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Abstract. Though a widely used metal-catalysed cross-coupling process, the Mizoroki-

Heck (‘MH’) reaction can be a capricious transformation. This is particularly true for 

oxidation-prone alkene substrates containing ligating heteroatoms, as in the case of N-

alkyl tetrahydropyridines whose MH reactions have been under-explored, due to the many 

side-reactions which hamper the process. Since the products of tetrahydropyridine Heck 

reactions are direct precursors to potent pharmacophores, and therefore of commercial 

value, this is a significant drawback and limitation. We report here the results of our study 

designed to deliver an optimized, scalable MH procedure for N-alkyl tetrahydropyridines, 

and its exemplification in a gram-scale synthesis of the drug substance Preclamol. 

Keywords. Catalysis, tetrahydropyridines, Mizoroki-Heck reaction, aryl piperidines, CNS 

drugs. 

 
1. Introduction 
Amongst the many catalytic processes available to the modern synthetic chemist, the 

Mizoroki-Heck (‘MH’) reaction1 is of special significance as the first reported method2 

which enabled direct, substoichiometric catalytic modification of simple alkenes: the overall 

transformation is effectively a CH activation process, in which an aryl unit is inserted into 

an sp2-CH bond (Scheme 1). The reaction has been intensely studied and optimised, and 

a wide range of coupling partners (aryl halides, triflates, sulfonates, diazonium salts, 

iodonium salts), alkenes and catalysts has been used productively in the process, with 

many successful applications to the production of complex natural and synthetic targets.3 

Notwithstanding the proven synthetic power of the transformation, there are several known 

limitations to the process; thus, the reactions are often heterogeneous (precluding detailed 

kinetic and mechanistic analysis), and some alkene classes are unreliable and capricious 

substrates. Unsaturated amines fall into this category, often undergoing inefficient 

transformations which require high susbtrate or catalyst loading; this is especially the case 



for cyclic allylamines (such as tetrahydropyridines4, and pyrrolines5), which react efficiently 

only if the lone-pair of electrons on nitrogen is delocalized into an electron-withdrawing 

protecting group. This limitation is a particular drawback, since the method in theory allows 

for direct synthesis of N-alkyl piperidines and pyrrolidines, a class of heterocycle with 

privileged pharmacological status, particularly in CNS-active compounds such as the 

marketed drugs paroxetine6 and niraparib7 (Figure 1); however, to date, the limitations of 

MH reaction of tetrahydropyridines (lack of regioselectivity, over-reaction, multiple 

isomerisation pathways and low yields) have severely restricted the use of this potentially 

impactful catalytic process.  
 

 

Figure 1. Aryl piperidines: privileged biological motifs accessible from tetrahydropyridines  
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3-Aryl piperidines are a class of heterocycle with particular biological potency, and 

Preclamol8 occupies a pre-eminent position as a first–in–class antipsychotic drug 

substance. The compound is a dopamine autoreceptor agonist, and it has been used in 

man for the treatment of schizophrenia.9 To access this compound, and other related 

biologically active compounds, a range of heterocycles can function as chemical 

feedstocks for catalytic processing (Figure 2).  
 
 

 

Figure 2. Catalytic strategies for the synthesis of Preclamol 
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Thus, several catalytic methods using pyridines as feedstocks have been used to access 

the Preclamol core (Figure 2a), including nickel-catalysed Kumada10 and Suzuki-Miyaura 

coupling11,12 of 3-bromopyridine, and pyridine C-H activation.13 In these reactions, further 

non-trivial steps (alkylation, reduction, etc.) are required to access the biologically active 

products. Cross-coupling of non-aromatic amines have been less widely used to access 

the 3-arylpiperidine core, with the Co(II)-catalysed coupling of 3-iodo-N-Boc-piperidine with 

Grignard reagents a notable example of such a strategy (Figure 2b).14  

In theory, the use of tetrahydropyridines (available in bulk from commercial sources) in a 

Mizoroki-Heck reaction would allow highly efficient access to 3-aryl piperidines, and the 

method has been used by Hallberg et al. to access Preclamol (Figure 2c).4a However, the 

method reported by these authors delivered the target 3-arylpiperidine inefficiently, and 

required high ligand loading and stoichiometric Ag(I) as an additive.15 Since this pioneering 

report, there have been no reports of MH reactions of alkyl tetrahydropyridines, which is 

likely a reflection of the poor yields obtained in these transformations, presumably due to 

the tendency of N-alkyl tetrahydropyridines to undergo palladium-catalysed side reactions 

(such as aromatisation, giving pyridiniums) under the heterogeneous reaction conditions. 

Though in theory N-alkyl 3-arylpiperidines 2 (Figure 3) are available via MH reaction of N-

acyl tetrahydropyridines, in practice this is difficult, as shown by the work of Correia et al,.5b 

due to the tendency for these reactions to deliver mixtures of enamines (isolated as 

hydrated products 3 and 4), which limits the utility of the reactions. 
 

Figure 3. Regiochemical divergence in Mizoroki-Heck reactions of tetrahydropyridines 
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Given the ready commercial availability of N-alkyl tetrahydropyridines, and the great utility 

of 3-arylpiperidines, we undertook a study of the factors affecting these complex MH 

reactions, and report an improved and simplified synthesis of Preclamol using our new 

method. 

 
2. Results and discussion 
Our project had three key aims: firstly, to reduce the catalyst loading for MH reaction to ≤1 

mol%; secondly, to avoid the use of a silver additive; thirdly, to develop a method involving 

no protecting groups. In particular, the latter goal was a demanding one, due to the known 

challenges in using phenols in palladium-catalysed reactions,16 but was one which offered 

significant mass balance advantages if successful.  

 

Table 1: Initial optimisation of the Mizoroki-Heck reaction of tetrahydropyridine 6 

N
Pr

CF3

PdCl2 (5 mol%), P(o-Tol)3
Base, additive (100 mol%)

100 ˚C, 17 h, CH3CN

N
Pr

CF3 CF3H
F3C

CF3I

+
5

6
(4 eq.)

7 8 9

+

 

Entry P(o-Tol)3/mol% Base Additive Conversion/% Yield/% 

     7 8 9 

1 20 - AgNO3 100 18a 16 62 

2 40 - AgNO3 100 10 9 78 

3 10 - AgNO3 100 27 10 49 

4 5 - AgNO3 100 35 11 42 

5 5 DMPipb (5 eq.) AgNO3 92 39 3 16 

6 5 DMPip (1 eq.) AgOTf 100 49 7 19 

7 5 DMPip (5 eq.) Cu(OTf)2 100 55 3 6 

8 7.5 DMPip (1 eq.) Cu(OTf)2 100 59 3 11 

9 5 DMPip (1 eq.) Cu(OTf)2 100 58 2 8 

10 7.5 DMPip (1 eq.) (CuOTf)2•PhCH3 98 58 4 12 



11 7.5 DMPip (1 eq.) Zn(OTf)2 100 52 2 28 

12 7.5 DMPip (5 eq.) Zn(OTf)2 100 61 2 10 
a Yields estimated from 19F NMR spectra; b N,N-dimethylpiperazine 

 
Preliminary studies of the N-alkyl THPy Mizoroki-Heck reaction confirmed the limitations of 

the reaction: the heterogeneous process delivered a multitude of products in addition to 

the desired arylated target, predominantly pyridinium species (and derived compounds) 

arising from metal-catalysed oxidation. We therefore embarked upon a detailed analysis of 

the parameters of this reaction (Pd catalyst, ligand, base, solvent, additive, temperature); 

to simplify the analysis of this complex reaction, we chose (3-iodo)benzotrifluoride 5 as a 

model substrate, using 19F NMR to study its reaction with N-propyl tetrahydropyridine 6. In 

this manner, we hoped to optimise the yield of the target product (7), and quickly identify 

and quantitatively estimate the side-product profile of the reaction, thus giving valuable 

insights into the reaction mechanism and facilitating optimisation. A summary of the salient 

data obtained from the initial optimisation phase is given in Table 1. 

The next phase of optimisation was focused on improving the efficiency of the 

transformation, by reducing the loadings of catalyst and substrate, and on the reaction 

temperature (Table 2). 

Satisfyingly, the use of 1 mol% PdCl2 was effective without reducing the yield of 7 (Table 2, 

entry 3), though a 0.5% catalyst loading was less efficient (Table 2, entry 2). Variation in 

the stoichiometry of tetrahydropyridine had a less pronounced effect on the reaction, with a 

50% decrease in loading having little negative impact on the yield of 7 (Table 2, entry 5). 

Finally, lowering the temperature to 70 ˚C proved to have a positive effect on the yield 

(Table 2, entries 7 and 8). 

 

Table 2: Optimisation of MH reaction of 6: influence of temperature, catalyst loading and 
stoichiometry 

N
Pr

CF3
PdCl2 (x mol%)

P(o-Tol)3 (1.5x mol), 
DMPip (5 eq.)

Zn(OTf)2 (100 mol%)
CH3CN

N
Pr

CF3 CF3H
F3C

CF3I

+
5

6 7 8 9

+

 

Entry PdCl2 / 
mol% 5/eq. Temperature 

(°C) 
Time 
(h) Conversion Yield/% 

      7 8 9 



1 5 4 100 17 100 61a 2 10 

2 0.5 4 100 17 95 56 2 10 

3 1 4 100 17 100 60 1 9 

4 5 3 100 17 100 63 2 9 

5 5 2 100 17 100 59 3 8 

6 5 1.5 100 17 100 56 4 8 

7 1 3 70 120 100 67 1 6 

8 1 2 70 120 100 62 (55b) 2 6 

9 1 1.5 70 120 89 57 1 5 
a Estimated from 19F NMR spectra b isolated yield (5 mmol scale reaction)  

 
Armed with an optimised procedure, we turned to the synthesis of Preclamol, and 

observed that using either benzyl ether 10a or free phenol 10b, MH reactions were 

significantly improved compared to the previously reported procedure: in particular, 11b 
was obtained in 55% yield, compared to 28% reported by Hallberg et al. (Table 3, entry 3). 

In addition to the desired product 11a and 11b, on the larger scale of these reactions, we 

now also detected the presence of novel diarylated alkenes 12a and 12b. 

 
Table 3: Optimised MH reaction of 6 

N
Pr

OR
PdCl2 (1 mol%)

P(o-Tol)3 (1.5 mol%), 
DMPip (5 eq.)

Zn(OTf)2 (100 mol%)
CH3CN

N
Pr

ORI
10a, R = Bn
10b, R = H

6 11a, R = Bn
11b, R = H

12a, R = Bn
12b, R = H

+ OR

N
Pr

RO

 

Entry 6 (eq) R Yield 11/% Yield 12/% 

1 4 Bn 11a, 55a 12a, 5b 

2 2 Bn 11a 49 12a, 13 

3 4 H 11b, 55c 12b, 6 

4 2 H 11b, 49 12b, 10 

Isolated yield, 5 mmol scale; b Estimated from 1H NMR; c 12.5 mmol scale. 
 
When performed on a 12.5 mmol scale (Scheme 1), the extent of side-reactions involved 

in MH reactions of N-alkyl tetrahydropyridines becomes apparent, 

with side-products derived from other possible palladium σ-

intermediates: thus in addition to 11b, and diarylated amine 12b, 
PrN 13

OH



Preclamol (1) itself and saturated amine 13 were observed in small amounts, the latter 

products presumably formed via reductive MH processes.17 Hydrogenation of either 11a or 

11b gave Preclamol in 49-55% overall yield. 

 
 

 

Scheme 1. Improved synthesis of  Preclamol 1 
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3. Conclusion 
In summary, we have designed and implemented an improved method for the Mizoroki-

Heck reaction of N-propyl tetrahydropyridine, which is more cost-effective, milder, more 

functional group tolerant, and which efficiently provides access to gram quantities of 

Preclamol in good overall yield. Developing an in-depth understanding of the detailed 

mechanistic features of this complex heterogeneous catalytic reaction is a focus of our 

current research. 

 
4. Materials and methods 
Full experimental details and key spectra for products can be found in the Supplementary 

Material. 
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