Jewell, Sean and Hocking, Toby Dylan and Fearnhead, Paul and Witten, Daniela (2019) Fast Nonconvex Deconvolution of Calcium Imaging Data. Biostatistics, 21 (4). ISSN 1465-4644
31806801_File000008_753061487.pdf - Accepted Version
Download (1MB)
Abstract
Calcium imaging data promises to transform the field of neuroscience by making it possible to record from large populations of neurons simultaneously. However, determining the exact moment in time at which a neuron spikes, from a calcium imaging data set, amounts to a non-trivial deconvolution problem which is of critical importance for downstream analyses. While a number of formulations have been proposed for this task in the recent literature, in this paper we focus on a formulation recently proposed in Jewell and Witten (2018. Exact spike train inference via L0 optimization. Ann. Appl. Statist. 12(4), 2457–2482) that can accurately estimate not just the spike rate, but also the specific times at which the neuron spikes. We develop a much faster algorithm that can be used to deconvolve a fluorescence trace of 100,000 timesteps in less than a second. Furthermore, we present a modification to this algorithm that precludes the possibility of a “negative spike”. We demonstrate the performance of this algorithm for spike deconvolution on calcium imaging datasets that were recently released as part of the spikefinder challenge (http://spikefinder.codeneuro.org/). The algorithm presented in this paper was used in the Allen Institute for Brain Science’s “platform paper” to decode neural activity from the Allen Brain Observatory; this is the main scientific paper in which their data resource is presented. Our C++ implementation, along with R and python wrappers, is publicly available. R code is available on CRAN and Github, and python wrappers are available on Github; see https://github.com/jewellsean/FastLZeroSpikeInference.