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OPTIMAL DESIGN FOR EXPERIMENTS

WITH POSSIBLY INCOMPLETE OBSERVATIONS

Kim May Lee, Stefanie Biedermann and Robin Mitra

University of Southampton, UK

Abstract: Missing responses occur in many industrial or medical experiments,

for example in clinical trials where slow acting treatments are assessed. Finding

efficient designs for such experiments is problematic since it is not known at the

design stage which observations will be missing. The design literature mainly

focuses on assessing robustness of designs for missing data scenarios, rather than

finding designs which are optimal in this situation. Imhof, Song and Wong (2002)

propose a framework for design search, based on the expected information ma-

trix. We develop a new approach which includes Imhof, Song and Wong (2002)’s

method as special case and justifies its use retrospectively. Our method is illus-

trated through a simulation study based on real data from an Alzheimer’s disease

trial.

Key words and phrases: Covariance matrix, information matrix, linear regression

model, missing observations, optimal design.

1. Introduction

In statistical studies, having missing values in the collected data sets is

often unavoidable, in particular when the experimental units are humans

and the study is long-term. Consider, for example, a clinical trial where

responses are measured several months into the treatment regime for com-

parison with baseline measurements. In this situation, some patients may

be lost to follow-up for various reasons, including side effects of the treat-

ment or death.

Extracting the essential information on treatment characteristics from

only partially observed data is a key challenge. Missing values may re-

duce the power of the study or increase the variability of estimation, due

to smaller sample size. Moreover, when not missing completely at random

(MCAR), they can cause bias in estimates and thus result in misleading
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conclusions when not analysed appropriately, see e.g. Little and Rubin

(2002), Schafer (1997) or Carpenter, Kenward and White (2007). Several

methods have been suggested in the literature to deal with this issue, for

example, multiple imputation (Rubin, 1987), maximum likelihood, weight-

ing methods or pattern mixture models. Research in this area has found

much attention, see for example Kenward, Molenberghs and Thijs (2003),

White, Higgins and Wood (2008) and Spratt et al. (2010).

In this article we assume the missing data problem is handled using

a complete case analysis. This approach discards any experimental units

containing missing values from the analysis, which is appealing for its sim-

plicity. In addition, inferences of regression coefficients under complete case

analysis are unbiased provided the probability that responses are missing

only depends on the covariates and not on the response itself, since regres-

sion analysis considers the conditional distribution of the responses given

the covariates, and so both response and covariates should be present to

contribute to the inference; see e.g. Little and Rubin (2002) or Glynn and

Laird (1986).

In the situation of completely observable data, it is well-established that

a good design can decrease the necessary sample size, and thus lower the

costs of experimentation. However, the design literature has only addressed

very few special cases involving missing data, which provide only limited

guidance to practitioners. Many papers focus on assessing the robustness

of standard designs, such as balanced incomplete block designs, D-optimal

designs or response surface designs, against missing observations; see e.g.

Hedayat and John (1974), Ghosh (1979), Ortega-Azurduy, Tan and Berger

(2008) or Ahmad and Gilmour (2010).

Herzberg and Andrews (1976) propose to optimise the expectation of

the D- and G-objective functions, respectively, where random missing data

indicators are incorporated into the information matrix. Such a modified G-

optimal design minimises the expected maximum variance of a predicted re-

sponse among all designs where these variances exist. Hackl (1995) penalises

singular information matrices in a modified version of the D-optimality cri-

terion, and considers only small finite design spaces since the approach
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would become intractable for continuous intervals or even large discrete

sets. Imhof, Song and Wong (2002) develop a framework for finding opti-

mal designs using the expected information matrix, where the expectation

is taken with respect to the missing data mechanism. This approach is

mathematically equivalent to finding designs for heteroscedastic or weighted

regression models. Imhof, Song and Wong (2004) extend this work by ex-

ploring different classes of probability functions for missing responses, and

study the robustness of their optimal designs against misspecification of the

parameters in the probability functions. Baek et al. (2006) further extend

this approach to Bayesian optimality criteria in the context of percentile

estimation of a dose-response curve with potentially missing observations.

In the situation where all outcomes will be observed, it is common in

the optimal design literature to use the inverse of the information matrix

as an approximation to the covariance matrix, var(β̂), of the parameter

estimators of interest, held in the vector β̂. For linear models, these two

matrices are in fact the same. For maximum likelihood estimators in non-

linear or generalised linear models, equality holds asymptotically. However,

when some of the responses may be missing, var(β̂) will not exist, and it

is not clear if the inverse information matrix will be a good approximation

to the observed covariance matrix, i.e. the covariance matrix (provided it

exists) after the experiment has been carried out. Hence it is not known

if a design which is optimal with respect to some function of the expected

information matrix will actually make the (observed) covariance matrix (or

a function thereof) small. Imhof, Song and Wong (2002) implicitly assumed

that this would be the case without providing a justification. Our research

is filling this gap. We propose a more sophisticated approximation to the

covariance matrix which contains Imhof, Song and Wong (2002)’s method

as a special case, and thus justifies their approach retrospectively. The

framework proposed in this paper is applicable to finding optimal designs

for linear regression models in the presence of missing at random (MAR)

mechanisms (or MCAR, which is a special case of MAR).

The structure of the paper is as follows. In Section 2, we provide some

background on optimal design for complete data, and describe the optimal
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design framework for incomplete data proposed by Imhof, Song and Wong

(2002). In Section 3, we introduce and justify an optimal design framework

for a broad class of MAR missing data mechanisms which includes the

method by Imhof, Song and Wong (2002) as a special case. Using a simple

linear regression model, the optimal design framework is illustrated for A-,

c- and D-optimal designs in Section 4. In Section 5, we apply our framework

to redesigning a clinical trial for two Alzheimer’s drugs, while providing a

discussion of our results in Section 6.

2. Background

We briefly introduce the general linear regression model and some basic

theory on optimal design of experiments for the situation where all outcomes

are observed. Consider the general linear regression model for (p+1) linearly

independent functions f0(x), ..., fp(x),

Yi = β0f0(xi) + ...+ βpfp(xi) + εi, xi ∈ X, i = 1, . . . , n, (1)

where Yi is the ith value of the response variable, xi is the value of the ex-

planatory variable (or the vector of explanatory variables) for experimental

unit i, X is the (convex) design region, and εi
iid∼ N(0, σ2), i = 1, . . . , n. In

matrix form, this can be written as Y = Xβ + ε where the ith row of

X is fT (xi) = (f0(xi), . . . , fp(xi)). A typical example is the polynomial

regression model of degree p, i.e.

Yi = β0 + β1xi + β2x
2
i + ...+ βpx

p
i + εi. (2)

Using the method of either least squares or maximum likelihood, the vector

of unknown parameters, β, is estimated by β̂ = (XTX)−1XTY, with

covariance matrix

var (β̂) = σ2(XTX)−1.

Let x∗i , i = 1, . . . ,m, m ≤ n, be the distinct values of the explanatory

variable in the experimental design, and let ni, i = 1, . . . ,m, be the number

of observations taken at xi where
∑m

i=1 ni = n. Then an exact design can

be written as

ξ =

{
x∗1 · · · x∗m
w1 · · · wm

}
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where wi = ni/n gives the proportion of observations to be made in the

support point x∗i . This concept can be generalised to approximate or contin-

uous designs where the restriction that win is a positive integer is relaxed

to wi > 0, i = 1, . . . ,m, with
∑m

i=1wi = 1. The proportion wi is called the

weight at the support point x∗i . The latter approach avoids the problem

of discrete optimisation and is widely used in finding optimal designs for

experiments. In order to run such a design in practice, a rounding proce-

dure which turns continuous designs into exact designs can be applied; see,

for example, Pukelsheim and Rieder (1992). For a continuous design ξ, the

Fisher information matrix for model (1) is

M (ξ) = n
m∑
i=1

f(x∗i )f
T (x∗i ) wi

and its inverse, M−1(ξ), is proportional to var (β̂).

The design problem is to find the values of x∗i and wi that provide maxi-

mum information from the experiment. Let Ξ be the class of all approximate

designs on X (i.e. the class of all probability measures with finite support

on X) and M be the set of all information matrices with respect to Ξ, i.e.

M = {M (ξ); ξ ∈ Ξ}. An optimality criterion is a statistically meaningful,

real-valued function ψ(M (ξ)), which is selected to reflect the objective of

the experiment. It is typically an increasing and convex function over M,

such that there is a critical point in the region. The technical explanation

of these properties can e.g. be found in Silvey (1980) or Pukelsheim (2006).

We seek a design ξ∗ such that ψ(M (ξ∗)) = min
ξ∈Ξ

ψ(M (ξ)). Such a design is

called a ψ-optimal design.

The following optimality criteria are some examples commonly used

in finding the optimal setting for an experiment with the corresponding

objective.

• D-optimality: ψ(M (ξ)) = |M−1(ξ)|. A D-optimal design minimises

the volume of a confidence ellipsoid for β.

• A-optimality: ψ(M (ξ)) = trace(M−1(ξ)). An A-optimal design min-

imises the sum of the variances of the individual elements of β̂.
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• c-optimality: ψ(M (ξ)) = cTM−1(ξ)c where c is a (p+1)×1 vector. A

c-optimal design minimises the variance of cT β̂, a linear combination

of β̂.

2.1 Optimal design for missing values

To construct optimal designs that account for missing observations, we

define independent random missing data indicators Ri = 1, if the obser-

vation at xi is missing; Ri = 0 otherwise, i = 1, . . . , n. Following Rubin

(1976), if responses are missing completely at random (MCAR) then

Pr(Ri = 1|xi, yi, i = 1, ..., n) = P (Ri) ∀i = 1, . . . , n.

If we have a missing at random (MAR) mechanism the probability of miss-

ingness may depend on the observed values of xi and yi, i.e. for i = 1, . . . , n,

Pr(Ri = 1 | xi, yi, i = 1, ..., n) = E{Ri | observed xi, yi, i = 1, ..., n}.

In what follows, since only the design values of xi play a role in the optimal

design framework, we assume a special case of MAR mechanism where

E{Ri | observed xi, yi, i = 1, ..., n} = P (Ri = 1 | observed xi) = P (xi).

This is necessary as we do not know which responses will be observed at

the time of designing the experiment. In the remaining part of this paper,

the conditioning on xi will be omitted to simplify the notation of a MAR

mechanism.

The Fisher information matrix containing the missing data indicators

R = {R1, R2, . . . , Rn} is given by

E{M (ξ,R)} = E{
n∑
i=1

f(xi)f
T (xi) (1−Ri)} =

n∑
i=1

f(xi)f
T (xi) (1− P (xi))

= n
m∑
i=1

f(x∗i )f
T (x∗i ) wi (1− P (x∗i )) (3)

which is equivalent to M(ξ) if the responses are fully observed.

Imhof, Song and Wong (2002) proposed a general framework where

a function of (3) is used in constructing optimal designs. For example,
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a D-optimal design maximises |E{M (ξ,R)}| as var(β̂) was implicitly

assumed to be proportional to [E{M (ξ,R)}]−1. The use of E{M (ξ,R)}
is appealing since M (ξ,R) is linear in the missing data indicators, and

therefore taking the expectation is straightforward. Moreover, from (3), we

can see that this framework is analogous to the optimal design framework

for weighted regression models, with weight function λ(x) = 1− P (x).

However, if responses may be missing, var(β̂) does not exist. Hence it

is not clear if the inverse of E{M (ξ,R)} will be a good approximation to

the observed covariance matrix of an experiment. In the next section, we

will investigate this approximation further.

3. Optimal design for MAR mechanisms with complete case anal-

ysis

For an exact design ξ on X, let Cξ be the set of values of R such that

M (ξ,R) is non-singular, and assume that ξ is such that the probability

vξ = P (R /∈ Cξ) is negligibly small. We can write the observed covariance

matrix as var(β̂|R = r) where r is the observed outcome of the vector of

missingness indicators R. Note that this expression will exist if and only if

r ∈ Cξ. Since vξ is close to zero, we will consider only those values where

r ∈ Cξ to approximate the observed covariance matrix in what follows. In

practice, if a value r /∈ Cξ is observed, further experimentation would be

needed, but this scenario will only occur with probability vξ close to zero.

At the planning stage of the experiment, the observed value of r is not

known, and var(β̂|R) (where R ∈ Cξ) is a random variable, so in order to

approximate the observed covariance matrix for design purposes we take its

expectation with respect to the conditional distribution of R, given R ∈ Cξ,

ER|R∈Cξ
(var(β̂|R)) = ER|R∈Cξ

{[M (ξ,R)−1]}. (1)

For notational convenience, the subscript R|R ∈ Cξ of the expectation

in (1) will be dropped in what follows, so we will write E{[M (ξ,R)−1]}
instead of ER|R∈Cξ

{[M (ξ,R)−1]}.
The expectation will not normally be available in closed form, so must

be approximated. We propose to apply a second order Taylor series ex-

pansion to approximate the elements of the inverse matrix M (ξ,R)−1, and
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then to take the expectation of these; see Sections 3.1 and 5 for illustra-

tions of this approach. The approach by Imhof, Song and Wong (2002)

can be viewed as a Taylor expansion of order one, where they implicitly

approximate E{[M (ξ,R)−1]} by [E{M (ξ,R)}]−1. Note that Imhof, Song

and Wong (2002) do not consider potential non-existence of the covariance

matrix, so here the latter expectation is with respect to the (unconditional)

distribution of R. For vξ close to zero, the conditional and the uncondi-

tional distribution will be similar; see also the case study in Section 5 where

vξ is negligibly small due to the large sample size.

Technically the order of the approximation could be viewed as either

the 0th or 1st order. While no Taylor expansion has actually been applied

here, it could be viewed as the 0th order expansion, but as we are expanding

the expression about the mean of the random variables, the first order

expansion simplifies to the 0th order result. As our approach is obtained

using a second Taylor expansion about the mean, we refer to the Imhof,

Song and Wong (2002) (unconditional) approach as the 1st order approach

for consistency.

While the first order expansion will usually provide a cruder approx-

imation to the ‘true’ objective function, and thus somewhat less efficient

designs, this approach has the advantage that established theory on opti-

mal design, such as the use of equivalence theorems, is applicable. Hence

we can often simplify design search considerably through analytical results.

For second order approximations, convexity of the domain and thus of the

objective function is no longer guaranteed, which prohibits the use of equiv-

alence theorems. Hence, while optimal designs will be more efficient, ana-

lytical results can only be established on a case by case basis, and design

search will be more challenging.

Theorem 1 shows that for a large class of MAR mechanisms and polyno-

mial models, the D-optimal design found using a first order approximation

has the same number of support points as it has parameters. This result

corresponds to the contribution of De la Garza (1954) and Silvey (1980)

in the conventional optimal design framework for finding the number and

weight of support points of a D-optimal design. The proof of Theorem 1
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can be found in Appendix A.1.

Theorem 1. Let h(x) = 1
1−P (x)

and assume that for the MAR mechanism

P (x) the equation h(2p)(x) = c has at most one solution for every constant

c ∈ <. Then a D-optimal design for the polynomial model (2) of degree p

has exactly p+ 1 support points, with equal weights.

Hence design search can be restricted to (p + 1)-point designs, with

known weights wi = 1/(p + 1), i = 1, . . . , p + 1. A further simplification is

given in Lemma (2), which shows that under the assumptions of Theorem

1, if the MAR mechanism is monotone, one of the bounds of the design

region is a support point of the D-optimal design.

Lemma 2. Let P (x) be a MAR mechanism that satisfies the conditions in

Theorem 1 and is monotone, and let the design interval X = [l, u], where

l < u. If P (x) is strictly increasing, then the lower bound, l, is a support

point of the D-optimal design. If P (x) is strictly decreasing, then the upper

bound, u, is a support point of the D-optimal design.

Proof. For a continuous design ξ with p+ 1 support points, we have

|E{M (ξ,R)}| =

p+1∏
i=1

wi(1− P (x∗i ))
∏

1≤i<j≤p+1

(x∗i − x∗j)2 (2)

where we order the support points by size:

l ≤ x∗1 < x∗2 < ... < x∗p+1 ≤ u.

If P (x) is monotonic increasing in x, (1 − P (x)) will be largest at x∗1 = l

and (x∗1 − x∗j)
2 will also be largest for x∗1 = l, for all values of x∗j where

j = 2, . . . , p + 1. Hence l must be a support point. Analogously, if P (x)

is monotonic decreasing, (1 − P (x)) and (x∗i − x∗p+1)2, i = 1, . . . , p will be

maximised at x∗p+1 = u.

For optimal designs based on a second order approximation toE{[M (ξ,R)−1]},
there is no corresponding result in general. However, in the following sec-

tion, we provide a similar result for a special case.
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3.1. Illustration

To fix ideas, we consider the simple linear regression model, i.e. model

(2) where p = 1, for D-, c- and A-optimality. For a design region X = [l, u],

where l < u, consider total sample size n and two support points x∗1 and

x∗2. Two support points are sufficient for estimation in the simple linear

regression model with two unknown parameters and, from Theorem 1, the

D-optimal designs based on the first order approximation are two-point

designs for a large variety of MAR mechanisms P (x). Hence finding the best

two-point design for the second order approximation facilitates comparing

the two approaches. Let n1 = nw1 responses {y1, ..., yn1} be taken at

experimental condition x∗1, and n2 = n−n1 = nw2 responses {yn1+1, ..., yn}
at x∗2. We seek an optimal design

ξ∗ =

{
x∗1 x∗2
w1 w2

}

based on a function of the approximated expression for E{[M(ξ,R)−1]}.
Note that in order to define the quantities in (3) and below, we need to

work in terms of exact designs, i.e. n1 = nw1 and n2 = nw2 are integers.

To facilitate the numerical computation of the optimal designs, we only use

the constraint w1 + w2 = 1 and then round nw∗1 and nw∗2 to the nearest

integers, where w∗1 and w∗2 are the resulting optimal weights. For the simple

linear regression model,

M (ξ,R)−1 =
1

(x∗1 − x∗2)2 Z1Z2

(
x∗21 Z1 + x∗22 Z2 −x∗1Z1 − x∗2Z2

−x∗1Z1 − x∗2Z2 Z1 + Z2

)
, (3)

where Z1 =
∑n1

i=1(1−Ri) and Z2 =
∑n

i=n1+1(1−Ri) follow binomial distri-

butions with parameters (nw1, 1−P (x∗1)) and (nw2, 1−P (x∗2)) respectively.

Note that M (ξ,R) becomes singular if all observations at a support point

are missing, i.e. Z1 = 0 or Z2 = 0, so here Cξ = {R ∈ {0, 1}n;Z1 > 0, Z2 >

0} and vξ = P (x∗1)nw1 + P (x∗2)nw2 − P (x∗1)nw1P (x∗2)nw2 . Hence we will con-

sider the corresponding zero truncated binomial distributions for Z1 and
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Z2, respectively. We aim to approximate

E{[M (ξ,R)−1]} =
1

(x∗1 − x∗2)2

(
x∗21 E

(
Z1

Z1Z2

)
+x∗22 E

(
Z2

Z1Z2

)
−x∗1E

(
Z1

Z1Z2

)
−x∗2E

(
Z2

Z1Z2

)
−x∗1E

(
Z1

Z1Z2

)
−x∗2E

(
Z2

Z1Z2

)
E
(

Z1
Z1Z2

)
+E

(
Z2

Z1Z2

)
)

(4)

as the distribution of Zi

ZiZj
, j = 1, 2, is intractable. Since we consider zero

truncated binomial distributions for Z1 and Z2, we can simplify E[ Zi

ZiZj
] =

E[ 1
Zj

]. Taking expectation (with respect to the zero truncated binomial

random variables) of a second order Taylor series expansion about E{Zj}
yields

E

(
1

Zj

)
≈ 1

E{Zj}
+

V ar(Zj)

(E{Zj})3
=

(1− P (x∗j)
nwj)2{P (x∗j) + nwj(1− P (x∗j))}
(nwj)2(1− P (x∗j))

2

(5)

for j = 1, 2. A derivation of this result is given in Appendix A.2. If the

missing data mechanism is MCAR, this expression simplifies to

E

(
1

Zj

)
≈ (1− P nwj)2{P + nwj(1− P )}

(nwj)2(1− P )2
(6)

independent of the values of the support points, where P = P (Ri = 1) is

the probability that a response is missing completely at random.

After selecting a specific missing data mechanism P (x), the optimal

design ξ∗ can be found by minimising the criterion with respect to the

support points and weights respectively, with constraints w1 + w2 = 1 and

x∗2 > x∗1 ∈ X. For example, a D-optimal design minimises the determinant

of (4), i.e

1

(x∗1 − x∗2)2E

(
1

Z2

)
E

(
1

Z1

)
(7)

over X; a c-optimal design for minimising the variance of β̂1, i.e. where

c = (0 1)T , minimises

1

(x∗1 − x∗2)2

(
E

(
1

Z2

)
+ E

(
1

Z1

))
(8)
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over X; an A-optimal design minimises

1

(x∗1 − x∗2)2

(
(x∗21 + 1)E

(
1

Z2

)
+ (x∗22 + 1)E

(
1

Z1

))
(9)

over X, where the expectations are approximated by (5) or (6), depending

on the form of the missing data mechanism.

Theorem 3, which is proven in Appendix A.3, shows that the D, c- and

A-optimal two-point designs for the second order expansion have a similar

structure to the corresponding first order designs. Here the c-optimal design

minimises the variance of the estimated slope parameter of the simple linear

model.

Theorem 3. For the simple linear regression model (2) with p = 1, as-

sume we approximate E{[M (ξ,R)−1]} by a second order Taylor expansion

(conditional on Z1, Z2 > 0), and let the design interval X = [l, u].

(a) Let nwj be an integer ≥ 1, j = 1, 2. If the missing data mechanism is

MAR and monotone increasing (decreasing), then l (u) is a support point

of the D- and the c-optimal design among the two-point designs. If, in

addition, l ≥ 0 (u ≤ 0), this result also holds for A-optimality among the

two-point designs.

(b) If the missing data mechanism is MCAR, then the D- and the c-optimal

design among the two-point designs are supported on l and u. If, in addition,

l ≥ 0 or u ≤ 0, this result also holds for the two-point A-optimal design.

Conjecture 4. Under the assumptions of Theorem 3(b), and for w1, w2

such that nwj ≥ 2, j = 1, 2, the D- and the c-optimal two-point design are

equally weighted if P is sufficiently small relative to n. The relationship is

approximately given by P < 1−2/n for c-optimality, and by P < 1−2/n0.8

for D-optimality.

From Theorem 3(b) and Conjecture 4, we see that for realistic sce-

narios the optimal designs under MCAR are the same as for the simple

linear regression model without missing data. In part (a), we find that

the lower/upper limit of the design interval is a support point, and thus

the optimal design has the same support structure as the first order design
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from Lemma 2. However, the weights and the other support point may

have different values. In particular, second order D-optimal designs are not

necessarily equally weighted under MAR.

The assumption in Conjecture 4 to have nwj ≥ 2, j = 1, 2, i.e. to have

at least two experimental runs in each support point, is sensible from a

practical point of view. We need at least one observed value yj from each

support point in order to estimate the model parameters, so the risk of

non-existence of the estimates would be high if we only took one run in any

point.

The inequality for c-optimality in Conjecture 4 can be interpreted as

follows: For P = 1 − 2/n and equal allocation, i.e. n/2 runs per support

point, the expected number of observed values per support point is 1, so

the result advises to use equal allocation when we can expect to get at least

one observed value per group. For D-optimality, equal allocation should be

used when the expected number per group is at least n0.2. The empirical

derivation of this result is in the online supplement.

In the next section, we find some optimal designs for the two respective

approximation strategies and illustrate their performance through simula-

tions.

4. Simulation study

We set the design region X = [0, 2] and sample size n = 30. For a given

design and value of σ2 > 0 we simulate a response variable by Yi = 1+xi+εi,

εi
iid∼ N(0, σ2), i = 1, . . . , n. We then introduce missing values by specifying

a MAR mechanism through the following logistic model,

P (xi) =
exp(γ0 + γ1xi)

1 + exp(γ0 + γ1xi)

with γ0 = −4.572 and γ1 = 3.191. The positive value of γ1 indicates the

mechanism is monotone increasing with xi. The logistic model is commonly

used for modelling the missing data mechanism (Ibrahim and Lipsitz (1999),

Bang and Robins (2005), Mitra and Reiter (2011, 2016)) as in practical

situations, it allows the estimation of parameters in the missing data model

using a logistic regression. However, there are many other models for the

missing data mechanism (Little (1995)) and our approach is compatible
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with any choice of missing data model. We assume a simple linear regression

model will be fitted to the complete case data, obtaining estimates of the

coefficients, (β̂0, β̂1), and their variances.

From Theorems 1 and 3(a), and Lemma 2, the lower bound of X, 0, is

chosen as one of the support points of the two-point optimal design, denoted

by x∗1 here. We first consider several designs of the form ξ = {0, x∗2; 0.5, 0.5}
and, under each design, compare the two proposed approaches for approx-

imating elements of the matrix specified in (4), as well as various relevant

functions of this matrix. For each design, we repeatedly simulate incomplete

data using the models described above and empirically obtain the estimates

for (4) by averaging the elements in M(ξ,R)−1, given in (3), across those

replications where M (ξ,R)−1 exists. Treating these empirical means as

the true elements of the matrix of interest, ER|R∈Cξ
{[M (ξ,R)−1]}, we can

then compare the two approximations.

Table 1 presents the simulation results over 200000 replications from

two different designs where x∗2 = 1 and x∗2 = 1.5 respectively. For the

design where x∗2 = 1.5, we see that for the [2, 2] element in (4), i.e. the

c-optimality criterion for minimising the variance of β̂1, the first order ap-

proximation has a bias of 7.2%, while for the second order approximation

this bias has reduced to 1.9%. For this same design, the trace of matrix

(4) (A-optimality) has a bias of 4.4% and the determinant of the matrix

(D-optimality) has a bias of 10.1% when using the first order approxima-

tion, while the biases reduce to 1.1% and 2.6% respectively when using the

second order approximation. In general, we can see that the second order

approximation yields considerably better approximations of the elements of

(4) and relevant functions of this matrix.

We find optimal values for x∗2 and w2 over X = [0, 2], with w1 = 1−w2

and the missing mechanism defined as above, using the Minimize function

in Mathematica. Table 2 presents the optimal values when constructing

A-, c- and D-optimal designs respectively. We see that using 2nd order

approximations results in an upper design point smaller than the upper

design point when using the first order approximation. The final row shows

the probability, vξ, that the covariance matrix becomes singular, i.e. the
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Table 1: Simulation output of 200000 replications for two different designs with w1 = 0.5,

P (x∗1) = 0.01 and n = 30. The penultimate row shows the frequency of the cases where

M(ξ,R) is singular.

ξ {0, 1} {0, 1.5}
[1, 1] element of (4) 0.06740 0.06740

First order Taylor series approximation 0.06736 0.06736

Second order Taylor series approximation 0.06740 0.06740

[2, 2] element of (4) 0.15242 0.10375

First order Taylor series approximation 0.15078 0.09628

Second order Taylor series approximation 0.15222 0.10177

[1, 2] element of (4) -0.06740 -0.04494

First order Taylor series approximation -0.06736 -0.04490

Second order Taylor series approximation -0.06740 -0.04493

Determinant of (4) 0.00573 0.00497

First order Taylor series approximation 0.00562 0.00447

Second order Taylor series approximation 0.00572 0.00484

No. of cases failed 0 23

P (x∗2) 0.20085 0.55342

probability that all outcomes at either one (or both) of the design points are

missing. For more complicated scenarios, this probability can be calculated

as follows (see Imhof et al., 2002):

vξ =
m−1∑
j=0

∑
S⊂{1,...,k}
|S|=j

P (ni > 0 if i ∈ S;ni = 0 if i /∈ S)

=
m−1∑
j=0

∑
S⊂{1,...,k}
|S|=j

∏
i∈S

[
1− P (xi)

Nwi
]∏
i/∈S

P (xi)
Nwi .

We see that vξ is consistently smaller when adopting the second order

approach. We additionally consider a design that assumes the data will be

fully observed and places half the observations at both end of the design
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Table 2: Optimal designs found by using 1st and 2nd order Taylor series approximations

to (4) respectively, for the optimality criterion denoted by the subscript, for n = 30 and

logistic MAR mechanism with γ0 = −4.572 and γ1 = 3.191. The other support point is

x∗1 = 0 with w1 = 1− w2 and P (x∗1) = 0.01. ξ is the A-, c-, and D-optimal design that

assumes fully observed responses.

ξ∗A 2nd ξ∗A 1st ξ∗c 2nd ξ∗c 1st ξ∗D 2nd ξ∗D 1st ξ

x∗2 1.4630 1.51466 1.5497 1.60059 1.3360 1.37660 2

w2 0.4664 0.4539 0.6257 0.6208 0.5110 0.5 0.5

P (x∗2) 0.5241 0.5650 0.5922 0.6308 0.4234 0.4553 0.8594

vξ 1.186 e-04 3.378 e-04 5.359 e-05 0.0001577 1.897 e-06 7.4897 e-06 0.10302

space, here assumed to be [0, 2]. Clearly vξ is considerably higher here than

for other designs, and is motivation for considering the potential for missing

data at the design stage of an experiment.

To investigate the issue of possible singularity of the covariance ma-

trix further, we consider the effect of varying the parameter values for the

missing data mechanism, resulting in different probabilities of missingness

at the design points. Table 3 shows some examples of vξ computed using

the D-optimal designs for the simple linear model found for the different

approximation methods with logistic MAR mechanisms. As the probability

of a response being missing increases (i.e. γ0 becomes larger), the optimal

designs found by the first order approach have a consistently higher failure

rate in estimating the model parameters.

Table 3: Probabilities vξ for D-optimal designs found using different approximations.

The MAR mechanism follows the logistic model with γ1 = 3.191; N = 30; x1 = 0 and

w1 = 1− w2.

2nd order D-optimal design 1st order D-optimal design

γ0 x∗2 w2 vξ x∗2 w2 vξ

-4.572 1.3360 0.5110 1.897 e-06 1.3766 0.5 7.490 e-06

-2.572 0.9260 0.5182 3.088 e-04 0.9830 0.5 0.001169

-1.572 0.7791 0.5162 5.4058 e-03 0.8362 0.5 0.01325

To further illustrate performance, for each design given in Table 2 we
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repeatedly simulate the incomplete data 200000 times as described above,

setting σ2 = 1. In each incomplete data set, we empirically obtain the

covariance matrix for β̂ across the replications. Table 4 summarises the

performance of the designs derived under the different optimality criteria

and approximations. We see that the designs obtained under A-optimality

have the smallest trace of the covariance matrix for β̂, as expected. Fur-

ther, this trace is smaller when using the design obtained from the second

order approximation rather than the first order approximation. This pat-

tern is repeated for the other optimality criteria. The design obtained un-

der c-optimality from the 2nd order approximation results in the smallest

variance for β̂1, and the design obtained under D-optimality from the 2nd

order approximation results in the smallest determinant of the covariance

matrix for β̂. The design that assumes fully observed outcomes performs

the worst across all optimality criteria, it also has the greatest proportion

of cases where it was not possibly to estimate the regression coefficients, as

expected, which highlights the importance of considering the potential for

missing data at the design stage, to extract the most information out of an

experiment. In addition, we also note that the second order approximation

consistently resulted in fewer cases where it was not possible to estimate

the parameters due to the missing data, and reflects what is seen in Table 2.

This is further motivation for adopting the 2nd order approximation over

the 1st order here.

Table 4: Simulation outputs of 200000 replications for different designs. The numbers

in the last row indicate the frequency of the cases where M(ξ,R) becomes singular.

sample var(β̂1) tr(sample var(β̂)) |sample var(β̂)| No. of cases failed

ξ∗A 2nd 1.0690e-01 1.6992e-01 4.8805e-03 19

ξ∗A 1st 1.0823e-01 1.7123e-01 5.0880e-03 67

ξ∗c 2nd 9.7359e-02 1.8894e-01 5.4195e-03 16

ξ∗c 1st 9.8102e-02 1.8968e-01 5.7121e-03 35

ξ∗D 2nd 1.0400e-01 1.7590e-01 4.5807e-03 0

ξ∗D 1st 1.0486e-01 1.7197e-01 4.6526e-03 2

ξ 1.4029e-01 2.0063e-01 7.5657 e-03 20588

17

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



We have empirically evaluated our framework to construct optimal de-

signs in the presence of missing values and found that our method worked

well in the simulations, with evidence suggesting that it has the poten-

tial to provide better approximations and hence result in better designs.

Moreover, in all scenarios we investigated, the probability of a singular co-

variance matrix was lowest for the optimal design using the second order

approximation. In the next section we consider a scenario motivated from

an application concerned with designing a clinical trial to treat Alzheimer’s

disease.

5. Application: Redesigning a study on Alzheimer’s disease

To illustrate an application of our approach, we use data from an

Alzheimer’s disease study which investigated the benefits of administer-

ing the treatments donepezil, memantine, and the combination of the two,

to patients over a period of 52 weeks, on various quality of life measures.

See Howard et al. (2012) for full details of the study. The total number

of patients included in the primary intention-to-treat sample was 291, with

72 in the placebo group (Group 1), 74 in the memantine treatment group

(Group 2), 73 in the donepezil treatment group (Group 3), and 72 in the

donepezil-memantine group (Group 4).

In the per-protocol analysis, 43 patients were excluded in Group 1, 32

in Group 2, 23 in Group 3 and 21 in Group 4. Considering these patients

as data missing at random, a logistic regression model is fitted to the data,

specifically

P (Ri = 1|xi, vi) =
exp(γ0 + γ1xi + γ2vi)

1 + exp(γ0 + γ1xi + γ2vi)

where xi, vi ∈ {0, 1} represent the level of donepezil and memantine respec-

tively (with 1 indicating the treatment is applied) for patient i. From the

data the regression coefficients were estimated to be γ̂0 = 0.26365, γ̂1 =

−0.89888 and γ̂2 = −0.41085. We assume a linear regression model will be

fit to the data, i.e.

Yi = β0 + β1xi + β2vi + εi, εi ∼ N(0, σ2), i = 1, . . . , n, (1)

where Yi corresponds to the outcome value for patient i. We assume σ2
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is known and fixed to 1 without loss of generality. The specific values of

β0, β1, β2 will not affect the performance of the different designs. We can

define the four groups (G1 - G4) the units are allocated to in terms of the

design variables x and v:

• G1: x∗i = 0, v∗i = 0 with n1 experimental units;

• G2: x∗i = 0, v∗i = 1 with n2 experimental units;

• G3: x∗i = 1, v∗i = 0 with n3 experimental units;

• G4: x∗i = 1, v∗i = 1 with n4 experimental units.

In this situation we have thus fixed the design points, defined by the values

of (x, v) and equal to (0, 0), (0, 1), (1, 0), and (1, 1). The design problem

is then to find the optimal number of patients to allocate to Groups G1 -

G4, denoted by n1, n2, n3, and n4 respectively, under the assumption the

analyst fits a linear regression model of the form described in (1) using

the complete cases. The A-optimal design for this model minimises an

appropriate approximation to

E{[M (ξ,R)−1
(1,1)]}+E{[M (ξ,R)−1

(2,2)]}+E{[M (ξ,R)−1
(3,3)]}

= E

[
Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4

]
where Zk =

∑
r∈Gk

(1−Rr) is the sum of the response indicators for Group

Gk, k = 1, . . . , 4, subject to the constraints
∑4

k=1wk = 1 (equivalent to

n1+n2+n3+n4 = n) and wk ≥ 0, k = 1, . . . , 4. Hence for each design ξ, the

existence set is given by Cξ = {R ∈ {0, 1}n; at least 3 of Z1, Z2, Z3, Z4 are >

0}. See Appendix A.4 for the derivation of the objective function for A-

optimality. The corresponding expression for D-optimality is not given

here, but it can be easily obtained through the use of analytical software

such as Maple 17 or Mathematica.

Setting n = 291 and using the above estimated MAR mechanism, the

optimal design is found by using the Minimize function in Mathematica,
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subject to the weight constraint. Table 5 shows the allocation scheme of a A-

and a D-optimal design, denoted by ξ∗A and ξ∗D respectively. In the example

considered here, due to the large sample size, we did not find any significant

differences between the designs obtained through the first and second order

approximations and so we have not distinguished between both designs here.

In addition, the probability the regression coefficients cannot be estimated

here is small for both approximation approaches (less than 10−20), so there

is no significant drawback using the 1st order approximation.

Table 5: A- and D-optimal designs for the Alzheimer’s example. The numbers in paren-

theses indicate the expected number of missing values in the respective group.

n1 n2 n3 n4 n

w1 w2 w3 w4

ξ∗A 108(61.1) 64(29.6) 64(22.2) 55(14.3) 291

0.371 0.220 0.219 0.190

ξ∗D 60(33.9) 72(33.4) 78 (27.0) 81(21.1) 291

0.206 0.248 0.268 0.278

Using the same procedure as in Section 4, we assess the performance

of the optimal designs by simulating incomplete data from the different

designs using (1) above, choosing values of β0, β1, β2 to be 1, 1, 1 respec-

tively. The missing values are introduced into the response using the MAR

mechanism specified above. From each incomplete data set, regression co-

efficients β̂0, β̂1, β̂2 are estimated from the complete cases. We repeat this

process 350000 times, which allows us to empirically obtain the covariance

matrix for β̂ for each design. The original design, ξori = (n1, n2, n3, n4) =

(72, 74, 73, 72), with expected missing observations (40.7, 34.3, 25.3, 18.7) is

also considered here for comparison.

Table 6 presents the simulated values for the A- and the D-objective

function for the different designs. As expected, ξ∗A has the smallest value

for the trace of the simulated covariance matrix, and ξ∗D has the smallest

determinant of the simulated covariance matrix. Both designs result in an

improved criterion value over the original design used and so could poten-
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tially have improved performance if they had been applied. For example,

the A-optimal design would be expected to achieve a similar trace of the

sample covariance matrix as the original design, while requiring only 95.55%

of the overall sample size, or 13 fewer patients.

Table 6: Simulated values for the A- and the D-objective function, respectively, for

different designs.

A-optimality D-optimality

ξ∗A 0.066327 3.722e-06

ξ∗D 0.072111 3.3028e-06

ξori 0.069416 3.3439e-06

6. Discussion and remarks

We have proposed a theoretical framework for designing experiments

that takes into account the possibility of missing values. Our framework

broadens the approach proposed by Imhof, Song and Wong (2002), which

is in fact a special case of our methodology that only takes a Taylor ex-

pansion of order one, and does not take into account the potential issue of

non-existence of the covariance matrix. We have provided a solid theoreti-

cal grounding for our approach, and have illustrated the potential benefits

through a simulation study.

For large sample sizes, the two approaches tend to lead to similar de-

signs since non-existence is less of an issue, and the first and second order

expansions are also similar. In these situations the first order approach

might be preferred for practical reasons. The sample size of 30 we consid-

ered in Section 4 is typical for Phase II clinical trials, where sample sizes are

normally no more than 50. In this situation our investigation in Section 4

showed that the 2nd order approximation offered various benefits over the

1st order. We have also noted some further theoretical properties of using

an approach based on the first order expansion and derived the necessary

results in this article.

We have described our methodology for the general linear regression

model, and have illustrated its benefits through one- and two-variable mod-
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els for simplicity. In these situations, the necessary Taylor expansions could

easily be derived by hand. For more complicated linear models, in partic-

ular if the size of the covariance matrix is large, it is recommended to use

symbolic computation software, such as Mathematica, for deriving the sec-

ond order approximation. Numerical computation of optimal designs will

be challenging since convexity of the objective function is not guaranteed,

but is feasible e.g. using metaheuristic search algorithms such as PSO; see,

e.g., Chen et al. (2015).

Our methodology is also applicable to nonlinear and generalised lin-

ear regression models. For nonlinear regression models with normally dis-

tributed errors, this can readily be seen by considering linearisation of the

regression function; see e.g. Atkinson, Donev and Tobias (2007), Chapter

17.2. More generally, the equality from (1) will only hold approximately.

So while the framework is still applicable, this will add another level of

approximation.

We have assumed that complete case analysis will be applied. While for

many types of models such as regression models under a MAR mechanism,

parameter estimates will be unbiased, there are other ways to handle the

missing value problem, e.g. multiple imputation. Analysing the incomplete

data in this way will not necessarily lead to the same designs derived in this

article, which is an interesting area for future research. Another challenging

scenario for future research arises when the assumption of MAR can no

longer be expected to hold.

Supplementary Material

The derivations for Conjecture 4 can be found in the online supplement.
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Appendix

A.1 Proof of Theorem 1. We can prove that the D-optimal design has

p + 1 support points using the general equivalence theorem, by finding a

contradiction. Assume ξ∗ has p+ 2 support points. Consider

g(x) :=
fT (x) M−1(ξ∗) f(x)

p+ 1
≤ 1

1− P (x)
:= h(x)

where g(x) is a polynomial of degree 2p, which has to be less than h(x) over

the region [l, u]. We order the p+ 2 values for x by size:

l ≤ x∗1 < x∗2 < ... < x∗p+2 ≤ u (1)

such that the above equality is achieved. This implies g(x∗i ) touches h(x∗i )

and g
′
(x∗i ) = h

′
(x∗i ) for i = 2, 3, ..., x∗p+1. From (1), there are values

x∗
′

1 , ..., x
∗′
p+1 with g

′
(x∗

′
i ) = h

′
(x∗

′
i ) such that x∗1 < x∗

′
1 < x∗2 < x∗

′
2 < x∗3 <

... < x∗p+1 < x∗
′
p+1 < x∗p+2 by the Mean Value Theorem.

Hence we have a total of 2p+1 values where g and h have equal deriva-

tives, and g
′
(x) is a polynomial of degree 2p− 1. Applying the Mean Value

Theorem again to g
′

and h
′
, there must be 2p values where g

′′
and h

′′
are

equal. By repeating this process, we find that there must be 2 values where

the 2pth derivatives g(2p) and h(2p) are equal, and g(2p)(x) is a constant since

g is a polynomial of degree 2p. This is a contradiction since we assumed

that h(2p)(x) = c has at most one solution in < for any constant c. The

same contradiction occurs if we assume ξ∗ has more than p + 2 support

points. �

A.2 Second order Taylor series approximation. Let X be a discrete

random variable with expectation X. We expand H(X) = 1/X about the

point X into a second order Taylor series:

H(X) ≈ 1

X
− X −X

X
2 +

(X −X)2

X
3 .

Since E{(X −X)} = 0 and E{(X −X)2} = V ar(X), E {H(X)} ≈ 1
E[X]

+
V ar(X)
E[X]3

. For the zero truncated binomial random variable Zj with moments

E[Zj] =
nwj(1− P (x∗j))

1− P (x∗j)
nwj

,
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V ar(Zj) =
nwj(1− P (x∗j))[P (x∗j)− {P (x∗j) + nwj(1− P (x∗j))}P (x∗j)

nwj ]

(1− P (x∗j)
nwj)2

,

we obtain

E

(
1

Zj

)
≈ 1

E{Zj}
+

V ar(Zj)

(E{Zj})3
=

(1− P (x∗j)
nwj)2{P (x∗j) + nwj(1− P (x∗j))}
(nwj)2(1− P (x∗j))

2
.

A.3 Proof of part (a) of Theorem 3. Let without loss of generality

x∗1 < x∗2, denote nwj by nj, j = 1, 2 where nj is a positive integer, and

assume P (x) is monotone increasing in x.

Step 1: We show that the second order approximation to E[1/Z1] is increas-

ing in x∗1 for n1 ≥ 2 and constant for n1 = 1.

Denote the right hand side of (5) for E[1/Z1] (times n2
1) by fn1(P ), and

note that for increasing P (x), it suffices to show that for all n1 ≥ 2, fn1(P )

is increasing in P ∈ (0, 1). Moreover, (1− P n1)/(1− P ) =
∑n1−1

k=0 P k, so

fn1(P ) = (

n1−1∑
k=0

P k)2[P + n1(1− P )]

with derivative

f ′n1
(P ) = (

n1−1∑
k=0

P k)

[
2

( n1−2∑
k=0

(k+ 1)P k

)
{P + n1(1−P )}+ (1− n1)

n1−1∑
k=0

P k

]
.

The first factor is positive. Rearranging the term in square brackets yields

2n1

( n1−2∑
k=0

(k + 1)P k

)
+ 2(1− n1)

( n1−1∑
k=1

kP k

)
+ (1− n1)

n1−1∑
k=0

P k

= n1 + 1 +

( n1−2∑
k=1

P k{n1 + 1 + 2k}
)

+ P n1−1(1− n)(2n− 1)

≥ P n1−1

[
n1 + 1 +

( n1−2∑
k=1

{n1 + 1 + 2k}
)

+ (1− n)(2n− 1)

]
= 0

since P n1−1 ≤ 1 and P n1−1 ≤ P k for k ≤ n1−2. The term in square brackets

can now easily be shown to be zero. Hence fn1(P (x1)) is minimised when
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x∗1 = l. If n1 = 1, fn1(P ) = 1, since the zero truncated Binomial random

variable Z1 can only take the value 1.

Step 2: The second order approximation for E[1/Z2] does not depend on x∗1.

Since x∗1 = l minimises 1/(x∗1 − x∗2)2, and all expressions are non-negative,

the objective functions in (7) and (8) are both minimised when x∗1 = l. If

l ≥ 0, (x∗21 + 1) is also increasing in x∗1, and the result for A-optimality

follows.

An analogous argument shows that x∗2 = u minimises (7), (8) and, for

u ≤ 0, also (9) if P (x) is monotone decreasing. �

Proof of Theorem 3(b). The right hand side of (6) does not depend on

the support points. Hence the objective functions in (7) and (8), respec-

tively, are minimised with respect to x∗1 and x∗2 when the factor 1/(x∗1−x∗2)2

is minimised. This is achieved by setting x∗1 = l and x∗2 = u.

Taking partial derivatives in (9) with respect to x∗1 and x∗2, respectively,

shows that regardless of the values of the expression in (6) the derivative

with respect to x∗1 (x∗2) is non-negative (non-positive) if l ≥ 0 or u ≤ 0.

Hence the A-objective function is minimised when x∗1 = l and x∗2 = u. �

A.4 The covariance matrix from the Alzheimer’s example

[M (ξ,R)]−1 =
1

|M(ξ,R)|

( Z2Z3+Z2Z4+Z4Z3 −(Z2+Z4)Z3 −(Z3+Z4)Z2

−(Z2+Z4)Z3 (Z2+Z4)(Z1+Z3) −Z4Z1−Z2Z3

−(Z3+Z4)Z2 −Z4Z1−Z2Z3 (Z3+Z4)(Z1+Z2)

)
where |M (ξ,R)| = Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4, with trace

Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4

where Zk =
∑

i∈Gk
(1− Ri) is the sum of the response indicators in Group

Gk, k = 1, . . . , 4. A bivariate second order Taylor expansion of F/G about

E[F ] and E[G], where F = Z1Z2 +Z1Z3 +2Z1Z4 +3Z2Z3 +2Z2Z4 +2Z3Z4

and G = Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4, yields

E

(
F

G

)
≈ E{G2}E{F}

(E{G})3
− E{FG}

(E{G})2
+
E{F}
E{G}

.

The A-objective function can now be found by evaluating the right hand

side of this approximation. For simplicity, we used zero-truncated binomial
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distributions for all Z1, Z2, Z3 and Z4, when for existence only three of them

would have needed to be truncated. This is justified due to the large sample

size.
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