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ABSTRACT
�is paper presents the design and implementation of an Open
Computing Language (OpenCL) framework for the Matrix-2000
many-core architecture. �is architecture is designed to replace
the Intel XeonPhi accelerators of the TianHe-2 supercomputer. We
share our experience and insights on how to design an e�ective
OpenCL system for this new hardware accelerator. We propose a
set of new analysis and optimizations to unlock the potential of
the hardware. We extensively evaluate our approach using a wide
range of OpenCL benchmarks on a single and multiple computing
nodes. We present our design choices and provide guidance how
to optimize code on the new Matrix-2000 architecture.
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1 INTRODUCTION
TianHe-2A (TH-2A) is an upgrade of the leading TOP500 high-
performance-computing (HPC) system TianHe-2 (TH-2) [11]. �e
most signi�cant enhancement of TH-2A over its predecessor is
replacing the Intel Xeon Phi (Knights Corner) accelerators with a
proprietary accelerator called Matrix-2000. �e fully upgraded sys-
tem has a total of 4,981,760 cores (with 92% of the cores are provided
by Matrix-2000) and 3.4 PB primary memory, and reaches a theo-
retical peak performance of 94.97 P�ops/s, doubling the theoretical
peak performance of the former TianHe-2 system 1.

While the Matrix-2000 accelerator provides the potential for
higher performance, its potential can only be realized if the so�ware
can make e�ective use of it. To unlock the hardware potential, we
need to provide an e�cient programming model. We believe that
OpenCL is a good candidate for this purpose. �is is because it is
emerging as a standard for heterogeneous computing, and allows
the same code to be executed across a variety of processors.

1As of January 2018, TianHe-2 is ranked as the second faster HPC system with a peak
performance of 54.9 peta�ops in the ��ieth TOP500 list: h�ps://www.top500.org/
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Since existing OpenCL frameworks mainly target CPUs and
GPUs, they are not directly applicable to Matrix-2000 [1, 2, 7, 14, 15,
18, 20]. Providing an e�cient OpenCL implementation for Matrix-
2000 is unique in that the hardware architecture di�ers from a
many-core GPU with a smaller number of cores and runs a light-
weight operating system. To exploit the hardware, we have to
develop a compiler to translate kernels into target-speci�c bina-
ries and provide a runtime to manage task dispatching and data
communication between the host and the accelerator.

�is paper presents the design and implementation of MOCL, an
OpenCL programming interface for Matrix-2000. MOCL consists of
two main components: a kernel compiler and a runtime. �e kernel
compiler is built upon the LLVM compiler infrastructure [19]. It
translates each OpenCL kernel to an executable binary to run on
Matrix-2000. At the core of the compiler is a set of compiling passes
to translate an OpenCL work-group2 into a work-item loop. We
map distinct work-item loops to di�erent hardware threads where
the work-items in the same group are executed by a single thread
to run in a serial manner. We present a push-based task dispatching
strategy to distribute work-item loops to hardware threads. Our
mapping strategy is di�erent from many OpenCL implementations
which execute work-items within a group in parallel. Given that
each supernode of an Matrix-2000 has 32 cores instead of hundreds
of cores provided by modern GPUs, by mapping a work-group to
run on a hardware core (so that we can have up to 32 work-group
running in parallel), our strategy avoids the overhead of scheduling
thousands of work-items. As we will show later in the paper, this
strategy leads to be�er performance compared to the conventional
OpenCL mapping strategies. On top of this, we propose a set of
optimization techniques including lock-free atomics to exploit the
hardware design.

We evaluate our approach by applying it to 70 OpenCL bench-
marks from �ve well-established benchmark suits. We test the
performance of our OpenCL implementation on both a single and
multiple Xeon-Matrix2000 nodes of the upgraded TH-2A system.
We compare various design choices and show that the chosen ones
lead to good performance. We show that our approach, in combina-
tion ofMPI for cross-node communication, provides good scalability
across multiple computing nodes. We provide extensive discussions
on how to optimize OpenCL programs on the Matrix-2000 archi-
tecture, o�ering useful insights on how to write e�cient code for
this unique accelerator.

�e main contribution of this paper is on sharing the experience
and insights of designing an e�ective OpenCL framework for the
Matrix-2000 architecture. Our OpenCL implementation has now
been deployed to the upgraded TH-2A supercomputer and is ready
to be made available to the public.

2An OpenCL work-group is a collection of work-items that can execute on a single
compute unit. Here, a work-item is an invoke of the kernel on a given input.

https://www.top500.org/
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2 BACKGROUND
In this section, we provide an overview of the OpenCL program-
ming interface and the Matrix-2000 architecture.

2.1 Open Computing Language
Open Computing Language (OpenCL) is a standardized program-
ming model for heterogeneous computing [17]. OpenCL uses a
generic platform model comprising a host and one or several de-
vices, which are seen as the computation engines. �ey might be
central processing units (CPUs) or “accelerators” such as Matrix-
2000, a�ached to a host processor (a CPU). Devices have multiple
processing elements (PEs), further grouped into several compute
units (CUs), a global memory and local memories.

An OpenCL program has two parts: kernels that execute on one
or more devices, and a host program that executes on the host (typ-
ically a traditional CPU). �e host program de�nes the contexts for
the kernels and manages their execution, while the computational
task is coded into kernel functions. When a kernel is submi�ed
to a device for execution, an index space of work-items (instances
of the kernel) is de�ned. Work-items, grouped in work-groups, are
executed on the processing elements of the device in a lock-step
fashion. Each work-item has its own private memory space, and can
share data via the local memory with the other work-items in the
same work-group. All work-items can access the global memory,
and/or the constant memory.

2.2 Matrix-2000
Figure 1(a) gives a high-level view of Matrix-2000. A Matrix-2000
processor has 128 computing cores running at 1.2 GHz, o�ering a
peak performance of 2.4576 T�op/s. Computing cores are grouped
into four supernodes (SNs), 32 cores per SN. A SN is further broken
down into clusters with four cores per cluster, and cores within a
cluster share a coherent data cache. �e SNs are connected through
a scalable on-chip communication network. Each computing core
is an in-order RISC core with a 12-stage pipeline. �e core is a
256-bit vector instruction set architecture with two 256-bit vector
functional units.

�e topology of the network on chip (NoC) within a SN is a 4×2
mesh. Figure 1(b) shows the basic network structure with a total
of eight routers in the NoC. A cluster and a directory control unit
(DCU) are pinned to a router. Two DDR4-2400 memory control units
(MCUs) are integrated into each SN and SNs communicate through a
Fast Interconnect Transport (FIT) port.

At the system’s level, each node of TH-2A has two Intel Ivy
Bridge CPUs with 64GB of DDR3 RAM, and two Matrix-2000 accel-
erators with 128GB of DDR4 RAM.�e CPU uses a 16× PCI Express
3.0 connection to communicate with the accelerator. Furthermore,
a host operating system (OS) runs on the CPUs and a light-weight
Linux runs on each of the Matrix-2000 processors. �e host and the
accelerator can communicate through the Unix socket via the PCIe.

3 MOCL DESIGN AND IMPLEMENTATION
In this section, we describe the overall design and implementation of
OpenCL on Matrix-2000. We focus on the OpenCL kernel compiler
and the runtime system.

(a) Conceptual structure of Matrix-2000.

(b) �e SuperNode topology.

Figure 1: An overview of the Matrix-2000 accelerator.

Figure 2: An overview of the so�ware stack and the OpenCL
components. �e le� part shows the Xeon CPU and its so�-
ware stack and the right part shows the Matrix-2000 and its
so�ware stack. �eXeon CPU and theMatrix-2000 are phys-
ically connectedwith PCIe. Both the host side and the device
side have an OS running on the hardware.

3.1 Overall Design
Figure 2 shows an overview of the so�ware stack and the OpenCL
components for the Matrix-2000 accelerator. At the hardware level,
the host CPU and the Matrix-2000 accelerators are connected via
PCIe; at the so�ware level, both sides run an operating system.
�e driver work as the communication backbone between host and
accelerators. In the user space, a user communication library is
provided to enable the host-device communication.

Our OpenCL framework for Matrix-2000 (MOCL) is built on top
of the user communication library and the LLVM compiling infras-
tructure. Our framework consists of the kernel compiler and the
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(a) Overview (b) �e internal structure of our compiler

Figure 3: �e compiling infrastructure on Matrix-2000: (a)
shows the overall framework, and (b) shows the implemen-
tation �ow and compiler passes based on LLVM v5.0.

runtime system (Section 3.2 and 3.3). �e kernel compiler translates
the OpenCL kernels into device-speci�c binaries (mtx) to run on
the Matrix-2000, whereas the runtime implements the OpenCL host
APIs and manages the runtime context [12]. Furthermore, we use a
resident process as daemon on Matrix-2000 to detect requests (e.g.,
process creation/destroy) from the host CPU.

As we note in Section 2.1, an OpenCL program has two parts:
kernels and a host program. Kernel compilation is triggered when
the host program invoked the OpenCL clBuildProgram API. �e
host program is �rst compiled by a host compiler (e.g. gcc), which
is then linked with the runtime library (i.e., libOpenCL.so). Dur-
ing runtime, the compiled kernels and the required data are �rst
o�oaded onto Matrix-2000. �en the o�oaded tasks are scheduled
to run on the idle hardware threads. �e results are transferred
back to the host side. Finally, the runtime contexts on the host and
the device will be cleaned up a�er execution.

3.2 Kernel Compiler
3.2.1 Compiler Description. Our compiler translates OpenCL C

kernel codes into the mtx binaries. �is cross-compilation process is
taken place on the x64 host CPU to generate target codes for Matrix-
2000. Our kernel compiler is built based on the LLVM infrastructure
v5.0 and conforms to the OpenCL v1.2 speci�cation.

Di�erent from GPUs, Matrix-2000 runs a lightweight OS and
supports POSIX Threads. �us, the design of the kernel compiler
resembles the traditional multi-core compilers. Optimizing OpenCL
on multi-core CPUs is a heavily studied area and there is much
research to draw upon. Our implementation follows the approaches
used in prior work. We found that these strategies give good re-
sults on Matrix-2000. Specially, we schedule OpenCL work-groups
to run on distinct hardware threads [12, 14, 16, 18, 24, 25]. Fur-
ther, scheduling work-items within a work-group to execute on a
hardware thread is done either by wrapping a code region with a
work-item loop [14, 16, 18, 25], or by using user-level threads [12].
In this context, we use the work-item-loop scheduling approach for

reduced overheads. Forming work-item loops is achieved by using
nested loops around the kernel body to replace the execution of
work-items within a work-group.

Figure 3(a) shows how an OpenCL kernel is translated into a
device binary on Matrix-2000. Our compiler takes in an OpenCL
kernel and translates it into LLVM intermediate representation (IR)
for a single work-item (WIF LLVM-IR). �is IR kernel is transformed
into work-item loops (WIL LLVM-IR, which is then optimized by
using exisiting LLVM optimization passes [12]. Finally, the target
binary is generated with LLVM-AS and linked with libraries.

When looking into the internal structure of the kernel compiler
(Figure 3(b)), we see that it relies heavily on the LLVM compiling
framework. At the front end, clang is used to translate OpenCL C
kernel codes into the LLVM intermediate format. �en we need to
link the built-in library into the kernel. At the core of our compiler
are a set of compiling passes used to transform WIF into WIL. Once
it is done, we assemble the intermediate code into mtx binaries,
which is submi�ed to the target device for execution.

A�er generating work-item loops, we package them into a dy-
namic library (i.e., kernel.so in Figure 3(b)), which is then trans-
ferred to the device. �erea�er, the device-side runtime system will
open the library and get the handle of this work-group function.
During runtime, the work-group functions will work as the entry
function of worker threads on the device.

3.2.2 Dealing with Barriers. OpenCL C uses barriers to synchro-
nize work-items within a work-group. When producing WIL, we
need to respect the synchronization semantics of the work-group
barriers inside the kernel source code [14]. In this work, we parti-
tion the code with barriers into separate code regions, each of which
is transformed into a work-item loop. To deal with barriers, we
classify them into three categories.

Category 1: Unconditional barrier is the barrier that occurs on
all code execution paths and separates the whole function body
into two or more code regions. �us, we create a work-item loop
for each code region, and the content of each loop body is the code
located in the corresponding code region. Figure 4 shows that the
kernel has an unconditional barrier, which partitions the DCT kernel
into two parts, each enclosed by a work-item loop.

Category 2: Conditional barrier is the barrier that the work-
items from some work-groups follow one branch, while the work-
items from other work-groups follow another. According to the
OpenCL speci�cation, the work-items from the same work-group
must reach the same barriers [17]. �at is, if one branch of if-
statement has a barrier, then all the work-items from the same
work-group will execute the same branch. �erefore, evaluating
the conditional variables must yield the same results among the
work-items of a work-group. To handle such conditional barriers,
we create a work-item loop for the code regions before and a�er the
barrier within a branch, and place the branch statement outside of
the work-item loops. We also generate work-item loops for the code
regions before and a�er the if-statement. Figure 5 demonstrates a
kernel with a conditional barrier, and its transformed format with
a total of three work-item loops.

Category 3: Loop barrier is the barrier that is located in a loop-
statement. Loop barrier is a special case of conditional barrier:
each work-item must iterate the same number of times, and, in
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__kernel void DCT(__global float * output ,
__global float * input , __global float * dct8x8 ,
__local float * inter , const uint width ,
const uint blockWidth , const uint inverse){

/* ... */
for(uint k=0; k < blockWidth; k++){

uint index1 = (inverse)? i*blockWidth + k : k * blockWidth + i;
uint index2 = getIdx(groupIdx , groupIdy , j, k, blockWidth , width);
acc += dct8x8[index1] * input[index2 ];

}
inter[j*blockWidth + i] = acc;

barrier(CLK_LOCAL_MEM_FENCE);

acc = 0.0f;
for(uint k=0; k < blockWidth; k++){

uint index1 = i* blockWidth + k;
uint index2 = (inverse)? j*blockWidth + k : k* blockWidth + j;
acc += inter[index1] * dct8x8[index2 ];

}
output[idx] = acc;

}

(a) Unconditional barriers

__kernel void DCT(__global float * output ,
__global float * input , __global float * dct8x8 ,
__local float * inter , const uint width ,
const uint blockWidth , const uint inverse){

/* WI_loop_1 { */
/* ... */
for(uint k=0; k < blockWidth; k++){

uint index1 = (inverse)? i*blockWidth + k : k * blockWidth + i;
uint index2 = getIdx(groupIdx , groupIdy , j, k, blockWidth , width);
acc += dct8x8[index1] * input[index2 ];

}
inter[j*blockWidth + i] = acc;

/* } */
/* WI_loop_2 { */

acc = 0.0f;
for(uint k=0; k < blockWidth; k++){

uint index1 = i* blockWidth + k;
uint index2 = (inverse)? j*blockWidth + k : k* blockWidth + j;
acc += inter[index1] * dct8x8[index2 ];

}
output[idx] = acc;

/* } */
}

(b) A�er WI-loop generation

Figure 4: WI-loop generation for DCT which have an unconditional barrier.

__kernel void reduce6(__global T *g_idata ,
__global T *g_odata , unsigned int n,
__local volatile T* sdata){

/* pre -process */

// do reduction in shared mem
if (blockSize >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; }

barrier(CLK_LOCAL_MEM_FENCE);

}

/* post -precess */

}

(a) Barriers in if-statement

__kernel void reduce6(__global T *g_idata ,
__global T *g_odata , unsigned int n,
__local volatile T* sdata){

/* WI_loop_1 { */
/* pre -process */

/* } */
// do reduction in shared mem
if (blockSize >= 512) {

/* WI_loop_2 { */
if (tid < 256) { sdata[tid] += sdata[tid + 256]; }

/* } */
}

/* WI_loop_3 { */
/* post -process */

/* } */
}

(b) A�er WI-loop generation

Figure 5: WI-loop generation for reduction which has a conditional barrier.

each iteration, the loop index must be the same among all the
work-items of a work-group. To handle such barriers, we create
work-item loops for the code regions before and a�er the barrier
within the loop body, and place the loop statement outside them.

3.2.3 Lock-free Atomic Functions. �e OpenCL C programming
language provides a rich set of built-in functions for scalar and
vector operations [17]. Among them, atomic functions can provide
atomic operations on 32-bit signed, unsigned integers and single
precision �oating-point to locations in global or local mem-
ory. �e atomic functions are typically implemented with a set of
atomic library calls that are generated by LLVM. For example, the
atomic add function can be implemented based on the external
library call sync fetch and add. �e speci�c mappings between
the OpenCL atomic functions and the LLVM library calls are shown
in Table 1. Note that this is the case when the atomic variables are
located in global memory.

When atomic variables are located in localmemory, the afore-
mentioned mapping approach is equally applicable. But we note
that, the synchronization overhead from concurrent work-items
can be avoided in this case. In MOCL, a work-group is transformed
into a work-item loop by our kernel compiler, which is scheduled
to a hardware thread. And the loop iterations are serially enumer-
ated, i.e., the SEO (sequential execution order) constraint. �us, the
work-items within a work-group are executed one by one and in a
sequential fasion. In terms of memory access, the work-items of
this work-group will access local variables sequentially, and there is

Table 1: �emapping between OpenCL built-in atomics and
the LLVM library calls.

OpenCL built-in atomics LLVM library calls

atomic add sync fetch and add
atomic sub sync fetch and sub
atomic xchg atomic exchange n
atomic inc sync fetch and add
atomic dec sync fetch and sub
atomic cmpxchg atomic compare exchange n
atomic min sync fetch and min
atomic max sync fetch and max
atomic and sync fetch and and
atomic or sync fetch and or
atomic xor sync fetch and xor

no chance of running these operations concurrently within a work-
group. �erefore, the atomic operations on local memory can be
replaced by equivalent functional operations without synchroniza-
tion. Figure 6 shows the implemetation of the atomic add function
with a regular addition statement. We see that the statements run
sequentially to update the atomic variable p. �is lock-free atom-
ics can signi�cantly improve kernel performance (see results in
Section 5.3) by avoiding the synchronization overheads.

3.3 Runtime System
�e runtime system implements the OpenCL APIs and generates
the OpenCL library (libOpenCL.so). As shown in Figure 2, the
runtime system has two parts: the host-side runtime and the device-
side runtime. To facilitate a �rst-time communication and manage
the runtime context, we create a daemon process on the device side.
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// read , add , store
__attribute__ (( overloadable))
T atomic_add(volatile Q T *p, T val)
{

T retval = *p;
*p = retval + val;
return retval;

}

Figure 6: �e implementation of atomic add when atomic
variables are located in local memory. Q denotes the ad-
dress space, T denotes the type of atomic variables, and the
atomic function returns the old value in the end.

Figure 7: �e interaction between host and device.

3.3.1 Host Runtime. �e runtime system needs to implement
the OpenCL APIs. �e host-device interaction is performed in terms
of commands, which are broadly categorized into bu�er allocation
and deallocation, kernel compilation and execution commands, data
movement commands, and synchronization commands. Figure 7
shows the work�ow of a command from host to device. �e host
issues commands to devices, and the commands are put into com-
mand queues. �en, devices fetch commands at the queue and
perform the corresponding actions to �nish the o�oading work.
�e interaction between host and device relies on the user commu-
nication library.

As an example shown in Figure 7, the bu�er allocation command
(i.e., clCreateBu�er) is pushed into the command queue (¶) and
executed on the device using the malloc() function to allocate
a bu�er space (·). When executing kernel commands, the host
launches the kernel function and dispatch the prede�ned work-
groups onto the hardware threads. �e runtime system calls the
kernel compiler when building kernel code. Also, Figure 7 illustrates
that the daemon process is used to detect requests from the host. To
manage the device-side runtime and run the o�oading tasks, we use
a thunk process, which is created during the OpenCL initialization
stage and released when �nalizing the program.

3.3.2 Device Runtime. Figure 7 shows that the thunk process
manages the device-side runtime and runs the o�oading tasks. �is
process is created and started to run at the very beginning of an
OpenCL program, and is destroyed when the program exits.

We create a thread pool with a total of 32 threads on a SN of
Matrix-2000 when initializing the thunk process. Figure 8 shows
that each thread has 4 states: idle, ready, done, and exit. Once
threads are created, they will switch to be idle immediately. A
condition variable is used to signal the idle threads to be ready. By
doing so, we aim to avoid continually polling and save cycles. Note
that, when the number of tasks (i.e., #work-groups) is less than the
number of idle threads, we will use only a portion of them. Once
the threads done with tasks, they switch to be idle and they are
pushed back into the thread pool again. We will clean up the thread
context and the related data when the thunk process exits.

Figure 8: �read states and their transitions.

Distributing pending tasks to idle threads is at the core of the
device runtime. In this context, a work-group is regarded as the
basic unit of task distribution. When starting an OpenCL kernel, our
runtime queries the number of idle threads and evenly dispatches
the tasks to idles threads in one time. If the number of idle threads is
greater than that of tasks, only a portion of the threads are signaled.
Di�erent from the task dispatching strategy used in Pocl [14], we
call our approach as a push-based strategy. Our runtime pushes
tasks to available threads while in Pocl, all the available threads
are pulling tasks once they �nish the dispatched tasks. In contrast,
our task dispatching approach can mitigate the overhead of thread
polling and synchronization.

3.4 Implementation Details
3.4.1 Handling Kernel Variables. For global, constant and
local variables, they are not private to a single work-item. When

generating work-item loops, we leave such variables intact. For
private variables, things become complicated. When a private

variable is used in only one work-item loop, we make no change of
it. When the private variable is used in more than one work-item
loops, but its value is the same for di�erent work-items, we also
make no change. At the same time, we need move the statements
which update the content of the variables outside of the work-item
loop. For other type of private variables, we have to allocate an
array for them, which is located by the local index of work-items.

3.4.2 Runtime Profiling. To facilitate the performance analysis
of the runtime system, we provide a pro�ling module to the device
runtime. When we submit a kernel function, the device runtime
will assemble kernel arguments, fetch idle threads from the thread
pool, dipatch tasks to the fetched threads, execute tasks on each
thread, and return threads back. We record the time consumed
by each stage during runtime. With this module, we can analyze
and measure the performance metrics such as load balancing and
scheduling cost, so as to help improve MOCL’s e�ciency.

3.4.3 Optimization for Scalability. When our OpenCL frame-
work works collaboratively with MPI on multiple devices or com-
pute nodes, we meet with two issues. �e �rst one is that, when
creating multiple processes on a node, our framework would fail
to run. Each node of TH-2A has eight compute devices out of two
Matrix-2000s, and it is natural to use one process to control a device.
But our OpenCL framework caches kernel binaries in the local �le
system, and they would be stored to the same location when using
multiple processes. �is results in the write con�icts from di�er-
ent processes. To address this issue, we provide an environment
variable MOCL ENV CACHE to indicate where to save mtx binaries.

�e second issue is that, when creating multiple processes on
a single node, our runtime would emit the message that devices
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cannot be found. �is is because when our framework initializes
devices, it will create a thunk process on all devices. As a conse-
quence, each process would contend to interact with all the devices
simultaneously. To this end, we delay the thunk creation from
device initialization to context creation. �en MOCL will only create
the thunk process on the device that it really used.

4 EXPERIMENTAL SETUP
Hardware Platform. We evaluate our approach on both a single

and multiple compute nodes of the TH-2A supercomputer. Each
compute node of TH-2A is equipped with two Intel Ivy Bridge CPUs
and two proprietary Matrix-2000 accelerators. Each node has 192
GB memory. �e host CPUs and the Matrix-2000 are connected
through PCIe. More details of the Matrix-2000 architecture can be
found in Section 2.2.

Systems So�ware. Both the CPU and the accelerator runs an op-
erating system (OS). �e host CPU runs Redhat Linux v7.0 (with
kernel v.3.10). �e Matrix-2000 runs a lightweight OS with Linux
kernel 3.14. We use an in-house driver to enable data communica-
tions between the host and Matrix-2000.

Benchmarks. To validate and evaluate our OpenCL implemen-
tation, we use 70 benchmarks from the NVIDIA SDK, AMD SDK,
SNU NPB, Shoc and Parboil suites. To evaluate our approach
across computing nodes, we use Clover, a mini-app that solves
the compressible Euler equations on a Cartesian grid, using an
explicit, second-order accurate method 3. It uses OpenCL for kernel
execution and MPI for cross-node execution. We analyze these
benchmarks and collect information from them to guide the imple-
mentation of MOCL.

Performance Report. For each test case, we report the geomet-
ric mean performance across all benchmarks. We run each test
case multiple times, until the di�erence between the upper and
lower con�dence bounds under a 95% con�dence interval se�ing is
smaller than 5%. We compare our approach to POCL [3], an open-
sourced OpenCL implementation based on LLVM, in terms of kernel
compilation policies and scheduling cost.

5 EXPERIMENTAL RESULTS
In this section, we �rst evaluate the e�ciency of MOCL, then we give
some optimization tips for users whowant towrite e�cient OpenCL
programs on Matrix-2000. At last, we evaluate the scalability of
MOCL on the TianHe-2A system.

5.1 Kernel Compilation Policies
In MOCL, an OpenCL kernel is compiled when the OpenCL API
clEnqueueNDRange is invoked by the host program. At this point,
the work-group size is known to the compiler. �us, we can pass
this work-group size as either a constant parameter or a variable
parameter to the compiler. We refer the �rst strategy as constant
parameter compilation (CPC) and the la�er as variable parameter
compilation (VPC). �ese two policies di�er in that CPC has to re-
compile the kernel when using a di�erent work-group size. �is
occurs when an OpenCL kernel is called in an iterative manner and

3CloverLeaf: h�p://uk-mac.github.io/CloverLeaf/.

the work-group size changes between iterations. In contrast, using
a variable parameter (VPC) can avoid the overhead of recompilation.

Figure 9 shows speedup of kernel compilation and execution
time for CPC over VPC. A speedup of over 1 means that CPC yields
be�er performance. Overall, we see that using a constant work-
group can o�en achieve a be�er performance than using a variable
work-group. �is is because the work-group size is �xed in such a
case and we only have to compile kernels once. In addition, using a
constant upper bound for a work-item loop brings more optimiza-
tion opportunities such as vectorization. �is is why using the CPC
policy performs be�er even though the kernel compilation takes
more time. Nontheless, we note a di�erent performance behav-
ior for BT, LU, NvBlsh, ScReduc, ScScan, and PbBFS. A common
observation of these benchmarks can noted that the kernels are
invoked iteratively and the work-group size changes between iter-
ations. As a result, the overhead of recompiling kernels becomes
nonneglectable, and using VPC runs faster. In MOCL, we provide
programmers with both CPC and VPC. In default, the CPC policy is
enabled. But programmers can switch to the VPC policy by se�ing
the environment variable MOCL ENV KCP=2.

5.2 Device Runtime Scheduling
Figure 10 shows the scheduling cost between MOCL and POCL. For
this, we synthesize a microbenchmark with an aim to measuring the
overhead of the scheduling strategies used in MOCL and POCL. �is
microbenchmark is an OpenCL program that has a host part for
managing contexts and a kernel part with an empty body. �erefore,
the scheduling overhead can be roughly estimated by measuring
the running time from the start of task dispatching to the moment
when all the work-groups have been done.

In POCL, each worker thread pulls a �xed amount of work-groups
from the task pool in each round. Every time a thread is pulling,
it will have to synchronize with the other threads. �is synchro-
nization overhead becomes nonnegligible in particular when we
have a large number of work-groups. �is is due to the fact that the
worker threads need to make pulling again and again. In MOCL, how-
ever, we use a master thread to push tasks (i.e., the work-groups)
to worker theads in one time. �is o�en holds because the number
of work-groups is determined at the time of starting an NDRange.
�erefore, the worker threads do not have to synchronize with
each other therea�er. �is exlains the observation in Figure 10 that,
when the number of work-groups grows, the scheduling cost of
MOCL becomes signi�cantly smaller than that of POCL.

When we only have a very few work-groups, the scheduling
overhead of MOCL is also much smaller than that of POCL. �is is
because that MOCL only activates a necessary number of worker
threads which are not more than the number of tasks and leaves
others idle. By contrast, POCL will activate all the idle threads and
dispatch tasks to each of them. �erefore, our scheduling strategy
can avoid the unnecessary scheduling cost. �is is particularly true
when an OpenCL program starts its kernel(s) iteratively.

A natural extention to our scheduling approach is to leverage the
work-stealing technique. �at is, we �rst push tasks to the worker
threads at one time and then apply the work-stealing technique
among threads during runtime. By systematically analyzing the
70 benchmarks, however, we observe that most OpenCL programs

http://uk-mac.github.io/CloverLeaf/
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Figure 9: Speedup of kernel compilation strategy CPC over VPC.
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Figure 10: Comparing the scheduling overhead between
POCL and MOCL. �e x-axis represents the number of work-
groups, each having only one work-item and the y-axis de-
notes the scheduling time from dispatching tasks to their
completion.

5
1 0
1 5
2 0
2 5
3 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
E x e c u t e  t i m e  ( s )

Th
rea

d I
D

(a) Load distribution of EP

5
1 0
1 5
2 0
2 5
3 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4
E x e c u t e  t i m e  ( s )

Th
rea

d I
D

(b) Load distribution of PbTPACF

Figure 11: �e workload per thread of EP and PbTPACF

have a rather even workload distribution among work-groups. As
shown in Figure 11(a), the one-time workload distribution can
garuantee a good load balancing. �us, applying work-stealing
on these programs is not a must. Meanwhile, programs such as
PbTPACF have branches and thus distinct work-items may run dif-
ferent amouts of workloads (Figure 11(b)). For such programs, it is
still necessary to implement the work-stealing technique. Provided
that there are very few such programs among the 70 benchmarks,
we will leave this extension for the future work. To summarize, we
calculate that the average ratio (between the fastest worker thread
and the slowest one) of load balancing is around 90.5%, which is
considered to be well load balanced.

5.3 Evaluating Atomic Operations
We evaluate the performance of our atomic functions over several
programs, which are from the Parboil and AMD benchmark suites.
We implement two versions of the atomic functions: one is built on
the LLVM sync library calls, and the other uses our lock-free im-
plementation. We measure their kernel execution time to compare
the performance of our optimized atomic functions. From Table 2,
we see that our optimized atomic functions can achieve a speedup
of up to 4.32x, when compared to the baseline implementation.
Most atomic functions in PbBFS and PbHisto work on updating

Table 2: �e performance evaluation of the optimized
atomic functions when atomic variables are located in
localmemory. �e speedup is the performance of our im-

plementation versus the one based on external library calls.

Programs Atomics Locations Speed up
StrS atomic {inc, dec} local 1.11
rads atomic inc local 1.08
histoA atomic inc local 4.32
PbBFS atomic {add, min, xchg} {local, global} 1.00
PbHisto atomic {add, min, max} {local, global} 1.00
PbTPACF atomic inc local 1.28

variables in global memory. As we perform no optimizations on
such atomic functions, these benchmarks can gain a slight perfor-
mance improvement. Other programs such as histoA and PbTPACF,
work on updating atomic variables in local memory. We note
that such benchmarks can yield signi�cant speedups, which comes
from the usage of our lock-free atomics.

5.4 Programming and Code Optimization on
Matrix-2000: A Programmer’s Perspective

With the help of our OpenCL framework, programmers can take
Xeon-Matrix2000 as a conventional heterogeneous platform. But
we argue that the following optimization guidelines are required to
achieve high performance on this platform.

5.4.1 On Reduction Operations. In MOCL, the work-items in a
work-group are executed in a sequential way, i.e., the sequential
execution order (SEO). By leveraging this implicit constraint, we
can remove the usage of local memory and barrier. We analyze
the benchmarks and �nd that the reduction operation can be reim-
plemented with SEO in a straightforward manner. In Figure 12,
we show how we use SEO to implement reduction operations for
Reduc in the AMD-SDK benchmark suite. In the original kernel,
it uses a loop and barrier to implement reduction. When taking
the SEO constraint into account, we can simply implement the
reduction operation in an equivalent way that we sum the private
result for the �rst work-item to the last one.

We rewrite the benchmarks with reductions and implement the
reduction operation without local memory or barrier. �e speedup
can be up to 1.5x, when compared to the original kernel. Specif-
ically, Reduc, IS, PbTPACF, PbBFS can achieve a speedup of 1.42x,
1.03x, 1,51x, and 1.07x, respectively. �erefore, we recommend
that programmers remove the usage of local memory and load data
elements directly from the global space for reductions.
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__kernel void reduce(__global uint4* input ,
__global uint4* output , __local uint4* sdata)

{
unsigned int tid = get_local_id (0);
unsigned int bid = get_group_id (0);
unsigned int gid = get_global_id (0);
unsigned int localSize = get_local_size (0);
unsigned int stride = gid * 2;
sdata[tid] = input[stride] + input[stride + 1];
barrier(CLK_LOCAL_MEM_FENCE);
for(unsigned int s = localSize >> 1; s > 0; s >>= 1)
{

if(tid < s)
{

sdata[tid] += sdata[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);

}
if(tid == 0) output[bid] = sdata [0];

}

(a) Reduction with explicit synchronization

__kernel void reduce(__global uint4* input ,
__global uint4* output , __local uint4* sdata)

{
unsigned int tid = get_local_id (0);
unsigned int bid = get_group_id (0);
unsigned int gid = get_global_id (0);
unsigned int localSize = get_local_size (0);
unsigned int stride = gid * 2;
if (tid == 0)

output[bid] = 0;
output[bid] += input[stride] + input[stride + 1];

}

(b) Reduction with implicit synchronization

Figure 12: Reduction operation optimization for Reduction.
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Figure 13: �e performance without local memory com-
pared towith localmemory. �e kernels without using local
memory run up to 2.4x faster.

5.4.2 On Local Memory Usage. �e local memory in OpenCL
can be used to stage the data from global memory, or used to cache
the result produced by other work-items. Using local memory can
enable faster memory accesses, because local memory is located on-
chip and has a much smaller access latency on GPUs. But it is not
the same for Matrix-2000, where the architecture has no physical
on-chip bu�ers. In such a case, local memory is implemented as
a bu�er in the global memory space. �erefore, accessing local
memory is same as accessing global memory on Matrix-2000.

Among all the benchmarks, we note several of them are using
local memory to stage data: LUcom, MT, NvMM, and QRS. We rewrite
these programs by removing the usage of local memory. Figure 13
shows that we obtain an up to 2.4x speedup, compared to the
original kernel. We demonstrate the speedup of the optimized
version compared to the version with local memory. Overall, the
kernels without local memory achieve an average speedup of 1.3x
over the original kernels. To summarize, it is not recommended that
local memory be used in OpenCL kernels on Matrix-2000. As doing
so, we will introduce extra memory accesses and synchronizations.

(a) Pa�ern 1. (b) Pa�ern 2.

Figure 14: Memory access patterns. �is is thememory foot-
print of one work group. WI0 means the memory that work
item 0 will access.
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Figure 15: Evaluate the performance of multiple devices

5.4.3 On Memory Access Pa�erns. �ere are two typical mem-
ory access pa�erns: (1) a work-item accesses memory contiguously
(Figure 14(a)), and (2) the access distance between two neighbouring
work-items is 1 and the data elements accessed by a work-item may
be far from each other (Figure 14(b)). In MOCL, the work-items in
one work-group are scheduled for exeuction in a sequential fashion.
�us, pa�ern 1 can bring a much larger memory bandwidth than
pa�ern 2. As a result, pa�ern 1 is preferred by programmers to
implement OpenCL kernels. We compare the performance of these
pa�erns with DCT and QRS, and see that using pa�ern 1 can yeild a
speedup of 1.03x and 1.01x, respectively.

5.5 Evaluating the Scalability of MOCL
We evaluate the scalbility of MOCL on either multiple Matrix-2000s
or multiple compute nodes, each with multiple devices.

On Multiple Matrix-2000s. In order to evaluate MOCL’s perfor-
mance on multiple devices, we select the benchmarks which use
multiple devices from Nvidia and AMD benchmark suites. We run
these programs in three cases: using 1 device, 4 devices and 8 de-
vices. From Figure 15, we see how the performance increases when
using increasingly more devices.

On Multiple Nodes with Multiple Matrix-2000s. We run the mini-
app Clover on 256 nodes of TH-2A to evaluate the scalability of
MOCL. Clover is implemented with MPI and OpenCL, where each
MPI process is used to control a device. To fully utilize the TH-2A
system, we run 8 processes per compute node, which corresponds
to 8 devices. We �rst run Cloverwith a �xed input size, and change
the number of nodes and devices. �e execution time of Clover
is shown in Figure 16(a). We see that the execution time decrease
when increasing the number of MPI processes. But when the num-
ber of MPI processes is large than 8, the change of execution time
is very slight. �en we keep the task size of each MPI process con-
stant, and vary the number of nodes and input size. �e execution
time is shown in Figure 16(b). When the input dataset increases,
we see that the execution time increase slowly. It means that MOCL
achieves a good strong and weak scalability on the TH-2A system.
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Figure 16: Evaluate the scalability of Clover across comput-
ing nodes.

Table 3: Existing OpenCL Implementations on various plat-
forms (aGPU– AMD GPU, iGPU– Intel GPU, mGPU– Mali
GPU, nGPU– NVIDIA GPU; [3] denotes AVAILABLEwhile [7]
denotes UNAVAILABLE).

PowerPC x86 64 ARMv7 ARMv8 aGPU iGPU mGPU nGPU FPGA DSP
AMD OpenCL [8] 7 3 7 7 3 7 7 7 7 7

NVIDIA OpenCL [21] 7 7 7 7 7 7 7 3 7 7

Intel OpenCL [13] 7 3 7 7 7 3 7 7 3 7

ARM OpenCL [9] 7 7 3 3 7 7 3 7 7 7

Clover OpenCL [2] 7 7 7 7 3 7 7 7 7 7

TI OpenCL [5, 6] 7 7 3 7 7 7 7 7 7 3

Beignet OpenCL [1] 7 7 7 7 7 3 7 7 7 7

FreeOCL OpenCL [7] 3 3 3 7 7 7 7 7 7 7

Pocl OpenCL [3] 3 3 3 7 7 7 7 3 7 7

6 RELATEDWORK
�ere exist various OpenCL implementations, which are shown
in Table 3. On the one hand, we notice that most vendor imple-
mentations are close-source, except the one from AMD. �is open
source Linux Compute project is Radeon Open Compute ROCm for
Radeon Graphics GCN 3 and 4 (Hawaii, Fiji, Polaris) and Intel Xeon
E5v3 and Corev3 CPU (Haswell and newer) or new AMD Ryzen
with PCIe Gen3 atomics capability [4]. Meanwhile, the OpenCL
implementation from TI is customized to TI SoCs (an ARM CPU +
a TI DSP) [6]. On the other hand, the open-source implementations
are typically developed and maintained by academia. �e Gallium
Compute Project maintains an implementation of OpenCL mainly
for AMD Radeon GCN (formerly known as CLOVER), and it builds
on the work of the Mesa project to support multiple platforms [2].
BEIGNET is an implementation released by Intel in 2013 for its in-
tegrated GPUs (Ivy Bridge and newer) [1]. POCL is a CPU-oriented
OpenCL implementation built on Clang and LLVM. In addition,
POCL supports the TTA and HSA architecture [14, 15]. As of April
2017, POCL has an experimental support for NVIDIA GPU devices
via a new backend which makes use of the LLVM NVPTX backend
and the CUDA driver API. Similar to POCL, FreeOCL also supports
a large range of multi-core CPUs with the help of the generic C++

compilers [7]. But this framework is purely CPU-oriented and can-
not be extended to accelerators in a straightforward way. Although
these frameworks provide us with valuable building blocks, none of
them can be directly applicable to the Xeon-Matrix2000 platform.

In [12], Gummaraju et al. present Twin Peaks, a so�ware plat-
form for heterogeneous computing. �is allows codes originally
targeted for GPUs execute e�ciently on CPUs as well. In particular,
they propose several techniques in the runtime system to e�ciently
utilize the caches and functional units present in CPUs. �e ex-
perimental results show that the techniques enable GPGPU-style
code to run e�ciently on multicore CPUs with minimal runtime
overheads. In [20], Lee et al. present the design and implementa-
tion of an OpenCL framework for architectures which consist of
a general-purpose processor core and multiple accelerator cores
without caches but a small internal local memory. �eir OpenCL C
kernel translator contains three source-code transformation tech-
niques to boost performance. In [25], Stra�on et al. describe a
framework (MCUDA), which allows CUDA programs to be executed
e�ciently on shared memory, multi-core CPUs. �e framework
consists of a set of source-level compiler transformations and a
runtime system for parallel execution. �is approach can achieve a
be�er performance than the OpenMP version on multicore CPUs.
�ese OpenCL implementations are targeted for multicore CPUs.
Our kernel compiler resembles theirs by using the work-item loop
strategy. Di�erent from these work, our kernel compiler further op-
timizes kernel performance by fully leveraging the SEO constraint.

To compare and contrast architectural designs and programming
systems, Danalis et al. have designed the Scalable HeterOgeneous
Computing benchmark suite (SHOC) [10], which is a spectrum of
programs that test the performance and stability of these scalable
heterogeneous computing systems. In this context, we use these
benchmarks to evaluate the performance of our design. In [22, 23],
Shen et al. compare the performance of OpenCL and OpenMP on
three x86 64multicores. �ey identify the factors that signi�cantly
impact the overall performance of the OpenCL code. By taking a
reasonable OpenMP implementation as a performance reference,
they optimize the OpenCL code to reach or exceed this thresh-
old. �e authors �nd that the performance of OpenCL codes is
a�ected by hard-coded GPU optimizations which are unsuitable
for multi-core CPUs, the �ne-grained parallelism of the model, and
the immature OpenCL compilers. On the Matrix-2000 architecture,
we have similar observations that the GPU-customized OpenCL
codes perform even worse than the serial code. �is motivates us to
generates e�cient codes for Matrix-2000 from the OpenCL codes
with GPU-speci�c optimizations in the future.

7 CONCLUSION
�is paper has presented the design and implementation of an
OpenCL kernel compiler and runtime for the Matrix-2000 accelera-
tor. �e core of our compiler are a set of compiling passed built on
the LLVM infrastructure. We provide extensive discussions on our
design choices, and optimization strategies for implementing the
OpenCL compiler and runtime. We evaluate our approach by apply-
ing to 70 OpenCL benchmarks on a single accelerator, and across
accelerators and computing nodes. Experimental results show that
our optimization strategies give be�er performancewhen compared
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with a state-of-the-art open-sourced OpenCL implementation. We
share our experience on code optimization on Matrix-2000, pro-
viding useful insights on how to e�ectively program this unique
architecture.
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