Estimating risks of identification disclosure in partially synthetic data

Reiter, Jerome P. and Mitra, Robin (2009) Estimating risks of identification disclosure in partially synthetic data. Journal of Privacy and Confidentiality, 1 (1). pp. 99-110.

Full text not available from this repository.


To limit disclosures, statistical agencies and other data disseminators can release partially synthetic, public use microdata sets. These comprise the units originally surveyed; but some collected values, for example, sensitive values at high risk of disclosure or values of key identifiers, are replaced with multiple draws from statistical models. Because the original records are on the file, there remain risks of identifications. In this paper, we describe how to evaluate identification disclosure risks in partially synthetic data, accounting for released information from the multiple datasets, the model used to generate synthetic values, and the approach used to select values to synthesize. We illustrate the computations using the Survey of Youths in Custody.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Privacy and Confidentiality
ID Code:
Deposited By:
Deposited On:
08 Mar 2018 11:26
Last Modified:
22 Nov 2022 05:35