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Abstract

Biological ion channels are essential for maintaining life, and appear as a seemingly

paradoxical combination of both large conductivity and strong selection between

ionic species. This process involves many complicated interactions, and their in-

clusion in a multi-species conduction model remains a fundamental theoretical

challenge. In this thesis, we derive the theory of multi-species ionic conduction

through narrow biological channels, taking into account ion-ion, ion-water and

ion-channel interactions. The theories we derive lead to new results that describe

multi-species conduction in and far from equilibrium in KcsA, including the reso-

lution of the conductivity-selectivity paradox.

The thesis builds on existing research on the physiological properties and structures

of biological ion channels in deriving a �rst-principles, multi-species statistical and

kinetic theory. The development of the statistical theory includes the derivation

of the free energy, distribution and partition functions, as well as the statistical

properties within the grand canonical ensemble. The conductivity of the channels

is also derived using linear response theory and the generalised Einstein relation.

The development of the kinetic theory involves the analysis of the transition rates,

and the calculation of current and selectivity ratios. The kinetic model is then

validated by comparing the theoretical currents with the currents measured exper-

imentally for the Shaker and KcsA potassium channels in �ve di�erent external

data sets.

The main results of this thesis are: a derivation of the grand canonical ensemble

for narrow channels with multiple binding sites and mixed-species bulk solutions;

a derivation of the linear response theory of multi-species conduction in such chan-

nels; development of non-equilibrium multi-species kinetic equations, that describe

the conductivity; the validation of the kinetic theory through comparison with ex-

perimental data sets; and the joint application of these derived theories to the

vi



multi-species conduction of KcsA in and far from equilibrium, which demonstrates

the resolution of the conductivity-selectivity paradox. These results should be ap-

plicable to other narrow voltage-gated ion channels, and can describe multi-species

conduction of neutral particles through zeolites.
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Action potential A rapid rise and fall in the membrane potential of an
excitable cell.
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KcsA Bacterial K+ ion channel from Streptomyces lividans.

LHS Left hand side.

Master equations Set of coupled equations that describe transitions be-
tween states of the system.

MD Molecular dynamics.

Membrane potential The di�erence in electric potential between the in-
terior and exterior of the cell.

MFPT Mean �rst passage time.
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Mixed-valence selectivity The selectivity between di�erently charged ions
for example Ca++ and Na+.

MM Michaelis-Menten, used in the reference to the saturation of current
with growing bulk concentrations.

MUT Mutant, a mutated ion channel.

Mutagenisis The process of altering the amino acid sequence of an ion
channel.

NaChBac Bacterial Na+ ion channel.

NP & PNP Nernst-Planck and Poisson-Nernst-Planck equation.

NIC Narrow ion channel.

NVGC Narrow voltage-gated ion channel.

pdb �le Data �le detailing all the atomic coordinates of a protein listed in
the protein database.

PMF Potential of mean force.

RHS Right hand side.

Selectivity �lter A narrow region of the ion channel where the selectivity
occurs.

Shaker Voltage-gated K+ ion channel.

S0-4 The 5 binding sites of KcsA (including the zeroth site).

TLESWAS Amino acid structure of the NaChBac selectivity �lter: threo-
nine, leucine, glutamic acid, serine, tryptophan, alanine and serine.

TM Trans-membrane.

TVGYG Amino acid structure of the KcsA selectivity �lter: threonine,
valine, glycine, tyrosine, glycine.

VMD Visual Molecular Dynamic software.

Voltage and patch clamp Experimental technique to record either the
current through a cell or through a channel.

WT Wild-type ion channel.
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1. Outline and goals of the thesis

Biological ion channels are essential to maintaining life. They passively allow

transport of physiologically relevant ions, such as potassium K+, sodium Na+ or

calcium Ca++, across the protective cell membrane working in conjunction with

transporters and pumps to maintain the membrane potential. Narrow channels,

meaning channels with a narrow selecting region (selectivity �lter), select between

di�erent kinds of ions at vast ratios whilst maintaining permeation at close to the

rate of free di�usion ∼ 108 s−1. This selectivity may be between ions of a di�erent

valence i.e. Na+ and Ca++ or ions of the same valence i.e. K+ and Na+.

There are a number of open questions preventing complete understanding of bi-

ological ion channels and modelling techniques. These channels display many

important and interesting physical phenomena and paradoxes in their permeation

mechanisms. The inclusion of ion-ion, ion-water and ion-channel interactions in a

multi-species non-equilibrium scenario, however, it is a long standing and funda-

mental theoretical problem. This is demonstrated by the multi-decade discussion

of the famous paradox of selectivity vs. conductivity [17, 18, 9, 19, 20, 21, 22, 23].

The primary aim of the thesis is to address this fundamental theoretical problem.

In order to derive theoretical tools required to investigate the conductivity and

selectivity properties of biological channels, we focus on Na+ vs. K+ selectivity

in K+ channels. In doing so, the derived theory will need to describe the perme-

ation and selectivity of multi-species solutions when taking account of the channel

structure and possible interactions. The current, occupancy and selectivity ratios
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should be calculated and, where possible, enable comparison with experimental

properties.

The opening chapters 2-4 review the scienti�c literature, focusing on the biologi-

cal and physical properties associated with ion channels and standard modelling

techniques. Chapter 5 derives a statistical theory that describes the occupancy

and permeation of a biological channel. Chapter 6 analyses in further detail the

transition rates used in modelling ion channels and discusses the relations to the

mean �rst passage time theory. Chapters 7 and 8 derive a non-equilibrium kinetic

theory, that is capable of describing the occupancy and permeation of a biologi-

cal channel under non-equilibrium conditions and thus allowing for experimental

comparison. The �nal chapter 9 sets out my conclusions on how the results of the

earlier chapters 5, 7 and 8 provide the resolution of the conductivity-selectivity

paradox.
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2. Biological ion channels

2.1 Introduction

Biological systems operate under the coordinated and continuous exchange of ma-

terial and information under di�ering length and time scales. At the smallest of

these scales these systems are governed by the behaviour of cells. In the human

body, cells need to survive and maintain volume and shape, propagate action po-

tentials, exchange signals amongst each other and work in unison to maintain the

membrane potential, which is the continually �uctuating voltage drop across the

cell membrane.

Cells are nearly isolated from the environment by a cellular membrane. This is

formed by two layers of phospholipids which contain hydrophilic polar heads and

hydrophobic non-polar tails ensuring stability in the aqueous environment [24]

(see �gure 2.1). Transport through this protective layer relies on trans-membrane

spanning proteins which control the �ow of particles to match with the functional

requirements of the cell. Hence for the cell to remain alive and operational, this �ow

of particles must be continuous throughout its life-span. This temporal behaviour

will therefore include such properties as the opening and closing or gating of these

trans-membrane proteins.

An important physiological process in animal cells is the action potential (see

�gure 2.2). It occurs in excitable cells such as the neurone or muscle cells and

propagation plays a central role in signalling. The membrane, initially in a resting
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Figure 2.1: Representation of a cell membrane, with a lipid bilayer and trans-
membrane protein channels [1].

state, starts depolarising, forcing Na+ channels open and Na+ ions to �ow into

the cell. This �ow reverses the polarity of the membrane, causing these channels

to close but in turn forcing K+ channels to open and K+ ions to �ow outwards

from the cell interior until the electrochemical gradient is balanced and the cell

returns to its resting state or period of quiescence, whereby the cell is waiting to

be excited from a stimulus. [2, 25, 26, 27].

The �rst important modelling work on ion channels came in 1952 when Hodgkin

and Huxley [25] created a mathematical formalism of current though a whole-

cell. They investigated the squid giant axon during the propagation of an action

potential and discovered changes in the permeabilities for K+ and Na+, and hence

that total current is summed from contributions from these ions, each of which

must take a di�erent pathway i.e. separate channels.

Hodgkin and Keynes also discovered an important conduction mechanism in single-

�le pores [28]. This mechanism, named �knock-on�, involves ions being forced

from their position in the �lter by incoming ions. The conclusion drawn from

this description was that part of the pore (now known to be the selectivity �lter)

must have a series of energy minima or binding sites between which ions hop when

forced. This was veri�ed in MD simulations of K+ channels [29] and in recent

experiments [30].
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Figure 2.2: Description of the action potential [2], reprinted with the permission
of Springer Nature (which is adapted from [3]). The temporal direction is from
left to right. The action potential should be discussed in two main regimes: de-
polarisation and repolarisation; and two voltage levels: the threshold and resting
potential. In an excitable membrane a voltage depolarisation (stimulus) opens
Na+ channels creating inward �ow of ions, which further depolarise and open Na+

channels. If this depolarisation reaches the threshold potential the process con-
tinues until such time as Na+ channels start to inactivate and K+ channels open.
The �ow of ions then starts to reverse repolarising the membrane back towards the
resting state. K+ channels can be slow to close and hence the membrane potential
can reach an afterhyperpolarisation phase (AHP). This leads to a refractory period
preventing further action potential production because the Na+ channels have not
yet recovered from their inactivation. [26]

2.2 De�ning biological ion channels

The textbook de�nition of an ion channel is that it consists of a hole through a

trans-membrane protein that allows the passive translocation of physiologically

relevant ions [31, 32]. There are a number of key features in this statement. First,

passive transport is de�ned as movement of particles according to the electrochem-

ical gradient as opposed to relying on an external energy source. This alongside

permeation at close to the rate of free di�usion ∼ 108s−1, distinguishes it from

active transporters such as the Na+/K+ pump which rely on ATP as an energy

source. Channels can then be further distinguished by the ions that they allow to

pass through and by their gating mechanisms.

There are three main types of gating mechanisms [26, 31, 32],

1. Mechanosensitive gating whereby a physical force or tension stimulus opens
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the channel. There are two common models: (1) stretch model and (2)

spring-like tether model.

In the stretch model, the curvature and associated tension from the lipid

bilayer force channels to open. The spring-like tether model is characterised

by channel proteins coupled to the cytoskeleton. The channel then opens

after an external stimulus de�ects this coupling contact.

2. Voltage-gated, these channels are usually closed at the resting potential but

their open probability is enhanced by a variation in the membrane potential.

This variance induces a conformational change resulting in the opening of

channel pores. This creates a voltage-dependent activation which may be

followed by a further conformational transition to an inactivated state. This

inactivated state no longer conducts ions until it has completed a period of

recovery, which occurs after a variable period of time following a return to

the resting potential. During recovery the channel presumably undergoes a

conformational change to its closed state.

Voltage-dependent activation (i.e after hyperpolarisation or depolarisation)

also requires that a change in the membrane voltage is detected by the chan-

nel. This change is usually in millivolts and so the corresponding electric

�eld is very large because the thickness of a membrane is tiny; thus it is

not surprising that this can alter the protein conformation. This is the main

mechanism as used in electrostatic ion channel models.

3. Ligand-gated, these channels again are normally closed but their open prob-

ability is enhanced by the binding of extra- or intra-cellular ligands. Ligands

are part of a functional group of particles which bind to a site and this

produces a conformational change that allosterically opens the channel pore.

This gating is always terminated by the dissociation of the ligand causing the

channel to enter a permanent closed state until another ligand is required for

reopening. Channels may desensitise, usually at high agonist concentrations
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at which the channel enters a long-lived closed state.

Ion channels play a signi�cant role in a wide spectrum of physiological processes,

and hence they are particularly important targets for the pharmaceutical industry.

It has been estimated that 13.4% of drugs have their primary action at ion chan-

nels [33, 34, 35]. In addition a growing class of diseases associated with channel

defects have been established. These diseases, known as �channelopathies� have

been identi�ed across a range of biological systems, including the musculoskeletal,

cardiovascular, neuronal, respiratory, metabolic and neuromuscular systems [36].

An important tool for probing ion channel function is the clamp technique [37].

It was originally developed as a voltage clamp whereby the membrane potential

is held at a constant value, enabling current through the channel to be calculated

[26]. Total current is a sum of the ionic current Ii due to the movement of particles

and the capacitive current due to the charging of the capacitance,

I = Ii + C
dV

dt
, (2.1)

but with a �xed potential only the ionic current remains. Hodgkin and Huxley

[38] were famous proponents of this technique. To clamp the membrane an equal

and opposite current is injected, resulting in zero net current and hence a �xed

membrane potential.

The patch clamp technique, invented by Neher and Sakman in 1976, [39] allows

for a more detailed study. It can be used as the voltage clamp to study current

through the cell (whole-cell) or current through individual ion channels (single-

channel) depending on the con�guration used. This o�ers a huge advance into

experimentally observing individual channel properties. The technique involves

the attachment of a pipette to the surface of the cell with a high resistance seal

(> 10GΩ). This level of resistance is needed to limit the noise and leakage current

which could easily overcome a single-channel current. The possible con�gurations
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Figure 2.3: Flow chart of possible patch clamp con�gurations and processes with
the �nal boxed state eligible to give experimental recordings. Reprinted from [4],
with the permission of Oxford University Press Inc. (which is adapted from [5]).

and processes are demonstrated in �gure 2.3. The cell-attached con�guration is

used for studying the cell under more physiological conditions because it is largely

intact, but is problematic because the composition of the intracellular solution

and resting potential of the cell are unknown. The �nal two single-channel con-

�gurations require rupturing of the membrane and hence leave isolated membrane

patches connected to the pipette and a bath solution surrounding the cell. Single

channel recordings can be made in two areas, either current vs. voltage or vs.

concentration. These measurements commonly deal with either symmetrical so-

lutions and varying the applied voltage or solution concentrations [11, 12, 15], or

asymmetrical solutions and varying the applied voltage [13, 14].
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2.3 Narrow ion channels

Ion channels thus exist as a diverse family with a large number of di�erent species

(see �gure 2.4 as an example of the voltage-gated channels) all with slightly di�er-

ent structures and features [6, 26, 31, 32]. An important multi-species class of chan-

nels are narrow voltage-gated channels (NVGC), part of the narrow ion channel

family1 (NIC). These include K+, Na+ and Ca++ channels, Kv, Nav and Cav respec-

tively. These channels, although di�erent in exact homology, are tetramic proteins

meaning that they are formed from a quaternary structure of four subunits. In

NVGCs each of these subunits consist of six trans-membrane (TM) alpha helices

(S1-S6) linked together (see �gure (2.5)). The �rst four (S1-S4) segments provide

the voltage-sensing component, while S5-S6 which are connected via a P-loop, pro-

vide the gate and main permeation pathway of the channel [31, 32, 40, 41, 42]. In

some of the bacterial channels such as KcsA, the structure can be simpler [8].

A great breakthrough in ion channel research came at the start of the 21st century

with the crystallisation of prokaryotic or bacterial channels. The position of all

atoms and molecules, and therefore structure of these channels, was determined by

X-ray crystallography. This work was �rst performed in the lab of MacKinnon [8]

who froze the KcsA protein to remove all thermal �uctuations, and then X-rayed

it to identify its structure. Prokaryotic channels are more favourable for obtaining

crystal structures because they form a simpler structure with as little as two trans-

membrane loops S5-S6, whilst maintaining similar homology in the P-loop [7]. A

comparison of prokaryotic-eukaryotic channels is provided by �gure 2.5.

The mechanisms of gating remain a large open question in the investigations of

channels. Structural information has led to advances, particularly in the under-

standing of the voltage-sensing mechanism [41] whereby a sliding-helix mechanism

is inferred for Na+ channels [44]. Gating charges in the S4 segment interact and

1The term narrow simply denotes a channel with an e�ective selectivity �lter. An important
example is KcsA.
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Figure 2.4: Superfamily of the �ve subgroups of voltage-gated ion channels [6],
reprinted with the permission of Moreau, Gosselin-Badaroudine and Chahine. The
main channel types are highlighted with their basic structure provided. The sub-
scripts refer to the subtle changes in amino acid sequence, which result in further
channel subtypes with varying permeation and gating properties [43].

Figure 2.5: Comparison of voltage-gated ion channels [7], reprinted with the
permission of the Company of Biologists LTD. (A) Schematic representation of a
2-TM domain protein unit (inwardly rectifying K+ channel Kir or could be KcsA).
(B) Schematic view of a 6-TM domain protein Kv's; and (C) Four domains each
with 6-TM proteins i.e. Nav/Cav's. (D) Protein in the membrane with three our
of four domains given. The P-loop runs through the middle with green being the
selectivity �lter.
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form ion-pairs with opposite charges in the other segments. In this con�guration

the charges are forced inwards due to the negative membrane potential, and this

forcing is alleviated during depolarisation and so the charges relax and move out-

wards along a spiral (helical) path. Models and qualitative ideas for mechanosens-

ing and ligand gating exist but a �rst-principles physical model is missing.

Although the complete understanding of permeation, selectivity and gating is not

resolved from the structure as expected, the crystal structure remains essential to

any physical model.

2.3.1 KcsA

An important prokaryotic K+ channel is KcsA, from Streptomyces lividans. As

discussed previously it was the �rst channel crystallised in 1998 by [8], and shares

many structural features with Kv channels and therefore is commonly used to

investigate the permeation properties of NVGCs. In �gure 2.6 a comparison of

amino acid residues that comprise of its structure is displayed. Importantly the

selectivity �lter which correspond to residues 75-79 reveals conservation among

voltage-gated K+ channels with the residues TVGYG (threonine, valine, glycine,

tyrosine, glycine) (taken from [8]). This is important because the conducting and

selectivity properties of the KcsA �lter are likely to be conserved among the other

voltage-gated K+ channels, even though it lacks the traditional voltage sensor.

Its structure is given in �gure 2.7 where only two of the four trans-membrane

segments are shown for clarity; and has been inserted into the membrane in �gure

2.8. It reveals a wide cavity, narrow selectivity �lter crucial to the permeation

process [45] and predicted activation gate at the crossing of the trans-membrane

segments [46, 47]. The intra-cellular gate provides visible evidence of the gating

mechanism known to be pH-activated but also voltage sensitive. The lack of an

obvious voltage sensor is due to the simpli�ed domain structure whereby local

changes in pH a�ect protonation on the intracellular side and provide stimulus for
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Figure 2.6: Selectivity sequences for various voltage-gated K+ channels. The
selectivity �lter is highlighted in red and is clearly conserved (taken from [8], and
reprinted with the permission of AAAS).

the gate [48, 49]. It has also been shown to be voltage sensitive at the selectivity

�lter with the steady-state open probability increasing by two orders of magnitude

between +150 and -150mV [50].

The cavity is a wide region in the pore (radius ∼ 5 Å) and allows up to ∼ 50

water molecules to occupy the space with ions [8, 51]. The water molecules are

important for providing stability [52], but also acting as a reservoir of hydrated

ions for entry into the �lter [53].

The selectivity �lter has evidently evolved for fast and highly selective conduction;

its length is ∼ 12Å and it has a radius of ∼ 1.5Å [45]. The �lter amino acid

residues are uncharged and yet each retains an oxygen atom directed towards the

permeation pathway. The e�ect of this is to induce a partial dipolar charge along

the axial coordinates of the �lter creating four oxygen cages which form binding

sites. These are chemically equivalent, although the �rst three sites (labels starting

at the intra-cellular side) S1-S3 are created from carbonyl oxygens and S4 from a

hydroxyl oxygen.
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Figure 2.7: The left image is a reduced representation of the closed conformation.
The yellow ribbons represent two of the amino acid chains, whilst the narrow
selectivity �lter has its residues highlighted. The 4/5 binding sites are displayed
with a S0S2S4 occupation. The right image is a close-up of the selectivity �lter,
highlighting the S2S4, and S0S2S4 states.

The importance of this dipolar charge cannot be understated because it acts in a

way to o�set the dehydration cost allowing permeation and, in doing so, creates

selectivity as we will see below. The traditional explanation of selectivity here is

the snug-�t mechanism [18]. This assumes a rigid structure providing an isoen-

ergetic, aquomimetic di�usion pathway tuned to conduct K+ ions. The smaller

Na+ ion thus does not receive an equal compensating energy from interaction with

the dipolar charge and would require a positional shift of amino acids to enter

[54]. Although this explanation is simple and compelling it cannot be the whole

picture because the thermal �uctuations in the structure are of the order ∼ 0.75

Å o�setting the di�erence in ionic radii [55, 56]. Any complete picture of selec-

tivity must be modelled with a non-equilibrium theory [57, 58] that accounts for

the permeation process as well. Thus it is clear that geometry plays a role and

helps to explain the stark contrast with Na+ channels which are slightly wider and

favour Na+ [59].

Permeation is also via knock-on [28] in a multi-ion and coordinated manner [45,
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19, 60, 61, 62], with the transition between 2-3 K+ ions favoured. This suggests

a total net dipolar charge of ∼ −2.5q such that three ions in the �lter represents

an unstable state [63]. Strict coordination occurs to prevent ions from occupying

neighbouring sites (due to the large ion-ion interactions) and so there are two

possible dual occupancy states (S1S3 and S2S4) and the three occupancy state

S0S2S4 which requires the zeroth site [16]. There have been disagreements as

to the exact con�guration of ions in K+ channels during the permeation process

[8, 16, 29, 64, 30, 65, 66]. Initially it had been suggested via MD, crystallography

and experiment that speci�c ordering ensures a water molecule separating each

ion [8, 16, 29, 64, 30]. This was explained as energetic ordering due to the direct

electrostatic ion-ion interactions. Follow up MD simulations primarily by Köpfer

[65] have questioned this by suggesting direct (hard) ion-ion interactions and four

ions in the �lter, are fundamental to the permeation process.

The selectivity �lter also undergoes conformational changes with low extra/intra

cellular K+ concentrations and enters a �collapsed state� [67, 68]. It has been

shown that in solutions of ∼ 0.003M the residue number 76 changes orientation

resulting in a wider minimum diameter of 5.5Å and an hourglass shape [9]. This

has been demonstrated to become non-conducting because there is limited binding

a�nity, as demonstrated in �gure 2.9 where the selectivity �lter of the low K+

concentration 1K4D.pdb is compared to the normal �lter.
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Figure 2.8: VMD rendered image of the crystallised KcsA channel (1K4C.pdb)
inserted into a cellular membrane [9, 10]. The protein tetramic structure is dis-
played as orange cylinders, with KCl ions in an aqueous solution taking colours
black and red and the lipid membrane represented in purple.

Figure 2.9: Comparison of residues 75-79 in the standard conformation KcsA
1K4C.pdb in purple with the low K+ concentration �lter 1K4D.pdb in magenta,
rendered with VMD software [9, 10]. A slight shrinking length wise and broadening
of the permeation pathway can be seen in 1K4D. It forms an hourglass shape that
conduction impossible.

2.3.2 Shaker

An important eukaryotic voltage-gated K+ channel is Shaker from Drosophila

melanogaster. It has been extensively studied electro-physiologically [11] and had
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its structure crystallised and later re�ned [69, 70]. Although the total amino-acid

structure and number of TM-domains di�ers the permeation pathway is expected

to be similar to KcsA particularly in the selectivity �lter which is conserved. In

�gure 2.10 we display the Shaker K+ channel on the left and compare its selectivity

�lter with KcsA (shown in purple) and the Shaker K+ channel (shown in blue)

from 2A79.pdb. The selectivity �lters are very similar as expected because of the

conserved residues.

Figure 2.10: Shaker K+ channel from 2A79.pdb [69]. The left image is the
reduced representation, and the right image is a comparison of the selectivity
�lters of Shaker (shown in blue) and KcsA-1K4C.pdb (shown in purple). The
cavity and lower permeation pathway of Shaker is slightly wider suggesting that
the channel was crystallised in the open state.

2.3.3 NaChBac

The �rst discovered prokaryotic homologue used to study voltage-gated Na+ chan-

nels (Nav's) is NaChBac from Bacillus halodurans [71]. It is a homotetramic

channel similar to potassium channels, meaning that it consists of four identical

subunits [72, 42]. Its selectivity �lter however is governed by side chains in the

conserved sequence2 TLESWAS, and may o�er vastly di�erent properties to K+

channels because it is wider and can allow for fully hydrated Na+ ions inside the �l-

ter. [73] Mutagenisis experiments have con�rmed the importance of this structure

2The amino acid residues TLESWAS stand for, threonine, leucine, glutamic acid, serine,
tryptophan, alanine and serine. The glutamic acid, becomes glutamate because it is charged
under physiological conditions.
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for function, as altering the S to D resulted in a channel conducting both Ca++

and Na+, whilst converting an E to a D (aspartate) resulted in a Ca++ selective

channel [74].

Currently there is not a crystal structure of NaChBac available, although homo-

logue models using similar channels such as NavAb [75] and NavMs exist [76].

The NavAb structure portrays the channel as a central pore surrounded by four

pore forming modules containing only S5 and S6 segments and their pore loops.

It contains 3 Na+ binding sites at the locations of the threonines, leucines and

glutamates of the �lter. [72, 75]

The simulations reported in [59] suggest a new alike-charge selectivity mechanism.

The fully hydrated K+ ions are unable to �t between the plane of glutamate

residues requiring dehydration. Na+ vs. Ca++ selectivity is likely to be due to the

�xed charge present from the side chains. Guardiani et al. worked directly on a

NaChBac with a homologue model, their results suggest 4 Na+ binding sites with

a 2 to 3 ion permeation mechanism [76].

2.3.4 Conductivity-selectivity paradox

One of the primary properties of these NICs is that high selectivity coexists with

fast conduction. This property is present in these channels even if structure and

selectivity varies amongst channel types. It is paradoxical behaviour because high

selectivity must require a high binding a�nity or attraction to sites in the �lter

which would be expected to result in a slow passage between sites contrasting with

the reality of conduction almost at the rate of free di�usion.

This paradoxical property has been investigated for decades [45, 17, 77, 78, 79, 80,

22, 81] and remains a fundamental question surrounding these channels. Selectivity

mechanisms have been proposed, such as snug-�t for K+ channels [18] or the

widening in Na+ channels [59], but a successful explanation of this process and
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how it can coexist with fast conduction has not yet been devised.

2.4 Summary

Ion channels remain of fundamental importance to the maintenance and function

of biological cells. They are trans-membrane proteins that facilitate the passive

transport of physiologically relevant ions.

There are many classes of ion channel families but of particular importance, at

least for physical modelling, are NICs. These can be generalised and compared

with each other, sharing large similarities in structure but di�ering dramatically

in conduction and selectivity, and therefore stimulating further research.

Vast improvements in experimental techniques led by patch-clamping and followed

by crystallography o�er more and improved experimental insights. These include

conduction and selectivity recordings but also structural features. But key ques-

tions around these properties and of the structure-function relationship remain.
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3. Modelling techniques

3.1 Introduction

Ion permeation events occur in the context of a vast number of complex inter-

actions, ranging from electrostatic to chemical, leading to a wide collection of

inter-related modelling techniques. These range from describing equilibrium and

linear response to non-equilibrium regimes, with temporal dynamics or at steady

state. As this thesis aims to describe the conductivity and selectivity through

open channels, we can focus on the steady state regime. This is justi�ed because

individual ion permeation events occur on a short time-scale ∼ 10−8 s [31, 32]. In

this chapter we will brie�y review the 5 main approaches: equilibrium statistical

theory, Brownian dynamics (BD), kinetic models (which can be derived from the

set of master equations), Nernst-Planck (NP) and molecular dynamics (MD).

3.2 Statistical theory

The equilibrium behaviour in the channel can be very useful in understanding

the physics of permeation, while also providing theoretical insights that can be

used to develop non-equilibrium models. In this section, I will brie�y review

general statistical theory before discussing some key results in its application to

ion channels [82, 83, 84].

To develop a statistical theory we have to de�ne our system, select an ensemble
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and hence �nd the free energy and statistical properties. A thermodynamic system

represents the material within a macroscopic volume which can be described by

its state variables. This system, i.e. in this case a channel, may then be coupled

di�usively and thermally to reservoirs, i.e. in this case bulk electrolyte solutions.

Statistical ensembles de�ne the thermodynamic properties of the system according

to its state variables. There are three main ensembles: micro-canonical; canonical;

and grand canonical. Each of these is explained in the paragraphs below. If the

scale of the system is large enough then all of these ensembles can be shown to be

equivalent to each other [85, 86, 87].

We start by discussing the micro-canonical ensemble. Consider an isolated system

with a �xed energy E, such as particles in a box. The system is prevented from

exchanging energy or particles with an outside source, and is at equilibrium, and

therefore all accessible micro states are equally likely i.e. are degenerate. This also

results in the total number of particles N and volume V of the system being �xed

and so the system is de�ned by E, N and V .

If the ensemble is now divided such that a mechanical system is at thermal equi-

librium with a heat reservoir, then we have the canonical ensemble. Energy may

be exchanged and so there is a probability of �nding a system in each available

micro-state, depending on the energy of the system. The constant parameters that

de�ne the ensemble are now: temperature T , V and N .

The �nal ensemble can be described from the canonical ensemble, if we consider

two systems at thermal and di�usive equilibrium, with a small and a large col-

lection of particles. Since the total number of particles in the ensemble is �xed,

particle numbers in each system may �uctuate, and hence the small system can be

described as a thermodynamically open system. Since energy and particles may

now be exchanged , the grand canonical ensemble, is now de�ned by the constant

parameters T , V and the chemical potential1 η .

1In this thesis we slightly break the convention by de�ning the chemical potential as η because
µ will later be de�ned as the electrochemical potential.
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A single-species grand canonical statistical theory has been developed by Roux

[82, 83, 84]. The main outcomes were the description of equilibrium probabilities

of multiply occupied channels, and discussion of the total free energy pro�le which

can be separated into an intrinsic ion-pore free energy potential of mean force

(PMF). The states or number of ions in the �lter n are de�ned by the instantaneous

con�guration of the �lter system. It then follows that the probability to have n

ions in the �lter is given by

Pn = 〈δnn′〉 =

∫
dr1 · · ·

∫
drN

∫
dX δn,n′e

−βU∫
dr1 · · ·

∫
drN

∫
dX e−βU

, (3.1)

where ri is the position of the i'th ion, X the remaining degrees of freedom, U is

the potential energy and δ is the Kronecker delta function. This function is only 1

if the ion is occupying the �lter. To determine the probabilities of occupancy the

binding probability B is de�ned as the ratio: Pn/P0, yielding,

Pn =
Bn

1 + B1 + B2 + ...
. (3.2)

Hence the occupancy of the �lter can be characterised via the PMF or energy

pro�le of the �lter at equilibrium.

Statistical theory can be extended to include the e�ects of multiple species. As

it can describe the occupancy, conductance and hence selectivity at equilibrium

and linear response, it can therefore be used to provide a �rst-principled expla-

nation of the properties of channels. The statistical theory can be developed into

non-equilibrium theory with the application to models such as kinetic or Poisson-

Nernst-Planck models. This is important because it enables comparison with ex-

perimental recordings which are recorded under non-equilibrium conditions.
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3.3 Stochastic systems

Fluctuations occur in many systems (including biological), due to the wide array

of possible internal or external in�uences. Examples include Brownian motion,

Josepheson tunnelling, and ion channel permeation [88, 89, 90, 91, 92, 93, 94, 84].

Systems containing �uctuations are de�ned as stochastic. A stochastic process

simply represents a collection of random variables. Early applications made by

Einstein [95] and later by Langevin [96] to understanding Brownian motion, in-

cluded important equations such as the Chapman Kolmogorov, Fokker-Planck and

Langevin equations. Each of these is discussed in the sections below.

3.3.1 Brownian dynamics

The perpetual irregular movement of small particles classed as Brownian motion

has been studied extensively since its discovery [97]. The Langevin approach was

to apply Newton's equations of motion, with the inclusion of a time dependent

random frictional force [92, 98]. To describe the Brownian motion of colloidal

particles, the Langevin equation takes the following form,

mv̇(t) = −αv(t) + Ff (t), (3.3)

where m and v correspond to the mass and velocity of the particle, and on the

RHS the �rst term corresponds to a continuous damping force (of strength α)

whilst the second is a random force due to the particle-water and particle-particle

collisions. The equation can be recast through the introduction of the Langevin

force Γ(t), with the properties of having a zero mean and independence of di�erent

molecules,
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〈Γ(t)〉 = 0 & 〈Γ(t)Γ(t′)〉 = Cδ(t− t′) (3.4)

where angled brackets imply ensemble averaging and C is a constant. This Langevin

force corresponds to Gaussian white noise and its averaging properties can be used

to solve the Langevin equation. This is done in full in Appendix A.1 and the key

result is the recovery of the Einstein relation,

D =
kT

mγ
, (3.5)

which is valid in the large time limit.

The application of BD to permeation has been made successfully by many au-

thors [99, 100, 65, 101], and in particular focusing on the electrostatic interactions

through the �lter [102, 103, 104, 105]. BD remains a gold standard of physical

models. The output from BD, is the calculation of trajectories of particles within

a given force �eld, through the channel. The Langevin equation represents the

balance of forces and so in the presence of an external force �eld Fe, the term is

added onto the RHS of equation (3.3),

mv̇(t) = −αv(t) + Ff (r) + Fe. (3.6)

This force �eld can be dynamical, and it is calculated from the derivative of the

external potential. It is common to apply the overdamped limit, de�ned by a small

Reynolds number, enforcing the condition that inertial e�ects de�ned through

mv̇(t) are negligible.

In the work by Kaufman [102, 103, 104, 105], novel insights into the permeation

mechanism have been found from an analysis of the electrostatics within the chan-

nel. The selectivity �lter alone was modelled and treated as a dielectric cylinder
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with a central �xed charge Qf = nfq where q is the electron charge. The dielectric

mismatch between the constituent water and protein matter εw � εp creates a 1D

axial electric �eld through the �lter, con�ning the motion to 1D. The electrostatic

interaction can be estimated by applying Gauss's theorem to the total enclosed

charge Q = (nf + zn)q, including the �lter charge and the charge from n ions

[106, 107],

∮
E · dA =

Q

ε0εw
. (3.7)

If the �eld is emitted from a Gaussian cylinder containing the enclosed charge then

its contribution to the electrostatic potential energy is,

E(n, nf ) =
1

4πε0

Q2L

2εwR2
=

Q2

2Cs
. (3.8)

This electrostatic energy therefore includes the following contributions: the ion

self-energy; the ion-�lter interaction; and, the �lter charging energy. This will

form the basis for the electrostatics used in this thesis.

These three terms play important roles in the permeation process. The ion-�lter

interaction acts as the attractive force on cations whilst repelling anions from the

�lter. The ion self-energy is the barrier for entry faced by the ion. The �nal

term leads to the description of Coulomb blockade (CB) in the �lter because this

represents the charging energy of the �lter due to its charge. CB is further explored

in Chapter 4 while important properties describing the analogy are summarised

in table 3.1. It is clear that there are a number of similarities but ionic transport

remains a classically describable stochastic process and maybe extended to include

varying ions with di�erent radii and valence.

This interaction is identical to that found in electron transport where CB is present

[108, 109] (for a more detailed discussion see Chapter 4). In these systems the

charging energy is de�ned as a gate voltage, which varies the energy of the sys-
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tem, switching conduction between blockade where there is a net energy di�erence

between transition states and resonant conduction when the energy levels are de-

generate.

Thus the role of the �xed charge was realised because it discretises the electro-

static energy spectrum into a series of states, corresponding to the number of ions

enclosed in the �lter. These states are governed by the electrostatic energy and

its strength Uc = q2

2C
, which is strongly dependent on the �lter volume (and hence

�lter type). However, this only distinguishes between ions of di�erent valence and

so does not represent the complete set of states within the �lter.

Property Ionic transport Electronic transport

Moving carriers Ions (Na+,K+, Ca++,... etc.) Electrons (e−)

Valence of carriers Varies z = +1,+2, ... etc. z = −1

Charging parameter Filter charge nf Applied voltage Vg

Transport mechanism Stochastic di�usion Tunnelling

Operating temperature T = 300K T ∼ 15K

Table 3.1: Comparison of important properties governing ionic transport in ion
channels and electron transport in quantum dots.

3.3.2 Markov processes

Markov processes are a very important class of stochastic processes because they

represent a stochastic analogue of deterministic processes. Thus we can derive de-

terministic jump (master equations) or drift-di�usion (Fokker-Planck) equations

which can be used to describe many physical systems such as quantum electron

transport through nano-structures [108, 110], and importantly biological ion chan-

nels [111, 84, 112].

We de�ne the conditional probability as the probability that the random variable is

at position xn at time tn starting from x at time t. Then for a Markov process which
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only depends on the next earlier time and not the past, it can be mathematically

de�ned as follows [90, 92],

P (xn, tn|xn−1, tn−1; . . . ;x1, t1) = P (xn, tn|xn−1, tn−1). (3.9)

where the addition of | de�nes P as a conditional probability, where the �nal

state is only possible if the system has been in the earlier states. For example:

P (xn, tn|xn−1, tn−1) is the probability that the system is in state {xn, tn} given that

earlier it was at {xn−1, tn−1} and so the direction of travel is right to left with the

time ordering: tn > tn−1 > .. > t1. Using the following identity and de�nition of a

Markov process we can derive the Chapman-Kolmogorov (CK) equation [90],

P (x3, t3|x1, t1) =

∫
P (x3, t3|x2, t2;x2, t2)dx2 (3.10)

=

∫
P (x3, t3|x2, t2)P (x2, t2|x1, t1)dx2. (3.11)

These conditional probability functions are important because they can be related

to distribution functions, i.e. probability densities Wn, as follows,

P (xn, tn|xn−1, tn−1; . . . ;x1, t1) =
Wn(xn, tn; . . . ;x1, t1)

Wn−1(xn−1, tn−1; . . . x1, t1)
, (3.12)

and so we can consider the important case of neighbouring states, such that:

W2(x2, t2) =
∫
W2(x2, t2;x1, t1)dx1. The probability density can then be related

to the conditional probabilities as,

W2(x2, t2) =

∫
P (x2, t2|x1, t1)W1(x1, t1)dx1. (3.13)

This is important because the W are fairly arbitrary and can be described as
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transition probabilities. It is around these that we will expand to derive the

Master and Fokker-Planck equations.

Random walk

Random walks are a good starting place to discuss Markov processes because

they o�er a physical context. We will �rst consider a random walker and, in a

hand-waving manner, derive the master and Fokker-Planck (FP) equations, with

constant drift and di�usion following [88, 113], before giving the general de�nitions

following textbooks [89, 90, 91, 92, 93, 113, 114].

If we consider a random walker moving along a 1D lattice e.g. modelling an

ion moving between binding sites, then we can form an equation governing the

evolution of this walker. Let P (x,N) be the probability that the particle is at x

on the N 'th time step. If we enforce the condition that the walker must move, its

evolution is then governed by the master equation,

P (x,N + 1) = pP (x− 1, N) + qP (x+ 1, N) (3.14)

where p and q are the transition probabilities to move left or right from each site

on the lattice and they sum to unity. This can be written in continuous time by

replacing N with time t and Taylor-expanding around the time step δt to form,

∂P (x, t)

∂t
= w+P (x− 1, t) + w−P (x+ 1, t)− w0P (x, t) (3.15)

where w+ = p/δt and w− = q/δt are now the transition rates to move left and

right and w0 = 1/δt is the total rate to move left and right. This form of equation

is discussed further in Chapters 7 and 8.

If both space and time are continuous then we can derive the fundamental Fokker-

Planck or drift-di�usion equation. The Fokker-Planck equation is a partial di�er-
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ential equation describing the time evolution of the probability density function

under forcing. If equation (3.14) is Taylor-expanded around the time step and the

spatial step δx (to second order), then we obtain,

∂P (x, t)

∂t
+ v

∂P (x, t)

∂x
= D

∂2P (x, t)

∂x2
, (3.16)

where v = (p− q)δx/δt is the velocity and D = δx2/2δt the di�usion coe�cient as

given by the Einstein relation.

Master equation

We have already demonstrated from the section above, that master equations can

be derived from the continuous time limit of a Markov process. Thus, to derive

the master equations we should start from the CK equation (3.11) and take the

limit of continuous time.

To take this limit we should introduce the time steps: τ ′ = t3− t2 and τ = t2− t1,

and expand equation (3.11) in the limit of τ ′ → 0. The conditional probabilities

are sharply peaked, meaning that,

lim
τ ′→0

P (x3, t2 + τ ′|x2, t2) = δ(x3 − x2). (3.17)

Hence the expansion2 of equation (3.11) reveals,

2Where the original expansion,

P (x3, t1 + τ ′ + τ |x1, t1) = δ(x3 − x2) +
∂

∂τ ′
P (x3, t2|x2, t2)τ ′ +O[(τ ′)2], (3.18)

has been normalised such that P lies between 0 and 1.
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P (x3, t1 + τ ′ + τ |x1, t1)

=

∫ (
δ(x3 − x2)[1−D(0)(x2, t2)τ ′] +Wt(x3|x2)τ ′ +O[(τ ′)2]

)
× P (x2, t1 + τ |x1, t1)dx2, (3.19)

where D(0)(x2, t2) is a zeroth order correction to ensure correct normalisation. It

represents the probability that a particle remained at its initial position, i.e. no

transition has occurred, and Wt(x3|x2) is a transition probability per unit time.

From the normalisation: 1 =
∫
dx3P (x3, t2 + τ |x2, t2) it is clear that the zeroth

order term can be written as,

D(0)(x2, t2) =

∫
dx3Wt(x3|x2). (3.20)

If we reinsert these de�nitions into equation (3.11), integrate and take the limit

τ ′ → 0 we obtain the master equation in integro-di�erential form,

∂P (x3, t2|x1, t1)

∂τ ′

=

∫
dx2[Wt(x3|x2)P (x2, t1 + τ |x1, t1)−Wt(x2|x3)P (x3, t1 + τ |x1, t1)]. (3.21)

Since the starting positions and times are always x1 and t1 we can simplify the

notation,

∂P (x, t)

∂t
=

∫
dx′[Wt(x|x′)P (x′, t)−Wt(x

′|x)P (x, t)]. (3.22)

If the states of the system are discrete then it takes the standard form,
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∂Pn(t)

∂t
=
∑
n′

[Wnn′Pn′(t)−Wn′nPn(t)], (3.23)

which is the discrete form of the master equation and will be used extensively in

Chapter 7 and 8. It forms a set of equations describing the time evolution of each

state n.

Applications of master equations

Kinetic theory has been widely studied and applied to ion channels. The primary

focus has been on the calculations of conduction [115, 116, 117, 31, 118, 119, 120,

121, 122, 123], whilst there has only been a limited discussion of selectivity. It

has had some success in agreeing with experimental recordings, but its key term,

the transition rates, can be a source of confusion [124, 125, 126]. Kinetic theory is

rooted in the master equation approach and so �rst we should review the technique

of its solution.

As previously derived, the set of equations describing the time evolution of the

system (3.23) can be written in matrix form for each of the probabilities of state

(P),

dP

dt
= W ·P. (3.24)

After the equality, we have the probabilistic combination of states and their switch-

ing via a transition matrix W. This matrix encodes all the transitions between

states via their individual rates; whose exact form can be challenging to �nd. Pro-

viding that the transition rates are independent of time, then the system is without

memory (Markovian) and classed as a kinetic scheme.

Typically, in short-duration events, such as ion permeation, the time-dependent

dynamics can be neglected and we can solve at steady state. This is important
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because it removes the added complications of the dynamics of the protein thereby

avoiding the open problem of gating.

A common class of master equations within the ion channel context is the neigh-

bouring transition master equation. Often ions are modelled hopping between

binding sites in the �lter and so can only move to neighbouring sites, thus reduc-

ing the total number of possible transitions.

If the aim of the scheme is to model a non-equilibrium steady state then two nodes

must be present so that there can be a conserved �ow of particles (Kircho�'s law

[127]). This clearly arises in ion channels because the �lter is coupled to two

bulk reservoirs. Current is then de�ned as the balance of �uxes. The distinction

between an equilibrium and a non-equilibrium steady state can be made because

of the detailed balance condition. This states that at equilibrium there is complete

reversibility and the incoming �ux must equal the outgoing �ux, I = 0 [128].

Nelson [116] included the �rst examples of recti�cation in ion channel kinetic

theory. He investigated the optimal transition regime (2↔3) of K+ channels, and

compared his theoretical calculations to experimental recordings. Accordingly,

permeation in his model is a two step process, and so the current can be simpli�ed

to the following fraction of transition rates3 Γ,

I =
ΓL01ΓR10 − ΓR01ΓL10

ΓL01 + ΓR01 + ΓL10 + ΓR10

. (3.25)

The superscript denotes the bulk involved, and the subscript the transition event

such that 01 implies entry into the �lter. These transition rates are de�ned from

Arrhenius/Eyring rate theory [129, 130], whereby the incoming rate is proportional

to a constant ka multiplied to the concentration c,

ΓL01 = cLka, ΓR01 = cRka (3.26)

3Note that we have adjusted his notation to de�ne the transitions rates using general Γ
notation.
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while the exiting rate is equal to some rate constant kd, multiplied to a negative

exponent of the applied voltage4 V ,

ΓL10 = kde
−χqV/kT , ΓR10 = kde

(1−χ)qV/kT . (3.27)

χ is a permeation coordinate which represents the position of the binding site, and

hence symmetry in the �lter which may lead to recti�cation. These transition rates

reproduce Michaelis-Menten (MM) saturation of current vs. concentration [131],

and voltage that can �t reasonably well to experimental properties. Recti�cation

is an experimentally observed property that could not be modelled within kinetic

theory before this result. As we will discuss in Chapter 6, the de�nition of these

transition rates and their application to ion channels, raises questions about their

validity in this context.

Fokker-Planck equation

The Fokker-Planck equation (FP) is a partial di�erential equation that can be

applied to stochastic systems by describing drift and di�usion currents [132, 133].

We have demonstrated from considering a random walker, that it can be derived

from the continuous time and position limit of a Markov process. Hence we shall

proceed directly from the master equation (3.22), which was derived from the

Chapman-Kolmogorov equation, to derive the Fokker-Planck equation. The fol-

lowing derivation of the Fokker-Planck equation is based on [89, 90, 91, 92].

The �rst step is to introduce the position jump of size y, equal to the di�erence

between states x, and x′, y = x − x′. The transition probabilities can be written

as a function of y,

W (x|x′) = W (x′; y), W (x′|x) = W (x; y). (3.28)

4The transition rates are dependent on the bulk concentration and voltage drop across the
channel, and hence can describe an electrochemical gradient.
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The purpose of this will be to reintroduce into the master equation (3.22), and

expand around the jump size. Hence inserting the de�nition: y = x − x′ we can

write the master equation as,

∂P (x, t)

∂t
=

∫
dy[Wt(x− y; y)P (x− y, t)−Wt(x;−y)P (x, t)] (3.29)

where we have absorbed the negative sign from the change of variables into the

integration limits. If we assume that only small jumps occur such that W (x; y) is

sharply peaked as a function of y, but slowly varying with x, and similarly that

P (x, t) is slowly varying, then it is possible to deal with the shift from x to x− y

by Taylor expansion,

∂P (x, t)

∂t
=

∫
dyWt(x; y)P (x, t) +

∞∑
n=1

1

n!

∫
dy(−y)n

∂n

∂xn
[Wt(x; y)P (x, t)]

−
∫
dyWt(x;−y)P (x, t). (3.30)

Since the �rst and last terms cancel on the RHS we can introduce the de�nition

of the jump moments M (n),

M (n)(x, t) =

∫
ynWt(x; y)dy (3.31)

to de�ne the main result which is the Kramers-Moyal expansion [134, 135] of the

master equation,

∂P (x, t)

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂xn
[
M (n)(x, t)P (x, t)

]
. (3.32)

Pawulas theorem [136, 92] enforces the following conditions on the expansion: at

n = 0 we have no dynamics; a deterministic process at n = 1 (Liouville equation);
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a di�usion process at n = 2; and, for a �nite n greater than 2 the number of terms

can only converge if the transition probability is negative (not possible). Hence,

we can truncate the expansion at n = 2 and recover the Fokker-Planck equation,

∂P (x, t)

∂t
= − ∂

∂x

[
M (1)(x, t)P (x, t)

]
+

1

2

∂2

∂x2

[
M (2)(x, t)P (x, t)

]
(3.33)

where the �rst and second jump moments are commonly referred to as drift and

di�usion coe�cients A and B.

Nernst-Planck equation

The Nernst-Planck equation is a popular continuum approach [137, 138, 139, 140,

141, 142, 143]. It is derived directly from the Fokker-Planck equation with con-

stant drift and di�usion coe�cients (see equation (3.16)). To derive the (Poisson)

Nernst-Planck equation describing current through the channel, we �rst need to

write the probability �ux via the continuity equation,

∂P (x, t)

∂t
+∇ · J = 0. (3.34)

The probability �ux J can be written in terms of the electrical and chemical

potential [144, 94],

J = −D
(
∇c(x) +

zqc

kT
∇φ(x)

)
. (3.35)

We have taken the gradient to be voltage φ(x) and concentration c(x) driven,

and assumed a constant di�usion coe�cient D. This provides a description of

the steady-state current when ∂P (x,t)
∂t

= 0. If boundaries are imposed such that

c(0) = cl, c(1) = cr then the equation can be integrated and written in the form,

34



J = −Dcl exp[zqφ(0)/kT ]− cr exp[zqφ(1)/kT ]∫ 1

0
exp[zqφ(x)/kT ]dx

. (3.36)

If we take a linear voltage drop such that φ(0) − φ, φ(1) = 0 then �ux is of the

form,

J = −Di
cl exp[zqφ/kT ]− cr

1− exp[zqφ/kT ]
. (3.37)

If we multiply by q to calculate the electrical current, it provides a linear description

of current vs. voltage which is typically only valid in the Ohmic regime5 ∼ −50 :→

+50 mV. To go beyond this voltage range, it needs to be coupled to the Poisson

equation [146]. This ensemble of equations is called Poisson-Nernst-Planck (PNP)

and these are given by,

J = −Dcl exp[zqφ(0)/kT ]− cr exp[zqφ(1)/kT ]∫ 1

0
exp[zqφ(x)/kT ]dx

(3.38)

ε
d2φ(x)

dx
= −c(x)q −N(x), (3.39)

where N(x) is any additional charges in the protein such as the charged membrane

walls.

PNP can result in good �tting to data [146, 147] but results in a few issues in-

cluding, non-agreement with BD simulations and di�culties in its application to

narrow and charged channels [148, 149, 150, 151]. In narrow channels where the

radius is smaller than twice the Debye length, screening arises from the counter-

ions within the pore. This e�ect is reduced if the walls are charged because the

counter-ions do not permeate.

There have been attempts to include these important interactions, such as hydra-

5Ion channels are very diverse machines with varying structures, hence this range is only
approximate. For example in Gramicidin the current can be Ohmic up to larger voltages [145].
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tion and steric e�ects, into the theory [138, 152, 153, 154]. These allow for more

realistic comparisons with experimental recordings, including selectivity-based ef-

fects because ions can be distinguished by their energy pro�les.

In the the absence of the electro-gradient ∇φ = 0, the equations recover Fick's

law [155], which governs the �ux (or current) of particles, in terms of the chemical

gradient ∇η,

J = −Dc
kT
∇η. (3.40)

3.4 Molecular dynamics

Molecular Dynamics (MD) o�ers a microscopic all-atom approach to calculating

trajectories. MD includes all ions, water and protein particles which are interacting

via force �elds and an energy pro�le [84, 112, 156, 55, 65].

Trajectories are calculated directly from Newton's third law for all i particles,

where they are subjected to forcing Fi from a many-body potential pro�le,

Fi = mir̈i. (3.41)

The mass and acceleration of the i'th atom are denoted by mi and r̈i. The main

challenge lies in determining appropriate force �elds and interactions in the sys-

tem. The force �elds between pairs of atoms can typically be summed from bonded

and non-bonded interactions. The bonded interactions account for the quantum

mechanical behaviour of covalently connected atoms whilst the non-bonded po-

tential is typically the Lennard-Jones potential [84]. If the channel is embedded

in its native environment, there are additional challenges in determining the ex-

act force �eld because embedding in the lipid membrane creates protein-lipid and

protein-water interfaces, which lead to further interactions.
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An important advance was provided through homology modelling [112, 157, 158,

159]. The output of this technique is the creation of channel structures based

on comparisons with channels that have known structures. The procedure is as

follows: �rst, an amino-acid sequence alignment must be made between the target

channel and a homologous channel with known structure; then, the secondary

structures including β-sheet and α-helix are built; and, �nally the connecting

loops are built and the channel structure is re�ned. This is important because MD

simulations require a channel structure, which in the past relied solely on having

a high resolution crystallised channel. Homology modelling has therefore led to

numerous advances in the applicability of MD and also in predicting structure,

including the inward recti�er potassium channel (Kir) [160], the bacterial NaChBac

channel [73] and other channels.

3.5 Summary

There are a number of theoretical tools that can be used for investigating the

properties of ion channels. They each have strengths and weaknesses [161, 112, 84]

which can be been summarised as:

1. Statistical theory o�ers a �rst-principled description of the occupancy prop-

erties of the �lter in equilibrium. It can be extended to consider multi-species

solutions, the crystallised structures and allow investigation at the linear

response limit. This enables, therefore, conductivity and selectivity to be

studied as a function of structure.

2. Brownian dynamics o�ers a chance to describe stochastically the perme-

ation of ions on micro-second timescales. The channel can be based on

the crystallised structure and, with PMF's taken from MD simulations, it

can describe permeation and selectivity for comparison with experimental

recordings [100].
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3. Coupling the Nernst-Planck equation with Poisson's equation enables the

coupled Poisson-Nernst-Planck equations to be formed, o�ering a self-consistent

approach to calculating steady-state current at large non-equilibrium lim-

its. The theory has been extended beyond a simple concentration/voltage-

gradient to include important interactions, such as hydration and steric ef-

fects [138, 152, 153, 154]. These allow for more realistic comparisons with

experimental recordings, including selectivity-based e�ects because ions can

be distinguished by their energy pro�les.

4. MD simulations o�er the chance to investigate the properties of the channel

on a microscopic level. There have been some useful results in describ-

ing the permeation process, particularly in K+ channels. It is necessary to

acknowledge, however, that this approach faces challenges in determining

experimental observables, and accurate force �elds.
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4. Physical processes in biological

ion channels

4.1 Introduction

As biological ion channels are natural nano-pores [102, 162], the permeation process

can be modelled using a physics-based approach. It involves treating the �lter as

a cylinder coupled to particle bulk solutions, and it should incorporate, where

possible, accurate �lter geometries and properties, such as charges on the �lter

walls. The �lter radius is narrow, and as there are discrete numbers of ions, a

quantised set of energy states can be de�ned. This approach has already been used

for ions of mixed-valence in Na+/Ca++ channels [105] and led to the conclusion of

Coulomb blockade (CB) within the �lter. Further evidence to classify the �lter as

a mesoscopic system can be provided by consideration of the semi-classical limit

[163, 164, 165],

λ̄3ρ� 1, (4.1)

where λ̄ is the de Broglie wavelength and ρ is the particle density. This limit is

clearly obeyed in ion channel selectivity �lters under standard geometries such as

length 12-15Å and radii 1.5-5Å. The combination of discrete-charge e�ects and the

results of this limit suggest that a narrow charged selectivity �lter can be treated
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as a mesoscopic system.

However, it is important to note that there are many essential additional interac-

tions to take into account. These are particularly important if the bulk solutions

comprise ions of alike-valences, and so it is necessary to go beyond the electro-

static interaction and consider the species-speci�c energy contributions, such as

the hydration energy [84].

In this chapter we introduce, discuss and derive the theory of CB in electronic

systems as developed by Beenakker [108] and others [166, 167]. We then introduce

and derive adsorption, another physical phenomenon relevant for discussion with

ion channels [168, 82, 116, 31]. Finally, we discuss the thermodynamic basis of

selectivity and Eisenman theory, which relates the selectivity to the di�erence in

hydration and binding energy.

4.2 Coulomb blockade

The theory of Coulomb blockade (CB) in electron transport through semi-conductor

nano-structures and granular media has been widely investigated, in particular by

Beennakker [108], Averin [169] and others [170, 167, 110].

Beenakker developed a statistical and kinetic theory of CB in a quantum dot

coupled to two bulk reservoirs. It is distinguished from the other theories by

its direct application to semi-conductors. The electrostatic interactions E create

a series of energy levels in the quantum dot, as each occupation level is solely

occupied by one electron1. A distinction in this theory to ion channels, is that

electrons can enter into any energy level.

The steps in deriving Beenakker's theory are as follows: �rst developing the phys-

ical model; then introducing the kinetic equations and taking the linear response

limit; before �nally, discussing the limiting cases and their properties.

1Spin can be included with introduction of a degeneracy factor.
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4.2.1 Forming the model

The quantum dot is a con�ned region weakly coupled via tunnel barriers to two

electron reservoirs. It contains single-electron levels (p = 1, 2, ...), with the asso-

ciated energy of each level Ep. Each level is therefore described by an occupancy

number whose set is given by {nj}, taking values 0 or 1.

The bulk reservoirs b are at thermal equilibrium and contain a Fermi gas with the

continuous Fermi-Dirac (FD) distribution,

f(E − Ef ) =

[
1 + exp

(
E − Ef
kT

)]−1

, (4.2)

where E represents the energy state of the bulk and Ef the Fermi energy. The

total number of electrons in the dot is given by N and hence the total charge is

given by Q = −Ne. It is conventional to describe the total potential di�erence

across the dot φ(Q) in terms of an e�ective capacitance,

φ(Q) = φdot + φres = Q/C + φext (4.3)

which form the corresponding electrostatic energy,

U(N) =
(Ne−Qext)

2

2C
− Q2

ext

2C
=

(Ne−Qext)
2

2C
+ Const. (4.4)

Comparisons here can be made with equation (3.8), introduced earlier in our dis-

cussion on ion channels. We see the terms are very similar with Qext representing

the �xed charge of the channel.

An applied voltage V between the reservoirs produces current in the direction of

the electrostatic-gradient. The change in energy when an ion enters the dot is

given by,
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Ei,b = Ep + U(N + 1)− U(N) + ∆beV, (4.5)

where N represents the initial number of electrons in the dot, and ∆beV represents

the fraction of the voltage drop i.e. +χeV for the left bulk and (χ− 1)eV or the

right bulk where χ represents the position of the dot.

Similarly the energy di�erence in the bulk, when an electron initially at level p

in the dot (containing N electrons) tunnels into the bulk, equals the di�erence

between initial and �nal energy states of the dot,

Ef,b = Ep + U(N)− U(N − 1) + ∆beV. (4.6)

Transitions between these energy levels can be described by a set of master equa-

tions2 describing the probability of each energy state {nj},

0 =
∑
p

∑
b

P (n1, ...np−1, 0, np+1, ...)δnp,1Γbpf(Ei,b(N − 1)− EF )

+
∑
p

∑
b

P (n1, ...np−1, 1, np+1, ...)δnp,0Γbp(1− f(Ef,b(N + 1)− EF ))

−
∑
p

∑
b

P ({ni})Γbp
[
δnp,1(1− f(Ef,b(N)− EF )) + δnp,0f(Ei,b(N)− EF )

]
.

(4.7)

The transition rates are calculated from Fermi's golden rule (see Appendix A.2

for further discussion), where delta functions account for each level having an

occupancy of zero or 1. This notation is further simpli�ed by introducing: Ñ ≡∑
i 6=p ni, as N = Ñ + 1 if the pth state is occupied or N = Ñ if the pth state is

2The terms P ({nj}) denote the probability for all states whilst terms P (n1, ...np−1, 1, np+1, ...)
and equivalent for 0 denote the probability for all states where the pth level is given by 1 or 0.
It has the role of limiting non-physical transitions such that electrons cannot be added to �lled
states and vice versa.
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unoccupied. Current at each barrier is given from the standard balance of �uxes

satisfying Kircho�'s laws,

I = −e
∑
p

∑
{ni}

P (({ni})){δnp,1Γl/rp (1− f(Ef (N)−EF ))− δnp,0Γpf(Ei(N)−EF )}.

(4.8)

4.2.2 Linear response

Although the current can be found numerically, physical insight is provided by

analytical expressions and so it is useful to calculate the current within the lin-

ear response regime. Directly linearising equation (4.8) can be challenging with

multiple states, as the probabilities calculated from (4.7) can be extensive. Hence

the �rst step is to simplify the linearised probability by expressing it with a non-

equilibrium correction term Ψ. This term represents the linear non-equilibrium

components, and vanishes in their absence to recover the Gibbsian distribution.

To calculate these terms the linearised probabilities need to be inserted into the

detailed balance conditions assuming that they are valid within the linear response

regime. This correction Ψ, takes the following form where equilibrium terms are

denoted by the superscript e,

P ({ni}) ≡ P e({ni})
(

1 +
eV

KT
ψ({ni})

)
. (4.9)

Detailed balance can be established from the condition of zero current (I = 0),

P (n1, .., np−1, 1, np+1, ...)
{

Γlp[1− f(Ef,l(Ñ + 1− Ef )] + Γrp[1− f(Ef,r(Ñ + 1− Ef )]
}

=

P ({ni})
{

Γlp[f(Ei,l(Ñ − Ef ) + Γrpf(Ei,r(Ñ − Ef )]
}
. (4.10)
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This expression can be linearised, and by collecting terms linear in V and further

simplifying3, it leads to the following expression for Ψ

ψ({n1, ..., np−1, 1, np+1...}) = ψ{n1, ..., np−1, 0, np+1...}+
ΓRp

ΓRp + ΓLp
− χ (4.11)

The di�erence exists between neighbouring states and so it can be written as a

�nite di�erence4 di�erential with the following solution,

ψ({ni}) = C +
∞∑
1

ni

(
ΓRp

ΓRp + ΓLp
− χ

)
. (4.12)

A fully symmetrical dot has: χ = 1/2 and ΓLp = ΓRp . Hence this correction is equal

to zero and our linearised non-equilibrium probability is exactly equal to the Gibbs

distribution. Using these relations (see footnote 3) and methods, we can linearise

the current,

I =
e2V

kT

∑
p

∑
{ni}

ΓlΓr

Γr + Γl
δnp,0P

e({ni})f(ε) (4.13)

3We can simplify the expressions by introducing ε such that it is equal to: Ep + U(Ñ + 1)−
U(Ñ)− Ef . The Boltzmann ratio linking neighbouring probabilities,

P e({n1, ..., np−1, 1, np+1...}) = P ({n1, ..., np−1, 0, np+1...}) exp(−ε/kT ),

allows us to eliminate one probability and collect terms. The FD function can be related to its
inverse via the following relation,

1− f(ε) = f(ε) exp(ε/kT ),

and from rearranging the de�nition of our Fermi function. If we di�erentiate both sides with
respect to ε we can then also establish the useful relationship;

kTf ′(ε)[1 + exp(−ε/KT )] = −f(ε),

where f ′(ε) = df(ε)/dε.
4Writing as a di�erential it becomes,

dψ =

(
ΓR

ΓR + ΓL
− χ

)
dn
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and derive the following conductance,

G =
e2

kT

∑
p

∑
{ni}

ΓLΓR

ΓR + Γl
δnp,0P

e({ni})f(ε). (4.14)

To analyse this expression the delta function and distribution function must be

simpli�ed. First, from the de�nition N =
∑

i ni the distribution function can be

written in its Gibbsian form for the total number of electrons in the dot,

P e(N) =
∑
{ni}

P e({ni})δN,∑i ni
. (4.15)

Meanwhile the delta function can be reverted back into the conditional probability

or single-particle occupation numbers g(Ep|N),

g(Ep|N) =
1

P e(N)

∑
{ni}

P e({ni})δnp,1δN,
∑
ni
, (4.16)

leading to the main result,

G =
e2

kT

∑
p

∞∑
N=1

ΓLΓR

ΓR + ΓL
P e(N)(1− g(Ep|N))f(Ep + U(N + 1)− U(N)− EF ).

(4.17)

The zeroth term in the sum is equal to 0 from the de�nition of g and hence can

be removed. There are two important limits to consider: �rst, the classical limit

of kT � ∆E originally studied by Kulik and Shekhter [110]; and, latterly the low

temperature kT � ∆E limit.

In the classical limit, the dot is in a continuum of states and so the conditional

probability can be approximated as a FD distribution, f(Ep−µ(N)). The chemical

potential µ(N) is determined from the normalisation
∑∞

p=1 f(Ep−µ(N) = N and

the Gibbs distribution in the dot takes the classical form. The �nal equation of
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conductance can be found by reintroducing all of these terms, and integrating over

the energy states,

G =
e2ρ

kT

ΓlNmin
ΓrNmin

ΓlNmin
+ ΓrNmin

∆Nmin

exp(∆Nmin/kT ))− exp(−∆Nmin/kT ))
, (4.18)

where ρ is the density of states. This function maximises in the limit ∆Nmin → 0

to,

Gmax '
e2ρ

2

ΓlNmin
ΓrNmin

ΓlNmin
+ ΓrNmin

, (4.19)

and therefore the normalised conductance can be expressed as,

G/Gmax =
∆Nmin/kT

sinh(∆Nmin/kT )
. (4.20)

In the low temperature limit kT � ∆E the term with p = N , gives the dominant

contribution. Therefore, the probability distribution in the dot reduces to the two-

state Fermi distribution. Moreover, since g(EN |N) = 1 because p = N , we can

introduce these de�nitions and simplify to recover the conductance,

G =
e2

kT

ΓlNmin
ΓrNmin

ΓlNmin
+ ΓrNmin

exp(∆Nmin)

(1 + exp(∆Nmin))2
. (4.21)

Its maximum value can be calculated from the limit that ∆Nmin → 0 i.e. we are

at a degeneracy,

Gmax = lim
∆Nmin→0

G =
e2

4kT

ΓlNmin
ΓrNmin

ΓlNmin
+ ΓrNmin

. (4.22)

The normalisation ratio G/Gmax, eliminates the coe�cients,

G/Gmax = 4
exp(∆Nmin)

(1 + exp(∆Nmin))2
= cosh−2(∆Nmin/2kT ). (4.23)
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Figure 4.1: Comparison of normalised conductance (G/Gmax) in the low and high
temperature limits. The two curves are very similar peaking at the degeneracy
condition ∆E = 0, because this o�ers the most energetic �ow into and out of the
dot simultaneously and hence the maximal �uctuations in electron number.

In �gure 4.1 we contrast the high and low temperature normalised conductance

ratios. Both ratios maximise at the degeneracy condition ∆min = 0 that considers

barrier-less transport simultaneously into and out of the dot. Far from equilibrium

the direction of current is determined by the applied electrochemical gradient.

This conduction width is sharply peaked and barely distinguishable in both limits

at a similar temperature.

In the next section we discuss adsorption, which is another important quasi-

equilibrium physical process that is present in ion channels.

4.3 Adsorption

In surface science, adsorption describes the bonding of particles (adsorbates) to a

substrate (absorbent). This is particularly important in physical processes, such

as determining pore size distribution [171] and investigating zeolites [172], but also

in the biological context [82, 116, 31]. Typically, it can occur in two distinct forms,

either chemisorption or physiosorption, with the distinction commonly being made

based on the strength of the adsorption energy [173, 174, 175].
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The link between this physical process in ion channels has been made [31, 82, 116].

The occupancy of ions binding at each site in the �lter can be described by a

Langmuir isotherm [168] which describes an analogous system of single-occupancy

sites on a lattice. It is very similar to Michaelis-Menten enzyme kinetics [131]

which relate enzyme reaction rates to the concentration of a substrate.

The Langmuir adsorption can be derived by statistical methods [176]. The system

is described as a 1D lattice in thermal and di�usive equilibrium with a collection

of particles. This may be gas or in a slightly more complicated case a liquid

solution. The lattice contains M sites at which at most one particle can bind.

Since particles are free to �ow from the solution phase to the lattice, they can

be represented by the grand canonical distribution (see Chapter 5). This means

that all statistical properties can be derived from the partition function Z, which

represents a statistical normalisation,

Z =
∑
{nj}

1

N !

(M)!

(M −N)
× exp[Nµ]ζN (4.24)

where N represents the total number of particles in the lattice, µ the particle

chemical potential and ζ the lattice partition function. If we derive the occupancy

directly from this partition function as the mean number of ions divided by total

number of sites,

〈N〉
M

=
ζ exp[µ/kT ]

1 + ζ exp[µ/kT ]
(4.25)

which is a function of µ. To determine this term we can focus on the solution

phase and its partition function. The di�erential can lead to an expression for the

chemical potential and hence leads to the �nal isotherm,
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〈N〉
M

=
P

P0 + P
, where: P0 =

kT

ζ

(
2πmkT

h2

)3/2

. (4.26)

Using ideal gas laws, the pressure P can be expressed as the number of particles

in the Fermi gas, and hence recovers a saturating occupancy pro�le of the lattice.

This is applicable to ion channels because the transition of ions between the �lter

and bulk solutions requires the discrete step N ↔ N + 1. If it is a single-ion pore,

it immediately reduces to the theory of Langmuir adsorption when there is a single

binding site (M = 1). In multi-ion pores N > 1, it reduces to Langmuir adsorption

with re-normalisation because N ions are bound in the �lter and represent its

ground state.

This approach can easily be adapted for competing adsorption whereby isotherms

are calculated for each species [175, 177] (and see Appendix A.3). The resulting

isotherm is given for each of the ith species separately,

〈Ni〉
M

=
Pibi

1 +
∑

i Pibi
, where: bi =

ζi
kT

(
h2

2πmikT

)3/2

. (4.27)

4.4 Thermodynamic selectivity

An important property of the permeation process is its multi-species nature. This

brings competition and selectivity to binding in the �lter, particularly in NICs,

where we have seen that there are two classes of selectivity: (1) alike-charge selec-

tivity and (2) valence-selectivity.

Eisenman [78] demonstrated that selectivity can be explained thermodynamically

from the inspection of the Gibbs free energies, corresponding to the binding and

hydration,
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∆∆GX,Y = ∆X→Y (∆GBind + ∆GHyd). (4.28)

Here the convention5 dictates the �rst ∆ is between speciesX and Y and the second

∆ is between bulk and the �lter [80, 178, 78, 22], therefore if this term is positive

it will favour X. Valence selectivity is largely described by the �rst term because

the di�erent valences interact electro-statically, whereas ions of alike-charge can

have di�erent charge densities and hence di�erent hydration energies. This value

can be inferred from MD simulations or calculated numerically from data �tting,

for example it is estimated at ∼ 6 kT favouring K+ over Na+ in KcsA. [77, 179]

4.5 Summary

Ion channels can have conduction mechanisms similar to semi-conductors and as

such can be modelled with a similar approach. This involves reducing the system to

a cylinder of given geometry, di�usively and thermally coupled to bulk reservoirs.

The channel can be classed as mesoscopic, and thus existing literature has made

analogies between the properties of ion channels and other similar physical systems.

Such properties include Coulomb blockade and adsorption.

The mesoscopic nature of the �lter enables a set of quantised energy states to be

de�ned. As a result the occupancy of the �lter is determined from the energy

state, and hence enables the state space to be de�ned. In considering systems

5The expanded form of this equation can take the following form,

∆∆GX,Y = (GBind,bulk,X −GBind,filter,X +GHyd,bulk,X −GHyd,filter,X)−
(GBind,bulk,Y −GBind,filter,Y +GHyd,bulk,Y −GHyd,filter,Y ).

Another important form of this expression can be found by replacing the Gibbs free energy with
the corresponding excess chemical potential µ̄i (discussed in more detail in the following Chapter
5.),

∆∆GX,Y = (µ̄b
X − µ̄c

x)− (µ̄b
Y − µ̄c

Y ),

where b and c denote bulk and �lter respectively.
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with alike-charged ions, it is important to consider the species-speci�c interactions.

These include the hydration energies and hence it can lead to the formulation of

thermodynamic selectivity in the system.
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5. Statistical theory

5.1 Introduction

To develop a statistical theory describing ion channel permeation, we need to

de�ne our system, state space, and hence ensemble. We de�ne the system to

be a selectivity �lter di�usively thermally coupled to extra (R) and intra (L)

bulk solutions1. These solutions (b) can contain arbitrary particle species (i) but

must remain electrically neutral. The solutions represent dilute electrolytes with

a solvent (water) concentration of ∼ 55M.

This theory extends on the literature [82, 84, 87, 86] (and see Chapters 3 and

4), by consideration of multi-species solutions and through the process of deriving

conductivity and selectivity relations describing alike-charged selectivity in the

KcsA channel. All curves are plotted with standard �tting parameters as given by

table A.1 with one free running variable, unless otherwise stated.

5.1.1 Statistical mechanics of solutions

Particle solutions are well-described by statistical mechanics [180, 86, 181, 87, 182,

183]. We shall �rst derive chemical properties in a bulk reservoir by treating it as

an ideal mixed-species gas solution. Then we will derive the chemical properties

for a non-ideal electrolyte solution.

1This enables us to describe the whole system with the canonical ensemble whilst writing the
grand canonical ensemble (GCE) for the �lter. This is equivalent to taking the �lter to be the
system and writing it with the GCE. [85]
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Like an ideal gas, a particle solution can have its statistical and thermodynamic

properties described from its partition function Z. If the set of energy states are

discrete, then by considering the solution within the canonical ensemble we can

write the partition function as,

Z(T, V,N) =
∑
i

Ω exp[−Ei/kT ], (5.1)

where Ω is a factor accounting for the degeneracies of each energy level. However

such solutions are usually large and so resemble a continuous set of states, hence

the sum can be replaced by an integral over the phase space,

Z = Ω

∫
...

∫
exp[−H(p, q)/kT ]dpdq, (5.2)

where H is the classical Hamiltonian dependent on the phase space variables p and

q. The Hamiltonian is given by the summation of kinetic and potential energy,

where the latter is zero in an ideal solution,

H =
N∑
j

1

2m
(p2
x,j + p2

y,j + p2
z,j) + U(p, q). (5.3)

Note that the sum is over all particles in the bulk. If we consider multiple species

then we must include an additional summation over species,

H =
∑
i

Ni∑
j

1

2mi

(p2
x,j + p2

y,j + p2
z,j) +

∑
i

Ui(p, q). (5.4)

Using the partition function (5.2), we can follow [86, 87, 184, 185, 186, 183, 187, 22]

and derive the free energy for the bulk solution. If we consider a total volume V

containing this mixture of gas particles, then the ideal partition function is,
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Z =
∏
i

q−Ni
i

(Ni!h3Ni)
(2πmikT )3Ni/2 V Ni . (5.5)

Note that Ω is now de�ned as
∏

i 1/Ni! and we have included qi which accounts

for the vibrational, rotational, and electronic states of the molecule and h to make

the partition function dimensionless [184]. This partition function is therefore a

product of qi and the translational partition function associated from the moving

centre of mass. The Helmholtz free energy can now be found,

Fm = +kT
∑
i

Ni ln
(
Λ3
i q
−1
i /V

)
+ kT ln(Ni!). (5.6)

In a continuous and large system, Stirling's rule can be applied and the chemical

potential can be de�ned from the derivative,

µi = −kT
(
∂F

∂Ni

)
T,V

= kT ln
(
Λ3
i q
−1
i

)
+ kT ln(ρi), (5.7)

where ρi = Ni/V . This is usually rewritten in terms of the mole fraction xi =

Ni/
∑

iN ,

µi = kT ln
(
Λ3
i q
−1
i ρ
)

+ kT ln(xi), (5.8)

where the �rst contribution is constant and is often referred to as the standard

chemical potential, and total density ρ is given from the ideal gas equation of state

ρ = P/kT . Any in�uence from a mean �eld voltage in each bulk is taken into

account via the electrical term ziqφ
b. The system is at equilibrium and so if the

bulks share symmetrical solutions then φL−φR = 0, but if we consider the case of

asymmetrical solutions then equilibrium for each species requires a counteracting

voltage φb. This is given by the Nernst-potential which is de�ned from the equality
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in the electrochemical potentials [32].

In electrolyte solutions the presence of the solvent is important, and these water

molecules should be explicitly included in the Hamiltonian and hence within the

free energy.

However, in real systems we often face deviations from ideality; important exam-

ples include ion-ion or ion-water interactions. We must account for these inter-

actions between particles within our Hamiltonian by introducing a new term, the

excess chemical potential µ̄i. It is de�ned as the di�erence in real vs. ideal chemi-

cal potentials. Or, in terms of energy, it is the energy required to move a particle

from an ideal to a real solution. This is also commonly referred to as the activity

coe�cient γi [188, 183, 189],

µ̄bi = kT ln
(
γbi
)
. (5.9)

Thus, considering an electrolyte solution and including all of these terms, we arrive

at the �nal expressions for the electrochemical potential in each bulk solution,

µbi = kT ln
(
Λ3
i q
−1
i ρ
)

+ kT ln
(
xbi
)

+ ziqφ
b + µ̄bi (5.10)

µbw = kT ln
(
Λ3
wq
−1
w ρ
)

+ kT ln
(
xbw
)

+ zwqφ
b + µ̄bw. (5.11)

The solvent electrochemical potential can be further reduced because zw = 0 and

xw = 1. Under equilibrium conditions the electrochemical potentials are constant

for each species and therefore the Nernst potential can be calculated from the

equality of electrochemical potentials for either bulk,

∆φei = ziq(φ
L − φR) =

1

q

[
µ̄Ri − µ̄Li + kT ln

cRi
cLi

]
, (5.12)
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hence under symmetrical solutions cLi = cRi and µ̄Ri = µ̄Li the Nersnt potential is 0.

5.1.2 Statistical mechanics of charged solutions

We have already seen in Chapter 4 that thermodynamic selectivity is de�ned from

the free energy di�erence between species X and Y , in the free energy di�erence

between the bulk and the �lter [17, 79],

∆∆GX,Y = ∆X→Y (∆GBind + ∆GHyd), (5.13)

and this can be written in terms of excess chemical potentials,

∆∆GX,Y = ∆µ̄X −∆µ̄Y . (5.14)

It has been proposed that these excess chemical potentials include contributions

from the solute-solvent (hydration) and ion-ion interactions [84, 101]. Extensions

to these interactions (including the mean-spherical approximation, and electro-

static interactions) can be made [190, 191, 192]. Note here that we adopt the

convention of de�ning the ion-�lter electrostatic interaction outside of the excess

chemical potential term.

The exact calculation of these terms strongly depends on the assumptions used

(particularly in the con�ned environment) and can vary strongly with concentra-

tion and temperature [193, 194, 195]. Thus our goal is not to calculate this term

explicitly, but to calculate it according to the conductivity conditions of barrier-less

transport [196, 28].
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Ion-�lter electrostatic interaction

An ion entering the �lter must face an energy pro�le created from its self-energy,

and the interactions between ions and the charged �lter walls. A comprehensive

study of these interactions has been made in the literature [197, 198, 84, 199], and

we adopt the interaction used in ion channels and nano-pores by [107, 200, 105, 109]

as introduced earlier in Chapter 4. This electrostatic interaction can be derived

from Gauss's law and assumes a charge density Q including ions and �lter charge

Qf = nfe at the centre of the �lter,

E({nj};Qf ) = Uc

(
nf +

∑
i

zini

)2

. (5.15)

The prefactor Uc is given by: q2

2Cs
where Cs is the capacitance 4πε0εwR

2/L. This is

an important term because it gives an indication of the di�erence between energy

levels and so helps to de�ne the quantisation in the system. Therefore lower

capacitance systems have more widely-separated levels. The top panel in �gure

5.1 plots this energy as a function of Qf for varying numbers of particles. The

spectrum reveals a parabolic dependence vs. Qf with minima at integer values of

Qf where the charge of the occupying ions is neutralised by the charge of the �lter.

When neighbouring spectra cross it corresponds to a minimum absolute energy

barrier corresponding to a barrier-less transition [196, 105, 108]. This di�erence in

electrostatic interaction is given by,

∆E({nj};Qf ) = Uc · (2
∑
i

zini + 2nf + 1), (5.16)

where we adopt the convention that {nj} and hence
∑

i ni describes the initial

state.

The bottom panel in �gure 5.1 plots the absolute di�erence in electrostatic levels.

This also highlights the degeneracies in the spectrum neighboured by points of large
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energy di�erence. As previously discussed, the energy spectrum is not dominated

purely by electrostatic interactions and so the exact value of nf corresponding to

each degeneracy position will be shifted by δnf ,

n∗f = −

(∑
i

zini +
1

2

)
+

1

2Uc
δnf . (5.17)
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Figure 5.1: The top panel shows the parabolic electrostatic energy dependence of
monovalent ions vs. Qf . It is plotted using standard parameters for the K+ channel
(see Appendix A.8) resulting in Uc ∼ 18kT. Each curve corresponds to 0-3 ions
within the �lter, and each curve shows minima at integer (neutralisation) values
of �lter charge, with a period ±1q. Each neighbouring level crossing represents a
degeneracy in the spectra. This is further highlighted in the bottom panel, where
the absolute energy level di�erence is plotted vs. Qf . These absolute di�erences
minimise at half integer values of Qf , and are neighboured by large absolute energy
di�erences.
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Poisson-Boltzmann theory and the Debye-Hückel interaction term

The Poisson Boltzmann (PB) theory remains an important theory in continuum

electrostatics and provides the background for the Debye-Hückel (DH) theory. It

describes a system of interacting mobile charges within an electrostatic potential

built from the combined in�uences of the mobile charges and dielectric environ-

ment. In this subsection the key results for both theories will be quoted with

the completed derivation of the Debye-Hückel ion-ion interaction term given in

Appendix A.4, following [201, 156, 87, 185].

The PB and DH approaches are best considered in bulk electrolyte solutions. If we

consider a bulk solution of z:z charged ions or interacting mobile charges, existing

in an environment of homogeneous permittivity ε, then the distribution of ions is

governed by the Boltzmann factor,

ρ(r) =
∑
i

ziqci exp (−ziqφ(r)/kT ) . (5.18)

The distribution function is ρ, ci is the ionic concentration and the electric �eld is

φ. Coupling this equation with Poissons equation produces the Poisson Boltzmann

equation,

ε0ε∇2φ(r) = 2qzci sinh(qzφ(r)/kT )− ρex, (5.19)

where z is the absolute magnitude of the valence |zi| and ρex is the external charge.

To proceed with the application of bulk solutions we can consider the absence of

external charge (ρext=0). The PB equation can be solved from linearisation and

hence the linearised PB equation takes the following form,

∇2φ = κ2φ, (5.20)
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where κ corresponds to the Debye screening length,
√

2z2q2ci
εε0kT

. Physically it repre-

sents the extent of charge screening in the system. It is simpli�ed by conversion

to spherical coordinates, assuming the charge distribution remains at the centre,

and hence it takes the form,

1

r2

d

dr

(
r2dφ

dr

)
= κ2φ. (5.21)

This can be solved with the following boundary conditions: φ→ 0 as r →∞ and

φ and εdφ
dr

is continuous when radial distance r equals a twice the ionic radius,

φ =
zq

4πε0εr
− zqκ

4πε0ε(1 + κa)
(0 < r ≤ a) (5.22)

=
zq

4πε0ε(1 + κa)r
exp[κ(a− r)/kT ] ∼ zq exp[κ(a− r)/kT ]

4πε0εr
(r ≥ a). (5.23)

This function describes the potential of the ion vs. the radial distance from the

origin.

The electrostatic free energy can be derived within the Debye-Hückel theory by

canonically averaging the ion-ion electrostatic interaction. This yields the following

contribution to the chemical potential,

µelj = −
κz2

j q
2

8πε0εw(1 + κa)
(5.24)

where the dielectric medium has been chosen as water εw . Figure 5.2 plots this

contribution for K+, Na+ and Ca++. The e�ect of ionic radius is minimal. Note

the non-linear behaviour of the concentration, which has a square root dependence.
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Figure 5.2: The Debye-Hückel ion-ion interaction for cations K+, Na+ and Ca++

in electrically neutral solutions. The square-root dependence vs. concentration is
clear as is the e�ect of valence.

The Debye-Hückel thus calculates ion-ion interaction with ions of �xed charge. It

has had some success at low concentration in �tting to the experimental activities

(related to excess chemical potential) [183]. The weaknesses include a break down

at large concentrations and a lack of solute-solvent interactions.

Hydration

To remedy the lack of solute-solvent interactions in the DH theory, a hydration

term may be added to the excess chemical potential. Hydration is characterised

as a dipolar interaction between the ion and water molecules and is de�ned in

terms of hydration shells. A fully hydrated ion comprises of spherical layers of

water molecules, or shells, bound to the ion. Shells are named after their ordering

(and respective binding strength) and so are named primary, secondary, and so on
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[202, 203, 204, 84].

These properties can be found experimentally and theoretically, but the complexity

of the interactions particularly in con�ned environments [186, 202] ensures that the

exact values of the hydration energy and enthalpy are not known in the channel,

and are strongly dependent on experimental conditions in the bulk. Two classes of

models exist with the distinction of the scales under which they are applied. In-

trinsic hydration models treat water as a continuum. This is well justi�ed in bulk

electrolyte solutions [151, 201] but more questionable inside the �lter if the dimen-

sions are smaller than twice the Debye length due to the inclusion of screening

[150]. Meanwhile extrinsic hydration involves a quantum mechanical calculation

involving all atoms in the system.

Intrinsic hydration is commonly discussed in density functional theory (DFT) with

a variety of models including: simple dielectric (Born), geometric models based on

exposed surface area and continuum dielectric models such as Poisson-Boltzmann.

These are often supplemented with a non-polar surface tension term [84] which we

discuss later.

The standard calculation for hydration is via the Born equation, which calculates

the free energy change in charging a particle i.e. moving an ion from the vacuum

to a solvent [205, 204, 206]. This is known to over-estimate the values and so is

only correct to within an order of magnitude. This solvent-solute interaction is

described by the hydration cycle: discharge of the ion in a vacuum, cavity creation

in the solvent and addition of the particle and �nally charging and transfer of

charge from the particle to polarisation in the solvent. The work done by the

system arises from the continuous charging of the cavity surrounding the ion.

This can be described for a mono-valent ion via,

w =

∫ q−qD

q

q

4πε0ri
dq =

q2
D − 2qqD
8πε0ri

(5.25)
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where the charge qD relates to the polarisation on the surface of the cavity, and it

will take the opposite sign to the ion. This term can be eliminated on account of

the equality amongst the Coulombic interactions between ions expressed with and

without qD [205], resulting in the following expression for the work,

w = − q2

8πε0ri

(
1− 1

εr

)
. (5.26)

This is the only contribution to the hydration process and hence describes the free

energy of charging or Born energy,

EH,i = − z2
i q

2

8πε0ri

(
1− 1

εr

)
(5.27)

where ionic size and dielectric e�ects are included via ionic radii ri and relative

permittivity of the medium εr. Note that the formula can be extended beyond

|zi| = 1. Ions with a greater surface charge density have larger energies and so the

ions Ca++, Na+ and K+ have hydration energies of ∼ −103kT, ∼ −200kT and

∼ −275kT respectively [204].

If we consider all interactions amongst all atoms in the system, then each atom

is assigned an e�ective radius and its contribution to the hydration energy is

calculated. Thus this technique is commonly used in MD simulations because

of its evaluation of atomic forces. This generalised Born equation is given as

an approximation to the exact linearisation of the Poisson-Boltzmann equation

[207, 208],

EH = − 1

8πε0

(
1

εw
− 1

εp

)∑
ij

qiqj√
r2
ij +RB

i R
B
j exp

[
−4r2

ij/R
B
i R

B
j

] (5.28)

If we consider the hydration energy of a single particle then we can set the inter-

particle distance to zero ri = rj = 0 and recover the Born energy as the e�ective

radii RB
j = RB

i become equal. The challenge is in computing each e�ective radius
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which represents the distance between atom and hydration surface and is often

calculated from a volume integral of the energy density over a Coulomb �eld or by

solution of Poisson's equation [207, 209, 210].

An important example of including the e�ect of the con�ned channel environment

has been made by Zwolak et al [202, 203]. This work uses the theory of hydra-

tion shells and the �nite radius of the channel to minimise the hydration. MD

simulations of water density oscillations in bulk electrolyte solutions reveal three

hydration shells and their respective radii. The Born energy can then be calculated

for each of these shells separately using [202, 203],

EH,i,ν =
z2
i q

2

8πε0

(
1− 1

εw

)(
1

RO
i,ν

− 1

RI
i,ν

)
, (5.29)

where i is the species and ν is the shell number (opposite notation to the authors),

and superscripts O and I denote outer and inner radii R for each shell. The MD

simulations reveal the locations and hence outer radii for all three shells but the

initial RI
i,ν needs to be de�ned. Rather than using the Pauling (or similar) value

the authors calculated it on the condition that equation (5.29) equates to the

experimental values on the limit that RO
i,ν →∞. The total energy in the channel

can be written as:
∑

ν fi,νEH,i,ν where fi,ν is the fraction of the layer remaining

after the larger layers are removed due to its �nite radius of the �lter Rp. Hence

in very narrow �lters such as KcsA the outer two layers are completely removed,

and only a small fraction of the primary layer remains. This is calculated from the

hydration surface area remaining in the channel Si,ν , divided by the theoretical

ion to hydrogen (or oxygen for anion) distance in each shell Ri,ν such that part of

a shell may be removed. Thus the total hydration energy is given as a sum over

shells,

∆EH,i =
∑
ν

EH,i,ν

√
1−

(
Rp

Ri,ν

)2

. (5.30)
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Figure 5.3: Dehydration energy in a con�ned cylinder of radius Rp for the three
important ions: K+, Na+, Ca++, calculated using theory from Zwolak [202, 203].
The curves form three distinct regions due to the multiple-shells found around
hydrated ions, each with a

√
1− (Rp/Ri,ν)2 dependence. K+ �lters have a typical

radius of 1.5-2Å [8]; meanwhile a typical radius of the Na+ �lter is 2.3-3.25Å
[75, 211]. At these values the dehydration favours the chosen ion, as indicated by
the coloured regions.

Figure 5.3 displays the hydration of K+, Na+ and Ca++ vs. Rp taking radii values

from [203]. Three distinct regions corresponding to the multi-shell nature of a

fully hydrated ion can be seen. Wide pores have a minimal dehydration because

the larger width allows for coordination with water molecules and hence will exist

closer to the full hydration state as found in the bulk. A physical example of this

is in the cavity of KcsA which has a diameter of ∼ 10 Å allowing almost bulk-

like hydration [81]. This dependence on channel radius agrees with experimental

selectivity results for K+ and Na+ channels because at each of the corresponding

channel radii ∼ 1.5Å and ∼ 3Å there is a dehydration di�erence between the

ions. Thus from these results the importance of hydration energy for the study

of selectivity is clear. It is important to acknowledge that the electrostatic energy

used within this thesis contains an approximate form of hydration. However it

does not explicitly account for the ionic or channel size, nor the exact form of the
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interaction. Hence it cannot distinguish between ions of di�erent valence because

the electrostatic energy is identical for alike-charged ions.

Non-polar surface tension

The solute faces a non-polar forcing i.e. the physical energy cost of forming a cavity

for the hydrated ion in the solvent [207, 212]. This is formulated via the solvent-

accessible or bare ionic surface area multiplied by a phenomenological surface

tension coe�cient γi,

Enp = γi4πr
2
i (5.31)

Typical values of γi are ∼ 10 cal/mol/Å2 , resulting in energy contributions Enp ∼

0.2kT for typical ionic radii [207].

Non-ideality in electrolyte solutions is described by the interactions between par-

ticles in the system. In bulk reservoirs this includes ion-ion and ion-water interac-

tions, whilst ions in the �lter may also interact with the �lter. This deviation can

be described by the excess chemical potential and electrostatic interactions, noting

that we separate these terms. The accurate calculation of these excess chemical

potentials is challenging because they strongly depend on the temperature, ionic

concentration, ionic radius and valence. In con�ned environments these contribu-

tions are less well de�ned due to interaction with environment properties such as

geometry and charge density. It is clear however that the dominant contributions

to this energy arise from the hydration terms and vary between species greatly,

including alike-charge ions.

66



5.2 Development of the statistical theory

To develop a statistical theory describing an ion channel coupled to mixed-species

particle solutions, we shall consider the system as given in �gure 5.4. The �lter

is modelled as a cylinder of length L and radius R with M binding sites, coupled

to bulk mixed-species particle reservoirs b. This geometry can be matched to

the available structural data from the crystallised channels where available. These

binding sites form as a result of interaction between the ions and the channel. This

includes a combination of electrostatic interaction with the �lter charge Qf = nfq

and the excess chemical potential describing other interactions in the �lter. The

�lter charge is de�ned from nf which is the charge number of the �lter and q

which is the electronic charge. The exact nature of these interactions will vary

with channel type. Single-�le motion is assumed, which is clear in narrow channels

due to the �nite radius of the �lter ∼ 1.5Å (in K+ channels).

Figure 5.4: Schematic representation of a selectivity �lter coupled to intra and
extra-cellular mixed bulk solutions. Five binding sites are highlighted equivalent
to S0-S4 in KcsA and two of which are occupied by K+ ions. Physiologically the
intra- and extra-cellular K+ concentrations are ∼ 0.1M and ∼ 0.01M respectively
and so these channels operate under strong concentration gradients.

The state space is given by the occupancy of the �lter, on the basis that at most one

ion can occupy each m of the total M binding sites. It is characterised therefore

by the set of numbers describing the occupancy of each binding site on the basis
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that an empty site is occupied by a water molecule: {nj} = [ni1, ni2, .., niM ], where

nim &
∑

i nim ∈ [0, 1].

In this chapter we will simplify this by assuming that the interactions at each of

these sites are indistinguishable, such that we have a series of degenerate states

accounted for by an entropy-of-mixing term W ({nj}). The total state space can

now be reduced from describing all con�gurations of occupancy to purely describ-

ing the number of particles in the channel and hence for I conducting species:

{nj} = [n1, n2, .., nI ], where
∑I

i=1 ni ≤ M . Note this last condition enforces the

requirement that occupancy cannot exceed total number of binding sites. It can

also be extended to ensure that there is separation between ions as predicted from

MD simulations [16], as discussed later. We shall also make the assumption that

all Na+ and K+ share binding sites generalising the theory. This is not strictly the

case [213] and will be revised in future work.

The total system can be described using the canonical ensemble. However, since

we want to focus on the selectivity �lter, and consider its states, we shall derive

the grand canonical ensemble for the �lter. Hence the total number of particles of

each of the i species in the system is conserved Ni, and equal to the summation of

the number in the �lter ni and the numbers in both bulks nbi .

Our statistical theory will be focused on investigating alike-charge selectivity be-

tween K+ and Na+, within KcsA. It will use a set of �tting parameters, and these

are given in the Appendix A.8.

The exact values of the excess chemical potential di�erences between the bulk and

the �lter have been estimated from MD simulations [80, 22, 178, 81, 55, 202, 203]

and more. However in this thesis we will calculate it directly from the following

conductivity conditions. We hypothesise that the favoured ion will undergo barrier-

less knock-on, ∆G({nj};Qf ) ≈ 0 which must occur when both energy levels are

at ∼ 0, G({nj + 1};Qf ) = G({nj};Qf ) ∼ 0 (note we do not need the latter to

satisfy the former). The disfavoured ion will then have its excess chemical potential
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calculated from this with the thermodynamic selectivity (if it is known from MD).

It can also be calculated from �tting to experimental recordings (see Chapter 7).

Degeneracies in the state space

The states of the �lter are described by the set of numbers {nj}. If the �lter is

isoenergetic it then describes the total numbers of ions in the �lter and hence we

have a series of degenerate states. If the only condition applied is that the total

number of ions in the �lter cannot exceed the total number of sites, such that

unoccupied sites contain a water molecule. Then the state space can be ordered

microscopically according to the binomial coe�cient,

W ({nj}) =

 M

ni, nw

 =
M !∏

i ni!(M −
∑

i ni)!
. (5.32)

The exact ordering of ions in the �lter has come into question by Köpfer et al

[65] countering the traditional view of [29, 45] that water molecules separate ions

during the conduction process by having an occupation of up to 4 ions and vacancy

states. The binomial coe�cient allows ions to be placed in any con�guration but

we can correct this to include the constraint. If nw denotes water molecules in the

�lter then conservation requires: M = nw +
∑

i ni, hence the number of available

sites for ions is given by < nw + 1. The +1 is needed to separate ions (it is similar

to the bar in the stars and bars problem [214, 215]); and so the total number of

available sites is: (M −
∑

i ni) + 1. The amended coe�cient becomes,

W †({nj}) =

(M −
∑

i ni + 1)

ni, nw

 =
(M −

∑
i ni + 1)!∏

i ni!(M − 2
∑

i ni + 1)!
(5.33)

In �gure 5.5 the di�erence in energy contribution between the two coe�cients is

compared. It is clear that the di�erences only occur when the total number of ions

is greater than unity, and that the contributing energy di�erence is small between
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both coe�cients O(kT). We hypothesise that this will have a minimal e�ect of

the conductivity properties of the �lter, and the original binomial coe�cient will

be used. To justify this choice an analysis of its e�ects will be presented.
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Figure 5.5: Comparison between the binomial and conditional �lter mixing con-
tributions (see equations (5.32) and (5.33)), to the energy pro�le for the �lter. The
contributions only di�er when ni > 1 with the largest di�erence ∼ 2.5kT,

Statistical mechanics in the �lter

Ions in the �lter face many interactions including: ion self-energy, charged �lter

walls, site interaction, hydration, and more. The electrochemical potential in the

�lter can be calculated from consideration of the �nite change in the free energy

needed to add or subtract an ion from the system under constant volume and

temperature [216],

µci({nj}) = kT ln
Λ3
i

qinti

+ ziqφ
c + ∆E({nj};nf ) + µ̄ci + kT ln ∆W ({nj}). (5.34)

The terms are as follows: Λi and qinti are the kinetic energy and internal partition

function containing rotational, vibrational, electronic and nuclear contributions of

the ion, ∆E is the change in electrostatic energy to add a particle where ({nj})

70



denotes the initial state, φc, µ̄ci and ∆W ({nj}) are the interaction with voltage,

excess chemical potential and degeneracy factor di�erence respectively. This �nal

term slightly di�ers depending on which degeneracy factor is used and represents an

e�ective concentration of ions in the �lter. We remind ourselves that all additional

non-ideal interactions within the �lter are introduced for through µ̄ci . Importantly

because at equilibrium (and this can be de�ned separately for each species) we

have: µci = µbi , and hence recover the barrier-less knock on condition,

∆E({nj};Qf ) + ∆µ̄ci + ziq(φ
c − φb) + kT ln ∆W ({nj})− kT ln

(
xbi
)

= 0. (5.35)

However we note that the electrochemical potentials of di�erent species are not

required to be equal. The excess chemical potentials are di�erent for each species,

resulting in thermodynamic selectivity [17].

Total energy of the system

To de�ne the total energy of the system, contributions from all the particles in

the bulk and the �lter need to be summed. At equilibrium we cannot determine

which bulk the ion has entered from, and so ′′ and ′ denote left and right bulks

respectively.

E({nj};Qf ) = E0 +
∑
i

(NL
i − n′′i )µLi +

∑
i

(NR
i − n′i)µRi + E({nj};Qf )

+
∑
i

(n′i + n′′i )(µ̄
c
i + qziφ

c) + (NL
w − n′′w)µLw + (NR

w − n′w)µRw

+ (n′w + n′′w)(µ̄cw + qzwφ
c) +

∑
i

kT lnni! + kT ln(nw!/M !). (5.36)

The �rst term E0 represents the thermodynamic energy PV − TS, for the bulk
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and �lter. This can be further simpli�ed, by using particle number conservation:

Ni = ni + nLi + nRi , equality amongst electrochemical potentials: µLi = µRi = µci ,

and the sum n′i + n′′i = ni,

E({nj};Qf ) = E0 + E({nj};Qf ) +
∑
i

Niµ
b
i +Nwµ

b
w −

∑
i

niµ
b
i − nwµbw

+
∑
i

ni(µ̄
c
i + qziφ

c) + nw(µ̄cw + qzwφ
c)

+
∑
i

kT lnni! + kT ln(nw!/M !). (5.37)

The Gibbs free energy G = U + PV − TS can now be found by subtracting the

thermodynamic energy E0 from the total energy,

G({nj};Qf ) = E({nj};Qf ) +Nwµ
b
w +

∑
i

Niµ
b
i −
∑
i

niµ
b
i

+ nw(µ̄cw + qzwφ
c) +

∑
i

ni(µ̄
c
i + qziφ

c)

+
∑
i

kT lnni! + kT ln(nw!/M !). (5.38)

All constant terms can be factored out to leave the e�ective Gibbs free energy of

states in the �lter. This is the main result that we can use to derive the partition

function,

G({nj};Qf ) = E({nj};Qf )−
∑
i

niµ
b
i

+
∑
i

ni(µ̄
c
i + qziφ

c) +
∑
i

kT lnni! + kT ln(nw!). (5.39)

Note how we have explicitly used that: ∆µ̄cw = qzwφ
c = kT ln

(
xbw
)

= 0. An
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important de�nition from this is the di�erence in free energy between neighbouring

states i.e. the energy barrier to enter/exit the �lter,

∆iG({nj};Qf ) = ∆E({nj};Qf )− µbi + (µ̄ci + qziφ
c) + kT ln(ni + 1)− kT ln(nw)

= ∆E({nj};Qf )−∆µ̃bi − kT ln
(
xbi
)

+ kT ln(ni + 1)− kT ln(nw)

(5.40)

where: ∆µ̃bi = ∆µ̄bi + qzi∆φ
b, the subscript i on the free energy G denotes the

species of the particle involved in the transition and {nj} denotes the initial state.

Note that since the state space is presented by Na+/K+ ions zi ≡ +1.

Grand canonical ensemble

To describe the statistical properties of the �lter, we can derive the GCE using

the previous results of Gibbs free energy in the �lter. The probability distribution

and partition function in the �lter can be derived using standard techniques [87]

(see Appendix A.5).

P ({nj};nf ) = Z−1

(
1

nw!

∏
i

(xbi)
ni

ni!

)
× exp

[(∑
i

ni∆µ̃
b
i − E({nj};Qf )

)
/kT

]
(5.41)

Where all terms are as previously de�ned. The partition function Z ensures nor-

malisation and takes the form,

Z =
∑
{nj}∑
nj≤M

(
1

nw!

∏
i

(xbi)
ni

ni!

)
× exp

[(∑
i

ni∆µ̃
b
i − E({nj};Qf )

)
/kT

]
. (5.42)
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Meanwhile the grand potential Ω is de�ned as,

Ω = −kT lnZ (5.43)

With the partition function and grand potential de�ned, all remaining statistical

and �uctuation properties can also be calculated.

Grand canonical ensemble �uctuations

Electrical current can be modelled as a random walker whereby a larger number

of steps per second produces a greater intensity in variance and hence a bigger

conductivity [217]. Permeation through ion channels is analogous to this because

each step represents entering and binding or exiting the �lter. Hence it is clear

the �rst and second moment (mean and mean-squared) in particle number in the

�lter will be important if we wish to discuss conduction. These are given from the

ensemble average or directly from the grand potential,

〈ni〉 = −
(
∂Ω

∂ηci

)
T,V

=
∑
nj

niP ({nj};Qf ) (5.44)

〈n2
i 〉 =

∑
nj

n2
iP ({nj};Qf ) (5.45)

where ηci is the chemical potential in the �lter. Importantly the variance which is

de�ned as the di�erence between mean-squared and squared mean, can be derived

in a simpler form within the GCE [86].

〈∆n2
i 〉 = 〈n2

i 〉 − 〈ni〉2 = kT

(
∂〈ni〉
∂ηci

)
T,V

(5.46)
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In the next subsection we relate the variance in particle number directly to the

conductivity of ions in the linear response regime.

Current in the linear response limit

Electrical current through the �lter can be de�ned by the sum of drift and di�usion

components via the Fokker-Planck equation. Often this is rewritten in terms of

concentration and forms the Nernst-Planck equation for current density ji [32, 218,

137],

ji = −Diq∇ci − qciui∇φ (5.47)

whereDi is the chemical di�usion rate for the ith species, ci the concentration in the

channel, ui the mobility, and q∇φ and ∇ηi represent the electro and chemical com-

ponents of the electrochemical potential. The useful generalised-Einstein-relation

(GER) describing conductivity can be derived if we reintroduce the de�nition of

the chemical potential [219, 181, 220]. The q∇φ can be eliminated because it must

equate to ∇µi −∇ηi,

ji = −ciui∇µi −
(
Diq

∂ci
∂ηi
− ciui

)
∇ηi. (5.48)

In equilibrium ji = 0 and ∇µi = 0 and hence it is clear that the mobility takes

the following form,

ui = q
Di

ci

∂ci
∂ηi

. (5.49)

This is important because the current density (5.47) can be written as a function

of the GER σi, which can be de�ned at linear response,
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ji = −σi
q
∇µi (5.50)

and hence the GER, de�ned as σi = qciui, must take the following form at close

to equilibrium,

σi = q2Di
∂ci
∂ηi

. (5.51)

The partial derivative can be rewritten in terms of our previously-de�ned statistical

properties using2,

1

Vc

∂〈ni〉
∂ηi

=
∂ci
∂ηi

, (5.52)

and hence we now �nd that conductivity close to equilibrium is proportional to:

σi ∝ ∂ci
∂ηi

. Hence the current density can be written as,

ji = −qDi
∂ci
∂ηi
∇µi. (5.53)

Fick's law can be derived using the relationship between the chemical di�usion

coe�cient D and jump di�usion coe�cient DJ [219, 181, 220],

Di =
ci
kT

∂ηi
∂ci

DJ,i. (5.54)

The resultant current density takes the following form,

ji = −DJ,iq
ci
kT
∇µi, (5.55)

2This property is related to the chemical capacitance [221, 222],

Ci = (qzi)
2

(
∂ci
∂ηi

)
.
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and so, if the resultant electro-gradient is zero, we arrive at Fick's law of chemical

di�usion,

ji = −DJ,i × q
ci
kT
∇ηi. (5.56)

This description of conductivity will now be analysed focusing on selectivity amongst

alike-charge ions and valence based selectivity.

5.3 Statistical theory of alike-charge selectivity in

KcsA

Taking exact parameters from the crystallised structure [8] and considering only

K+ and Na+ conducting ions we can discuss the conductivity and occupancy of

the KcsA �lter. The state space is thus given by all possible occupancy states,

assuming that the ion-site interactions are indistinguishable,

{0}, {K+}, {K+K+}, {K+K+K+}, {Na+}, {Na+Na+}, {Na+Na+Na+},

{K+Na+}, {K+K+Na+}, {Na+Na+K+}, (5.57)

where we limit ourselves to 3 ions in the �lter as observed in MD simulations [16].

It can be easily extended to include 4 ions as observed by Köpfer et al [65] .

5.3.1 Coulomb blockade

In �gure 5.6 the energy spectrum of the �lter is given vs. Qf , under standard con-

ditions, for the full con�guration of states. The curves are parabolic vs. Qf , with

minima corresponding to values of Qf which neutralise the charge from the ions,
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and crossing between levels denoting barrier-less conditions. The states containing

Na+ are energetically disfavoured with a �xed barrier increasing with number of

Na+ ions in the �lter. This resulting barrier has the implication of shifting the val-

ues of Qf corresponding to the Na+ degeneracy locations G({nNa + 1, nK};Qf )−

G({nNa, nK};Qf ) = 0.

Q
f
 [q]

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

G
({

 n
j};

n f) 
[k

T
]

-10

-5

0

5

10

15

20

25

30

3K+ 2K+ 1K+

Figure 5.6: Free energy spectra for all possible states in the �lter, with standard
�tting parameters and ∆µ̄K = 7.3kT and ∆µ̄Na = 1.3kT. Curves display parabolic
dependence vs. Qf due to the electrostatic interaction but separate in magnitude
due to the di�erence in excess chemical potential amongst species. The blue,
orange and green curves denote the pure K+, Na+ and mixed states respectively,
whilst the black dashed curve is the zeroth ion state. The K+ and Na+ barrier-less
energy positions are highlighted by a solid and dashed circle respectively within
the optimal transport regime for KcsA.

In �gure 5.7 the variance (A) and mean (B) of ions in the �lter are plotted vs.

Qf , corresponding to the conductivity and occupancy. The conductivity and oc-

cupancy properties of each ion contrast greatly due to the highly selective nature

of the �lter. Occupancy of each species resembles a Coulomb staircase whereby

discrete steps separate stable plateaus; however occupancy by the favoured ion

K+ is ∼ 200 times greater than by the disfavoured one. The Coulomb staircases

represent shifts in the occupancy and hence stability of the �lter with steps cor-

responding to transitions. This step for the favoured ion (K+) takes its midpoint

at the barrier-less knock-on condition ∆Gi({nj}) ≈ 0 because here there is the
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greatest non-zero probability for either neighbouring states and hence maximal

�uctuation in particle number (see equation (5.46)). K+ ions exhibit sharp con-

ductivity peaks corresponding to ∆GK({nj}) ≈ 0, ∼ 40 times greater than Na+.

The excess chemical potentials ensures that the Na+ degeneracy condition is never

at ∼ 0 and therefore results in blocking phenomena from the favoured ion pro-

ducing a staircase of conductivity vs. Qf with a suppressed amplitude. It will be

analytically discussed later in the chapter.
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Figure 5.7: Variance (A) and mean (B) in particle number which is respectively
proportional to the conductivity and occupancy of K+ and Na+ ions in the �lter
vs. Qf , with standard �tting parameters and ∆µ̄K = 7.3kT and ∆µ̄Na = 1.3kT.
The dominant ion K+ reveals distinct conduction peaks centred on the midpoint
of its occupancy step which corresponds to the degeneracy of neighbouring levels.
The disfavoured ion Na+ display negligible conduction and occupancy which are
multiplied by 200× and 40× respectively.

To analyse the e�ect of selectivity on conduction, an overview of conduction vs.

thermodynamic selectivity is plotted in �gure 5.8. If ∆∆µ̄K,Na ∼ 0 the �lter

becomes non-selective and dual conducting with relatively large conductivities

σK , σNa. This will be analytically analysed later in the chapter.

To understand these numerical results in more detail we need to derive the ana-

lytical expressions relating to the conductivity and occupancy of the �lter. To

do this we will consider the reduced state space {K+K+}, {K+K+K+} and

{K+K+Na+}, which corresponds to the optimal transport regime for KcsA [16,

45].
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Figure 5.8: Conductivity for K+ (top) and Na+ (bottom, and shifted down by
0.05), as a function of ∆∆µ̄K,Na andQf with symmetrical concentrations c = 0.1M.
Increasing ∆∆µ̄K,Na has the e�ect of decreasing both K+ and Na+ conductivity
whilst forming sharp resonant peaks for K+ and a blocked sheet for Na+. The
reverse is true for negative values.

5.3.2 Occupancy

The occupancy for each ion is given by the ensemble average and corresponds to,

〈nK〉 = 2P ({K+K+}) + 2P ({K+K+Na+}) + 3P ({K+K+K+})

=
2 + 2e−∆GNa/kT + 3e−∆GK/kT

1 + e−∆GK/kT + e−∆GNa/kT
, (5.58)

for K+ ions. Note we have dropped the {nj} notation in the energy barrier since

the initial state is always {K+K+} and we have moved the species subscript to

G. From our condition of thermodynamic selectivity ∆∆GK,Na � 0 the Na+

exponential is suppressed and hence becomes negligible and can be removed from

the equation. Hence the K+ occupancy reduces to,

〈nK〉 =
2 + 3e−∆GK/kT

1 + e−∆GK/kT
, (5.59)
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which takes values between 2 and 3, with the half-integer value 2.5 occurring

when we are at a degeneracy condition ∆GK ≈ 0. These correspond to the step

behaviour of 〈nK〉 in �gure 5.7. Similarly the Na+ occupancy is given by,

〈nNa〉 = P ({K+K+Na+}) =
1

1 + e(∆GNa−∆GK)/kT + e+∆GNa/kT
. (5.60)

The only dependence on nf is given by e+∆GNa/kT , hence vs. nf this function is

limited by 0 when ∆E � 0 and ∼ e−(µK−µNa−kT ln(3))/kT when ∆E � 0 correspond-

ing to the limits nf → −2 and nf → −3 respectively. Two other points of interest

are the K+ and Na+ degeneracy positions which take the form,

lim
∆GNa=0

〈nNa〉 =
1

2 + e(µK−µNa−kT ln(3))/kT
≈ e−(µK−µNa−kT ln(3))/kT (5.61)

lim
∆GK=0

〈nNa〉 =
1

1 + 2e(µK−µNa−kT ln(3))/kT
≈ 1

2
e−(µK−µNa−kT ln(3))/kT . (5.62)

The K+ degeneracy condition results in the midpoint of the occupancy step as

seen numerically. This is because ∆GNa occurs at a more negative nf so is close

to the nf → −2 limiting value.

5.3.3 Conductivity

It has been shown earlier in the chapter, that the conductivity in the �lter at linear

response is directly proportional to the variance in particle number (5.46). Hence

in the optimal transport regime the variance between the excited {K+K+K+},

{K+K+Na+} and ground {K+K+} states can be calculated as,
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〈∆n2
K〉 = P ({3K})(1− P ({3K}))

(1 + e−∆GNa/kT )e−∆GK/kT

(1 + e−∆GK/kT + e−∆GNa/kT )2
, (5.63)

where the second line is achieved by factoring out G({K+K+}). If we again factor

out G({K+K+}) the variance in particle number for Na+ is given by,

〈∆n2
Na〉 = P ({K+K+Na+})(1− P ({K+K+Na+}))

=
((1 + e−∆GK/kT )e−∆GNa/kT

(1 + e−∆GK/kT + e−∆GNa/kT )2
. (5.64)

It is clear that we cannot satisfy: Var(nK +nNa) = Var(nK)+Var(nNa) because of

the cross term P ({K+K+K+})(P ({K+K+Na+})). This con�rms the expectation

that conductivities for each species are not independent of each other and hence

we have competitive (or selective) permeation through the �lter.

If we apply the selectivity condition ∆∆GK,Na � 0 we can derive the multi-species

conductivity in KcsA,

σK = q2DK
1

4VckT
cosh−2

(
∆GK

2kT

)
, max(σK) = q2DK

1

4VckT
(5.65)

σNa = q2DNa
1

VckT

e−∆GNa/kT

1 + e−∆GK/kT
, max(σNa) = q2DNa

1

VckT
e−∆∆GK,Na/kT .

(5.66)

From these expressions it is clear that K+ conductivity is proportional to a sharp

di�usion limited hyperbolic peak, meanwhile Na+ conductivity is a step function

with a maximum value that is exponentially suppressed by the strength of the

thermodynamic selectivity. The maximum K+ conduction rate through the �lter
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under resonant conduction, can be estimated from the equation of electrical current

density (5.53). The ionic �ux Jfi can be estimated by multiplying the current

density by Seff/q where Seff is the cross sectional area of the conduction pathway,

Jfi = −DiSeff
∂ci
∂ηi
∇µi. (5.67)

The derivative ∂ci
∂ηi

peaks as 1/4 and in a purely electro-chemical gradient ∇µi ≈

(φR − φL)/L. Hence for a 50mV potential di�erence under standard channel pa-

rameters, and Di ∼ 2 × 10−9m2s−1 the conduction rate is ∼ 108 ions per second,

comparable with experimental recordings [32, 31].

Although we have correctly characterised the occupancy and the conductivity of

the �lter for the favoured ion, we still have not explained why Na+ produces

conductivity steps vs. nf . From inspection of the variance function it is clear

that the dominant contribution for Na+ conductivity is from the cross term:

P ({K+K+Na+})(P ({K+K+Na+})) and maximises when: ∆GNa − ∆GK = 0.

This can actually be simpli�ed into just the excited states and so represents a

transition directly between these. Thus the Na+ conductivity is occurring due to

the degeneracy amongst the excited states which is clearly non-physical. As an

example of this we shall �rst consider the 0 to 1 ion regime with the states {0}

, {K+} and {Na+}. The favoured ion will have a maximum conductance when

the two lowest energy states are degenerate i.e. {0} and {K+}. Meanwhile the

disfavoured excited state {Na+} is only one of the two lowest states and hence

able to provide non-zero conductivity when it is degenerate with {K+}. Hence the

conductivity arises due to the �uctuations between these two states alone, which

is not possible. This is an important result because it suggests that multi-species

di�usion needs to extend beyond simple Fickian di�usion, particularly for describ-

ing disfavoured species, and will be a source of future research. This issue does

not arise in our kinetic theory extension (see Chapter 8) where resonant peaks are

predicted for both species, albeit di�ering in amplitude and location vs. Qf .
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If the channel was made non-selective such that ∆∆GK,Na = 0 then the conduction

and occupancy properties vastly di�er. In �gure 5.9 the occupancy and variance in

particle number are plotted vs. Qf . The occupancy retains its previous property

as a step function but the variance in particle number is now described by a step

for both species which can be seen in equations (5.63) and (5.64). This helps

us to con�rm the reasoning behind the blocking step because both excited states

are degenerate and so both species continually exchange between excited states

resulting in this large step function. In reality such non-selective channels are

typically wider which move the energy states towards a continuum because the

capacitance is raised. Examples of these include NaK, CNG channels and their

relatives. NaK has a similar selectivity �lter to KcsA with the sequence TVGDG,

but crucially the charged residue D (aspartate), replaces the original Y (tyrosine).

This changes the structure of the channel particularly at sites 1 and 2 where the

�lter is widened. The net result of this is to provide a �lter with three binding

sites of di�erent selectivity, with the overall consequence of non-selective currents

amongst mono-valent ions [223, 224, 225].
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Figure 5.9: Mean and variance in particle number of the �lter vs. Qf , under
the condition that the �lter is non-selecting ∆∆GK,Na = 0. The curves coincide
and produce a step due to the permanent degeneracy between either ion's excited
state.
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5.3.4 Sensitivity to mixing parameter

The sensitivity to the theory can be investigated in relation to the choice of mixing

term. We recall that we had a choice of imposing the condition of enforced sepa-

ration between ions or not (W or W †), which made a relatively small di�erence to

the corresponding energy contribution (see �gure 5.5). To investigate the e�ect of

this term we will consider numerical simulations of conduction corresponding to

use of either the standard W or conditional W †.

Figure 5.10 displays the conductivities for K+ and Na+ with our standard mixing

term (solid) and when imposing this condition (dashed). As predicted there is

minimal di�erence between conductivity, with the only di�erence being the period

and position of the transitions. Equation (5.65) described K+ conduction as a

hyperbolic peak as a function of ∆GK , and hence the amplitude is una�ected by

changing W but the peak position and period will be. Meanwhile Na+ conduction

is a step function peaking to: W ({K+K+K+})
W ({K+K+Na+}) exp[−(µK − µNa)/kT ]. Thus the

di�erence in this prefactor will determine the amplitude. Using either W † or W

this term is equal to nK + 1 or 3 and so the amplitude of Na+ conduction will be

una�ected. We should stress that this analysis is only to investigate the choice in

mixing conditions. It can not predict which conduction mechanism is prevalent in

KcsA because the excess chemical potentials in the �lter would change.

5.3.5 Eisenman relation

The maximum K+ conductivity occurs at the degeneracy ∆GK ≈ 0. This corre-

sponds to the following tuned n∗f ,

n∗f = −5

2
+

1

2Uc

(
∆µ̃bK − kT ln

(
xbK
))
, (5.68)

note that the mixing terms cancel for this barrier. The Na+ ion is blocked because
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Figure 5.10: Comparison of numerical results for a 0-3 ion �lter with either the
standard mixing term (solid colours) or the conditional term (dashed). Standard
�tting paramaters were used, and ∆µ̄K = 7.3kT and ∆µ̄Na = 1.3kT. The e�ect of
W is negligible on the conductivity properties.

it faces a barrier. Which can be calculated at this nf by insertion into ∆GNa.

This yields the following barrier,

∆GNa|n∗f = ∆µ̄bK −∆µ̄bNa + kT ln
xbK
xbNa
− kT ln(3) (5.69)

= ∆∆µ̄bK,Na + kT ln
cbK

3cbNa
, (5.70)

where the factor of 3 in the �nal logarithm corresponds to the mixing term for the

Na+ state. The b superscripts account for the possibility of having asymmetrical

solutions, although the value of the energy barrier will be identical because the

�lter is at equilibrium. The Na+ energy barrier corresponds to the Eisenman or

thermodynamic selectivity relation, because the di�erence in free energy barrier

between alike-charge species, reduces to the di�erence in local binding interactions

at the �lter. This is an important result because it con�rms that at the peak con-

ductivity in the �lter, the Na+ energy barrier is described by the thermodynamic

selectivity.
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Figure 5.11: Adsorption isotherms for species K+ and Na+ vs. concentration.
The dashed curve includes the Debye-Hückel ion-ion interaction. The standard
�tting parameters were used, and ∆µ̄K = 7.3kT and ∆µ̄Na = 1.3kT.

5.3.6 Filter adsorption

We have discussed earlier in Chapter 4, that Langmuir adsorption is an important

physical property and can be observed in the �lter. To consider this property we

need to �x the value of the �xed charge, and so we consider the suitable �xed

nf = −2.5. At this nf the state space reduces to our optimal transport regime,

and so we can try to calculate the adsorption isotherms for either excited K+ and

Na+ state. If we subtract the ground state from 〈nK〉, and renormalise by dividing

by three, we can de�ne the K+ isotherm as,

ΘK =
xKe

∆µ̃K/kT

1 + xKe∆µ̃K/kT + xNae∆µ̃Na−kT ln(3)/kT
. (5.71)

This resembles the Langmuir isotherm for mixed species solutions as introduced

earlier in equation (4.27). The equivalent isotherm for Na+ can be written as,

ΘNa =
xNae

∆µ̃Na−kT ln(3)/kT

1 + xKe∆µ̃K/kT + xNae∆µ̃Na−kT ln(3)/kT
. (5.72)
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These functions are not exactly equivalent to equation (4.27), because these de-

scribe a non-ideal electrolyte solution. However if we neglect the concentration

dependence in the excess chemical potential, the occupancy can exactly be de-

scribed by a Langmuir isotherm, (see �gure 5.11). Including this Debye-Hückel

term as given by (5.24), slightly shifts the form of the adsorption isotherm. How-

ever, it remains a saturating function vs. the bulk concentration.

5.4 Summary

In this chapter we have derived a multi-species statistical theory that is applicable

to narrow ion channels coupled to mixed-species particle reservoirs. This involved:

a review of the literature to understand the properties of charged particles in

bulk solutions; a directed look at the application of this theory to ion channels;

and �nally the derivation of the main theory. This derivation proves that the

selectivity between alike-charged ions is purely a result of the chemical interactions,

as expected because of the shared valence of the ions.

Our derivation of the grand canonical ensemble for narrow channels with multiple

binding sites and mixed-species bulk solutions, involved:

� The derivation of the Gibbs free energy equation (5.39), which is important

because it describes the energy state of the �lter. This equation takes ac-

count of all interactions in the system, including the bulk ideal and non-ideal

interactions, the ideal term in the �lter, the electrostatic interaction with the

�xed charge and further non-ideal interactions via the excess chemical poten-

tial. This produces energy spectra for the system that are parabolic vs. Qf ,

with �xed energy barriers due to di�erences of the excess chemical potentials.

� The GCE probability distribution function and its partition function, which

was derived from standard techniques. This equation describes the occu-

pancy and statistical properties of the system as a function of the energy
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interactions. The mean number of particles produces a selective staircase

function vs. Qf , where the midpoint of steps in 〈nK〉 occur at degeneracies

between the energy levels, and 〈nNa〉 was ∼ 40 times smaller as a result of the

di�erence in free energy spectra. The multi-species adsorption isotherm, has

been derived within the optimal transport regime of KcsA. This results in a

highly selective saturating occupancy function vs. the bulk concentration.

We have also derived the generalised Einstein relation at linear response, thereby

relating the conductivity through the �lter to the �uctuations in particle number.

The equation for K+ conductivity resulted in a sequence of di�usion limited peaks

that maximise at the degeneracy between neighbouring energy levels. This occurs

exactly at the midpoint in the occupancy steps. This property con�rms Coulomb

blockade within the �lter for K+. The Na+ conduction meanwhile was selectively

blocked by K+ resulting in a staircase ∼ 200 times smaller than the K+ peaks,

occurring due to the continual �uctuation between excited K+ and Na+ states.

Conduction of multi-species must include explicitly the interaction between dif-

ferent species within the �lter and it has been shown that Fickian di�usion fails

to fully describe this phenomenon in many examples [226, 227, 228]. Interaction

between ionic species in biological channels has been proposed by two mechanisms:

either as a drag exerted on the conducting ion from the other species [229, 230] or

from a physical electrostatic exclusion as is included here [105]. To include these

terms explicitly a Maxwell-Stefan di�usion theory needs to be developed. This

theory replaces the Fickian �uxes with linear combinations of chemical potential

gradients for all species [231]:

xi
RT
∇ηi = −

∑
i=
j 6=i

xjji − xijj
cTDij

, (5.73)

where all terms are as previously de�ned with R being the molar gas constant,

cT being the total concentration of the solution and Dij being the Maxwell-Stefan

di�usivity between species. It remains an active area for future research to explain
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the conduction of the disfavoured species.

Finally, we have derived the Eisenman selectivity relation directly from our free

energy spectra and condition for optimal conductivity. Inserting the corresponding

value of nf into the free energy barrier for Na+ resulted in equation (5.70). In

solutions with identical numbers of K+ and Na+ ions, and neglecting the minor

in�uence from mixing, the energy barrier is solely described by the dehydration

energy di�erence between species.

By deriving a theory that includes mixed-species solutions, there is the opportunity

for direct investigation of the equilibrium occupancy, selectivity and conductivity

properties of ion channels under equilibrium physiological conditions.
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6. Transition rates

6.1 Introduction

To move beyond investigating quasi-equilibrium behaviour we can introduce a

kinetic model. Fundamental to such models are the transition rates, which we will

brie�y review and derive. In application to ion channels it is common to choose

Eyring or Arrhenius transition rates within transition state theory (TST) but this

is often criticised and leaves many unanswered questions [117, 232, 124, 125, 126] .

We will introduce the Grand-Canonical-Monte-Carlo transition rates used in BD

simulations [82, 83, 101], derive the transition rates using our the GCE derived in

this thesis (see Chapter 5), demonstrate their suitability for use in a self-consistent

kinetic model.

6.2 Transition State Theory

Transition state theory describes transitions as escape events from metastable

states in the particles energy pro�le. It was originally introduced phenomenologi-

cally by Arrhenius [129] to describe chemical reactions but later derived by Eyring

[130] on a simple bistable potential. The result of this are exponentially suppressed

rates for a given energy barrier ∆G [233, 232],

kT =
ω

2π
exp[−∆G/kT ]. (6.1)
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In this equation ω represents the molecules' vibrational attempt frequency ∝ kT
h
.

In the context of ion channels these rates are used to describe ions hopping between

binding sites but does not describe the motion as di�usion. To overcome this

problem rates are often interchanged with those derived within the mean �rst

passage time theory (MFPT) under Kramers limit (see next section) which do

crucially describe di�usion [90, 119]. However this is a limiting form only valid

under certain condition, it can not be used for example when the energy barrier is

small.

In addition to this problem, the de�nition of terms within these rates is rather

phenomenological and so limited physical insight can be gained. This often results

in the removal of mutual dependence on the energy pro�le. Often incoming rates

are de�ned as concentration dependent (and completely independent of the po-

tential di�erence), meanwhile our escape rates are solely de�ned on the potential

di�erence (and independent of the concentration). This lack of symmetry requires

careful physical justi�cation and extension to consider the additional interactions

derived in Chapter 5. It does ful�l an important role however because it is designed

to recover the Boltzmann ratio at equilibrium.

6.3 Mean �rst passage times

In classical stochastic systems the mean �rst passage time (MFPT) o�ers a chance

to characterise the escape time through a system subject to an energy pro�le. It

is de�ned as the mean time for a particle to leave an interval starting at position x

and its inverse gives us the escape rate. The challenge for direct applications is in

the choice of realistic energy pro�les [119, 123], but the limiting form of arbitrary

potentials can o�er important information.

An extended derivation for the MFPT is given in Appendix A.6 based on [90, 89];

here we summarise the key steps and results. The MFPT or T (x) can be de�ned
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in an interval, region A, bounded as a ≤ x ≤ b, from the ensemble average through

the interval,

T (x) = −
∫ ∞

0

t∂tG(x, t)dt =

∫ ∞
0

G(x, t)dt (6.2)

where the second equality can be found by integration of parts because G(x, t =

∞) ≈ 0. This term represents the probability that at time t, the particle is

still within the interval. Hence it is de�ned by the integral of the conditional

probability density that the particle starting from x at t = 0 has reached x′ by

time t. Formally,

G(x, t) =

∫
A

p(x′, t|x, 0)dy. (6.3)

It also must satisfy the initial condition that at t = 0: G(x, 0) = 1 inside the

interval and 0 outside. This de�nition is important because we can use it in

conjunction with the backwards Fokker Planck (bFP) equation1, to write,

∂tG(x, t) = A(x)∂xG(x, t) +
1

2
B(x)∂2

xG(x, t) (6.4)

where A(x) and B(x) are independent of time independent and are known as the

drift and di�usion coe�cients.

To proceed, the boundary conditions at a and b need to be de�ned. At the bound-

ary a particle may undergo two processes, if the system is open then it may exit

the interval. In this scenario absorbing boundary conditions are imposed such

1It is derived similarly to equation (3.33) with a Kramers backward expansion and can be
shown to be equivalent [92]. If we truncate according to Pawula's theorem it takes the form,

∂P (x, t|x′, t′)
∂t′

= −
(
M (1)(x)

∂

∂x′
+M (2)(x)

1

2

∂2

∂x′2

)
P (x, t|x′, t′)
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that G(a, t) = G(b, t) = 0. If the system is closed, there is some physical barrier

at the boundary re�ecting the particle back into the intervals, with the re�ecting

boundary conditions: G(a, t) = G(b, t) = 1. The system may also contain both of

these conditions. If we consider the case of two absorbing boundaries then we can

use these de�nitions and integrate with respect to time to recover the following

ODE in terms of T (x),

−1 = A(x)∂xT (x) +
1

2
B(x)∂2

xT (x). (6.5)

This equation can now be solved over the interval with our boundary conditions

to reveal,

T (x) =
1

D

∫ b
x
eU(z)/Ddz

∫ z
a
e−U(y)/Ddy

(∫ b
a
eU(x)/Ddx

)
∫ b
a
eU(x)/Ddx

− 1

D

∫ b
x
eU(z)/Ddz

(∫ b
a
eU(z)/Ddz

∫ z
a
e−U(y)/Ddy

)
∫ b
a
eU(x)/Ddx

. (6.6)

An important de�nition is encoded in this equation, known as the splitting prob-

ability. This represents the fraction of particles starting at x ∈ (a, b) that exit the

interval at one boundary without visiting the other [123]. It is convention to de�ne

this as exiting b without visiting a, and this probability R(a|x) again satis�es the

bFP,

D

[
∂2

∂x2
− A(x)

∂

∂x

]
R(a|x) = 0, a ≤ x ≤ b (6.7)

with the solution,

R ≡ R(a|x) =

∫ x
a
eU(z)/Ddz∫ b

a
eU(x)/Ddx

, (6.8)
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obtained by applying the boundary conditions R(a|a) = 1, and R(a|b) = 0. An

equivalent expression R(x|b) can be found for the other boundary. An important

property is that R = 1/2 in symmetrical potentials when the starting position is

the midpoint of the interval. The MFPT given by equation (6.6) can be rewritten

using this de�nition to take the following form,

T (x) =
1

D

[∫ b

x

eU(z)/Ddz

∫ z

a

e−U(y)/Ddy

−R(x|b)
(∫ b

a

eU(z)/Ddz

∫ z

a

e−U(y)/Ddy

)]
, (6.9)

where the splitting probability is as de�ned. From the Einstein relation: D = kT
γm

we can write the equation for the MFPT as,

T (x) =
1

D

[∫ b

x

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy

−R(x|b)
(∫ b

a

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy

)]
(6.10)

but we will adopt units such that mγ = 1.

6.3.1 Kramers limit

A well known limiting form is that of the large energy barrier or low friction

Kramers limit. This requires the particle to travel over a large energy barrier

U � kT [90, 123]. We shall present the key steps and results of the Kramers

limit for an interval with two absorbing barriers, but the full derivation is given in

Appendix A.7 following [90, 123].

The interval is bounded at a and b, and contains a smooth potential U(x), that

maximises at the boundaries, with a minima in between. The total escape rate k̃
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is equal to twice the inverse of the MFPT ((2T )−1) [234], hence we can write the

total escape rate using the splitting probability,

k̃ = D/2×
[∫ b

x

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy −R
∫ b

a

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy

]−1

.

(6.11)

Since we wish to calculate the escape rate to either boundary, we can de�ne these

using the splitting probability,

k̃L = Rk̃, k̃R = (1−R)k̃. (6.12)

These equations can be simpli�ed, because of the respective properties close to the

potential minima and maxima. This involves separating integrals because they can

be slowly varying and using the harmonic approximation. Hence the �nal limiting

form of the rate is given by,

k̃L ≈ D

πkT

√
|U ′′(x)|a|U ′′(x)|x− × exp[−∆U/kT ] (6.13)

where ∆U is the energy di�erence between the minima and the maxima, ∆U =

U(a)− U(x).

6.4 Piecewise linear potentials

To consider analytical solutions we need to introduce a piecewise linear potential.

If we again consider the domain: x = −1 :→ +1 which we will relabel as xi =

0, xf = L then we can introduce the potential with height H,
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U(x) = 0, x < xi

=
H

L
(xi − x), xi ≤ x ≤ xf/2

= −H
L

(xf − x), xf/2 ≤ x ≤ xf

= 0, x > xf (6.14)

with the corresponding force,

dU(x)

dx
= 0, x < xi

= −H
L
, xi ≤ x ≤ xf/2

=
H

L
, xf/2 ≤ x ≤ xf

= 0, x > xf (6.15)

where the sign change is due to change in direction of the force. This potential

can now be inserted into equation (6.10) and solved to calculate the MFPT. To

investigate the limiting behaviour of the barriers we shall take the starting position

to be the midpoint of the interval x = L/2. Immediately it is clear that R ≡ 1/2

because we are in a symmetrical potential, and so we can write,

T =
1

D

[∫ L

L/2

eU(z)/kTdz

∫ z

0

e−U(y)/kTdy

−1

2

(∫ L

0

eU(z)/kTdz

∫ z

0

e−U(y)/kTdy

)]
. (6.16)

To solve this equation we need to reinsert the potential, but it is de�ned di�erently

in either of the regions [0, L/2], and [L/2, z]. Therefore, the choice of potential
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must be made in accordance with the integration range. The solution to this

equation is given by,

T (L/2) =
1

D

2L2kT
(

2kTe
H

2kT − 2kT −H
)

H2
. (6.17)

Its limiting forms are derived below, which will be important for comparisons later.

These limiting forms will also be compared to numerical results, calculated in a

similar potential U(x) = 1
2
H̃x2 (see �gure 6.1).

Limiting forms

First let us revisit the Kramers limit, which corresponds to H � kT . The corre-

sponding limiting form of the MFPT is calculated as from equation (6.16),

T =

(
2LkT

H

)2
e

H
2kT

D
. (6.18)

The total rate can be calculated directly from its inverse via 1/(2T ),

k̃ =
D

8

(
H

LkT

)2

e−
H

2kT . (6.19)

If we multiply by R ≡ 1/2 we can recover an expression for the rate to escape at

either the left or right boundary. This equation is similar to equation (6.13), the

change in prefactor is due to the piece-wise nature of the potential. Crucially the

equation recovers the exponential suppression with large energy barrier.

To calculate the barrier-less potential we have to revisit our equation (6.16) and

explicitly include H̃ = 0. Therefore the MFPT is calculated as,
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T =
L2

8D
(6.20)

with the transition rate,

k̃ =
4D

L2
. (6.21)

Thus we see at the barrier-less limit the transition rate is equal to four times

the free di�usion time. This is particularly relevant for discussion later within our

energy pro�le because this would correspond to a degeneracy between neighbouring

levels.

The �nal limit to consider is the limit of downhill di�usion, whereby the particle

is now trying to escape from the top of a potential maximum H̃ � 0 where

H̃ = −H. This in in e�ect the complete reverse of the Kramer's limit. In this

limiting form the MFPT can be calculated as,

T =
2L2kT

DH̃
, (6.22)

hence the MFPT is inversely proportional to the barrier height. The limiting form

of the rate is thus given by,

k̃ =
DH̃

4L2kT
. (6.23)

This rate is given by the product of the forcing and di�usion time, and thus will

exceed the di�usion rate for large forcing such as a large potential di�erence applied

across an ion channel.

To further investigate the MFPT we shall consider numerical simulations for a

closely related potential U(x) = Hx2/2. The left �gure in 6.1, plots the MFPT vs.

initial position with H = +5. The curve is symmetrical about the initial position
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taking, maximising at x = 0. This is because the potential is symmetrical and so

it corresponds to the initial position with the greatest distance to travel. The right

hand plot highlights the behaviour, vs. the barrier height, when starting at x = 0.

The curve shows limiting behaviour corresponding to the H � 0 and H � 0

limits, as derived earlier in equations (6.23) and (6.21). These numerical results

provide a basis for comparison with any transition rates derived for ion channels.

The behaviour of the rates in the barrier-less, downhill or uphill limits should be

consistent.
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Figure 6.1: The left �gure is the MFPT plotted vs. initial starting position with
H = 2, and the right �gure is the rate calculable from 1/(2T ) plotted vs. barrier
height when starting at x = 0. These are both calculated in a symmetrical poten-
tial U(x) = Hx2/2 which is similar to equation (6.14) and with the parameters
D = 2, kT = 2, γm = 1. The escape rate is compared at the H � (escape over a
barrier) and � 0 (escape down a barrier) limits with equations (6.23) and (6.21)
(dashed curves). These demonstrate a good �t, suggesting that in this potential
the rate exponentially decays as the barrier to climb grows and quasi-linearly grows
as the well grows.

6.5 Grand Canonical Monte Carlo transition rates

Brownian dynamics (BD) simulations provide an important method of investigat-

ing permeation through ion channels. Within this approach the channel is typically

modelled via a number of domains including: pore, bulks and within the grand

canonical-Monte Carlo scheme (GCMC), bu�er regions [82, 83, 101]. The trajec-

tories of all the ions starting from the bu�er regions through to the bulks and
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possibly the pore, are calculated from the Langevin equation (see Chapter 3). The

bu�er zone is furthest from the pore and allows ions to be created/annihilated

(added or subtracted from the system) according to a given probability. This is

determined from the GCMC scheme, dependent on the energy di�erence to add

an ion into the system. A typical algorithm involves computing the trajectories

at each time step and tracking the individual ions; and then running multiple cre-

ation/annhilation events in the bu�ers; before continuing through to the next time

step. Importantly it allows for the self-consistent introduction of non-equilibrium

boundary conditions and gradients [84]. It is closely related to the dual-volume-

control molecular dynamnics method [235]. In our work it will be applied to the

transition between the �lter and �lter mouth which is a region neighbouring and

in quasi-equilibrium with the bulk solution and just outside the channel.

The mouth region remains within quasi-equilibrium with the bulk solutions and so

the detailed balance condition can be established for transport between the mouth

and the channel. Thus if n denotes the number of ions in the �lter then we can

establish the following reversible relationship at equilibrium,

P e(n)Γn,n+1 = P e(n+ 1)Γn+1,n (6.24)

where P e represents the GCE distribution function and ΓI,F are transition rates to

move from an initial to a �nal state. We assume that the transitions can only occur

between neighbouring states and hence the +1, this is justi�ed, however, because

the ions are discrete charges. If we take our distribution given by equation (5.41)

into this expression and take the ratio we can recover the Boltzmann ratio,

Γn,n+1

Γn+1,n

= exp[−∆G({nj})/kT ], (6.25)

where ∆G({nj} represents the energy barrier at a given nf to add an ion to the

�lter of initial state {nj}. If we rearrange this formula we �nd that the rates must
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obey,

Γn+1,n = C, Γn,n+1 = C exp[−∆iG({nj})/kT ] (6.26)

where C represents a normalisation constant, with simplest form C = 1. The use

of de�ning C such that the rates sum to 1, was highlighted in [82, 83, 101]. Thus

in order to introduce the di�usion coe�cient into these rates, we normalise subject

to the condition that these rates are di�usion limited as this is a known property

of conduction. Therefore, the rate sum to D/L2,

Γn,n+1 =
D/L2

1 + exp[∆G({nj};nf )/kT ]
(6.27)

Γn,n+1 =
D/L2

1 + exp[−∆G({nj};nf )/kT ]
. (6.28)

These rates are of sigmoidal form, and share a mutual dependence on the energy

barrier. Since these rates are equivalent for either bulk b we can state this explicitly;

and if we break the condition of equilibrium between bulks then we are left with

non-equilibrium rates de�ned for each bulk-�lter interface,

Γbn,n+1 =
D/L2

1 + exp[∆bG({nj};nf )/kT ]
(6.29)

Γbn,n+1 =
D/L2

1 + exp[−∆bG({nj};nf )/kT ]
. (6.30)

To investigate the reliability of these rates we should compare with the previous

results calculated for the MFPT-rates. To simplify, we will drop the functional

dependence of G. Hence the three limits are: large energy barrier to enter the

channel ∆bG � kT ; large escape barrier ∆bG̃ � kT where G = −G̃; and the

barrier-less limit ∆bG ≈ 0.
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Since the rates are reversible, when the energy barrier to enter is large, the energy

barrier to escape is small. Hence if we consider ∆bG� kT �rst. This corresponds

to the Kramers limit for entry and the downhill limit for escape. The transition

rates then take the following form,

Γbn,n+1 =
D/L2

exp[∆Gb/kT ]
→ 0, Γbn+1,n =

D

L2
, (6.31)

where we recover Kramers limit when the energy barrier is large, but the di�usion

rate when in the downhill regime. This latter limit deviates from that called within

the framework of the MFPT, and is a direct consequence of the normalisation. Just

to con�rm the symmetry, if we consider the reverse limit,

Γbn,n+1 =
D

L2
, Γbn+1,n =

D/L2

exp[−∆Gb/kT ]
→ 0, (6.32)

then we recover the opposite behaviour of the rates. The �nal point of comparison

is the behaviour under barrier-less transition,

Γbn,n+1 =
D

2L2
, Γbn+1,n =

D

2L2
. (6.33)

The barrier-less limit is hard to investigate in �traditional� rates if they are based

on Kramer's limit or if the rates are independent of the full energy barrier.

From this analysis we can conclude that the GCMC rates perform almost identi-

cally in the Kramer's limit, are within a numerical factor of 1/4 to the barrier-less

limit, and therefore the only major di�erence occurs in the downhill limit which

is a direct consequence of our normalisation. Whilst these relations are impor-

tant, it is also important to discuss the physical behaviour of these rates. The

incoming and transition rate are both de�ned in terms if ∆Gb, whilst maintain

the Boltzmann ratio under equilibrium conditions. This is important because it

is self-consistent and ensures dependency on the properties of the whole system.
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The rates also describe di�usion directly and can be de�ned for any species which

will be used in Chapter 8.

6.6 Summary

In this chapter we have demonstrated that the grand canonical Monte Carlo tran-

sition rates are applicable to ion channels. This involved the derivation of the

mean �rst passage time theory and comparison of the rates it produces with the

GCMC rates as developed by Roux et al. [82, 83, 101].

In a stochastic system the MFPT o�ers the chance to calculate the time (and hence

rate) for a particle to escape from an interval. The particle may be subjected to an

energy barrier, well or barrier-less energy pro�le. Each of these limiting forms was

analytically derived within a piece-wise linear potential and subsequently compared

to numerical results with a similar smooth potential. We can conclude from this

analysis that: the rate of escape over an energy barrier is given by an exponentially

suppressed function of the energy barrier (Kramers limit); the rate of escape to

either boundary in the barrier-less limit is proportional to twice the di�usion time;

and, the rate for escape down a potential well is linearly proportional to the barrier

height.

The GCMC rates were investigated in the three limiting forms, and behaved as

follows:

1. In the Kramers limit of large energy barrier the rates produced an exponen-

tially suppressing rate as a function of the energy barrier.

2. In the barrier-less limit the rates become equal to half the di�usion time.

Although this rate constant is smaller than the result from the MFPT, we

shall see in Chapter 7 that the e�ective di�usion coe�cient in the �lter is

smaller than its bulk equivalent and so the rate is more than large enough.
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3. In the down-hill limit the rates saturate to the di�usion time.

The �rst two limits provide rates that are qualitatively similar to the MFPT,

sharing the dependence on the energy barrier and only di�ering in the pre-factor.

The �nal rate di�ers, as a direct consequence of our normalisation, but we can

justify this because conduction through ion channels is di�usion limited, and these

rates maintain a co-dependence of incoming and outgoing rates on the total energy

barrier.

By demonstrating the suitability of GCMC rates to ion channel systems, we have

developed a set of self-consistent transition rates that can readily be extended to

multi-species kinetic theory.
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7. Kinetic theory

7.1 Introduction

Kinetic modelling provides a non-equilibrium extension to statistical theory by de-

scribing transitions between de�ned states of the channel. If we use the statistical

theory developed in Chapter 5, then we can de�ne the states explicitly from the

occupancy of the �lter. The energy barriers between the bulks and the channel

can also be used. The two main di�erences in this model are: its extension to non-

equilibrium and direct de�nition of transitions. This means that only physically

obtainable states and transitions between them are allowed, and we can consider

the e�ects of conduction far from equilibrium. Thus we consider a similar model,

where we investigate the permeation of ions through a selectivity �lter thermally

and di�usively coupled to bulk reservoirs. It shall also assume each binding site is

indistinguishable, because we can directly apply our previous statistical theory.

In this chapter we shall brie�y introduce the key equations needed for a multi-

species kinetic model. The remaining sections in the chapter will be devoted to

the analysis of its single-species form, which is recovered from setting the Na+

concentration to zero. The multi-species kinetic equations will be analysed in the

next chapter 8. Unless otherwise states all curves will be plotted using the single-

species �tting parameters as given by table A.2, with one free running variable.
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7.1.1 Kinetic equations

The statistical theory enables us to de�ne the state space of the �lter {nj} and the

energy barrier ∆G({nj}) between neighbouring states. This energy barrier is given

by the free energy di�erence equation (5.40) but crucially now it can be de�ned

for each bulk as the bulk electrochemical potentials need not be in equilibrium,

∆b
iG({nj};nf ) = ∆E({nj};nf ) + kT log(ni + 1)/nw −∆µ̄i

b − ziq∆φb − kT ln
(
xbi
)
.

(7.1)

The terms are as previously de�ned with: the electrostatic interaction ∆E between

ions and Qf ; the mixing contribution in the �lter (ni + 1)/nw; bulk parameters:

mole fraction ∼ cbi/c
b
w (where c is the concentration of either species or water

molecule); in�uence from the membrane potential ∆φb in transition to a site at χ;

and, the excess chemical potential di�erence between bulk and channel ∆µ̄b. If the

energy barrier is quoted without a speci�ed bulk then it reduces to its equilibrium

value,

∆iG({nj};nf ) = ∆E({nj};nf ) + kT log(ni + 1)/nw −∆µ̄i
b,e

− ziq∆φb,e − kT ln
(
xb,ei

)
, (7.2)

which is identical to the energy barrier used within the statistical theory, except

that we explicitly imply equilibrium with an e superscript. In this instance φb,e is

the Nernst potential which is zero when there are symmetrical solutions.

The kinetic theory can perform experimental comparison and so we shall explicitly

include the Debye-Hückel ion-ion interaction term allowing for some concentration

dependence of ∆µ̄i to be included. Thus in our energy barriers and discussions
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the excess chemical potential will be denoted by,

∆µ̄bi = ∆µ̄bi,0 + ∆µ̄bi,D (7.3)

∆µ̄bi,D = − q2κ

8πεwε0(1 + κRi)
, κ =

√
N0q2

∑
i 2z

2
i c
b
i

kTε0εw
, (7.4)

hence the �rst term: ∆µ̄bi,0 represents a �tting parameter and includes dehydra-

tion, site-bonding and volume exclusion interactions. The �nal term is calculated

explicitly and given by the Debye-Hückel ion-ion interaction, screened by a solvent

and includes the presence of anions.

Physically, transitions are only possible between neighbouring states ({nj + ni},

{nj}) where ni denotes one added ion of species i. This means that we are always

free to add or remove ions if the transition meets certain conditions. Hence the set

of master equations should describe all of these transitions. The transitions are

conditional on the number and species of ions in the initial state. Hence we can

establish the following conditions,

1. an ion of any species can be added provided that the �nal occupancy doesn't

exceed the total number of available sites M − nw. Therefore the condition

is de�ned by, nj + ni ≤M − nw. This is a standard condition when there is

a maximum number of states.

2. The reverse condition, for removing ions, must also be true. However, this

manifests in two forms: the total number of ions in the �lter can never be

negative and, the transition is only possible if there is an ion of that species

already present. Hence the two established can be mathematically formalised

as, 0 ≤ nj−ni and nj−ni 6=
∑

i′ 6=i ni′−ni where i′ denotes all other species.

Thus the set of master equations describing possible transitions for the set of states

{nj}, is denoted by,
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Ṗ ({nj}) = −
∑
i

∑
b

∑
J=

{
nj+ni

nj−ni

}
0≤J≤M−nw

nj−ni 6=
∑

i′ 6=i ni′−ni

P ({nj})Γb,inj ,J − P ({J})Γb,iJ,nj
. (7.5)

where nj is the initial state of the system before the transition. The summations

are over species and bulks, although this latter form can be reduced because the∑b Γb = Γ. These kinetic equations allow the transition between states {nj} and

{J} provided that our previous conditions are met. The assumption of indistin-

guishable sites means that we cannot track permeation through the �lter as such

and so we must allow ions to enter or exit the �lter to the left and right bulks

simultaneously (although there may be an energetically favoured route).

As discussed previously we will use the GCMC transition rates, which can be

written in multi-species functional form,

Γb,inj ,nj+ni
= Dc

i/L
2f [(∆Gb

i({nj})/kT ] (7.6)

Γb,inj+ni,nj
= Dc

i/L
2(1− f [(∆Gb

i({nj})/kT ]). (7.7)

Here f is the sigmoidal function: f(x) = [1 + exp(x/kT )]−1 and Dc
i/L

2 is the

di�usion rate through the �lter. This is related to the bulk di�usion coe�cient via

α which will be a �tting parameter, Dc
i = αDb

i .

The steady state electrical current is calculable from the product of net probability

�uxes across both the left and right barriers and the electron charge q. The current

at each boundary must equate, to obey Kirchho�'s current laws and thus has a

± pre-factor, where convention dictates the + refers to the left bulk. The current

can be written from the kinetic equations,
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Ibi = ±q
M−1−nw∑
nj=0

P ({nj})Γb,inj ,nj+ni
− P ({nj + ni})Γb,inj+ni,nj

, (7.8)

since ni ∼ [0, 1] we can remove some of the previous conditions because Γnj ,nj
≡ 0.

The total current through the �lter is given by the sum of each species current.

Since IL = IR = I we will drop the superscript script and de�ne exclusively for

the left bulk.

These kinetic equations will now be applied to the case of single-species (K+). The

standard �tting conditions unless explicitly stated are given in Appendix A.8.

7.2 N-ion single species model

Single-species models are common in NIC because of the high selectivity and vast

number of experimental recordings for the condition of a single permeating species.

Thus such models can be used to compare with selected experimental recordings.

The state space {nj} can now be simpli�ed to give the numbers n = 0, 1, .., N of

occupying ions in the �lter where N = M −nw is the total number of possible ions

in the �lter. The set of master equations can be expressed as a N ×N matrix,



Ṗ ({0})

Ṗ ({1})
...

Ṗ ({N})


=



−Γ01 Γ10 0 0 . . . 0

Γ01 −Γ10 − Γ12 Γ21 0 . . . 0

...
...

...
...

...
...

0 . . . . . . . . . −ΓN−1,N ΓN,N−1


·



P ({0})

P ({1})
...

P ({N})


.

(7.9)

Ion channels operate on short time-scales such that the steady state regime can

be used to model permeation events [31]. This is helpful because it simpli�es the

master equations to allow for general solutions but also because it removes the

need to account for the temporal protein dynamics.
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To provide a general solution to these equations we can follow the procedure in-

troduced in [236]. These equations were simpli�ed using the ratio ζm = P ({m})
P ({m−1})

for each excited state m = 1, 2, ..., N , and it clear that it equals,

ζm =
Γm−1,m

(Γm,m−1 + Γm,m+1)− (Γm+1,mζm+1)
. (7.10)

The higher order ζm+1 in the denominator leads to its de�nition as a recurrence

relation. Iterating through m will lead to the continuous fraction,

ζm =
Γm−1,m

(Γm,m−1 + Γm,m+1)−
(

Γm+1,m
Γm,m+1

(Γm+1,m+Γm+1,m+2)−(Γm+2,m+1ζm+2)

)
..,m = 1, .., N. (7.11)

It is clear however that we can write each ζ in terms of the function gm as,

ζm =
Γm−1,m

Γm,m−1

× gm, (7.12)

where gm is given by,

gm =
1

Γm,m+1

Γn,n−1
+ 1− ζm+1

Γm+1,m

Γm,m−1

. (7.13)

Comparison with the zeroth equation: ζ1 = Γ01/Γ10 ensures that g1 = 1 and this

de�nition can be extended for all m because we are limited to N ions in the �lter.

Thus by iterating backwards we can �nd the general solution,

P ({m}) = P ({0})
m−1∏
j=0

Γj,j+1

Γj+1,j

. (7.14)

The zeroth probability can be removed from this expression by normalising with
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the conservation of probability: P ({0}) +
∑N

m=1 P ({m}) = 1. It is clear that

when the number of occupying ions n 6= N then the product will miss higher order

contributions. This P ({0}) probability can be removed by normalising,

P ({n}) =
1

1 +
∑N

m=1

∏m−1
j=0

Γj,j+1

Γj+1,j

×
n−1∏
j=0

Γj,j+1

Γj+1,j

. (7.15)

This general solution can also be expressed in terms of the binding probability,

which is a notation introduced by Roux [82]. The only di�erence, is that here we

do not in general require the system to be at equilibrium. The non-equilibrium

binding probability can be introduced as B({m}) = P ({m})/P ({0}), de�ned such

that the zeroth binding probability is unity. From our general solution it is clear

that it can be written as,

P ({n}) =
B({n})

1 +
∑N

m=1 B({m})
. (7.16)

The single-species electrical current can be written using our general solution for

probabilities,

I = ±q ·
N−1∑
n=0

(
Γbn,n+1 ·

∏n−1
j=0

Γj,j+1

Γj+1,j
− Γbn+1,n ·

∏n
j=1

Γj,j+1

Γj+1,j

1 +
∑N

m=1

∏m−1
j=0

Γj,j+1

Γj+1,j

)
(7.17)

In accordance with the statistical theory occupancy in the �lter can be de�ned

with the ensemble average of particle number 〈n〉 =
∑N

n=0 nP ({n}),

〈n〉 =
N∑
n

n

1 +
∑N

m=1

∏m−1
j=0

Γj,j+1

Γj+1,j

×
n−1∏
j=0

Γj,j+1

Γj+1,j

. (7.18)

It is clear that, since our transition rates obey detailed balance at equilibrium,

we should be able to recover the GCE probabilities. In order to prove this we

�rst consider the detailed balance condition at each bulk such that there is zero

current (applicable to both left and right) Ibn = 0 where Ib =
∑N−1

n Ibn. Under this
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condition we can establish the following equality,

P ({m})
P ({m− 1})

=
ΓLm−1,m

ΓLm,m−1

=
ΓLm−1,m

ΓLm,m−1

. (7.19)

If we reintroduce this condition into our de�nition of ζm then we can establish the

Boltzmann ratio,

ζm =
Γm−1,m

Γm,m−1

= exp[−∆G({m− 1})/kT ] (7.20)

where ∆G is the energy di�erence between the initial and �nal states {m − 1}

and {m} respectively. Under this condition it is clear that we meet the detailed

balance condition between both bulks, and hence from equation (7.15) we recover

the following

P e({n}) =

∏n−1
j=0 exp[−∆G({j})/kT ]

1 +
∑N

m=1

∏m−1
j=0 exp[−∆G({j})/kT ]

(7.21)

which can easily be rearranged to recover the exact form of the GCE introduced

earlier. Thus we can con�rm that in the equilibrium limit and using detailed

balance we can recover the exact form of the GCE equations.

7.2.1 Linear response regime

If we �rst consider numerical solutions to the kinetic equations vs. Qf we can

investigate the system at linear response. This will provide a point of comparison

to the statistical theory.

In �gure 7.1 we display the current and occupancy pro�le of the �lter vs. Qf . A

series of resonant current peaks alongside a Coulomb staircase in occupancy can

be observed. The peaks provide separation from blockade in the �lter and are

of equal amplitude ∼ 2pA. The staircase meanwhile separates stable or whole-
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integer occupancies with a non-integer transition step. Each peak corresponds to

the midpoint of each occupancy step, when there is a degeneracy in the levels

∆Ge ≈ 0 and thus represents Coulomb blockade. These results seem to match

that from the GCE although we can now discuss the additional e�ect of applied

voltage.
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Figure 7.1: Single species current (A) and occupancy (B) through the �lter vs.
Qf under standard �tting conditions. In the linear response limit we recover CB
phenomena whereby current peaks are formed to coincide with the step growth in
occupancy.

The linear response limit extends to low voltages, and since we also consider sym-

metrical solutions this will also directly correspond to Ohm's law. Typically the

Ohmic limit is observed for voltages up to ∼ 50mV [31]. We know that CB is a

largely linear response e�ect, because at very large voltages the charge discrete-

ness in the energy spectrum can be lost. Hence in �gure 7.2 we investigate the

sensitivity to φ by considering: +10mV , +50mV , +100mV and +200mV . In-

creasing φ results in a broadening and increase in amplitude of the current. This

broadening is as a consequence of loss of quantisation because the in�uence from

∆E is smaller. Hence in this large voltage limit the system is losing its discrete

energy spectrum and is moving towards an energy continuum.
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Figure 7.2: Single species current through the �lter vs. Qf under standard �tting
conditions and varying φ. Increasing φ results in an increased amplitude and
broadening of current.

To derive expressions for linear response we follow the approach of Beenakker

[108] who derived linearised expressions in an electronic system (see Chapter 4).

An important di�erence between the systems, will be the inclusion of a chemical

potential resulting in a multi-variable linearisation.

The �rst step is to introduce a non-equilibrium correction factor Ψ as introduced

earlier in electronic systems (see Chapter 4), that can describe the linearised prob-

ability distributions. It will be a function of the voltage drop but also of the

chemical potential gradient. If we again use a superscript e to imply equilibrium

then the linearised probabilities equal,

P ({n}) = P e({n}) (1 + Ψ({n})) . (7.22)

Another di�erence is the possibility of a non-unity valence and hence we will

include z explicitly. We introduce ηb as an e�ective chemical potential (as it

includes the excess chemical potential di�erence), and so it can be written in

terms of an equilibrium potential with its non-equilibrium correction δµ, thus the

energy barriers take the form,
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∆GL({nj};nf ) = ∆E({nj};nf ) + kT ln(n+ 1)/nw − zq(1− χ)φ− (ηe + δη/2)

(7.23)

∆GR({nj};nf ) = ∆E({nj};nf ) + kT ln(n+ 1)/nw − zq(0− χ)φ− (ηe − δη/2),

(7.24)

where χ is the electrical distance accounting for the binding position in the channel.

Hence we use these relations to linearise the n to n + 1 master equation1 around

the conditions φ = φL − φR = 0 and δη = ηL − ηR = 0, to recover the following

relationship for Ψ,

Ψ({n+ 1})−Ψ({n}) = zqφ

(
1

2
− χ

)
/kT. (7.25)

The contribution from the chemical-gradient cancels here2 leading to an identical

expression to those given for electronic systems [108], and again vanishes if χ = 1/2.

If we introduces these expressions and corrections into equation (7.17), we can �nd

the following form of linearised current,

I =
q

kT

M−1−nw∑
n=0

P e({n})ΓL,en,n+1

[
1

2
δη +

1

2
qzφ

]
, (7.26)

the e�ect of the chemical gradient is now explicitly included via δη. If this term

is zero then current reduces to a similar form as seen in electronic systems.

If the di�erence between energy levels is large then we can equate each transition

1This reduced master equation takes the form,

0 = [ΓL
n,n+1 + ΓR

n,n+1]P ({n})− [ΓL
n+1,n + ΓR

n+1,n]P ({n+ 1}).

2The symmetry of δη on each bulk prevents it from in�uencing Ψ, much like when χ = 1/2;
and hence the result exactly matches that found in the electronic case (see Chapter 4). This is
because there is no �chemical distance�.
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to separate two level-systems. This means that the equilibrium incoming ion tran-

sition rate ΓL,en,n+1 is ' P e({n + 1}). In this approximation current reduces to a

product of neighbouring probabilities,

I =
q

2kT
×Dc/L2

M−1−nw∑
n=0

P e({n})P e({n+ 1}) [δη + qzφ] (7.27)

which can be written as the �uctuations in particle number 〈∆n2〉 because in each

two-level transition: 1 = P e({n}) + P e({n + 1}). This result agrees with the

statistical theory if it is reduced to single-species.

Derivation of Fick's law

To derive Fick's law from the kinetic equations we need to start from our expression

of linearised current and write it in terms of its density j. Current density is

proportional to current via: j = I/Ac where Ac is the �lter cross-sectional area.

The linear gradient terms, can be approximated using �nite di�erences such that

φ ∼ −L∇φ and δη ∼ −L∇η, and hence the current density can be written as,

j = − qDc

2V kT
×

M−1−nw∑
n=0

e∆G({n})/kT

(1 + e∆G({n})/kT )2
(qz∇φ+∇η), (7.28)

where we have also substituted the two-level approximation of P e({n})P e({n+1}),

,and we note the presence of the equilibrium energy barrier ∆G({n}). It is clear

from comparison with equation (5.50) that the GER must be given by,

σ =
q2Dc

2V kT
×

M−1−nw∑
n=0

e∆G({n})/kT

(1 + e∆G({n})/kT )2
(7.29)

where V is the volume of the channel and equal to V = AcL. This can be rewritten

using the de�nition of the jump di�usion coe�cient (see equation (5.54)), to recover

the Nernst-Planck equation as derived in the statistical theory,
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j = − q

2kT
DJc(qz∇φ+∇η). (7.30)

It is clear that if the voltage gradient disappears then we can immediately recover

Fick's law,

jF = −q/2×DJ∇c. (7.31)

7.2.2 Non-equilibrium regime

A fundamental output to a kinetic model is its ability to describe non-equilibrium

behaviour when there is an electrochemical gradient applied across the �lter. This

enables further properties to be discussed and analysed but crucially also allows

for experimental veri�cation because there are vast experimental recordings for

current-voltage I − V and current-concentration I − C relationships [12, 11]. To

simulate these relationships we maintain our state space and �lter geometry main-

taining a �xed nf .

In either I −V or I −C comparison we should discuss both the current and occu-

pancy pro�le of the �lter, and relate them if possible to the physical phenomena

introduced.

Current vs. voltage regime

If we �rst consider the I − V relationship then we should �rstly consider the

simplest model with symmetry in the bulk solutions. If we take standard K+

channel parameters, then K+ conduction for the I − V relationship is plotted

in �gure 7.3 in conjunction with the probabilities for each ion in the �lter (b).

Current takes physiological values and starts to saturate at ∼ ±0.2V . Only two

probabilities are non-zero and hence contribute to conduction. The probabilities

match to current whereby maximum current occurs when both probabilities are
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maximum i.e. 1/2 and minimal current (or blockade) occurs when the �lter is at

its most stable. The �xed charge value in the �lter of nf = −2.5 results in only

the 2 and 3 particle levels contributing as expected because this constitutes as

the optimal transport regime for KcsA as demonstrated by MD simulations [45].

The reasoning for maximum current now is slightly di�erent to at linear response

because we have a strong applied forcing across the �lter. The degeneracy between

probabilities denotes a degeneracy between incoming and outgoing energy barriers

and hence rates of opposite bulks. Thus incoming and outgoing rates achieve their

di�usion limit and particle �ow from bulk to bulk is maximised.
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Figure 7.3: Probabilities of state (A) and I −V (B) curves vs. φ under standard
�tting parameters. Current has a suitable order of magnitude and starts to satu-
rate as expected from experimental recordings. This saturation occurs when the
�lter is least stable with neighbouring occupancy probabilities being 1/2.

Since current is symmetrical about the voltage axis we can focus on the positive

voltage domain, and extend to investigate the e�ect of the presence of energy

levels.

In �gure 7.4 we extend the range of voltage to 5V we and compare with di�ering

∆µ̄0 values ranging from −5, 0, 5kT from left to right respectively. Current forms

a staircase vs. φ where each transition step corresponds to current involving two

states {n}, {n + 1} and each plateau is the di�usion limited conduction between

these states. Due to the large charge of the �lter nf the interaction strength

strongly blockades other occupancy states. In this instance the transitions between
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lower states {0}, {1} and {1}, {2} require a barrier of 4Uc and 2Uc respectively to be

overcome. This results in a large voltage required before these lower energy levels

activate and contribute to the current. When they activate and contribute it is in

addition to the di�usion limited �ow through the previous transition states, and

hence we form the staircase. This is traced in the lower �gure by the probabilities

of each state, whereby degeneracies in probabilities result in each current plateau.

The in�uence of ∆µ̄0 is most strongly felt in the 2 − 3 ion transition resulting

in di�erent φ's required to achieve saturation. This e�ect is strong here because

of the absence of the electrostatic contribution, at lower levels Uc � ∆µ̄0 and so

the di�erence amongst plots is minimal. These lower energy levels only activate

at very large voltages > 1V and so for discussing a physiological channel we can

reduce to a two state system.
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Figure 7.4: The current and probabilities are calculated vs. large voltage and
three values of ∆µ̄= -5, 0,+5kT from left to right respectively, under standard
�tting parameters. The current results in a staircase function with the �rst
step strongly dependent on the value of ∆µ̄. The second step starts at ∼
1.25V or greater which is far beyond the physiological conditions, thus we can
neglect these properties when discussing ion channels. Each current transition
corresponds to the activation of lower energy levels and thus occurring when
these probabilities become non-zero.

We shall brie�y discuss asymmetrical solutions here because it is discussed in

greater detail in the recti�cation section later. Varying χ away from 1/2 ensures
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that symmetry about the voltage axis is broken. The voltage required to restore

symmetry may be small but it will be non-zero. Thus the general properties still

apply namely that current forms a staircase, maximising to identical saturating

values in either voltage domain, when the occupancy reaches its most maximal

point between the neighbouring probabilities.

Current vs. concentration regime

The standard experimental protocol to record I − C data is to consider a �xed φ

and varying symmetrically the solutions in each bulk. We shall follow this for our

main discuss before brie�y discussing the e�ects of asymmetrical solutions. The

Debye-Hückel ion-ion interaction term will be explicitly included here as we are

comparing vs. concentration.

In plot (A) of �gure 7.5 the theoretical current (solid) is plotted vs. symmetrical

concentration, and the dashed curve corresponds to �tting with a Michaelis-Menten

(MM) function of the form,

Im =
kmx

x+K
, (7.32)

where km and K are the voltage dependent maximum permeation rate and the

Michaelis mole fraction respectively, and x is the symmetrical mole-fraction which

is equal to the ionic concentration divided by the concentration of bulk water:

x = c/cw. At this stage the parameters are arbitrary as the importance is to recover

MM �tting within a physiological concentration range, because it typically �ts well

with experimental recordings. We recover saturating current vs. concentration

with reasonable good �tting to the MM function. In fact at larger concentrations &

1M current slightly deviates from the MM function and actually starts to decrease

which can be seen from the probabilities because they start to deviate from 1/2.

Another point of order is at the zero concentration limit P (0) becomes unity as
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in this limit the energy pro�le of the bulk → −∞ and is favoured. It is however

also important not to be limited by this function as many kinetic models are [31],

because data can be shown to �t more accurately with non-MM form [118, 237].
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Figure 7.5: The standard �tting parameters were used with φ = +0.2V and
∆µ̄0 = 5kT. Plot (A) demonstrates the closeness of �t between MM saturated
current and theoretical current from the kinetic equations. Plot(B) shows that the
occupancy is dominated by the levels 2 and 3 except in the limit c→ 0.

In �gure 7.6 current is plotted vs. concentration for three values of ∆µ̄0 = 5, 0,−5kT

with the dashed curve indicating MM �tting. When ∆µ̄0 > 0 the �tting between

theoretical and MM current is reasonable suggesting that these would be suitable

choices for data �tting. Meanwhile a negative (and large) ∆µ̄0 displays a very

small current, and so it is clear that varying this parameter has a large e�ect on

the current.

7.2.3 Two state conduction

It is clear that this normalisation induces non-standard I−V and I−C behaviour.

It needs to be tested against experimental recordings with a description of proper-

ties such as recti�cation. In �gure 7.7 we compare two state conduction with our

full state space conduction in a physiological voltage range φ = −0.2V :→ +0.2V .

It is clear that the two curves coexist within this small voltage range, and so

the two state reduction exactly describes the conduction. The parameter ∆µ̄ has
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Figure 7.6: The standard �tting parameters are used with φ = 0.2V. The curves
are colour coordinated with the value of ∆µ̄0, meanwhile the black dashed curves
represent IMM .

quite a profound e�ect in shaping the current because if this parameter is small (or

negative) or very large then current has a much smaller magnitude and is quasi-

exponential in its growth which will be important when discussing recti�cation

(see later).

From �gure (7.7) it is clear that up to ∼ 200mV the only conducting energy levels

are the optimal transport regime {2K+}, {3K+} and so we can reduce the state

space to these states. Current in this two state system reduces as,

I =
q

2

(
ΓL23 − ΓR23

)
, (7.33)

with the expanded form,

I =
q

2
Dc/L2

(
xRe−(∆E−∆µ̄R−zq(0−χ)φ)/kT − xLe−(∆E−∆µ̄L−zq(1−χ)φ)/kT

)
×[

xLxRe−(2∆E−∆µ̄R−∆µ̄R−zq(1−2χ)φ)/kT + xRe−(∆E−∆µ̄R−zq(0−χ)φ)/kT+

xLe−(∆E−∆µ̄L−zq(1−χ)φ)/kT + 1
]−1

(7.34)
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Figure 7.7: Comparison of theoretical I − V curves between full and reduced
state-space currents. The curves coexist exactly for the full range of ∆µ̄ values
suggesting the reduced states space model exactly describes conduction. Varying
∆µ̄ had a profound e�ect on the shape and amplitude of the current.

If we consider a symmetrical �lter such that χ = 1/2 and concentrations in either

bulk are equal: ηL = ηR then we can collect terms and write current as,

I = qDc/L2 ×
x
(
e(∆E−∆µ̄+qzφ/2)/kT − e(∆E−∆µ̄−qzφ/2)/kT

)
2x2 + 2xe(∆E−∆µ̄+qzφ/2)/kT + 2xe(∆E−∆µ̄−qzφ/2)/kT + 2e(2∆E−2∆µ̄)/kT

(7.35)

If we consider the large voltage regime then it saturates to,

lim
φ→±∞

I = ±qD
c

2L2
. (7.36)

It has already been observed numerically in �gure (7.6) that current can reduce
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to a MM form given suitable �tting parameters. It is further complicated by

the non-linear concentration dependence in ∆µ̄ via the Debye-Hückel term. If we

neglect the importance of this dependence for now, then we can write a conditional

current. When the �tting parameters are such that,

2x2 < 2xe(∆E−∆µ̄+qzφ/2)/kT + 2xe(∆E−∆µ̄−qzφ/2)/kT + 2e(2∆E−2∆µ̄)/kT (7.37)

we can write the current as,

I =
xkm
x+K

(7.38)

km =
q

2
Dc/L2 ×

(
e(∆E−∆µ̄+zqφ/2)/kT − e(∆E−∆µ̄−zqφ/2)/kT

)
(e(∆E−∆µ̄+zq)φ/2)/kT + e(∆E−∆µ̄−zqφ/2)/kT )

(7.39)

K = e(2∆E−2∆µ̄)/kT ×
(
e(∆E−∆µ̄+zqφ/2)/kT + e(∆E−∆µ̄−zqφ/2)/kT

)−1
. (7.40)

where km and K are the voltage dependent maximum permeation rate and the

Michaelis mole fraction respectively. Of course this can only describe quasi-MM

behaviour in any case because of the non-linear concentration dependence in ∆µ̄.

In �gure 7.8 a comparison is given between pure two-state kinetic equation current

(solid) from equation (7.35), and our reduced current (dash-dot) in MM form from

equation (7.38). Only minor di�erences can be observed for the largest ∆µ̄ with

a peak di�erence in current of ∼ 2pA and so it is unlikely to detract from the

quality of �tting.

Recti�cation

Recti�cation of current is described by small non-ohmic current at relatively large

voltages. It is often asymmetrical and therefore requires an electrical asymmetry

introduced via χ, when it takes values 0 ≤ χ < 1/2 and 1/2 < χ ≤ 1. To discuss

this e�ect we shall �rst consider symmetrical solutions such that the only potential
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Figure 7.8: A comparison between equations (7.35) and (7.38) (black dashed
curve) describing single-species current vs. concentration. The kinetic equation
solution only di�ered with its reduced MM form by ∼ 2pA suggesting that it
should result in good �tting to data.

source of asymmetry is from χ. If we de�ne the constant A,

Ab = exp
[
(∆E − kT ln

(
xb
)
−∆µ̄b)/kT

]
, (7.41)

then we can rewrite current as,

I = q/2Dc/L2

(
1

1 + A exp[(−qz(1− χ)φ)/kT ]
− 1

1 + A exp[(−qz(0− χ)φ)/kT ]

)
(7.42)

There are two distinct regimes now to obtain recti�cation either A� 1 or A� 1.

Thus if we �rstly consider the large A limit we approximate the sigmoidal function

as exponential growth,

I = q/2Dc/L2
(
A−1 exp[(qz(1− χ)φ)/kT ]− A−1 exp[(qz(0− χ)φ)/kT ]

)
. (7.43)

Current only produces recti�cation in either the positive or negative voltage do-
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main depending on χ. If we are in the non-recti�ed domain then the approxima-

tion will break down when φ becomes large because it becomes quasi-exponential

growth. If we consider the positive φ domain then current will be dominated by

this �rst term, and if χ > 0.5 it will be recti�ed in the positive voltage domain.

With recti�cation in the negative voltage domain found when χ < 0.5.

If we now consider the reverse limit such that A� 1 the current can be expanded

as,

I = q/2Dc/L2 (A exp[(−qz(0− χ)φ)/kT ]− A exp[(−qz(1− χ)φ)/kT ]) . (7.44)

The value of χ needed for recti�cation is now reversed, such that when χ < 0.5 it

recti�es in the positive voltage domain.

These two expressions for recti�ed current are similar but not exact and thus o�er

a distinct form of recti�cation. Physically this recti�cation requires an asymmetry

in the position of the binding site and an energy barrier/well to the binding energy

given from A.

Figure 7.9 displays the normal and recti�ed current under standard conditions, for

large A (left) and small A (right). In both �gures the dashed lines indicate the

theoretical current calculated from the approximate expressions. In both �gures

the approximations hold well for the recti�ed domain but break-down in the op-

posite domain at ∼ 0.1V corresponding to ∼ 4kT because this contribution is of

the order of A. This con�rms that varying ∆µ̄ and χ can produce recti�cation.

7.2.4 Two state occupancy

To focus on the occupancy pro�le, we shall again write the occupancy as from the

ensemble average,
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Figure 7.9: Plots A, and B compare recti�ed current (and its approximations
in dashed curves) against symmetrical current under standard parameters. The
approximations are only derived for the small voltage and recti�ed regime, and
so beyond this are not valid. This results in exponentially increasing current,
and hence we have limited to the current [+30,-30]pA. The approximations other-
wise closely agree with the numerical current, thereby con�rming how to observe
recti�cation.

〈n〉 = 2P ({2}) + 3P ({3}). (7.45)

If we recall the probabilities can be simpli�ed using the di�usion-limit of the tran-

sition rates and so occupancy can be written as,

〈n〉 =
4Dc/L2 + (ΓL23 + ΓR23)

2Dc/L2
. (7.46)

There are three established domains to investigate: �rst the equilibrium/linear

response, second general non-equilibrium conditions and �nally far from equilib-

rium limiting conditions. The �rst and the latter are easy to identify because we

know that at equilibrium we exactly recover the GCE probabilities. At limiting

non-equilibrium conditions such as a large voltage drop and zero concentration

drop (or anything in between) the probabilities converge to 1/2.

To discuss this second domain we need to investigate the nature of the rates. If we

reintroduce the constant Ab (de�ned earlier), then we can rewrite the occupancy

as,
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〈n〉 = 2 +
2 + ALe−(1−χ)qφ/kT + ARe−(0−χ)qφ/kT

2 + 2ALe−(1−χ)qφ/kT + 2ARe−(0−χ)qφ/kT + 2ALARe−(1−2χ)qφ/kT
. (7.47)

which reduces to the GCE occupancy under equilibrium conditions because AL =

AR and we can factor terms. To simplify this expression it can be approximated

by removing either left or right voltage terms depending on the voltage domain.

Thus if we consider that φ is positive, then the occupancy becomes,

〈n〉 = 2 +
2 + ARe−(0−χ)qφ/kT

2 + 2ARe−(0−χ)qφ/kT + 2ALARe−(1−2χ)qφ/kT
. (7.48)

which is a step function vs. φ. If this condition is not met then the terms:

ALe−(1−χ)qφ/kT and ALARe−(1−2χ)qφ/kT are always very small and the occupancy

is �xed at 2.5. In �gure 7.10 we plot this occupancy relationship for di�erent

symmetrical values of Ab where dashed line is the approximation and solid line

is the full expression given by equation (7.47). The approximation clearly breaks

down when close to equilibrium when the energy barrier (or well) is small. This is

because the contribution from the cancelled term is non-negligible here.
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Figure 7.10: Comparison of occupancy vs. +φ for a range of A values. The
dashed line denotes our approximation and the full line is equation (7.47).
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To discuss how occupancy behaves vs. concentration we should collect and explic-

itly show all concentration terms. Thus to simplify we shall introduce the constant

Bb,

Bb = exp
[
(∆E − qz∆φb −∆µ̄0)/kT

]
, (7.49)

analogous to Ab introduced earlier. The occupancy now can be written as,

〈n〉 = 2 +
2x2e2∆µ̄D/kT + x(BL +BR)e∆µ̄D/kT

2x2e2∆µ̄D/kT + 2x(BL +BR)e∆µ̄D/kT + 2BLBR
, (7.50)

where ∆µ̄D is the Debye-Hückel contribution. Thus in the large concentration

limit the occupancy reduces converges to 3. The functional dependence on the

RHS of the expression is our e�ective adsorption isotherm,

Θ =
2x2e2∆µ̄D/kT + x(BL +BR)e∆µ̄D/kT

2x2e2∆µ̄D/kT + 2x(BL +BR)e∆µ̄D/kT + 2BLBR
, (7.51)

and is plotted vs. concentration in �gure 7.11. It produces a saturating function vs.

concentration in quasi-Langmuir form, due to the inclusion of the Debye-Hückel

interaction term. This can be seen from equation (7.51) because in the quasi

equilibrium limit BL ≈ BR = Be and therefore the isotherm can be reduced to its

equilibrium form.

If we consider the limit that probabilities equal each other and are therefore 1/2,

we can establish the condition,

ΓL01 + ΓR01 = ΓL10 + ΓR10. (7.52)

If we revisit our master equations then we can also establish an additional condi-

tion,
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ΓL10 + ΓL01 = ΓR10 + ΓR01, (7.53)

and hence if we sum these we �nd: ΓL01 = ΓR10 and ΓR01 = ΓL10. From inspection

of the rates this condition is always established if Ab ∼ 1, otherwise it requires

an applied voltage. Maximal current also requires a large applied voltage and so

the rates take their limiting form 0 or Dc/L2 and therefore current is immediately

±qDc/(2L2).
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Figure 7.11: E�ect of ∆µ̄0 on the adsorption isotherm calculated at 10mV. The
orange and yellow curves were multiplied by 20 and 200 respectively.

7.2.5 E�ect of the transition rate normalisation

To investigate the e�ect of the normalisation of the transition rates on the results

we shall consider alternative rates with a normalisation of 1. If we also simplify

slightly by taking the only concentration dependent term to be the mole fraction

then we can recover rates of the form,
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Γbn,n+1 = xb
Dc

L2
, Γbn+1,n =

Dc

L2
exp
[
(∆E −∆µ̄− qz∆φb − kT ln(∆W ))/kT

]
,

(7.54)

which are similar to those used in many rates models [31, 115, 116, 117, 118, 120,

122], albeit with more energy terms. It is clear that we have immediately lost

complete dependence on the energy barrier and so incoming rates are independent

of voltage and importantly the contributions to the energy barrier through inter-

actions in the �lter. Likewise the outgoing rates are independent of the logarithm

of concentration term. This will have profound e�ects on the current and oc-

cupancy because the �energy barrier� for the rates is now ill de�ned and will not

recover the properties as de�ned from the statistical theory; therefore this choice

of normalisation seems �awed.

To simplify the analytical calculations we shall again consider a two-state system

({n+1}, {n}). The check-list of properties that we have to investigate is as follows,

1. Recover equilibrium distributions and detailed balance conditions.

2. In the linear response regime, recover CB phenomena or demonstrate another

explainable physical property, and recover adsorption saturation behaviour

vs. c.

3. Recover suitable I − V and I − C curves far from equilibrium. The current

and occupancy must relate to each other and to the energy barriers.

4. Successfully compare to experimental data, such that the data can be ex-

plained in a self-consistent manner through the transition rates.

The �rst point is clear because our rates are de�ned from detailed balance, and

the arguments introduced earlier apply regardless of the normalisation. Thus any

form of GCMC rates derived will satisfy the �rst property.

In the linear response regime, the behaviour of the non-equilibrium probabilities
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recovers the GCE behaviour. Hence we can observe the staircase vs. Qf and

adsorption. The conductance however has to be calculated. The linearised current

for the optimal transport regime takes the following form when the normalisation

equals 1,

IC=1 =
qDc/L2

2kT
× x exp[(∆E −∆µ̄)/kT ](qzφ+ δη)

x+ exp[(∆E −∆µ̄)/kT ]
. (7.55)

This is a step function vs. Qf , in contrast to the hyperbolic peak otherwise found.

In �gure 7.12 we compare the current calculated with a 10mV voltage drop from

equations (7.27) and (7.55). The former current produces a hyperbolic peak at

the midpoint of the occupancy step as explained by CB whilst the latter gives

us a current step which takes a maximum value when the �lter is in the stable

ground state. This doesn't make physical sense because the �lter is in a stable

or blockade state, meaning that there is a large energy barrier for entry. This

therefore should result in a small conductance because particles can only escape

the �lter, and should not result in peak conductance. The amplitude is also small

because the incoming rate is multiplied by mole fraction rather than concentration,

and so is divided by ∼ 55. To obtain suitable current values we would need to

take this water concentration term into the other rate. Thus in this normalisation

we also now have high sensitivity and �ne tuning in the values of the rates, which

is an unwelcome property. The �gure on the right con�rms that the occupancy

properties are una�ected close to equilibrium.

If we know consider the non-equilibrium regime then we can write the current as,

IC=1 =

qDc

L2
× xLe(∆E−∆µ̄R−qz∆φR−kT ln(∆W ))/kT − xRe(∆E−∆µ̄L−qz∆φL−kT ln(∆W ))/kT

xL + xR + e(∆E−∆µ̄R−qz∆φR−kT ln(∆W ))/kT + e(∆E−∆µ̄L−qz∆φL−kT ln(∆W ))/kT
,

(7.56)

133



Q
f
 [q]

-3 -2.8 -2.6 -2.4 -2.2 -2

I [
pA

]

0

0.2

0.4

0.6

0.8

1

1.2
C=1/(1+exp[∆G

K
])

C=1

(A)

Q
f
 [q]

-3 -2.8 -2.6 -2.4 -2.2 -2

〈 
n 
〉

2

2.2

2.4

2.6

2.8

3
(B)

Figure 7.12: Comparison of single-species current and occupancy calculated for
di�erent transition rate normalisations. Blue denotes the di�usion limited rate,
and orange C = 1. Plot (A) shows the profound e�ect of this normalisation on
the current, where the staircase is multiplied by a factor of 10. Plot(B) highlights
the lack of e�ect on the occupancy pro�le.

which under symmetrical solutions saturates to ±qDcx/L2 which may be suitable

for experimental comparison. In the I − C regime we can exactly recover MM

saturation if we consider symmetrical solutions,

IC=1 =
xkm
x+K

(7.57)

km = qDc/L2 × e(∆E−∆µ̄R−qz∆φR−kT ln(∆W ))/kT − e(∆E−∆µ̄L−qz∆φL−kT ln(∆W ))/kT

2

(7.58)

K =
e(∆E−∆µ̄R−qz∆φR−kT ln(∆W ))/kT + e(∆E−∆µ̄L−qz∆φL−kT ln(∆W ))/kT

2
. (7.59)

In �gure 7.13 we display the I − V and 〈n〉 − V curves. Maximum current is

very small in this new normalisation but appears to saturate as expected at higher

voltages. The occupancy pro�le is very di�erent between normalisations with large

voltages resulting in the �lter converging towards its ground state. This is again

due to the imbalance in energy dependence of the rates with only the outgoing

rates depending on voltage.

Thus we can conclude that the e�ect of the normalisation is profound. If we
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Figure 7.13: Plots A and B compare the current and occupancy pro�les vs.
voltage between the di�usion limited (blue) and C = 1 normalisations. The current
when C = 1 is ∼ 25 times smaller in magnitude, and the occupancy pro�le behaves
very di�erently with it converging to empty at large voltages.

consider a normalisation such that we recover �traditional� rates then we lose a

physical description of conduction through the �lter, and require �ne tuning of the

transition rates and their amplitudes. Although under certain conditions it may

be justi�ed and may result in a better quality of �tting to experimental recording,

this normalisation lacks physical reasoning in our theory because it cannot recover

the linear response properties. This will also be explored in the next section when

we compare directly to experimental recordings.

7.3 Experimental comparisons

To proceed with experimental comparisons we need to establish a protocol. Data

was extracted using computational software WebPlotDigitizer [238] as accurately

as possible. The �tting will be implemented via the lsqcurve�t function in Matlab,

which uses the non-linear least-squares method to �t the theory to data. The

equation for theoretical current has to be written as a function of the experimental

data points and �tting parameters x which are found from minimising the function

according to,
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minx|F (x, xdata)− ydata|2 = minx
∑
i

(F (x, xdatai)− ydatai)2. (7.60)

The computational cost is increased when we have to consider a full set of kinetics

equations. We have seen earlier that single species conduction is exactly described

by the reduced model, due to the large electrostatic barrier. We shall use this

model, although convergence in the two models calculation of current is to be

veri�ed. This function requires equal data sets, and so if this condition is not met,

data is selectively reduced to enable comparison, and then returned for the �nal

�gure. If the data set is very small relative to the others then it is neglected.

The �tting parameters used will be the excess chemical potential di�erence for

each species ∆µ̄bi,0, the e�ective rate of di�usion α and the fraction of the voltage

drop felt by each ion χ. Fitting will be analysed and discussed for each data set

individually.

To quantify the quality of data �tting we shall use the residual standard error for

each curve. It is given by the square root of the sum of squared residuals divided

by the number of degrees of freedom,

σ̂ =

√∑
j ε̂

2
j

n̂
, (7.61)

∑
j ε̂

2
j can be calculated directly for each curve from its residuals and n̂ is equal

to the total number of variables for that comparison subtracted from the total

number of data points.

In the next subsection we shall compare the theory directly to �ve data sets [11, 12,

15, 14, 13]. The �xed charge was taken to be Qf = -2.5q, except if pH was varied

and the temperature was assumed to be 300K unless states in the experiment.
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7.3.1 Symmetrical solutions

I − V recordings have been collected for Shaker [11] under six di�erent symmet-

rical concentrations. The current at 0.09V has then been used to calculate a

conductance (G) vs. concentration �gure for visual comparison. The concentra-

tions were symmetrical and so we were able to �t using just three free parameters:

∆µ̄bK,0 = 4.19 kT, χ = 0.59, α = 0.052. The �tting is made in plot A of �gure 7.14,

with the inset plot of B being the plot of residual standard error for each concen-

tration. The �tting is in close agreement particularly at low concentrations. The

concentration dependence of the excess chemical potential was introduced via the

Debye-Hückel term which is known only to be valid for very low concentrations.

This could explain the minor discrepancies between theory and data at the large

concentrations.

Symmetrical I − V data from KcsA [12] is compared in �gure 7.15, with the ex-

perimental solutions given by the legend. The �tting parameters are given in table

7.1, and demonstrate an additional concentration dependence in ∆µ̄bK,0. In plot

(B) these display a quasi-quadratic dependence on concentration with the points

being �t by the curve −0.6c2 +2c+2.2. The agreement results in residual errors of

2.14, 0.43, 1.56, 2.62, and 2.96 (in [pA]) ranging from 1.5 to 0.25 M respectively.

In contrast to the previous comparison errors do not increase with concentration,

which is partially due to the compensation in allowing ∆µ̄bK,0 to vary, but also

because the magnitudes of current vastly di�er between concentrations. The e�ect

of this latter point is as a result of the imposed di�usion limit of our transition

rates. This bounds our rates to the values [0,Dc/L2] and thus bounds the current,

where as in the experimental conditions the current approaches saturation for each

di�erent concentration at a vastly di�erent magnitude.
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Parameter Concentration [M]
0.25 0.5 0.75 1 1.5

χ 0.5 0.5 0.5 0.5 0.5
α 0.49 0.49 0.49 0.49 0.49
∆µ̄ [kT] 3.77 3.53 3.36 2.95 2.66
Error [pA] 2.14 0.43 1.56 2.62 2.96

Table 7.1: Fitting parameters and residual errors for comparison with [12].

7.3.2 Asymmetrical solutions

We shall compare the theoretical with experimental data from [13]. The experi-

ment considers varied extra-cellular solutions ranging from 0.01 to 0.6M, and �xed

intra-cellular solutions of 0.2M K+. In equation (7.33) we have demonstrated that

the theoretical current can be reduced to the di�erence in incoming transition rate,

between left and right (or intra-and extra-cellular) rates. Consequently at large

voltages current is solely described by the behaviour of each rate. This ensures that

in the domain where all the transition rates are �xed (in this instance the extra-

cellular solutions), currents quickly converge. This is not seen experimentally, and

hence we will have to vary both ∆µ̄ in each bulk even when the concentration is

constant. This implies that the opposite bulk solutions can in�uence the complete

energy pro�le in the channel. Therefore, the �tting parameters used will be a

constant α and χ and a varying ∆µ̄ for each concentration in both bulks.

Figure 7.16 gives the results of the �tting with the �tting parameters in table 7.2.

Theoretical current �ts well to the data with all the residual errors being below

0.12 pA. The averaged excess chemical potential from both bulks is calculated

in plot (B), displaying a linear relationship vs. the extra-cellular concentration.

There are only four points of comparison and so a strong relationship cannot be

determined, however, the �tting appears to be reliable.
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Parameter cRK [M]

0.01 0.02 0.04 0.06

χ 0.57 0.57 0.57 0.57

α 0.09 0.09 0.09 0.09

∆µ̄RK,0 2.87 2.66 2.22 1

∆µ̄LK,0 4.70 3.69 2.67 1

Error [pA] 0.12 0.07 0.05 0.04

Table 7.2: Fitting parameters and residual errors for comparison with [13].

7.3.3 E�ect of pH and temperature

Comparison can be made with [14] where the e�ects of varying pH and temperature

were investigated in KcsA. I − V curves were produced with varying pH and

temperature under asymmetrical KCl solutions with intra - and extra -cellular

K+ concentrations of 0.2M and 0.02M respectively (the presence of Mg++ was

ignored). The temperature is known to strongly a�ect the excess chemical potential

[193, 194, 195], whilst pH directly a�ects the dipolar charge from the permeation

pathway oxygen atoms (nf ). Temperature also a�ects the di�usion coe�cient

[239, 188], which has to be estimated in the channel. Hence we should allow for

some variation in the �tting parameters, and therefore, maintain a constant χ,

vary α between either temperature, and �t ∆µ̄bK,0 for each condition (noting that

pH7.2, T=295K is repeated). In the pH comparisons the di�erence in ∆µ̄bK,0 with

its value at pH 7 will be attributed to the electrostatic energy and the e�ective

value of nf will be calculated.

Figure 7.17 displays the �tting of theory to experiment with the full range of �tting

parameters given in table 7.3. It can be seen that there is good �tting to data

with small residual standard errors. At T = 295K the errors (in [pA]) were: 0.34,

0.29 and 0.32 for pH's 7, 7.2 and 6.8 respectively, whilst the error was slightly

larger when T was varied at 0.62 [pA], indicating it has a slightly poorer quality
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Fitting parameter Temperature (K)
295 300

α 0.12 0.45
χ 0.44 0.44
∆µ̄LK,0 (pH 7.2) 1.95kT 3.52kT
∆µ̄LK,0 (pH 7) 3.66kT N/A
∆µ̄LK,0 (pH 6.8) 4.07kT N/A
∆µ̄RK,0 (pH 7.2) 2.29kT 3.59kT
∆µ̄RK,0 (pH 7) 4.01kT N/A
∆µ̄RK,0 (pH 6.8) 4.42kT N/A

Table 7.3: Fitting parameters for experimental comparison with [14].

of �t however it is still small. The ratio of e�ective di�usion coe�cients in the

channel reveals a four-fold increase with temperature as Dc
K,305/D

c
K,297 = 3.7. This

is slightly larger than estimates in [239], although temperatures are exceeded in

this experiment and we are discussing the di�usion coe�cient in the channel and

not the free bulk solution.

To calculate the e�ective nf due to the variation in pH, we calculate the new

e�ective nf from account of the change in ∆µ̄bK,0. Hence the charge in the �lter

can be calculated from,

nf = −
5Uc − (∆µ̄bK,0 −∆µ̄bK,0|pH=7)

Uc
, (7.62)

resulting in nf ∼ −2.49 at pH 6.8, and nf ∼ −2.55 at pH 7.2. This creates

a negligible in�uence on each oxygen atom as the e�ective charge contribution

varies by ∼ +0.0005q and ∼ −0.003q for each of the 20 atoms, as the pH drops to

6.8 or rises to 7.2 respectively.

7.3.4 Mutagenesis data

Mutagenesis experiments can reveal important properties of the structure, because

mutations may a�ect the pore structure and hence conduction properties. This

is particular seen in the work of [15], whereby the threonine in the selectivity
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�lter, was replaced by cysteine a�ecting the S4 site. I − V recordings were made

under symmetrical solutions of 0.2M K+ and Rb+ for the wild-type (WT) and its

mutant (MUT). Theoretical current will be �tted directly against the I − V data,

meanwhile its G− C curve will be visually compared to the experimental values.

We note here however that there are inconsistencies in the data because it is taken

from a di�erent experiment [16]. The mutation directly a�ects the properties of

the selectivity �lter and so ∆µ̄K and χ were allowed to vary between channel type,

whilst α was �xed.

If we �rst discuss the K+ current, then plot A in �gure 7.18 shows the quality of

�tting, with residual standard errors of: 1.39 for the WT and 0.774 for the MUT.

The larger error in the WT can be attributed to the negative voltage domain where

the theory appears to deviate from the data. In general however there appears

to be a good �t to the data. This choice of �tting parameters was then used to

calculate conductance vs. concentration, for visual comparison with data from the

WT and MUT calculated at 0.18V and 0.2V respectively. The �tting is closer for

the MUT, but there are large deviations for the WT. In part these large deviations

can be attributed to the fact that it is from a di�erent experiment [16]. This is

highlighted with the conductance at 0.2M, because the I − V data predicts 100pS

which is greater than the 70pS given, and so it would be impossible to provide a

good �tting to both sets of data using the same parameters. However the trend of

the G − C data appears consistent with other experiments such as [240], and so

even if the amplitudes varied, it would be unlikely that the conductance calculated

with these parameters could �t well to the data. These discrepancies maybe as

a consequence of �tting to varying concentrations with the only concentration

dependence of ∆µ̄K being from the Debye-Hückel terms.

In plot A of �gure 7.19 we display the �tting of Rb+ current to the same channel

again varying α and ∆µ̄ between channel types. The mutation slightly enhances

the conductance through the �lter when compared to the WT, and this resulted

in a larger ∆µ̄. If we compare these parameters with the previous results for K+
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conduction, we can estimate that the selectivity energy barriers from ∆∆µ̄K,Rb.

These yield the selectivity +1.48kT for the wild type and -1.66kT for the mutant,

suggesting that the mutation switches the selectivity in favour for Rb+. The

�rst result seems reasonable because the WT K+ current is ∼ 4 times larger

than its Rb+ counterpart, however the MUT selectivity value seems implausible.

There is minimal favouring of Rb+ current in the mutant, and so this value should

be small. There are however di�erences between α and χ and so the complete

selectivity should take these into account and hence this is only an estimate. The

theory agrees with the trend of the G − C data but again is at a slightly larger

amplitude. However, the experimental I −V and G−C data sets are inconsistent

(and appearing to be from a di�erent experiment), and so an exact �t cannot be

expected.

The results of K+ and Rb+ �tting suggest that the mutation has a greater in�uence

over K+ conduction because χ and ∆µ̄K vary by ∼ 0.2 and ∼ 2.7kT. respectively.

In Rb+ however these appear almost identical between channel types varying by

∼ 0.01 and ∼ 0.5kT respectively. Comparisons with this data can be improved

by extending the model to distinguishable sites, and thus being able to directly

calculate the e�ect on S4, and so it requires further work.
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Figure 7.14: Plot A shows the result of �tting of theory to data
from [11], with three free parameters: ∆µ̄bK,0 = 4.19kT , χ = 0.59,
α = 0.052. Plot B shows the result of comparison to theG−C data
calculated at 0.09V and its inset demonstrates the relationship
between residual standard error and concentration. As expected
the errors increase with concentration at least in part due to the
break-down of the Debye-Hückel approximation.
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Figure 7.15: Plot A demonstrates the �tting of the theory to
data from [12], with the parameters given in table 7.1. Plot B
demonstrates the quasi-quadratic dependence of ∆µ̄b0 on concen-
tration.
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Figure 7.16: Fitting theoretical current within the single-species
model to experimental data from [13], and using the parameters
given in table 7.2.
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Figure 7.17: Fitting theoretical current within the single-species
model to experimental data from [14], and using the parameters
given in table 7.3. Plot A investigates the e�ect of varying pH
when T=295K, and B shows the e�ect of varying temperature at
pH 7.2.
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Figure 7.18: Fitting of theory to I − V data from [15] with
�tting parameters: α = 0.17 WT: ∆µ̄bK,0 = 4kT , χ = 0.24, MUT:
∆µ̄bK,0 = 1.3kT , χ = 0.45. The predicted G − C curves are then
compared with data for the MUT again from [15] and WT from
a di�erent experiment [16].
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Figure 7.19: Plot A shows the theoretical current, and the result
of its �tting to experimental I − V data for Rb+ conduction from
[15]. The �tting parameters were found to be: α = 0.06 WT:
∆µ̄bRb,0 = 2.52 kT, χ = 0.43, MUT: ∆µ̄bRb,0 = 2.98 kT, χ = 0.42.
The residual errors were 0.45 for the WT and 0.44 for the MUT
demonstrating a good �t. Plot B compares the G−C curves with
the data given in [15] and [16].

148



7.4 Summary

In this chapter we have derived a single-species kinetic model that operates far

from equilibrium and validated this with �ve sets of experimental data. To do this

we have used the grand canonical Monte Carlo rates as introduced in Chapter 6

and the grand canonical ensemble we derived in Chapter 5. This involved using the

state space to de�ne a set of neighbouring-only master equations. The conditions

required to model the experimental properties, recti�cation and Michaelis-Menten

saturation were derived from consideration of the optimal transport regime. This

enabled the validation of the theory by comparing the theoretical current with

experimentally recorded current in �ve data sets [11, 12, 15, 14, 13]. These data

sets covered the e�ects of mutagenesis, pH and temperature on the conducting

properties of KcsA and Shaker.

The derivation of conductance within linear response revealed a set of di�usion-

limited conductance peaks vs. Qf . This enabled Fick's law to be derived, using

the de�nition of jump di�usion and statistical properties speci�ed in Chapter 5.

The comparison of theoretical current against the �ve data sets found:

1. There was a close �t to the data from the Shaker channel [11] with only three

�tting parameters required. The residual errors were small but increasing

with concentration suggesting the breakdown of the Debye-Hückel term.

2. There were slight discrepancies for the lower (and highest) concentrations

when �tting to the current-voltage data from KcsA [12]. The excess chemical

potential had to vary with concentration and increased in a quasi-quadratic

dependence.

3. There was a close �tting to the data on asymmetrical solutions in KcsA

from [13]. The excess chemical potential di�erences had to be varied in both

bulks, but the average value provided a linear relationship vs the varying
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concentration.

4. There was a very close �t to the data on the e�ects of temperature and

pH from KcsA [14]. The temperature resulted in a four-fold increase in the

e�ective di�usion coe�cient through the channel, and increased the excess

chemical potential di�erence for both bulks. The pH in�uenced the e�ective

charge in the �lter with pH 6.8 shifting the value of nf to ∼ 2.49 and pH 7.2

to nf ∼ 2.55.

5. The I − V curves demonstrated a reasonable �t to the data on the e�ect of

mutagenesis on KcsA [15]. Experimentally it was observed that the mutation

had a large e�ect on K+ conduction. Consequently the �tting parameters

varied with a reduction of the excess chemical potential di�erence (by ∼

2.7kT) and increased electrical symmetry with χ ∼ 0.448 between the mutant

and wild type. The e�ect on Rb+ however was minimal with minor changes

in ∆µ̄Rb and χ. The wild-type conductance-concentration curves do not

accurately describe the data presented although we note that this was from

a di�erent experiment.

The discrepancies in some of the data �tting can be explained in part by the tran-

sition rates, and the normalisation used. This normalisation ensures that the rates

and hence the current saturates to the same value ∝ Dc/L2 which is independent

of the concentration. Furthermore, the assumption of indistinguishable sites can

also be relaxed with the introduction of a distinguishable sites theory. This will

increase the total number of states, and allow permeation between the binding

sites. Further research may be required. Nevertheless, the results of this chapter

suggest that a kinetic model using GCMC rates can accurately describe some of

the permeation properties of the channel.
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8. Multi-species kinetic theory

8.1 Introduction

Biological ion channels operate in connection with multi-species solutions, and

this introduces a notion of selectivity. Multi-species models are less well developed

than single species models possibly due to the choice of transition rates or lack of

development from a statistical theory that can account for the di�erent binding

energy terms. We shall extend our single-species model by introducing an addi-

tional species to investigate its e�ect on the conductivity and selectivity. Thus

we have a selectivity �lter of M binding sites di�usively and thermally coupled to

bulk solutions b of mixed species X and Y . We shall use this to introduce and

derive general equations before a detailed analysis is undertaken of alike-charge

selectivity in KcsA. Standard �tting conditions unless stated otherwise are given

in Appendix A.8 and table A.3.

8.1.1 Kinetic equations

The available transition states are again denoted by the set {nj} and as we have

discussed with the equation for current (7.8) we have to be mindful of mixed

states. Thus the full set of master equations describing transitions can be written

in matrix form,
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

Ṗ ({0})

Ṗ ({X})

Ṗ ({Y })
...


=


−ΓX01 − ΓY01 ΓX10 ΓY10 0 . . . 0

ΓX01 −ΓX10 − ΓX12 − ΓY12m 0 ΓY2m1 . . . 0

... . . . . . . . . . . . .
...

 ·


P ({0})

P ({X})

P ({Y })
...


. (8.1)

we have explicitly written it for two species X and Y but if multiple species are

involved the mixed state transition rate ΓY2m1 is shifted horizontally.

8.1.2 Conduction in the linear response regime

The mixed species equation for linear response can be derived in a similar approach

to our single-species equation. The �rst step is to linearise the non-equilibrium

probabilities again such that they can be written with the linear response correction

term Ψ,

P ({nj}) = P e({nj})(1 + Ψ({nj})) (8.2)

which is valid for all states {nj}. This expression can be used to linearise each

nj to nj + ni master equation1, which is de�ned separately for each species. The

correction terms are related as follows,

Ψ({nj})−Ψ({nj + ni}) = (χ− 1/2)ziqφ/kT . (8.3)

This is identical to the single-species result, and the result of Beenakker [108] (see

Chapters 4 and 7). The linearised current is thus given by

1This reduced master equation takes the form,

0 = [ΓL,i
nj ,nj+ni

+ ΓR,i
nj ,nj+ni

]P ({nj})− [ΓL,i
nj+ni,nj

+ ΓR,i
nj+ni,nj

]P ({nj + ni}).
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Ii =
q

kT
×

M−1−nw∑
nj=0

P e({nj})f(∆Gi({nj}))
[

1

2
δηi +

1

2
ziqφ

]
. (8.4)

This appears the same as equation (7.26) although we note that the equilibrium

probability depends on both species, and this is an important di�erence. The

conductance is given by Gi = Ii/δµi,

Gi =
q

2kT
×

M−1−nw∑
nj=0

P e({n})f(∆Gi({n})). (8.5)

8.2 Selectivity vs. conduction for the KcsA �lter

To investigate the selectivity and conductivity properties of K+ channels we shall

again consider the crystallised KcsA geometry and K+ vs. Na+ conduction. This

model is identical to the previous statistical theory model except now we can move

to the non-equilibrium regime.

The set of states in the �lter {nj} is again given by all ten possible con�gurations of

0-3 ions of these two species. This is again following the assumption of isoenergetic

interaction with the sites. Transitions between these states can occur di�erently

to the statistical theory because we can enforce which transitions are possible and

model far from equilibrium. These conditions are described in Chapter 7, and

ensure that only transitions amongst neighbouring states are possible, we do not

exceed the maximum or minimum occupancy of the �lter and must obey the reality

that an ion of species i can only exit the �lter if it is initially present.

8.2.1 Linear response regime

In �gure 8.1 we plot the occupancy and current from the master equations under

standard �tting conditions. The Na+ properties are multiplied by 50 to aid view-
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ing. K+ and Na+ form conduction peaks with di�ering in peak position and also

magnitude. The K+ peaks form at the midpoint of the occupancy steps as pre-

dicted by CB but the Na+ peaks don't and are also of di�ering magnitudes. This

is as a direct consequence of the multi-species conduction and will be discussed in

analytical detail in the next section.
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Figure 8.1: Na+ (orange) and K+ (blue) occupancy and current under standard
�tting conditions. The occupancy resembles a staircase for both species with Na+

being ∼ ×50 smaller than K+. Current forms peaks with IK again centred on
∆GK = 0. INa is also ∼ ×50 smaller than IK but crucially form peaks as opposed
to a staircase.

Reduced model

The optimal transport regime in KcsA can be described by the following {K+K+},

{K+K+K+} and {K+K+Na+}. Therefore the set of master equations can be

reduced to the following form,


Ṗ0

ṖK

ṖNa

 =


−ΓK23 − ΓNa23 ΓK32 ΓNa32

ΓK23 −ΓK32 0

ΓNa23 0 −ΓNa32

 ·

P0

PK

PNa

 . (8.6)

The steady state solutions can be found from applying Cramer's rule and are,
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P0 =
ΓK32ΓNa32

ΓNa23 ΓK32 + ΓNa32 ΓK32 + ΓNa32 ΓK23

(8.7)

PK =
ΓK23ΓNa32

ΓNa23 ΓK32 + ΓNa32 ΓK32 + ΓNa32 ΓK23

(8.8)

PNa =
ΓK32ΓNa23

ΓNa23 ΓK32 + ΓNa32 ΓK32 + ΓNa32 ΓK23

. (8.9)

It is clear that all probabilities are dependent on the rate for conduction of both

species. The equation for current for this reduced state space is given by,

Ii = q
(
P0 · ΓL,i23 − Pi · Γ

L,i
32

)
, (8.10)

where again i denotes either K+ or Na+. This can be simpli�ed using the di�usion

limit of the rates to yield,

IK = qDc
K/L

2 (ΓL,K23 − ΓR,K23 )
ΓNa

23

ΓNa
32

ΓK32 + ΓK32 + ΓK23

, (8.11)

with a similar form calculable for INa. If cNa = 0 then the transition rate ΓNa23 → 0

and we recover exactly equation (7.33).

If we again introduce the simpli�ed notation of ∆Gi for either species energy

barrier (as in the statistical theory) then the derived expression linear response

conductance reduces to,

GK =
qDc

K/L
2

2
× e−∆GK/kT

(1 + e−∆GK/kT )(1 + e−∆GK/kT + e−∆GNa/kT )
, (8.12)

for K+. It is immediately clear that with K+ selectivity such that: ∆GK � ∆GNa

we can neglect the Na+ dependence and exactly recover our previous single-species

result. The linear response expression for Na+ conduction takes the following form,
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GNa =
qDc

Na/L
2

2
× e−∆GNa/kT

(1 + e−∆GNa/kT )(1 + e−∆GK/kT + e−∆GNa/kT )
. (8.13)

The presence of K+ is felt in the denominator and explains the di�ering amplitudes

as seen in �gure 8.1 because the permutations factor di�ers depending on the

transition. In the �rst transition of 0 to 1 ions the permutation factor is identical

for both species and so has negligible e�ect but the latter transitions involve mixed

states which have the e�ect of decreasing the selectivity ∆∆GK,Na. The Na+

conduction peak maximises at,

nf =
(2µNa − 10Uc + kT ln

[
e∆∆GK,Na/kT + 1

]
− 2kT log(3)))

4Uc
, (8.14)

which can be simpli�ed as we are in the limit ∆∆GK,Na � 1,

nf =
(µNa + µK − 10Uc − kT log(3)))

4Uc
. (8.15)

This corresponds to the transition ∆GNa + ∆GK = 0. Physically this means

that the energy barrier for a K+ ion to leave the �lter must be equal to the energy

barrier for a Na+ ion to enter. Hence it maximises at the minimum energy required

to remove the excited K+ ion and replace it with Na+ with the following sequence,

{K+K+K+} ↔ {K+K+} ↔ {Na+K+K+}. (8.16)

Selectivity

There has been discussion about the de�nition of selectivity in non-equilibrium

models [121, 241, 242]. Here we shall de�ne selectivity from the ratio of species

current. Since we have analytical expressions for conductance in the linear response

regime which are proportional to current we can recover the selectivity,
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S =
Dc
K

Dc
Na

1 + e∆GNa/kT

1 + e∆GK/kT

δµNa
δµK

. (8.17)

The �nal term in the product is the ratio of the non-equilibrium gradients of the

species. This only di�ers when there is a large chemical gradient di�erence between

species and so it reduces to unity for symmetrical solutions.

In �gure 8.2 we plot selectivity from the full set of master equations and our re-

duced expression vs. Qf . The solid curve is from the kinetic equations involving

all states meanwhile the dashed line is the reduced state space expression (8.17).

Selectivity across the full system is expressed as a series of �at-peaks of di�ering

amplitudes due to the permutations factors, separated by zero selectivity bands

which correspond toDc
K/D

c
Na. The di�erence between the curves con�rms the con-

clusion that the reduced state space is only valid when its states are energetically

favoured. The reduced state approximation can not take into account the lower oc-

cupancy states which lower the selectivity. The peak selectivity ratio in the optimal

transport regime is given by ∼ 1.5× exp[(∆µ̄K −∆µ̄Na − kT ln(3))/kT ] ≈ 200.
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Figure 8.2: Selectivity pro�le through the �lter vs. nf , from the full set of
master equations (solid line) and reduced state approximation (dashed) as given
by equation (8.17). The selectivity peaks to ∼ 1.5 × exp[∆∆GK,Na/kT ] which
di�ers between transitions due to the fact that Na+ conduction is favoured from
mixed states and hence ∆W takes di�ering values to its counterpart in IK .
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8.2.2 Non-equilibrium regime

If we consider the non-equilibrium regime then we shall �rst consider the I − V

curves for both species under symmetrical solutions. As we have discussed previ-

ously, a symmetrical �lter, i.e. identical solutions, and χ = 1/2 results in complete

symmetry about the voltage axis and so we need only consider one domain. Hence

in �gure 8.3 we consider the positive voltage domain for 0-3 ions on an extended

voltage range of 0 :→ 5V. On a physiological scale voltages across a cell membrane

can rarely exceed±0.2V. The current performs in agreement with the single-species

theory, whereby it saturates at degeneracies in probabilities between which tran-

sitions occur. Hence it forms distinct steps, as voltage increases. Meanwhile the

disfavoured ion only starts to permeate the membrane at large voltages and so

results in prolonged blockade at low voltages.
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Figure 8.3: Multi-species current vs. extended voltage, for di�erent values of
∆µ̄K and ∆µ̄Na under standard �tting conditions.
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If we consider the probabilities of all dual and triple occupancy states within the

range φ = 0 :→ 1V then we can verify the pattern of current. Hence if we

consider plots A-C in �gure 8.4 then we can match the saturation in current to

locations of degeneracies. K+ current displays a slight peak before each saturation

and this can explained because the states become degenerate at di�erent voltages.

The pure K+ states {K+K+} and {K+K+K+} require a slightly lower voltage to

become degenerate. As more states become degenerate the current dips because

Na+ current is also non-negligible and so it results in a blocking of K+ current.
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Figure 8.4: Multi-species probabilities corresponding to the current calculated
in �gure 8.3, vs. extended voltage, for di�erent values of ∆µ̄K and ∆µ̄Na corre-
sponding to those in �gure 8.3; and standard �tting conditions.

Reduced model

We have already demonstrated that multi-species current can be simpli�ed to

equation (8.11). For K+ and Na+ this can be written as,
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IK = q · D
c
K

L2
·
(

ΓL,K23 − ΓR,K23

)
· 1

2
Dc

K

L2 + ΓK32
ΓNa

23

ΓNa
32

(8.18)

INa = q · D
c
Na

L2
·
(

ΓL,Na23 − ΓR,Na23

)
· 1

2
Dc

Na

L2 + ΓNa32
ΓK

23

ΓK
32

. (8.19)

A clear outcome of this simpli�cation is the interaction between species, in the �nal

term of the product. If we �rstly consider IK then in the limit of large selectivity

ΓNa23 → 0 and ΓNa32 → 2Dc
Na/L

2 hence this �nal term in the denominator is very

small and current reduces to its single species form.

To be relevant for ion channel comparison we shall focus on the more physiolog-

ically important regime: 0 :→ 0.2V. In �gure 8.5 we compare current produced

from the full state space set of kinetic equations, with the reduced (dashed) cur-

rent. Previously in our single species model this has proven to provide an excellent

agreement. Only plot C demonstrates any disagreement and although this di�er-

ence is relatively small we shall have to use the full state space equations when

we perform experimental �tting for mixed-species solutions. This di�erence in C

is due to the state P ({K+Na+}) being non-negligible and hence providing an ad-

ditional source of current for both species. It is clear that varying ∆µ̄i leads to

recti�cation as seen in the single-species theory.

Selectivity

The I − V relationships have proven that as voltage increases Na+ starts to per-

meate through the �lter and hence provide non-zero current. Therefore, we should

expect the selectivity to drop vs. φ and also show limited e�ect from the energy

levels and so selectivity should be describable from our reduced state. In �gure 8.6

we compare numerical selectivity vs. analytical descriptions (dashed), we observe

reasonable agreement at large voltages as we expect. The analytical expressions

were derived in the large voltage limit and so there is some disagreement at low
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Figure 8.5: I − V curves comparing the full state space current (solid) with
reduced current (dashed) given by equations (8.18) and (8.19). Di�erences are
only seen in plot C where the reduced current loses some additional conduction
from one of the mixed states.

voltage when ∆µ̄K ∼ 8kT. To derive these analytical approximations we start from

the reduced state space ratio of currents,

S =
Dc
K

Dc
Na

× ΓR,K32 − ΓL,K32

ΓR,K32 + ΓL,K32

× ΓR,N32 + ΓL,N32

ΓR,N32 − ΓL,N32

. (8.20)

This expression can be simpli�ed by considering that when ±φ is large then its

negative exponential is zero exp[∓qφ/kT ]→ 0. Taking this limit we can write the

selectivity expression as,

S± =
Dc
K

Dc
Na

× 2e∆GNa/kT + e±qφ/2kT

2e∆GK/kT + e±qφ/2kT
(8.21)

where + and − denote positive and negative φ's. It is clear in either domain
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that at large voltages selectivity will reduce to the ratio Dc
K/D

c
Na. The posi-

tive and negative expressions are denoted in �gure 8.6 by dashes. In the low

voltage regime we can recover our quasi-equilibrium/linear response result that

S ∼ exp[(∆GNa −∆GK)/kT ]. Experimentally selectivity has been demonstrated

to lower with voltage for example the punch-through e�ect in KcsA [243] whereby

large voltages raise Na+ current such that it is forced through the �lter.
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Figure 8.6: I − V curves comparing the full state space current (solid) with
reduced current (dashed) given by equations (8.18) and (8.19). Di�erences are
only seen in �gure (C) where the reduced current loses some additional conduction
from one of the mixed states.

8.3 Summary

In this chapter we have derived a multi-species kinetic theory describing conductiv-

ity and selectivity far from equilibrium. This involved applying the grand canonical

Monte Carlo rates introduced in Chapter 6 and the multi-species grand canonical
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ensemble we derived in Chapter 5. The kinetic equations describe the transitions

between all the mixed-species states. This enabled the calculation of current and

selectivity relations at linear response and far from equilibrium.

The linear response properties were derived within the optimal transport regime for

KcsA. This resulted in selective conductance peaks, resonating for the disfavoured

Na+ ion when it ful�ls the sequence: {K+K+K+} ↔ {K+K+} ↔ {Na+K+K+}.

This selectivity barrier ensures that Na+ must always enter a stable �lter, and

hence it requires a K+ ion to exit. This is an important result in describing multi-

species conduction through ion channels.

The conductance and selectivity properties were calculated far from equilibrium.

The expression for selectivity was derived from the ratio of current with the op-

timal transport regime, thereby demonstrating that selectivity decreases with an

increasing potential di�erence. This e�ect is due to the energy contribution from

a large potential di�erence, forcing the ion to permeate even if it is energetically

disfavoured. This e�ect has been observed experimentally and is known as punch-

through [243].

The derivation of this multi-species kinetic theory represents an important result

because it describes the conductance and selectivity properties of the channel under

far from equilibrium conditions.
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9. Concluding remarks

9.1 Summary

In brief, this thesis has presented:

� A review of the physiological properties and structures of biological ion chan-

nels (see Chapter 2). This includes a discussion of narrow voltage-gated

channels and their homologues, in particular K+ channels.

� A derivation and discussion of the techniques used for physical modelling, in-

cluding comparison of their respective strengths and weaknesses (see Chapter

3). It establishes transition rates to be the main weakness of kinetic mod-

elling.

� The physical processes of conduction, occupation and selectivity of ions in

the selectivity �lter, including detailed derivations of Coulomb blockade, and

adsorption in analogous systems (see Chapter 4).

� The derivation of a general, mixed-species statistical theory of a biological

ion channel that describes occupancy and conductance. The key results of

this theory comprise: the derivation of free energy spectra; partition func-

tion; and, the statistical properties of the �lter. In addition, the thesis has

derived the generalised Einstein relation, thereby relating the conductivity

through the �lter to the �uctuations in particle number; and it has derived

the Eisenman selectivity relation from �rst principles (see Chapter 5).
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� A demonstration that grand canonical Monte Carlo rates are suitable for

application to ion channels, by comparing with the mean �rst passage time

theory (see Chapter 6).

� The derivation of a multi-species non-equilibrium set of master equations

(see Chapters 7 and 8). This includes analysis of the current, occupancy and

selectivity behaviour of the �lter within and beyond physiological limits. By

validating the theoretical current against di�erent experimental data sets,

we demonstrate a generally good data �t. This has enabled the in�uence

of pH, temperature, concentration and mutagenesis on conduction and the

energy pro�le to be explored.

9.2 Conclusions

Biological ion channels are known to be highly selective and the permeation process

involves many interactions. Yet the challenge of including the ion-ion, ion-water

and ion-channel interactions in a multi-species non-equilibrium scenario has re-

mained a long standing and fundamental theoretical problem, as demonstrated by

the multi-decade discussion of the famous paradox of selectivity vs. conductivity.

The primary focus of the thesis, therefore, was to derive the theory of multi-

species ion conduction through narrow biological channels, taking into account

ion-ion, ion-water and ion-channel interactions. The approach taken is based on

the �rst principles derivation of statistical and kinetic theory. The process of

derivation has led to new results that describe multi-species conduction in and far

from equilibrium in KcsA. It is anticipated that these results will be applicable

for other narrow voltage-gated ion channels, that they can be used to investigate

mixed-valence selectivity and that they can describe multi-species conduction of

neutral particles through zeolites.

The main results of the thesis are set out in more detail below:
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1. A derivation of the grand canonical ensemble for narrow channels with multi-

ple binding sites and mixed-species bulk solutions. This involved the deriva-

tion of the Gibbs free energy, and the application of standard techniques.

By calculating the distribution and partition function, we were able to de-

termine the occupancy and statistical properties of the �lter as a function

of the Gibbs free energy. This demonstrates that the selectivity between

alike-charged ions is purely as a result of the chemical interactions. The in-

clusion of mixed-species solutions enables the theory to be used to describe

the selectivity of ion channels under equilibrium physiological conditions.

2. A derivation of the linear response theory of multi-species conduction in

such channels. This involved relating the generalised Einstein relation back

to the statistical properties of the system. This resulted in di�usion limited

expressions for the conductivity of ions as a function of the variance in par-

ticle number. As a consequence, the derivation enables us to calculate the

multi-species conductivity of the �lter at linear response.

3. A derivation of non-equilibrium multi-species kinetic equations, that can de-

scribe the conductance. The transition rates in this model are derived using

the e�ective grand canonical ensemble we derived, and the grand canonical

Monte Carlo theory as developed by Roux. This demonstrates the con-

ductance and selectivity properties of the channel under far from equilib-

rium conditions and represents an important step beyond the linear response

regime.

4. The validation of the kinetic theory through comparison with experimen-

tal data sets taken from existing literature [11, 12, 15, 14, 13], including

current-voltage and conductance-concentration recordings. These �ve data

sets were identi�ed because they covered the e�ects of mutagenesis, pH and

temperature on the conducting properties of voltage-gated K+ channels. The

physical e�ect of each of these variables on the energy barriers for conduc-
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tion has been estimated. There was a generally good �t of the theoretical

current to the data, although some further research may be necessary. This

suggests that the theory can accurately describe the permeation properties

of the channel.

5. The application of the derived theories to the multi-species conduction of

KcsA in and far from equilibrium, demonstrates the resolution of the conduc-

tivity vs. selectivity paradox. This involved the derivation of the Eisenman

selectivity relation directly from the condition of maximum conductivity in

the linear response regime, thereby con�rming di�usion-limited �ow with

high selectivity. In addition the far from equilibrium regime was considered,

in which conductivity and selectivity relations were derived. In this regime

the selectivity ratio decreases with increased electrochemical gradient; how-

ever it can still satisfy the paradox of high selectivity with fast conduction.

With the description of these properties close to and far from equilibrium,

we can claim that we have demonstrated the resolution of the paradox.

9.3 Future work

Future work might include:

� Extension of both the statistical and kinetic theories to model mixed va-

lence selectivity. This would typically involve studying a Na+ or Ca++

voltage-gated channel, and focusing on Na+/Ca++ selectivity. The only ma-

jor changes required will be a slightly modi�ed �lter geometry and the inclu-

sion of di�erent valences particularly a�ecting the electrostatic interaction.

� The derivation of Maxwell-Stefan di�usion from within the statistical theory.

This will replace the Fickian �uxes and explicitly take into account the inter-

actions between species with linear combinations of each chemical potential.

This should be applicable to zeolites that selectively conduct neutral species.
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� Further analysis of the transition rates due to the discrepancies found when

comparing against data from larger voltages.

� Further comparisons with experimental data from mixed species solutions

using the mixed species set of master equations.

� The kinetic theory should be extended to include distinguishable sites as

developed in the statistical theory. This will require an extension to the

number of states and explicit inclusion of ion-site interactions. This will

allow for more realistic investigation into the value of the fraction of voltage

drop and the importance of each individual binding site.
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A. Appendices
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A.1 Brownian motion

We will explicitly derive the Einstein relation by solving the Langevin equation for

Brownian motion following [92]. The Langevin equation (3.3) can be solved under

the initial conditions that at t = 0 then v → v0,

v(t) = v0e
−γt +

∫ t

0

e−γ(t−t)Γ(t)dt. (A.1)

The �nal term on the RHS is the stochastic term that has to be solved with the

averaging property of Γ. If we take a correlation function of the velocity at two

times,

〈v(t1)v(t2)〉

= v2
0 exp[−γ(t1 + t2)] +

∫ t1

0

∫ t2

0

exp[−γ(t1 + t2 − t′1 − t′2)]Cδ(t′1 − t′2)dt′1dt
′
2

(A.2)

To calculate this double integral we can calculate over t′2 �rst. Since the delta

function becomes zero outside of t′1− t′2 then we can expand the integration limits

to ±∞ and hence we recover,

e−γ(t1+t2)

∫ Min(t′1,t
′
2)

0

e2γt′1dt′1, (A.3)

since we have integrated over t′2 �rst the limit of the integral is the minimum

between t′2 and t
′
1, hence we recover,

q

2γ

(
e−γ(t1+t2−2Min(t′1,t

′
2)) − e−γ(t1+t2

)
, (A.4)

170



and thus the general solution is as follows,

〈v(t1)v(t2)〉 = v2
0e
−γ(t1+t2) +

C

2γ

(
e−γ|t1−t2| − e−γ(t1+t2)

)
(A.5)

where the absolute value |t1 − t2| accounts for either t1 or t2 being the minimum.

In the limit of large time-scale such that both γt1, γt2 � 1, we can reduce to

〈v(t1)v(t2)〉 =
C

2γ
e−γ|t1−t2|. (A.6)

In this state the equipartition of energy can be used to �nd the value of this

constant C,

C =
2γkT

m
. (A.7)

The next step is to investigate the mean squared displacement, a useful property

because it can be an observable. From the de�nition that: ẋ = v and if we state

that at t = 0, v = v0 and x = x0, then the mean squared displacement is given by,

〈(x− x0)2〉 =

〈[∫ t

0

v(t′)dt′
]2
〉

=

∫ t

0

∫ t

0

〈v1v2〉dt1dt2. (A.8)

This �nal term on the RHS is known and so the expression can be solved,

〈(x− x0)2〉 =

(
v2

0 −
C

2γ

)
(1− e−γt)2

γ2
+
C

γ2
t− C

γ3
(1− e−γt). (A.9)

If we again consider the long time limit γt� 1 then it reduces to,

〈(x− x0)2〉 = 2Dt where D =
C

2γ2
=
kT

mγ
. (A.10)

This implies that the Einstein constant D is related to the �uctuation of the
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velocity thus implying the �uctuation-dissipation theorem.
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A.2 Quantum transition rates

To derive the transition rates used in Beenakker [108] and other quantum systems

the Fermi's Golden Rule has to be applied [93, 244]. The derivation will follow

closely [245, 246, 170]. This Golden Rule gives a relation for the transition rate in

a quantum system derived from perturbing the Schrodinger equation,

γf,i =
2π

~
|Mf,i|2δ(Ef − Ei). (A.11)

The term |Mf,i|2 is called the matrix element and represents the coupling between

initial and �nal states, and the subscript f, i denote the order of the transition

being from right to left (or initial to the �nal state). If the tunnelling Hamiltonian

Hp acts as a small perturbation to the system, which is de�ned to be both bulks

and the dot, then it can be written as,

Hp = Ht
L +Ht

R, (A.12)

where Ht
b is the tunnelling Hamiltonian in the bulk b and is given by the sum of

Hamiltonians for transport into and out of the dot: Ht,−
b +Ht,+

b , denoted by a +

and − respectively. These can be found from the multiplication of creation and

annihilation operators with a transmission amplitude T corresponding to the level

of coupling between bulk,

Ht,+
b =

∑
k,m

(
T bk,m

)∗
c†mcb,k (A.13)

Ht,−
b =

∑
k,m

T bk,mc
†
b,kcm (A.14)

where ∗ and † represent the complex conjugates, c the creation/annihilation oper-
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ators and k and m the particle wave vector and single-electron state on the dot.

Note that e�ects of spin can also be included here [170]. To calculate the matrix

element we need to calculate,

Mf,i = 〈ψf |Hp |ψi〉 , (A.15)

where ψi,f are the initial and �nal wave-vectors of the system. This is split over

the two bulks and, because the total wave-function is a product of these for each

bulk and dot, we �nd

M b,+
f,i =

∑
k,m

(
T bk,m

)∗ 〈
ψLf ψ

R
f ψ

d
f

∣∣ c†mcb,k ∣∣ψLi ψRi ψdi 〉 (A.16)

M b,−
f,i =

∑
k,m

T bk,m
〈
ψLf ψ

R
f ψ

d
f

∣∣ c†b,kcm ∣∣ψLi ψRi ψdi 〉 (A.17)

Since the set-up allows for transitions between all possible energy levels p we need

to sum over the energy levels in the dot p. We shall use the following relations

because we need to �nd |Mf,i|2,

〈
ψdf
∣∣ c†m′cm ∣∣ψdi 〉 = fd(E

d
m)δm′,m (A.18)〈

ψdf
∣∣ cmc†m′ ∣∣ψdi 〉 = [1− fd(Ed

m)]δm′,m (A.19)〈
ψdf
∣∣ c†b,k′cb,k ∣∣ψdi 〉 = f(Eb

k − Eb
F )δk′,k (A.20)〈

ψdf
∣∣ cb,k′c†b,k ∣∣ψdi 〉 = [1− f(Ed

k − Eb
F )]δk′,k (A.21)〈

ψbf
∣∣ψbi〉 = δi,f (A.22)

where the �nal relation is always 1 if we have particle conservation in the system,

f is the Fermi-Dirac distribution and fd is the dot occupation number which can

be recast as a delta function. Each of these delta functions is for completeness and
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can be take as 1. Hence we are left with the �nal expressions for the transition

rates,

W b(N,N + 1) =
∑
p

Γbpf(Eb
k − Eb

F )δnp,0 (A.23)

W b(N,N − 1) =
∑
p

Γbp[1− f(Eb
k − Eb

F )]δnp,1 (A.24)

where the amplitude Γbp = 2π
~ |T

b
k,m|2δ(Ed

f − Ed
i + Eb

k) since the delta function is

symmetrically even. Ed
i/f represent initial and �nal energies in the dot, Eb

k is the

energy of the kth wave function in the bulk and Eb
F is the Fermi energy in the bulk.
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A.3 Adsorption

If there are i species in the solution in equilibrium with the lattice then the GCE

partition function can be written as,

Z =
∑
{nj}

∏
i

M !

Ni!(M −
∑

iNi)!
exp

[∑
i

Niµi/kT

]
ζNi
i . (A.25)

We have multiple species now and hence require a multinomial expansion to sim-

plify the partition function. A multinomial expansion is de�ned by,

(x1, x2, .., xm)n =
∑

k1+k2+...+km=n

 n

k1, k2, .., km

xk1
1 x

k2
2 ..x

km
m (A.26)

and so the partition function becomes,

Z =

(
1 +

∑
i

yi

)M

, where: yi = ζi exp[µi/kT ]. (A.27)

The corresponding total free energy is given by

F = −kT ln

(
1 +

∑
i

yi

)M

. (A.28)

The occupancy then can be derived for each species,

〈Ni〉
M

=
ζi exp[µi/kT ]

1 +
∑

i ζi exp[µi/kT ]
(A.29)

The chemical potential for each species µi can be calculated from the canonical

partition function describing the bulk since we are at equilibrium. This multi-

species canonical partition function is given by,
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Zg =
1

Ng!hdNg

∫ ∫
exp[H(p, g)/kT ]dpdq (A.30)

where d represents the number of dimensions (3), Ng the number of gas molecules

and H the Hamiltonian which depends on coordinates p and q.

H =
∑
i

Ni∑
j

1

2mi

(p2
x,j + p2

y,j + p2
z,j). (A.31)

If we consider a total volume V containing this mixture of particles then the ideal

partition function is equal to,

Z =
∏
i

1

(Ni!h3Ni)
(2πmikT )3Ni/2 V Ni , (A.32)

where the chemical potential is given by

µi = kT ln
(
Λ3
i ρ
)

+ kT ln(xi). (A.33)

We also note that this is an ideal gas, and so obeys,

PiV = NikT (A.34)

and we can use the above to rewrite occupancy as,

〈Ni〉
M

=
ζiΛ

3
iPi/kT

1 +
∑

i ζiΛ
3
iPi/kT

. (A.35)

If M = 1 then we recover adsorption in an ion channel. To recover the Langmuir

isotherm for �uids there are a few subtle changes. We have to account explicitly

for water as the spaces, and so the GCE partition function should be written as
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Z =

(
yw +

∑
i

yi

)M

, (A.36)

leading to the occupancy,

〈Ni〉
M

=
ζi exp[µi/kT ]

ζw exp[µw/kT ] +
∑

i ζi exp[µi/kT ]
. (A.37)

The chemical potentials for the particles can be found in the standard approach

from the canonical partition function (see equation (5.10) and Chapter 5). These

can then be inserted to provide the isotherm.
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A.4 Derivation of the Debye-Hückel ion-ion inter-

action term

The derivation of the Debye-Hückel ion-ion interaction term are based on the

following texts [201, 156, 87, 185]. We again consider a bulk z:z electrolyte solution

in spherical symmetry, where one ion is �xed at the origin (position r1). Therefore,

the remaining ions are canonically averaged over the system. This averaging can be

used to produce an expression for the electrostatic ion-ion interaction free energy

and subsequent contributions to the free energy and excess chemical potential.

Following the Widom [187, 87] method, the electrostatic Helmholtz free energy is

given by the di�erence in the charged and uncharged free energies: F − F0,

exp[−(F − F0)/kT ] =
Z

Z0

. (A.38)

We shall again consider a z:z electrolyte solution with qj denoting charge on the

jth ion. With negligible short range interactions, the total energy of the charged

system U is given by the sum of electrostatic potentials which can be written in

terms of the potential ψ for a rigid sphere,

U =
1

8πε0

∑
j

zqjψj(rk), (A.39)

where ψj is the potential acting on ion j at position rj and is given by,

ψj(rj) =
∑
i 6=j

qi
4πε0ε|ri − rj|

. (A.40)

From the de�nition of the ensemble average 〈ψi〉 it is clear that,

179



(
∂F

∂qj

)
T,V

= 〈ψj〉, (A.41)

and so the di�erence in electrostatic free energy can be reformulated as an integral

with limits 0 to 1 denoting the uncharged and charged system,

F − F0 =
∑
i

qi

∫ 1

0

〈ψi(λ)〉dλ, (A.42)

where λ is introduced as a quasi-valence to allow charge to be set to zero via:

dqi = qidλ where 0 ≤ λ ≤ 1. To calculate the potential on this ion we can revisit

our averaging and use our previous solution to the PB equation. If an ion is �xed

at the origin then the average potential at position r due to all ions except the one

at the origin, is given by the potential at position r when an ion is �xed at the

origin minus the potential at position r from the origin,

1〈ψ1(r)〉 ≡ 1〈ψ(r, r1)〉 − q1

4πε0ε|r− r1|
, (A.43)

the superscript 1 denotes an ion at the origin. Since we are interested in the

potential on the ion at the origin we can rede�ne: 〈ψ1〉 = 1〈ψ1(r)〉, and because

r1 is the position of the origin we can simplify the expression using the solution to

the PB equation (5.22), because this is equal to 1〈ψ(r, r1)〉.

〈ψ1〉 = − q1κ

4πε0ε(1 + κa1)
. (A.44)

Note for simplicity sometimes a is replaced by the ionic radius a/2 (see [84]).

If generalise to j ions we can replace subscripts and reinsert into the integral

(A.42) and solved using the property κ(λq) = λκ(q) to give the free energy with

the corresponding chemical potential,
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µelj = −
κz2

j q
2

8πε0εw(1 + κa)
(A.45)

where the dielectric medium has been chosen as water εw ≈ 80 and qj has been

replaced by zjq.
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A.5 Derivation of the probability distribution

function

To derive the probability distribution of a system coupled to a particle reservoir we

adopt the standard [247, 87] approach and maximise the entropy. The total energy,

volume, number of particles and entropy in the ensemble E, V, T, S are given by

the summations of the corresponding terms in the reservoir and the system noting

that Nr � Ns Sr � Ss and Vr � Vs. The total entropy S is given by,

S = Sr(Nr, Vr, Er) + Ss(Ns, Vs, Es) + S0 (A.46)

where S0 is a con�gurational degeneracy factor: kT ln(Nr +Ns)!/Nr!/Ns! (for in-

distinguishable particles), associated with the mixing of particles in the combined

system similar to the entropy of mixing terms we have in the �lter. If we expand

the entropy in the reservoir about the condition that Ns, Vs, Es = 0 then, to �rst

order, it becomes.

S = Sr(N, V,E) +
∂S

∂N
(Nr −N) +

∂S

∂V
(Vr − V ) +

∂S

∂E
(Er − E) (A.47)

= Sr(N, V,E)− µ

T
(Nr −N) +

P

T
(Vr − V ) +

1

T
(Er − E) (A.48)

where the temperature T , pressure P and electrochemical potential µ are given by

the Maxwell relations [247]. The total entropy can be approximated by neglecting

Sr as

S = Sr(N, V,E)− µ

T
(Nr −N) +

P

T
(Vr − V ) +

1

T
(Er − E) + S0. (A.49)

It is important to note that here En only includes energy in the system which is
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our �lter, and does not include the bulk electrochemical potential.

The probability distribution Pn to be in a given state n, is proportional to the

number of available microstates in the system provided that the system is in state

n. Hence energy and number of particles in the system are Es = En and Ns = Nn,

and so

Pn ∝ Ω(Ns, Vn, E) where: Ω(Ns, Vn, E) = k lnS(Nn, Vn, En). (A.50)

The probabilities are conserved such that they sum to 1 and this normalisation is

named the partition function Z,

Pn =
(Nr +Ns)!

Nr!Ns!
× exp[(Nnµ− PVn − En)/kT ]

Z

' 1

Ns!
× exp[(Nnµ− PVn − En)/kT ]

Z
(A.51)

where the pre-factor is simpli�ed using the property Nr � Ns, and hence Z is

given by,

Z =
∑
n

1

Ns!
× exp[(Nnµ− PVn − En)/kT ]. (A.52)

where the sum is over states n in the system. To derive equation (5.41) we adopt

the standard convention of adding the pressure-volume contribution directly to

the energy of each state E, such that it becomes E(Ns, Vs). In this instance the

system is de�ned as the �lter and so E refers only to the total energy of each

state in the �lter, again µ is the electrochemical potential of the particle in either

the �lter or the bulk. If we introduce the properties, that the �lter can only

host M = nw +
∑

i ni total ions then the associated degeneracy is now given by

(M)/
∏

i ni!nw!, and hence we recover,
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P ({nj}) =
M !∏
i ni!nw!

× exp[(
∑

i niµi − E({nj}))/kT ]

Z
. (A.53)

An equivalent form can be derived by treating the whole system (�lter and bulks)

within the canonical ensemble. In this instance the probability is proportional to

the total energy of the system (P = exp[−E({nj})/kT ]/Z) where this energy is

given by equation (5.37). This probability can be simpli�ed through factoring of

all constant terms to reproduce equation (5.41).
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A.6 Mean �rst passage time

To derive the mean �rst passage time we start from the de�nition of the backwards

Fokker Planck equation (bFP),

∂tp(x
′, t|x, 0) = A(x)∂xp(x

′, t|x, 0) +
1

2
B(x)∂2

xp(x
′, t|x, 0) (A.54)

We recall that p is the conditional probability density, and so we introduce:

G(x, t) =
∫ b
a
p(x′, t|x, 0). Clearly this also obeys the bFP and so we can write

the bFP in terms of G,

∂tG(x, t) = A(x)∂xG(x, t) +
1

2
B(x)∂2

xG(x, t). (A.55)

The mean �rst passage time1 is given by

T (x) = −
∫ ∞

0

t∂tG(x, t)dt = −(tG(x, t))|∞0 +

∫ ∞
0

G(x, t)dt

=

∫ ∞
0

G(x, t)dt. (A.56)

The second term disappears due to G(x,∞) being very small and t = 0. If we

consider 〈T n〉 = Tn(x) then, similarly

Tn(x) = −
∫ ∞

0

tn∂tG(x, t)dt = −(tnG(x, t))|∞0 + n

∫ ∞
0

tn−1G(x, t)dt

= n

∫ ∞
0

tn−1G(x, t)dt. (A.57)

1This result is obtained from the de�nition of the mean,

〈f(T )〉 = −
∫ ∞
0

f(t)dG(x, t)
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If we use the de�nition the following de�nition,

∫ ∞
0

∂tG(x, t)dt = G(x,∞)−G(x, 0) = −1 (A.58)

then by integrating (A.55) with respect to t, we have2

−1 =

∫ ∞
0

[
A(x)∂xG(x, t) +

1

2
B(x)∂2

xG(x, t)

]
dt = A(x)∂xT (x) +

1

2
B(x)∂2

xT (x).

(A.62)

This equation can be solved to but its general solution will contain two integration

constants. Thus to recover a useful solution we must integrate using boundaries,

a and b, such that these are absorbing boundaries (meaning that at the boundary

particles are removed). The mean �rst passage time must therefore be zero at

these,

T (a) = T (b) = 0. (A.63)

Thus we have established the boundary conditions for T . The next step is to

simplify the notation by introducing the following function

2Similarly we can do the same for Tn, now the RHS is clear that

n

∫ ∞
0

tn−1
[
A(x)∂xG(x, t) +

1

2
B(x)∂2xG(x, t)

]
dt = A(x)∂xTn(x) +

1

2
B(x)∂2xTn(x) (A.59)

since we follow the same logic and bring out the terms non-dependent on t.
Now the �rst term is

n

∫ ∞
0

tn−1G(x, t)dt = [tn−1G(x, t)]|∞0 − n(n− 1)

∫ ∞
0

tn−2G(x, t)dt

= −nTn−1(x) (A.60)

hence we �nd

−nTn−1(x) = A(x)∂xTn(x) +
1

2
B(x)∂2xTn(x) (A.61)
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Ψ(x) = exp

[∫ x

a

dx′
2A(x′)

B(x′)

]
(A.64)

and hence it is clear that when x = a,Ψ(a) = 1, we note that this has the property

Ψ′(x) = Ψ(x)× d

dx

[∫ x

a

dx′
2A(x′)

B(x′)

]
(A.65)

which gives

Ψ′(x) = Ψ(x)× 2A(x)

B(x)
. (A.66)

We can reinsert this into (A.62), to write the bFP in terms of T and Ψ,

− 2

B
Ψ = ∂x(Ψ∂xT ). (A.67)

This can be integrated with respect to x to recover,

−2

∫ x

a

Ψ

B
dx =

∫ x

a

d(Ψ∂xT ), (A.68)

which has to be solved by integrating over the boundaries. So if we �rst integrate

the RHS it becomes,

Ψ(x)∂xT (x)−Ψ(a)∂xT (x)|a = Ψ(x)∂xT (x)− ∂xT (x)|a, (A.69)

using the properties on the boundary we can �nd,

∂xT (x) =
∂xT (x)|a

Ψ(x)
−

2
∫ x
a

Ψ(x)
B(x)

dx

Ψ(x)
. (A.70)

This is now the main equation to solve, and so we proceed by integrating over the
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range b to x,

−T (x) = ∂xT (x)|a
∫ b

x

1

Ψ(x)
dx−

∫ b

x

2
∫ x
a

Ψ(x′)
B(x′)

dx′

Ψ(x)
dx (A.71)

to obtain the �nal form we need to calculate ∂xT (x)|a. To do this we return to

equation (A.70) and integrate over both boundaries b and a,

∂xT (x)|a =
1

D

∫ b
a

2
∫ x
a

Ψ(x′)
B(x′)dx

′

Ψ(x)
dx∫ b

a
1

Ψ(x)
dx

. (A.72)

If we insert this back into equation we can rearrange to �nd the �nal expression,

T (x) =∫ b

x

eU(z)/Ddz

∫ z

a

e−U(y)/Ddy −

∫ b
x
eU(z)/Ddz

(∫ b
a
eU(z)/Ddz

∫ z
a
e−U(y)dy

)
D
∫ b
a
eU(x)/Ddx

(A.73)

where we have reintroduced the de�nitions of Ψ remembering that A(x) = −U ′(x)

and D = B/2, and remind ourselves that x is the starting position.
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A.7 Derivation of Kramers limit

To derive the Kramers limit following [123, 90], we shall consider an interval

bounded at a and b. It contains a smooth potential U(x), that maximises at

the boundaries, with a minima in between. The splitting probability can therefore

be written as,

R =

∫ b
x

exp[U(z)/kT ]dz∫ b
a

exp[U(x)/kT ]dx
=

∫ b
x

exp[U(z)/kT ]dz∫ b
x

exp[U(x)/kT ]dx+
∫ x
a

exp[U(x)/kT ]dx
. (A.74)

The integrand can be expanded about its maxima using the harmonic approx-

imation3, and extending the integrals to ±∞ because the contributions beyond

our current limits are small. Thus we have a product of Gaussian integrals of the

form:
∫∞
−∞ e

−ax2−2bxdx and hence can recover the following solution to the splitting

probability,

R =

∫ b
x

exp[U(z)/kT ]dz∫ b
x

exp[U(x)/kT ]dx+
∫ x
a

exp[U(x)/kT ]dx

=
1

1 +

√∣∣∣U ′′(x)|x=b

U ′′(x)|x=a

∣∣∣ exp[(U(a)− U(b))/kT ]

. (A.75)

The total escape rate k̃ is equal to twice the inverse of the MFPT (1/(2T )) [234],

hence we can write the total escape rate as,

3The harmonic approximation is de�ned by

U(x) ≈ U(a/b)− |U ′′(x)|x=a/b| · (x− a/b)2/2.

Here the minus sign is present because a and b represent maximas.
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k̃ = D/2×
[∫ b

x

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy −R
∫ b

a

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy

]−1

.

(A.76)

The total escape rate is a sum of the individual rates to move either left or right

from the initial position x. These rates can be de�ned using the splitting proba-

bility,

k̃L = Rk̃, k̃R = (1−R)k̃. (A.77)

We now have all the equations necessary to de�ne the transition rates, we just

need to �nd the limiting expression. Thus if we consider k̃L, it can be written as,

k̃L =
D
2[

R−1
∫ b
x
eU(z)/kTdz

∫ z
a
e−U(y)/kTdy −

∫ b
a
eU(z)/kTdz

∫ z
a
e−U(y)/kTdy

] . (A.78)

So if we consider the second product of integrals in equation (A.78) then we can

simplify the integration because, if the energy barrier is large, then the �rst integral

is dominated close to the maximum. Hence by introducing a coordinate xbm close

to b we can rewrite the integral,

∫ b

a

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy =(∫ b

xbm

eU(z)/kTdz +

∫ xbm

a

eU(z)/kTdz

)∫ z

a

e−U(y)/kTdy. (A.79)

If xbm is suitably close to b, we can make the approximation that �rst term in the

brackets dominates because the functions
∫ z
a
e−U(y)/kTdy and exp[U(x)/kT ] are

only both large near to the maxima, and hence we �nd,
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(∫ b

xbm

eU(z)/kTdz +

∫ xbm

a

eU(z)/kTdz

)∫ z

a

e−U(y)/kTdy

'
∫ b

xbm

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy. (A.80)

Following this approach, the �rst integral in equation (A.78) can be written as,

∫ b

x

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy '
∫ b

xbm

eU(z)/kTdz

∫ z

a

e−U(y)/kTdy. (A.81)

Reinserting these approximations into the rate equation yields,

k̃L = D/2× 1∫ b
xbm
eU(z)/kTdz

∫ z
a
e−U(y)/kTdy

× 1

R−1 − 1
. (A.82)

The inner integral is small near to the positions of the maxima and is thus slowly

varying here, and hence is approximately constant near to the maxima. This

means the integrals can be split with the second limit taken to be the position xbm,

k̃L = D/2× 1∫ b
xbm
eU(z)/kTdz

∫ xbm
a

e−U(y)/kTdy
× 1

R−1 − 1
. (A.83)

The �nal integral approximation now has to be made. The �rst integral is large

near to the maxima and so we can again approximate this integral using the

harmonic approximation as used earlier. Meanwhile, the second integral is only

large at the potential minima x−, and so we can make the approximation around

this. Thus we can approximate the integral after extending the limits to ±∞,

k̃L =
D

πkT

√
|U ′′(x)|a|U ′′(x)|x− × exp[(U(x−)− U(a))/kT ]

=
D

πkT

√
|U ′′(x)|a|U ′′(x)|x− × exp[−∆U/kT ] (A.84)
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A.8 Standard �tting parameters

Statistical theory

Parameter De�nition Value

∆µ̄K K+ excess chemical potential di�erence 7.3kT

∆µ̄Na Na+ excess chemical potential di�erence 1.3kT

φ Membrane potential 0

nf Filter charge -2.5

cK K+ concentration 0.1M

cNa Na+ concentration 0.1M

cW Water concentration 55M

R Filter radius 1.5Å

L Filter length 12Å

εw Permittivity in the �lter 80

M Number of binding sites 5

T Temperature of the �lter 300K

Table A.1: Standard �tting parameters used in the statistical theory.
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Single-species kinetic theory

Parameter De�nition Value

∆µ̄b Excess chemical potential di�erence 5kT

φ Membrane potential 10mV

χ Fraction of potential di�erence 0.5

nf Filter charge -2.5

c Concentration 0.1M

α Channel di�usion coe�cient multiplier. 0.2

Db
K K+ bulk di�usion coe�cients. 1.96× 10−9m2s−1

Db
Rb Rb+ bulk di�usion coe�cients. 2× 10−9m2s−1

cW Water concentration 55M

R Filter radius 1.5Å

L Filter length 12Å

εw Permittivity in the �lter 80

M Number of binding sites 5

T Temperature of the �lter 300K

Table A.2: Standard �tting parameters used in the single-species kinetic theory.
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Multi-species kinetic theory

Parameter De�nition Value

∆µ̄bK K+ excess chemical potential di�erence 5kT

∆µ̄bNa Na+ excess chemical potential di�erence -1kT

φ Membrane potential 10mV

χ Fraction of potential di�erence 0.5

nf Filter charge -2.5

cK K+ concentration 0.1M

cNa Na+ concentration 0.1M

α Channel di�usion coe�cient multiplier. 0.2

Db
K K+ bulk di�usion coe�cients. 1.96× 10−9m2s−1

Db
Ma Na+ bulk di�usion coe�cients. 1.33× 10−9m2s−1

cW Water concentration 55M

R Filter radius 1.5Å

L Filter length 12Å

εw Permittivity in the �lter 80

M Number of binding sites 5

T Temperature of the �lter 300K

Table A.3: Standard �tting parameters used in the multi-species kinetic theory.
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