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Abstract

The existing methods for image captioning usually train the
language model under the cross entropy loss, which results
in the exposure bias and inconsistency of evaluation metric.
Recent research has shown these two issues can be well ad-
dressed by policy gradient method in reinforcement learning
domain attributable to its unique capability of directly opti-
mizing the discrete and non-differentiable evaluation metric.
In this paper, we utilize reinforcement learning method to
train the image captioning model. Specifically, we train our
image captioning model to maximize the overall reward of
the sentences by adopting the temporal-difference (TD) learn-
ing method, which takes the correlation between temporally
successive actions into account. In this way, we assign dif-
ferent values to different words in one sampled sentence by
a discounted coefficient when back-propagating the gradien-
t with the REINFORCE algorithm, enabling the correlation
between actions to be learned. Besides, instead of estimating
a “baseline” to normalize the rewards with another network,
we utilize the reward of another Monte-Carlo sample as the
“baseline” to avoid high variance. We show that our proposed
method can improve the quality of generated captions and
outperforms the state-of-the-art methods on the benchmark
dataset MS COCO in terms of seven evaluation metrics.

Introduction
Scene understanding is one of the ultimate goals of computer
vision. Image captioning aims at generating reasonable cap-
tions automatically for images which is of great importance
to scene understanding. It is a challenging task not only be-
cause the captioning models must be capable of recognizing
what objects are in the image, but also must be powerful e-
nough to understand the semantic relationships among the
objects and describe them properly in natural language. It
is also of great significance to enable machine mimicking
the human ability to express the rich visual information with
descriptive language, and thus attracts much attention from
academic researchers and industry companies.

∗This research was supported by the National Natural Science
Foundation of China (Grant Nos. 61571269, 61701273), the Royal
Society Newton Mobility Grant (IE150997) and the Project Funded
by China Postdoctoral Science Foundation (No. 2017M610897).
Corresponding authors: Guiguang Ding and Jungong Han.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Inspired by the machine translation domain, recent works
focus on the deep network based and end-to-end method-
s mainly under the encoder-decoder framework. In general,
the recurrent neural networks (RNN), especially long short
term memory (LSTM) (Hochreiter and Schmidhuber 1997),
are employed as the decoder to generate captions (Vinyals
et al. 2015; Jin et al. 2015; Xu et al. 2015; You et al. 2016;
Zhao et al. 2017) on the basis of the visual features of im-
age extracted by the CNN. These models are usually trained
to maximize the likelihood of next ground-truth word giv-
en the previous ground-truth words. However, this method
will lead to a problem called exposure bias (Ranzato et al.
2015), since at test time, the model uses the word sampled
from the model predictions as the next LSTM input, instead
of the ground-truth words. The second problem is about the
inconsistency between the optimizing function at training
time and the evaluation metrics at test time. The training
procedure attempts to lower the cross entropy loss, while
the metrics used to evaluate a generated sentence are some
discrete and non-differentiable NLP metrics such as BLEU,
ROUGE, CIDEr, and METEOR. These two problems limit
the ability of the model to understand the image and describe
it with descriptive sentences.

It has been shown that the reinforcement learning (RL)
can provide a solution to these two identified issues above.
There are some works exploring the idea of incorporating
the reinforcement learning into image captioning. (Ranzato
et al. 2015) proposed a novel training procedure at the se-
quence level using the policy gradient method. (Rennie et
al. 2017) adopted the same loss function as (Ranzato et al.
2015) but the baseline modelling method is slightly differ-
ent, where they proposed a self-critical training method with
the caption generated by the inference algorithm at test time.
(Liu et al. 2016) employed the same method to produce the
baseline as (Ranzato et al. 2015), and their main contribution
lies in using Monte Carlo rollouts to approximate the value
function. Despite their better performance, especially com-
pared to the non-RL approaches, there are still some short-
comings in these works. For example, (Rennie et al. 2017)
and (Ranzato et al. 2015) both implicitly assumed that every
word in one sampled sequence makes the same contribution
to the reward, which is clearly not reasonable in general. (Li-
u et al. 2016) estimated a baseline reward by simply adopt-
ing a MLP to learn the baseline reward from the state vector



of RNN like Ranzato et al. did. This method usually exhibits
high variance, thus making the training unstable.

In this paper, we apply the temporal difference method
(Sutton 1988) to model the RL value function, instead of
the monte carlo rollouts, because the monte carlo rollouts
method only learns from the observed values, meaning that
the value can not be obtained until the sequence is finished.
Differently, the temporal difference method assumes that
there are correlations between temporally successive action-
s, thus, it can estimate the value of actions based on the pre-
viously learned estimates of the successive actions by means
of the dynamic programming idea. Since the context of the
sentence has a strong correlation, we assume that the tempo-
ral difference learning could be more appropriate to model
the value function. Besides, to reduce the variance during the
model training, we also use the baseline suggested by (Ren-
nie et al. 2017) where they consider the caption generated by
the test-time inference algorithm to be the baseline caption.
However, we notice that the way of baseline in (Rennie et
al. 2017) can not approximate the value function correctly,
because the test-time inference algorithm tends to pick the
fairly good sentence which is better than the sentence sam-
pled from the model distribution in most cases. Instead, we
generate two sentences both sampled from the model distri-
bution with the idea that the quality of actions sampled from
the same distribution in multinomial sample policy are close
in terms of the probability. Therefore, we adopt one of the
two sentences as the baseline sequence, and apply the tem-
poral difference method.

Overall, the contributions of this paper are three-fold:
• We directly optimize the evaluation metrics during train-

ing through a temporal difference method in reinforce-
ment learning where each action at different time step has
different impacts on the model.

• To avoid the high variance during the training, we employ
a novel baseline modelling method by using a sequence
sampled from the same distribution as the sequence for
gradient to calculate the baseline.

• We conduct a massive of experiments and comparisons
with other methods. The results demonstrate that the pro-
posed method has a significant superiority over the-state-
of-the-art methods

Related Work
The literature on image captioning can be divided into
three categories based on different ways of sequence gen-
eration (Jia et al. 2015): template-based methods (Farhadi
et al. 2010; Kulkarni et al. 2011; Elliott and Keller 2013),
transfer-based methods (Gong et al. 2014; Devlin et al. 2015;
Mao et al. 2015) and the neural network-based methods. S-
ince the proposed method adopts the same framework as the
neural network-based methods, we mainly introduce the re-
lated works about image captioning with them.

The neural network-based methods get inspirations from
machine translation (Schwenk 2012; Cho et al. 2014) where
two RNNs are used as the encoder and the decoder respec-
tively. Vinyals et al. (2015) replaced the RNN encoder with
a deep CNN, and adopted the LSTM to decode the image

vector to a sentence. This work achieved a reasonable re-
sult and hereafter there are many works following this idea
and studying further. Xu et al. (2015) applied the attention
mechanism in the image captioning task in which the de-
coder can function as the human’s eye focusing its atten-
tion on different regions of the image at each time step. Lu
et al. (2017) improved the attention model by introducing
a visual sentinel allowing the attention module adaptively
attend to the visual regions. You et al. (2016) proposed a se-
mantic attention model which selectively attends to semantic
concept regions by fusing the global image feature and the
semantic attributes feature from an attribute detector. Chen
et al. (2017a) proposed a spatial and channel-wise attention
model to attend to both image features and visual regions
adaptively.

Recently, researchers made efforts to incorporate re-
inforcement learning into the standard encoder-decoder
framework to address the exposure bias and the non-
differentiable metric issues. Specifically, (Ranzato et al.
2015) used the REINFORCE algorithm (Williams 1992) and
proposed a novel training method at sequence level direct-
ly optimizing the non-differentiable test metric. (Liu et al.
2016) applied the policy gradient algorithm in the training
procedure for image captioning models, in which the word-
s sampled from the current model at each time step were
awarded with different future rewards via averaging the re-
wards of some Monte-Carlo samples. A simple MLP was
used to produce the estimate of the future reward, and such
estimate will in turn be treated as the baseline to reduce the
variance. Self-critical sequence training (SCST) (Rennie et
al. 2017) adopted the policy gradient algorithm as well but
the difference from (Liu et al. 2016) is that SCST just ran the
LSTM forward process twice and obtained two sequences,
one generated by running the inference algorithm at test time
and the other sampled from the multinomial strategy. SCST
made the reward of the sequence from the inference algo-
rithm as a baseline to reduce the training variance.

(Ranzato et al. 2015; Rennie et al. 2017) simply assume
that each word shares the same importance to the reward
of the sentence, so that each of them obtains the same gra-
dient when back-propagating the gradient. This assumption
is not reasonable in general. Lu et al. (2017) find the mod-
el will be likely prone to visual words like “red”, “horse”,
“bus” more than the non-visual words such as “of” and “a”
by applying an adaptive attention model, which is indeed
with accordance with the human’s attention schema. Chen
et al. (2017c) show that assigning different weights to dif-
ferent words helps the model be aware of the different im-
portance of words in a sentence and enhances the model’s
ability of generating high-quality captions. (Liu et al. 2016)
trains an extra MLP based on the output of LSTM units to
estimate the baseline, turning MLP to an estimator for the
action space. However, MLP does not seem to be a good es-
timator since the action space can be enormous, and it may
cause the high variance, thus making the training unstable.
In contrast, in our method, we allow the captioning model
learn different values of words by the temporal difference
learning. Besides, we employ a sampling baseline strategy
to make the training with low variance and stable.
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Figure 1: The framework of the proposed model, including two parts: the encoder (in blue rectangle) and the decoder (in red
rectangle). The top and bottom LSTMs share the same parameters. The right arrow means the forward operation and the left
arrow means the backward operation. W s = (ws1, w

s
2, ..., w

s
T ) and W s′ = (ws
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1 , w
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2 , ..., w
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T ) are two sampled sequences from
the model in multinomial policy. rs and rs

′
are the rewards of sequencesW s andW s′ , respectively. γ is a discounted coefficient

in temporal difference method. st is the output of the softmax function.

Methodology
Encoder-Decoder framework
Given an image I , the image captioning model needs to gen-
erate a caption sequence W = {w1, w2, ..., wT }, wt ∈ D
where D is the vocabulary dictionary. We adopt the stan-
dard CNN-RNN architecture for image captioning. CNN,
which can be seen as an encoder, encodes an input image
into a vector. RNN functions as a decoder aiming to gen-
erate the captions given the image feature. Here, we use L-
STM (Hochreiter and Schmidhuber 1997) as the decoder.
During generation, LSTM generates a word at each time
step conditioned on the previously generated words wt−1,
the previous hidden state ht−1 and the context vector ct−1
containing the context information that LSTM has seen. The
LSTM updates the hidden units and cells as follows:

x−1 = CNN(I), x0 = E(w0)

xt = E(wt)

it = σ(Wixxt +Wihht−1 + bi)(input gate)
ft = σ(Wfxxt +Wfhht−1 + bf )(forget gate)
ot = σ(Woxxt +Wohht−1 + bo)(output gate)

ct = it � φ(W⊗zxxt +W⊗zhht−1 + b⊗c ) + ft � ct−1
ht = ot � tanh(ct)
qt =Wqhht

(1)

where w0 is a special token indicating the start of the se-
quence, CNN(I) is the feature extractor for image I , E()
is the embedding function which maps the one-hot repre-
sentation of a word into the embedding semantic space. We
initialize the c0 and h0 to the zero vector.

Then a distribution over the next word wt will be pro-
duced by using the softmax function:

wt ∼ Softmax(qt) (2)

The likelihood of a word wt at time step t is decided by a
conditional probability conditioned on the input image I and

previous words w0, w1, ...wt−1: p(wt|I, w0, w1, .., wt−1).
So the probability of a generated sequence W =
(w0, w1, w2, .., wT ) given the input image I will be the
product of the conditional probability of each word:

p(W |I) =
T∏
t=0

p(wt|I, w0, w1, ..., wt−1) (3)

Show and tell paper (Vinyals et al. 2015) uses the cross-
entropy loss (XENT) to train the whole network. The XENT
loss maximizes the probability of the description W gener-
ated by the model, which intends to minimize:

L = −
T∑
t=0

log p(wt|I, w0, w1, ..., wt−1) (4)

The XENT loss will lead the model to generate the word
with the highest posteriori probability at each time step t
without considering the quality of the whole sequence at test
time and cause a phenomena called search error (Ranzato et
al. 2015).

Temporal difference learning: TD(λ)
Reinforcement learning can provide solutions for decision-
making problem. We consider the image captioning task as a
decision-making problem or a finite Markov process (MDP).
In the MDP setting, the state can be defined as the informa-
tion that has known at the current time step. So we consider
the state st as a list consisting of the image and the previous
words:

st = {I, w0, w1, ..., wt−1} (5)

And the action is the input image or the word generated at
different time step. The parameter of the network, θ, defines
the policy network pθ which will produce an action distri-
bution, in other words, the prediction of the next word here.
The decoder LSTM can be viewed as an “agent” that takes



an “action” (image feature and words) in guidance of the ac-
tion distribution. After each action at, the LSTM updates its
internal parameters to increase or decrease the probability
of taking the action at according to the reward. “Reward”
is an important element in RL, which decides the evolution
direction of the agent. Here, we define the reward as the s-
core computed by evaluating the generated captions using
the corresponding ground-truth sequences under the stan-
dard evaluation metrics, such as BLEU-1,2,3,4,CIDEr, ME-
TEOR, etc. We denote the reward by r in the following.

In reinforcement learning, the agent’s task is to maximize
the total amount of rewards passing from the environment
to the agent. For image captioning, the reward will not be
calculated until the EOS, a special token indicating the end
of the sequence, is generated by the model. Therefore, it is
necessary to define the reward function for each word. In this
paper, we define the reward for each word wt as follows:

rt =

{
r t = T
0 t < T

(6)

where r is the score calculated using the evaluation metrics
and T is the final time step.

The agent aims to maximize the cumulative rewards it re-
ceived in the long run. For an episode (a0, a1, ..., aT ), we
define the Q-value function Q(st, at+1) as a function of the
current state st of the model and some possible action at+1

to estimate the expected future reward. There are many ways
to define the Q-value function. (Liu et al. 2016) exploited
Monte Carlo rollouts method in which the model will gener-
ate many sequences and used the average of rewards of these
sequences as the Q-value. While in this paper, we adopt the
temporal-difference (TD) learning to estimate Q-value func-
tion.

In temporal difference learning, n-step expected return
Gt:t+n is defined as the sum of the next n rewards plus the
estimated value of the next (n + 1)’th state, each appropri-
ately discounted, in n-step TD method:

Gt:t+n = rt+1+γrt+2+ ...+γ
n−1rt+n+γ

nV (st+n) (7)

where 0 ≤ t ≤ T − n. The n-step expected return can be
viewed as a n-step backup starting from current time step
t. And the Q-value is a weighted average of a few n-step
back-ups in the TD(λ) method, in which all weights sum to
1. Specifically, the Q-value in TD(λ) is defined as follows:

Q(st, at+1) = (1− λ)
∞∑
n=1

λn−1Gt:t+n (8)

Since the length of generated sequence has limit T in im-
age captioning, we have:

Q(st, at+1) = (1−λ)
T−t−1∑
n=1

λn−1Gt:t+n+λ
T−t−1Gt (9)

where λ is the trad-off parameter which decides how much
the model depends on the current expected return Gt. Here,
we set λ = 1 for our image captioning model. Then, with
λ = 1, Eq. (6) and Eq. (7), we have:

Q(st, at+1) = γT−t−1r (10)

Now, we define the RL loss function as follows:

L(θ) = −EW s∼pθ [

T∑
t=0

Q(st, at+1)] (11)

where W s = (ws0, w
s
1, ..., w

s
T ) and wst is sampled from the

model at time step t. The gradient ∇L(θ) can be calculated
as in REINFORCE algorithm (Williams 1992):

∇L(θ) = −EW s∼pθ [

T∑
t=0

Q(st, at+1)∇θ log pθ(W s)]

(12)
In practice, Eq. (12) can be approximated using one se-
quence generated by the network using the Monte-Carlo
sample method for each training sample. So we have:

∇L(θ) = −
T∑
t=0

Q(st, at+1)∇θ log pθ(W s)

= −
T∑
t=0

γT−t−1r∇θ log pθ(W s)

(13)

The definition of Q-value above makes the estimator with
high variance. In order to reduce the variance during train-
ing, we introduce the baseline. (Rennie et al. 2017) used
the reward of the sequence obtained by the current model
with the greedy sampling strategy. (Liu et al. 2016) used an
MLP to estimate the baseline reward. In this paper, we intro-
duce a new baseline strategy similar to (Rennie et al. 2017)
where the difference is that we use a sequence obtained with
a multinomial sampling strategy. Then the gradient function
will be as follows:

∇L(θ) = −
T∑
t=0

γT−t−1(r − rbaseline)∇θ log pθ(W s)

(14)
In fact, the two sequences, one for gradient and the oth-

er for baseline, are both generated by the current network
pθ with a multinomial sampling strategy. The idea is that
the difference between reward r and rbaseline is small since
they are computed by two sequences which are both sam-
pled from the same distribution and this will achieve a lower
variance during training than the way in (Rennie et al. 2017)
resulting in a more stable parameters updating.

Then according to the chain rule, the final gradient will be
as follows:

∇L(θ) = −
T∑
t=0

∂L(θ)

∂qt

∂qt
∂θ

(15)

where qt is the input of the softmax function at time step t
and

∂L(θ)

∂qt
= γT−t−1(r − rbaseline)(1wst − pθ(wt|ht)) (16)

The framework of the proposed method is depicted in Fig-
ure 1. Firstly, the CNN network extracts the feature of the
input image. Then the LSTM absorbs the feature of the im-
age at the beginning (here is at -1 time step) to initialize the



hidden vectors for language model. Next, at each time step,
the LSTM will be fed in the word sampled from the curren-
t model at last time step, except at the 0th time step, until
a special token EOS is generated. The model will generate
two sequences, W s and W s′ , sampled in multinomial pol-
icy. The gradient put on words of W s is determined by the
difference between the rewards of W s and W s′ . This can
lower the variance of the gradients and makes the training
procedure stable.

Experiments
Dataset and setting
We evaluate our proposed method on the popular MS CO-
CO dataset (Lin et al. 2014). MS COCO dataset contain-
s 123,287 images labeled with at least 5 captions includ-
ing 82783 training images and 40504 validation images. MS
COCO provides 40775 images as test set for online evalu-
ation as well. Since the standard test set is not public, we
use 5000 images for validation, 5000 images for test and the
remains for training, as in previous works (Xu et al. 2015;
You et al. 2016; Chen et al. 2017c) for offline evaluation.
We use the code publicly1 to preprocess the dataset, such as
pruning infrequent words, and we end up with a vocabulary
set which has 9567 different words. We use different metric-
s, including BLEU-1, BLEU-2, BLEU-3, BLEU-4, METE-
OR, ROUGE-L and CIDEr, to evaluate the proposed method
and compare with other methods.

We extract the image’s feature in two different ways. In
the first way, the image is encoded as a global feature vector
of dimension 2048, and during training, the image feature
vector is only fed into the LSTM unit at the beginning. In
the second, the full image is encoded with the final convolu-
tional layer of Resnet-101 and ends up with a 7× 7× 2048
feature map, and at each time step, this feature map will be
input into the LSTM units. In the following, we denote the
models with image features obtained in the first way as the
FC models, and those in the second way as attention(att)
models.

Implementation Details
We use ResNet-101 (He et al. 2016) pretrained on ImageNet
to encode images. All images are preprocessed as follows:
scaling the smaller edge to 256, doing color normalization
and cropping to centered rectangle. The decoder is a one-
layer LSTM with a hidden state size of 512. The embedding
dimension of word is fixed to 512. We set the embedding di-
mension of image feature to 512 using a linear layer. When
training the attention model, the parameter updating of L-
STM follows (Rennie et al. 2017). We train models under
the XENT loss using ADAM optimizer with a learning rate
of 5 × 10−4 and finetune the CNN from the beginning. We
then train the models under the reinforcement loss to opti-
mize the CIDEr-D metric without finetuning. For all models,
the batch size is set to 16 and every 1K iterations the model
evaluation will be performed during training. When train-
ing models under the RL loss, the learning rate for language

1https://github.com/karpathy/neuraltalk

model is initialized to 1×10−4 and set to 5×10−5 after 50K
iterations, then decreased 1×10−5 every 100K iterations un-
til 1 × 10−5. When training models using RL loss, we use
the models trained under XENT loss as pretrained models to
reduce the search space. By default, the beam search size is
fixed to 3 for all models for test.

Performance on MS COCO
Performance of our models. To test the effectiveness of
TD(λ) modelling method and the baseline method we pro-
posed, we conduct a series of experiments for image cap-
tioning on karpathy’s split of MS COCO dataset. The con-
figurations of models are listed as follows:

• XENT-FC: the FC model trained with the XENT loss.

• SR-Greedy-FC: the FC model trained with a shared re-
ward for every word in a sampled sentence.

• TD-Greedy-FC: the FC model trained with TD learning
and the baseline is computed by the reward of the se-
quence sampled from the greedy policy.

• TD-Multinomial-FC: the attention model trained with TD
learning and the baseline is computed by the reward of the
sequence sampled from the multinomial policy.

The results of these four models above are listed in Ta-
ble 1. The model in the first row is trained with the XENT
loss and three models in the second row are trained with the
reinforcement learning. Through comparing the result of the
XENT-FC with the three RL models in the second row, we
can find that our proposed method with the reinforcemen-
t learning can improve the performance at a great margin.
Compared with the performance of the SR-Greedy-FC mod-
el, the TD-Greedy-FC model performs better in all metrics,
indicating the effectiveness of the TD(λ) modelling method.
The TD-Multinomial-FC model achieves an improvemen-
t of 1.1% and 2.4% in terms of the CIDEr metric com-
pared with the TD-Greedy-FC model and SR-Greedy-FC
model respectively. Better performance can be attributed to
the TD(λ) modelling method which approximates different
actions with the discounted expected future reward and the
baseline method we proposed which can make the variance
more lower than the method that uses the sampled sequence
from a greedy policy as the baseline sequence.

Comparison with the state-of-the-art methods. To ver-
ify the effectiveness of our proposed method, we also com-
pare our models with several state-of-the-art methods. The
comparison results are shown in Table 2, where ‘-’ means
that the corresponding scores are not reported in the origi-
nal papers and the performance of MIXER is from (Rennie
et al. 2017). Methods in the first row of the table do not
train the image captioning model via reinforcement learning
methods, while those in the second row incorporate the rein-
forcement learning technique when training the model. For
fair comparison, we only report the FC-2K model of SCST
(Rennie et al. 2017) which employs the same CNN mod-
el as ours to extract the image feature. The third row lists
two of our models. TD-Multinomial-ATT adopts the atten-
tion mechanism as (Rennie et al. 2017) but with a smaller
region-point numbers of the feature map. It can be seen that



Table 1: Performance of the proposed method on MS COCO dataset.
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

XENT-FC 72.6 55.5 41.5 31.1 25.2 53.3 96.3
SR-Greedy-FC 75.1 58.6 43.8 32.5 25.5 54.4 107.4
TD-Greedy-FC 75.6 59.2 44.5 33.1 25.7 54.9 108.7

TD-Multinomial-FC 75.9 59.5 44.6 33.1 26.0 54.9 109.8

Table 2: Performance comparison of the proposed method with other methods on MS COCO dataset.
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Google NIC (Vinyals et al. 2015) 66.6 45.1 30.4 20.3 - - -
Toronto (Xu et al. 2015) 71.8 50.4 35.7 25.0 23.0 - -
ATT (You et al. 2016) 70.9 53.7 40.2 30.4 24.3 - -

m-RNN (Mao et al. 2015) 67.0 49.0 35.0 25.0 - - -
R-LSTM (Chen et al. 2017c) 76.1 59.6 45.0 33.7 25.7 55.0 102.9

MSM (Yao et al. 2016) 73.0 56.5 42.9 32.5 25.1 53.8 98.6
MIXER (Ranzato et al. 2015) - - - 30.9 24.9 53.8 101.9

SCST(FC-2K) (Rennie et al. 2017) - - - 31.9 25.5 54.3 106.3
TD-Multinomial-FC 75.9 59.5 44.6 33.1 26.0 54.9 109.8

TD-Multinomial-ATT 76.5 60.3 45.6 34.0 26.3 55.5 111.6

Table 3: Evaluation on the online MS COCO testing server. † indicates the results of ensemble models.
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

MSM† (Yao et al. 2016) 73.9 91.9 57.5 84.2 43.6 74.0 33.0 63.2 25.6 35.0 54.2 70.0 98.4 100.3
R-LSTM (Chen et al. 2017c) 75.1 91.3 58.3 83.3 43.6 72.7 32.3 61.6 25.1 33.6 54.1 68.8 96.9 98.8

Adaptive Attention† (Lu et al. 2017) 74.6 91.8 58.2 84.2 44.3 74.0 33.5 63.3 26.4 35.9 55.0 70.6 103.7 105.1
Google NIC† (Vinyals et al. 2015) 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6

ATT† (You et al. 2016) 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8
ERD (Wu and Cohen 2016) 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9

SCA-CNN (Chen et al. 2017b) 71.2 89.4 54.2 80.2 40.4 69.1 30.2 57.9 24.4 33.1 52.4 67.4 91.2 92.1
MS Captivator (Fang et al. 2015) 71.5 90.7 54.3 81.9 40.7 71.0 30.8 60.1 24.8 33.9 52.6 68.0 93.1 93.7

TD-Multinomial-ATT 75.7 91.3 59.1 83.6 44.1 72.6 32.4 60.9 25.9 34.2 54.7 68.9 105.9 109.0
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Figure 3: The influence of beam search sizeK on the XENT-
FC and TD-Multinomial-FC models

our two models outperform the models trained without the
reinforcement learning from comparison between models in
the first row and the third row. And under the same condi-
tions, our models have an superiority over MIXER and SC-
ST models with an improvement of 9.7% and 5.3% in terms
of the CIDEr metric, respectively.

Performance on COCO test Server. We also submit re-
sults of the official test set generated by our best model on
online coco testing server2, and compare the performance

2http://mscoco.org/dataset/#captions-leaderboard

with state-of-the-art systems. The results are shown in Ta-
ble 3. We can see that our single model achieves the best
performance on BLEU-1 (c5), BLEU-2 (c40) and CIDEr (c5
and c40) among these published systems. When looking at
other metrics, our method is also one of the the best. Our
model does not have advantages in all metrics for two rea-
sons: (1) we only optimize the CIDEr metric when training
our image captioning models; (2) we do not employ models
ensemble to improve the performance further. Further ex-
ploration of optimizing the fusion of the metrics and models
ensemble can be left as the future work.

Parameter analysis
We now analyze the influence of the beam search size
K in the test stage. We contrast the TD-Multinomial-FC
model with XENT-FC with the beam size in the range of
{1, 3, 5, 7, 9, 10}. The results are depicted in Figure 3. We
can see that the beam search size K has a greater impact
on the XENT-FC model than on the TD-Multinomial-FC.
Specifically, the performance is like “∧” in the XENT-FC
model, while the TD-Multinomial-FC does not make much
difference as the K goes bigger. We suppose that our pro-
posed method will make the standard deviation of the action
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Figure 2: Quality examples of our best model (red) compared with the attention model trained under XENT loss (black).

distribution become bigger because our method encourages
the action with a higher future reward being sampled more
frequently by the model when training.

Qualitative Analysis
Here we provide some quality examples of our captioning
model shown in Figure 2. The sentences in black are gener-
ated by the pretrained attention model under the XENT loss.
And the sentences in red are generated by our best model
trained under the RL loss based on the pretrained attention
model. So we can sense the improvement by the reinforce-
ment learning intuitively by analysing the captions generat-
ed by the two models. In general, the RL model can gener-
ate more descriptive captions than the base attention model.
Specifically, in Figure 2, for the top four images, the base
attention cannot recognize some objects in the image cor-
rectly. An example can be found in image 2 where the tooth-
brush is mistaken as a banana by the base model, whereas the
RL model correctly describes it. For the middle four images,
the RL model can express the visual content in more detail
and descriptively, for instance in image 7, the RL model can
“see” the traffic light and “infer” that the cars are driving
on the street, while the base model just recognizes the city

street and the traffic. For the bottom four images, the RL
model can organize the language better matching the habit
of human cognition than the base attention model. Taking
image 12 as an example, this image shows us a scene that
a man is talking on the cell phone. The RL model describes
the scene correctly while the base attention model does not,
though its description of the man is not completely wrong.

Conclusion
In this paper, we proposed to incorporate the reinforcement
learning method into image captioning task by considering
the caption generating procedure as a RL problem. Differ-
ent from previous RL works for image captioning, which
consider the words to be equally important for the whole
sequence generation, we formulated the value function by
the temporal difference method, which takes the correlation
between the temporal successive actions into consideration.
Besides, to avoid the high variance during training, we in-
troduced a baseline by calculating the reward of a sequence
sampled by the current model. Experimental results on MS
COCO dataset and comparisons with state-of-the-art meth-
ods demonstrated the effectiveness of our proposed method.
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