

Nervenkrankheiten, 108(3):407–431, 1938.

S. Berkel, C. R. Marshall, B. Weiss, J. Howe, R. Roeth, U. Moog, V. Endris, W. Roberts,

P. Szatmari, D. Pinto, M. Bonin, A. Riess, H. Engels, R. Sprengel, S. W. Scherer,

and G. A. Rappold. Mutations in the SHANK2 synaptic scaffolding gene in autism

spectrum disorder and mental retardation. Nature Genetics, 42(6):489–491, 2010.

L. Billeci, F. Sicca, K. Maharatna, F. Apicella, A. Narzisi, G. Campatelli, S. Calderoni,

G. Pioggia, and F. Muratori. On the application of quantitative EEG for characterizing

autistic brain: a systematic review. Frontiers in Human Neuroscience, 7:442, 2013.

M. Boersma, D. J. Smit, H. de Bie, G. C. M. Van Baal, D. I. Boomsma, E. J. de Geus,

H. A. Delemarre-van de Waal, and C. J. Stam. Network analysis of resting state eeg in

the developing young brain: structure comes with maturation. Human Brain Mapping,

32(3):413–425, 2011.

M. Boersma, C. Kemner, M. A. de Reus, G. Collin, T. M. Snijders, D. Hofman, J. K.

Buitelaar, C. J. Stam, and M. P. van den Heuvel. Disrupted functional brain networks

in autistic toddlers. Brain Connectivity, 3(1):41–9, 2013.

W. Bosl, A. Tierney, H. Tager-Flusberg, and C. Nelson. EEG complexity as a biomarker

for autism spectrum disorder risk BMC Medicine, 9:18, 2011.

M. Breakspear and J. Terry. Detection and description of non-linear interdependence

in normal multichannel human eeg data. Clinical Neurophysiology, 113(5):735–753,

2002.

A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler. Beta oscil-

lations in a large-scale sensorimotor cortical network: directional influences revealed

by granger causality. Proceedings of the National Academy of Sciences of the United

States of America, 101(26):9849–9854, 2004.



Bibliography 173

T. Brugha, S. Cooper, S. McManus, S. Purdon, J. Smith, F. Scott, N. Spiers, and F. Tryer.

Estimating the prevalence of Autism Spectrum Conditions in adults: extending the

2007 adult psychiatric morbidity survey. The NHS Information Centre for Health and

Social Care, pages 1–31, 2012.

A. Bruns, R. Eckhorn, H. Jokeit, and A. Ebner. Amplitude envelope correlation detects

coupling among incoherent brain signals. Neuroreport, 11(7):1509–1514, 2000.

A. W. Buckley, R. Scott, A. Tyler, J. M. Mahoney, A. Thurm, C. Farmer, S. Swedo, S. A.

Burroughs, and G. L. Holmes. State-dependent differences in functional connectivity

in young children with autism spectrum disorder. EBioMedicine, 2(12):1905–1915,

2015.

S. Butterworth. On the theory of filter amplifiers. Wireless Engineer, 7(6):536–541, 1930.

G. Buzsáki. Theta rhythm of navigation: link between path integration and landmark

navigation, episodic and semantic memory. Hippocampus, 15(7):827–840, 2005.

G. Buzsáki. Rhythms of the Brain. Oxford University Press, Oxford, 2006.

G. Buzsáki. Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68(3):

362–385, 2010.

G. Buzsáki and A. Draguhn. Neuronal oscillations in cortical networks. Science, 304:

1926–1929, 2004.

G. Buzsáki and X.-J. Wang. Mechanisms of Gamma Oscillations. Annual Review of

Neuroscience, (35):203–225, 2012.

R. T. Canolty, E. Edwards, S. S. Dalal, M. Soltani, S. S. Nagarajan, H. E. Kirsch, M. S.

Berger, N. M. Barbaro, and R. T. Knight. High gamma power is phase-locked to theta

oscillations in human neocortex. Science, 313(5793):1626–1628, 2006.

D. S. Cantor, R. W. Thatcher, M. Hrybyk, and H. Kaye. Computerized EEG analyses

of autistic children. Journal of Autism and Developmental Disorders, 16(2):169–187,

1986.



Bibliography 174

A. M. Carson, N. M. Salowitz, R. A. Scheidt, B. K. Dolan, and A. V. Van Hecke. Elec-

troencephalogram coherence in children with and without autism spectrum disorders:

decreased interhemispheric connectivity in autism. Autism Research, 7(3):334–343,

2014.

M. F. Casanova, D. P. Buxhoeveden, A. E. Switala, and E. Roy. Minicolumnar pathology

in autism. Neurology, 58(3):428–432, 2002.

A. Catarino, O. Churches, S. Baron-Cohen, A. Andrade, and H. Ring. Atypical eeg

complexity in autism spectrum conditions: a multiscale entropy analysis. Clinical

neurophysiology, 122(12):2375–2383, 2011.

R. Caton. Electrical currents of the brain. The Journal of Nervous and Mental Disease, 2

(4):610, 1875.

A. S. Chan, S. L. Sze, and M.-C. Cheung. Quantitative electroencephalographic profiles

for children with autistic spectrum disorder. Neuropsychology, 21(1):74–81, 2007.

A. S. Chan, Y. M. Y. Han, S. L. Sze, M.-c. Cheung, W. W.-m. Leung, R. C. K. Chan, and

C. Y. To. Disordered connectivity associated with memory deficits in children with

autism spectrum disorders. Research in Autism Spectrum Disorders, 5:237–245, 2011.

A. R. Clarke, R. J. Barry, A. Indraratna, F. E. Dupuy, R. McCarthy, and M. Selikowitz.

EEG activity in children with Asperger’s Syndrome. Clinical Neurophysiology, 127

(1):442–451, 2016.

P. Clemson, G. Lancaster, and A. Stefanovska. Reconstructing time-dependent dynamics.

Proceedings of IEEE, 104(2):223–241, 2016.

R. Coben, A. R. Clarke, W. Hudspeth, and R. J. Barry. EEG power and coherence in

autistic spectrum disorder. Clinical Neurophysiology, 119:1002–1009, 2008.

H. W. Cole and W. J. Ray. Eeg correlates of emotional tasks related to attentional de-

mands. International Journal of Psychophysiology, 3(1):33–41, 1985.



Bibliography 175

E. Courchesne and K. Pierce. Brain overgrowth in autism during a critical time in devel-

opment: Implications for frontal pyramidal neuron and interneuron development and

connectivity. International Journal of Developmental Neuroscience, 23(2-3 SPEC.

ISS.):153–170, 2005.

E. Courchesne, C. Karns, H. Davis, R. Ziccardi, R. Carper, Z. Tigue, H. Chisum,

P. Moses, K. Pierce, C. Lord, et al. Unusual brain growth patterns in early life in

patients with autistic disorder an mri study. Neurology, 57(2):245–254, 2001.

I. Daubechies. The wavelet transform, time-frequency localization and signal analysis.

IEEE Transactions on Information Theory, 36(5):961–1005, 1990.

N. David, T. R. Schneider, I. Peiker, R. Al-Jawahiri, A. K. Engel, and E. Milne. Vari-

ability of cortical oscillation patterns: A possible endophenotype in autism spectrum

disorders? Neuroscience and Biobehavioral Reviews, 71:590–600, 2016.

F. P. De Lange, O. Jensen, M. Bauer, and I. Toni. Interactions between posterior gamma

and frontal alpha/beta oscillations during imagined actions. Frontiers in Human Neu-

roscience, 2, 2008.

S. De Rubeis, X. He, A. P. Goldberg, C. S. Poultney, K. Samocha, A. Ercument Ci-

cek, Y. Kou, L. Liu, M. Fromer, S. Walker, T. Singh, L. Klei, J. Kosmicki, S.-C.

Fu, B. Aleksic, M. Biscaldi, P. F. Bolton, J. M. Brownfeld, J. Cai, N. G. Campbell,

A. Carracedo, M. H. Chahrour, A. G. Chiocchetti, H. Coon, E. L. Crawford, L. Crooks,

S. R. Curran, G. Dawson, E. Duketis, B. A. Fernandez, L. Gallagher, E. Geller, S. J.

Guter, R. Sean Hill, I. Ionita-Laza, P. Jimenez Gonzalez, H. Kilpinen, S. M. Klauck,

A. Kolevzon, I. Lee, J. Lei, T. Lehtimäki, C.-F. Lin, A. Ma’ayan, C. R. Marshall,

A. L. McInnes, B. Neale, M. J. Owen, N. Ozaki, M. Parellada, J. R. Parr, S. Purcell,

K. Puura, D. Rajagopalan, K. Rehnström, A. Reichenberg, A. Sabo, M. Sachse, S. J.

Sanders, C. Schafer, M. Schulte-Rüther, D. Skuse, C. Stevens, P. Szatmari, K. Tam-

mimies, O. Valladares, A. Voran, L.-S. Wang, L. A. Weiss, A. Jeremy Willsey, T. W.

Yu, R. K. C. Yuen, E. H. Cook, C. M. Freitag, M. Gill, C. M. Hultman, T. Lehner,



Bibliography 176

A. Palotie, G. D. Schellenberg, P. Sklar, M. W. State, J. S. Sutcliffe, C. A. Walsh, S. W.

Scherer, M. E. Zwick, J. C. Barrett, D. J. Cutler, K. Roeder, B. Devlin, M. J. Daly, and

J. D. Buxbaum. Supple: Synaptic, transcriptional and chromatin genes disrupted in

autism. Nature, 515(7526):209–215, 2014.

G. Deco, V. K. Jirsa, P. a. Robinson, M. Breakspear, and K. Friston. The dynamic brain:

From spiking neurons to neural masses and cortical fields. PLoS Computational Biol-

ogy, 4(8), 2008.

A. Delorme and S. Makeig. Eeglab: an open source toolbox for analysis of single-trial

eeg dynamics including independent component analysis. Journal of Neuroscience

Methods, 134(1):9–21, 2004.

R. E. Dolmetsch, R. S. Lewis, C. C. Goodnow, and J. I. Healy. Differential activation of

transcription factors induced by Ca2+ response amplitude and duration. Nature, 386:

855–858, 1997.

L. G. Domínguez, J. Stieben, J. L. P. Velázquez, and S. Shanker. The imaginary part

of coherency in autism: differences in cortical functional connectivity in preschool

children. PLoS One, 8(10):e75941, 2013.

J. F. Donges, Y. Zou, N. Marwan, and J. Kurths. The backbone of the climate network.

EPL, 87(4):48007, 2009.

A. P. A. Donovan and M. A. Basson. The neuroanatomy of autism - a developmental

perspective. Journal of Anatomy, 44:4–15, 2016.

F. H. Duffy and H. Als. A stable pattern of EEG spectral coherence distinguishes children

with autism from neuro-typical controls - a large case control study. BMC Medicine,

10(1):64, 2012.

A. Duggento, T. Stankovski, P. V. E. McClintock, and A. Stefanovska. Dynamical

Bayesian inference of time-evolving interactions: From a pair of coupled oscillators

to networks of oscillators. Physical Review E, 86:061126, 2012.



Bibliography 177

C. M. Durand, C. Betancur, T. M. Boeckers, J. Bockmann, P. Chaste, F. Fauchereau,

G. Nygren, M. Rastam, I. C. Gillberg, H. Anckarsäter, E. Sponheim, H. Goubran-

Botros, R. Delorme, N. Chabane, M.-C. Mouren-Simeoni, P. de Mas, E. Bieth,

B. Rogé, D. Héron, L. Burglen, C. Gillberg, M. Leboyer, T. Bourgeron, I. Carina,

H. Anckarsäter, E. Sponheim, H. Goubran-Botros, R. Delorme, N. Chabane, P. D.

Mas, E. Bieth, B. Rogé, D. Héron, L. Burglen, C. Gillberg, I. C. Gillberg, H. An-

ckarsäter, E. Sponheim, H. Goubran-Botros, R. Delorme, N. Chabane, M.-C. Mouren-

Simeoni, P. de Mas, E. Bieth, B. Rogé, D. Héron, L. Burglen, C. Gillberg, M. Leboyer,

and T. Bourgeron. Mutations in the gene encoding the synaptic scaffolding protein

SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39(1):25–

27, 2007.

M. E. E. Orekova, T. Stroganova, G. Nygren, I. Posikera, C. Gillberg. High frequency ac-

tivuty in ongoing EEG from young children with autism: A two sample study. Clinical

Neurophysiology, 117:217–218, 2006.

H. Elhabashy, O. Raafat, L. Afifi, H. Raafat, K. Abdullah, et al. Quantitative eeg in

autistic children. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery,

52(3):176, 2015.

G. N. Elston. Cortex, cognition and the cell: new insights into the pyramidal neuron and

prefrontal function. Cerebral Cortex, 13(11):1124–1138, 2003.

A. K. Engel and P. Fries. Beta-band oscillations—signalling the status quo? Current

Opinion in Neurobiology, 20(2):156–165, 2010.

A. K. Engel, P. Fries, and W. Singer. Dynamic predictions: oscillations and synchrony in

top-down processing. Nature Reviews Neuroscience, 2(10):704–716, 2001.

L. Faes, D. Marinazzo, F. Jurysta, and G. Nollo. Linear and non-linear brain–heart and

brain–brain interactions during sleep. Physiological Measurement, 36(4):683–698,

2015.



Bibliography 178

S. H. Fatemi, A. V. Snow, J. M. Stary, M. Araghi-Niknam, T. J. Reutiman, S. Lee, A. I.

Brooks, and D. A. Pearce. Reelin signaling is impaired in autism. Biological Psychia-

try, 57(7):777–787, 2005.

B. Feige, K. Scheffler, F. Esposito, D. S. Francesco, J. Hennig, and E. Seifritz. Cortical

and subcortical correlates of electrocephalographic alpha rhythm modulation. Journal

of Neurophysiology, 93:2864–2872, 2004.

M. Ferrari and V. Quaresima. A brief review on the history of human functional near-

infrared spectroscopy (fnirs) development and fields of application. Neuroimage, 63

(2):921–935, 2012.

J. Fourier. Analytical theory of heat, by M. Fourier. At Firmin Didot, p, 1822.

K. Friston, R. Moran, and A. K. Seth. Analysing connectivity with Granger causality and

dynamic causal modelling. Current Opinion in Neurobiology, 23(2):172–178, 2013.

K. J. Friston. Functional and effective connectivity: a review. Brain Connectivity, 1(1):

13–36, 2011.

K. J. Friston, A. P. Holmes, C. Price, C. Büchel, and K. Worsley. Multisubject fmri studies

and conjunction analyses. Neuroimage, 10(4):385–396, 1999.

K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. Neuroimage, 19(4):

1273–1302, 2003.

D. Gabor. Theory of communication. Journal of IEEE, 93:429–457, 1946.

J. D. Gibbons and S. Chakraborti. Nonparametric statistical inference. In International

Encyclopedia of Statistical Science, pages 977–979. Springer, 2011.

S. R. Gilman, I. Iossifov, D. Levy, M. Ronemus, M. Wigler, and D. Vitkup. Rare De

Novo Variants Associated with Autism Implicate a Large Functional Network of Genes

Involved in Formation and Function of Synapses. Neuron, 70(5):898–907, 2011.



Bibliography 179

R. I. Goldman, J. M. Stern, J. Engel Jr, and M. S. Cohen. Simultaneous eeg and fmri of

the alpha rhythm. Neuroreport, 13(18):2487, 2002.

M. Gomot and B. Wicker. A challenging, unpredictable world for people with autism

spectrum disorder. International Journal of Psychophysiology, 83(2):240–247, 2012.

K. Gotham, A. Pickles, and C. Lord. Standardizing ados scores for a measure of severity

in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(5):

693–705, 2009.

C. W. Granger. Investigating causal relations by econometric models and cross-spectral

methods. Econometrica, pages 424–438, 1969.

O. Gurau, W. J. Bosl, and C. R. Newton. How useful is electroencephalography in the

diagnosis of autism spectrum disorders and the delineation of subtypes: A systematic

review. Frontiers in Psychiatry, 8, 2017.

S. Haar, S. Berman, M. Behrmann, and I. Dinstein. Anatomical Abnormalities in Autism?

Cerebral Cortex, 26(4):1440–1452, 2016.

D. Hagemann, E. Naumann, and J. F. Thayer. The quest for the eeg reference revisited:

A glance from brain asymmetry research. Psychophysiology, 38(5):847–857, 2001.

A. Hahamy, M. Behrmann, and R. Malach. The idiosyncratic brain: distortion of sponta-

neous connectivity patterns in autism spectrum disorder. Nature Neuroscience, 18(2):

302–309, 2015.

H. C. Hazlett, M. Poe, G. Gerig, R. G. Smith, J. Provenzale, A. Ross, J. Gilmore, and

J. Piven. Magnetic resonance imaging and head circumference study of brain size in

autism: birth through age 2 years. Archives of General Psychiatry, 62(12):1366–1376,

2005.

H. C. Hazlett, H. Gu, B. C. Munsell, S. H. Kim, M. Styner, J. J. Wolff, J. T. Elison, M. R.

Swanson, H. Zhu, K. N. Botteron, D. L. Collins, J. N. Constantino, S. R. Dager, A. M.

Estes, A. C. Evans, V. S. Fonov, G. Gerig, P. Kostopoulos, R. C. McKinstry, J. Pandey,



Bibliography 180

S. Paterson, J. R. Pruett, R. T. Schultz, D. W. Shaw, L. Zwaigenbaum, J. Piven, J. Piven,

H. C. Hazlett, C. Chappell, S. R. Dager, A. M. Estes, D. W. Shaw, K. N. Botteron, R. C.

McKinstry, J. N. Constantino, J. R. Pruett Jr, R. T. Schultz, S. Paterson, L. Zwaigen-

baum, J. T. Elison, J. J. Wolff, A. C. Evans, D. L. Collins, G. B. Pike, V. S. Fonov,

P. Kostopoulos, S. Das, G. Gerig, M. Styner, and C. H. Gu. Early brain development in

infants at high risk for autism spectrum disorder. Nature, 542(7641):348–351, 2017.

S. Hu, M. Stead, Q. Dai, and G. A. Worrell. On the recording reference contribution

to eeg correlation, phase synchorony, and coherence. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 40(5):1294–1304, 2010.

W. J. Hudspeth and K. H. Pribram. Psychophysiological indices of cerebral maturation.

International Journal of Psychophysiology, 12(1):19–29, 1992.

C. Huygens. Horologium oscillatorium sive de motu pendulorum. Muguet, 1673.

D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P. J. Owen-Lynch, P. B. M. Clark-

son, P. V. E. McClintock, and A. Stefanovska. Evolution of cardio-respiratory interac-

tions with age. Philosophical Transactions of the Royal Society of London, 371(1997):

20110622, 2013.

D. Iatsenko, P. V. McClintock, and A. Stefanovska. Linear and synchrosqueezed time–

frequency representations revisited: Overview, standards of use, resolution, reconstruc-

tion, concentration, and algorithms. Digital Signal Processing, 42:1–26, 2015.

M. Ingalhalikar, A. Smith, D. Parker, T. D. Satterthwaite, M. A. Elliott, K. Ruparel,

H. Hakonarson, R. C. R. E. R. C. R. E. Gur, R. C. R. E. R. C. R. E. Gur, and R. Verma.

Sex differences in the structural connectome of the human brain. Proceedings of the

National Academy of Sciences of the United States of America, 111(2):823–828, 2014.

J. R. Isler, P. G. Grieve, D. Czernochowski, R. I. Stark, and D. Friedman. Cross-frequency

phase coupling of brain rhythms during the orienting response. Brain Research, 1232:

163–172, 2008.



Bibliography 181

H. H. Jasper and H. L. Andrews. Electro-encephalography: Iii. normal differentiation of

occipital and precentral regions in man. Archives of Neurology & Psychiatry, 39(1):

96–115, 1938.

O. Jensen and L. L. Colgin. Cross-frequency coupling between neuronal oscillations.

Trends Cognit. Sci., 11(7):267–269, 2007.

O. Jensen and A. Mazaheri. Shaping functional architecture by oscillatory alpha activity:

gating by inhibition. Frontiers in Human Neuroscience, 4, 2010.

O. Jensen and C. D. Tesche. Frontal theta activity in humans increases with memory

load in a working memory task. European Journal of Neuroscience, 15(8):1395–1399,

2002.

V. Jirsa and V. Müller. Cross-frequency coupling in real and virtual brain networks.

Frontiers in Computational Neuroscience, 7:78, 2013.

E. G. Jones. Microcolumns in the cerebral cortex. Proceedings of the National Academy

of Sciences, 97(10):5019–5021, 2000.

M. A. Just, V. L. Cherkassky, T. a. Keller, and N. J. Minshew. Cortical activation and

synchronization during sentence comprehension in high-functioning autism: Evidence

of underconnectivity. Brain, 127:1811–1821, 2004.

E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, A. J. Hudspeth, et al.

Principles of Neural Science, volume 4. McGraw-hill New York, 2000.

B. Keehn, V. Vogel-Farley, H. Tager-Flusberg, and C. A. Nelson. Atypical hemispheric

specialization for faces in infants at risk for autism spectrum disorder. Autism Research,

8(2):187–198, 2015.

C. J. Keylock. Constrained surrogate time series with preservation of the mean and vari-

ance structure. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 73

(3):2–5, 2006.



Bibliography 182

S. Khan, A. Gramfort, N. R. Shetty, M. G. Kitzbichler, S. Ganesan, J. M. Moran, S. M.

Lee, J. D. E. Gabrieli, H. B. Tager-Flusberg, R. M. Joseph, M. R. Herbert, M. S.

Hämäläinen, and T. Kenet. Local and long-range functional connectivity is reduced

in concert in autism spectrum disorders. Proceedings of the National Academy of Sci-

ences of the United States of America, 110(8):3107–3112, 2013.

I. Z. Kiss, Y. Zhai, and J. L. Hudson. Predicting mutual entrainment of oscillators with

experiment-based phase models. Physical Review Letters, 94:248301, Jun 2005.

W. Klimesch. EEG alpha and theta oscillations reflect cognitive and memory perfor-

mance: a review and analysis. Brain Research Reviews, 29(2):169–195, 1999.

W. Klimesch, P. Sauseng, and S. Hanslmayr. EEG alpha oscillations: the inhibition–

timing hypothesis. Brain Research Reviews, 53(1):63–88, 2007.

B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka. Phase

dynamics of coupled oscillators reconstructed from data. Physical Review E, 77(6,

Part 2):066205, 2008.

B. Kralemann, A. Pikovsky, and M. Rosenblum. Reconstructing phase dynamics of os-

cillator networks. Chaos, 21:025104, 2011.

B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, and

M. Moser. In vivo cardiac phase response curve elucidates human respiratory heart rate

variability. Nature Communications, 4:2418, 2013.

Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, Berlin,

1984.

J.-P. Lachaux, N. George, C. Tallon-Baudry, J. Martinerie, L. Hugueville, L. Minotti,

P. Kahane, and B. Renault. The many faces of the gamma band response to complex

visual stimuli. Neuroimage, 25(2):491–501, 2005.



Bibliography 183

H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and

K. Krakow. EEG-correlated fMRI of human alpha activity. NeuroImage, 19(4):1463–

1476, 2003.

V. V. Lazarev, A. Pontes, A. A. Mitrofanov, et al. Reduced interhemispheric connectiv-

ity in childhood autism detected by electroencephalographic photic driving coherence.

Journal of Autism and Developmental Disorders, 45(2):537–547, 2015.

K. Lehnertz and C. Elger. Spatio-temporal dynamics of the primary epileptogenic area in

temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalog-

raphy and Clinical Neurophysiology, 95(2):108–117, 1995.

K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, and S. Porz. Evolving

networks in the human epileptic brain. Physica D, 267:7–15, 2014.

R. R. Llinás. The intrinsic electrophysiological properties of mammalian neurons: in-

sights into central nervous system function. Science, 242(4886):1654–1664, 1988.

R. R. Llinas, A. A. Grace, and Y. Yarom. In vitro neurons in mammalian cortical layer 4

exhibit intrinsic oscillatory activity in the 10-to 50-hz frequency range. Proceedings of

the National Academy of Sciences, 88(3):897–901, 1991.

C. Lord, M. Rutter, S. Goode, J. Heemsbergen, H. Jordan, L. Mawhood, and E. Schopler.

Austism diagnostic observation schedule: A standardized observation of communica-

tive and social behavior. Journal of Autism and Developmental Disorders, 19(2):185–

212, 1989.

C. Lord, M. Rutter, and A. Le Couteur. Autism diagnostic interview-revised: a revised

version of a diagnostic interview for caregivers of individuals with possible pervasive

developmental disorders. Journal of Autism and Developmental Disorders, 24(5):659–

685, 1994.

C. Lord, S. Risi, L. Lambrecht, E. H. Cook, B. L. Leventhal, P. C. DiLavore, A. Pick-

les, and M. Rutter. The autism diagnostic observation schedule—generic: A standard



Bibliography 184

measure of social and communication deficits associated with the spectrum of autism.

Journal of Autism and Developmental Disorders, 30(3):205–223, 2000.

R. Lowry. Concepts and applications of inferential statistics. 2014.

E. Lushchekina, O. Y. Khaerdinova, V. Y. Novototskii-Vlasov, V. Lushchekin, and

V. Strelets. Synchronization of eeg rhythms in baseline conditions and during counting

in children with autism spectrum disorders. Neuroscience and Behavioral Physiology,

46(4):382, 2016.

E. A. Lushchekina, E. D. Podreznaya, V. S. Lushchekin, and V. B. Strelets. A comparative

EEG study in normal and autistic children. Neuroscience and Behavioral Physiology,

42(3):236–243, 2012.

D. Q. Ma, P. L. Whitehead, M. M. Menold, E. R. Martin, A. E. Ashley-Koch, H. Mei,

M. D. Ritchie, G. R. Delong, R. K. Abramson, H. H. Wright, M. L. Cuccaro, J. P. Huss-

man, J. R. Gilbert, and M. A. Pericak-Vance. Identification of significant association

and gene-gene interaction of GABA receptor subunit genes in autism. The American

Journal of Human Genetics, 77(3):377–388, 2005.

C. Machado, M. Estévez, G. Leisman, R. Melillo, R. Rodríguez, P. DeFina, A. Hernán-

dez, J. Pérez-Nellar, R. Naranjo, M. Chinchilla, et al. Qeeg spectral and coherence

assessment of autistic children in three different experimental conditions. Journal of

Autism and Developmental Disorders, 45(2):406–424, 2015.

D. Mantini, M. G. G. Perrucci, C. Del Gratta, G. L. L. Romani, M. Corbetta, D. Gratta,

R. C., G.l, M. Corbetta, C. Del Gratta, G. L. L. Romani, M. Corbetta, D. Gratta, R. C.,

G.l, M. Corbetta, C. Del Gratta, G. L. L. Romani, G. C. Del, G. L. L. Romani, and

M. Corbetta. Electrophysiological signatures of resting state networks in the human

brain. Proceedings of the National Academy of Sciences of the United States of Amer-

ica, 104(32):13170–13175, 2007.

M. C. Marchetto, H. Belinson, Y. Tian, B. C. Freitas, C. Fu, K. Vadodaria, P. Beltrao-

Braga, C. A. Trujillo, A. P. Mendes, K. Padmanabhan, et al. Altered proliferation



Bibliography 185

and networks in neural cells derived from idiopathic autistic individuals. Molecular

Psychiatry, 2016.

D. Marinazzo, M. Pellicoro, and S. Stramaglia. Kernel method for nonlinear granger

causality. Physical Review Letters, 100(14):144103, 2008.

D. Marinazzo, W. Liao, H. Chen, and S. Stramaglia. Nonlinear connectivity by granger

causality. Neuroimage, 58(2):330–338, 2011.

H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu. In-

terneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10):

793, 2004.

P. J. Marshall, Y. Bar-Haim, and N. A. Fox. Development of the eeg from 5 months to 4

years of age. Clinical Neurophysiology, 113(8):1199–1208, 2002.

S. Matlis, K. Boric, C. J. Chu, and M. A. Kramer. Robust disruptions in electroen-

cephalogram cortical oscillations and large-scale functional networks in autism. BMC

Neurology, 15(1):97, 2015.

D. J. McFarland, L. a. Miner, T. M. Vaughan, and J. R. Wolpaw. Mu and beta rhythm

topographies during motor imagery and actual movements. Brain Topography, 12(3):

177–186, 2000.

K. Mezeiová and M. Paluš. Comparison of coherence and phase synchronization of

the human sleep electroencephalogram. Clinical Neurophysiology, 123(9):1821–1830,

2012.

C. M. Michel and M. M. Murray. Towards the utilization of eeg as a brain imaging tool.

Neuroimage, 61(2):371–385, 2012.

F. A. Middleton and P. L. Strick. Basal ganglia and cerebellar loops: Motor and cognitive

circuits. Brain Research Reviews, 31(2-3):236–250, 2000.

W. H. Miltner, C. Braun, M. Arnold, H. Witte, and E. Taub. Coherence of gamma-band

EEG activity as a basis for associative learning. Nature, 397(6718):434–436, 1999.



Bibliography 186

R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators.

SIAM Journal on Applied Mathematics, 50(6):1645–1662, 1990.

J. Miyazaki and S. Kinoshita. Determination of a coupling function in multicoupled

oscillators. Physical Review Letters, 96:194101, May 2006.

I. Mohammad-Rezazadeh, J. Frohlich, S. K. Loo, and S. S. Jeste. Brain Connectivity in

Autism Spectrum Disorder. Current Opinion in Neurology, 29(2):137–147, 2016.

F. Mormann, K. Lehnertz, P. David, and C. E. Elger. Mean phase coherence as a measure

for phase synchronization and its application to the EEG of epilepsy patients. Physica

D: Nonlinear Phenomena, 144(3):358–369, 2000.

M. M. Müller, T. Gruber, and A. Keil. Modulation of induced gamma band activity in

the human eeg by attention and visual information processing. International Journal

of Psychophysiology, 38(3):283–299, 2000.

M. Murias, S. J. Webb, J. Greenson, and G. Dawson. Resting state cortical connectivity

reflected in eeg coherence in individuals with autism. Biological Psychiatry, 62(3):

270–273, 2007.

E. Niedermeyer and F. L. da Silva. Electroencephalography: basic principles, clinical

applications, and related fields. Lippincott Williams & Wilkins, 2005.

G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett. Identifying true brain

interaction from EEG data using the imaginary part of coherency. Clinical Neurophys-

iology, 115(10):2292–2307, 2004.

P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker, R. B. Sil-

berstein, and P. J. Cadusch. Eeg coherency: I: statistics, reference electrode, volume

conduction, laplacians, cortical imaging, and interpretation at multiple scales. Elec-

troencephalography and Clinical Neurophysiology, 103(5):499–515, 1997.



Bibliography 187

E. V. Orekhova, T. A. Stroganova, G. Nygren, M. M. Tsetlin, I. N. Posikera, C. Gillberg,

and M. Elam. Excess of High Frequency Electroencephalogram Oscillations in Boys

with Autism. Biological Psychiatry, 62(9):1022–1029, 2007.

E. V. Orekhova, M. Elsabbagh, E. J. Jones, G. Dawson, T. Charman, and M. H. Johnson.

Eeg hyper-connectivity in high-risk infants is associated with later autism. Journal of

Neurodevelopmental Disorders, 6(1):40, 2014.

A. B. Oro, M. E. Navarro-Calvillo, and C. Esmer. Autistic behavior checklist (abc) and

its applications. In Comprehensive Guide to Autism, pages 2787–2798. Springer, 2014.

S. Ozonoff, B. L. Goodlin-Jones, and M. Solomon. Evidence-based assessment of autism

spectrum disorders in children and adolescents. Journal of Clinical Child and Adoles-

cent Psychology, 34(3):523–540, 2005.

S. Ozonoff, A.-M. Iosif, F. Baguio, I. C. Cook, M. M. Hill, T. Hutman, S. J. Rogers,

A. Rozga, S. Sangha, M. Sigman, et al. A prospective study of the emergence of early

behavioral signs of autism. Journal of the American Academy of Child & Adolescent

Psychiatry, 49(3):256–266, 2010.

S. J. Palmen, H. van Engeland, P. R. Hof, and C. Schmitz. Neuropathological findings in

autism. Brain, 127(12):2572–2583, 2004.

A. Parent and L. N. Hazrati. Functional anatomy of the basal ganglia. Revista de Neu-

rologia, 25 Suppl 2:S121–S128, 1995.

T. Parks and J. McClellan. Chebyshev approximation for nonrecursive digital filters with

linear phase. IEEE Transactions on Circuit Theory, 19(2):189–194, 1972.

R. Parri and V. Crunelli. An astrocyte bridge from synapse to blood flow. Nature Neuro-

science, 6(1):5–6, 2003.

W. D. Penny, V. Litvak, L. Fuentemilla, E. Duzel, and K. Friston. Dynamic causal models

for phase coupling. Journal of Neuroscience Methods, 183(1):19–30, 2009.



Bibliography 188

G. Pfurtscheller and A. Aranibar. Event-related cortical desynchronization detected by

power measurements of scalp eeg. Electroencephalography and Clinical Neurophysi-

ology, 42(6):817–826, 1977.

A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization – A Universal Concept in

Nonlinear Sciences. Cambridge University Press, Cambridge, 2001.

N. Pop-Jordanova, T. Zorcec, A. Demerdzieva, and Z. Gucev. QEEG characteristics

and spectrum weighted frequency for children diagnosed as autistic spectrum disorder.

Nonlinear Biomedical Physics, 4:4, 2010.

Y. Qin, P. Xu, and D. Yao. A comparative study of different references for eeg default

mode network: the use of the infinity reference. Clinical Neurophysiology, 121(12):

1981–1991, 2010.

G. Righi, A. L. Tierney, H. Tager-Flusberg, and C. A. Nelson. Functional connectivity

in the first year of life in infants at risk for autism spectrum disorder: An EEG study.

PLoS ONE, 9(8):1–8, 2014.

E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela. Per-

ception’s shadow: long distance synchronization of human brain activity. Nature, 397

(6718):430–433, 1999.

M. Ronemus, I. Iossifov, D. Levy, and M. Wigler. The role of de novo mutations in the

genetics of autism spectrum disorders. Nature Reviews Genetics, 15(2):133–141, 2014.

M. G. Rosenblum and A. S. Pikovsky. Detecting direction of coupling in interacting

oscillators. Physical Review E, 64(4):045202, 2001.

M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka. Identi-

fication of coupling direction: Application to cardiorespiratory interaction. Physical

Review E, 65(4):041909, 2002.

J. L. R. Rubenstein and M. M. Merzenich. Model of autism: increased ratio of excita-

tion/inhibition in key neural systems. Genes, Brain, and Behavior, 2:255–267, 2003.



Bibliography 189

P. Sauseng, W. Klimesch, W. Stadler, M. Schabus, M. Doppelmayr, S. Hanslmayr, W. R.

Gruber, and N. Birbaumer. A shift of visual spatial attention is selectively associated

with human eeg alpha activity. European Journal of Neuroscience, 22(11):2917–2926,

2005.

B. Schack, N. Vath, H. Petsche, H.-G. Geissler, and E. Möller. Phase-coupling of theta–

gamma eeg rhythms during short-term memory processing. International Journal of

Psychophysiology, 44(2):143–163, 2002.

T. Schreiber and H. Kantz. Predictability of complex dynamical systems. In Observing

and Predicting Chaotic Signals. Springer, New York, 2003.

T. Schreiber and A. Schmitz. Surrogate time series. Physica D, 142(3-4):346–382, 2000.

C. M. Schumann, C. S. Bloss, C. C. Barnes, G. M. Wideman, R. A. Carper, N. Ak-

shoomoff, K. Pierce, D. Hagler, N. Schork, C. Lord, et al. Longitudinal magnetic

resonance imaging study of cortical development through early childhood in autism.

Journal of Neuroscience, 30(12):4419–4427, 2010.

S. Schwartz, R. Kessler, T. Gaughan, and A. W. Buckley. EEG Coherence Patterns in

Autism: An Updated Review. Pediatric Neurology, 2016.

A. Sheikhani, H. Behnam, M. Noroozian, M. R. Mohammadi, and M. Mohammadi. Ab-

normalities of quantitative electroencephalography in children with Asperger disorder

in various conditions. Research in Autism Spectrum Disorders, 3(2):538–546, 2009.

A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, and M. Mohamamadi.

Detection of abnormalities for diagnosing of children with autism disorders using of

quantitative electroencephalography analysis. Journal of Medical Systems, 36:957–

963, 2012.

L. W. Sheppard, A. Stefanovska, and P. V. E. McClintock. Detecting the harmonics of

oscillations with time-variable frequencies. Physical Review E, 83:016206, 2011.



Bibliography 190

L. W. Sheppard, A. Stefanovska, and P. V. E. McClintock. Testing for time-localised

coherence in bivariate data. Physical Review E, 85:046205, 2012.

V. N. Smelyanskiy, D. G. Luchinsky, A. Stefanovska, and P. V. E. McClintock. Inference

of a nonlinear stochastic model of the cardiorespiratory interaction. Physical Review

Letters, 94(9):098101, 2005.

R. L. Spitzer and J. B. Williams. Diagnostic and statistical manual of mental disorders.

In American Psychiatric Association. Citeseer, 1980.

C. J. Stam, G. Nolte, and A. Daffertshofer. Phase lag index: Assessment of functional

connectivity from multi channel EEG and MEG with diminished bias from common

sources. Human Brain Mapping, 28(11):1178–1193, 2007.

T. Stankovski. Time-varying coupling functions: Dynamical inference and cause of syn-

chronization transitions. Physical Review E, 95(2):022206, 2017.

T. Stankovski, A. Duggento, P. V. E. McClintock, and A. Stefanovska. Inference of time-

evolving coupled dynamical systems in the presence of noise. Physical Review Letters,

109:024101, 2012.

T. Stankovski, A. Duggento, P. V. E. McClintock, and A. Stefanovska. A tutorial on time-

evolving dynamical Bayesian inference. European Physical Journal – Special Topics,

223(13):2685–2703, 2014a.

T. Stankovski, P. V. E. McClintock, and A. Stefanovska. Coupling functions enable secure

communications. Physical Review X, 4:011026, 2014b.

T. Stankovski, V. Ticcinelli, P. V. E. McClintock, and A. Stefanovska. Coupling functions

in networks of oscillators. New Journal of Physics, 17(3):035002, 2015.

T. Stankovski, T. Pereira, P. V. E. McClintock, and A. Stefanovska. Coupling func-

tions: Universal insights into dynamical interaction mechanisms. Reviews of Modern

Physics,89(4):045001/, 2017b.



Bibliography 191

T. Stankovski, V. Ticcinelli, P. V. E. McClintock, and A. Stefanovska. Neural

cross-frequency coupling functions. Frontiers in Systems Neuroscience, 11(33):

10.3389/fnsys.2017.00033, 2017b.
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