Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries

Tolosa, Aura and Widmaier, Mathias and Kruener, Benjamin and Griffin, John M. and Presser, Volker (2018) Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries. Sustainable Energy and Fuels, 2 (1). pp. 215-228. ISSN 2398-4902

[thumbnail of SiOC_for_LIBs_Paper_V2.6]
PDF (SiOC_for_LIBs_Paper_V2.6)
SiOC_for_LIBs_Paper_V2.6.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (1MB)


Continuous fiber mats are attractive electrodes for lithium-ion batteries, because they allow operation at high charge/discharge rates in addition to being free of polymer binders and conductive additives. In this work, we synthesize and characterize continuous Sn/SiOC fibers (diameter ca. 0.95 mu m), as a Li-ion battery anode. Our synthesis employs electrospinning of a low-cost silicone resin, using tin acetate in a dual role both as a polymer crosslinker and as a tin precursor (6-22 mass%). The hybrid electrodes present very high initial reversible capacities (840-994 mA h g(-1)) at 35 mA g(-1), and retain 280310 mA h g(-1) at 350 mA g(-1). After 100 cycles at 70 mA g(-1), the hybrid fibers maintained 400-509 mA h g(-1). Adding low amounts of Sn is beneficial not just for the crosslinking of the polymer precursor, but also to decrease the presence of electrochemically inactive silicon carbide domains within the SiOC fibers. Also, the metallic tin clusters contribute to a higher Li+ insertion in the first cycles. However, high amounts of Sn decrease the electrochemical performance stability. In SiOC fibers synthesized at high temperatures (1200 degrees C), the C-free phase has a significant influence on the stability of the system, by compensating for the volume expansion from the alloying systems (Sn and SiO2), and improving the conductivity of the hybrid system. Therefore, a high amount of carbon and a high graphitization degree are crucial for a high conductivity and a stable electrochemical performance.

Item Type:
Journal Article
Journal or Publication Title:
Sustainable Energy and Fuels
?? energy-storagesioc ceramicselectrochemical performanceraman-spectroscopycarbonnanofibersnanocompositeinsertionsupercapacitortemperature ??
ID Code:
Deposited By:
Deposited On:
09 Mar 2018 09:30
Last Modified:
15 Jul 2024 17:37