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Abstract

This essay illustrates some recent developments to the DiffeRential Evolution Adaptive Metropo-

lis (DREAM) MATLAB toolbox of Vrugt (2016) to delineate and sample the behavioural solu-

tion space of set-theoretic likelihood functions used within the GLUE (Limits of Acceptability)

framework (Beven and Binley , 1992; Beven and Freer , 2001; Beven, 2006; Beven and Bin-

ley , 2014). This work builds on the DREAM(ABC) algorithm of Sadegh and Vrugt (2014) and

enhances significantly the accuracy and CPU-efficiency of Bayesian inference with GLUE. In

particular it is shown how lack of adequate sampling in the model space might lead to unjustified

model rejection.

Keywords: GLUE, Limits of Acceptability, Markov Chain Monte Carlo, Posterior Sampling,

DREAM, DREAM(LOA), Sufficiency, Hydrological modelling
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1 Introduction and Scope

In any analysis of predictive uncertainty associated with the application of a model a number

of decisions have to be made. We have to decide on the model structure or structures to

be considered; on the prior distributions for the parameters and/or input data that will be

considered uncertain; on how to treat residual errors and a likelihood (or fuzzy membership)5

to express the degree of belief in a model realization; on a sampling method to generate those

realizations; and on a way of combining likelihood measures if necessary.

None of these choices are simple and some have proven to be highly contentious in the

hydrological literature. All will affect the outcomes and interpretation of an uncertainty analysis.

Beven (2006) distinguishes between ideal and non-ideal applications. In ideal cases, where10

uncertainties can be satisfactorily described as aleatory in nature, it will be possible to define

prior information as joint statistical distributions, it will be possible to define a likelihood

function based on a structural model of the residuals, it will be possible to update likelihoods

using Bayes equation, and the outcomes will have a formal probabilistic interpretation. In non-

ideal cases, where epistemic uncertainties dominate and model residual characteristics may be15

non-stationary or arbitrary, it may be much more difficult to define prior information, or find

a satisfactory structural model of the residuals, and the use of Bayes with a simple statistical

likelihood function can lead to nonsensical results (Beven, 2016; Beven and Smith, 2015; Vrugt

and Sadegh, 2013a). Thus, it has been suggested that every uncertainty analysis should be

associated with an audit trail of the many simplifying assumptions on which it is based as a20

way of communicating meaning and limitations to potential users (see Beven et al. (2014) for

flood inundation modelling case studies).

In this paper we focus on one particular aspect of the uncertainty estimation process, that of

the choice of sampling methodology, and its impact on the outcomes of an uncertainty estimation

based on the Generalised Likelihood Uncertainty Estimation (GLUE) Limits of Acceptability25

approach (Beven, 2006; Page et al., 2007; Blazkova and Beven, 2009; Liu et al., 2009; Beven,

2012, 2016). Past applications of GLUE have commonly used brute-force random sampling

techniques across uniform prior distributions of uncertain parameters lacking better prior in-

formation. But when run times for a single model realisation are large, or when there are a

large number of uncertain parameters and the dimensionality of the search space is high, then30

computer limitations can result in a sparse sample of model realisations, many of which may be

rejected as non-behavioural (though it is worth noting that the original presentation of GLUE in

Beven and Binley (1992) was based on a selective sampling algorithm in an attempt to improve

efficiency given the computing limitations at that time, see also Beven (2016)). We should ex-

pect that such sparse sampling will result in relatively poor explorations of the model space and35

consequent uncertainty estimates, regardless of the other decisions in the estimation process.

One advantage of statistical uncertainty estimation is that the formal likelihood assumptions

can be closely linked to more efficient search algorithms based on Monte Carlo Markov Chain

techniques. In a series of papers from Vrugt et al. (2003) on, efficient search methods have been

developed for a variety of problems by combining optimisation and adaptive search algorithms.40

The latest of these methods, the DiffeRential Evolution Adaptive Metropolis (DREAM) algo-

rithm has been designed to simplify Bayesian inference and speed-up estimation of posterior

parameter distributions significantly. DREAM is an improvement over the Shuffled Complex

Evolution Metropolis (Vrugt et al., 2003) algorithm and has the advantage of maintaining de-
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tailed balance and ergodicity. Benchmark experiments have shown that DREAM is superior to45

other adaptive MCMC sampling approaches (for instance see Lu et al. (2017)), and in high-

dimensional spaces even provides better solutions than powerful optimisation algorithms (Vrugt

et al., 2008a, 2009; Laloy and Vrugt , 2012a; Laloy et al., 2012b, 2013; Linde and Vrugt , 2013;

Lochbühler et al., 2014; Laloy et al., 2015) (see also our response in Vrugt and Laloy (2014) to

the comment of Chu et al. (2014)).50

In the past few years, DREAM has found widespread application and use in many different

fields of study, including (among others) atmospheric chemistry (Partridge et al., 2011, 2012),

biogeosciences (Scharnagl et al., 2010; Braakhekke et al., 2013; Ahrens and Reichstein, 2014;

Dumont et al., 2014; Starrfelt and Kaste, 2014), biology (Coehlo et al., 2011; Zaoli et al., 2014),

chemistry (Owejan et al., 2012; Tarasevich et al., 2013; DeCaluwe et al., 2014; Gentsch et al.,55

2014), ecohydrology (Dekker et al., 2011), ecology (Barthel et al., 2011; Gentsch et al., 2014;

Iizumi et al., 2014; Zilliox and Goselin, 2014), economics and quantitative finance (Bauwens et

al., 2011; Lise et al., 2012; Lise, 2013), epidemiology (Mari et al., 2011; Rinaldo et al., 2012;

Leventhal et al., 2013), geophysics (Bikowski et al., 2012; Linde and Vrugt , 2013; Laloy et al.,

2012b; Carbajal et al., 2014; Lochbühler et al., 2014), geostatistics (Minasny et al., 2011; Sun et60

al., 2013), hydrogeophysics (Hinnell et al., 2014), hydrologeology (Keating et al., 2010; Laloy et

al., 2013; Malama et al., 2013), hydrology (Vrugt et al., 2008a, 2009; Shafii et al., 2014), physics

(Dura et al., 2014; Horowitz et al., 2012; Toyli et al., 2012; Kirby et al., 2013; Yale et al., 2013;

Krayer et al., 2014), psychology (Turner and van Zandt , 2012), soil hydrology (Wöhling and

Vrugt , 2011), and transportation engineering (Kow et al., 2012). A recent paper by Vrugt (2016)65

reviews the basic theory of DREAM and introduces a MATLAB toolbox of this algorithm.

The development of DREAM in Vrugt et al. (2008a) and Vrugt et al. (2009) was inspired

by an urgent need for sampling methods that can search efficiently and reliably for the poste-

rior parameter distribution of dynamic simulation models. An original aim in this and related

work was to improve the efficiency of applying Bayes methods using likelihood functions de-70

rived from simple statistical assumptions (Schoups and Vrugt , 2010). But DREAM has much

wider applicability and can solve inference problems involving the use of discrete/combinatorial

search spaces (Vrugt and ter Braak , 2011), summary statistics (Sadegh and Vrugt , 2014), data

assimilation (Vrugt et al., 2013b), informal likelihood functions (Blasone et al., 2008), diagnostic

model evaluation (Vrugt and Sadegh, 2013a; Sadegh et al., 2015), model averaging (Vrugt et al.,75

2008b) and GLUE Limits of Acceptability Beven (2006).

Within this GLUE framework, behavioural models are defined as those that satisfy Limits of

Acceptability around each observation or summary statistic defined prior to running any model

simulations. These limits should reflect the observational error of the variable being compared,

together with the effects of input error and commensurability errors resulting from differences80

in scale (spatial and/or temporal) between observed and simulated values. In a previous paper

Sadegh and Vrugt (2013) have shown that the Limits of Acceptability framework of GLUE has

important elements in common with approximate Bayesian computation (ABC), particularly if

each observation of the calibration data record is used as a summary statistic.

This paper illustrates some recent developments to the DREAM toolbox of Vrugt (2016)85

in MATLAB to delineate and sample the behavioural solution space of set-theoretic likelihood

measures used within the Limits of Acceptability framework (Beven, 2006; Beven and Binley ,

2014). The work builds on the DREAM(ABC) algorithm of Sadegh and Vrugt (2014) and en-

hances significantly the efficiency of sampling the model space within the GLUE methodology.
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The DREAM algorithm has important advantages over uniform sampling methods that have90

commonly been used in GLUE as it will generally provide a more exact estimate of parameter

and model predictive uncertainty. In particular, it will be shown herein that the use of inferior

sampling methods can lead to erroneous conclusions about model rejection.

The remainder of this paper is organised as follows. Section 2 summarises the GLUE Limits

of Acceptability methodology. In section 3, the connection between the Limits of Acceptability95

framework and approximate Bayesian computation is discussed. Section 4 then reviews briefly

the DREAM(ABC) algorithm of Sadegh and Vrugt (2014) and introduces DREAM(LOA) which is

designed to sample efficiently the behavioural parameter space within the Limits of Acceptability

framework. In this section we are particularly concerned with the definition of the likelihood

function and Metropolis acceptance probability so as not to violate detailed balance and to100

make sure that the behavioural parameter and simulation space, which satisfy the Limits of

Acceptability, are accurately and efficiently sampled. Section 5 then documents the results

of three different case studies involving surface hydrology and vadose zone modelling. In this

section we benchmark the sampling efficiency of the DREAM(ABC) algorithm against rejection

sampling used within GLUE. Finally, section 6 concludes this paper with a summary of the105

main findings.

2 Model Formulation

Consider a n-vector of measurements, ỹ = {ỹ1, . . . , ỹn}, observed at discrete times, t = {1, . . . , n},
which summarizes the response of some (spatially distributed) real-world system, =, subject to q

control inputs, b = {b1, . . . , bq}, that may be time and/or space variant. We can use a computer110

model, M(·), to emulate = and explain the experimental data

ỹ←M(x,α, ψ̃0, Ã, B̃) + e, (1)

where x = {x1, . . . , xd} is a 1 × d-vector of parameters, α signifies a vector with fundamental

constants (e.g. gravitational acceleration, light velocity) and/or measurable invariant quantities

(surface tension), ψ̃0 stores the values of the state variables at the start of simulation, matrix115

Ã characterizes distributed system properties (e.g. subsurface heterogeneity, topography), B̃

is the control matrix with (spatio)temporal measurements of the q forcing variables, and e =

{e1, . . . , en} is a vector of residuals. The residuals may constitute measurement errors on ỹ,

or the effects of model structural errors in M(·), or the effects of input data errors in ψ̃0, Ã,

and B̃ (these are processed through the model to contribute to the residual), or a combination120

thereof, in which case we can write et = e1t + e2t + e3t. The index t for time takes on strictly

positive integer values in the remainder of this paper, t ∈ N+, yet may take on real values,

t ∈ (0, n] ∈ R+, in M(·) to simulate continuous-time processes.

The aim of this paper is to determine our posterior beliefs about the model parameters, x, in

light of the computer model, M(·), transient control variables, Ã, input data, B̃, experimental125

data, ỹ, prior beliefs about the parameters, P (x) and measurement and modelling errors, e.

The prevailing Bayesian approach would require a statistical model of the measurement errors of

the transient control variables, Ã, and other model inputs, B̃, and demand assumptions about

measurement errors of ỹ, in pursuit of an adequate likelihood function (Kavetski et al., 2006a,b;

Vrugt et al., 2008a, 2009). Instead, we adopt an alternative approach and quantify our posterior130
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beliefs of x via Limits of Acceptability on the observed data. These limits are defined a-priori by

the modeller and summarize the cumulative impacts of measurement errors of Ã, B̃ and ỹ on the

simulated output. The second author of this paper is a strong proponent of this methodology,

with philosophy, arguments, justification and methodology well rehearsed in past papers for over

a decade and discussed briefly in the next section. Without loss of generality, we restrict the135

model parameters to a closed space, χ, equivalent to a d-dimensional hypercube, x ∈ χ ∈ Rd,
called the feasible parameter space. Furthermore, as the simulation models used herein exhibit

degenerative (negative) feedbacks, we take advantage of a spin-up period of T days to gravitate

the moisture status to a stable state and remove the impact of state initialization errors on the

model output, lim
t→T

(
Mt(x,α, ψ̃0, Ã, B̃)−Mt(x,α,ψ0, Ã, B̃)

)
→ 0.140

3 The Generalised Likelihood Uncertainty Estima-

tion (GLUE) methodology

The GLUE methodology has been applied widely to many different modelling problems in differ-

ent fields of study where the problems of epistemic uncertainties are significant and formal sta-

tistical likelihoods functions difficult to justify when residual characteristics are non-stationary145

and non-traditional (Beven and Binley , 1992; Beven and Freer , 2001; Beven, 2006, 2009, 2016).

These are the non-ideal cases that are difficult to represent using statistical residual models

and that require a different philosophical approach to model evaluation to traditional statistical

methods (Beven, 2016; Beven and Smith, 2015).

The GLUE methodology aims to find a set of model representations (model inputs, model150

structures, model parameter sets, model errors) that are behavioural in the sense of being

acceptably consistent with the (non-error-free) observations. Such models are not necessarily

limited to a small region of the model space. This is the equifinality thesis (Beven, 2006,

2012). Predictions are made using this ensemble of behavioural models, weighted according

to some likelihood measure supporting a degree of belief. Given an expectation of complex155

error structures in hydrological modelling (Beven, 2016), the likelihood weight need not be

defined by a simple statistical error model. Here it is based on performance relative to Limits of

Acceptability defined prior to making any model runs, which allows the residuals to be treated

implicitly. This approach was originally inspired by the Hornberger and Spear (1981) method

of sensitivity analysis and operates within the context of Monte Carlo analysis coupled with160

Bayesian or fuzzy inference and propagation of uncertainty.

In the manifesto for the equifinality thesis, Beven (2006) suggested that a more rigorous

approach to model evaluation would involve the use of Limits of Acceptability for each indi-

vidual observation. These Limits of Acceptability are defined prior to running the model, and

should reflect the observational error of the variable being compared, together with the effects of165

input error and commensurability errors resulting from time or space scale differences between

observed and predicted values (Beven, 2016). To allow for the fact that different observations

might have quite different scales, the Limits of Acceptability can be expressed as a normalised

scale (-1 at the lower limit, 0 at the observed value, +1 at the upper limit). Performance

weightings within the limits can also be specified as appropriate (Beven, 2006).170

The GLUE Limits of Acceptability method proceeds as follows. The index i is used to mean

’for all i ∈ {1, . . . , N}’.
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1. Draw at random N samples from the prior parameter distribution, P (x), and store these

realizations in a N × d matrix X = {x(1), . . . ,x(N)}.

2. Evaluate the model, y(i) ← M(x(i)|·), and compute the minimum absolute normalised175

score for the simulation, y(i) = {y(i)1 , . . . , y
(i)
n }, to be acceptable.

3. Rank the N parameter vectors by their minimum scores, and select as behavioural the top

R realisations above some acceptability threshold. This threshold would normally be an

absolute value of 1 on the normalized scale, indicating that all observations are reproduced

within the specified Limits of Acceptability. All other realisations are given a likelihood180

value of zero.

4. Collect the behaviorial solutions in a R×d matrix B and store in a matrix Y of size R×n
their corresponding simulations.

5. Calculate a likelihood value, L(x(i)|ỹ), of the simulated values, y(i), based on the perfor-

mance weightings within the Limits of Acceptability. The way in which this is done will185

depend on the nature of the application (see the suggestions in Beven (2006)).

6. Normalize the likelihood of each sample of B

L̄(Br|ỹ) = L(Br|ỹ)/
R∑
r=1

L(Br|ỹ), (2)

where r = {1, . . . , R} so that
∑R

r=1 L̄(Br|ỹ) = 1.190

7. Compute the likelihood-weighted cumulative density function (cdf) by assigning each rth

row of Y the likelihood L̄(Br|ỹ), where r = {1, . . . , R}.

8. Derive the 95% simulation uncertainty ranges ofM(x|·) from the likelihood-weighted cdf.

Past work has applied the Limits of Acceptability approach applied to both individual obser-

vations and summary output statistics has been used by various authors (Blazkova and Beven,195

2009; Dean et al., 2013; Krueger et al., 2009; Liu et al., 2009; McMillan et al., 2010; Wester-

berg et al., 2011; Westerberg and McMillan, 2015; Gupta et al., 2008; Vrugt and Sadegh, 2013a;

Sadegh and Vrugt , 2014; Sadegh et al., 2015). Some earlier publications used similar ideas within

GLUE based on fuzzy measures, for which the support also acted as Limits of Acceptability

(Page et al., 2003; Freer et al., 2004; Page et al., 2004, 2007; Pappenberger et al., 2005, 2007).200

The set-theoretic approach used by Keesman (1990) and van Straten and Keesman (1991) is a

similar method of model evaluation. The Limits of Acceptability framework might be considered

more objective than the standard GLUE thresholding of a goodness-of-fit measure in defining

behavioural models, as the limits should be defined on the basis of best available hydrological

knowledge.205

Two primary sources of epistemic uncertainty will influence the Limits of Acceptability:

uncertainty in the evaluation observations, ỹ (e.g. discharge, water table or soil moisture obser-

vations), and uncertainty in the model input data, Ã and B̃. The former is generally easiest to

handle in that there will be a direct relationship between observed and predicted variables. For

example, the measured discharge will be subject to considerable uncertainty due to imperfect210

knowledge of the rating curve. Fortunately, this curve can be reasonably well estimated via

statistical regression (Krueger et al., 2009; McMillan et al., 2012), fuzzy regression (Blazkova

and Beven, 2009), or other approaches such as the Monte Carlo based voting point method of
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McMillan and Westerberg (2015), with or without a water balance constraint (Holloway et al.,

2017).215

It remains difficult and subjective how errors in the input data, Ã and B̃, should affect the

Limits of Acceptability (Beven and Smith, 2015). Not only are such errors difficult to estimate a-

priori, but their effect will also accumulate in the modeled state variables and produce a complex,

non-traditional, time series of residuals. The Limits of Acceptability should be extended to

account for input data errors, but at present there is no commonly accepted framework for220

doing so beyond special synthetic cases with a-priori known error sources and properties. Thus,

the degree of extension remains necessarily subjective, and possibly guided by the requirements

of an application in evaluating model simulations as fit-for-purpose (Beven, 2017). This may

purport a methodological flaw, yet is the consequence of the inexact nature of hydrological

science.225

This paper is not about whether GLUE is a valid choice of methodology, only about the ef-

ficiency of applying that methodology. We recognise that all estimates of predictive uncertainty

will be conditional on the assumptions made, and therefore care should be exercised when inter-

preting and communicating the resulting prediction estimates, for example using the condition

tree proposal of Beven et al. (2014).230

The GLUE approach has mostly used simple randomised sampling of the prior parameter

space to create an ensemble of N different parameter combinations for evaluation. This Monte

Carlo simulation approach is not particularly efficient and may only provide a sparse sample

of the behavioural solution space in high parameter spaces (large d) even after many millions

of simulations (Iorgulescu et al., 2005; Blasone et al., 2008; Vrugt et al., 2009), depending235

on the degree of equifinality in the model space. This is especially the case when there is

little information about the prior distributions of the parameters and only feasible ranges can

be specified. Uniform random sampling over the hypercube defined by the parameter ranges

will not only be very inefficient, it can also provide misleading results where the behavioural

parameter space is highly localised. While each behavioural sample is likelihood-weighted in240

representing the posterior distribution in GLUE, the number of samples that fall within the

behavioural space will be small. In the original GLUE paper, Beven and Binley (1992) used a

nearest neighbour resampling method to replace samples with low likelihoods, nevertheless, this

approach lacks statistical rigor.

Blasone et al. (2008) have demonstrated how the efficiency of GLUE can be enhanced in such245

cases, sometimes dramatically, by the use of Markov Chain Monte Carlo (MCMC) simulation.

This paper has received a significant number of citations but the proposed MCMC sampling

framework has found little use in the GLUE community, despite source code availability. In

this paper we revisit the use of MCMC simulation for approximate Bayesian inference but con-

sider instead the extended GLUE approach involving the Limits of Acceptability (GLUE LoA)250

framework. This extension demands changes to the sampling approach of Blasone et al. (2008)

to satisfy efficiently the Limits of Acceptability in pursuit of the behavioral parameter space. A

simple adaptation of the DREAM(ABC) algorithm of Sadegh and Vrugt (2014) developed in the

context of diagnostic model evaluation will suffice to solve set-theoretic membership functions

such as those used in the Limits of Acceptability methodology.255
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4 GLUE LoA and Approximate Bayesian Computa-

tion

Lets assume the case of a prior distribution, P (x) ∼ Ud(a,b), that is multivariate uniform

between some d-vector of values a and b. For a proposal, x∗, to be deemed acceptable, y(x∗)

should be contained exclusively within the interval [ỹt − εt, ỹt + εt] at each time t = {1, . . . , n}.260

This so called ”behavioural simulation space” belongs to the set Ω̂(y) and can be defined as

(Keesman, 1990)

Ω̂(y) =
{

y ∈ Rn : yt =Mt(x|·) ; x ∈ Ω̂(x|ỹ) , t = 1, . . . , n
}
, (3)

where Ω̂(x|ỹ) constitutes the posterior (behavioural) parameter set

Ω̂(x|ỹ) = Ω(x|ỹ). (4)265

The conditional parameter set, Ω(x|ỹ), is defined as follows

Ω(x|ỹ) =
{

x ∈ χ ∈ Rd : ỹt −Mt(x|·) = et ; et ∈ [−εt, εt] , t = 1, . . . , n
}
, (5)

and contains solutions that satisfy the Limits of Acceptability of each observation, and x∗ ∈
Ω̂(x|ỹ). If an informative prior distribution is used then the behavioural (posterior) parameter

set, Ω̂(x|ỹ), is computed as the intersection of the prior parameter set, Ω(x), and conditional270

parameter set, Ω(x|ỹ), or

Ω̂(x|ỹ) = Ω(x) ∩Ω(x|ỹ). (6)

Figure 1 summarises graphically four different outcomes of the Limits of Acceptability frame-

work. The behavioural solution space exists, if and only if, the conditional parameter set, Ω(x|ỹ),

intersects the prior parameter set, Ω(x). If an informative prior distribution is used, then a suf-275

ficient condition for the posterior (behavioural) parameter set to exist is that the conditional

parameter set, Ω(x|ỹ), is non-empty.

The Limits of Acceptability approach has many elements in common with likelihood-free

inference (Sadegh and Vrugt , 2013). This approach was introduced in the statistical literature

about three decades ago (Diggle and Gratton, 1984) (coincidentally in different departments of280

Lancaster University where, quite independently, the first GLUE experiments were being carried

out). It is especially useful in situations where evaluation of the likelihood is computationally

prohibitive, or for cases when an explicit likelihood (objective) function cannot be formulated.

This class of methods is also referred to as approximate Bayesian computation (ABC) and

is currently receiving a surge of interest in statistics (Marjoram et al., 2003; Sisson et al.,285

2007; Joyce and Marjoram, 2008; Grelaud et et al., 2009; Del Moral et al., 2012) with common

applications in genetics (Pritchard et al., 1999; Tanaka et al., 2006; Ratmann et al., 2009;

Beaumont , 2010), epidemiology (Blum and Tran, 2010), population biology (Bertorelle et al.,

2010), (evolutionary) ecology (Beaumont , 2010; Csilléry et al., 2010), and psychology (Turner

and van Zandt , 2012).290

A schematic overview of the ABC method appears in Figure 2 using as example the fitting

of a hydrograph. The premise behind ABC is that x∗ should be a sample from the posterior

distribution if its simulated output matches closely and consistently the observed data. Or in
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ABC-terminology, the distance, ρ
(
ỹ,y(x∗)

)
, between the simulated and observed data must

be less than some nominal value, ε (Marjoram et al., 2003; Sisson et al., 2007). Thus, ABC295

methods do not use a formal likelihood function to infer the posterior parameter distribution,

but instead retain a proposal, x∗, if

ρ
(
ỹ,y(x∗)

)
≤ ε, (7)

where ρ(a, b) = |a − b| is the distance function and | · | signifies the modulus (absolute value)

operator. The most basic ABC algorithm (rejection sampling) then proceeds in the following300

steps

1. Draw a proposal, x∗, from the prior distribution, P (x).

2. Simulate the model output, y←M(x∗|·)

3. Accept x∗ if ρ
(
ỹ,y(x∗)

)
≤ ε

The accepted samples will approximate the posterior distribution, P (x|ρ
(
ỹ,y(x∗)

)
≤ ε). When305

ε → 0 the rejection algorithm provides samples from the exact posterior distribution, P (x|ỹ),

whereas if ε → ∞ the algorithm would generate draws from the prior distribution, P (x). The

tolerance, ε can therefore be considered a trade-off between computational tractability and

accuracy (Wilkinson, 2013).

The probability of stumbling upon a simulation that satisfies exactly all n data points of ỹ310

within a small tolerance, ε, decreases rapidly with increasing model complexity and length of

the data set. To mitigate this problem, it is common practice to replace ỹ with one or more

summary statistics, S(ỹ), of the data. These statistics summarize in much lower dimensions

the relevant information in ỹ. Samples are retained if their simulated statistics reside within

ε of their observed values, or ρ
(
S
(
ỹ
)
, S
(
y(x∗)

))
≤ ε (Vrugt and Sadegh, 2013a; Sadegh and315

Vrugt , 2014; Sadegh et al., 2015). If the summary statistics are sufficient and contain as much

information as the data, ỹ, itself then this approach does not introduce errors. However, in

practice, models and data of complex systems rarely admit sufficient statistics.

One attractive feature of summary statistics is that they can reduce significantly the impact

of poorly known error sources on model and parameter estimation. A textbook example is the320

runoff index of a catchment. This metric is hardly sensitive to precipitation data measurement

errors that otherwise would lead to a complex, non-traditional, time series of discharge residuals

(Vrugt and Sadegh, 2013a). What is more, summary statistics are useful for hypothesis testing,

and temporal analysis of their values can help detect system (catchment) nonstationarity (Sadegh

et al., 2015).325

In a previous paper, Sadegh and Vrugt (2013) have shown an equivalence of the Limits of

Acceptability framework of Beven (2006) and ABC if each observation of the calibration data

set is used as a summary metric. This proposition is perhaps more obvious if the following

notation is used

ρ
(
S
(
ỹ
)
, S
(
y(x∗)

))
=

n∏
t=1

I
(
|ỹt − yt(x∗)| ≤ εt

)
, (8)330

where I(a) is an indicator function that returns one if the condition a is satisfied and zero

otherwise, εt constitutes the Limits of Acceptability of the tth observation, and ε = {ε1, . . . , εn}.
Nevertheless, a fundamental difference between ABC and the Limits of Acceptability frame-

work is that ABC assumes use of a stochastic model so that repeated runs with the exact same
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parameter values will produce a range of possible simulations. Otherwise, the posterior distri-335

bution, P (x|ρ
(
ỹ,y(x∗)

)
≤ ε) cannot converge to a stable distribution in the limit of ε→ 0, and

instead would converge to a single solution (if it existed). For ABC to work with a deterministic

model, we must corrupt the simulated output with a draw from Pe(·), a n-variate distribution

with probabilistic properties (e.g. mean, variance, correlation structure, bias) equivalent to

the residual time series, e, in Equation (1). Thus, while traditional Bayesian approaches draw340

inferences on the posterior beliefs of x via a prior distribution, P (x, and likelihood function,

L(x|ỹ), which summarises the expected statistical properties of the residuals, ABC methods

approximate the likelihood function by repeated numerical simulation, the outcomes of which

are compared with the observed data (Beaumont , 2010; Bertorelle et al., 2010; Csilléry et al.,

2010). If, the Limits of Acceptability are rather large in comparison to the residuals as in Sadegh345

and Vrugt (2013) then perturbation of the simulated values will have only a minimal effect on

the posterior parameter distribution.

5 The DREAM(ABC) Algorithm

Application of likelihood-free inference with ABC requires the availability of a sampling method

that can efficiently search the parameter space in pursuit of the set of behavioural model real-350

isations, Ω̂(x|ỹ) that satisfies ρ
(
a, b
)

= 1 in Equation (8). Commonly used (population Monte

Carlo) rejection sampling methods are rather inefficient in locating behavioural solutions. The

chance that a random sample from the prior distribution satisfies the Limits of Acceptability

of each observation is disturbingly small, particularly if the prior parameter space is large com-

pared to the posterior (behavioural) solution space and the number of observations, n is large.355

Fortunately, an efficient MCMC sampling method, the DREAM(ABC) algorithm, has been devel-

oped by Sadegh and Vrugt (2014) to explore efficiently set-theoretic functions such as Equation

(5).

In DREAM(ABC), N (N > 2) different Markov chains are run simultaneously in parallel,

and multivariate proposals are generated on the fly from the collection of chain states, X =360

{x(1)
t−1, . . . ,x

(N)
t−1} (matrix of N×d with each chain state as row vector) using differential evolution

(Storn and Price, 1997; Price et al., 2005). If A is a subset of d∗-dimensional space of the

original parameter space, Rd∗ ⊆ Rd, then a jump in the ith chain, i = {1, . . . , N}, at iteration

t = {2, . . . , T} is calculated using

∆x
(i)
A = ζd∗ + (1d∗ + λd∗)γ(δ,d∗)

δ∑
j=1

(
X

r1j
A −X

r2j
A

)
∆x

(i)
6=A = 0,

(9)365

where γ(δ,d∗) = 2.38/
√

2δd∗ is the jump rate, δ denotes the number of chain pairs used to

generate the jump, and r1 and r2 are δ-vectors with integer values drawn without replacement

from {1, . . . , i− 1, i+ 1, . . . , N}. The values of λd∗ and ζd∗ are sampled independently from the

multivariate uniform distribution, Ud∗(−c, c) and multivariate normal distribution, Nd∗(0, c∗)

with, typically, c = 0.1 and c∗ small compared to the width of the target distribution, c∗ = 10−12370

say. Every fifth generation the value of λ is set to unity to enable direct jumps from one mode

of the target distribution to another.
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The candidate point of the ith chain at iteration t then becomes

x(i)
p = x(i) + ∆x(i), (10)

and a modified selection rule is used to determine whether to accept this proposal or not. This375

selection rule is defined as

Pacc(x
(i)
t−1 → x(i)

p ) =

{
I
(
f(x

(i)
p ) ≥ f(x

(i)
t−1)

)
if f(x

(i)
p ) < n

1 if f(x
(i)
p ) = n

, (11)

where the fitness function, f(·), is calculated as follows

f(x) =
n∑
t=1

I(|ỹt − yt(x)| ≤ εt). (12)

If the proposal is accepted, then the ith chain moves to this new position, x
(i)
t = x

(i)
p , otherwise380

it remains at its current location, that is x
(i)
t = x

(i)
t−1.

The fitness of a parameter vector thus equates to the number of observations its simulation

satisfies within the Limits of Acceptability. A proposal, x
(i)
p , in chain i is accepted, Pacc(x

(i)
t−1 →

x
(i)
p ) = 1, if its fitness is higher than, or equal to, that of the current state of the ith chain, x

(i)
t−1,

or, if its fitness is equal to n, and thus, y(x
(i)
p ) is contained in the interval [ỹt−εt, ỹt+εt] for all t ∈385

{1, . . . , n}, otherwise x
(i)
p is rejected. After a burn-in period in which f(x) < n, the convergence

of DREAM(ABC) can be monitored with the univariate, R̂, and multivariate, R̂d, scale reduction

factors of Gelman and Rubin (1992) and Brooks and Gelman (1998), respectively. The weight

of each simulation in the behavioral space, Ω̂(y), is thus proportional to the number of times its

parameter vector appears in the posterior distribution sampled by the joint chains. Interested390

readers are referred to Sadegh and Vrugt (2014) for a full description of the DREAM(ABC)

algorithm.

The DREAM(ABC) algorithm was originally designed to speed up ABC inference. In our

present application, we use the algorithm to sample efficiently the behavioural parameter space

conditional on the Limits of Acceptability. To be comparable to GLUE (section 3) this ne-395

cessitates use of a deterministic model in DREAM(ABC). To make this distinction obvious,

we therefore introduce a new member of the DREAM family, coined DREAM(LOA), which is

equivalent to DREAM(ABC) but with the use of a deterministic model.

Appendix A presents a basic implementation of the DREAM(LOA) algorithm in MATLAB.

The results presented herein are derived from the MATLAB toolbox of DREAM, which in-400

cludes a much wider arsenal of options and capabilities (such as postprocessing and multi-core

computation). A detailed description of this toolbox appears in Vrugt (2016).

6 Numerical Examples

Three different numerical examples are considered to illustrate the ability of the DREAM(LOA)

algorithm to sample efficiently the behavioural parameter, Ω̂(x|ỹ), and simulation, Ω̂(y), space405

that satisfy the prior parameter distribution and Limits of Acceptability of each observation.

All the examples assume a non-informative and independent prior distributions, and default

values of the algorithmic parameters of DREAM(ABC) listed by Sadegh and Vrugt (2014).
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6.1 Unit Hydrograph

The first case study considers the modelling of the instantaneous unit hydrograph using the410

ordinates of Nash (1960) defined as

Qt =
1

kΓ(m)

(
t

k

)(m−1)
exp

(
− t
k

)
, (13)

where Qt (mm day−1) is the simulated streamflow at time t (days), m ∈ [1,∞) (-) denotes

the number of reservoirs, k > 0 (days) signifies the recession constant, and Γ(·) is the gamma

function415

Γ(m) =

∞∫
0

xm−1 exp(−x)dx ∀m ∈ Z+ (14)

which satisfies the recursion Γ(m+ 1) = mΓ(m).

A n = 25 - day period with synthetic daily streamflow data was generated by driving

Equation (13) with an artificial precipitation record using m = 2 reservoirs, and a recession

constant of k = 4 days. This artificial data set is subsequently perturbed with a heteroscedastic420

measurement error (non-constant variance) with standard deviation equal to 10% of the original

simulated discharge values. In this case study forcing data and model structure are assumed

to be known accurately. The DREAM(LOA) algorithm then uses the observed discharge record,

ỹ = {ỹ1, . . . , ỹ25} to estimate the behavioural solution space of m and k using the Limits of

Acceptability, εt = 0.2ỹt ∀t ∈ {1, ..., 25}. A bivariate uniform prior distribution, U2[1, 10] was425

used for m and k in the calculations. Appendix B presents a MATLAB implementation of

Equation (13) and lists an input file of the DREAM(LOA) algorithm with the setup and data

used in this case study.

Figure 3 summarises the results of the analysis. The graph at the left-hand-side presents a

time series plot of the observed (red dots) and simulated discharge data (grey). These simulated430

data satisfy the Limits of Acceptability of each observation and thus belong to the behavioural

set, Ω̂(y). The two Figures at the right-hand-side plot histograms of the behavioural parameter

space of m and k respectively. The true parameter values used to generate the synthetic data

are separately indicated with the red ’X’ symbol. The behavioural simulation space satisfies the

Limits of Acceptability of the entire hydrograph, but fails to bracket the discharge measurements435

on days 6, 9 and 13. This is not unexpected given that the Limits of Acceptability were defined

a priori to give 95% coverage of the known stochastic variation. The posterior histograms centre

around their ”true” values but appears a little biased (to the left) for parameter m.

To provide insights into the convergence rate of DREAM(LOA) to the posterior set, Ω̂(x|ỹ),

Figure 4 plots trace plots of the R̂-convergence diagnostic of Gelman and Rubin (1992) computed440

using the samples in the second half of the N = 8 different Markov chains. About 2, 000 function

evaluations are required to satisfy the convergence threshold of R̂ ≤ 1.2. The acceptance rate of

proposals is equivalent to about 33% (not shown herein), which means that, on average, every

third proposal of DREAM(LOA) satisfies the Limits of Acceptability. This acceptance rate would

be orders of magnitude lower if uniform random sampling were used, particularly since there445

is a nearly linear correlation of -0.93 between the posterior parameter samples of k and m (see

Figure 5). This conjecture is confirmed by numerical simulation. Only 28 samples (indicated

with blue dots) were deemed behavioural out of 20,000 draws from the prior distribution. The

resulting acceptance rate of approximately 0.14% is more than two orders of magnitude lower
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than its counterpart derived from MCMC simulation with DREAM(LOA). This difference in450

sampling efficiency between DREAM(LOA) and uniform random (rejection) sampling is clearly

evident in Figure 5. Not only does DREAM(LOA) produce many diverse samples of Ω̂(x|ỹ), the

posterior parameter set, the algorithm also sharply delineates the behavioural solution space.

In this trivial example it is quite easy to do generate many millions of samples from the uni-

form prior distribution to compensate for a poor sampling efficiency, nevertheless, the prospects455

for much higher dimensional search spaces with much more complex parameter interactions

are not very encouraging. The use of a proper sampling method is of crucial importance for

correct GLUE inference and the DREAM(LOA) can help to avoid the rejection of models in

high-dimensional parameter spaces as a result of sparse and inadequate sampling. Past work

has also shown how the DREAM(LOA) methodology can be successful in identifying multiple460

regions of behavioural models (Sadegh et al., 2015).

6.2 Rainfall-Runoff Modelling

The second case study involves the modelling of the rainfall-runoff transformation of the Leaf

River watershed in Mississippi. This temperate 1944 km2 watershed has been studied extensively

in the hydrological literature which simplifies comparative analysis of the results. A 10-year465

historical record (1/10/1952 - 30/9/1962) with daily data of discharge (mm day−1), mean areal

precipitation (mm day−1), and mean areal potential evapotranspiration (mm day−1) is used

herein for model calibration and evaluation. A 65-day spin-up period is used to reduce sensitivity

of the model to state-value initialisation.

The rainfall-discharge relationship of the Leaf River basin is simulated using the Sacramento470

soil moisture accounting (SAC-SMA) model of Burnash et al. (1973). This lumped conceptual

watershed model is used by the National Weather Service for flood forecasting throughout

the United States. The SAC-SMA model uses six reservoirs (state variables) to represent the

rainfall-runoff transformation. These reservoirs represent the upper and lower part of the soil

and are filled with ”tension” and ”free” water, respectively. The upper zone simulates processes475

such as direct runoff, surface runoff, and interflow, whereas the lower zone is used to mimic

groundwater storage and the baseflow component of the hydrograph.

Figure 6 provides a schematic overview of the SAC-SMA model. Nonlinear equations are used

to relate the absolute and relative storages of water within each reservoir and their states control

the main watershed hydrological processes such as the partitioning of precipitation into overland480

flow, surface runoff, direct runoff, infiltration to the upper zone, interflow, percolation to the

lower zone, and primary and supplemental baseflow. Saturation excess overland flow occurs

when the upper zone is fully saturated and the rainfall rate exceeds interflow and percolation

capacities. Percolation from the upper to the lower layer is controlled by a nonlinear process

that depends on the storage in both soil zones.485

The SAC-SMA model has thirteen user-specifiable (and three fixed) parameters and an

evapotranspiration demand curve (or adjustment curve). Inputs to the model include mean areal

precipitation (MAP) and potential evapotranspiration (PET) while the outputs are estimated

evapotranspiration and channel inflow. A Nash-Cascade series of three linear reservoirs is used

to route the upper zone channel inflow while the baseflow generated by the lower zone recession490

is passed directly to the gauging point. This configuration adds one parameter and three state

variables to the SAC-SMA model. The use of the three reservoirs improves considerably the
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CPU-efficiency as it avoids the need for computationally expensive convolution (though see the

data-based modelling of Young (2013) that suggests a longer routing kernel might be appropriate

for the Leaf River data set). Our formulation of the model therefore has fourteen time-invariant495

parameters which are subject to inference using observed discharge data. Table 1 summarises

the fourteen SAC-SMA parameters and six main state variables, and their ranges.

In this case study there is no information about the uncertainties associated with either the

forcing rainfall data of each discharge observation. To define the Limits of Acceptability we

follow the approach of Sadegh and Vrugt (2013) and use a multiple of an estimated discharge500

measurement error, hereafter referred to as σ̂ỹ = {σ̂ỹ1 , . . . , σ̂ỹn}. The n-values of σ̂ỹ were

derived using the nonparametric estimator by Vrugt et al. (2005) and shown to be on the order

of 0.1ỹt. The Limits of Acceptability in Equation (8) are now computed as multiple of σ̂ỹ or

ε = φσ̂ỹ using φ = 4. This leads to effective observation errors on the order of εt = 0.4ỹt.

Figure 7 plots traces of the sampled fitness values in a selected set of ten Markov chains505

simulated with DREAM(LOA). The different chains are coded with a different colour and/or

symbol. The chains converge to a stable fitness value of Equation (12) of around 2,800 after

about 80,000 function evaluations. That is about 76% of the discharge observations are fitted

within their Limits of Acceptability. In the philosophy of GLUE the SAC-SMA model should be

rejected as it does not satisfy all the prior estimates of the Limits of Acceptability, even though510

the model describes accurately a significant portion of the discharge data (see Figure 8).

To benchmark the results of the DREAM(LOA) algorithm, a total of 100, 000 samples were

drawn randomly from the ranges listed in Table 1. While this is a small number for d = 14 and

some past GLUE applications of hydrological models, it is still a large number of model runs and

we use it here to make a point. The maximum value of the fitness of this sample is equivalent to515

2, 401, much lower than its counterpart of 2, 800 derived from the DREAM(LOA) algorithm. This

therefore gives further weight to the argument that adequate sampling is essential to inference

using a GLUE LoA approach but does not alter the conclusion that the SAC-SMA model should

be rejected based on these limits.

Further detailed inspection of the complete time series demonstrates that the SAC-SMA520

model fits most of the recession periods adequately well and that the limits are being exceeded

predominantly during a substantial number of storm events. The misfit during these events

cannot be contributed solely to model structural error but suggests that there are important

epistemic errors associated with the rainfall inputs such that some events may be disinformative

for model evaluation (see Beven and Smith (2015)). Such errors not only propagate nonlin-525

early through the SAC-SMA model but also accumulate in the resolved state-variables, hence

their impact might be seen in consequent events. What is more, rainfall data errors exhibit

non-stationarity. These effects (nonlinearity, non-stationarity and memory) are difficult to en-

capsulate in Limits of Acceptability unless detailed prior knowledge is available about the error

characteristics of individual storm events. For instance, consider the model-data mismatch ob-530

served between days 2, 180 - 2, 200 and days 2, 350 - 2, 375 of the calibration data record. This

discrepancy is likely due to errors in the precipitation data (too much and too little recorded

rainfall, respectively). No conceptual watershed model will be able to describe these events

using reasonable Limits of Acceptability or with a simple statistical error model since the same

issues apply. One of the advantages of the Limits of Acceptability approach is that it highlights535

events with problems (rather than just allowing the error variance or event rainfall multiplier

distribution to expand to cover such event). Indeed, what is ideally needed is a careful analysis
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of the errors of each individual storm event. In addition, such errors can have an important effect

in prediction since it is not known a priori whether the next prediction event has well-estimated

forcing data or not (as demonstrated in Beven and Smith (2015), for example).540

This also demonstrates, however, why it is important that the Limits of Acceptability should

be set prior to running the model. Otherwise it would be rather too easy to exclude those events

for which the model does not satisfy those limits as subject to epistemic input errors. In that

case no model would be rejected. As Beven (2012) points out, the science will not progress

if we are not prepared to reject models and explore the reasons for such failures. In this case545

it could be either a failure of the model structure, or of epistemic uncertainty in the forcing

data. It poses the question as to just how good do we expect our models to be, in both

calibration and prediction, when we suspect that there are non-stationary input errors. An

advantage of the use of summary statistics within the GLUE or DREAM(LOA) framework is

that the summary statistics are not so readily affected by outliers as the residuals associated550

with individual observations. Indeed, Sadegh et al. (2015) show how such metrics can help to

diagnose and detect catchment non-stationarity. The equivalent disadvantage is that summary

statistics may conceal some of the prediction problems revealed in this case study with the

possibility of making both Type I and Type II errors in testing models as hypotheses.

6.3 Vadose Zone Modelling555

The third and last case study considers the modelling of the soil moisture regime of an agri-

cultural field near Jülich, Germany. Soil moisture content was measured with Time Domain

Reflectometry (TDR) probes at 6 cm deep at 61 locations in a 50 × 50 m plot. The TDR

data were analysed using the algorithm described in Heimovaara and Bouten (1990) and the

measured apparent dielectric permittivities were converted to soil moisture contents using the560

empirical relationship of Topp et al. (1980). Measurements were taken on 29 days between 19

March and 14 October 2009, comprising a measurement campaign of 210 days. For the purpose

of the present study, the observed soil moisture data at the 61 locations were averaged to ob-

tain a single time series of water content. Precipitation and other meteorological variables were

recorded at a meteorological station located 100 m west of the measurement site. Details of the565

site, soil properties, experimental design and measurements are given by Scharnagl et al. (2011)

and interested readers are referred to this publication for further details.

The HYDRUS-1D model of Šim̊unek et al. (2008) was used to simulate variably saturated

water flow in the agricultural field (see Figure 9). This model solves Richards’ equation for

given (measured) initial and boundary conditions570

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
(15)

where θ (cm3 cm−3) here denotes soil moisture content (not to be confused with parameter

values!), t (days) denotes time, z (cm) is the vertical (depth) coordinate, h (cm) signifies the

pressure head, and K(h) (cm day−1) the unsaturated soil hydraulic conductivity.

To solve Equation (15) numerically the soil hydraulic properties need to be defined. Here575
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the van Genuchten-Mualem (VGM) model (van Genuchten, 1980) was used:

θ(h) = θr + (θs − θr)[1 + (α|h|)n]−m

K(h) = KsSe(h)λ[1− (1− Se(h)1/m)m]2,
(16)

where θs and θr (cm3 cm−3) signify the saturated and residual soil water content, respectively, α

(cm−1), n (-) and m = 1− 1/n (-) are shape parameters, Ks (cm day−1) denotes the saturated

hydraulic conductivity, and λ = 1/2 (-) represents a pore-connectivity parameter. The effective580

saturation, Se (-) is defined as

Se(h) =
θ(h)− θr
θs − θr

. (17)

Observations of daily precipitation and potential evapotranspiration were used to define the up-

per boundary condition. In the absence of direct measurements, a constant head lower boundary

condition was assumed, hbot (cm), whose value is subject to inference within the GLUE LOA585

framework using DREAM(LOA). The aim here is to obtain a simulation of the mean behaviour

of the field soil moisture, as constrained by the observed soil moisture contents.

Table 2 lists the parameters of the HYDRUS-1D model and their prior uncertainty ranges

which are subject to inference using the 210-day period of the averaged observed soil moisture

measurements. The prior ranges are taken deliberately large so as not to constrain too much our590

field scale soil moisture simulations. In this study the Limits of Acceptability, ε = {ε1, . . . , εn},
are based on the observed spatial variability of the soil moisture data in the 2,500 m2 field

plot. Scharnagl et al. (2011) depict in their Figure 8 (p. 3055), the 95% ranges of the observed

soil moisture data at each measurement time. From these, the 95% confidence in the mean

soil moisture content could also be derived, but given the nonlinearity inherent in the soil595

water flux process and the expected heterogeneity of the boundary conditions, this would be

expected to underestimate the potential uncertainty in modelling the mean field water content

and soil water fluxes. Thus, for the purpose of this study, the Limits of Acceptability, ε =

{ε1, . . . , εn}, are set equal to half the width of the 95% interval ( = 2ε) of the distributed moisture

content observations. This equates to an average value of epsilon, ε = 0.047 (cm3cm−3). Thus,600

a HYDRUS-1D run is classified as behavioural if the simulated moisture contents lie within

[ỹt − εt, ỹt + εt] for t = {1, ..., n}. The behavioral range thus matches exactly the 95% ranges of

the distributed moisture content observations at each time. To speed-up posterior exploration,

the N = 8 different chains are ran on different processors using the MATLAB parallel computing

toolbox.605

Figure 10 presents histograms of the marginal posterior distribution of the six HYDRUS-1D

model parameters considered in this study. The bottom panel presents a time series plot of the

behavioural simulation set, Ω̂(y). The observed soil moisture data are indicated separately with

red dots. The behavioural HYDRUS-1D model nicely tracks the observed average soil mois-

ture measurements within behavioural simulation space defined in this way. The root mean610

square error (RMSE) of the behavioural (posterior) mean simulation equates to about 0.0149

cm3/cm−3, a value somewhat larger than derived separately using Bayesian inference with a

Gaussian likelihood function (Vrugt , 2016). The behavioural parameter space of most parame-

ters extend across a large part of their respective prior ranges with marginal distributions that

deviate markedly from normality. The VGM parameters θr and Ks and the lower boundary615

condition, hbot, are not well defined. The poor sensitivity of the simulated moisture contents to

θr is well understood in the absence of a sustained dry period with low soil moisture contents.
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Indeed, the information for θr appears outside the range of measured soil moisture contents

(Vrugt et al., 2001). The large posterior uncertainties of θs and Ks are explained by the im-

posed Limits of Acceptability which promote considerable variation in the hydraulic functions.620

Furthermore, inference of hbot suffers from a lack of soil moisture observations in the deeper

parts of the profile. Interestingly, the behavioral values of α and n are in excellent agreement

with their values derived separately from ROSETTA (Schaap et al., 2001) using soil textural

data as main input variables (Scharnagl et al., 2011). Pedotransfer functions are, however, de-

rived from small volume sample measurements and may not always be appropriate in simulating625

field scale behaviour (Beven and Germann, 2013).

The acceptance rate of DREAM(LOA) averages about 15.1%. Thus every sixth proposal

generated with DREAM(LOA) satisfies the Limits of Acceptability of the soil moisture obser-

vations. This efficiency is considerably higher than derived from rejection sampling. Out of

10, 000 samples drawn from the prior distribution in Table 2 only 47 were deemed behavioural.630

This equates to an acceptance rate of approximately 0.47%. This efficiency, is about 35 times

lower than DREAM(LOA), and expected to deteriorate further with increasing dimensionality

and size of the parameter space.

To provide further insights into the convergence speed of DREAM(LOA), Figure 11 plots the

evolution of the R̂-diagnostic for the six HYDRUS-1D model parameters in the top panel and635

traces of the sampled fitness values of the N = 8 different chains simulated with DREAM(LOA)

in the bottom panel. The R̂-diagnostic of Gelman and Rubin (1992) satisfies the convergence

threshold (black line) after about 4, 800 function evaluations. This means that the last 50% of the

chains, between function evaluations 2, 400 - 4, 800 and their corresponding sample numbers 300

- 600 satisfy convergence. This conclusion is confirmed in the bottom panel which demonstrates640

that about 300 samples are needed in each chain to satisfy the Limits of Acceptability of each

observation (fitness score of 29). The subsequent 300 samples are used for the chains to explore

fully the behavioural parameter space. It is interesting to observe that the two diagnostics,

albeit quite different proxies for convergence, provide remarkably similar results.

One should however be particularly careful to judge convergence based on the R̂-statistic.645

This convergence diagnostic is only meaningful if all the chains satisfy reversibility. This con-

dition is however not satisfied in the present case with the use of the acceptance probability in

Equation (11). This selection rule of proposals directs the DREAM(LOA) algorithm to the pos-

terior parameter set, Ω̂(x|ỹ) but violates detailed balance to do so in the first part of the chain

until the target distribution is reached. Of course, in the case that the behavioural solution650

set is empty and the model is rejected (as with the SAC-SMA model in previous study), the

DREAM(LOA) algorithm cannot converge formally.

Finally, Figure 12 shows how the posterior parameter set translates into uncertainty of the

soil water retention (left) and unsaturated soil hydraulic conductivity (right) functions. The

light grey region corresponds to the range of the prior parameter set whereas the dark grey655

is used to denote the behavioural (posterior) solution set. The posterior mean soil hydraulic

functions are indicated with the solid black line. The posterior uncertainty of the soil hydraulic

functions appears rather large in response to the limited constraints provided by a single depth of

measurement, with uncertain upper and lower boundary conditions (see also Binley and Beven

(2003))660
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7 Summary and Conclusions

In the manifesto for the equifinality thesis, Beven (2006) suggested that a more rigorous ap-

proach to hydrological model evaluation would involve the use of Limits of Acceptability for

each individual observation against which model simulated values are compared. Within this

framework, behavioural models are defined as those that satisfy the Limits of Acceptability for665

each observation. Ideally, the Limits of Acceptability should reflect the observational error of the

variable being compared, together with the effects of input error and commensurability errors

resulting from time or space scale differences between observed and predicted values (Beven,

2016). In the GLUE: 20 years on paper, Beven and Binley (2014) argue that the Limits of Ac-

ceptability framework might be considered more objective than the standard GLUE approach670

advocated in Beven and Binley (1992) as the limits are defined before running the model on

the basis of best available hydrological knowledge.

This then raises the issue of how to identify efficiently the behavioural parameter sets that

satisfy the Limits of Acceptability. In most GLUE applications, random sampling from the prior

distribution has been used to delineate the behavioural parameter space. This method, known as675

rejection sampling when combined with a membership-set likelihood function, is not particularly

efficient and if applied with an inadequate sampling density might result in a misrepresentation

of the posterior parameter distribution. It is also possible that when no behavioural simulations

are found because of inadequate sampling, models might be wrongly rejected. Thus inadequate

sampling alone can increase the possibility rejecting a model that would be useful in prediction.680

In this paper the reversible chain MCMC simulation with the DREAM(LOA) algorithm has been

used to enhance, sometimes dramatically, the accuracy and efficiency of Limits of Acceptability

sampling.

Three different case studies have been used to demonstrate the usefulness and practical

application of MCMC simulation with DREAM(LOA) within the GLUE LoA framework. The685

most important results are as follows

(1) The DREAM(LOA) algorithm achieves equivalent results to the Limits of Acceptability

approach of GLUE if all observations are used as summary statistics and the values of ε

are set equal to the effective observation error.

(2) Reversible MCMC simulation with DREAM(LOA) is orders of magnitude more efficient690

than rejection sampling used within the GLUE LoA framework.

(3) The DREAM(LOA) algorithm provides a diverse and dense sample of the behavioural pa-

rameter set.

(4) The DREAM(LOA) algorithm delineates sharply the behavioural parameter space.

(5) The use of inferior sampling methods can lead to inexact inference about the behavioural695

parameter set and erroneous conclusions about model rejection.

We should expect that the problems with any sampling method become increasingly problem-

atic with increasing dimensionality of the parameter space, increasing numbers of local regions

of behavioural models, and increasing model run times. The only way around these issues is to

use efficient sampling methods such as the DREAM(LOA) algorithm. Depending on the initial700

set of chains, this may still not identify all areas of behavioural models in complex model spaces,

but will still be expected to identify regions of behavioural models with much greater reliability
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and efficiency. This should therefore lead to more reliable and robust inference based on the

GLUE methodology.
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9 Appendix A

This Appendix presents a core implementation of the DREAM(LOA) algorithm in MATLAB.

This code can serve as template for users to delineate the behavioural parameter space for710

set-theoretic likelihood functions and Limits of Acceptability sampling. Symbols and notation

match, in so far possible, variables used in the main text. The variable x stores the parameter

vector, and X signifies the N×d matrix with the state of the chains, {x(i)
t−1, . . . ,x

(N)
t−1} at iteration

t− 1. Built-in functions are highlighted with a low dash.

715
function [chains] = dream_LOA(prior,N,T,d,problem)

% DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm for Limits of Acceptability sampling

[delta,c,c_star,nCR,p_unit] = deal(3,0.1,1e−12,3,.2); % Default values DREAM algorithmic parameters

for i = 1:N, ind(i,1:N−1) = setdiff(1:N,i); end % Matrix with for each chain index other chains720

CR = [1:nCR]/nCR; pCR = ones(1,nCR)/nCR; % Crossover values and selection probabilities

chains = nan(T,d+1,N); % Preallocate memory chain trajectories with fitness

X = prior(N,d); % Draw initial state of each chain

for i = 1:N, f_X(i,1) = fitness(X(i,1:d),problem); end % Compute fitness of initial state each chain725

chains(1,1:d+1,1:N) = reshape([X f_X]',1,d+1,N); % Store in chains the initial states and their fitness

for t = 2:T % Dynamic part: Evolve the N chains T−1 steps

[~,draw] = sort(rand(N−1,N)); % Randomly permute [1,...,N−1] N times

dX = zeros(N,d); % Set to zero jump vector of each chain730

lambda = unifrnd(−c,c,N,1); % Draw N different lambda values

for i = 1:N % Each chain: Create proposal and accept/reject

D = randsample([1:delta],1,'true'); % Select delta (equal selection probability)

r1 = ind(i,draw(1:D,i)); r2 = ind(i,draw(D+1:2*D,i)); % Unpack r1 and r2; "r1" n.e. "r2" n.e. "i"

cr = randsample(CR,1,'true',pCR); % Draw at random one crossover value735

A = find(rand(1,d) < cr); % Derive subset A with dimensions to sample

d_star = numel(A); % Cardinality of A: Number dimensions to sample

g_RWM = 2.38/sqrt(2*D*d_star); % Jump rate RWM for D chains + d_star dimensions

gamma = randsample([g_RWM 1],1,'true',[1−p_unit p_unit]); % Select gamma: 80/20 mix of default and unity

dX(i,A) = (1+lambda(i))*gamma*sum(X(r1,A)−X(r2,A),1) ... % Compute ith jump with differential evolution740

+ c_star*randn(1,d_star);

Xp(i,1:d) = X(i,1:d) + dX(i,1:d); % Compute ith proposal

% −−> Enforce parameter ranges via folding <−−
f_Xp(i,1) = fitness(Xp(i,1:d),problem); % Calculate fitness of ith proposal

P_acc = f_Xp(i,1) >= f_X(i,1); % Compute acceptance probability (0 or 1)745

if P_acc, X(i,1:d) = Xp(i,1:d); f_X(i,1) = f_Xp(i,1); end % True: Accept proposal

end % End each chain: Create proposal and accept/reject

chains(t,1:d+1,1:N) = reshape([X f_X]',1,d+1,N); % Add to chains current position and fitness

% −−> Monitor convergence of sampled chains <−−
[X,f_X] = outlier(X,f_X); % Outlier detection and correction750

end % End of dynamic part: Evolve the N chains T−1 steps

The dream_LOA function has five input arguments, including prior, an anonymous function

handle of the prior distribution, N, the number of chains, T, the number of generations, d, the

dimensionality of the target distribution, and problem, a structure array with data containers755

called fields which are required to compute the fitness of each proposal (more of which later).

Based on these input arguments the code creates a three-dimensional matrix, chains of size T

by d+1 by N with T parameter vectors and corresponding fitness values in the N different Markov

chains. randsample draws with replacement (’true’) the value of the jump rate, gamma from

the vector [g_RWM 1] using selection probabilities [0.8 0.2]. ones() returns a unit vector760

of size nCR, and randn() draws d_star values from a standard normal distribution. deal()

assigns default values to the algorithmic variables of DREAM. sum() computes the sum of the

columns A of the chain pairs r1 and r2. The function outlier() is a patch for outlier chains

(Vrugt , 2016). The jump vector, dx(i,1:d) of the ith chain contains the desired information

about the scale and orientation of the proposal distribution and is derived from the remaining765

N-1 chains. The remaining functions nan(), reshape(), setdiff(), sort(), zeros), find(),

numel(), sqrt(), and ceil() are explained in introductory textbooks and/or the MATLAB

”help” utility. Note that this basic code of DREAM(LOA) does not monitor convergence of the

sampled chains, does not enforce parameter constraints (to honor prior ranges), and does not

21



adapt the selection probabilities of the crossover values.770

prior() is an anonymous function that draws N samples from a d-variate prior distribution.

For the instantaneous unit hydrograph (first case study), the prior distribution would equate to

prior = @(N,d) unifrnd(1,10,N,d) (18)

where the @ operator creates the function handle. The prior distribution determines the initial

state of the N Markov chains.775

fitness() is a function which evaluates the fitness of Equation (12) for each proposal, x.

We provide a template of this function for the first case study with a call to the Nash_Cascade()

function of Equation (13).

function f = fitness(x,problem)780

% This function computes the fitness of a parameter vector

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input: x 1 x d − vector with (proposal) parameter values

% problem structure with additional input arguments

% Output: f fitness of proposal785

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

y = Nash_Cascade(x,problem); % Run forward model, Equation (1), for x(1:d)

f = sum(abs(problem.y_obs−y) <= problem.epsilon); % Equation (12), # observations within limits?790

This function demands as second input argument the structure problem with fields y obs and

epsilon, which store the observed data and their Limits of Acceptability, respectively. This

structure also allows the user to pass additional arguments (in fields) to their forward model.

The reader is referred to Vrugt (2016) for a detailed introduction to the MATLAB toolbox

of DREAM and related algorithms.795
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10 Appendix B

This Appendix presents a MATLAB implementation of the Nash_Cascade() forward model

used in section 6.1 of this paper.

function [y] = Nash_Cascade(x,problem)800

% Nash−Cascade unit hydrograph −− series of linear reservoirs

k = x(1); m = x(2); % Unpack recession constant and # reservoirs)

if k < 1805

warning('Recession constant < 1 day −−> numerical errors');

end

W = zeros(problem.maxt,problem.maxt); % Initialize matrix W

IUH = 1/(k*gamma(m)) * (problem.t/k).^(m−1) .* exp(−problem.t/k); % Calculate instantaneous unit hydrograph810

for t = 1:problem.maxt % Loop over time

W(t:problem.maxt,t) = problem.P(t) * IUH(1:problem.maxt−(t−1)); % Calculate discharge

end % End of time loop

y = sum(W,2); % Total daily discharge815

The problem setup is defined in the following MATLAB script and used to execute the

dream_LOA algorithm.

%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %%

%% EXAMPLE IMPLEMENTATION OF CASE STUDY 1: NASH−CASCADE UNIT HYDROGRAPH %%820

%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %%

problem.maxt = 25; % Define maximum simulation time (days)

problem.P = [ 10 25 8 2 zeros(1,21) ]'; % Define the 25−days precipitation record

problem.t = 1:problem.maxt; % Define times (days) of simulated output825

k = 4; % Synthetic data: recession constant (days)

m = 2; % Synthetic data: number of reservoirs (−)

y = Nash_Cascade([k m],problem); % Create artificial streamflow data (mm/day)

problem.y_obs = normrnd(y,0.1*y); % Perturb the data and store as observations

problem.epsilon = 0.2 * problem.y_obs; % Define epilon as multiple of observed data830

prior = @(N,d) unifrnd(1,10,N,d); % Create handle for prior distribution

[chains] = dream_LOA(prior,8,1000,2,problem); % Run dream_LOA to sample behavioural space
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Table 1 Parameters and state variables of the SAC-SMA model and their ranges.

PARAMETER SYMBOL LOWER UPPER UNITS

Upper zone tension water maximum storage UZTWM 1.0 150.0 mm
Upper zone free water maximum storage UZFWM 1.0 150.0 mm
Lower zone tension water maximum storage LZTWM 1.0 500.0 mm
Lower zone free water primary maximum storage LZFPM 1.0 1000.0 mm
Lower zone free water supplemental maximum storage LZFSM 1.0 1000.0 mm
Additional impervious area ADIMP 0.0 0.40 -
Upper zone free water lateral depletion rate UZK 0.1 0.5 day−1

Lower zone primary free water depletion rate LZPK 0.0001 0.025 day−1

Lower zone supplemental free water depletion rate LZSK 0.01 0.25 day−1

Maximum percolation rate ZPERC 1.0 250.0 -
Exponent of the percolation equation REXP 1.0 5.0 -
Impervious fraction of the watershed area PCTIM 0.0 0.1 -
Fraction from upper to lower zone free water storage PFREE 0.0 0.6 -
Recession constant three linear routing reservoirs RQOUT 0.0 1.0 day−1

STATE VARIABLES

Upper-zone tension water storage content UZTWC 0.0 150.0 mm
Upper-zone free water storage content UZFWC 0.0 150.0 mm
Lower-zone tension water storage content LZTWC 0.0 500.0 mm
Lower-zone free primary water storage content LZFPC 0.0 1000.0 mm
Lower-zone free secondary water storage content LZFSC 0.0 1000.0 mm
Additional impervious area content ADIMC 0.0 650.0 mm
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Table 2 Parameters of the HYDRUS-1D model and their prior uncertainty ranges.

PARAMETER SYMBOL LOWER UPPER UNITS

Residual soil moisture content θr 0.00 0.10 cm3 cm−3

Saturated soil moisture content θs 0.30 0.55 cm3 cm−3

Reciprocal of air-entry value α 0.02 0.50 cm−1

Curve shape parameter n 1.05 2.50 -
Saturated hydraulic conductivity Ks 0.24 100.00 cm day−1

Pressure head at the lower boundary hbot -500 -10 cm
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Figure 1 Set-theoretic approach to quantification of parameter uncertainty. The blue, green, and red
colours delineate the prior, Ω(x), conditional, Ω(x|ỹ), and posterior, Ω̂(x|ỹ) parameter set respectively,
whereas the grey ellipsoidal defines the feasible parameter space, x ∈ χ ∈ Rd. The four examples each
portray a different outcome, (A) the conditional parameter set intersects fully the prior parameter set,
(B) the conditional parameter set intersects only partially the prior parameter set, (C) the conditional
and prior parameter set are disjoint (have no elements in common), and (D) the conditional parameter
set is empty (no solutions exist that satisfy the Limits of Acceptability). For the last two examples
there does not exist a behavioural solution space.

37



𝜌 𝐲, 𝐲 𝐱(𝑖) ≤ 𝛆 ?

D
E
N

S
IT

Y

𝑥1

MARGINAL DISTRIBUTIONS

PRIOR DISTRIBUTION OF 𝐱EXPERIMENTAL DATA

SIMULATION 1 SIMULATION 2 SIMULATION 3 SIMULATION N



𝐱(1) 𝐱(3)𝐱(2) 𝐱(𝑁)

 𝐲

𝑡

𝐲

𝑡 𝑡 𝑡

D
E
N
S
IT
Y

…

𝑡

𝑥1

…

 

𝐲 = ℳ 𝐱,𝛂, ෩𝛙𝟎, ෩𝐀, ෩𝐁 + 𝐞

BEHAVIORAL SIMULATIONS

 𝐲

𝑡

…

D
E
N

S
IT

Y

𝑥𝑑

𝑃(𝑥1)

𝑃(𝑥1| 𝐲)

𝑃(𝑥𝑑| 𝐲)

EPSILON

EXPERIMENTAL DATA

RESULTSABC METHODOLOGYDATA

Figure 2 Conceptual overview of approximate Bayesian computation (ABC) for a hypothetical one-
dimensional parameter estimation problem (inspired by Sunn̊aker et al. (2013)). First, N samples
are drawn from a user-defined prior distribution, x(i) ∼ P (x), where i = {1, . . . , N}. Then, each
parameter vector is evaluated with the model and corrupted with a residual time series, e, drawn
randomly from Pe(·). This creates an ensemble of N different simulations. If the distance between the
observed and simulated data, ρ

(
ỹ,y(x(i))

)
is smaller than or equal to some nominal positive value,

ε then x(i) is retained, otherwise the simulation is discarded. The accepted samples are then used to
approximate the posterior parameter distribution, P (x|ỹ). For complex models and large data sets
the probability of happening upon a simulation run that describes exactly the observations will be
very small. Therefore, ρ

(
ỹ,y(x(i))

)
is usually defined as a distance between summary statistics of

the simulated, S
(
y(x(i))

)
, and observed, S

(
ỹ
)
, data, respectively.
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Figure 4 Results of case study I: Nash-Cascade series of reservoirs. Evolution of the R̂-diagnostic of
Gelman and Rubin (1992) used to judge when convergence of the N = 8 Markov chains to a limiting
distribution has been achieved. The two parameters are coded with a different colour. About 2, 000
function evaluations are required to satisfy the convergence threshold of R̂j ≤ 1.2; j ∈ {1, 2}.
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Figure 5 Results of case study I: Nash-Cascade series of reservoirs. Bivariate scatter plot of the
behavioural (posterior) samples of k and m derived from MCMC simulation with DREAM(LOA)

(dark red) and uniform random sampling (blue dots). The dashed black line plots the least-squares
fit to the DREAM(LOA) sample of points. The correlation coefficient equals -0.93.
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Figure 6 Schematic representation of the Sacramento soil moisture accounting (SAC-SMA) conceptual
watershed model. The parameters of the SAC-SMA model appear in Comic Sans font type (black),
whereas Courier font type is used to denote the individual fluxes computed by the model. Numbers
are used to denote the different SAC-SMA state variables, (1) ADIMC, (2) UZTWC, (3) UZFWC,
(4) LZTWC, (5) LZFPC, and (6) LZFSC. The ratio of deep recharge to channel base flow (SIDE)
and other remaining SAC-SMA parameters RIVA and RSERV are set to their default values of 0.0,
0.0 and 0.3, respectively.
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Figure 7 Results of case study II: The SAC-SMA conceptual watershed model. Trace plot of the
sampled fitness values of Equation (12) in a randomly selected set of the N = 20 different Markov
chains of the DREAM(LOA) algorithm. Each chain is coded with a different colour and/or symbol.
The computed fitness is equivalent to the number of times the simulated value honors the Limits
of Acceptability, ε = 0.4ỹ of the observed discharge data. The SAC-SMA model can only fit a
portion of the n = 3, 652 discharge observations of the calibration data set, and is thus rejected as
not fit-for-purpose.
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Figure 8 Results of case study II: The SAC-SMA conceptual watershed model. (A) Comparison
of the observed (red dots) and simulated (black line) discharge data for a selected 365-day portion
of the calibration data period. The simulated values correspond to the DREAM(LOA) sample with
highest fitness. (B) score plot of the Limits of Acceptability. A daily score of unity signifies that
the simulated value satisfies the Limits of Acceptability of the corresponding observation, whereas a
daily score of zero denotes a non-behavioural solution.
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Figure 9 Schematic representation of the HYDRUS-1D model setup for the experimental field plot
near Jülich, Germany.
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Figure 11 Results of case study III: The HYDRUS-1D variably saturated flow model. Trace plots
of the (A) R̂-convergence diagnostic of Gelman and Rubin (1992), and (B) sampled fitness values in
each of the different Markov chains simulated with DREAM(LOA). The parameters and chains are
coded with a different symbol and colour.
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Figure 12 Results of case study III: The HYDRUS-1D variably saturated flow model. Comparison
of the prior (dark grey) and posterior (light grey) ranges of the (A) soil water retention, and (B)
unsaturated soil hydraulic conductivity function. The black line plots the posterior (behavioural)
mean hydraulic functions.
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