
Designing for Presence within P2P Systems

James Walkerdine, Lee Melville, Ian Sommerville
Computing Department
Lancaster University

Lancaster, UK
{ walkerdi, l.melville, is} @comp.lancs.ac.uk

Abstract - There is an increasing interest in

incorporating presence within Peer-to-Peer systems (P2P).
However the diverse nature of P2P can have an effect on
how easily presence functionality can be integrated within
a design. This paper examines the key design issues that
should be considered if presence is to be supported within
a P2P system. In particular the paper discusses the affect
the choice of underlying logical network architecture can
have on these.

Keywords - Peer-to-Peer, Presence, Logical Network
Architectures

I. INTRODUCTION
Peer-to-Peer (P2P) computing has become very

popular in recent years. Essentially it can be thought of
as a class of application that takes advantage of the
resources and services that are available at the edge of
the Internet [14]. Presence and awareness can play a key
role within such applications.

This paper discusses the design issues that should be
considered in order to provide presence support within a
P2P system. A key focus of the paper is on the affect the
choice of underlying logical network architecture can
have on the provision of presence functionality.
Resulting issues that designers may need to consider are
identified, along with suggestions of possible ways to
tackle them.

The ability to convey presence information is
increasingly becoming an important aspect of many
systems. In particular, presence has played a key role
within the areas of CSCW (where it is commonly
referred to as awareness), distributed systems (being
aware of what services exist) and Grid computing (being
aware of which nodes in the grid are available to carry
out computational processing). In such systems
resources and users are distributed, and presence acts as
a mechanism for these to be aware of each other's
current status.

A common definition for presence is the state that a
user, application or hardware is in [1]. For example, a
user specifying if they are free or busy. This information
is made available to the rest of a system so it can be
viewed by others entities (and reacted to if needs be).

The use of presence brings with it contextual
information which in turn can provide advantages within

a system. For example, it can assist co-operation by
allowing users to see whether or not other users are
busy, or be used to optimise distributed computation by
allowing a system to be aware of when a node is
connected [2].

Presence can also play a role within industrial
settings and can be particularly important for large
organisations that are globally distributed. A notable
problem that is often experienced is the amount of time
it takes to resolve issues that involve people from more
than one site [3]. In such circumstances, presence
information could be used to alleviate problems by
informing distant colleagues who is available, and when
they are available [4].

The work that is presented in this paper stems from
research that has been carried out during the EU funded
P2P ARCHITECT project [15]. This project seeks to
develop methods and tools to support software-
developing organisations in building dependable P2P
software systems. Presence support is one area that has
been examined.

The paper begins by first providing an overview of
presence within P2P, reviewing existing work within the
area. The common P2P logical network architectures are
then reviewed, followed by a discussion of the main
sources of presence information within a P2P system.
These are categorised into peer and abstract presence.

The paper will then move on and provide an
overview of the key technical issues that need to be
addressed in order for presence to be supported. The
affect the choice of underlying logical network
architecture can have on resolving these issues is
examined.

The paper also discusses other more general design
issues that may need to be considered, and how the
choice of logical network architecture can also have an
influence on these. The issues discussed include privacy,
controlling information and real-time consistency.

II. PRESENCE WITHIN P2P
Presence has been incorporated into a number of P2P

systems. Application domains that have benefited the
most from it are typically those that support Instant
Messaging (for example, ICQ[5] or MSN[6]) or the

sharing of files between users and peers (for example,
Napster [7]). Although presence in such cases has been
generally used to capture whether a user or peer is on-
line/off-line, presence does not have to be limited to this
and could convey location, contextual, activity or
application-specific information.

More general work has also been carried out to define
models, protocols and data formats for supporting P2P
presence on an Internet scale. The Instant Messaging and
Presence Protocol (IMPP) [16] and the eXtensible
Messaging and Presence Protocol (XMPP) [17] are two
of the main examples (with the latter using XML as its
base). Support for programmers is also being provided
with ongoing work such as the Presence Management
project for Sun's JXTA P2P API [18].

Although such protocols and API's help the designers
in providing presence support within a system, they do
not consider the more general design issues that may
affect the viability of presence support as a whole.

The nature of P2P means that there are numerous
ways in which a system can be designed, deployed and
operated. This is particularly the case with respect to the
underlying logical network architecture that is used,
which, as shown in [8][9], can have significant impact
on the properties of a system (for example, security,
maintainability, etc).

This paper discusses the implications the different
types of logical network architecture can have on
supporting presence.

III. P2P LOGICAL NETWORK ARCHITECTURES
Before analysing how the choice of P2P logical

network architecture can have an affect on the provision
of presence, a brief summary of these architectures is
provided. Our previous work involved an investigation
into the more commonly used logical network
architectures, and resulted in a classification as depicted
in figure 1. A more detailed review and analysis of this

classification has been presented in our previous work
[8][9], but a summary is provided here.

Decentralised Architectures

Direct communication – All nodes within the
network are equal and autonomous. No single node
maintains any control over the network. Each node can
communicate directly with each other. Each node is
aware of each other. As a result of these characteristics,
scalability is an issue.

Structured indirect communication - All nodes within
the network are equal and autonomous. No single node
maintains any control over the network. However, it is
not necessarily the case that all nodes can communicate
directly with one another. Communication could be
routed via other nodes. Nodes are connected together in
a structured manner (for example, hierarchical, star, ring,
etc). A degree of management may be required to ensure
the structure persists.

Unstructured indirect communication - All nodes
within the network are equal and autonomous. No single
node maintains any control over the network. However,
it is not necessarily the case that all nodes can
communicate directly with one another. Communication
could be routed via other nodes. No structure is forced
onto the architecture and so it can expand in an
unpredictable manner. The discovery service becomes
particularly important in this architectural model.
Freenet [19] is an example of a P2P system that uses this
type of logical network architecture.

Semi-centralised Architectures

Single centralised index server - A single node acts
as a lookup for all other nodes within the network. All
other nodes are equal and autonomous. All nodes can
communicate directly with each other, but the index
node typically facilitates this. These index nodes are a
single point of failure for the architecture. Napster is an

Decentralised

(a) Direct Communication (b) (c)

(f) (g)

Semi-centralised

Structured indirect
communication

Un- structured indirect
communication

(d) Single centralised
index server (e) Computational model

(no autonomy)
Computational model

(with autonomy)
Multiple server

node model

Figure 1 - P2P Architectures

example of a P2P system that uses this type of
architecture.

Computational model (no autonomy) - A single node
acts as a focal point for all other nodes within the
network. The remaining nodes do not possess their own
autonomy. All communication is via the server node, if
at all. Arguably not a true P2P architecture. The server
node is a single point of failure for the architecture.
Seti@home [20] is an example of a system that uses this
type of architecture.

Computational model (with autonomy) - A single
node acts as a focal point for all other nodes within the
network. The remaining nodes retain a degree of
autonomy. Nodes could communicate directly with one
another (typically facilitated by the server node). The
server node is a single point of failure for the
architecture.

Multiple servers' model - It is not necessarily the case
that only one server node can exist within the network.
This allows for the possibility of hybrid architectures.
For example, server nodes connect together via a direct
communication architecture, but collectively act as a
single server node within a semi-centralised architecture.

The rest of this paper focuses on the provision of
presence within P2P systems and begins by providing an
overview of the key sources of presence information
within a P2P system.

IV. SOURCES OF PRESENCE INFORMATION WITHIN

P2P SYSTEMS
It is possible to split presence sources within a P2P

system into two main categories, peer presence and
abstract presence.

Peer presence represents information that is
available about the peers that are located on the network.
This information typically includes whether or not the
peer is currently online, but can also include other
information such as the IP address of that peer or
perhaps information about its network connectivity.

Abstract presence represents information that is
available about the entities that utilise the peers, or

represents information that is available about the peers’
environment. Types of abstract presence can include
users, resources or even the peer's physical environment.

• User presence represents information that is
available about the user of a peer. This typically
focuses on whether or not the user is online, but
can also represent information about a users state.
For example, this could be whether or not the
user is busy, or are away from their computer.
There are some issues that need to be considered
with user presence, however. For example,
although the peer may be connected to the
network, the user could have registered
themselves as being off-line. Furthermore, it is
perfectly possible that multiple users may make
use of a single physical peer, i.e. share a
computer. One common solution for tackling
such difficulties is to provide each user with a
unique ID (as done by many Instant Messenger
applications, e.g., ICQ, MSN, etc).

• Resource presence represents information that is
available about the resources that are connected
to the peer. What constitutes a resource is
difficult to fully define, however they do seem to
fall into two categories, internal and external
resources. An internal resource can be regarded
as being those resources that contribute to the
actual system, for example processing power,
hard disc space, bandwidth, services, etc.
External resources can be regarded as being those
resources that are independent of the system and
play no role within its function. These, for
example, can be MP3’s or documents that can be
shared. Typically a P2P system supports the
communication/utilisation of external resources.
For example, Napster or Gnutella [10].

• Physical presence represents information about
the physical environment of the peer. This could
include location information [11], audio and
video information (for example, with the use of
web cams) and information about the current
environment (for example, what web site is the
user currently browsing, what file are they

Peer

User

1:1

Peer

User User

1:M

Peer

N:1

Peer

Resource

Peer

N:M

Peer

Resource Resource

Figure 2. Possible relationships between the abstract and peer layers

editing, etc).

Although Peer and Abstract presence are
conceptually distinct they are, in reality, intrinsically
linked together as the abstract layer cannot exist without
a peer layer. Abstract presence can essentially be
considered as an extension of peer presence. However,
the relationship between the two does not have to be one
to one. This is illustrated in figure 2.

An example 1:1 relationship between peer and
abstract layers is that of a single user making use of a
single peer, e.g., a user utilising an instant messenger
application on their PC.

An example 1:M relationship between peer and
abstract layers is where multiple users make use of a
single peer, e.g., more than one user utilising an instant
messenger application on a shared PC.

An example N:1 relationship between peer and
abstract layers is where more than one peer controls a
resource, e.g., a hard disc that is shared between two
peers.

An example N:M relationship between peer and
abstract layers is where a resource is controlled by more
than one peer and peers control more than one resource,
e.g. peers might share a hard disc and a printer.

As the above illustrates, designing for presence (or
awareness) is a complex issue and the considerable
research within the area has examined issues such as
synchronous and asynchronous presence, tightly and
loosely coupled presence, etc [12]. However such issues
are beyond the scope of the work presented in this paper
and so have not been considered here.

V. PROVIDING PRESENCE AT THE PEER AND

ABSTRACT LAYER
When considering presence within P2P systems,

there are two key aspects of functionality that need to be
taken into account. Firstly, the deployment of the
presence information throughout the system and
secondly, the system reacting when this information is
changed. To an extent, both of these aspects will be
affected by the choice of underlying logical network
architecture that is used.

A degree of overlap also exists between these
functionality aspects. In particular, whenever presence
information is changed, it is likely that this altered
information will then be redeployed around the system.
Due to this fact, this paper focuses on the issues that deal
with 'reacting to presence change', and in doing so will
consider presence information deployment issues as
well.

 Reacting to changes in presence information can be
further broken down into the following issues within the
areas of: identifying when an information change can

occur and then as a result of this, ensuring that interested
parties have up to date information.

When presence information may change

Connection: When the entity providing the presence
information is connected to a P2P network. For example,
a peer’s state may change from off-line to on-line when
the application is started

Disconnection: When the entity providing the
presence information is intentionally disconnected from
a P2P network. For example, an application is
terminated and so the peer’s state changes to off-line.

Failure: When the entity providing the presence
information is accidentally disconnected from a P2P
network. For example, if there is a power cut and the
peer is accidentally disconnected from the network. In
this case it is likely that the peer would not have
informed the rest of the network about its change in
state. This means that it may be necessary to also
provide an alternative mechanism for keeping interested
parties up to date with the latest presence information.

Presence State Change: When the entity providing
the presence information changes the information that it
publishes. For example, if a user changes their state
from busy to free.

When it may be necessary to ensure that interested
parties are kept up to date

Awareness: When an entity connects to a P2P
network it needs to be informed about the current
presence information state of the network. For example,
when an instant messenger client is started, it is
informed of which other (relevant) users are on-line.
Essentially this represents an entity being given the latest
presence information when it connects to the P2P
network.

Awareness Update: When the presence information
being published by an entity changes. For example, if a
user changes their state from busy to free. In this case
interested parties need to be informed of this change.
This can either be achieved by informing them of the
change, or by republishing all the presence information.

The above lists indicate the main functionality issues
that have to be considered in order to incorporate
presence within a P2P system. The following section
provides an overview of other, more general, design
issues that may also need to be taken into account by
designers. The paper will then move on to examine how
the choice of logical network architecture can have an
impact on the provision of presence functionality (and
on tackling the above issues) within a P2P system.

VI. GENERAL PRESENCE DESIGN ISSUES
As well as the technical issues, there are also more

general design issues that may need to be considered by
designers when presence support is required. This
section briefly examines some of the key ones,
including:

• Controlling presence information

• Presence and privacy

• Presence consistency

• Presence as a mechanism to increase the
dependability of a system

A. Controlling presence information
Ultimately the presence information that is made

available to the rest of the network is controlled by the
entity that provides it (not taking into account security
issues, such as Trojans). Consequently information
control mechanisms need to be considered and provided.

One possibility is to provide the entity with a range
of information levels, ranging from the entity providing
very little information to providing a substantial amount.
Such an approach can be frequently seen in many
distributed applications, where a user can specify as
much presence information as they feel (for example,
ICQ). In theory this can be further enhanced by also
specifying who/what can have access to this information.
For example, all users have access to some portion of the
presence information, but only my friends have access to
all of it.

Anonymity can also be important, as it allows for an
entity to provide presence information without actually
revealing whom it is originating from. For example, an
entity can provide 50 MB hard disc space to the system,
but its IP address remains hidden.

Controlling presence information, designing control
mechanisms with which to do this, as well as
considering the issues that may be involved, are
important factors that need to be taken into account
when incorporating presence within a system.

B. Presence and privacy
To a certain extent privacy is related to how the

presence information is controlled. If the control
mechanisms are sufficient then privacy should be less of
a problem. However, there is always the possibility that
the presence information that is published may be
misused, for example, obtaining a users email address
and then using it to send Spam, or a peer's IP address
and then performing an attack on that machine.

Again this may be limited by controlling what
information is being made available (i.e. not displaying
email addresses). However, in some situations it might

be necessary for such information to be made accessible
in order for the P2P system to fully function. For
example, in Napster IP addresses need to be shared in
order for a peer to download files from another peer.

To reduce the possibility of information misuse in
such circumstances suitable protection mechanisms need
to be provided. This could include drawing upon
techniques such as authentication or reputation tracking
[13]. In this way an entity could be sure that only those
who have been granted permission (and are trusted) can
have access to the information.

If private information is to be published as presence
information within a system, then it will become
important to consider privacy issues, and to reduce the
possibility of the information being misused.

C. Presence consistency
One issue that is likely to be important within a

system is that of insuring the presence information is up
to date and valid. Depending on the nature of the system,
inaccurate presence information could result in critical
situations, such as incorrect business decisions being
made, or just time and effort being wasted.

In order to ensure a high level of validity any updates
to the published information need to be done in a near
instantaneous fashion, and the choice of logical network
architecture will have an impact on this. Ultimately,
though, it would need to be decided whether presence
mechanisms are reliable enough, and whether they
should be relied upon for such critical issues.

D. Presence as a mechanism to increase the
dependability of a system

In our previous work as part of the P2P ARCHITECT
project [8][9], we identified a number of dependability
properties that can be possessed by P2P systems. It was
pointed out that many of these properties would typically
require some form of monitoring mechanisms in order
for them to be properly resolved. Such properties
included availability, fault tolerance and maintainability.

Incorporating presence within a system might
provide one mechanism with which this monitoring can
be achieved. Presence mechanisms could be piggy
backed and used to monitor the availability of nodes
within the system, or to identify faults that may occur so
that the system can act accordingly.

Although presence could be utilised in this fashion,
ultimately it needs to be decided whether presence
mechanisms themselves, can be considered to be
reliable, and if not, whether it is possible to make them
reliable enough.

VII. ESTABLISHING PRESENCE SUPPORT IN A P2P
ARCHITECTURE

Section III presented our classification of the more
common underlying logical network architectures that
are used in P2P systems. In our previous work [8][9],
analysis of these different architectures revealed that
direct and indirect communication decentralised systems
possess significantly different properties (for example,
their effect on scalability, fault tolerance, etc).

For this reason, in the discussion presented here, we
have placed the architectures (from figure 1) into three
categories: direct communication decentralised systems
(encapsulates architecture a), indirect communication
decentralised systems (architectures b and c), and semi-
centralised systems (architectures d, e, f and g). This
section moves on to discuss ways in which the presence
issues that were identified in section V can be satisfied
within each architecture category. It also discusses how
some of the general design issues from section VI can
also be affected.

A. Presence within direct communication decentralised
systems

Of all the different types of architecture, those that
utilise direct communication between nodes are likely to
always provide the best basis for supporting presence.
Because each peer knows every other peer on the
network it will be easier for presence information to be
distributed to all peers immediately. Within such an
architecture a central co-ordinator is not needed to
organise such matters. However, as has been discussed
elsewhere [8][9], the key drawback of this type of
architecture is that of scalability. Because a peer would
have to broadcast its presence information to every other
peer on the network, such an architecture would become
less suitable as the number of peers on the network
increased. However if used in small-scale environments
then it is the most ideal.

The fact that each peer is aware of all other peers'
means that issues such as privacy and ensuring presence
information consistency can also be tackled relatively
easily. All peers would receive an update should
presence information change, and likewise all peers can
monitor each other to ensure a peer is trustworthy (or has
a good reputation). The dependability of the system can
also be enhanced by using such an architecture [8][9],
although essentially it would mean that every peer would
be monitoring the system (in order to keep all peers
equal). The main disadvantage of this, however, would
be the large network overhead that would be involved
and this would increase as more peers are added.

Table 1, suggests solutions for satisfying the presence
issues (from section V) within these types of P2P logical
architectures.

TABLE I. PROVIDING PRESENCE WITHIN DIRECT
COMMUNICATION DECENTRALISED ARCHITECTURES

Issue Solutions for direct
communication decentralised

architectures
Connection The entity broadcasts its

presence information to all
peers (and thus to all entities
also on the abstract level), when
it connects to the network.

Disconnection The entity broadcasts the fact
that it is disconnecting to all
peers (and thus to all entities
also on the abstract level).

Failure In this case it is unlikely that the
entity would have informed the
rest of the network about its loss
of connection. Unless peers
regularly broadcast their
presence information (and that
of any abstract entities they
might possess), or periodically
poll other peers for theirs, they
may be unaware that an entity
has been disconnected

Presence State
Change

The entity broadcasts any
changes to its presence
information to all peers (and
thus to all entities also on the
abstract level).

Awareness Because all peers are connected
to one another, when a peer (or
any abstract entities it might
possess) connects to the
network, it automatically
discovers what other presence
information exists on the
network.

Awareness Update Because all peers are connected
to one another, when a peer's
(or any abstract entities it might
possess) presence information
changes, it automatically
informs all other peers (and
abstract entities) on the network
of this fact.
This would not happen,
however, if the change were
accidental (e.g., loss of power).
To take into account this
scenario it might be necessary
for the individual entities to

ping each other at regular
intervals.

B. Providing presence within indirect communication
decentralised systems

Achieving presence within indirect communication
decentralised systems is more difficult due to the lack of
a central co-ordinator. This not only makes it difficult to
co-ordinate the collection and publishing of presence
information, but also to give peers, users and resources
universal ID’s within the system. Without these ID’s it
can be a difficult task to identify which entity’s presence
information has changed. Existing work within
decentralised P2P systems has proposed ways in which
to address the ID issue, with systems such as Pastry [22],
Chord [21] and JXTA all generating ID's with a large
range of possible values (for example 128 bit ID's). The
problem with such an approach is that there is still no
guarantee that an ID clash will not occur at some point,
an issue that may be critical for some systems.

Furthermore, because this type of network can
frequently change it may be difficult to achieve any form
of real-time presence information updates or even for
these updates to be received [23] - this, in turn, can
affect presence information consistency. In theory, when
presence information is broadcast onto the network it
could be spread between peers using techniques similar
to that used for searching or for peer discovery in
indirect decentralised architectures. However, due to the
dynamic nature of the architecture it cannot be
guaranteed that all peers will receive this information, or
that a peer that has received it once in the past, will
receive it again (due to issues such as network
partitioning, alternative message routing, etc).

This dynamic nature will also make it difficult to use
system wide monitoring mechanisms that can help
increase the dependability of the system, or to support
reputation tracking and authentication.

As a result of these drawbacks, it is difficult to
analyse the effects these types of architecture can have
on the presence issues that have been identified. Table 2,
however, suggests solutions for satisfying the presence
issues within these types of P2P logical architectures.

TABLE II. PROVIDING PRESENCE WITHIN INDIRECT
COMMUNICATION DECENTRALISED ARCHITECTURES

Issue Solutions for indirect
communication decentralised

architectures
Connection When an entity connects to the P2P

network it will be able to publish its
presence information but only to
those other peers (and to their
respective abstract entities) it is

Disconnection When an entity is going to disconnect
from the P2P network it will be able
to publish this fact but only to those
other peers (and to their respective
abstract entities) it is aware of. These
peers can then broadcast the
information to the peers they are
aware of.

Failure In this case it is unlikely that the
entity would have been able to inform
the other entities it is aware of, about
its loss of connection. Unless peers
are expected to regularly broadcast
their presence information (and that
of any abstract entities they might
possess), or periodically poll other
known peers for theirs, they may be
unaware that an entity has been
disconnected.

Presence
State Change

When an entity’s presence
information changes, it will be able to
publish this fact but only to those
other peers (and to their respective
abstract entities) it is aware of. These
peers can then broadcast the
information to the peers they are
aware of.

Awareness When an entity connects to the
network it performs a presence
information discovery. This operates
in a similar manner to resource
searching or the discovery of peers
within this type of architecture. The
entity issued a presence request that
would get passed to all the entities it
is aware of. These would return their
own presence information, whilst
also forwarding the presence request
to the entities they are aware of. The
issues with such an approach are that
it is not overly reliable, returned
presence information may not be up
to date, the time it takes to gather this
information could vary considerably,
and it cannot be guaranteed that all
entities on the network would receive
the request.
It is likely that the most reliable
presence information would be

obtained from the local entities.
Awareness

Update
It can be difficult to keep an entity’s
presence information up to date with
interested parties. Because it cannot
be assumed that the entity would be
able to contact these parties directly
to inform them of a change in the
presence information, it is likely that
a propagating broadcast method
would need to be used.
As highlighted previously, this does
not provide any guarantees of
reliability, and could potentially
result in an interested entity not being
informed of a change.
An alternative strategy would be to
make each interested entity attempt to
obtain the current presence
information itself. However, this can
also add to the problems by
swamping the network with traffic.

One solution for supporting presence within indirect
communication architectures would be to create smaller
groups of entities. These groups could then communicate
with each other in a direct way, but also be linked to
other groups. However, to achieve this it is likely that a
degree of management would be needed. Ultimately this
could result in upsetting the equality of the network,
potentially moving it from a pure P2P ideal and more
towards a semi-centralised system.

C. Providing presence in semi-centralised systems
It is easier to achieve presence within semi-

centralised based systems than with some of the more
decentralised alternatives (in particular with indirect
communication decentralised systems) due to the central
foci that exist within the system. These foci can be used
to capture and publish the presence information that
exists, and because all peers within the system will be in
direct contact with them, this information should be
reasonably consistent and up to date. Obviously the
negative side is that these foci become points of failure.
Should they go down then this presence information will
be lost from the network.

A semi-centralised structure is also better suited for
supporting system monitoring and authentication
mechanisms. This can make it easier to develop
techniques to track information misuse, as well as
mechanisms to help increase the dependability of a
system.

A number of existing P2P systems already use this
approach for providing presence, including instant

messaging applications such as ICQ and MSN, as well
as file sharing applications like Napster.

Table 3, suggests solutions for satisfying the presence
issues within these types of P2P logical architectures.

TABLE III. PROVIDING PRESENCE WITHIN SEMI-
CENTRALISED ARCHITECTURES

Issue Solutions for semi-centralised
architectures

Connection The entity informs a server node of
its presence information when it
connects to the network.

Disconnection The entity informs a server node of
the fact that it is disconnecting from
the network.

Failure In this case it is unlikely that the
entity would have informed a server
node about its loss of connection.
This suggests that as well as
presence information updates
coming from the relevant entities,
the server node(s) would also need
to make regular checks on the
presence state of the network.

Presence
Stage Change

The entity informs a server node of
any changes to its presence
information.

Awareness The server nodes would most likely
be used to store and distribute
presence information around the
network. As a result, when an entity
connects to the network to obtain
current and relevant presence
information, it would need to send a
list of the entities it is interested in,
to one of these server nodes. The
server node would then return the
current presence information for
these entities.

Awareness
Update

Because the server nodes would
most likely be used to store and
distribute presence information
around the network, they need to be
kept informed of what entities are
interested in (i.e. who is interested
in who).
To achieve this each entity would
need to register these interests with
a server node. In this way, when a
change occurs the relevant
interested parties can be kept up to

date. The main danger with this
approach is that amount of
information the server may end up
having to store, especially if a poor
structure is not adopted.
An alternative strategy would be to
make each entity poll a server node
for the current presence
information. This, however, can
result in swamping the network and
server node.

Within this architecture an entity could try and obtain
current presence information itself by contacting the
relevant entities directly. However, this would rely on
using previous information about the entities that may
have become out of date (peer address, for example). It
is, however, a viable alternative to solely relying on the
server nodes.

VIII. CONCLUSIONS
This paper has examined the key design issues in

supporting presence in P2P systems. It has provided an
initial overview of presence within P2P environments,
attempted to identify its main characteristics, and briefly
discussed related work. It has also identified the key
technical design issues that would need to be satisfied
within a P2P system, and has discussed how the different
logical network architectures can have an effect on
these.

Overall (when scalability is taken into account) semi-
centralised architectures provide the best foundation for
supporting presence. The server nodes within a semi-
centralised system can be used to capture and distribute
presence information around the network, and because
all nodes connect to the server nodes there are no
problems with regards to providing entities with ID’s or
not being able to contact all parts of the network.

Although, generally, decentralised architectures are
less suitable for supporting presence, this is not the case
for direct communication decentralised systems.
Because all nodes connect to all other nodes, this
architecture can also be a viable alternative for
supporting presence. Obviously the downside (as
reported elsewhere [8][9]) is that this architecture is not
really scalable.

As well as the discussion, this paper has also
highlighted general design issues that may need to be
considered if presence support is desired. These have
focused on controlling the presence information,
ensuring privacy (if desired) and the importance of
keeping presence information up to date. The possibility
has also been raised of whether presence could be used
as a mechanism to improve a P2P systems dependability.

The work presented in this paper is quite abstract in
nature and has been based on a systematic analysis of

P2P architectures and their characteristics. Future work
will focus on performing a practical evaluation, with
implementations of the different architectures being used
to gather more concrete results that can then be further
analysed.

ACKNOWLEDGEMENTS

The work described here has been partially funded by
the European Commission in the P2P ARCHITECT
project (IST-2001-32708).

REFERENCES
[1] Miller, J., Andy Oram (editor), Peer-to-Peer:

Harnessing the power of Disruptive Technologies,
pages 85-86, O’Reilly publishing, 2001

[2] Palen, L., Social, individual, and technological issues
for groupware calendar systems. In CHI’99, 1999

[3] Herbsleb, J. D., Grinter, R. E., Architectures,
coordination, and distance: Conway’s law and
beyond. IEEE Software, Sept/Oct 1999, 63-70.

[4] Godefroid, P., Model Checking for Programming
Languages using VeriSoft. In ACM Symposium on
Principles of Programming Languages, January
1997, 174-186.

[5] ICQ. Instant Messenger Application. More
information at the URL http://www.icq.com

[6] MSN Messenger. Instant Messenger Application.
More information at the URL
http://specials.msn.com/ms/default.asp

[7] Napster. MP3 file sharing application. More
information at the URL http://www.napster.com

[8] Walkerdine, J., Melville, L., Sommerville, I.,
Dependability Properties of P2P Architectures, In
P2P2002, 2002

[9] Melville, L., Walkerdine, J., Sommerville, I., Report
on the dependability properties of P2P architectures,
Information Societies Technology Institute, 31st
July, 2002

[10] Gnutella. File sharing application. More information
at the URL http://www.gnutella.com

[11] Want, R., Hopper, A., Falcao, V., Gibbons, J., The
active badge location system. ACM Transactions on
Information Systems, 10(1):91-102, 1992.

[12] Ramloll, R., ''Supporting Cooperative Work
Through Ubiquitous Awareness Filtration
Mechanisms,’ ’ PhD Thesis, Lancaster University,
2000

[13] Lethin, R., Andy Oram (editor), Peer-to-Peer:
Harnessing the power of Disruptive Technologies,
Chapter Seventeen, O’Reilly publishing, 2001

[14] Shirky, C., Oram, A., (editor), Peer-to-Peer:
Harnessing the power of Disruptive Technologies,
Chapter Two, O'Reilly publishing, 2001

[15] P2P ARCHITECT: Ensuring dependability of P2P
applications at architectural level, Information
Society Technologies. More information can be
found at http://www.atc.gr/p2p_architect

[16] The Instant Messaging and Presence Protocol
(IMPP), IETF Working Group. More information
can be found at
http://www.ietf.org/html.charters/impp-charter.html

[17] The extensible Messaging and Presence Protocol
(XMPP), IETF Working Group. More information

can be found at
http://www.ietf.org/html.charters/xmpp-charter.html

[18] Project JXTA, P2P API, Sun Microsystems Inc.,
More information can be found at
http://www.jxta.org/

[19] The Free Network P2P project (Freenet). Anonynous
file sharing application. More information can be
found at http://freenet.sourceforge.net/

[20] The Seti@home project. Distributed computation
system. SETI. More information can be found at
http://setiathome.ssl.berkeley.edu/

[21] The Chord project - scalable, robust distributed
systems. More information can be found at
http://www.pdos.lcs.mit.edu/chord/

[22] Pastry - A scalable, decentralised, self-organising
and fault-tolerant substrate for peer-to-peer
applications. More information can be found at
http://research.microsoft.com/~antr/Pastry/

[23] Lynch, N., Malkhim D., Ratajczak, D., Atomic Data
Access in Content Addressable Networks. In First
International Workshop IPTPS 2002, Cambridge,
MA, USA, March 7-8, 2002. Springer-Verlag
Heidelberg.

