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Abstract

Control of the defect chemistry in UO2±x is important for manipulating nuclear fuel properties and fuel
performance. For example, the uranium vacancy concentration is critical for fission gas release and sinter-
ing, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the
point defect concentrations in thermal equilibrium are predicted using defect energies from density func-
tional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes
have been treated in a similar fashion to other charged defects allowing for structural relaxation around
the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry
of UO2±x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxy-
gen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only
a small temperature range (1265 K to 1350 K), in contrast to experimental observation. Conversely, if vi-
brational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or
from 1275 K to 1630 K (CRG potential). Below these temperature ranges excess oxygen is predicted to
be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen
deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen cluster-
ing, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy
concentrations as a function of temperature and oxygen partial pressure will underpin future studies into
fission gas diffusivity and broaden the understanding of UO2±x sintering.

1. Introduction

Due to its radiation tolerance, high melting point, and chemical stability UO2 has been widely deployed
as a nuclear reactor fuel. Particularly important is its ability to accommodate significant compositional
changes without altering its crystal structure. This enables it to incorporate large concentrations of solu-
ble fission products and radiation damage without the detrimental volume changes associated with phase
transitions. The way in which large deviations in non-stoichiometry of UO2±x are accommodated can be
understood in terms of its defect chemistry as function of oxygen partial pressure and temperature. Fur-
thermore, defining the populations of uranium and oxygen defects for a given set of conditions is of great
importance for understanding thermophysical and thermomechanical properties, mass transport during
sintering, and fission gas release [1–4].

Uranium has a number of f and d electrons in its ground state of [Rn] 5f3 6d1 7s2, which enables
it to access several valence states that are similar in energy. For example, uranium is nominally U4+ in
UO2 but can readily oxidize to U5+ creating a low energy U•U charge compensation mechanism for the
negatively charged hyper-stoichiometric defects V′′′′U and O′′i (represented using Kröger-Vink notation [5]).
As evidenced by the phase diagram (see Figure 1), UO2 can be oxidized to UO2+x or U4O9 [6, 7], and
even up to UO3 through further oxidation to U6+ [8]. The reduction of UO2 to UO2−x is also possible
but only at high temperatures (above 1700 K), highlighting the reluctance of U4+ to be reduced to U3+

compared to its tendency for oxidation. By fitting to a large set of experimental data [9–23] Guéneau et
al. [24] modelled the O/U ratio of UO2±x for different oxygen partial pressures and temperatures. Due
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to the high entropy of gaseous O2, for a fixed oxygen partial pressure the O/U is reduced for increasing
temperatures. Experiments have shown that at 1073 K hyper-stoichiometry (UO2+x) is accommodated by
oxygen interstitials [25, 26]. At lower temperatures UO2+x is known to phase separate into UO2 and U4O9
(see Figure 1), such that defects in UO2+x are not the primary mechanism governing the accommodation of
excess oxygen [7].

Atomic scale simulations are well suited to investigate the behaviour of point defects and their influ-
ence on material properties. The description of interatomic forces in a system can be represented using
either density function theory (DFT) or empirical potentials. The former has the advantage of accurately
describing complex interactions, including charge transfer, from first principles, while the computational
efficiency of the latter enables the dynamical simulation of systems inaccessible to electronic structure
methods. Both approaches have been widely applied to defects in UO2±x [27–42]. DFT has been reported
to predict uranium vacanies as the dominant defect in UO2+x [36, 37], in contradiction to experimental
observation [25]. The omission of vibration entropy from the calculated defect formation energies has been
suggested as a possible explanation [33]. A number of recent studies have shown that attempt frequen-
cies derived from empirical potentials and DFT activation energies can be successfully combined within
an Arrhenius relationship to describe fission product and point defect diffusivity in UO2 [31, 43]. We
have adopted a similar approach in our investigation of defect chemistry in UO2±x by including vibra-
tional entropy from empirical calculations and defect energies from DFT+U . A full point defect chemistry
assessment of UO2 that includes vibrational entropy and treatment of the structural relaxation around lo-
calized electronic defects has not yet been performed, providing the motivation for our study. Furthermore,
while the model of Guéneau et al. [24] can provide a superior oxygen partial pressure dependence for non-
stoichiometry it does not include uranium defects, which are needed to understand fission gas release and
sintering.

Using a defect analysis similar to that carried out on ThO2 by Murphy et al. [44] and on UO2 by Cro-
combette [33], in this work the defect concentrations of UO2±x are predicted as a function of oxygen partial
pressure, temperature, and x. Unlike the previous work [33, 44], which only includes DFT energies, our
analysis also includes vibrational entropy calculated using empirical potentials. Our results are discussed
with reference to experiment and in the context of important nuclear fuel behavior.

2. Method

2.1. Defect energies
The Vienna ab initio Simulation Package (VASP) [45–47] has been deployed for DFT calculations with

the local density approximation (LDA) applied to the local exchange and correlation potential. The projec-
tor augmented wave (PAW) method has been used to represent the wave function and core electrons have
been accounted for within the frozen core approximation [48, 49]. Correct treatment of the strongly corre-
lated 5f electrons necessitates use of the LDA+U functional developed by Lichtenstein et al. [50] (similarly
to previous DFT studies of UO2 [31–35], U = 4.5 eV and J = 0.51 eV were taken from Dudarev et al. [51]
for the U atoms). Use of the U parameter creates metastable states, which have been dealt with using the
U -ramping method outlined by Meredig et al. [52]. Although not used in this study, it is worth noting that
occupation matrix control has also been successfully implemented for finding the electronic ground state
of UO2 [53]. The lowest energy non-collinear 3-k ordering, which due to computational cost, prevents use
in supercells sufficiently large for the calculation of accurate defect energies. Therefore, spin-polarization
with a 1-k antiferromagnetic ordering has been used to provide a reasonable description of the lowest en-
ergy ordering. Spin orbit coupling has been shown to be over an order of magnitude weaker than coulombic
interactions in 5f systems [54] justifying the use of 1-k antiferromagnetic ordering. A 500 eV plane-wave
cut-off energy was used. A 2×2×2 Monkhorst-Pack k-point mesh [55] was used for k space integration with
Gaussian smearing of 0.05 eV.

Using the DFT description of interatomic forces and energies described above, energy minimization
calculations were carried out on a supercell consisting of a 2×2×2 extension (96 atoms) of the UO2 fluorite
unit cell (12 atoms). The U -ramping method has been applied to the uranium ions by carrying out 20
ionic relaxation steps at each value of U from 0.51 eV to 4.5 eV with increments of 0.5 eV and J = 0.51 eV
throughout. Then the ionic positions and cell parameters were relaxed and converged to within 10−4 eV
and the electronic relaxation loop was converged to within 10−6 eV.
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Uranium, oxygen, and electronic defects have been considered. Given the symmetry of the UO2 lattice
there is just one unique site for uranium vacancies, oxygen vacancies, and interstitials. The ionic nature of
UO2 necessitates the consideration of charged defects. Furthermore, the ability of U4+ to oxidize (reduce)
to U5+ (U3+) must be considered explicitly. By assuming charge localization at the defect (or for holes and
electrons at a uranium ion), the effective charge (overall supercell charge) is treated as the defect charge
and Kröger-Vink notation [5] can be used as such:

Electronic defects : U•U, and U′U
Oxygen interstitials : O×i , O′i, and O′′i

Oxygen vacancies : V×O, V•O, and V••O
Uranium interstitials : U×i , U•i , U••i , U•••i , and U••••i

Uranium vacancies : V×U, V′U, V′′U, V′′′U , and V′′′′U

It should be noted that we have not considered defect clusters and all supercells used in this work contain
just one defect. The DFT lattice energies have been corrected for the interactions between the charged
defect with its periodic images through the Madelung energy such that [56–58]:

E∞ = EL +
q2α

2εL
(1)

where E∞ is the lattice energy in the dilute limit, E(L) is the lattice energy in a supercell of length L, and
q is the supercell charge. α = 2.837 is the Madelung constant of a point charge q placed in a homogeneous
background charge −q and ε = 22 is the dielectric constant taken from experiment [59]. In addition to the
charge correction above, we have applied a potential alignment correction due to the shift in band structure
of the defective supercell with respect to the perfect supercell. The potential alignment correction, ∆Φ ,
applied to the defective lattice energy was calculated as [60]:

∆Φ = 〈φbulkKS 〉 − 〈φ
def ect
KS 〉 (2)

where 〈φbulkKS 〉 and 〈φdef ectKS 〉 are the average Kohn-Sham potentials in the perfect and defective supercells
respectively. The differences in energy between the defective and the perfect supercell (defect energy) are
summarized in Table 1.

2.2. Defect vibrational entropies
Nuclear fuel is fabricated and operates at very high temperatures. The contribution of vibrational en-

tropy to the free energy of defect formation may therefore be significant. Phonon frequencies are deter-
mined through force calculations associated with atom displacements from their ground state positions.
For the perfect supercell the high degree of symmetry limits the number of force calculations required.
Conversely, the low symmetry of the defective supercells means there are a very large number of force
calculations required to determine the phonon modes. This is compounded by the issue of metastable
electronic states in DFT+U calculations of UO2, creating a very significant computation challenge. We
have, therefore, opted to use a similar approach to that carried out by Andersson et al. [31] for Xe in UO2,
whereby vibrational entropies are calculated using empirical potentials.

Phonon frequencies have been determined from the second derivative matrix [61] of a 4×4×4 expansion
of the fluorite unit cell evaluated in the General Utility Lattice Program (GULP) [62] with interatomic
forces described by the Busker potential [63] and the Cooper, Rushton and Grimes (CRG) potential [64].
Both defective and perfect supercells have been relaxed under constant zero pressure. Figure 2 shows
the phonon density of states (DOS) of the perfect UO2 supercell calculated using the Busker and CRG
potentials with comparison to the experimental data of Dolling et al. [65]. Both potentials provide similar
descriptions of the phonon DOS, which are reasonable compared to the experimental results. However, the
Busker potential has a peak at 4× 1012 Hz that is not present in either the experimental data or the results
using the CRG potential.

3
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The phonon frequencies in Hz, vn, have been used in the following summation to determine the vibra-
tional entropy, S:

S = kB
3N−3∑
n=1

ln

(
hvn
kBT

)
+ (3N − 3)kB (3)

where kB is the Boltzmann constant, T is the temperature in K, and h is Planck’s constant. S is linearly
dependent on supercell volume, V , and dS

dV has also been calculated for each defective and non-defective
supercell. By combining dS

dV with dV
dT from Fink [66] the vibrational entropy has been adjusted for thermal

expansion. Tables 2 and 3 summarize the defect vibrational entropies (difference between defective and
perfect supercells) and the vibrational entropy of UO2 per formula unit.

The Busker potential is a rigid ion model with formal charges [63] and the CRG potential uses fixed par-
tial charges that are proportional and, within the context of the model, equivalent to the formal charges [64].
This presents a problem when trying to use rigid ion models to calculate the vibrational entropy of non-
formally charged defects (e.g. V′′′U or V•O). An important contribution to the vibrational entropy of defects
is the extent to which they expand the UO2 lattice (defect volume) resulting in a change in system entropy
via dS

dV for UO2,
(
dS
dV

)
UO2

. Table 4 shows the defect volumes for defects in UO2 with various charges states.

Evidently the charge state has a significant effect on the defect volume, whereby more negatively charged
defects have a greater defect volume (associated with the volume of an electron). It is, therefore, possible
to calculate the change in vibrational entropy of the non-formally charged defect with respect to that of
the formally charged defect (by using the corresponding change in defect volume). For a non-formally
charged defect with effective/supercell charge, q, the following correction has been applied to the entropy
calculated for the formally charged defects (e.g. V••O and V′′′′U ):

∆Sq = ∆Sf orm +
(
Vq −Vf orm

)
·
(
dS
dV

)
UO2

(4)

where ∆Sf orm is the defect entropy of a formally charged defect (see Tables 2 and 3) and Vf orm is the defect
volume of a formally charged defect (e.g. V′′′′U ). ∆Sq and Vq are the defect entropy and volume, respectively,
of a defect with effective chargeQ (e.g. q=-2 for V′′U). Defect volumes have been determined from geometry
relaxation in DFT and are summarized in Table 4, with the change in defect volume with respect to the
formally charged defect, (Vq −Vf orm), shown in parentheses.

2.3. Defect formalism
Using the defect energy, ∆E, from DFT and defect vibrational entropy, ∆S, from empirical potentials, we

wish to determine defect concentrations as a function of temperature and oxygen partial pressure. Within
a point defect model and using Boltzmann statistics, the concentration of a given defect is described by:

ci =miexp

−∆GifkBT

 (5)

where mi , ci , and ∆Gif are the multiplicity, the concentration, and the free energy of formation for defect i,
respectively.

The defect energy, ∆E, and defect entropy, ∆S, are used to define ∆Gif as:

∆Gf = ∆E − T∆S +
∑
α

nαµα + qiµe (6)

where nα is the number of species, α, added to the system to make defect i and µα is the chemical po-
tential of species, α. The electron potential is µe and the charge of the defect, qi , is equivalent to the
supercell charge. Due to the localisation of holes, U•U, and electrons, U′U, in UO2 and the structural relax-
ation around such electronic defects, energy minimisation was carried out on perfect supercells with an
electron added/removed, such that nα = 0 and qi = −1/ + 1. For comparison, similarly to previous work
on ThO2 [44], the electron and hole concentrations were alternatively determined from the position of the

4
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Fermi-level within the band structure as defined from the perfect supercell. However, it was found that
O/U never exceeded 2.0001 in contrast to the experimental observation that UO2 is readily oxidized to
O/U=2.25. Conversely, by treating U•U and U′U in the same manner as all other defects in the system with
full structural relaxation significant oxidation of UO2 at low temperature was predicted, as will be shown
in the results section. This approach also has the advantage of allowing the calculation of U•U and U′U
vibrational entropy.

The chemical potential of UO2 can be defined in terms of the chemical potentials per formula unit of
the constituent species: metal uranium, µU (pO2

,T ), and oxygen, µO2
(pO2

,T ):

µU (pO2
,T ) +µO2

(pO2
,T ) = µUO2(s)

(7)

The approach of Finnis et al. [67] is employed to remove the use of DFT, which is known to provide a poor
description of the oxygen dimer, by referencing the experimental formation energy of UO2, ∆GUO2

f (pO2
,T ) =

−11.23 eV [68], via:
∆GUO2

f (p◦O2
,T ◦) = µUO2(s)

−µU(s)
−µO2(g)

(p◦O2
,T ◦) (8)

The temperature dependence of the oxygen chemical dependence is captured by using the ideal gas rela-
tions to extrapolate from standard temperature and pressure, µO2(g)(p◦O2

,T ◦):

µO2(g)(pO2
,T ) = µO2(g)(p

◦
O2
,T ◦) +∆µ(T ) +

1
2
kBT log

pO2

p◦O2

 (9)

and ∆µ(T ) is defined as:

∆µ(T ) = −1
2

(
S◦O2
−C◦P

)
(T − T ◦) +C◦P T log

( T
T ◦

)
(10)

where S◦O2
= 0.0021 eV/K and C◦P = 7kB = 0.000302 eV/K are the molecular entropy at STP and the constant

pressure specific heat, respectively.
The overall charge neutrality of the system (summed over all defects) must be maintained. Thus, any

possible combination of charged defects must satisfy the following criteria:∑
i

qici = 0 (11)

where the left hand side is the sum of all defect charges in the system. All charged defect formation
energies (including U•U and U′U) are dependent on the electron potential and there is only one electron
potential for which charge neutrality is satisfied. The Defect Analysis Package [69] is used to determine
the charge neutral combination of defect concentrations for a given set of conditions. The resultant defect
concentrations can be expressed as a function of temperature or oxygen partial pressure, which can be
plotted to produce Brouwer diagrams.

The deviation from stoichiometric UO2 is determined by the defect concentrations. In this work we
have defined defect concentrations as per formula unit. Thus, y and z in U1+yO2+z are given by:

y = [Ui]− [VU] (12)

z = [Oi]− [VO] (13)

where [Ui], [VU], [Oi], and [VO] are the total concentrations (summed over all charge states) per formula
unit of the corresponding defects. Therefore, x in UO2+x or −x in UO2−x can be defined as such:

2 + x =
2 + z
1 + y

(14)

x =
2 + [Oi]− [VO]
1 + [Ui]− [VU]

− 2 (15)

5
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3. Results and discussion

3.1. Temperature dependence
The defect energies from DFT (see section 2.1) and defect vibrational entropies from empirical po-

tentials (see section 2.2) have been combined into the defect formalism described in section 2.3. Defect
concentrations have been calculated as a function of temperature with fixed oxygen partial pressure of
10−20 with a) no vibrational entropy contributions (included for comparison with previous work [28, 33]),
or contributions from b) the Busker potential and c) CRG potential (see Figure 3). The analysis was carried
out by treating localized electrons and holes (U′ and U•) as defects with charges of -1 and +1 respectively.
This allows for effects such as structural relaxation around the localized charge to be accounted for.

Figures 3a), b), and c) all show a reduction in hyper-stoichiometry with increasing temperature at con-
stant oxygen partial pressure in line with the results of Guéneau et al. [24] and experimental work [70].
This is unsurprising as, due to the high entropy of oxygen gas relative to oxygen in the solid, the fixed oxy-
gen partial pressure environment becomes more reducing at high temperature. Nonetheless, the trend of
decreasing O/U with increasing temperature was not reproduced without explicitly treating the electronic
defects in energy minimisation calculations. Perfect stoichiometry occurs at 1350 K, 1680 K, and 1630 K
for the cases where entropy is a) omitted, b) entropy using the Busker potential, and c) entropy using the
CRG potential, respectively, for 10−20 atm. In all three cases perfect stoichiometry occurs at [Oi] = [VO]
due to oxygen disorder being orders of magnitude greater than cation disorder. Thus, the inclusion of
vibrational entropy favours Oi over VO leading to stoichiometry at a higher temperature (more reducing
environment). In Figure 3a the entropy is not included for atoms in the solid state but is still included for
the O2 dimer. Therefore, by including the entropy of oxygen atoms in the solid state the defect concen-
trations are shifted in favor of Oi over VO, see Figures 3b and 3c. In addition to affecting the O/U ratio
as a function of temperature, it should be noted that the underlying defect concentrations are significantly
different if entropy is included. For example, by including entropy VU concentrations are several orders
of magnitude higher than without entropy. Nuclear fuel issues that depend on the VU concentration, such
as vacancy-mediated fission gas diffusivity or diffusion-assisted grain growth during sintering, would be
significantly underestimated without the inclusion of vibrational entropy.

For UO2+x at 500 K x = 0.0048 when vibrational entropy is omitted, or x = 0.0198 and x = 0.0391 with
entropy included using the Busker and the CRG potentials, respectively. Given that the change in entropy
due to defect formation is positive (see the Schottky and Frenkel entropies in Tables 2 and 3), it is not sur-
prising that omitting vibrational entropy predicts lower hyper-stoichiometry. Although VU dominates at
low temperatures, excess oxygen is accommodated by Oi for higher temperatures. As shown in Figures 3b
and 3c, if entropy is included Oi dominates from 1165 K to 1680 K (Busker potential) and 1265 K to 1630 K
(CRG potential). If entropy is excluded Oi dominates only from 1275 K to 1350 K (see Figure 3a). Above
these temperatures, oxygen disorder remains dominanant and [VO] > [Oi], such that O/U < 2. While in
UO2+x vibrational entropy appears to favor Oi over VU, it is not sufficient to account for the experimental
observation that excess oxygen is accommodated by Oi as low as 1075 K [25]. This difference may be a low
temperature limitation of the point defect assumption, which neglects the experimentally observed clus-
ters [25]. The DFT modeling work of Andersson et al. [71] and that of Brincat et al. [72] show that Willis
clusters and split di-interstitial clusters are more favorable than isolated oxygen interstitials. If oxygen
clusters were included in our analysis they would be expected dominate over VU to lower temperatures.
However, the complex charge distribution and geometry of large clusters is incompatible with the calcu-
lation of vibrational entropy using a rigid ion interatomic potential and is, therefore, beyond the scope of
this work. By considering the formation energy and entropy of Oi clusters future work could make a more
quantitative comparison with experiment and the CALPHAD model of Guéneau et al. [24]. Experimen-
tally, it is observed that below 650-700 K UO2+x undergoes a phase transition to a two phase UO2+U4O9
system [6]. Thus, our prediction of VU dominance below 700 K would not be observed due precipitation of
the U4O9 phase.

Regardless of the empirical potential used or even if vibrational entropy is omitted, the same trends
are observed regarding charge compensation and defect charge states. At low temperatures the ratio
of [VU]:[U•U] is approximately 1:4, indicating formally charged V′′′′U charge compensated by holes. All
other defects in the system are at small enough concentrations that they can be charge compensated by
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small perturbations to the [VU] = 4[U•U] balance. In these regimes relatively high concentrations of hyper-
stoichiometric defects are coupled to the electronic defects driving up the hole concentration with respect
to the electron concentration. The fraction [U′U]/[U•U] dictates the position of the Fermi level within the
band gap via the following expression assuming non-degenerate electrons (i.e. low U′U and U•U concentra-
tions):

EF =
kBT ln

(
[U′U]
[U•U]

)
+Eg

2
(16)

where EF is the Fermi level and Eg = ∆EU• +∆EU′ = 1.5 eV is the band gap (from experiment Eg = 2.3 eV).
Figure 3d shows EF/Eg as a function of temperature based on the data in Figure 3a, 3b and 3c. The hyper-
stoichiometry of UO2+x at low temperature results in p-type doping and drives the Fermi-level down below
EF = Eg /2. As the temperature is increased the O′′i and V′′′′U concentrations decrease as UO2+x is reduced
and the electron-hole pair reaction becomes dominant, such that the concentration of U•U is decoupled
from the concentration of V′′′′U . Rather [U′U] = [U•U], and thus EF = Eg /2 ± 0.001 eV from 1020 K to 1560 K
without entropy, from 1290 K to 1840 K with entropy using the Busker potential, and from 1130 K to
1950 K with entropy using the CRG potential, see Figure 3d). At high temperatures hypo-stoichiometric
UO2−x is accommodated by V••O . As the concentration of V••O begins to approach that of [U′U] = [U•U], it
drives up the concentration of U′U and drives down the concentration of U•U. This n-type doping pushes EF
above Eg /2, as shown in Figure 3d). This is most significant for the case without vibrational entropy in line
with higher levels of hypo-stoichiometry and a lower temperature for O/U = 2.

Note that throughout this discussion both the CRG and Busker potentials give qualitatively consistent
results despite using different potential forms and fitting to different UO2 properties. For conciseness,
henceforth only results using vibrational entropy from the CRG potential in combination with DFT ener-
gies will be discussed.

3.2. Oxygen partial pressure and non-stoichiometry dependence
Whereas the total concentrations (summed over all charge states) for VU, VO, Ui, and Oi are plotted in

Figure 3, in Figure 4 the concentrations for these defects with different charges are shown as a function of
oxygen partial pressure. Formally charged defects are shown with solid lines, while non-formally charged
defects are shown by dashed lines. As a general rule formally charged defects dominate over a large range
of oxygen partial pressures. However, for all temperatures and for low oxygen partial pressures (where
oxygen vacancy concentrations are high) V×O and V•O dominate over V••O . At 650 K UO2−x is only predicted
for extremely low oxygen partial pressures (<10−50 atm in Figure 4a). This is in line with the widely
observed behaviour that it is not possible to reduce UO2 to UO2−x at low temperatures (see Figure 1).

At 1850 K the hyper-stoichiometric regime is dominated by oxygen interstitials with formal charge,
O′′i , in agreement with the work of Dorado et al. [28]. At 1250 K and 650 K, while excess is oxygen is
initially accommodated by O′′i , higher degrees of hyper-stoichiometry are due to V′′′′U . The importance of
formally charged defects, as expected due to the ionic nature of UO2 and from previous DFT studies [33,
34], supports our use of rigid ion empirical models as the basis for vibrational entropy calculations.

In comparison to the work on ThO2 by Murphy et al. [44] it is clear that UO2 is far more readily oxi-
dized. This is consistent with the phase diagrams for UO2 and ThO2, whereby ThO2 exists primarily as
a line compound with some degree of hypo-stoichiometry at high temperatures [73] whereas UO2 is oxi-
dized to UO2+x over a wide temperature range. The difference between Th and U is due to the relative ease
with which U4+ can form U5+. The electronic structure of U is [Rn] 5f3 6d1 7s2, which enables it to lose
up to 6 electrons from its outer shell and readily form U4+, U5+ and U6+. Conversely, Th has only 4 elec-
trons in its outer shell, [Rn] 6d2 7s2, making the formation of Th5+, and therefore ThO2+x, unfavourable.
Furthermore, previous modelling work has shown that what little hyper-stoichiometry occurs in ThO2 is
accommodated by the poroxo-oxygen interstitial defect [44, 74], which requires fewer charge compensating
holes per excess oxygen ion than the regular oxygen interstitial defect.

Figure 5 shows the same defect concentrations as in Figure 4 but plotted as function of x for UO2+x (a
and c) and for UO2−x (b and d) at 650 K (a and b) and 1850 K (c and d). At 650 K oxygen interstitials
are responsible for hyper-stoichiometry in UO2+x for 0 < x < 1.2× 10−9. For x > 1.2× 10−9 and T = 650 K,
uranium vacancies are dominant. It should be noted again that if the ability of oxygen interstitials to
cluster were included the balance between uranium vacancies and oxygen interstitials might be shifted. At

7



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1850 K hyper-stoichiometry is dominated by oxygen interstitials regardless of the level of excess oxygen.
In all cases the uranium vacancy concentration is greatly increased with hyper-stoichiometry explaining
the improved sintering performance of UO2+x compared to UO2, given uranium diffusivity is vacancy
mediated [28]. This is also important for uranium-vacancy-assisted fission gas diffusion, which would be
enhanced for high O/U. Given the O/U of nuclear fuel varies as a function of burnup and position in the fuel
pellet, these results provide insight into the coupling, via uranium vacancy concentrations, of O/U to fission
gas diffusivity and, therefore, fission gas release. Predicting accurate values for the defect concentrations
that define O/U in nuclear fuel is an important step towards understanding how non-stoichiometry plays
a role in the complex phenomena that govern fuel performance.

4. Conclusions

DFT calculations of defect energies have been combined with empirical potential calculations of de-
fect vibrational entropy in a full analysis of UO2±x point defect concentrations as a function of oxygen
partial pressure, temperature, and x. Electrons and holes were treated in a manner consistent with the
other charged defects, allowing for localization and the associated structural relaxation. It was found that
it was necessary to treat localized electronic defects in this manner to reproduce the experimental obser-
vation that significant hyper-stoichiometry is accommodated at low temperatures, as well as the trend for
decreasing O/U from low to intermediate temperatures. For a fixed oxygen partial pressure UO2+x reduces
with increasing temperature, achieving O/U = 2 at 1700 K for an oxygen partial pressure of 10−20 atm. For-
mally charged defects were found to dominate, as expected due to the ionicity of UO2. Similar results were
obtained for the two empirical potentials used. The inclusion of vibrational entropy significantly increased
the temperature range over which hyper-stoichiometry is accommodated through oxygen defects. How-
ever, we still predict V′′′′U to be more favorable than O′′i at 1075 K, at which temperature Willis observed
oxygen interstitial clustering (not considered here) to dominate [25]. Hypo-stoichiometric UO2−x was only
predicted at reasonable oxygen partial pressures for very high temperatures, in line with previous studies
that showed that UO2 cannot be reduced at low temperature [9–24].
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Figure 1: U-O phase diagram taken from Ref. [75] with experimental data [7, 15, 17, 18, 21, 23, 76–81] shown by
points.

Table 1: DFT data for the defect energies with various effective (overall supercell) charges. Non-defective with q , 0
refers to U′U and U•U. The 2×2×2 supercells have been corrected for the interaction of the charged defect with its
periodic images using Equation 1 and corrected for potential alignment using Equation 2.

Defect energy (∆E)
Effective charge, q (e) non-defective (eV) VO (eV) Oi (eV) VU (eV) Ui (eV)

-4 - - - 53.3362 -
-3 - - - 44.7741 -
-2 - - 11.5461 36.2940 -
-1 10.0259 - 2.7032 27.7976 -
0 0 12.0236 -5.9448 19.4667 -4.6819

+1 -8.5272 2.2431 - - -14.6759
+2 - -7.3214 - - -24.5108
+3 - - - - -34.3122
+4 - - - - -43.9720
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Table 2: Using the Busker potential [63], the change in lattice entropy of UO2 due to a formally charged defect (∆Svib)
and the vibrational entropy of the UO2 lattice per formula unit, which is used to calculate the chemical potential of the
U atoms. Reaction entropies are reported for the Schottky (SD), oxygen (OFP) and uranium (UFP) Frenkel reactions.

Lattice entropy Defect entropy for host defects (∆Svib) Reaction entropy
T (K) UO2 (kB) V••O (kB) O′′i (kB) V′′′′U (kB) U••••i (kB) U•U (kB) U′U (kB) SD (kB) OFP (kB) UFP (kB)

400 7.785 -0.245 8.305 2.410 10.180 -1.195 4.309 9.714 7.959 12.600
600 11.531 -1.544 9.705 1.085 11.580 -1.149 4.243 9.528 8.060 12.665
800 14.219 -2.490 10.752 0.103 12.627 -1.103 4.177 9.343 8.160 12.730

1000 16.328 -3.242 11.606 -0.686 13.481 -1.057 4.110 9.157 8.262 12.795
1200 18.069 -3.872 12.339 -1.353 14.214 -1.010 4.043 8.972 8.364 12.861
1400 19.559 -4.419 12.989 -1.936 14.864 -0.964 3.976 8.785 8.467 12.927
1600 20.863 -4.903 13.577 -2.458 15.452 -0.917 3.908 8.590 8.570 12.993
1800 22.026 -5.341 14.119 -2.933 15.994 -0.870 3.840 8.410 8.673 13.060
2000 23.078 -5.742 14.624 -3.371 16.499 -0.822 3.771 8.222 8.882 13.127

Table 3: Using the CRG potential [64], the change in lattice entropy of UO2 due to a formally charged defect (∆Svib)
and the vibrational entropy of the UO2 lattice per formula unit, which is used to calculate the chemical potential of the
U atoms. Reaction entropies are reported for the Schottky (SD), oxygen (OFP) and uranium (UFP) Frenkel reactions.

Lattice entropy Defect entropy for host defects (∆Svib) Reaction entropy
T (K) UO2 (kB) V••O (kB) O′′i (kB) V′′′′U (kB) U••••i (kB) U•U (kB) U′U (kB) SD (kB) OFP (kB) UFP (kB)

400 9.094 0.1654 9.591 4.517 11.043 -1.145 4.264 13.942 9.756 15.316
600 12.872 -1.148 11.074 3.280 12.527 -1.079 4.181 13.855 9.926 15.560
800 15.591 -2.109 12.205 2.396 13.658 -1.013 4.099 13.768 10.096 15.807

1000 17.731 -2.877 13.144 1.706 14.597 -0.947 4.015 13.683 10.267 16.054
1200 19.505 -3.523 13.962 1.138 15.414 -0.880 3.932 13.597 10.439 16.302
1400 21.026 -4.085 14.696 0.654 16.149 -0.814 3.849 13.511 10.611 16.803
1600 22.363 -4.585 15.370 0.233 16.822 -0.747 3.764 13.425 10.785 17.055
1800 23.559 -5.039 15.998 -0.142 17.450 -0.680 3.680 13.338 10.959 17.308
2000 24.643 -5.456 16.590 -0.480 18.042 -0.612 3.594 13.252 11.134 17.563
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Figure 2: The phonon DOS of UO2 from experiment [65], and the CRG [64] and Busker [63] empirical potential models.
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Figure 3: The defect concentrations in UO2±x as function of temperature (500-2000 K) for an oxygen partial pressure
of 10−20 atm. The results are calculated with contributions from DFT energies (a, b, and c), with vibrational entropies
either a) omitted or calculated using b) the Busker potential and c) the CRG potential. The lines represent the sum of
all charge states for a given defect. d) Based on the fraction U′U/U

•
U from a), b), and c) the Fermi level is calculated

using Equation 16 and is shown as a fraction of the band gap (from our calculations Eg = ∆EU ′U
+∆EU•U = 1.5 eV).

Table 4: DFT data for the defect volumes with various effective (overall supercell) charges. Non-defective with q = ±1
refers to U′U and U•U. The difference in volume between the non-formally and formally charged defects is shown in

parentheses and is used in combinations with a
(
dS
dV

)
UO2

= 0.341 kBÅ−3 and 0.447 kBÅ−3 for the Busker and CRG

potentials respectively.

Defect volume, Vq in equation 4
Effective charge, q (e) VO (Å3) Oi (Å3) VU (Å3) Ui (Å3)

-4 - - 40.50 (0.00) -
-3 - - 28.32 (-12.18) -
-2 - 19.92 (0.00) 14.88 (-25.62) -
-1 - 7.97 (-11.96) 2.51 (-37.99) -
0 0.96 (20.34) -4.544 (-24.47) -10.31 (-50.81) 23.85 (40.14)

+1 -11.01 (8.37) - - 13.56 (29.86)
+2 -19.38 (0.00) - - 2.78 (19.08)
+3 - - - -7.72 (8.58)
+4 - - - -16.30 (0.00)
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Figure 4: The concentrations of defects with various charges in UO2±x as function of oxygen partial pressure at
temperatures of a) 650 K, b) 1250 K, and c) 1850 K. The results are calculated with contributions from DFT ener-
gies and vibrational entropies calculated the CRG potential. d) Based on the fraction U′U/U

•
U from a), b), and c)

the Fermi level is calculated using Equation 16 and is shown as a fraction of the band gap (from our calculations
Eg = ∆EU ′U

+ ∆EU•U = 1.5 eV). Formal defect charge states are shown by solid lines and non-formal charge states by
dashed lines.
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Figure 5: The defect concentrations with various charges in a,c) UO2+x and b,d) UO2−x as function of x at an oxygen
partial pressure of 10−20 and temperatures of a,b) 650 K, and c,d) 1850 K. Formal defect charge states are shown by
solid lines and non-formal charge states by dashed lines.
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