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We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of
the system features two flat bands formed from S and Px;y photonic orbitals, into which we trigger bosonic
condensation under high power excitation. The symmetry of the orbital wave functions combined with
photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band
condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with
spin-orbit coupling, orbital degrees of freedom, and interactions.
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Two-dimensional lattices with flat energy bands attract
keen research interest as a platform for studying exotic
many-body effects including itinerant ferromagnetism [1],
Wigner crystallization [2], and fractional quantum Hall
phases [3]. A notable example of a flat-band system is the
Lieb lattice [4], a decorated square lattice found in nature in
the cuprates exhibiting high-Tc superconductivity [5] and
studied extensively in recent years for its topologically
nontrivial phases [6–16]. In bosonic systems, models of
particles in two-dimensional Lieb lattice potentials with flat
energy bands are a highly valuable tool for researchers,
having recently been experimentally realized in photonic
waveguide arrays [17–20] and ultracold atoms in optical
lattices [21]. Particularly fascinating prospects which
remain unexplored in Lieb lattice models are many-body
interactions, spin-orbit coupling (SOC) terms, and orbital
structure. With such features, the flat bands are predicted to
support nonlinear compactons [22,23] and interaction-
induced topological phases [16]. More generally, these
lattices allow one to study the interplay between funda-
mental nonlinear, spin, and orbital phenomena in a topo-
logical system.
Exciton-polariton (polariton) gases confined in lattice

potentials have recently emerged as an attractive candidate
for emulating nonlinear lattice Hamiltonians [24].
Microcavity polaritons are the mixed light-matter eigenm-
odes characterized by a small effective mass, allowing
both quasiequilibrium and nonequilibrium Bose-Einstein
condensation at elevated temperatures [25–28]. Giant
exciton-mediated Kerr nonlinearity, which is 3–4 orders
of magnitude larger than light-matter systems in the weak-
coupling regime [29], has enabled the observation of

ultralow power solitons [30] and vortices [31], and more
recently, driven-dissipative phase transitions associated
with quantum fluctuations [32–34]. In polariton systems,
straightforward optical techniques can be used to create
interacting scalar and spinor boson gases in highly tunable
lattice geometries, which can be engineered through modu-
lation of the photonic [35–37] or excitonic [38–41] poten-
tial landscape. Furthermore, the spatial, spectral, and
pseudospin (polarization) properties of the polaritonicwave
functions are directly accessible due to the finite cavity
photon lifetime. The inherently nonequilibrium nature of
polariton gases also means that higher energy orbital bands,
formed from spatially anisotropic modes, are readily
populated, as was recently demonstrated in a honeycomb
lattice [42].
One intriguing property of polaritons in lattices is

polarization-dependent tunneling [43], inherited mostly
from the photonic component and enhanced by TE-TM
splitting. It is formally analogous to SOC [43–45] inducing
a k-dependent effective magnetic field acting on polariton
pseudospin. The rich variety of polarization phenomena
exhibited by polaritons in both noninteracting and interact-
ing regimes [46] remains unexplored in two-dimensional
periodic potentials, and is inaccessible in the inherently
asymmetric one-dimensional case [47].
In this Letter, we study a two-dimensional (2D) array of

coupled micropillars arranged in a Lieb lattice. The crystal
structure comprises three square sublattices (denoted A, B,
andC) each contributing one atom to the unit cell [Fig. 1(a)].
This lattice topology, in which the sites on different sub-
lattices have different connectivity, results in localized states
residing on dispersionless energy bands [48]. Here, we
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explore the bands formed by evanescent coupling of both the
ground and first excited states of the pillars, which are 2D
photonic orbitals with S- and P-like wave functions. We
excite the system quasiresonantly to optically load polar-
itons into the periodic potential, triggering condensation into
three separate modes of the lattice—S and P flat (non-
bonding) bands and the maxima of the S antibonding (AB)
band. Resolving the near-field emission in energy and
polarization above the threshold for polariton condensation,
we see that the flat band condensates shownovel pseudospin
textures arising from a polarization-dependent hopping
energy, which acts as SOC for polaritons. Significant
variation in the emission energy across real space (frag-
mentation) can be seen in the flat-band condensates, which
we show arises due to the effect of many-body interactions,
since the kinetic energy scale is quenched. This contrasts
with the condensates formed on the S AB (dispersive) band
which emit at strictly one energy.
Our 2D Lieb lattice consists of AlGaAs/GaAs micro-

pillars of 3 μm diameter and a separation of 2.9 μm. The
lattice periodicity is α ¼ 5.8 μm. Further details about
the sample and experimental methods can be found in
the Supplemental Material [49]. The single-particle
band structure of our Lieb lattice at kx ¼ π=α is displayed
in Fig. 1(b). It shows the energy bands associated with the
two lowest energy pillar modes, S and P (comprising
degenerate Px and Py) orbitals which have bare energies
of around 1.4642 and 1.4662 eV, respectively. Photonic
coupling results in S- and P-type flat bands [(c) and (e) in
Fig. 1(b)] separated by 2 meVand a forbidden energy gap of
approximately 0.8 meV between S and P dispersive bands.
The white dotted lines in Fig. 1(b) correspond to the

dispersion curves calculated from our tight-binding (TB)
model [49]. Experimentally, the emission from some of the
expected folded branches of the dispersion appears almost
absent. For example, emission from the S AB band [(d) in
Fig. 1(b)] is suppressed within the first Brillouin zone
(delimited by vertical lines) while the S bonding band is
suppressed outside. This effect can be attributed to a
combination of far-field destructive interference and varying
lifetimes (due to relaxation and losses) of different modes.
This effect is well known in honeycomb lattices [36,51], and
in Ref. [49], we solve the 2D Schrödinger equation for a
periodic potential to confirm that this is also the case for the
Lieb lattice.
In Figs. 1(c) and 1(e), we show the real space distribution

of polariton emission intensity of the S and P flat bands,
constructed by scanning the emission across the spectrom-
eter slit and piecing together the energy-resolved slices. In
both cases, there is highly suppressed emission from the B
sublattice, characteristic of flat bands, indicating that
polaritons are highly localized on A and C sublattices.
This results from destructive wave interference of the A and
C sublattice linear eigenmodes due to the local lattice
symmetries [52]. Interestingly, for the P band, we see that
emission from Px orbitals dominates on the A sites and Py
orbitals for the C sites (the subscript denotes the axis to
which the two lobes lie parallel). Since orthogonal P
orbitals do not interfere with each other, the absence of
emission from B sites must arise from destructive inter-
ference of like P orbitals. A qualitative explanation is that
the difference in the tunneling energies for spatially
anisotropic modes with orthogonal orientations (σ and π
bonding) is offset by a difference in the orbital populations
on the two sites maintaining the destructive interference
necessary for flat band formation. We expand this argument
including polarization later in the text. In contrast to the two
flat bands, at the energy maxima of the dispersive AB mode
[Fig. 1(d)] the polaritons are delocalized across all three
sublattices as is usually expected for the linear eigenmodes
of a periodic potential.
In order to study our system in the nonlinear kinetic

condensation regime, we tune the pump laser to 843 nm,
resonant with high energy states of the lower polaritonic
bands (detuned roughly −1 meV from the exciton) where a
broad continuum of high energy pillar modes exists [49].
Through this channel, we resonantly inject polaritons into
the lattice at normal incidence, using high irradiances to
create large populations of interacting polaritons. We use a
large pump spot (∼25 μm) which excites around 15 unit
cells of the lattice. In Fig. 2, we show the evolution of our
system with sample irradiance. Figures 2(c)–2(g) show the
momentum space emission at kx ¼ 0. Beyond a critical
pumping intensity, macroscopic populations of particles
begin to accumulate in the P flat band as evidenced by a
superlinear increase in the emission intensity [Fig. 2(a)]
and narrowing of the linewidth [Fig. 2(b)] which

FIG. 1. (a) Scanning electron microscope image of a section of
the 2D Lieb lattice. The enlarged image shows a schematic
diagram of 1 unit cell and the 3 sublattices. (b) Lattice emission in
energy-momentum space measured under low-power nonreso-
nant excitation. White dotted lines correspond to bands calculated
from the tight-binding model. (c)–(e) Emission in real space at the
energies of the S flat band (c), the AB band maxima (d) and the P
flat band (e). The white squares correspond to one unit cell as
shown in (a) and the corresponding energies are shown by arrows
in (b).
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signifies increased temporal coherence [27,53]. A
similar condensation process is seen at slightly higher
pumping intensities for the S AB band maxima, which
move into the spectral gap, and the S flat band. As can be
seen in Figs. 2(f) and 2(g), these coexisting condensates
dominate the normalized PL spectra above threshold. In the
S AB band, condensates are formed in the negative
effective mass states with an energy residing in the
forbidden gap, which is reminiscent of the gap solitons
previously reported as nonlinear solutions in similarly
shallow periodic potentials [54,55]. The real space
distributions of the three condensate modes are shown in
Figs. 2(h)–2(j). The dark B sites observed for the flat band
cases confirm that the condensates, indeed, reside on highly
nondispersive energy bands, in contrast to the condensates
formed at the maxima of the dispersive AB band.
Above the condensation threshold, the high density of

polaritons leads to a sizable mean-field interaction energy
due to Coulomb interactions between polaritons residing in
the condensates as well as interactions of condensed
polaritons with the highly populated resonantly pumped
states. For the case of flat bands, the kinetic energy scale is
quenched due to an infinite effective mass, so energy
renormalization is nontrivial and cannot be treated as a
perturbation [56]. With no kinetic energy to counterbalance
the local nonlinear interaction energy, a fragmentation of
the condensates into localized modes emitting at slightly
different energies is observed. Conversely, the AB band
polaritons acquire kinetic energy when they propagate from
high to low density regions compensating the low potential
energy in low density regions, resulting in a homogeneous

emission energy across the lattice in real space. Spatial
maps constructed from experimental data above threshold
are shown in Fig. 3 and demonstrate the degree of spectral
variation of the three condensed modes, which is vanishing
for the AB band but pronounced for the flat bands. In
Ref. [49], we analyze the relation between the population
and energy across the condensates and show correlations
which provide further evidence for the strong influence of
many-body interactions in the fragmentation of the flat
energy bands.
So far, we have studied the spatial and spectral properties

of polaritons in both dispersive and flat bands, demonstrat-
ing bosonic condensation and analyzing the effect of
nonperturbative many-body interactions. Now, we consider
the pseudospin degree of freedom by resolving the lattice
emission in polarization. In Figs. 4(a) and 4(b), we plot the
Stokes linear polarization parameter S1 for the flat band
condensates, with S1 ¼ ðIH − IVÞ=ðIH þ IVÞ where IH and
IV are the intensities of the emitted light measured in the
horizontal (0°) and vertical (90°) bases, respectively.
Ordered pseudospin textures extended across several unit
cells can be seen. The finite spatial extent of the pump spot
and the intensity-dependent blueshift associated with its
Gaussian profile limits the size of the observed patterns.

FIG. 2. (a) Peak intensity and (b) full width at half maximum of
the three lattice modes as a function of the sample irradiance in
the vicinity of the condensation thresholds. (c)–(g) The far-field
emission with increasing irradiance, with condensation occurring
in (f) and (g). The sample irradiances are 620 (c), 1360 (d), 2180
(e), 4030 (f), and 5630 kWcm−2 (g). The color scale is the same
as that of Fig. 1(b). (h)–(j) Real space images of the lattice
condensates. a.u. refers to arbitrary units.

FIG. 3. (a) Color maps showing spatial energy variation of the
S flat band (a), AB band (b), and P flat band (c) condensate
emission constructed from experimental data above threshold.

FIG. 4. S1 linear Stokes parameter of the real space emission at
the energies of the S (a) and P (b) flat band. The color scale is
linear with red (blue) representing H (V) polarization, depicted
by arrows on either side of the color bar. (c),(d) Schematic of the
nearest neighbor hopping processes for S, Px, and Py orbitals, in
the case of polarization-dependent hopping probabilities.
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In order to explain these polarization patterns, one needs
to consider the two following features of Lieb lattices and
Bragg-cavity polariton systems. First, in Lieb lattices the
eigenmodes associated with the flat bands are nonspreading
modes characterized by having zero population on the B
sites. This characteristic feature is due to the destructive
interference of particles tunneling to B sites from the
neighboring A and C sites [52]. Clearly, in the case of
different tunneling probabilities, the destructive interfer-
ence can occur only if the neighboring sites have different
populations, since the number of particles tunneling from
one site to another is proportional both to the tunneling
probability and to the number of particles on an initial site.
Second, in lattices formed from Bragg cavities, the

particles’ tunneling probability from one pillar to another
has been experimentally observed [43] and theoretically
discussed [57] to be polarization-dependent, leading to
effective spin-orbit coupling. In particular, it has been
shown that the tunneling probability (τk) of particles having
polarization parallel to the propagation direction is higher
than the tunneling probability (τ⊥) of particles having
polarization perpendicular to the propagation direction

τk > τ⊥: ð1Þ
In the case of the Lieb lattice, this means that horizon-

tally (H) polarized particles tunnel with probability τk
between B and C sites and with probability τ⊥ between B
and A sites, since the projection of the polarization is
longitudinal and transverse to the tunneling directions,
respectively [see Fig. 4(c)]. This means that the
H-polarized eigenmodes of the S flat band must have a
higher population on A sites, to compensate for the lower
tunneling probability [Eq. (1)]. The opposite holds for
vertically (V) polarized eigenmodes, which will be char-
acterized by a higher population on C sites.
Finally, in our case, the quasiresonant pump populates

both linear combinations of H-polarized eigenmodes and
linear combinations of V-polarized eigenmodes of the S
band. This, combined with the different populations of
differently polarized particles results in a nonzero degree of
polarization on A and C sites. In order to confirm this
explanation, we developed a TB model with polarization-
dependent tunneling terms [49]. By fitting the energy width
of the S band and the degree of polarization of the two
sublattices, we deduce the two hopping parameters to be
τk ¼ 0.165 meV and τ⊥ ¼ 0.145 meV, in agreement with
previous experimental results [43]. With these values, we
obtain a degree of polarization of the order of 0.128, in
excellent agreement with the experimental value of 0.13.
For theP flat band, the polarization pattern is qualitatively

the same as that of the S flat band albeit with a higher degree
of polarization. It can be explained in the same way. In this
case, however, one also has to consider that theP state of each
pillar is fourfold degenerate since, in addition to the
polarization degeneracy, one also has the mode degeneracy

of the Px and Py orbitals. It can be seen in Figs. 1(e) and 2(j)
that, for theP flat band, the emission predominantly has two
lobes aligned along the x direction on A sites, corresponding
to Px orbitals, while on the C sites, the Py orbitals dominate.
We estimate the ratio of the orbital populations to be
about 6∶1, corresponding to jψPx

j2=jψPy
j2 on A sites and

jψPy
j2=jψPx

j2 onC sites [49].As before, one needs to explain
the suppression of emission from B sites, since only orbitals
with the same symmetry and polarization may destructively
interfere. Similar to the previously described polarization-
dependent tunneling probability, one can observe that
particles in Px orbitals tunnel more easily along the x
direction than along the y direction, and therefore, more
particles in the Px orbital of A sites are needed to satisfy
Eq. (1), and the opposite holds for Py orbitals.
To confirm this, we also developed a TB model for the

four degenerate P orbitals with tunneling amplitudes that
depend on the polarization and on the alignment of the
mode with respect to the hopping direction [49]. As shown
in Fig. 4(d), now, we have four tunneling parameters: τak ,
τa⊥, τtk, and τt⊥, where (a) and (t) indicate whether the
hopping is for P orbitals aligned or transverse to the
propagation direction, and (k) and (⊥) indicate, as before,
whether the polarization is parallel or perpendicular to the
hopping direction. Similar to the S band, here, also, all four
modes of each pillar will be populated by the quasiresonant
pump, but on A sites, the population of Px H-polarized
particles will be the highest, since their probability to tunnel
to B sites (τt⊥) is the lowest. Conversely, on C sites, the
population of Py V-polarized particles will be the highest.
This is exactly what is observed in Fig. 4(b). By fitting the
TB band structure to the experimentally observed P band
and degree of linear polarization, the following hopping
parameters can be obtained: τak ¼ 0.375, τa⊥ ¼ 0.125,
τtk ¼ 0.100, and τt⊥ ¼ 0.033 meV. Note that, for the P
band, the difference between the hopping with ⊥ and k
polarization is bigger than in the S band case. This can be
ascribed to the fact that theP flat band consists of harmonics
with higher k values, where polarization-dependent tunnel-
ing is expected to be enhanced [45]. With the values for the
hopping parameters above, we obtain a degree of polariza-
tion of the order of 0.42 and a ratio between the populations
of Px and Py orbitals on A sites of 4.1 (the inverse applies to
C sites), in good agreement with the experimental values of
0.5 and 6 [49]. It should be noted that the tunneling
arguments presented here apply equally in the single-
particle regime, and as such, polarization patterns are
observed in the S andP flat-band emission below threshold.
The polarization degree of the P flat band was considerably
lower (∼0.2) than in the condensate regime, however,
probably due to contribution of the emission of the dis-
persive band at the same energy [cf. Fig. 2(g)].
In summary, we have studied the properties of a two-

dimensional Lieb lattice for exciton polaritons, demonstrat-
ing bosonic condensation into two separate flat bands
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formed from S and P orbitals, in addition to the negative
effective mass states at the maxima of the S antibonding
band. We have also revealed distinctive emission patterns
formed by the symmetric S and asymmetric P orbitals,
which show pseudospin texture arising from spin-orbit
coupling given by polarization-dependent tunneling
between pillars. Our Letter shows the potential for engineer-
ing versatile lattice Hamiltonians for polaritons, highlight-
ing the ease with which spin-orbit coupling terms and
population of higher orbitals can be implemented, which
presents a significant advantage of this system. Furthermore,
the observation of flat-band condensate fragmentation
demonstrates the effect of many-body interactions in the
presence of quenched kinetic energy. An intriguing future
prospect is studying quantum fluctuations as in recent
polariton works [32–34], in lattice environments where
novel driven-dissipative phase transitions are expected [58].
Currently, the strength of polariton-polariton interactions

in a single lattice site (few μeV) [29] is comparable to or
less than the polariton decay rate. However, the ratio of
these two quantities may be further enhanced via polariton
Feshbach resonances [59] or recently developed high-Q
open-access microcavities with strong lateral confinement
[44]. This would open the way to strongly correlated
regimes described by driven-dissipative Bose-Hubbard
models in polaritonic lattices [60]. Such regimes are not
accessible in weakly coupled photonic systems.
Data supporting this study are openly available from the

University of Sheffield repository [61].
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