Estimating propensity scores with missing covariate data using general location mixture models

Mitra, Robin and Reiter, Jerome P. (2011) Estimating propensity scores with missing covariate data using general location mixture models. Statistics in Medicine, 30 (6). pp. 627-641. ISSN 0277-6715

Full text not available from this repository.

Abstract

In many observational studies, analysts estimate causal effects using propensity scores, e.g. by matching, sub-classifying, or inverse probability weighting based on the scores. Estimation of propensity scores is complicated when some values of the covariates are missing. Analysts can use multiple imputation to create completed data sets from which propensity scores can be estimated. We propose a general location mixture model for imputations that assumes that the control units are a latent mixture of (i) units whose covariates are drawn from the same distributions as the treated units' covariates and (ii) units whose covariates are drawn from different distributions. This formulation reduces the influence of control units outside the treated units' region of the covariate space on the estimation of parameters in the imputation model, which can result in more plausible imputations. In turn, this can result in more reliable estimates of propensity scores and better balance in the true covariate distributions when matching or sub-classifying. We illustrate the benefits of the latent class modeling approach with simulations and with an observational study of the effect of breast feeding on children's cognitive abilities

Item Type:
Journal Article
Journal or Publication Title:
Statistics in Medicine
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2700/2713
Subjects:
?? epidemiologystatistics and probability ??
ID Code:
123903
Deposited By:
Deposited On:
08 Mar 2018 13:46
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 17:37