Emergence of correlated optics in one-dimensional waveguides for classical and
quantum atomic gases
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We analyze the emergence of correlated optical phenomena in the transmission of light through a
waveguide that confines classical or ultracold quantum degenerate atomic ensembles. The conditions
of the correlated collective response are identified in terms of atom density, thermal broadening, and
photon losses by using stochastic Monte-Carlo simulations and transfer matrix methods of transport
theory. We also calculate the “cooperative Lamb shift” for the waveguide transmission resonance,
and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

Confining the light in a region comparable with the
atomic scattering cross section can considerably enhance
atom-light coupling and lead to new regimes of light-
matter interactions. Guided modes of 1D waveguides [I]
and nanofibers [2] B] open up new avenues of optical
physics where light propagation could potentially be em-
ployed in high-precision spectroscopy [4], quantum net-
works, light circuitry, and quantum switches [5H7]. For
instance, superradiance of atoms confined inside a pho-
tonic crystal waveguide was recently reported [§], and
1D waveguides support long-range light-mediated inter-
actions with also the possibility of creating novel quan-
tum many-body phases [9] for atoms and light. Atomic
waveguides also have close analogies in other 1D electro-
dynamics realizations, such as with different nanoemit-
ter systems [I0HI3], surface plasmon nanowires [5], cou-
pled cavity-QED [I4], and superconducting transmission
lines [7), [15].

In anticipation of the importance of many-atom
physics in waveguide systems, we raise here the question:
when do the atoms respond to light independently, as
in an ordinary optical medium, and when is the response
correlated? In an ideal 1D waveguide the light emitted by
an atom travels unattenuated with a constant amplitude,
and one might think that the corresponding infinite-range
radiative dipole-dipole (DD) interaction sets up global
correlations between the atoms. Maybe surprisingly it is
not so, and the (line) density of the atoms makes a differ-
ence. We find that for randomly distributed atoms the
point of demarkation is the wave number of resonant light
k. At low density, the propagation delays in the multi-
ple scattering of light between the atoms are sufficiently
random that the atoms, in fact, transmit light basically
independently, whereas at high density the propagation
delays, being small, cannot be altogether random, and
light-induced correlations emerge. This is an interesting
analogy with 3D systems, where it has been found that
when the typical interatomic separation is comparable or
less than 1/k, the atomic gas can exhibit a correlated re-
sponse and the traditional electrodynamics fails [I6]. An
unambiguous observation of correlated optics has proven

elusive in 3D gases, however, so 1D systems may offer a
promising alternative.

The onset of emergent correlations is characterized not
only in terms of atom density, but also imperfections of
the waveguide such as the fraction of light radiated by
the atoms that leaks out of the waveguide, and Doppler
broadening of the resonance resulting from the thermal
velocity distribution. We point out that the collective
behavior in 1D entails a shift of the resonance line pro-
portional to the line density of atoms. The 3D ana-
log here are line shifts proportional to volume density,
which are a well-known complication in high-precision
spectroscopy. For quantum degenerate (not randomly
distributed) atoms the light-induced correlations remain
stronger and we find, e.g., that fermionic atom statistics
leads to resonance linewidth narrowing and suppressed
superradiance.

In the following, for our analysis we develop a
quantum-mechanical theoretical framework for light
propagation in classical and quantum degenerate atomic
ensembles in 1D waveguides. Classical electrodynamics
simulations provide exact solutions within the model of
two-level, weakly excited, stationary atoms. An espe-
cially elegant representation of light-induced correlations
is obtained using transfer matrices where we adapt theo-
retical methods of localization analysis in transport phe-
nomena [17] that were originally developed for 1D electric
conductivity.

We assume a narrow waveguide where the forward
and backward propagating modes are determined by the
wavenumber ¢ and the polarization components Gy, (@),
with [ d®o1, (@) U4 (@) = 1; the propagation direction
is denoted x, and the transverse coordinate by . We de-
scribe the interactions of light and atoms in the length
gauge that is obtained by the Power-Zienau-Woolley
transformation [I§]. The positive frequency component
of the electric displacement D¥(r) then reads

; h
D (1) = Y Gt (@) dgoc™, G =1/ 51t (1)
q,0

where the mode frequency, the photon annihilation op-




erator, and the quantization length are denoted by wy,
aq, and L, respectively. Due to the spatial confine-
ment [2, [10], the summation over the polarizations o
generally involves both transverse and longitudinal com-
ponents. The electric field ET in the waveguide may then
be integrated using standard techniques of quantum op-
tics [19], and expressed as a sum of the incident D}, and
the scattered field,

eET(r) = D}(r) + /d3r' G(r,r)PT(r), (2
Glrx') = 5 e Mk 0,0, g

where the electric polarization P*(r) = 37 P/ (r) =
> ge dge P} (r)ihe(r) acts as a radiation source. We have
introduced the atomic field operators for the electronic
ground and excited states 14(r) and . (r), with the Zee-
man levels included in the indices g and e when applica-
ble, and the dipole matrix element dge = D) éUC_((,iTe)
for the atomic transition |e) — |g). Here the summa-

tion is over the circularly polarized unit vectors &, Cé’fe)
denote the Clebsch-Gordan coefficients, and D is the re-
duced dipole matrix element. The polarization of the
scattered light is determined by the tensor M(k; g, o)
that accounts for the projection to the transverse mode
U4 (o) and the radial position o’ of the radiating atom.
For instance, if the atoms with a complex level struc-
ture are trapped outside a nanofiber where the gradient
of the evanescent field in the radial direction is large,
the contribution of the longitudinal polarization can be
significant leading to ‘chiral’, axial-direction-dependent
emission [2, [I0]. We have assumed that there is a domi-
nant frequency €2 = kc of the driving light and, for sim-
plicity of notation, here and in the rest of the paper we
have written all operators in the “slowly varying” picture
by explicitly factoring out the dominant frequency com-
ponent Dt — ¢ DT P+ — ¢ ¥ P+ etc. Owing
to a single-mode nature of the waveguide, the radiation
kernel G(r,r’) has the form of a 1D propagator [20] that
does not lead to attenuation of the light propagating in
the axial direction.

In order to solve the scattered field in Eq. , the equa-
tion of motion for P;re can be derived analogously to the
full field-theoretical treatment of the 3D electrodynam-
ics [2I], even while keeping the general hyperfine-level
and polarization structure. However, in the following we
assume that the atoms are tightly confined in the radial
direction at the center of the waveguide (¢ = 0), such
that the effect of the radial dependence of the field mode
on the atoms may be ignored, and that it is sufficient
to consider scalar equations for each polarization compo-
nent. We may then only consider a two-level system and
replace |Ggy(o =~ 0)| by the inverse of the characteristic
length scale of the radial light mode confinement. We
take the radial light intensity profile to be a Gaussian

with the 1/e width &,, such that u(p ~ 0) = 1/4/7&,.
Furthermore, we integrate over the radial dependence of
the atomic polarization and density and, for simplicity of
notation, assume that they have the same radial profile.

This results in an effective 1D theory [22] with the
replacement 72D (r) — Di(z), etc., where the radi-
ation kernel G becomes a Green’s function for the 1D
Helmholtz equation G(z — 2') = ik‘eik‘z_”,'/Qﬂfg [23].
The scattered field then depends on the scalar polariza-
tion PT = DCgew;f]d)@, and in the limit of low light inten-
sity we obtain for the expectation value of the steady-
state polarization P; = (PT)

Pi(z) = apDf(z) + na/dx’eik\z*xllPQ(z; ),  (4)

where we have defined a single atom polarizability in a
1D waveguide as o« = —27,,/[k(d + iy¢)] in terms of the
radiative linewidth v, = 7; + 7y, that depends on the ra-
diative losses out of the waveguide 7; and on the decay
rate into the waveguide v, = kD?/ 27T§§h60. The detun-
ing of Q from the atomic resonance is denoted by §, the
atom density by p, and ns = ., /(16 — ) = iak/2.
Now, the polarization P; depends on the two-atom cor-
relation function Py(z;2") = (] (x)PT(2')hy(x)). Anal-
ogously, for P, we obtain the steady-state solution

Py(w1;22) = ap(ar, 22) Df(w2) + nse™ ™ 2| Py (295 21)

—+ ﬂg/d.’bg eik|:v27:v3|P3(x17x2; 1'3) ) (5)

where p(x1,z2) denotes the ground-state atom pair cor-
relation function that in the low light-intensity limit is
unaffected by the driving light. In Eq. , P, depends
on the three-body correlation function Ps(z1,x2;x3) for
a polarization density at x3, and ground-state atoms at
x1 and xo. The three-atom correlation function P; in
turn depends on four-atom correlations, etc., leading to
the hierarchy of equations for the correlation functions.

After the rescaling the electromagnetic fields the coop-
erative response of atoms in a 1D waveguide closely re-
sembles a 1D model electrodynamics [20] that described
a hypothetical system consisting of continuously dis-
tributed 2D planes of atomic dipole moments in which
case the radiators are discrete only in the direction of
the light propagation. The one change is that we have
specifically introduced the loss rates due to spontaneous
emission out of the waveguide, and thus address an actual
experimentally relevant physical system.

The second term in Eq. describes repeated ex-
changes of a photon between atoms at x; and zs. Such
recurrent scattering processes [21, 24] between nearby
atoms are responsible for light-induced correlations be-
tween the atoms. The hierarchy can be solved exactly
by means of stochastic simulations where the positions
of the atoms are sampled from a probabilistic ensem-
ble that corresponds to the position correlations between



the atoms in the absence of the driving light [20]. In
each stochastic realization of discrete atomic positions
{z1,22,...,2N}, we solve for the coupled set of clas-
sical electrodynamics equations for point dipoles that
account for the polarization density }_, PO (x — ),

where PU) denotes the excitation dipole of the atom j.
The coupled-dipole equations for the steady-state solu-
tion in the present system read

gp(j) — aD;(xj) + s Z ez‘k|mj—mz|§43(l) , (6)
l#5

where each dipole amplitude is driven by the incident
field and the scattered field from all the other N — 1
dipoles. Once all ) are calculated, the scattered fields
in each realization may be obtained from e FEx(z) =
ik >, exp(ik|z — ;)P /2, and the total field equals the
incoming field plus the scattered field. Finally, evaluat-
ing the ensemble average over many sets of atomic posi-
tions with the correct probability distribution generates
the exact solution to the optical response of stationary
atoms with a given atom statistics in the low-excitation
limit [20]. The applicability of the simulations extends
beyond atoms, since similar methods can be employed,
e.g., in nanoresonator systems [25, [26].

The coupled dynamics for the atoms and light confined
inside the waveguide exhibits characteristic behavior of
1D electrodynamics; for instance, for an exact resonant
excitation the first atom can reflect all the light [20]. The
single-atom transmission and reflection amplitudes equal

(’Yw — ’Vt) +1d

() —
10 — Yt

1 - _Jw

" o 10 — Yt ’ (7)
with the single-atom power transmission and reflection
coefficients given by T = [t(M]2 and RM = |12,
The total reflection occurs for suppressed photon losses,
Yw = Y- It is a generic phenomenon of 1D scattering —
e.g., the origin of the Tonks gas behavior of impenetrable
bosonic atoms in strongly confining 1D traps [27].

The hierarchy of equations represents light-induced
correlations between the atoms that result from the re-
current scattering. In mean-field theory (MFT) such cor-
relations are ignored. Next, we construct MFT solutions
by specifically neglecting all recurrent scattering events,
indicating that no photon scatters more than once by the
same atom. For NV atoms this means that each atom in
a row simply passes on the same fraction of light and the
transmission coefficient is given in terms of the single-
atom transmission amplitude (|7)) as tfnj\g = (tMYN Here
we show that the MFT result can dramatically fail when
light-induced correlations between the atoms become im-
portant. To model an atom cloud we solve the light
transmission through the waveguide when the atomic po-
sitions are stochastically distributed. A cold classical
atomic ensemble or an ideal Bose-Einstein condensate
can be analyzed by sampling independent random atomic

0
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FIG. 1. Light-induced correlation effects between the atoms
in transmitted light intensity 7" through the waveguide. The
full numerical solution at atom densities pk™' = 2 (dashed
line) and 8 (dotted line) vs the corresponding MFT results
(solid lines) for T as a function of the detuning of the in-
cident light from the single atom resonance. The increased
deviations indicate the growing importance of recurrent scat-
tering. (a) Classical atoms that are uncorrelated before the
light enters the sample; (b) fermionic atoms.

positions, while simulations in the quantum degenerate
regime require one to synthesize a stochastic ensemble
of atomic positions that generates the proper position
correlations. We illustrate the latter by considering a
metrologically important fermionic correlations (a zero-
temperature fermionic gas or an impenetrable bosonic
Tonks gas) in which case the stochastic ensemble in each
run is generated with the Metropolis algorithm [2§].

In Fig. [I] we show the exact simulation results with
the corresponding MFT solution for different atom den-
sities. At low densities the exact solution — that by defini-
tion fully incorporates all light scattering — coincides with
the approximate MFT analysis that neglects all recurrent
scattering processes and treats the atoms as independent.
As the atom density gets higher the MFT solution be-
comes increasingly inaccurate, indicating the emergence
of light-induced correlations between the atoms. It is per-
haps surprising that an ensemble with a uniform density—
such as a random distribution of classical atoms or, alter-
natively, a delocalized condensate wavefunction—exhibits
correlated optics. Such a system mimics a continuous op-
tical medium with a uniform refractive index [23], yet the
light is still able to establish correlations between atoms,
violating the standard continuous-medium optics.

The presence or absence of correlations due to recur-
rent scattering processes, as in Fig. may be under-
stood by considering fluctuations in the light propaga-
tion phases between the adjacent atoms. We adapt lo-
calization analysis using transfer matrices [I7], originally
introduced for 1D electric conductivity [22]. The MFT
description tl(nz\lft) becomes accurate whenever the trans-
mission amplitude for N atoms at random positions fac-
torizes into independent-atom contributions, (tgj\;) N} =
(YN wwhere t™) is given by Eq. . (Alternatively, we
can describe the factorization in terms of the N-atom op-
tical thickness [22].) To determine the validity of MFT
it is sufficient to consider a two-atom subsystem that can
be recursively generalized to the N-atom case. For two



atoms we find

(1),(1)
ty 't
<t§22)> - < 2

)
1 RO R

The denominator can be represented as a geometric series
where each subsequent term includes one additional re-
current scattering event between the atom pair [22]. The
phase ¢ = @1 + w2 + 2kx12 (12 = 22 — x1) consists of
the light propagation phase 2kx15 from atom 1 to atom 2
and back, and the contributions ¢; = arctan(d;/~;) from
the atomic reflectance that are sensitive to the detunings
of the driving light from the atomic resonance 9;.

As may be seen by doing the average on the right-
hand side of Eq. , MFT results, with the decoupling
of the transmission amplitudes between the two atoms

(®)

(t(122)> o~ tgl)tgl), if the propagation phases are distributed
evenly over [0,27) [22]. In fact, when the density is suf-
ficiently low, p < =w/k, so that for the characteristic
interatomic separation ¢ = 1/p we have the propaga-
tion phase 20k > 2w, for random atomic positions the
propagation phase for two adjacent atoms is distributed
approximately evenly over [0, 27), and light-induced cor-
relations are suppressed. At higher p the interatomic
separation between the adjacent atoms is no longer large
enough for the propagation phases to be random. Con-
sequently, the light-induced correlations are not canceled
out and we observe deviations from MFT. Analogously
to the 3D case [16] the relevant length scale is 1/k.

The cancelation of the effect of recurrent scattering
may also occur at high densities in an inhomogeneously-
broadened hot atom vapor due to the Doppler shifts of
the resonance frequencies. In Eq. the detunings 9,

. . - 1
also appear in the single atom transmission ¢, and re-

flectance rj(-l) [Eq. ] If 0; have a sufficiently broad dis-
tribution, then averaging over the velocity distribution of
the atoms eliminates the recurrent scattering, and MFT
becomes valid. The relevant energy scale for the Doppler
broadening is the resonance linewidth of the atoms, and
MFT is valid whenever the temperature is high enough
such that k\/kgT/m > v [22].

In anticipation of ultracold many-body physics in hy-
brid waveguide systems, we extend calculations to quan-
tum degenerate ensembles where the atoms still form an
optical medium with a uniform density but they are no
longer randomly distributed. If the atomic positions are
correlated as a result of fermionic fluctuations, the short-
range Fermi repulsion between the atoms creates an addi-
tional bias in the distribution of the propagation phases.
We then find more dramatic violation of the MFT pre-
dictions [Fig.[l]. Evidently the phase in the denominator
of Eq. is less easily randomized away, leading to the
strengthening of correlations in light propagation, reso-
nance line narrowing, and suppressed superradiance.

Even though photonic crystal waveguide experiments
strive toward low loss rate of photons from the waveguide,

FIG. 2. Scaled optical thickness —(In Tl(é\‘]?.N)/(ZN’yw/’yt) as
a function of the detuning of light from the atomic resonance
for yw/v: = 0.4, 0.2, 0.1, 0.05, and 0.025 (curves from top
to bottom) for (a) initially uncorrelated classical atoms; (b)
degenerate fermionic atoms (L = 2\, N = 32). For 7, /v —
0, all cases converge to the MFT result of 47 /(77 + 62).

nanofiber systems typically have 7, /v < 1. With high
losses, the number of multiple scattering events any sin-
gle photon can undergo inside the waveguide is limited.
To leading order in ~,,/v:, we obtain for the two-atom
transmission ng) o~ Tl(l)TQ(” + O(72,/~#), indicating the
recovery of the MFT results. In Fig. [2| we show the nu-
merically simulated light transmission for different loss
rates. In the limit 7,,/7: — 0 the curves converge toward
the MFT result, but notable deviations can be identified
even in the case of strong losses.

We calculated the MFT results by treating the trans-
mission of each atom independently and then taking
the product of the transmissions of independent atom.
We may also neglect the recurrent scattering and light-
induced correlations between the atoms directly in the
hierarchy of equations by factorizing the correlation func-
tion Pa(z;2') ~ p(z)Pi(2') in Eq. (4). This truncates
the hierarchy, provides closed equations from which P,
and the scattered fields may be solved, and leads to an
effective-medium MFT. It was shown in a 3D system
that in the low atom-density limit the factorization re-
produces the “cooperative Lamb shift” (CLS) that Fried-
berg et al. [29] have calculated for various 3D geometries
of atomic ensembles. The experimental measurement of
CLS has attracted considerable interest with nuclei [30],
ions [31], and CLS was recently qualitatively verified in
hot [32] and low-density [33] atomic vapors. In systems
where the light-induced correlations between the emit-
ters become strong, CLS prediction can fail [I6]. Here
the factorization Py(z;z’) ~ p(z)Pi(2’) in Eq. gives
CLS of the 1D waveguide in the limit of asymptotically
small density [22]

Y P sin 2Lk
A = 1-— . 9
CLS T ok ( 2Lk ) ©)

The oscillatory behavior corresponds to the etalon effect
due to the sample thickness. In 1D physical and practi-
cal constraints conspire to make it difficult to verify the
result @D numerically, but for judiciously chosen param-
eters we get close [Fig. Bfa)]. Moreover, in numerical
computations the resonance shift is found to be on the
order of ~,,p/(2k) for a wide range of parameters. This
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FIG. 3. Frequency shift s of the maximum of the light inten-
sity transmitted through the waveguide. (a) The shift (solid
line) as predicted by the “cooperative Lamb shift” model @,
and the full numerics (at p = 32k/m) for v, /v = 0.01 (cir-
cles), 0.02 (crosses), and 0.1 (triangles) as a function of sample
thickness. (b) Variation of line shift with waveguide loss rate.
These are the shifts of the curve maxima in Fig. [] for classical
(circles) and fermionic (crosses) atoms.

is illustrated in Fig. [B(b) for the line shifts in Fig.

In conclusion, nanophotonic waveguides can naturally
enhance light-mediated collective response in atomic en-
sembles.  Collective optical phenomena find applica-
tions, e.g., in engineering superradiance [8], narrow spec-
tral linewidths [25] 4], enhanced extinction [35], sub-
wavelength excitations [36], lasers [37], controlling line
shifts [16] [30H32] [38], and in 1D waveguides in the stud-
ies of Anderson-localized modes of light [I3]. Here we
analyzed light transmission through an atomic ensemble
in a waveguide. The light-induced correlations due to re-
current scattering were identified both in simulations and
in a transfer matrix analysis. The validity of MFTs was
characterized in terms of atom density, thermal broad-
ening, and photon loss rate. We also pointed out that
quasi-1D waveguide systems may exhibit perhaps unex-
pected frequency shifts — an observation that may be
relevant in sensing and metrology [4].
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