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General Relativity is known to produce singularities in the potential generated by a point source.
Our universe can be modelled as a de Sitter (dS) metric and we show that ghost-free Infinite
Derivative Gravity (IDG) produces a non-singular potential around a dS background, while returning
to the GR prediction at large distances. We also show that although there are an apparently infinite
number of coefficients in the theory, only a finite number actually affect the predictions.

By writing the linearised equations of motion in a simplified form, we find that at distances below
the Hubble length scale, the difference between the IDG potential around a flat background and
around a de Sitter background is negligible.

General Relativity (GR) has been extremely successful
in describing gravity at large distances [1], in particular,
the recent observation by LIGO & VIRGO of the collision
of two neutron stars [2]. However, GR breaks down at
short distances because it predicts singularities in both
black holes and the cosmological setting [3, 4].

An obvious way to ameliorate these problems was to
add higher derivative terms to the GR action, for exam-
ple Stelle’s 4th derivative theory [5], or higher deriva-
tive gravity models [6, 7] did not succeed because of the
Ostrogradsky instability [8], which produces an unsta-
ble vacuum [9–11]. However this instability is avoided
for Infinite Derivative Gravity (IDG). IDG modifies the
propagator so that it is exponentially suppressed at high
energies, but doesn’t produce ghosts

Infinite derivative actions constructed from the
d’Alembertian operator � = gμν∇μ∇ν , were first used
in string theory [12], and later employed in gravity [13].
They have been examined around a flat Minkowski back-
ground [14] and constantly curved backgrounds [15].

So that the only pole in the graviton propagator is the
benign pole found in GR, we can require that any infinite
derivative function in the denominator of the propagator
is the exponential of an entire function which by defi-
nition contains no zeroes [13–19]. The mass scale M of
the theory determines the length scales below which the
infinite derivative terms start to have a significant effect.
The prospect of avoiding singularities through IDG has
prompted much investigation over recent years [13–61].

Previous work has shown that IDG gives a non-singular
potential for a test mass in a flat background, which
returns to the observed GR prediction at large dis-
tances [14, 24, 26]. Even though this calculation was
made using the linearised equations of motion, if the test
mass is small enough then the perturbation will still be
in the linear regime. This is because the effect of IDG
is to stop the potential from growing in size once we go
reach the distances where IDG has a significant effect.

We extend the prediction of a non-singular potential,
which returns to GR at large distances, to a curved back-
ground. We do this by writing down the equations of

motion in a simplified form and noting that in the areas
we might wish to test IDG, such as laboratory experi-
ments or solar system tests, we can use the approxima-
tion H2r2 � 1 [62].

EQUATIONS OF MOTION

We will investigate the action1

S =
∫

d4x

√
−g

2

[

M2
P R + RF1(�)R + RμνF2(�)Rμν + Λ

]

, (1)

where Rμν is the Ricci curvature tensor and R is the
Ricci scalar. The Fi(�) are the infinite sums Fi(�) =∑∞

n=0 fin

�n

M2n , where {fi0 , fi1 , fi2 , ..., fin} are the dimen-
sionless coefficients of the series and M is the mass scale
of the theory. The lower bound on M is 0.004 eV from
laboratory experiments [24, 64], while the upper bound
is the Planck mass MP . Statistical analysis showed that
the best fit of the IDG prediction matched the data bet-
ter than the GR prediction by around 2σ [65].

It was shown in [14, 24, 26] that this action generates
a non-singular potential around a flat background for a
static test mass.

For the action (1), IDG gives a vacuum de Sitter so-
lution with Λ = 3M2

P H2 [15, 59], where the background
Ricci scalar is R̄ = 12H2. The linear equations of motion
around this de Sitter background can be written as2

1
M2

P

Tμ
ν = a(�̄)rμ

ν −
1
2
δμ
ν c(�̄)r −

1
2
∇μ∂νf(�̄)r, (2)

where the functions a(�), c(�), f(�), given in (15) are
combinations of F1(�) and F2(�) from the action, rμ

ν

1 More generally, there is also a Weyl tensor term
CμνλσF3(�)Cμνλσ but it is possible to set F3(�) = 0
without loss of generality [58, 59]. This action is the most
general torsion-free action which is quadratic in curvature.

2 It should be noted that this definition of a, c and f allows the
minimum condition for perturbations around an (A)dS back-
ground to avoid Penrose singularities in [28] to be extended to
include a non-zero F2(�).
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and r are the perturbed Ricci tensor and Ricci scalar
respectively and �̄ is the background d’Alembertian.

DEGREES OF FREEDOM

If a(�) = c(�) then around a flat background, the
propagator is given by

ΠIDG =
ΠGR

a(−k2)
, (3)

where � → −k2 in momentum space. We can choose
a(−k2)=eγ(k2/M2) where γ(k2/M2) is an entire function.
This choice means that the propagator has no extra poles
compared to GR and also reduces to GR in the limit
M → ∞. An entire function can be written as a polyno-
mial, i.e. γ(k2/M2) =

∑∞
n=1 cn

k2n

M2n . Therefore the effect

of IDG on the potential, which depends on e−γ(k2/M2)

can be written as

e−γ(k2/M2) = e−c1
k2

M2 ∙ e−c2
k4

M4 ∙ e−c3
k6

M6 . (4)

This would a priori seem to have an infinite number
of degrees of freedom as there is no restriction on the
coefficients cn. It was already shown that as long as
γ(k2/M2) > 0 for k → ∞ that IDG would produce a
non-singular solution [14]. However, we can reduce the
freedom in the model futher by noting that for large

n and positive cn, exp
[
−cn

(
k2

M2

)n]
forms a rectangle

function:

e
−cn

(
k2

M2

)n

≈

{
1, for

n
√

cnk2

M2 < 1

0, for
n
√

cnk2

M2 > 1

}

. (5)

FIG. 1. We plot exp
[
−
∑∞

n=40 cn

(
k2

M2

)n]
for various cn to

show that even if cn increases very quickly, we can model the
higher terms in the polynomial γ as the rectangle function
Rect(Ck2/M2) without knowing the exact values of cn. Here
C is simply another constant to be found.

We can combine all of the terms in the exponential
which involve large values of n into a rectangle func-
tion and thus we do not need to know the value of cn

for large n as long as it is positive. As an example, we

plot exp
[
−
∑∞

n=40 cn

(
k2

M2

)n]
for various values of cn in

Fig. 1 which turns out to still be well approximated by
the rectangle function Rect(Ck2/M2) even if cn increases
exponentially. In other words, the potential is well de-
scribed by the lowest order terms and a single constant
representing the higher order terms. 3

PERTURBING THE METRIC

Following the example of [62], we write the perturba-
tion to the background de Sitter metric as

ds2 = −
(
1 + 2Φ(r) − H2r2

)
dt2

+(1 − 2Ψ(r))
[(

1 + H2r2
)
dr2 + r2dΩ2

]
, (6)

where Φ(r) and Ψ(r) are perturbations we want to find.
As we want to look at perturbations at relatively short
distances such as when we are looking at laboratory or
solar system tests of gravity, we can use the approxima-
tion H2r2 � 1 to find the Ricci curvature tensors and
Ricci scalar up to linear order in Φ(r) and Ψ(r)

Rtt ≈ ΔΦ(r) − 3H2 (1 + 2Ψ(r) − Φ(r)) , (7)

Rrr ≈
2 (rΨ′′(r) + Ψ′(r))

r
− Φ′′(r)

+H2

[

3 − rΦ′(r) − 2Φ(r) + 4Ψ(r)

]

, (8)

R ≈ 4ΔΨ(r) − 2ΔΦ(r) + 12H2 (1 + 3Ψ(r) − Φ(r)) . (9)

We note that in the limit H2 r2 � 1, for any scalar X(r)
which is a function only of the radial coordinate [62],

�̄X(r) ≈ Δ X(r), (10)

where Δ ≡ ηij∇i∂j = ∂2
r + 2

r ∂r is the spatial
d’Alembertian operator around a flat background.
This gives us a tremendous simplification to our
equations of motion, as we will see later.

SOLVING THE EQUATIONS OF MOTION

We investigate a perturbation caused by the addition
of a static point mass with density ρ = m δ3(x) where m
is the mass of the source and negligible pressure P ≈ 0.
Using the equations of motion and T μ

μ = −ρ = T 0
0 , we

find Ψ in terms of Φ in (16) and therefore find Φ in terms
of our density ρ in (17).

3 We need in the region of O(10) of the lower order terms depend-
ing on how accurate one needs to be.
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FIG. 2. We plot the perturbation to the metric Φ(r) versus
distance r using (18), giving exactly the same result as for
flat backgrounds. We have used the Hubble constant H =
7.25× 10−27 m−1, set the Planck mass MP and the mass of
the source equal to one and used the IDG mass scale M =
1.79 × 104 m−1. We have chosen the coefficients fn such

that around a flat background a = c = e−�/M2
, as in [24]. As

for flat backgrounds, we have the familiar prediction Φ(r) ∝
−Erf(r)

r
[14].

Using a similar method to [14] we can go into momen-
tum space to find

Φ(r) =
m

4π2M2
P r

∫ ∞

−∞
dk I(k). (11)

where I(k), a complicated function of H, a(�), c(�) and
f(�) is given in (18).

FIG. 3. We plot the difference from a flat background for the
integrand I(k) given in (18) for H = 7.25× 10−27 m−1 and
r = 1 m. The graph is the same whether we take GR or IDG
with M = 1.79 × 104 m−1. Note that for k � H, I(k) is
similar to if we had a flat background.

For the value of H at the current time H = H0 = 7.25×
10−27 m−1, the result is very similar to the result around
a flat background, and we plot this in Fig. 2. Perhaps

FIG. 4. We plot the the integrand I(k) given in (18) for H =
7.25× 10−27 m−1, M = 1.79× 104 m−1, r = 1m to show that
if k < 103, the difference from GR is negligible. The chosen
value of M is the lower bound found by experiment [24, 64]
and coefficients fn such that around a flat background a = c =

e−�/M2
as in [24]. For higher M , IDG matches GR up to even

higher energy scales. The point at IDG stops being a good
approximation for the GR prediction of I(k) is unaffected by
the choice of r.

this is to be expected - the differences from GR kick in
only once we reach k ≈ M , and our mass scale is at
a significantly higher energy than the Hubble parameter,
i.e. for large k, the background curvature has a negligible
effect - for H � k then the integrand is the same as for a
flat background. We illustrate this by plotting in Fig. 3
and Fig. 4 the value of the integrand for small and large
k, choosing our value of M to be the lower bound given
by experiments [24].

Note that increasing r decreases the value of k in the
region where it provides the biggest contribution to the
integral.4 Therefore for distances above the length scale
where IDG contributes, around 10−5 m, we can use the
GR prediction, and for distances at this length scale or
below, we can use the IDG prediction around a flat back-
ground. Therefore we still obtain a non-singular potential
even when we look at a curved background. At distances
larger than the mass scale of IDG, the system returns to
the standard de Sitter-Schwarzschild metric.

DISCUSSION

It was already shown that IDG gives a non-singular
potential for a test mass added to a flat background,
which returns to the GR prediction at large distances.
Intuitively, one might have predicted this by noting that
IDG has a significant effect at much larger energy scales

4 Due to the sin(kr) term, the part of the integrand where k � r−1

can be neglected.
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than the curvature of our de Sitter universe. Here we
have shown explicitly that in the region where the back-
ground curvature must be taken into account IDG has
no effect, and where IDG has an effect the background
curvature has no effect.

If we want to examine a system where H is much larger
than it is today, so that the background curvature can
no longer be discarded, then it is possible to solve (11)
numerically, as long as H2r2 � 1 still holds.

Could our result be extended to more general back-
grounds? It is extremely difficult to use the equations
of IDG where we encounter derivatives in more than one
coordinate, but it is reasonable to guess that if the back-
ground curvature is at an energy much smaller than the
energy scale where IDG becomes important, then we will
see a similar effect.

CONCLUSION

We have shown that the non-singular IDG potential
that is found around a flat background also extends to a
curved de Sitter background. It still reverts to the GR
limit at large distances. We also show that only a finite
number of the degrees of freedom in the theory actually
contribute to the potential.

IDG is a promising model because it is ghost-free while
allowing the possibility of avoiding singularities as well
as providing a framework for inflation. This result shows
that we can generate a non-singular potential even when
we are looking at non-flat backgrounds, and hints that
we will see similar effects when looking at more general
backgrounds, based on examining the energy scales in-
volved.
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APPENDIX

Commutation relations

We want to write the linear equations of motion around
a constantly curved background which is maximally sym-
metric, i.e. R̄μ

νρσ = R̄
12

(
δμ
ρ gνσ − δμ

σgνρ

)
and R̄μν =

R̄
4 gμν .

We use the relations from the appendix of [39] and also
derive that for a scalar S,

∇μF (�)∇νS = F (�− 5H2)∇μ∇νS

+
1
4

(
F (�+ 3H2) − F (�− 5H2)

)
δμ
ν�S, (12)

and that for a symmetric tensor tμν

∇μF (�)tμν = F
(
�+ 5H2

)
∇μtμν − 2H2X(�)∇νtμμ, (13)

where we have defined

X(�) ≡
∞∑

n=1

fn

n−1∑

m=0

[(
�+ 5H2

)m (
�− 3H2

)n−1−m
]
. (14)

Full equations of motion

Using the commutation relations above, we can write
the equations of motion as (2) with

a(�) ≡ 1 + 24M−2
p H2f̃10 + (�− 2H2)M−2

p F2(�),

c(�) ≡ 1 + M−2
p

{
24H2f̃10 − 4(�+ 3H2)F1(�)

−
1
2
F2(�+ 8H2)�−

1
2
F2(�)(�+ 8H2) + 4H2�F ′

2(�)
}

,

f(�) ≡ M−2
p

(
4F1(�) + 2F2(�) − 8H2X(�− 5H2)

)
, (15)

and we can therefore find Ψ in terms of Φ

Ψ(r)
Φ(r)

=
a(Δ)(Δ + 3H2) − (3c(Δ) + Δf(Δ))

(
Δ + 6H2

)

a(Δ)(4Δ + 30H2) − 2 (3c(Δ) + Δf(Δ)) (Δ + 9H2)
, (16)

and therefore find Φ in terms of our density ρ

Φ(r)=
ρ
(
a(Δ)(2Δ + 15H2) − (3c(Δ) + Δf(Δ))

(
Δ + 9H2

))

M2
P a(Δ) [2a(Δ) − 4c(Δ) − Δf(Δ)] (Δ2 + 15H2Δ + 63H4)

.(17)

By going into momentum space, i.e. sending Δ → −k2,
taking a Fourier transform and using ρ = m δ3(x), we
can write Φ(r) as an integral we can solve

Φ(r) =
m

4π2M2
P r

∫ ∞

−∞
dk k sin(kr)

a(−k2)(−4k2 + 30H2) − 2
(
3c(−k2) − k2f(−k2)

) (
−k2 − 18H2

)

a(−k2) (2a(−k2) − 4c(−k2) + k2f(−k2)) (k4 − 15H2k2 + 63H4)
. (18)

which is written in the main text as (11).
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