Interaction of light with planar lattices of atoms:Reflection, transmission, and cooperative magnetometry

Facchinetti, G. and Ruostekoski, Janne (2018) Interaction of light with planar lattices of atoms:Reflection, transmission, and cooperative magnetometry. Physical review a, 97 (2). ISSN 2469-9926

PDF (atomlattice_resub)
atomlattice_resub.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (746kB)


We study strong, light-mediated, resonant dipole-dipole interactions in two-dimensional planar lattices of cold atoms. We provide a detailed analysis for the description of the dipolar point emitter lattice plane as a “superatom” whose response is similar to electromagnetically induced transparency but which exhibits an ultranarrow collective size-dependent subradiant resonance linewidth. The superatom model provides intuitively simple descriptions for the spectral response of the array, including the complete reflection, full transmission, narrow Fano resonances, and asymptotic expressions for the resonance linewidths of the collective eigenmodes. We propose a protocol to transfer almost the entire radiative excitation to a single correlated subradiant eigenmode in a lattice and show that the medium obtained by stacked lattice arrays can form a cooperative magnetometer. Such a magnetometer utilizes similar principles as magnetometers based on the electromagnetically induced transparency. The accuracy of the cooperative magnetometer, however, is not limited by the single-atom resonance linewidth but the much narrower collective linewidth that results from the strong dipole-dipole interactions.

Item Type: Journal Article
Journal or Publication Title: Physical review a
Uncontrolled Keywords: /dk/atira/pure/subjectarea/asjc/3100/3107
Departments: Faculty of Science and Technology > Physics
ID Code: 123814
Deposited By: ep_importer_pure
Deposited On: 01 Mar 2018 08:44
Refereed?: Yes
Published?: Published
Last Modified: 26 Feb 2020 04:20

Actions (login required)

View Item View Item