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Highlights

• A novel model of technical inefficiency based where improvements are costly.

• Equivalent to model where inefficiency is arbitrary function in input-output space.

• We determine optimal directions in input-output space.

• Guide for policy actions to reduce inefficiency.

• Bayesian techniques are used to statistical inferences.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
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Mike G. Tsionas∗and Marwan Izzeldin†

February 8, 2018

Abstract

This paper presents a novel model of measuring technical inefficiency based on the notion that higher efficiency
requires a certain cost. First, we apply the “rational inefficiency hypothesis” of Bogetoft and Hougaard (2003)
but we fail to find that it rationalizes our data set of large U.S banks with multiple inputs and outputs. In
consequence, we adopt a novel model of profit maximization which explicitly incorporates the cost of technical
inefficiency. The cost of inefficiency is treated as unknown and is parametrized as a function of inputs, outputs
and decision-making-unit specific fixed effects. More importantly, by showing the model to be equivalent to one in
which inefficiency is an arbitrary function of inputs, outputs and the inefficiency cost, we are able to determine
optimal directions in the input-output space that would reduce inefficiency. Bayesian techniques organized
around Markov Chain Monte Carlo are used to perform the computations and provide statistical inferences
as well as useful policy measures to reduce inefficiencies in the U.S banking sector through an examination of
different realistic scenarios.
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1 Introduction

Economic and operational research models that address technical inefficiency, abstract from a fundamental concern,
that improvements in efficiency require certain costs in terms of re-allocating resources and better management of
the production process etc.1 However, it is clear that technical efficiency cannot be improved unless real resources
are used and certain costs are incurred. As efficiency is under the control of the firm, it must be the case that
observed efficiencies are the result of an optimization process that takes explicitly into account the real costs of
improvements in efficiency. Although Bogetoft and Hougaard (2003) make a similar point that observed efficiencies
are optimal, their techniques are quite distinct to those proposed in this paper.

The “rational inefficiency hypothesis” of Bogetoft and Hougaard (2003) has empirical implications which are
not supported by our data set. Therefore, we adopt a profit maximization model with an output distance function
to handle the multiple-output, multiple-input nature of production. We incorporate the cost of technical inefficiency
in profit maximization and we use duality of the profit function to derive, not only input demand functions and
output supply functions, but also inefficiency as a function of input and output prices and the cost of technical
inefficiency. The resulting system of equations, which includes the unobserved cost of inefficiency, is estimated
using Bayesian techniques organized around Markov Chain Monte Carlo (MCMC), specifically the Girolami and
Calderhead (2011) Riemannian Manifold Hamiltonian technique.

Another important implication of our model is that it can be viewed as a model where inefficiency is an
arbitrary function of inputs and outputs. In this sense, these results, of course, give us directions in the input-
output space that can be reasonably used in other studies or banking policy makers with a purpose towards reducing
inefficiency. Usually, such concerns are not taken into account although they clearly impose an overhead in empirical
analysis, see for example Asmild and Matthews (2012), Balezentis and DeWitte (2015), Biener et al. (2016), Reyes
et al. (2016), Saranga (2009), Tecles and Tabak (2010), Sena (2016), Tsionas and Mamatzakis (2017), Annaert
et al. (2003), Chen et al. (2016), Badunenko and Kumbhakar (2017) and Sun et al. (2015). Simar et.al (2016)
provide a probabilistic formulation of production to give an original characterization of the directional distances.
They define robust versions of directional distance functions, introducing order-m and order-α quantile versions
of distance functions. They also allow exogenous factors in the production process. Bădin et.al (2012) examine
the impact of environmental factors on production process using a new two-stage type approach. The authors use
conditional measures to overcome the inconsistencies associated with the traditional two-stage analysis. Daraio and
Simar (2014) compute conditional and unconditional directional distances and outline how the approach of Bădin
et al. (2012) can be modified in the context of directional distance to develop two-stage analysis of efficiency scores.
In this literature, inefficiency is taken as a “given” in the sense that it is not the outcome of an optimization problem
by the firm. In this paper we take a different approach and assume that inefficiency is under the control of the
decision making unit, albeit at a cost. Input demands and output supply functions are derived formally from the
profit maximization problem along with an optimal inefficiency function which depends on input and output prices
as well as the cost of inefficiency. The challenging part in the empirical implementation of the model is that the
inefficiency cost is unobserved.

Since we estimate specific directions2 in the input-output space, it is critical for policy makers to reduce
inefficiencies at the level of the firm and the sector as a whole. Thus far, many studies estimate technical inefficiency
but few focus on what types of measures can be taken to reduce it. Other studies focused on incorporating
exogenous influences on inefficiency (see previous references). However, one can argue that it is not only exogenous
or environmental factors that matter. We can imagine, for example, that regulation is an important exogenous or
environmental factor but that the input-output choices of the firm should also determine its overall level of technical

1See for example Aigner, Lovell and Schmidt (1977), Cornwell, Schmidt and Sickles (1990), Sickles (2005), Kutlu and Sickles (2012),
Kumbhakar and Tsionas (2006) and chapter 3 in the excellent monograph of Kumbhakar and Lovell (2000).

2When inefficiency is measured we use a radial measure, that is all inputs are expanded or contracted by the same %. with different
directions this is no longer necessary so we can for example increase capital by 5% and decrease labor by 7%
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inefficiency, conditional on the environment. In our work we do not use the “separability” assumption of Simar and
Wilson (2011) which can be important in their data generating process but not in ours. The reason is that because
technical inefficiency is the outcome of profit maximization, it is impossible to argue that “separability” holds. In
fact inefficiency depends on all inputs and outputs.

Our work is related to Bogetoft and Hougaard (2003) model that explains how inefficiency, on some occasions,
may be a rational choice. For example, the gains that may accrue from observed inefficiency might derive from
meeting other preferences or from unusual market conditions that permit, say, rent seeking. Where there is generally
ignorance of such considerations, the argument that inefficiency should be eliminated is undermined. The alternative
approach taken by Bogetoft and Hougaard (2003) is to model the slack selection process and to draw inferences
about the relative value of different types of slack. As those authors explain: where the conventional approach
is to attribute X-inefficiency to sub-optimal behavior, ‘if what appears to be technical inefficiency at first sight
actually is the result of rational and optimizing behavior of the firm such undertakings seem fruitless indeed, if
not directly harmful over time’ (Bogetoft and Hougaard, 2003, p. 246). Although we agree that inefficiency is,
certainly, at least to a great extent, the outcome of an optimization process, we highlight that it is not fruitless
at all to examine specific policy measures to reduce inefficiency. This is because inefficiency may also depend on
the decision variables of the optimization process which can be manipulated to move firms closer to the frontier.
For example, if inefficiency itself depends on inputs and / or outputs, which is quite likely in practice, then the
Bogetoft and Hougaard (2003) framework may not be appropriate. In their model specification, input slacks are
decision variables, which is hard to disagree with, but they are not allowed to vary systematically with inputs or
outputs. Therefore, it is not feasible to explore the implications of alternative input - output combinations that
would yield more efficiency at the cost of non-detrimental decreases in the objective function of the firm -which is
a non-decreasing function of profit and input slacks.

The core message is that, where the elimination of inefficiency requires costly resources, observed inefficiencies
may be a proxy ‘for the omitted aspects or values of slack and that this proxy may be used to predict more precisely
the results of changes in the control instruments as well as to define other types of measurement, e.g., measures
of allocative efficiency’ (Bogetoft and Hougaard, 2003, p. 246). However, contrary to that view, we do not regard
slack as desirable. Rather, while we hold to the Leibensteinian view that inefficiency is undesirable, we complement
that analysis by showing how inefficiency is difficult to eliminate. Bogetoft and Hougaard (2003) adopt the view
that inefficiency represents resources that produce unobserved desirable outputs. Although valid in principle, this
view cannot always hold. For example, in our application, slacks are not positive and, therefore, the Bogetoft
and Hougaard (2003) view is not definitive (see Asmild et.al, 2013). Despite that this does not preclude model
mis-specifications, it is not compatible with the ‘benevolent’ approach to inefficiency. Therefore, we look for an
alternative in a model is equivalent to a model where inefficiency is an arbitrary function of inputs, outputs and the
inefficiency cost, so that we can determine optimal directions in the input-output space. In turn, we can use these
directions to suggest policy actions that must be taken to reduce inefficiency. We do this using alternative plausible
scenarios.

The paper is organized as follows. In Section 2 we present the data for this study (U.S banks during the
period 2000-2010 ) and outline the “rational inefficiency hypothesis” of Bogetoft and Hougaard (2003). The proposed
model specification is presented in section 3. In section 4, we provide an alternative interpretation of the model
that is compatible with optimal directions in the input - output space. The empirical application is presented in
section 5, where policy implications are also derived.
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2 Data and the “rational inefficiency hypothesis”

2.1 Data

A decade of quarterly data, 2001-2010, are taken from the ‘Call Reports’ of the Federal Reserve Bank of Chicago.
These relate to FDIC insured commercial banks, where the data vary widely by size, capitalization, regulatory
environment, and so on. To ameliorate the potential for heterogeneity in production, Malikov, Kumbhakar and
Tsionas (2016) select a sub-sample of larger banks, so giving an unbalanced panel of 2,397 bank-year observations
for 285 banks. Metrics for the outputs of a bank’s production process are: consumer loans (y1); real estate loans
(y2); commercial and industrial loans (y3); securities (y4) and off-balance-sheet income (y5). Financial equity is
also included as a quasi-fixed input. For variable inputs, we use: full-time equivalent employees (x1); physical
capital (x2); purchased funds (x3); interest-bearing transaction accounts (x4) and non-transaction accounts (x5).
All nominal stock variables are deflated to 2005 U.S. dollars. Summary statistics for the data are listed in Table 1
(see Malikov, Kumbhakar and Tsionas, 2016, pp. 1420-21).

2.2 An examination of the “rational inefficiency hypothesis”

Let x ∈ <K represent a vector of inputs whose prices w ∈ <K , and y ∈ <M represent a vector of outputs.We
denote by xi and yi the input and output vector for a decision-making-unit i ∈ {1, ..., n}. In this section we set
out to explore the empirical implications of the Bogetoft and Hougaard (2003) approach. First, the technology is
estimated using the DEA approach by solving the following problem:

minϑ :

(ϑxi, yi) ∈ T ∗,
(1)

where
T ∗ = {(x, y) ∈ <K ×<M :

∑n
j=1 λjxjk ≤ xk, k = 1, ...,K,∑n

j=1 λjyjk ≥ ym, m = 1, ...,M, λj ≥ 0, j = 1, ..., n}.
(2)

We can also determine the cost-minimizing combinations by solving:

minx,λ : w′x,∑n
j=1 λjxjk ≤ xk, k = 1, ...,K,∑n
j=1 λjyjk ≥ ym, m = 1, ...,M,

λj ≥ 0, j = 1, ..., n.

(3)

Suppose the optimal input mix from (3) is zi. The “rational inefficiency hypothesis” implies that the following
slacks:

sik =
xik − zik
zik

, k = 1, ...,K, (4)

must be non-negative3, “assuming that the estimated technology is a good estimate of the ‘true’ technology.” (Asmild
et al., 2013, p. 83). To estimate the technology as accurately as possible, taking account of (possible) heterogeneity,
despite the fact that we use only large banks which are likely to operate under similar conditions, we estimate
different DEA problems for each decile of banks (deciles defined by total assets). Therefore, we address ten different
situations similar to (1) and (3). The results are reported in Table 1.

3In the Bogetoft and Hougaard (2003) approach the decision-making-unit is equipped with a utility function, Ui(Πi, si), where Πi is
profit and si ∈ <K is the vector of input slacks. The utility function is assumed non-decreasing in all its arguments.
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Table 1: Descriptive statistics of optimal input mix
input slack on

average (%)
x1, full-time equivalent employees 1.37%

(4.44%)

x2, physical capital 1.42%
(1.38%)

x3, purchased funds -6.17%
(2.25%)

x4, interest-bearing transaction accounts -9.17%
(2.50%)

x5, non-transaction accounts -12.25%
(4.71%)

Notes: The table reports sample averages with sample standard
deviations in parentheses.

The results in Table 1 give little support to the “rational inefficiency hypothesis” as most inputs are associated
with sizable negative slacks. Although, on the average, the slacks of full-time equivalent employees and physical
capital are positive, the standard deviations are quite large allowing for negative values. For purchased funds,
interest-bearing transaction accounts and non-transaction accounts, all slacks are negative on the average and their
sample distributions are not compatible with positive values (see Figure 1). Even for full-time equivalent employees
there is a sizable proportion of negative slacks (slightly less than 50%) which cannot be reconciled with the “rational
inefficiency hypothesis”. As a consequence, we resort to a different way of rationalizing inefficiency.

Figure 1: Sample distributions of input slacks
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In Asmild et al. (2013) the authors found some negative deviations but these were quite small. Therefore, they
decided to ignore small negative deviations “small” being defined as less than 0.5 full-time-equivalent employment.
In our case, in Figure 1, even if we truncate small negative deviations, most remain quite large, i.e., greater than
-10% for full-time-equivalent employment and purchased funds and -20% for non-transaction accounts.
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3 A New Model

3.1 Theoretical Framework

Let x ∈ <K again, represent a vector of inputs whose pricesw ∈ <K and y ∈ <M represent a vector of outputs
whose prices are p ∈ <M , and 0 < u ≤ 1 is technical inefficiency. Production possibilities are represented by the
technology set T =

{
(x, y) ∈ <K ×<M : x can produce y

}
which can be described by an output distance function

D(x, y) = 1, where D : <K×<M → <. We can write the output distance function in the form: y1 = f (y2, ..., yM , x).
Introducing technical inefficiency we have the representation:4

y1 = f (y2, ..., yM , x) e−u. (5)

Since technical inefficiency is commonly assumed to be under the control of the firm, it should be possible to
reduce it at the cost of q per unit, where q > 0. The profit maximization problem of the firm then becomes:

Π(p, w, q) = max
x∈<K ,y∈<M ,u∈(0,1]

:
M∑

m=1

pmym −
K∑

k=1

wkxk − qu, (6)

whereΠ(p, w, q) is the profit function. Using (5), we can write the problem as:

Π(p, w, q) = max
x∈<K ,y∈<M ,u∈(0,1]

: p1

{
f (y2, ..., yM , x) e−u

}
+

M∑

m=2

pmym −
K∑

k=1

wkxk − qu. (7)

From standard duality, we have the following results:

∂Π(p, w, q)

∂p1
= y∗1(p, w, q) = f (y∗2 , ..., y

∗
M , x) e−u

∗
, (8)

∂Π(p, w, q)

∂pm
= y∗m(p, w, q), m = 2, ...,M, (9)

−∂Π(p, w, q)

∂w
= x∗(p, w, q), (10)

−∂Π(p, w, q)

∂q
= u∗(p, w, q), (11)

where y∗(p, w, q) ∈ RM represents optimal output supplies, x∗(p, w, q) ∈ RK represents optimal input de-
mands and u∗(p, w, q) represents optimal inefficiency which is a function of all prices as well as q. Therefore, we
can derive technical inefficiency endogenously with multiple inputs and outputs.

Given the duality results, we can specify a profit function Π(p, w, q) and use the duality results in (8)-(11).
The advantage is clear. For example, in the classical profit maximization framework:

max
x,y

: p′y − w′x, s.t. F (x, y) = 1,

where F (x, y) is a general production transformation function, the objective function is Π(p, w). Duality
then, ascertains that we can obtain input demand functions as x(p, y) = −∂Π(p,w)

∂w and output supply functions as
y(p, y) = ∂Π(p,w)

∂p . Therefore, we do not have to specify the transformation function, F (x, y), and solve the possibly

4From linear homogeneity with respect to outputs, we can write the output distance function in log terms as follows: ln y1 =
g(ln y2

y1
, ..., ln yM

y1
, lnx)− u.
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cumbersome profit maximization problem. Instead we can specify directly a profit function, Π(p, w) and derive
input demand and output supply functions by direct differentiation.

The problem in our particular context is, of course, that we rarely if ever we have information on q, which
can be thought of as a subset of prices. The problem can be solved if we parametrize q. Specifically suppose
{pit, wit, qit} ≡ {zit} and we specify a flexible quadratic functional form for the profit function:

Πit = βo + β′zit + 1
2z
′
itΓzit, (12)

where βo is a scalar, β ∈ Rd and Γis a d×d matrix of parameters, where d = M +K+ 1. This function is flexible in
the sense that it is a second-order approximation to an arbitrary profit function. Such second-order approximations
are well established in the relevant literature and, therefore, we use them here as well with relative safety.

Let us rewrite (12) in expanded form as follows5:

Πit = βo + β′ppit + β′wwit + βqqit + 1
2p
′
itΓpppit + + 1

2w
′
itΓwwwit + 1

2γqqq
2
it+

p′itΓpwwit + p′itγ̃pqqit + w′itγ̃qwqit+

δtt+ 1
2δttt

2 + p′itγ̃ptt+ w′itγ̃wtt+ δqtqitt,

(13)

where we have also introduced a time trend to capture technical progress and a tilde indicates a vector. As can be
seen from the above expression, the profit function depends on levels of prices and a trend, their squares as well as
their interactions to provide a full second-order approximation to an arbitrary profit function.

By differentiating (13) and using the duality results in (8)-(11) we have the following equations:

∂Πit
∂pit

= βp + Γpppit + Γpwwit + γ̃pqqit + γ̃ptt = yit,
∂Πit
∂wit

= βw + Γpwwit + Γwwwit + γ̃qwqit + γ̃wtt = −xit
∂Πit
∂qit

= βq + γqqqit + γ̃pqpit + γ̃qwwit + δqtt = uit.

(14)

It remains necessary to specify a model for qit as data are not available. We assume that inefficiency cost,
qit, is given by the following equation which depends on all inputs, outputs and the time trend.

qit = µi + λt + αeeit, (15)

where µi represents fixed effects, λt represents time effects and eit is equity which is considered as a quasi-fixed
input 6. In this specification, the inefficiency cost is decomposed into a firm-specific component, a time-specific
component and a component related to equity which is, possibly, an important determinant of the inefficiency cost.
The coefficient αe captures the effect of equity on the cost of inefficiency.

After introducing error terms (denoted by v) which are necessary for econometric inferences, we can write
(14) and (15) in the following form:

yit = βp + Γpppit + Γpwwit + γ̃pqqit + γ̃ptt+ vy,it,

−xit = ∂Πit
∂wit

= βw + Γpwwit + Γwwwit + γ̃qwqit + γ̃wtt+ vx,it,

qit = µi + λt + αeeit + vq,it.

(16)

For the error vector vit = [vy,it, vx,it, vq,it] we assume vit ∼ NM+K+1 (O,Σ), a multivariate normal distribu-
tion. Notice that we omit the third equation in (14) as it contains the unobserved inefficiency uit. Inefficiency can

5Linear homogeneity of the profit function in all outputs is imposed by dividing all prices by the first input price.
6Apparently a vector of quasi-fixed inputs can be included in the specification.
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be recovered using the duality result:

uit = βq + γqqqit + γ̃pqpit + γ̃qwwit + δqtt. (17)

To obtain meaningful results we have to impose the standard restrictions in the profit function, viz. that it is
non-increasing in input prices and inefficiency cost, and non-decreasing in output prices. This implies that profits
cannot go up, ceteris paribus, when input prices or inefficiency costs increase, and profits cannot decrease when
output prices increase, ceteris paribus. These intuitive results have also been proven mathematically in the relevant
literature.

Most importantly, perhaps, we have also to impose the restriction that the RHS of (17) must also be positive,
otherwise we would end up with negative inefficiency estimates. Suppose θ ∈ RD denotes the vector of all parameter
estimates in (13) and (15).D is the dimensionality of the parameter vector. The monotonicity restrictions adopted
have the form:

M(θ,Y) ≤ O, (18)

where Y = {yit, xit, pit, wit} denotes the available data andM : RD × R2(M+K) → R(M+K+2)N ′ denotes a vector
field describing the restrictions, where N ′ denotes the number of available observations. Specifically, we have D
elements in the parameter vector θ, 2(M +K) elements in the data for each observation and M +K+1 restrictions
in total from (16) and one restriction from (17) to ensure inefficiency is non-negative. The set of restrictions in (18)
simply enforces the requirements that the profit function is non-increasing in input prices and inefficiency cost, and
non-decreasing in output prices. Due to the quadratic approximation, these restrictions are not simple restrictions
on the parameter vector θ. Instead they involve the data as well, thus the notationM(θ,Y).

The system of (16) and (15) can be estimated by maximum likelihood (ML) if we ignore (18). As these
constraints cannot be ignored we have to use special techniques which are reported in the Technical Appendix.
These techniques are Bayesian in nature and rely on Markov Chain Monte Carlo (MCMC).

3.2 Returns to scale and inefficiency

For simplicity, let us assume we have a single output but multiple inputs, and production possibilities are described
by

y = f(x)e−u, 0 < u ≤ 1.

The profit function is generalized to be:

Π(p, w) = max
x,u

: pf(x)e−u − w′x− q(u, x), (19)

where p is the price of output and q(u, x) represents a general function of technical inefficiency and inputs
themselves, with ∂q(u)

∂u < 0, ∀u ∈ (0, 1]. The first-order conditions for profit maximization are:

pfk(x)e−u = wj + ∂q(u,x)
∂xk

, ∀k = 1, ...,K,

pf(x)e−u = −∂q(u,x)
∂u .

(20)

From the first K conditions we obtain:

fk(x)

f1(x)
=
wk + ∂q(u,x)

∂xk

w1 + ∂q(u,x)
∂x1

, ∀k = 2, ...,K, (21)

9
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which implies that the first-order conditions for cost minimization are not satisfied and, therefore, allocative
inefficiency is induced as well.

By dividing the two conditions in (20) we obtain:

fk(x)

f(x)
= −

wk + ∂q(u,x)
∂xk

∂q(u,x)
∂u

. (22)

Multiplying both sides by xj and summing up, we have:

K∑

k=1

fk(x)xj
f(x)

= −
∑K
k=1 wkxk +

∑K
k=1

∂ log q(u,x)
∂ log xk

q(u, x)

∂ log q(u,x)
∂ log u · q(u,x)

u

. (23)

In this expression, RTS(x) ≡ ∑K
k=1

fk(x)xk
f(x) is the returns-to-scale and TCx =

∑K
k=1 wkxk represents total

input cost. Moreover, εk(u, x) ≡ ∂ log q(u,x)
∂ log xk

represents the elasticity of the inefficiency costs with respect to input
xk and εu(u, x) ≡ ∂ log q(u,x)

∂ log u is the elasticity of the inefficiency costs with respect to technical inefficiency. The
expression can be simplified as follows:

RTS(x) = −TCx +
∑K
k=1 εk(u, x)

εu(u, x)
· u. (24)

This provides a way to obtain returns-to-scale from the profit maximization model. Apparently x =

x∗(p, w), u = u∗(p, w), the profit-maximizing input demand vector field. In the special case where inefficiency
costs do not depend on the inputs, that is ∂q(u,x)

∂xj
= 0, j = 1, ...,K we obtain:

RTS(x) = −TCx · u
εu(u)

, (25)

where εu(u) = d log q(u)
d log u . A similar analysis can be carried out in the case of multiple outputs but we do not

pursue it further in the interest of space.

4 Model generalization and profit maximization

In this section we generalize the model so that it can provide directions in the input-output space that are compatible
with profit maximization. Despite the fact that we do not specify a directional distance function (Atkinson and
Tsionas, 2016 and Kumbhakar and Tsionas, 2016), we can determine directions from the data and indicate, both
qualitatively and quantitatively, policy actions that must be taken by the banks to reduce waste of resources. The
way to do this, without destroying the nice duality properties of the profit function, is to assume that technical
inefficiency is a function of all inputs and outputs, viz.

u = u(x, y), u : <K ×<M → (0, 1]. (26)

The profit maximization problem of the firm can then be expressed as follows:

Π(p, w, q) = maxx,y : p′y − w′x− q · u(x, y)

s.t. D(x, y) ≤ 1,
(27)

where D(x, y) is the (output) distance function and u(x, y) is an arbitrary inefficiency function depending on
inputs and outputs. We wish to empahasize that there is a certain strand of the literature which has been heavily
occupied with parametric specifications of inefficiency on exogenous (or “environmental factors” as they are called).
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See Battese and Coelli (1995), Kumbhakar et.al (1991), Deprins and Simar (1989a,b), Reifschneider and Stevenson
(1991), Simar et.al (1994), Sickles et.al (1986).

From duality we have the conditions:

∂Π(p,w,q)
∂p = y∗(p, w, q),

−∂Π(p,w,q)
∂w = x∗(p, w, q),

−∂Π(p,w,q)
∂q = u∗(p, w, q).

(28)

It is essential to observe that the new approach does not deliver results that are different from (8)-(11). We
obtain the same duality relationships without optimizing with respect to inefficiency. This is due to its dependence
on inputs and outputs through (26). The great advantage of the new formulation in (28), that we are permitted to
utilize these expressions to solve for u∗ as a function of x∗, y∗ and q. Specifically, we can solve (28) to obtain

p = p(w, q, y∗)

w = w(p(w, q, y∗), q, x∗)⇒ w = w(q, y∗, x∗)
. (29)

From these relationships, the third equation in (28) can be written as

u∗ = u∗(q, y∗, x∗). (30)

We label Model B the model with (26) and Model A the model in (7) and (8)-(11). Estimation details,
organized around Bayesian techniques using Markov Chain Monte Carlo (MCMC), are provided in the Technical
Appendix.

5 Empirical application

5.1 Empirical results

Our empirical results are reported in Table 2. Specifically, we report posterior means and posterior standard
deviations produced from our MCMC procedure. To implement MCMC we use 15,000 draws, the first 5,000 of
which are discarded to mitigate the possible impact of start up effects.

Table 2: Estimates of equation (26)
posterior mean posterior s.d.

y1, consumer loans -0.202 0.235
y2, real estate loans 0.174 0.155
y3, commercial & industrial loans -0.223 0.135
y4, securities -0.128 0.103
y5, off-balance-sheet income -0.092 0.075
x1, full-time equivalent employees -0.171 0.122
x2, physical capital -0.104 0.098
x3, purchased funds 0.081 0.072
x4, interest-bearing transaction accounts 0.065 0.045
x5, non-transaction accounts 0.033 0.029
inefficiency costs, q 0.832 0.014
Equity, e -0.044 0.012

Our results show that purchased funds, interest-bearing transaction accounts and non-transaction accounts
contribute negatively to optimal inefficiency. The most notable being the interest-bearing purchased funds (0.081),
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Figure 2: Sample densities of inefficiency cost, q and technical efficiency, rit
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followed by transaction accounts (0.065), and non-transaction accounts (0.033). In terms of outputs, the cost of
inefficiency and inefficiency itself can be reduced primarily by expanding commercial & industrial loans (-0.223),
followed by consumer loans (-0.202), real estate loans (-0.174), securities (-0.128), and off-balance-sheet income
(-0.092). These findings provide us with directions in the input-output space that can be reasonably adopted by
policy makers to reduce inefficiency.

Sample densities of q and efficiency are reported in Figure 2. The sample distribution of q is skewed to the
right, suggesting that for most banks the inefficiency cost is large. Technical efficiency ranges from 50% to 95%,
averaging, approximately, 75%.

Figure 3 presents the relationship between efficiency and q, which is positive, as expected, and approximately
linear. The results in Table 2 imply that relatively large reductions of inefficiency costs are required to make it cost-
effective in order to improve efficiency, further implying that inefficiency is likely to be quite persistent. Specifically,
a 10% reduction in inefficiency requires, ceteris paribus, a reduction of 8.32% in its cost.

Figure 3: Sample relationship between q and effi-
ciency
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Figure 4: Evolution of average inefficiency cost over
time
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As an additional implication of the model we wish to examine how average inefficiency cost evolves over time.
This is presented in Figure 4. Interestingly enough, q increases sharply after 2006 and continues to rise through to
2009; that is, well before and also during the sub-prime crisis. The explanation is that q depends on all inputs and
outputs which have been misallocated in the banking sector as the result of the forces that lead to the financial
crisis of 2008-2009. This can also be explained by the positive contribution of real estate loans to q providing further
support to the misallocation hypothesis.

5.2 Policy measures

We now turn to policy suggestions for reducing inefficiency in the banking sector. We consider several scenarios,
where our analysis is performed at the medians of the variables. The results are reported in Table 3 and are obtained
as follows. Suppose we examine the first scenario where all outputs are simultaneously expanded by 10%. Since we
have an MCMC sample

{
θ(s)s = 1, ..., S

}
(where S =20,000).

Let the median vector of outputs be given by ỹ. The vector is disturbed by 10% and becomes ỹnew = ỹ+4ỹ,
where 4ỹ = h · ỹ, where h = 0.1. With inefficiency evaluated at ỹ and ỹnew using equation (17) we respectively
obtain, say ũ and ũnew respectively. The effect on inefficiency, in percentage terms, is: ũnew−ũ

ũ . As this computation
is performed for each MCMC, we can easily compute the sample average and sample posterior standard deviations
of the inefficiency effect.

Table 3: Policy actions to affect inefficiency
Scenario sample post. mean

inefficiency
change in optimal

profit
I. Expand all outputs by 10% -4.55%

(1.32%)

-0.017%
(0.0044%)

II. Expand all inputs by 10% 7.45%
(2.24%)

-0.023%
(0.0032%)

III. Reduce q and increase e by 10% -5.52%
(0.48%)

7.155%
(1.47%)

IV. Expand all outputs except real estate by 10% -9.18%
(0.76%)

-0.0082%
(0.0012%)

V. Expand all inputs except labor and physical capital by 10% -11.71%
(1.25%)

-0.012%
(0.0037%)

Notes: Sample standard deviations are reported in parentheses

The results in Table 3 indicate that the banking sector can substantially reduce inefficiencies. For example
the most effective measure would be the expansion of all inputs (with the exception of labor and physical capital)
by 10% (effect -11.71%). Close behind would be the expansion of all outputs (except real estate) by 10% (effect
-9.18%). However, the expansion of all inputs by 10% would be deleterious, since inefficiency would rise by 7.45%.

The relevance of these results is not limited to the “median” banking firm: for example, when we reduce q
and increase e by 10%, the median effect is -5.52%. Taking into account a sample posterior standard deviation of
0.48%, we would expect banks in general to experience reductions in inefficiency of between -4.56% and -6.48%.
In emphasising that we are no longer taking the median bank as our reference, an expansion of all inputs by 10%
would increase inefficiency from between 2.97% and 11.93%. These results, of course, rely on asymptotic normality
of the effects. A clearer picture emerges if we present the full marginal posterior distributions of the five effects
corresponding to the different scenarios in Table 3. These are reported in Figure 5, for all banks across all parameter
draws. With the one exception of Scenario III (where profits increase by 7.1%) the third column of Table 3 indicates
how profit falls with a change in the optimal decision of the banks. The significance of a 0.01% profit loss of (i.e.,
$100,000 per $1 billion) is difficult to judge given that changes in efficiency range from 4.5% to 11.7%. Our ‘success’
is in being able to attribute gains and losses against scenarios that policy-makers and decision-makers can examine.
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Figure 5: Sample marginal posteriors for all observations and parameter draws
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It also turns out that exact marginal posteriors across all bank observations and MCMC parameter draws
are far from normality with the exception of scenario I. This picture provides a more accurate description of the
inefficiency effects arising from the different scenarios, although the normality-based “rule of thumb” (mean plus
and minus two standard deviations) is simple enough to provide a first-approximation advice to policy makers and
banking authorities.

5.3 Sensitivity analysis and other technical remarks

Given the use of the MCMC, it is essential to assess convergence and examine autocorrelation of MCMC draws.
Convergence is assessed using the Geweke (1992) convergence diagnostic. Specifically, for each parameter, we test for
equality of means in the first and last 25% of the draws. Geweke’s (1992) statistic converges asymptotically (in the
number of draws) to a standard normal distribution. In our application, these statistics ranged from 0.220 to 1.344
in absolute value, suggesting that MCMC has converged. To examine autocorrelation, we compute autocorrelation
functions (acf) for each parameter based on the MCMC draws. In Figure 6, we report the maximal values of
autocorrelation coefficients at each lag from 1 to 50 (in absolute value but retaining the sign for plotting). For
comparison, we also plot the maximal values of autocorrelation coefficients at each lag from a Metropolis-Hastings
MCMC scheme: The Metropolis-Hastings MCMC scheme generates a candidate draw as θc ∼ N

(
θ(s−1), hI

)
,

where θ(s−1) is the previous draw and h > 0 is a smoothing constant. The candidate is accepted with probability
min

{
1, p(θc|Y)

p(θ(s−1)|Y)

}
and we set θ(s) = θc, otherwise we repeat the previous draw and we set θ(s) = θ(s−1), ∀s =

1, ..., S. We use the same number of draws, S, and we select h by trial-and-error so that approximately 25% of all
candidates are, eventually, accepted.

The autocorrelation functions in Figure 6 shows that the performance of Riemannian MCMC is much better
than the Metropolis-Hastings MCMC. The autocorrelations from the Riemannian MCMC are, practically, zero after
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Figure 6: Autocorrelation functions
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about lag 5 whereas autocorrelations from Metropolis-Hastings MCMC remains close to 0.5 at lag 50.
Another important technical question is the sensitivity of the results to the number of draws. To address this,

we increase the number of draws to 25,000, 35,000,...,125,000. We omit the first 5,000 draws to mitigate possible
start up effects and re-compute the posterior means and posterior standard deviations of the parameters. Figure
7 shows the percentage deviations relative to the case with 15,000 draws and it can be seen that increasing the
number of draws leaves the results unchanged.

The prior is flat over the region described by the constraints in (18), see also (A.3). As such, we do not
impose any particular prior information other than the imposition of economic constraints. It would be interesting,
however, to adopt an informative prior of the form:

θ ∼ N (θ, V) , (31)

where θ, V are, respectively, the prior mean and prior covariance matrix. This prior is truncated to the set
in (18) to account for the economic restrictions. To examine sensitivity with respect to the prior, we set θ = ϕI

and V = ω2I. We generate 10,000 different ϕ and ω values from uniform distributions in the interval
(
−106, 106

)

and
(
1, 106

)
respectively. In turn, we re-run our Riemannian MCMC scheme with 15,000 draws the first 5,000

are discarded to mitigate start up effects. We compute the percentage deviations of posterior means and posterior
standard deviations relative to the baseline case which corresponds to a flat prior over (18). The densities are
computed using all parameter draws and all the 10,000 different ϕ and ω values relative to the baseline case.
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Figure 7: Sensitivity to number of draws
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Figure 8: Senstivity to prior
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The densities displayed in Figure 8 show that the results to be robust with respect to large changes in the
prior. This provides some assurance that the results corresponding to the different scenarios are not artificial as
they do not depend on a specific prior.

6 Concluding remarks

In this paper we have proposed to incorporate explicitly the cost of technical inefficiency in a maximization profit
maximization model recognizing that improvements in efficiency require real resources and, therefore, certain costs.
This point has been ignored in the literature. Bogetoft and Hougaard (2003) have proposed the “rational ineffi-
ciency hypothesis” but the empirical implications of this hypothesis, unfortunately, are rejected in our U.S banking
application making it essential to provide an alternative hypothesis.

We have used an output distance function with multiple outputs and multiple inputs and duality of the profit
function to derive input demand functions, output supply functions but more importantly inefficiency as a function
of input and output prices and the cost of technical inefficiency. The resulting system of equations, which include
the unobserved cost of inefficiency is estimated using Bayesian techniques based on MCMC, in specific the Girolami
and Calderhead (2011) Riemannian Manifold Hamiltonian technique. We show that the model is equivalent to
a model where inefficiency is an arbitrary function of inputs, outputs and the inefficiency cost, so that we can
determine optimal directions in the input-output space to take policy actions to reduce inefficiency.We have applied
the new techniques to an unbalanced panel of U.S banks for the period 2000-2010. The empirical results suggest
that a 10% decrease of inefficiency requires a 9.59% decrease of its cost. This implies that relatively large reductions
of inefficiency costs are required in order to improve efficiency, implying further that inefficiency is likely to be quite
persistent. Additionally, inefficiency cost increases sharply after 2006 and increases through to 2009, that is well
before and also during the sub-prime crisis. The explanation is, apparently, the positive contribution of real estate
loans to inefficiency cost, providing further support to the misallocation hypothesis. Our results also provide us
with directions in the input-output space that can be reasonably used in other studies or banking policy makers
with a purpose towards reducing inefficiency.

As the model provides directions in the input-output space, it can be used to address more complex problems
where competing approaches have been suggested as, for example, in Atkinson and Tsionas (2016) where such
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directions are estimated using Bayesian techniques rather than derived directly from the model. The two approaches
can be compared and contrasted to decide which model is best in the light of the data, using the concepts of marginal
likelihood and Bayes factors. Simar et. al (2016) use nonparametric conditional efficiencies and propose a model
where the heterogeneity variable is linked to a particular input or output. In our context we allow for a full set of
environmental variables that determine the heterogeneity. Apparently, there is room for improvement in this context
by introducing semiparametric components into the model and examining further its robustness, particularly when
it comes to the examination of results corresponding to different policy scenarios.
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TECHNICAL APPENDIX. Inference and Markov Chain Monte Carlo

(MCMC)

The likelihood function is the following:

L(θ,Σ;Y) = (2π)−NT (M+K+1)/2|Σ|−NT/2e
∑n
i=1

∑T
t=1 Vit(θ,Y)′Σ−1Vit(θ,Y), (A.1)

where Vit(θ,Y) denotes the errors in (16). It is possible to integrate out Σ and obtain:

L(θ;Y) ∝ |
n∑

i=1

T∑

t=1

Vit(θ,Y)V (θ,Y)′|−NT/2 ≡ A(θ,Y)−NT/2, (A.2)

where A(θ,Y) =
∑n
i=1

∑T
t=1 Vit(θ,Y)Vit(θ,Y)′.

The major problem in implementing ML is that we have to take account of the restrictions in (18). These
are restrictions that we must impose for each observation in the sample, otherwise inefficiency estimates will not
be meaningful as they are not produced from a proper profit function. Therefore, we opt for a Bayesian approach
using a prior which is flat over the region describing the restrictions, viz.:

p(θ) ∝ I(M(θ,Y) ≤ O), (A.3)

where I() is the indicator function. Using Bayes’ theorem we combine (A.2) and (A.3) and we have the
posterior:

p(θ|Y) ∝ A(θ,Y)−NT/2 · I(M(θ,Y) ≤ O). (A.4)

To explore the posterior we use Markov Chain Monte Carlo (MCMC) techniques. Specifically we use the
Girolami and Calderhead (2011) Riemannian manifold Hamiltonian MCMC. The algorithm uses local information
about both the gradient and the Hessian of the log-posterior conditional of θ at the existing draw. Suppose
L (θ) = log p (θ|D) is used to denote for simplicity the log posterior of θ. Moreover, define:

G (θ) = est.cov ∂
∂θ log p (D|θ) , (A.5)

the empirical counterpart of
Go (θ) = −ED|θ ∂2

∂θ∂θ′ log p (D|θ) . (A.6)

The Langevin diffusion is given by the following stochastic differential equation:

dθ (t) = 1
2∇̃θL {θ (t)} dt+ dB (t) , (A.7)

where

∇̃θL {θ (t)} = −G−1 {θ (t)} · ∇̃θL {θ (t)} , (A.8)

is the so called “natural gradient” of the Riemann manifold generated by the log posterior. The elements of the
Brownian motion are
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G−1 {θ (t)} dBi (t) =|G {θ (t)} |−1/2

Kβ∑

j=1

∂
∂θ

[
G−1 {θ (t)}ij |G {θ (t)} |1/2

]
dt (A.9)

+
[√
G {θ (t)}dB (t)

]
i

The discrete form of the stochastic differential equation provides a proposal as follows:

θ̃i =θoi + ε2

2

{
G−1 (θo)∇θL (θo)

}
i
− ε2

Kθ∑

j=1

{
G−1 (θo)

∂G (θo)

∂θj
G−1 (θo)

}

ij

(A.10)

+ ε2

2

Kθ∑

j=1

{
G−1 (θo)

}
ij

tr

{
G−1 (θo)

∂G (θo)

∂θj

}
+

{
ε

√
G−1 (θo)ξo

}

i

=µ (θo, ε)i +

{
ε

√
G−1 (θo)ξo

}

i

,

where θo is the current draw. The proposal density is:

q
(
θ̃|θo

)
= NKθ

(
θ̃, ε2G−1 (θo)

)
, (A.11)

and convergence to the invariant distribution is ensured by using the standard form Metropolis-Hastings probability:

min



1,

p
(
θ̃|·,D

)
q
(
θo|θ̃

)

p (θo|·,D) q
(
θ̃|θo

)



 . (A.12)

The MCMC procedure is implemented using 15,000 iterations the first 5,000 are omitted to mitigate start-up
effects. For all parameters the prior is uniform over the interval (−M,M)dim(θ) where M = 107 and dim(θ) is the
dimensionality of the parameter vector. Any parameter draw that does not satisfy the monotonicity restrictions in
(18) is rejected and another candidate is considered.

To facilitate imposition of the restrictions in (18) we proceed as follows: First, we impose the restrictions
at the mean of the data in (16), and denote the mean by z̄. Second, the restrictions are imposed at 100 random
points in the set z̄ + 3s, where s is the standard deviation of the data. Finally, we check whether the restrictions
hold at every other point in the data set. If the restrictions are not satisfied then we consider another candidate for
the parameter vector θ. This procedure, improves vastly over a naive GC algorithm that simply accepts or rejects
through the entire set in (18).
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