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Abstract
To fabricate a virtual shape into the real world, the physical
strength of the shape is an important consideration. We in-
troduce a framework to consider both the strength and com-
plexity of 3D frame structures. The key to the framework is
a stress-oriented analysis and a semi-continuous condition in
the shape representation that can both strengthen and sim-
plify a structure at the same time. We formulate a novel
semi-continuous optimization and present an elegant method
to solve this optimization. We demonstrate our approach
with applications such as topology simplification and struc-
tural strengthening.
Keywords: 3D printing, fabrication, stress analysis, opti-
mization, topology simplification

1 Introduction
We have witnessed many developments in the area of com-
putational fabrication in recent years [1, 2, 3, 4]. As 3D print-
ers become increasingly common and affordable, there is a
great need for tools that consider the physical properties of
virtual meshes. When bringing virtual objects into the real
world through 3D printing, the strength of an object is one
such important consideration. We present a framework to
analyze both the strength and complexity of 3D frame struc-
tures, where a structure consists of a set of beams. The
motivations for focusing on frame structures are that these
structures are common in architectural models, they can also
represent general 3D shapes, and they can be 3D printed as
a real-world frame structure to represent the virtual shape
without an excessive amount of printing material.

There has been some recent work exploring the idea of
strength analysis of 3D printed shapes [5, 6, 7]. There also
exists work that analyze structural parts and reduce the cost
of 3D printing by building a skin-frame structure [8] or a
honeycomb-cells structure [9]. In this paper, we introduce a
single stress-oriented framework to analyze the strength and
complexity of 3D frame structures at the same time. A key
contribution different from previous work is that we have a
problem formulation and a semi-continuous condition in our
shape representation. This condition can remove structurally
redundant elements to reduce the overall shape complexity
without sacrificing its structural strength.

We formulate our problem to optimize scalar parameters
of a frame structure such that it is 3D printable with high
strength, while taking into account the volume, symmetric,

semi-continuous, and sparsity constraints. These constraints
are quite intuitive, as they limit the size and complexity of
the output structure while maintaining its aesthetics. The
idea is to strengthen weak parts while maintaining the overall
volume of the shape, and optionally changing the topology
and maintaining the shape symmetry. In particular, the semi-
continuous constraint is key to our formulation, as it includes
a choice between lower and upper bounds and a value of zero
for each parameter in the shape representation. An element
within a shape with a parameter value of zero will disappear.
Our formulation of this condition in the problem allows us
to explore the tradeoffs between strength and complexity in
frame structures. The user can also control the tradeoff to
choose among structures with various simplified topologies
and high strength.

We use stress as a measure of strength of an object. We
consider the frame structure as a set of beam elements and
compute the stress of each element. Our stress-oriented
structural optimization then minimizes the maximal stress of
all elements. The semi-continuous condition in our shape
representation requires a non-trivial solution to this prob-
lem. Hence we formulate a novel semi-continuous optimiza-
tion and present an elegant method, the alternation direction
method of multipliers (ADMM) algorithm, to solve it.

We demonstrate our framework with various 3D models of
frame structures. Figure 1 shows one example of the bunny
frame structure. We show the applications of the strength-
ening of weak parts and topology simplification while main-
taining structural symmetry. Our results highlight the main
concepts of the stress-oriented structural optimization.

2 Related Work

Fabrication-Aware Geometric Processing With the rapid
development of techniques for 3D printing, many researchers
have recently studied geometric processing problems for the
purpose of fabrication. These fabrication-aware methods are
typically led by a stress analysis that uses the finite ele-
ment method. Stava et al. [5] introduce a method that de-
forms a model by hollowing, thickening and strut insertion.
Zhou et al. [6] present a method to search for the worst-
case stress under forces from all possible directions. Re-
cently, a stochastic finite element method is used to com-
pute failure probabilities [10] which can analyze the static
soundness of one object. Prévost et al. [3] explore the prob-
lem of deforming shapes to make them physically balance.
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Figure 1: Our approach analyzes an input 3D frame structure to perform simultaneous structural strengthening and simplifi-
cation for 3D printing. (a) The input bunny frame model with 1569 beams. The external loads are denoted as red arrows. (b)
A photo of the SLS 3D printed models of the input. A small red drawing pin is placed under the object as a size reference. (c)
The resulting model obtained by our approach. The number of beams is reduced to 1319. (d) A photo of the SLS 3D printed
models of our output.

Chen et al. [11] analyze elastic deformation caused by grav-
ity to solve the inverse problem of computing a shape that
when fabricated deforms naturally to a target shape. Yang
et al. [12] design a support-free structure to print a balanced
object without interior supports. Among this area of work,
we contribute a stress-oriented problem formulation for auto-
matically strengthening a frame structure while simplifying
its structural complexity.

Structural Simplification for Fabrication There has
been work on problems which aim to simplify the complex-
ity of the structure of 3D shapes for fabrication. Many meth-
ods are based on decomposing a 3D shape into smaller pieces
and then assembling them to form the original shape or a
resemblance of it. Luo et al. [13] suggest a method to 3D
print large objects by first segmenting an object into smaller
parts and then assembling the parts to form the larger shape.
Hildebrand et al. [14] create parts from a 3D shape that can
then be fabricated and assembled in an optimal direction.
Interlocked planar [15, 16] or solid pieces [17, 18] can be
used to form a shape that resembles the original. Zimmer et
al. [19] describe an approach to approximate mesh surfaces
by building physical structures with the Zometool construc-
tion system. Vanek et al. [20] present a method to divide a
mesh into parts which are then efficiently packed into space
for 3D printing. Instead of decomposing a shape into smaller
pieces, we simplify a frame structure by possibly removing
elements from it. We contribute a semi-continuous optimiza-
tion for this purpose.

Special Structure Design Motivated by existing architec-
tural structures, some types of special 3D printed structures
have been explored. Some structures, such as the skin-
frame structure [8] and honeycomb-cells structure [9], are
designed to reduce the cost of 3D printing via stress anal-
ysis. These methods are used for constructing the interior

supporting structure of a solid object and these structures are
cost-effective and are stable with high strength. Some struc-
tures are designed as the support structure necessary for 3D
printing. The reduction of support structure can save printing
time and material [21]. A bridge structure [4] can reduce the
cost and meet stability conditions. Recently, Jiang et al. [22]
propose a framework to generate a frame structure with dif-
ferent types of cross sections, which is statically sound and
materially efficient. In this paper, we focus on strengthening
and simplifying frame structures consisting of beams.

3 Preliminaries
This section describes the stress analysis and the representa-
tion of an input 3D shape of our algorithm as a frame struc-
ture. The stress computation described here is used in our
optimization in Section 4.

3.1 Stress Computation
In continuum mechanics, stress is a physical quantity that ex-
presses the internal forces that neighboring particles of a con-
tinuous material exert on each other [23, 24]. The strength of
a material is measured in force per unit area, which depends
on its capacity to withstand axial stress, shear stress, bend-
ing, and torsion. A static elastic object satisfies the following
equilibrium equation:

−divσ(u) = f , in Ω

u = 0, on ΓH

σ(u) · n = g, on ΓN

(1)

where u is the displacement, σ is the stress tensor, f is
the body force, and g is the surface force. This differen-
tial equation is defined in the region of an object Ω, ΓH and
ΓN are two open subsets of the boundary of Ω, such that
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∂Ω = ΓH ∪ ΓN and ΓH ∩ ΓN = ∅. We take the discretized
form of this system, which becomes the linear equilibrium
equation:

Ku = F (2)

where K is the stiffness matrix and F is the external loads
including body forces and surface forces.

3.2 Frame Structure
A frame structure consists of a set of beams and nodes where
the beams are connected to each other at the nodes. Each
beam is a cylindrical shape with a radius. The beams de-
fines the topology (i.e. the connectivity between nodes) of
the frame structure. According to theory on the frame struc-
ture [25, 26], the stiffness matrix K in Equation (2) can be
computed for a frame structure, where K depends on the
node positions and beam radii [8]. The forces in this equa-
tion are gravity or external loads we specify. We can then
solve for the displacement and compute the stress for each
beam in the frame structure. Although the stress is different
in different part of the beam, we only consider the largest
stress for each beam.

4 Problem and Formulation
We describe our problem formally in this section, includ-
ing the objective function in our optimization, various con-
straints, and the problem formulation. The stress analysis
from Section 3 allows us to compute the stress in our opti-
mization. The solution to the optimization is presented in
Section 5.

4.1 Problem
Stress Strengthening Our problem involves two compo-
nents and the first component is structural strengthening.
Structural optimization aims to determine the best design
according to some objectives (e.g. greatest strength, maxi-
mum rigidity, lowest cost) under some constraints. A struc-
ture fails the strength criterion when the stress (force divided
by area of material) induced by the load is greater than the
capacity of the structural material to resist the load with-
out breaking, or when the strain (percentage extension) is
so great that the element no longer fulfills its function. As
acknowledged in the literature [27, 28, 29], it is natural to
use stress or strain as criteria for the weakness measure of
a target structure. Hence we use stress as a criterion for the
purpose of structural strengthening.

Structural Complexity The second motivation is com-
plexity. There exists many beams in our frame structures
and some of these beams are not significant to the stress of
the overall structure. We may therefore remove some of them
without affecting the stress of the overall shape and to sim-
plify its structural complexity.

Problem The input to our problem is a frame structure of
beams. Considering the above two components, our problem
is to perform simultaneous stress strengthening and struc-
tural complexity reduction of the input shape under some
external loads. The output is a modified frame structure with
a smaller number of beams while the stress of the shape is
maintained or strengthened. The radii of some beams are ad-
justed while some beams are removed. The resulting shape
may be 3D printed as a structure with high strength and sim-
plified complexity.

4.2 Objective Function
Objective Function Let M be a mesh representing the
frame structure. We adopt stress as a criterion for the weak-
ness measure of an object and minimize the maximal stress
of the beams in the structure. The stress-oriented structural
optimization problem can thus be formulated as

s∗ = arg min
s∈Θ

max
p∈M(s)

σ(p) (3)

where s is the vector of structural design variables, Θ is
the collection of all feasible design variables, and θ is the
stress function. The solution of the above problem is s∗, and
M(s∗) is then the output shape.

Design Variables The degree of freedom of the structural
design space is large in general. Hence we simplify the prob-
lem by focusing on a piecewise scaling transformation for
each element of the shape. Let K = (VK, EK) be the frame
structure of a shape, where VK and EK represent the set of
nodes and beams respectively. For every beam, we define
a scalar si, i ∈ {1, · · · , |EK|} which is the scaling factor
of the radius of each beam. Let s = (s1, s2, · · · , s|EK|) be
our set of structural design variables. We can perform many
changes to the shape by adjusting these scalar variables. For
example, we can adjust si to strengthen weak parts. We can
re-distribute volume in the overall shape by adjusting si for
multiple parts. If we set so = 1 = (1, 1, · · · , 1), thenM(so)
is the original object. If we set some si = 0 then the corre-
sponding part will disappear and we can perform topological
changes to the overall shape.

4.3 Constraints
We consider various constraints in our framework to main-
tain the size, aesthetics, and complexity of the output shape.

Volume Constraint We compute the shape’s volume by
adding the volume of all beams. Each beam’s volume is es-
timated as the cross sectional area multiplied by its length.
We can write the volume constraint as:

Vol(s) ≤ γVol(1) (4)

where γ is a user-specified value which means that the re-
sulting volume is no more than γ of the original volume.
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Symmetry Constraint In many practical applications, it
is important to maintain the symmetry of a shape during its
structural optimization, so as to maintain its overall aesthet-
ics. Our approach can achieve this by adding symmetry con-
straints as follows:

si − sj = 0, (i, j) ∈ S (5)

where S is the set of index pairs of beams that we wish to
maintain symmetry with.

Semi-continuous Constraint In order to satisfy the print-
ability of the object, the scalar si should be within an interval
[ai, bi]. For example, the scalar should be set such that the
thickness of the shape is not less than the minimum manufac-
turable size of the 3D printer. Each scalar si can also take a
zero value. Hence this leads to a semi-continuous condition:

si ∈ [ai, bi] ∪ {0}, i ∈ I = {1, 2, · · · , |EK|}. (6)

Sparsity Constraint Moreover, we can add a cardinality
constraint to control the overall complexity of the structure:

‖s‖0 ≤ τ. (7)

4.4 Formulation
We can now formulate our stress-oriented structural opti-
mization as follows

arg min
s

max
e∈E

σe(s)

s.t. Vol(s) ≤ γVol(1)

si − sj = 0, (i, j) ∈ S
si ∈ [ai, bi] ∪ {0}, i ∈ I
‖s‖0 ≤ τ

(8)

where E is the set of beams in the frame structure, and σe is
the stress function described in the previous section.

5 Semi-Continuous Optimization
In the formulation of our optimization (Equation (8)), the
scaling factors s are a set of semi-continuous decision vari-
ables [30, 31]. Theoretically, it is in general NP-hard to solve
this kind of highly nonlinear optimization problem which
has combinatorial nature (semi-continuous sparsity) [32, 33].
Thus we reformulate our problem and then mathematically
derive an algorithm based on the ADMM (alternating direc-
tion method of multipliers) strategy [34, 35] to solve it. The
ADMM method is designed to solve convex optimization
problems by breaking them into smaller pieces, and it has
been applied to a number of problems arising in statistics and
machine learning [35, 36]. The semi-continuous condition in
our problem formulation leads to two sets of variables. The
idea of ADMM is to split the optimization into sub-problems
that iteratively find solutions to the two sets of variables.

5.1 Problem Reformulation
We add a new variable δ to represent the maximum stress and
introduce a variable splitting strategy (and a new variable y)
to reformulate the problem in Equation (8) as:

arg min
(s,δ,y)

δ

s.t. σe(s)− δ ≤ 0, e ∈ E
Vol(s) ≤ γVol(1)

si − sj = 0, (i, j) ∈ S
s− y = 0

y ∈ Y

(9)

where Y = {y | aizi ≤ yi ≤ bizi, zi ∈ {0, 1}, i ∈
I;1T z ≤ τ}. The optimal s∗ is our solution. The advantage
of introducing the variable y is that it allows the decoupling
of the continuous constraint and the semi-continuous spar-
sity constraint, since each of them now applies to one specific
optimization variable s or y. Although we introduce an ad-
ditional constraint, it is now easier to solve the reformulated
problem (Equation (9)) than the original one (Equation (8))

5.2 Solution
Our solution is based on ADMM which is itself based on
an augmented Lagrangian function and two sub-problems
within the overall optimization. We describe these in detail
in this sub-section.

Augmented Lagrangian One typical way for solving such
an optimization problem is to use an augmented Lagrangian
approach [37]. We use this method and define the problem’s
augmented Lagrangian function as follows:

Lρ(s, δ,y,λ) = δ + λT (s− y) +
ρ

2
‖s− y‖2 (10)

with λ being the Lagrangian multipliers and ρ a positive pa-
rameter that balances the quadratic penalization.

Pseudocode Instead of a joint optimization on the two
variables, the idea of ADMM is to optimize alternatively
over (s, δ) and y. Algorithm 1 gives the pseudocode of
our solution with ADMM. The stopping criterion in the op-
timization is: the value of the function has almost no change
or the number of iteration steps reaches a given upper bound.

(s, δ)-subproblem The (s, δ)-subproblem in the ADMM
algorithm involves a quadratic objective and the continuous
constraint. We use the interior-point method to solve the sub-
problem:

min
(s,δ)∈D

δ +
ρ

2
‖s− (yk − λk/ρ)‖2 (11)

where D = {(s, δ) | σe(s) − δ ≤ 0, e ∈ E ; Vol(s) ≤
γVol(1); si − sj = 0, (i, j) ∈ S} is the feasible set of con-
tinuous variables.
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(a) (b) (c) (d)

Figure 2: The results of applying our approach on a frame structure of a duck. (a) The input duck model with 1107 beams.
Three external loads (marked as red arrows) are applied on the model. (b,c,d) The simplified duck models (with 1007, 957, 907
beams respectively) obtained with our approach. The resulting models are increasingly simplified while their structures still
remain strong.

Algorithm 1 The ADMM algorithm for structural optimiza-
tion
Input: an initial structureM(so)
Step 0: Set k = 0 and initialize y0,λ0. Set the penalty
parameter ρ and the step-size α.
Repeat

Step 1: Solve the (s, δ)-subproblem

(sk+1, δk+1) = arg min
(s,δ)∈D

Lρ(s, δ,y
k,λk)

Step 2: Solve the y-subproblem

yk+1 = arg min
y∈Y

Lρ(s
k+1, δk+1,y,λk)

Step 3: Update the Lagrangian multipliers

λk+1 = λk + αρ(sk+1 − yk+1)

Until stopping criterion is met.
Output: an optimized structureM(s∗) with its optimal vari-
able s

y-subproblem We rewrite the y-subproblem as a close-
form solution, starting with:

min
y∈Y

‖y − (sk+1 + λk/ρ)‖2 =
∑
i

(yi − ti)2
(12)

with ti = sk+1
i + λki /ρ. If yi 6= 0, we denote

ζi = min
y∈Y

(yi − ti)2 =


(ai − ti)2 ti < ai,

0 ai ≤ ti ≤ bi,
(bi − ti)2 ti > bi.

Then this subproblem can be further simplified as:

min
z

∑
i

[
t2i (1− zi) + ζizi

]
=
∑
i

t2i −
∑
i

(t2i − ζi)zi

s.t. zi ∈ {0, 1}, i ∈ I; 1T z ≤ τ.
(13)

Let {t2`1−ζ`1 , t
2
`2
−ζ`2 , · · · , t2`τ −ζ`τ } be the first τ positive

numbers of sequence {t2i − ζi}i∈I in descending order. The
problem in Equation (13) has the solution z`1 = z`2 = · · · =
z`τ = 1; zi = 0, i /∈ {`1, `2, · · · , `τ}. Finally, we get a
closed-form solution

yi = max(ai,min(ti, bi)) · zi ∀i ∈ I

for the y-subproblem (Equation (12)).

6 Experimental Results
We have implemented our algorithm and tested it on vari-
ous models. All the examples presented in this paper were
created with a dual-core 3.5 GHz machine with 8G memory.
We have 3D printed some of the models to demonstrate our
results.

There are several parameters in our formulation. The user
can change the value of the weight γ to control the volume
of the resulting object. We set γ = 1 in our implementation
which means that we do not want to increase the volume of
the result adjusting the shape. Another parameter is τ which
measures the complexity of the structure by measuring the
number of beams. Thus τ can be adjusted by the user and set
to a number less than the total number of beams in the input
model. We specify the external loads manually at various
points of the input shapes. In the optimization, we set the
penalty parameter ρ to be 10 and the step-size α to be 0.6.
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(a) (b) (c) (d) (e) (f)

Figure 3: Results of applying our approach on the eiffel tower model. (a) The input Eiffel Tower frame model with 1521
beams. (b) The computed stress of the input model under an external load of 2N (shown by red arrow). (c) A photo of the SLS
3D printed model of the input. A small red pin is placed under the object as a size reference. (d) The simplified frame model
with 1341 beams obtained by our approach. (e) The computed stress of the output model under the same external load as that
of the input in (b). We can see that the output model has higher strength and reduced complexity. (f) The photo of the SLS 3D
printed model of our output.

Figure 4: Results of applying our approach on the
boomerang model (left) and the airport model (right). An ex-
ternal load (shown in red arrow) is applied on the boomerang
model. Gravity is applied as external load to the airport
model. The original models (top) have 312 and 5045 beams
respectively. Our results (bottom) have 284 and 4585 beams
respectively and they are both structurally simplified and
strengthened compared to the originals.

Figure 2 shows the results of our algorithm on a frame
structure of a duck model. We set different values of the
sparsity parameter τ and obtain a sequence of results. The re-
sulting structural shapes in Figure 2(b,c,d) are progressively
simplified in the number of beams while their strengths are
maintained.

Figure 3 shows an example of eiffel tower. In this exam-
ple, since the feet of the tower are fixed, the beams connect-
ing fixed nodes have zero stress, thereby being removed.

Figure 4 shows two examples whose external loads are
vertical down. The left one is the frame structure of
boomerang. Since the given external force is vertical down,
some horizontal beams have less contribution to the sound-
ness, thus being removed by our optimization. The right one
is the airport model with a constant gravity on each node.
Note that there are also some horizontal beams removed due
to the similar reason.

Figure 5 show the result of a complicated structure. The
model demonstrate the application of our method to both
structural simplification and strengthening, as the results
have reduced complexity and higher structural strength.

7 Conclusion

We present a novel approach for performing structural analy-
sis on 3D shapes with simultaneous structural strengthening
and simplification. The optimized shape can be 3D printed
with high strength and reduced complexity. We use stress as
a criterion for measuring strength and minimize the maximal
stress of the shape to formulate an optimization with a semi-
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Figure 5: Results of applying our approach on the “hardstruct” model. (a) The input model where external loads are denoted
as red arrows. The hardstruct model has 1728 beams. (b) We 3D printed the input model with a Sinterstation SLS 3D printer.
A small red pin is placed under the object as a size reference. (c) The resulting model obtained by our approach is structurally
simplified and strengthened with our approach. The hardstruct model has 1548 beams. (d) We physically demonstrate our
results by 3D printing the output model.

continuous condition. We then derive an algorithm based on
the ADMM method to solve the optimization and show its
applicability and feasibility towards topology simplification
and structural strengthening. Although this paper focuses on
frame structures, our framework can be extended to general
meshes by considering them as skeletal tetrahedral structures
and we leave this for future work.

One limitation of our work is that we do not move the po-
sitions of the nodes in a structure. This means that although
the structure can be much simplified, the inherent topology
of the original structure remains the same. Moving the posi-
tions of the nodes can potentially be done in our optimization
framework. However, this will enlarge the dimensions of the
variable space and will need higher computational cost. We
leave this as a future research direction.

Another area of future work that is relevant for fabrica-
tion is the computation of supporting structures for FDM 3D
printing. There has already been previous work in this area
recently. Applying our stress-oriented structural optimiza-
tion to this problem would be an interesting direction.
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