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Abstract

As the global Internet expands to satisfy the demands of the ever-increasing con-

nected population, profound changes are occurring in its interconnection structure. The

pervasive growth of IXPs and CDNs, two initially independent but synergistic infras-

tructure sectors, have contributed to the gradual flattening of the Internet’s inter-domain

hierarchy with primary routing paths shifting from backbone networks to peripheral

peering links. At the same time the IPv6 deployment has taken off due to the depletion

of unallocated IPv4 addresses. These fundamental changes in Internet dynamics has

obvious implications for network engineering and operations, which can be benefited

by accurate topology maps to understand the properties of this critical infrastructure.

This thesis presents a set of new measurement techniques and inference algorithms

to construct a new type of semantically rich Internet map, and improve the state of the

art in Internet cartography. The author first develops a methodology to extract large-

scale validation data from the Communities BGP attribute, which encodes rich routing

meta-data on BGP messages. Based on this better-informed dataset the author pro-

ceeds to analyse popular assumptions about inter-domain routing policies and devise

a more accurate model to describe inter-AS business relationships. Accordingly, the

thesis proposes a new relationship inference algorithm to accurately capture both sim-

ple and complex AS relationships across two dimensions: prefix type, and geographic

location. Validation against three sources of ground-truth data reveals that the proposed

algorithm achieves a near-perfect accuracy. However, any inference approach is con-

strained by the inability of the existing topology data sources to provide a complete

view of the inter-domain topology. To limit the topology incompleteness problem the

author augments traditional BGP data with routing policy data obtained directly from

IXPs to discover massive peering meshes which have thus far been largely invisible.
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Chapter 1

Introduction

1.1 Background

The Internet is a composed by more than 45,000 independent networks, called

Autonomous Systems (ASes), that interconnect to form the most widespread global

communications infrastructure. It is forecasted that by 2018 the number of Internet

users will correspond to over 50% of the world’s population, and more than 20 billion

devices will be connected online [60]. An AS can be an Internet Service Provider (ISP),

a Content Distribution Network (CDN), or a smaller organisation such as a university or

corporation that autonomously administers a domain of connected IP prefixes. Packets

within an AS are routed according to a set of metrics and Interior Gateway Protocols

(IGPs) that are determined by each AS operator separately and can differ significantly

between ASes [123]. Each AS owns only a subset of the IP address space and typ-

ically covers a limited geographical area, which means that end-to-end traffic often

needs to traverse multiple AS domains before reaching its destination. In inter-domain

routing the Border Gateway Protocol (BGP) is used as the de-facto protocol for the

exchange of reachability information at the boundary of ASes [175]. Before starting

to exchange traffic two ASes need first to establish a physical connection and agree to

a contractual relationship that determines the economic and technical aspects of their

connectivity. Business relationships between ASes, can be broadly classified into two

types: customer-to-provider (c2p) or transit and peer-to-peer (p2p). In a c2p relation-

ship, the customer pays the provider for traffic sent between the two ASes. In return,

the customer gains access to the ASes the provider can reach, including those which

the provider reaches through its own providers. In a p2p relationship, the peering ASes
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gain access to each others customers, typically without either AS paying the other.

Peering ASes have a financial incentive to engage in a settlement-free peering relation-

ship if they would otherwise pay a provider to carry their traffic, and neither AS could

convince the other to become a customer.

BGP provides the flexibility to express routing policies on how reachability infor-

mation is propagated, allowing AS operators to enforce their contractual agreements

and implement complex traffic engineering techniques for load and cost balancing.

As a result of policy-based routing inter-domain traffic does not necessarily follow the

shortest path between two ASes. Policy-based routing has been one of the initial design

aspects of BGP aiming to enable AS operators to chose which routes will be accepted,

which will be preferred and which will be propagated to their neighbours.

1.2 Motivations for Internet Cartography

Internet cartography describes the research efforts to discover, annotate and char-

acterise the Internet topology through direct measurements and inference techniques.

The need for Internet cartography stems from the fact that today there does not

exist any map that fully describes the various levels of Internet connectivity due to the

highly distributed ownership and administration of the Internet’s infrastructure. Each

AS has full knowledge and control of their own domain but treat the other ASes as black

boxes. This is another aspect of BGP which was designed to hide any information re-

garding the internal structure of ASes. Consequently, nobody has global visibility of

the Internet’s topology since 1995, when the National Science Foundation Network

(NSFNET) backbone was decommissioned and gave its place to the “commercial In-

ternet” [198].

The field of Internet cartography gained significant attention due to the necessity

to study the structure and dynamics of the Internet topology for the design of future In-

ternet architectures, inform technology investment, facilitate the development of public

policies, and enable the scientific analysis of the Internet from the perspectives of sta-

tistical physics and network science.

Bellow I explore in more depth how the Internet topology can be a useful tool in

tackling Internet-related challenges.
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1.2.1 Design of future Internet protocols

The Internet was not originally designed to be the ubiquitous global network it is

today. Instead it started as a research project that evolved spontaneously and without

central coordination. As the Internet pioneer Vint Cerf noted in a recent interview:

“I thought that if the Internet idea actually worked we would then build

a production version of it. And what happened is it got loose, into use!

We have been using the experimental Internet design since 1983 when we

turned it on!”

For instance, BGP was introduced in 1989 [144] to enable the transition from

the centric ARPAnet architecture to the meshed NSFnet topology. The current ver-

sion of BGP, BGPv4, has been adapted in 1995 and although it went through mul-

tiple extensions its designed principles remain the same for almost 20 years. Over

these years the demands placed on the Internet kept changing guided by innovations

in the physical and the application layers. As a result, a number of serious short-

comings have been building over time, including slow convergence, instability, weak

security, non-deterministic behaviour, scalability concerns, and proneness to miscon-

figurations [89, 111, 151, 110, 122, 49, 81].

To respond to the emerging challenges, Internet researchers and engineers develop

new architectures and protocols that can support the ever-increasing demands for higher

traffic volumes, stronger security and better performance. However, operators are re-

luctant to adopt protocol innovations due to the difficulties involved in the transition to

new technologies while ensuring the uninterrupted operation of their network and the

seamless interoperability with other networks.

The problem of adopting novel protocols and architectures has been parallelised

as an effort to change the engines of an aeroplane in mid-flight. The high cost of poten-

tial failures discourage the switch to new technologies leading network engineers and

administrators to choose ad-hoc solutions. These are essentially temporary fixes that

mitigate the short-term problems, but have limited long-term payback, as the underlay

architectural problems persist [121, 32].

Simulation, emulation and virtualization have been proposed as alternatives to the

limited capabilities for try-and-error experimentation [174, 32, 159]. These approaches
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can greatly facilitate research efforts but require sound understanding of the Internet’s

large-scale structure and dynamics. Such insights can be obtained through the study of

the Internet’s global topology [91].

1.2.2 Development of Regulatory Policies

As the Internet ecosystem evolves the emerging challenges do not relate only with

pure technical issues but also with policies to regulate money flows, competition and

network neutrality.

The need to regulate the Internet business relationships is not new but becomes

more pressing due to the rising market power of CDNs and Eyeball networks1. Today

the majority of traffic which originates from content providers is delivered over CDNs

at the edge of the Internet topology. These new traffic channels constitute a significant

shift from the past when backbone tier-1 ASes where the major hubs for the deliv-

ery of end-to-end traffic [140, 181], with direct implications for the balance in market

power. CDNs control the source of the traffic, but eyeball networks control the incom-

ing links over which content is delivered to end users. This traffic imbalance has led to a

sharp increase in interconnection disputes [165, 177, 26, 45, 205], intentional throttling

of capacity, and other business practices that threaten network neutrality [142, 162].

Consequently, there are growing concerns that regulatory action is required to ensure

transparency and fairness in the Internet transit market [161, 201, 1].

Policy makers can benefit from accurate topology data and models that can provide

insights on interconnection strategies, facilitate the monitoring of connectivity types

and help in avoiding potential unexpected effects of new regulations [71, 147].

Similarly, the study of Internet topology can provide useful insights to policy-

makers who aim at stimulating the expansion of the Internet in developing countries.

Recently there have been great efforts to improve the Internet infrastructure in Africa

and Latin America, but without necessarily leading to the expected levels of develop-

ment [96, 183]. Connectivity is a key aspect of monitoring and assessing these efforts

and therefore policy-makers and investors can make better-informed decisions trough

the analysis of the inter-domain topology [115, 87].

1Eyeball networks are called the ISPs that mainly operate as access providers for the end users such
as home subscribers.



1.2. Motivations for Internet Cartography 19

1.2.3 Scientific Exploration of Complex Networks

The analysis of the Internet topology has been particularly appealing among sta-

tistical physicists and mathematicians, who are mainly motivated by a scientific interest

in the exploration of fundamental process that happen in complex networks.

The focus on the Internet as a complex network has been motivated by the sem-

inal study of Faloutsos brothers that suggested that the connectivity degree of the

router-level topology has a power-law shape [86]. At about the same time power-

law relationships have been found in a large array of natural and artificial net-

works fuelling an exploration for global properties among scale-free networks pro-

cesses, such as epidemiological properties, growth mechanisms, small-world phenom-

ena [190, 193, 30, 196, 164].

The preferential attachment model [38] as a mechanism for the evolution

of complex networks inspired the development of topology generators that repro-

duce an array topological properties of the Internet, such as a power-law degree

distribution, disassortative mixing, strong clustering, and the rich club connectiv-

ity [47, 199, 156, 211, 210, 169]. Topology generators require accurate inference and

annotation of the Internet topology, and need to capture the dynamics of topology evo-

lution, in order to provide more realistic models of the actual network [119, 120].
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1.3 Challenges

Despite over a decade of progress in mapping the Internet inter-domain topology

many widely cited results have been characterized as inaccurate or misleading due to

several open issues in Internet Cartography [179].

1.3.1 Topology Incompleteness

One of the main difficulties in mapping the inter-domain topology is the lack of

readily available connectivity data. As a workaround researchers try to construct the

inter-domain topology by aggregating BGP and traceroute routing data that are col-

lected primarily for monitoring and debugging purposes. The most widely used BGP

datasets are collected by two large-scale monitoring projects, RouteViews [21] and

RIPE RIS [16], which connect directly to ASes to receive and publish their BGP feeds.

traceroute data are collected by distributed vantage points deployed as part of data-

plane monitoring infrastructures, such as CAIDA’s Ark [4], DIMES [184] and RIPE

Atlas [15]. However, both BGP and traceroute monitors have only limited visibility of

the global inter-domain connectivity and consequently the visible inter-domain topol-

ogy is incomplete even when the views of multiple vantage points are combined.

The incompleteness problem is exacerbated due to its bias against peering links

at the periphery of the AS topology, and geographical areas that contain smaller con-

centration of BGP and traceroute monitors. Therefore, the visible topology is not only

incomplete but also considerably skewed. Improving the completeness of the visible

inter-domain topology is a very important research area, but despite recent progress

through crowd-sourcing traceroute measurements [58, 85] and combination of multi-

ple data sources [124, 136] the largest part of the inter-domain topology remains invis-

ible [28].

The number of invisible links is amplified by the expansion of the IXPs that fa-

cilitate the establishment of peering relationships at the edge of the network and lead

to dense but highly localised peering meshes. These peering links are difficult to be

discovered even through targeted measurements [36] and it was suggested that they can

be observed only by extracting data directly from IXPs [28].
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1.3.2 Questionable Relationship Inference Heuristics

Inference of AS relationships has been an active area of research for over a

decade [97, 202, 191, 84, 41, 76, 167, 197]. While yielding insights into the struc-

ture and evolution of the topology, this line of research is constrained by systematic

measurement and inference challenges [198, 70].

Relationship inference algorithms are limited by the fact that they rely on AS

connectivity information (obtained from the BGP or traceroute paths) and therefore

heuristics need to be used to translate path patterns to relationship types. Past works

on relationship inference used two types of techniques, Type-of-Relationship (ToR)

optimisation and top-down inference. Both techniques rely on the assumption that all

valid BGP paths conform to the valley-free export policy2, and accordingly they assign

c2p relationships to AS links. Similarly p2p relationships are assigned based on the

connectivity degree of the connected ASes or the visibility of the links.

These heuristics are based on theoretical principles that have not been thoroughly

validated in practice due to the lack of ground-truth data. Assuming the universality of

simple BGP policies is prone to errors even if some policies are prevalent. For instance,

the valley-free export policy may be violated in cases of misconfigurations or poisoning

that are difficult to be detected using simple data sanitisation techniques [145, 133].

Moreover, the so-called “flattening” hierarchy of the inter-domain connectivity in-

hibit the effort to develop accurate heuristics, since the parallel growth of CDNs (traffic

producers) and eyeball networks (traffic consumers) have radically changed the per-

ceptions of symmetry in traffic delivery costs [88]. The implications of these Internet

phenomena on inter-domain routing policies need to be properly understood, in order

to improve the quality of AS relationship inferences. Ground-truth data on routing

policies are needed in order to gain new insights for the development of well-grounded

heuristics and the validation of the inference results.

1.3.3 Simplistic Modelling Abstraction

The layered nature of the Internet’s architecture means that its topology can be

described at different levels of abstraction. Accordingly, at least four levels of topology

resolutions can be defined [80, 158]. The interface-level or IP-level topology describes

2According to the valley-free policy, routes learned from peers and providers are advertised only to
customers. BGP policies are discussed in more detail in section 2
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Figure 1.1: Inter-domain topology at three different levels of resolution, router-level, PoP-level
and AS level.

the network layer connectivity between router interfaces. Each IP interface is a node

and a physical connection between two interfaces represents a link. The router-level

topology results by grouping the interfaces that belong to the same router in one node.

Routers can be grouped in Point-of-Presence (PoPs) forming the PoP-level topology.

PoPs are physical buildings where ISPs hosts their network devices and function as

access points to their network. The PoPs that belong to the same administrative entity

form an Autonomous System (AS) or a Routing Domain. In the AS-level topology the

nodes represent Autonomous System and the links express the contractual relationships

among them. Each link is a logical construct that groups together multiple router-level

or PoP-level links between two ASes.

The resolution at which the topology is considered has direct implications on its

applicability in the study of Internet engineering problems. Higher level of detail pro-

vides a more realistic representation of the actual network but comes at the cost of

increased complexity and scarcer data sources. For this reason the majority of past

topology research works have used a simplistic approach that models the inter-domain

topology as a simple AS graph. This abstraction loses important details regarding the

internal structure of ASes and the actual connectivity at the BGP level, making it largely

irrelevant to Internet engineering problems. For example, it has been found that when

used in path prediction it produces very poor results [153, 159]. Even though an AS
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is supposed to exhibit a single routing policy to another AS according to the definition

in RFC 1930 [123], in reality ASes often announce different prefixes at different in-

terconnection points [48], apply different import policies [155] and can agree different

relationship types [82].

To capture the diversity of routing policies the AS graph should be modelled as a

multi-graph. The PoP-level topology can provide a good trade-off between fidelity and

simplicity because it represents an intermediate granularity between the physical router

topology and the logical AS topology [198, 163]. However, discovering the geographic

footprint of an AS is non-trivial and typically it requires to be inferred through latency

measurements combined with traceroute paths that can be erroneous [137].



1.4. Contributions 24

1.4 Contributions
The main contribution of this thesis is the development of a new type of Internet

map that accurately captures the inter-domain connectivity at a higher level of granular-

ity. The data produced by the new methods will offer a fresh lens under which to study

the structure and evolution of the Internet topology. The new data can facilitate better

understanding of the economics and policies of inter-domain topology and improve the

scientific analysis of its statistical properties. More specifically the contributions of this

thesis can be summarised as follows:

1.4.1 Augmented Measurement Datasets

BGP data contain a wealth of routing information but so far related research relied

almost exclusively on the AS path attribute. I augment the connectivity information ob-

tained from AS paths with metadata extracted from the Communities BGP attribute and

operators’ documents that explain their routing policies. The augmented measurements

provide a unique ground-truth dataset that covers over 35% of the visible AS links and

allows me to develop inference and validation techniques that do not rely solely on con-

nectivity data but also on actual policy configurations. To ensure the correctness of the

collected data I have cross-validated the BGP Communities against feedback directly

received by AS operators that covers about 10% of the visible AS links.

To complement the data provided by RouteViews and RIPE RIS BGP feeds I in-

tegrate BGP and traceroute data obtained through more than 500 of distributed looking

glass servers. Looking glass servers provide interfaces to routers that allow the exe-

cution of non-privileged commands and therefore they can be used for targeted active

querying. Different looking glass servers expose different interfaces through which

they accept queries and present the output. To facilitate querying I develop an overlay

API that abstracts querying and parsing, and enables the transparent execution of com-

plex queries across diverse looking glasses. Although some past works also utilised

looking glasses to obtain additional connectivity information[36, 136], I implemented

my own querying overlay for two reasons: (i) The source code used in the past works

for querying the looking glasses has not been shared publicly, only the list of the look-

ing glass servers[33, 135]; (ii) Looking glass servers are highly volatile and often exist-

ing looking glasses change querying parameters, become unresponsive or unavailable,
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while new looking glasses become available. Therefore past lists of looking glasses

become quickly stale and of limited use. Instead of relying on hard-coded lists I au-

tomated the discovery of new looking glass servers through web crawling and web

scrapping.

1.4.2 Validation of Inter-domain Modelling Heuristics

I apply the augmented datasets in the analysis of inter-domain routing data to gain

new insights on import and export policies. I use the ground-truth data collected from

BGP Communities to thoroughly analyse popular modelling heuristics and validate the

existing relationship inference algorithms.

My results reveal that popular heuristics such as the valley-free “rule” are violated

at least twice as often than previously believed. More importantly, a large fraction of

these violations are not a result of transient misconfigurations but rather the outcome

of complex policies that cannot be captured by coarse-grained models [104].

Additionally I find that the assumptions on the symmetry of peering and transit

relationships based on the connectivity degree do not provide a realistic model of AS

connectivity. Consequently, they lead to higher number of errors compared to the algo-

rithms that do not utilise topological properties to infer AS relationships [103].

The Community values allow to study the IPv6 AS relationships, despite the con-

siderable “noise” in IPv6 paths due to the early stage of its deployment. The results

reveal a large number of links with different relationship types between the two topolo-

gies [102]. This work was one of the first to suggest that IPv6 AS relationships should

be studied separately from IPv4 since the economics are completely different [61].

1.4.3 New Measurement and Inference Algorithms

The insights gained from the ground-truth data allow to rethink the problems of

topology inference and annotation. Development of more realistic relationship infer-

ence heuristics and path sanitisation techniques contribute to the inference of conven-

tional AS relationships with near-perfect accuracy (99.6% for transit links and 98.9%

for peering links) [146]

To capture the complex AS relationships at the PoP-level granularity I build a

new algorithm to infer hybrid and partial transit relationships with 95% accuracy. This

new algorithm is a first step towards tackling a long-standing problem which has been
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characterized as the “holy-grail” of relationship inference [163]. To achieve this break-

through I develop a measurement technique that orchestrates active BGP and traceroute

measurements based on hints provided by passively collected BGP data in order to ob-

tain fine-grained connectivity without increasing exponentially the measurement cost.

Finally, I develop a new algorithm to infer with high confidence the peering links

established over IXP route servers, that reveal a large fraction of the “invisible” AS

topology. Route servers provide a scalable way to implement dense peering connectiv-

ity with small administrative effort and therefore they are one of the key technologies

that contribute to the “flattening” of the AS topology [57]. By combining IXP presence

data with route redistribution BGP filters I am able to reveal 210% more peering links

compared to the combined publicly available BGP and traceroute data [105, 106].

1.4.4 New Knowledge on Inter-domain Connectivity and Policies

The new inference algorithms and measurement techniques allow to study the

inter-domain connectivity and policies through a new lens. The new relationship infer-

ence algorithms informs our understanding of evolutionary trends such as the flattening

of the Internet topology and the financial consolidation of the Internet transit industry.

The inference of fine-grained relationships reveals that complex relationship types

are more widespread among European ASes, mainly due to the highly expanded IXP

ecosystem. IXPs are driving the evolution of complex relationships as they allow con-

tent providers and eyeball ASes to interconnect at multiple countries and apply different

policies for each country.

The last observation is also apparent by the inferred multilateral peering agree-

ments. ASes that co-locate at different IXP route servers apply different sets of BGP

filters, meaning that the peering policy of a network is frequently location-specific.

Consequently, the self-reported peering policies should not be taken at face value. In-

stead my data enable a closer inspection of the actual policies and can be used to gain

insights on peering policies at higher granularity.
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1.4.5 New Public Datasets

I make publicly available all the datasets produced by the research presented in

this thesis3. Overall four different datasets have been published:

• Ground-truth data on AS relationships and BGP routing policies obtained

through BGP Communities for April 2012.

• AS relationship inferences for conventional relationships types between January

2003 and November 2013.

• AS relationship inferences for complex relationship types for March 2014.

• Multilateral peering links for 18 large European IXPs for February 2013.

The above datasets are accompanied by appropriate documentation and they are

available either directly from myself or through CAIDA’s online data repository. Over-

all the data have been downloaded by more than a hundred different researchers.

1.5 Thesis Outline
The rest of the thesis is organised as follows. Chapter 2 provides an overview

of the preliminaries of inter-domain routing and explains the different BGP attributes

and how they are used in the decision process for the selection of the active AS paths.

I also present a literature review about the related works on topology discovery and

relationship inference. The section concludes by discussing the open questions that

this thesis aims to research.

Chapter 3 presents a new approach to augment the available connectivity datasets

with data extracted from the BGP Communities and the LocPref attributes, and de-

scribes a new measurement framework to automatically interpret and sanitise the en-

coded values. The rest of the chapter presents how the collected ground-truth data are

used to perform a preliminary study of the AS topology. The results of this study shed

new light on the validity of popular heuristics used in modelling inter-domain routing.

More specifically, I provide a study of the valley-free violations in IPv4 and IPv6 paths,

the Gao-Rexford conditions on the ordering of Local Preference values, and the correla-

tion between different relationship types and the connectivity degree of ASes. Chapter
3The only data that have not been made available are the direct feedback received from AS operators

due to non-disclosure agreements with them.
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4 concludes by presenting a validation of the accuracy of past relationship inference

algorithms.

Chapter 4 presents how the insights gained from the previous chapter are combined

to develop a new algorithm for the inference of conventional relationships. The chapter

provides details on each step of the algorithm and the efforts to thoroughly validate

the inferences. I then explain how the inferred relationships are used to construct the

customer cones of the ASes as a metric of their market power and the flattening of the

AS topology. relationships is decreasing over time, but the differences in the top transit

providers remain notable.

Chapter 5 presents how the conventional inference algorithm presented in Chapter

4 is extended to infer two important types of complex AS relationships at the PoP-

level topology granularity: hybrid and partial-transit. Then, it provides an analysis of

the findings and validates the inferences against three sources of data, direct feedback,

BGP communities and RPSL objects.

Chapter 6 introduces a novel algorithm for the inference of multilateral peering

links. First I introduce the role of Route Servers in Internet peering agreements and I

explain how BGP filters are used to control the multilateral peering reachability. Then

I present in detail the link inference algorithm that reveals more than 180K “invisi-

ble” peering links. The chapter continues by providing a study of the observed peering

policies of the Route Server participants. Based on the inference results the chapter

concludes by extrapolating the total number of peering links globally to put into per-

spective the incompleteness problem.

Finally, Chapter 7 concludes the thesis with an overview of the research outcomes

and how the contributions of my work has so far facilitated further research in inter-

domain routing. The thesis concludes with a discussion on the future directions of the

Internet inter-domain cartography.

1.6 Chapters Material
Most materials presented in this thesis have been published in peer-reviewed con-

ferences and journals. This section explains how these publications are related to the

chapters of this thesis. Chapter 3 is based on material published in [103, 102, 104].

Chapter 4 is based on material published in [146]. Chapter 5 is based on material pub-
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lished in [101]. Chapter 6 is based on material published in [105, 106]. In all the

papers that I am the first author I personally conducted all the research and technical

work presented in the publications.

The only paper where I contributed as supporting author is [146], in which my

contributions are limited in section 2 (related work), sections 3.5, 3.6 (collection and

sanitisation of validation data extracted from BGP communities), and sections 4.6, 4.7

(validation and debugging of inference heuristics; analysis of complex relationships;

comparison against past relationship inference algorithms). The algorithm itself has

been designed and developed by Matthew Luckie. I did not contribute in the section

5 (inference of customer cones and topology flattening), and therefore inference and

analysis of customer cones is not part of this thesis’s contributions. Section 4.4 shortly

presents customers cones to explain a practical application of relationships inference.



Chapter 2

Background

In this chapter I introduce the terminology and preliminaries of inter-domain rout-

ing, and I review the relevant literature in inter-domain cartography. The chapter is

divided in three parts. The first part explains the different BGP attributes and how they

are used to determine which AS path will be selected for routing traffic towards an IP

prefix. Then I present the different sources of publicly available topology data and I

explain their limitations. These two sections provide the necessary background for un-

derstanding the techniques presented in the next chapters. Finally, I review the related

works on the discovery and annotation of the inter-domain links and I discuss the open

research issues.

2.1 Introduction
The Internet is composed by millions of routers distributed all over the world.

Routers receive traffic from end hosts (e.g. web servers) and decide how it should be

forwarded to the destination hosts (e.g. Internet users) based on the unique identifiers

of the sender and the receiver. These identifiers are expressed as unique numbers called

IP addresses. The length of the IP addresses depend on the IP version, IPv4 uses 32-bit

addresses while IPv6 uses 128-bit addresses. Usually traffic travels across many routers

before reaching its destination. To decide the next hop in the routing path, each router

keeps a table that maps IP addresses to neighbour routers. Due to the huge number of

possible IP address (232 for IPv4 addresses) such a table is not scalable. To make the

routing table more compact, IP addresses are grouped into prefixes of common bits.

For example all the addresses that have the first 16 bits in common are group into a

prefix of the format a.b.0.0/16 (CIDR format). The prefix can be of variable length
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depending on the number of common bits.

Routers are deployed and administered by large organizations such as Internet

Service Providers (ISPs), enterprises or educational institutions. A network of routers

under the same administrative entity is called Autonomous System (AS). Each AS is

identified by a unique 32-bit number (ASN) and has been assigned with one or more

address blocks (IP prefixes) to distribute to the devices connected to its infrastructure.

The Internet Assigned Numbers Authority (IANA) is responsible to assign ASNs and

IP prefixes to the the Regional Internet Registries (RIRs) which in turn assign them to

ASes. Today there are five RIRs (Afica: AFRINIC, America: ARIN and LACNIC, Asia

and Australia: APNIC,Europe: RIPENCC). On June 2014 there were 65,592 allocated

ASNs, 46,726 of which were actively advertised in the BGP routing table [24].

The ASes are autonomous in the sense that their operators can independently de-

cide which Interior Gateway Protocol (IGP) and metrics will be used for routing inside

their domain, irrespective of what protocols other ASes use. Routing inside an AS is a

black box for other ASes which are only interested in which IP prefixes are reachable

through it. To exchange routing information a common External Gateway Protocol

(EGP) should be used across all the ASes. Today this protocol is Border Gateway Pro-

tocol (BGP) [175] and the routers that use it to link different ASes are called border

routers or BGP speakers. Figure 2.1 illustrates some of the above concepts.

Figure 2.1: The difference between router-level and AS-level Internet topology. From the AS
perspective there are only two nodes - AS1 and AS2 - and one link.

2.2 Basic Operation of BGP
Before the exchange of routing information two border routers should establish a

BGP session that starts with the exchange of BGP OPEN and KEEPALIVE messages
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Figure 2.2: Propagation of reachability information using BGP. AS1 originates and advertises
the IP prefix 10.0.0.1/22 to its neighbours AS2 and AS4 with an associated path
vector < AS1 >. Both AS2 and AS4 receive the same prefix advertisement and
forward it to their neighbours by prepending their own AS number in the path
vector. AS3 will receive two advertisements from the same prefix, one from AS2
and one from AS4. It will select the most preferable based on a routing policy that
orders the paths and it will advertise only the selected path to AS5. Similarly, AS5
will receive two advertisements for the prefix 10.0.0.2/22, one with path vector <
AS3, AS4, AS1 > and the second with path vector < AS4, AS1 >. Accordingly
it will select its preferable path based on its own policy decision.

to identify themselves and to verify that they still exist and are engaged in the relation-

ship. To maintain the session in established mode KEEPALIVE messages should be

exchanged periodically otherwise the session changes to idle state. After the session is

established reachability information can be announced using BGP UPDATE messages.

There are two types of UPDATE messages, advertisements and withdrawal. When an

AS wants to advertise reachability information towards an IP prefix it sends an adver-

tisement that contains the IP prefix of the advertised network and a set of attributes

(shown in table 2.1). Similarly, when an AS wants to announce that it no longer of-

fers reachability towards an IP prefix it previously advertised, it sends a withdrawal

message that includes the IP prefix of the withdrawn network.

A BGP advertisement contains two important attributes, the IP prefix for which

reachability is advertised, and an associated AS Path which is a vector of ASN values

that indicates the order of ASes that needed to be traversed to reach the prefix. BGP

does not determine the IP-level path that traffic should follow and it does not reveal

information on router-level topology, it only maintains routing information at the AS-
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level. When an AS learns a path to a prefix it can propagate it to its neighbours. Each

time an AS advertises a prefix it prepends its ASN in the AS Path, so that each AS that

learns a prefix advertisement it receives an updated path vector with the ASes traversed

thus far. This mechanism is used to avoid routing loops because an AS will reject AS

paths that already include its local ASN.

Figure 2.2 illustrates how a BGP advertisement is propagated along multiple ASes.

Multi-homing ASes, namely ASes that have more than one neighbours, may receive

BGP advertisements for a given IP prefix from different neighbours. For example, in

figure 2.2 AS 3 receives BGP advertisements for prefix 10.0.0.2/22 from both AS 2

and AS 4. In this case a single path should be selected as the default route towards

that prefix and be propagated to the adjacent ASes of AS 3. The selection of the most

preferable path is typically based on the local policy of each AS.

Table 2.1 shows a list of the BGP attributes included in a BGP UPDATE message.

Attribute Name Description

ORIGIN
Specifies the origin of the path information. Indicates whether
the path was learned from an IGP or EGP.

AS PATH
The list of ASes that should be traversed to reach the advertised
IP prefix.

NEXT HOP
The IP address of the border router that should be used as the
next hop.

MULTI EXIT DISC
When two ASes are connected by multiple links MED indicates
which link is preferable.

LOCAL PREF
The degree of preference for a particular route. It is used in
communication between border routers within the same AS.

ATOMIC AGGREGATE

When a border router receives IP prefixes advertisements that
overlap, it can use the shorter prefix for all the overlapping pre-
fixes. In that case this attribute is set to 1 to indicate that aggre-
gation has been done.

AGGREGATOR The ASN and BGP ID of the router that performed aggregation.

COMMUNITIES
Extra attributes that can influence the propagation or selection
of a route. There is no standardized use of these attributes and
their values are defined by the network administrations.

Table 2.1: The attributes that can be included in a BGP UPDATE message. Only the first three
are mandatory. The LOCAL PREF is required only for messages between border
routers of the same AS.
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The next sections describe how import and export policies can be expressed

through the configuration of BGP attributes.

2.3 BGP Policy Configuration
There are two stages at which BGP policy configuration is applied, when a new

route is received, and when a route is advertised. Import policies determine how the

ingress route advertisements will be processed to decide if a route will be accepted or

rejected, and to rank all the available paths towards a given prefix. Export policies

determine which neighbours can receive an advertisement for a given prefix.

There are three types of expressions that can be used to implement the above

policies:

2.3.1 Filtering

Filtering instructs a router to block ingress advertisements or suppress egress ad-

vertisements by matching certain BGP attributes against some pre-defined values.

Import filters are typically used to mitigate security threats and eliminate erro-

neous routes [37]. For instance, a good practice is considered to block path advertise-

ments for reserved and unallocated prefixes [67, 44], which are often used to facilitate

Denial-of-Service attacks [90].

Export filters are used to implement selective (or conditional) prefix advertise-

ments, meaning that AS operators can select which subset of their neighbours will

receive an advertisement and which will be excluded. Selective advertisements are the

main apparatus through which ASes enforce their business relationships through the

so-called valley free rule (explained in section 2.4). Also, load balancing and other out-

bound traffic engineering techniques are implemented through filtering BGP exports.

Of course, export filters are also used to limit the propagation of “junk” routes. Good

BGP “citizenship” requires that routes expected to be blocked by import filters are not

supposed to be advertised at all in the first place.

2.3.2 Ranking

ASes with multiple neighbours may receive multiple different route advertise-

ments for the same prefix. BGP requires that for each prefix a single path should be

installed in the routing table to use for traffic forwarding. To rank all the available paths
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BGP uses a numerical value that can be set for each path through the Local Preference

(ttfamily LocPref) BGP attribute. The path with the highest ttfamily LocPref value

will be selected as the most preferable path and will be used to route traffic. ttfamily

LocPref is assigned locally to a router and is not propagated through BGP updates.

If two routes have equal Local Preference values, the path with the shortest AS

path length is preferred. If both the ttfamily LocPref and the path length cannot de-

termine the best path, BGP continues the path selection process by checking the value

of other attributes that are used as tie-breakers. Table 2.2 shows the complete decision

process of BGP. The ordering of the attributes is strict but some router vendors may

allow some attributes to be deactivated, or they may add vendor-specific attributes.

For example, Weight is a Cisco-defined attribute that it is considered before ttfamily

LocPref.

Priority Attribute Preference Rule
1 Local Preference Highest Local Preference
2 AS Path Shortest AS Path

3 Origin
Lowest Origin type
IGP is lower than EGP.
EGP is lower than INCOMPLETE

4 MED

Lowest MED
By default MED is considered only
if neighbouring AS is the same in the
compared paths.

5 eBGP/iBGP Prefer eBGP over iBGP paths.
6 Metric Lowest IGP metric
7 Router ID Lowest Router ID

Table 2.2: BGP best path selection algorithm

2.3.3 Tagging

To facilitate the implementation of filtering and ranking, operators often annotate

their routes with additional meta-data. Tags are applied through the BGP Communities

attribute which is an optional BGP attribute that contains a series of 32-bit numerical

values. The BGP Communities is a transitive attribute which means that Communities

values can be propagated through different ASes which are free to edit them by adding

or removing values. Communities can be applied either when a route is advertised,

or when a route is received depending on the desired policy. Egress Communities are
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usually used to request special treatment for a route by the neighbour to which the

route is advertised. For example, an egress Community value can express a request

by a customer to a provider for selective re-advertisement. Ingress Community val-

ues are usually informational applied by a border router to notify the routers that will

subsequently receive the same route about its the properties. For instance, ingress Com-

munities can encode the relationship type of the local AS with the AS from which a

route was received. Communities are highly expressive because their values are not

standardised, so each AS can determine its own values to implement highly complex

policies.

2.4 AS Business Relationships
Internet inter-domain routing is a collaborative effort between ASes. ASes ne-

gotiate contractual agreements to define their business relations and impose technical

restrictions on traffic exchange. On the Internet, connectivity does not imply traffic

reachability, which is fundamentally determined by the business relationships between

ASes.

The AS business relationships are coarsely divided into three categories.

1. Transit relationship, including customer-to-provider (c2p) and provider-to-

customer (p2c). It is established when an AS (customer) pays a better-connected

AS (provider) to transit traffic with the Internet. Essentially, providers operate

as a gateway to the rest of the Internet. An AS can have multiple providers for

purposes of resilience and load balancing. Such ASes are called multihomed.

2. Peering relationship (p2p), which allows two ASes to freely exchange traffic be-

tween themselves and their customers to avoid the cost of sending traffic through

a provider.

3. Sibling relationship (s2s), links connect two ASes that belong to the same ad-

ministrative entity without any cost or routing limitations.

According to the number and type of links an AS can be categorized as Tier-

1, Tier-2, CPs, ISPs, and stubs. Tier-1 networks are ASes that have no provider and

their main role is to offer global connectivity to other ASes. Tier-2 networks are also
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large ASes that mainly provide IP transit to other ASes, but they are not transit-free.

CPs (Content Providers) are global networks that mainly transit traffic between content

generators and end-users. To achieve low cost and low end-to-end delay they mainly

establish p2p relationships, although they have providers for redundancy and fall-over

purposes. ISPs can have both customers and providers and usually their coverage is

national or regional. ISPs provide internet connectivity either to stub ASes or to end

hosts. ISPs that mainly operate as access providers for end-hosts are called eyeballs.

Stub ASes have only providers and their scope is regional. Example of stub domains

are university or research networks. Figure 2 shows an example of AS relationships.

Figure 2.3: An example AS graph. Nodes A,B are transit ASes, nodes C,D are national ISPs
and nodes E,F,G are stubs. Node F is multihomed since it has two providers, C and
D. It should be noted that arrows show the flow of money and not flow of traffic
which is bidirectional.

BGP routes are usually exported following the so-called valley-free rule [97], i.e.

a customer route can be exported to any neighbour, but a route from a peer or a provider

can only be exported to customers. Hence, a routing path (of a series of adjacent AS

links) is valley-free if it follows such patterns: (1) n×c2p + m×p2c; or (2) n×c2p

+ p2p + m×p2c; where n and m ≥ 0. The valley-free rule aims to prevent an AS

from providing free transit either to their providers or peers. It should be underlined

that according to the valley-free pattern, only one p2p link is allowed in a valid path.

Even though typically p2p relationships do not involve direct traffic exchange cost,

ASes have indirect costs when carrying traffic over their network (consumption of re-

sources). Therefore ASes avoid the transit traffic between their peers because they

consume resources without generating profit. The sibling links can be inserted freely

without changing the valley-free property of a path.

The valley-free rule describes a typical AS path. Most reachable paths which are
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valid for traffic routing are valley-free, because they serves the business interest of

ASes, i.e. to minimize operation cost and maximize revenue. It should be noted that

the valley-free rule is not an enforcement rule. Namely, it does not mean that a routing

path has to follow this rule.

2.5 Data Sources
The study of the topological properties of the AS-level graph requires the existence

of reliable connectivity data. Unfortunately many ISPs are not willing to reveal the con-

tractual relationships with other ISPs since such relationships are viewed as strategic

advantages over the competition and thus are kept as business secrets. To overcome this

problem there have been numerous efforts to develop methodologies and tools to col-

lect and publish the links between the ASes. The three most important data sources are

BGP data from public monitors, active traceroute measurements, and Internet Routing

Registries (IRR).

2.5.1 Passive Monitoring

BGP tables can provide abundant information on AS-level connectivity, not only

about AS adjacencies but also about the attribute of the links (e.g. LOCAL PREF). Ac-

cess to BGP routing tables can be obtained through BGP looking glasses, BGP route

servers or BGP monitors. BGP looking glasses and route servers allow the remote ex-

ecution of non-privileged BGP commands (e.g. show ip bgp) through a web inter-

face or remote login to help network operators debug their configurations. An updated

list of looking glasses and route servers is provided by the Traceroute Organization

website1. Listing 1 shows the output of the show ip bgp summary command on

a router of AS 25409 (Alsys). From the AS column we can infer the neighbours of

AS 25409 as seen by its router 93.190.151.147. A router may not have the complete

connectivity information. Looking glasses usually offer access to a limited number of

routers so one cannot extract the full routing table of an AS through a looking glass.

On the other hand, route servers offer full route tables. Currently there are 404 looking

glasses and only 55 route servers.

BGP monitors offer the most complete BGP data by peering with backbone ASes

1http://www.traceroute.org/

http://www.traceroute.org/
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BGP router identifier 93.190.151.147, local AS number 25409
RIB entries 678228, using 41 MiB of memory
Peers 8, using 20 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
62.231.74.61 4 8708 671716 346056 0 0 0 01w4d12h 5867
89.37.120.193 4 39737 890437 346608 0 0 0 05w4d13h 13189
89.37.122.97 4 39737 27798745 690112 0 0 0 01w2d23h 317245
93.190.151.146 4 25409 346608 24600286 0 0 0 12w6d04h 16
193.231.3.127 4 16220 344790 345348 0 0 0 1d02h13m 0
193.231.184.233 4 8708 17827070 345932 0 0 0 01w4d12h 316590
2a00:ff0:fffe::2

4 39737 1869480 690164 0 0 0 01w2d23h 0

Total number of neighbors 7

Listing 1: The routing table of AS 25409 as obtained from the looking glass at
http://lg.alsysdata.net/

and by collecting full BGP tables and update messages. Routeviews [21] has deployed

15 monitors around the world (12 in the US, 1 in the UK, 1 in Japan and 1 Kenya) that

continuously collect BGP tables and updates (BGP dumps) from hundreds of differ-

ent backbone routers. The motivation of the ASes that offer access to their backbone

routers is to understand how their prefixes are viewed by the global routing system.

However this information has been widely used for discovering the adjacent ASes.

RIPE has also deployed similar monitors (4 in the US, 10 in Europe, 1 in Japan, 1

in Brazil and 1 in Russia). Routeviews and RIPE data are freely available from their

webpages2, 3.

BGP data can provide a very accurate and updated state of the AS adjacenies.

Since most of the BGP dumps come from backbone (default-free) routers that accumu-

late prefix announcements (and thus AS paths) from all over the Internet, a few BGP

tables can provide a very wide view of the Internet. Also, BGP dumps contain the

attributes of the advertised paths making possible an in-depth analysis of the AS links

(e.g. identify backup links). However, BGP misconfigurations or malicious interven-

tions are not uncommon [151] and can affect the quality of the collected data.

2.5.2 Active Probing

Traceroute is a tool for the discovery of router-level paths based on the Internet

Control Message Protocol (ICMP) [171]. Its mechanism utilizes a field of the User

Datagram Protocol (UDP) [170] header which is called Time-To-Live (TTL). When

2http://archive.routeviews.org/
3http://www.ripe.net/projects/ris/rawdata.html

http://archive.routeviews.org/
http://www.ripe.net/projects/ris/rawdata.html
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a router receives a UDP datagram it decreases its TTL value by 1 and forwards the

message to the next router according to the destination IP address. If a router receives

a message with TTL == 1 then this router doesn’t forward the datagram further and

replies with a ICMP Time Exceeded Message (type 11). Traceroute exploits this mech-

anism by sending UDP datagrams that start with TTL equals to 1 and increases it by 1

every time a ICMP type 11 message is received. Gradually the sender receives replies

with the IP addresses of all the routers in the path. The IP address can then be resolved

to the corresponding AS number.

Traceroute cannot always discover complete router paths. It is common that some

routers have disabled the ICMP protocol and thus they do not reply to the sender while

other routers reply with the destination address of the UDP probes instead of their own

address. Such routers are called anonymous and the inferred router path will have a

’*’ entry indicating these non-responding routers. The presence of anonymous routes

can result to incomplete or inflated topologies. Identifying the ’*’ entries that belong

to the same routers is a NP-complete problem [204] and heuristics have been pro-

posed to obtain more accurate results [204, 113]. Another problem that limits the

reachability of traceroute probing is the use of firewalls that may block the UDP or

ICMP packets. TCP traceroutes can be used instead of UDP and ICMP traceroutes

to bypass firewalls that accept TCP connections. A third problem is that many routers

have multiple interfaces configured with different IP addresses which are called aliases.

If these aliases are not resolved, the different interfaces will be reported as different

routers. Another problem of traceroute is the inference of spurious paths when a load-

balancing mechanism(per-packet or per-flow is used by some routers, as explained in

figure 2.4. Per-flow mechanisms identifies different flows based on the first four bytes

of the transport-layer header. Traceroute triggers per-flow load balancing by changing

some of the bits of those bytes (UDP port number or ICMP Echo sequence number)

to match the router’s responses with the sent probes. Paris traceroute [35] is a vari-

ant of classic traceroute that keeps the flow identifiers stable to avoid segregating the

successive probes to different flows.
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2.5.3 IRR Databases

Internet Routing Registries (IRRs) [12] are publicly accessible databases where

AS administrators voluntarily and manually register and update routing information.

IRR can be used for network troubleshooting, route filtering and validation and can

be queried using the WHOIS protocol. Examples of popular IRRs are the RIPE and

the APNIC WHOIS database [23, 22] although different IRRs are mirrored in multiple

sites. Listing 2 shows an extract from the RIPE’s IRR record for AS 174 (Cogent) that

describes two links to AS3 and AS14 to which it announces all the prefixes it knows

and accepts all advertisements from these two ASes.

as-name: COGENT
descr: Cogent/PSI
import: from AS3 accept ANY
export: to AS3 announce ANY
import: from AS14 accept ANY
export: to AS14 announce ANY

Listing 2: Example of IRR record obtained from RIPE’s database for AS 174.

Figure 2.4: Inference of load balancing through Paris Traceroute. If router L uses a load-
balancing mechanism, it may direct the first two probes (TTL =1 and TTL =2)
through the link L-A and the two next probes (TTL = 3 and TTL = 4) through the
link L - B. The source will receive ICMP replies from nodes L,A,D and E and infer
the corresponding path L-A-D-E. The link A-D is an artifact of load balancing.

2.6 Related Research
This section reviews the related research on the discovery, modelling and annota-

tion of the inter-domain topology.
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2.6.1 Topology Incompleteness

Based on the data sources described in section 2.5 a large number of studies tried

to analyse the topological properties of the AS ecosystem. Faloutsos brothers [86]

were the first who observed that the AS graph degree distribution follows a power-

law distribution with exponent γ = 2.22. Their results were based on three instances

of a collection of BGP tables from 1997 to 1998 which contained a relatively small

number of nodes and links. However latter studies confirmed the existence and per-

sistence over time of the power-law degree distribution using different datasets - in-

cluding Routeviews, RIPE, Skitter, DIMES and Mercator - and observed only small

changes of the value of the power-law exponent that varies between −2.1 and −2.3

[188, 107, 149, 116, 185].

Despite the repeatedly reported power-law degree distribution, many researchers

argued that it is an artifact of measurement biases. Lakhina et al. [141] were the first

to empirically show that even if the real network is an Erdös-Réyni graph with Poisson

degree distribution, the degree distribution of the observed graph is close to power-law.

The distortion of the distribution is a result of probing a large number of destinations

from a small number of sources. Effectively the real graph is approximated by a union

of spanning trees where the edges near the root are sampled much more frequently than

the distant edges and thus their distribution differ significantly.

Furthermore, [141] suggested that a significant source of bias is the inability of

traceroute to capture the lateral edges that are not part of the shortest-path trees. Two

more studies [27, 63] formally verified the results of [141] showing that for random

graphs G(n, p = c/n) - where n is the number of nodes, c is the average degree and

p is the probability that an edge exists between two vertices - single-source traceroutes

result in degree distribution P (k) ∼ k−1 up to k ∼ c. According to [63], to mitigate

the effects of the sampling bias the number of monitors should grow linearly with

the average degree. Other works, demonstrated that the exponent α of the power-law

distribution is underestimated since the sampling process focuses on high-betweenness

vertices that usually have higher degree [69, 168]. Mahadevan et al. [150] suggested

that the above studies are also relevant to BGP topology inference since it can also be

approximated as a union of spanning trees whose root is the BGP collection point.

Chen et al. [59] combined a number of BGP data sources with data from the RIPE
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IRR to calculate that the original dataset used by [86] to derive the power-law relation-

ships miss 20-50% links. A notable result is that although the degree distribution of the

augmented dataset is heavy tailed, it does not conform to power-law distribution but

it is closer to Weibull distribution. Cohen and Raz [64] conducted a similar study in

order to quantify the number of missing links in the AS topology. They concluded that

35-50% links remain hidden from the BGP tables and that the majority of these links

are of p2p type. The difference in the observed number of p2p links is responsible for

the different degree distribution observed by Routeviews and RIPE IRR. More specifi-

cally, they showed that both in Routeviews and RIPE graphs the c2p subgraphs follow

power-law degree distribution while the p2p subgraphs follow Weibull degree distri-

bution. Since the majority of Routeviews links (about 92%) was classified as c2p and

the majority of IRR links is classified p2p (71-75%), the Routeviews graph is biased

towards power-law while IRR is biased towards Weibull distribution. The big number

of p2p links in RIPE database can be explained by the fact that European IXPs require

from their members to register their peering links established over their fabric 4.

Oliveira et al. [167] classified missing links into two categories, hidden and invis-

ible. Hidden links are usually backup c2p links that can be observed if the preferred

path towards a prefix changes. Other (typically p2p) links are inherently invisible links

due to the limited number and placement of vantage points, and the route propagation

restrictions on p2p relationships associated with valley-free routing policies of most

ISPs.

Invisible p2p links constitute the majority of missing links, and are mostly located

in the periphery of the AS graph [178, 166]. BGP feeds are mostly provided by high-

tier ASes and some geographic areas are poorly covered. Furthermore, two-thirds of

all contributing ASes configure their connection with the BGP collector as a p2p link,

which means they advertise only routes learned from customers.

IRR does not suffer of the systematic measurement bias of traceroute and BGP

data sources. However, the registered information is frequently inaccurate, incomplete

or intentionally false in order to appear more attractable to other ASes [187]. It is

also reported that only 28% of the ISPs have correct data in IRRs when compared

4An example is the LINX Memorandum of Understanding which states in section 4.6 that “All routes
to be advertised in a peering session across LINX shall be registered in the RIPE or other public routing
registry” https://www.linx.net/govern/mou.html

https://www.linx.net/govern/mou.html
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to collected BGP data and that the RIPE database is the most accurate [187]. RIPE

provides a tool for consistency checking of the IRR database to detect inaccurate or

missing information [18]. As a result IRRs are not recommended for extracting the

AS topology or they should be used in combination with other data sources. Battista

et al [42] developed a tool that collects the AS adjacencies from the IRR databases

after checking their consistency and classifies the extracted links based on whether the

import and export policies are observed to the data of both adjacent ASes. These data

are available from the website of the project 5.

Another increasingly prominent aspect of the Internet interconnection ecosystem

is the proliferation of IXP infrastructure to facilitate cost-effective dense peering. This

presents a challenge to peering visibility using traditional BGP data archives. Recent

work [124, 36] has demonstrated a vast number of p2p links at IXPs, most of which

were not visible in any public dataset. Despite the novelty of these techniques [36, 124]

they have not been used to provide periodic data due to the complexities of data acqui-

sition. Conducting large-scale targeted traceroute measurements is computationally

expensive as well as time-consuming; the methodology in [36] required 16 million

traceroute and LG queries (14 days to complete) to discover 44K links.

2.6.2 Topology Discovery

Missing links is one of the most significant challenges in inter-domain cartogra-

phy. As a result multiple research projects focused on mitigating the topology incom-

pleteness problem. Theoretically optimal placement of BGP monitors might mitigate

this incompleteness [209, 186, 109], but in practice ASes participate voluntarily in such

data collection projects so optimal placement is not possible.

A very extensive work to discover the missing links from the BGP and traceroute

measurements is described in [124]. The authors try not only to quantify the percentage

of missing links but also to discover which links are actually missing. They utilize data

from IXPs (participating ASes) and IRR as hints for which links are likely to exist but

are not yet discovered. Then they validate the existence of these links using a large-

scale traceroute tool that employed public traceroute servers. Their results agree with

the previous studies as they report that about 40% more links and 300% more p2p links

5http://tocai.dia.uniroma3.it/˜irr analysis

http://tocai.dia.uniroma3.it/~irr_analysis
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were discovered in comparison to the Oregon Routeviews data. In comparison to all

the BGP routing tables these percentages are 15% and 65% respectively. In addition

to these revealed links, it is estimated that there are about 35% p2p links that remain

hidden. The results of [124] verify that the degree distribution of the c2p links can

be accurately described by a power-law distribution while the degree distribution of

p2p links follow a Weibull distribution. Unfortunately, their link discovery has not

been repeated to provide the research community with updated data. Therefore, this

work provided valuable insights but did not advance our capabilities for more accurate

topology analysis.

Recently, Ager et al. [28] used sFlow traffic data to discover a rich peering fabric

at a large European IXP. Based on actual traffic exchanged they inferred more than 50K

p2p links at this IXP alone, about 10K more compared to public BGP data for the same

period, and about 6K more than what the authors of [36] discovered across all IXPs

using distributed traceroute measurements. Using traffic data as in [28] is trickier since

such data is private and not available to the broader research community, inhibiting

reproducibility. In addition, (1) the Non-Disclosure Agreement (NDA) with the IXP

inhibits the derived links from being reported publicly, (2) NDA agreements have to be

made with individual IXPs, and (3) not all IXPs are likely to agree to an NDA.

BGP data can be augmented by collecting AS paths through public Looking Glass

(LGs) servers. Multiple measurement projects have utilized LGs to obtain additional

connectivity information [36, 124]. Khan et al. attempted to quantify the amount of ad-

ditional links revealed by LGs compared to BGP, traceroute (CAIDA,iPlane) and IRR

data. For March 2013, they queried 245 LG servers across 110 countries to discover

11 K AS links not present in the other available topology data. Although providing

an expanded topology, it appears that adding more BGP vantage points results in di-

minishing returns since LGs suffer from similar limitations. Given that active querying

of LGs incurs significant measurement cost it may not worth it to use a large number

of LGs to reveal a small fraction of additional links. However, LGs provide access to

BGP attributes that may be completely invisible to RouteViews and RIPE RIS datasets,

such as Local Preference values that offer a completely new dimension of policy data.

Therefore, I believe that utilisation of LGs should have as primary aim the collection

of policy data not found passive BGP data, instead of the collection of extra AS links
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that offers only incremental improvement of the topology completeness.

Some researchers suggest highly distributed traceroute monitoring infrastruc-

tures [184, 58] are a promising approach to discover invisible AS links, yet the visi-

bility improvement so far is limited compared with the links discovered at just a single

IXP by Ager et al. [28]. The next section reviews some of the most important efforts in

traceroute-based topology discovery.

2.6.2.1 Traceroute-based topology discovery

Mercator [107] uses hop-limited probing like traceroute to discover the router-

level map of the internet. To be easily deployable it does not use any database of IP

addresses to be probed, but uses a heuristic called informed random address probing.

When Mercator receives a reply to a probe it assumes that the source IP address of the

reply is part of an addressable prefix that contains more routed address. It also assumes

that the neighbouring prefixes are also addressable. One of Mercator’s aims is to map

the Internet from a single arbitrary location. To extend the scope of its probes and to dis-

cover ”cross-links” it uses source-routing. Source routing allows the sender to specify

the route taken by the probes, so Mercator can direct probes through routers that are not

observed in the routing paths to a certain destination. Essentially every source-routing

capable router can act as an instance of Mercator running from the router’s location.

Even though only 8% of Internet routers support source routing, the authors argue that

in sparse graphs 5% of source route capable routers can discover 90% of the graph’s

links. Mercator also employs an alias resolution technique called alias probing. A UDP

packet is sent to a non-existent port on a router interface and usually routers reply with

an ICMP Port Unreachable message sent through the interface of the unicast route. It

is then understood that these two different interfaces belong to the same router. Figure

2.5 explains this process. One of the main drawbacks of Mercator is the use of classful

prefixes which are not used anymore due to the Classless Inter Domain Routing (CIDR)

[95]. Another drawback is that Mercator uses very low probing frequency to avoid gen-

erating excessive traffic. It takes about 3 weeks for Mercator to discover 200,000 links

which results in maps that are time-averaged and may contain dead links or may miss

links established during this period. There hasn’t been any publicly available dataset

generated by Mercator measurements.
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Rocketfuel [189] is an active probing measurement tool that aims to reduce the

number of required probes without sacrificing accuracy. To do so it uses two heuristics.

The first is directed probing that utilizes Routeviews BGP routing tables (specifically

the AS path towards an IP prefix) to identify which destination addresses will result

in traceroutes that transit an ISP’s infrastructure. The second heuristic is called Path

Reductions that reduces redundant traceroutes based on the observation that often it’s

the next-hop AS and not the IP prefix that determines the routing path. Also it is sug-

gested that probes from multiple monitors to a destination may be redundant as they

converge to the same ingress router. Similarly probes from a single monitor to multiple

destinations may converge to the same egress router. These heuristics enable Rocket-

fuel to execute only 0.1% of the traceroutes required by a brute-force approach while

in comparison to Skitter it discovers seven time more links. Rocketfuel also integrates

Ally, an alias resolution tool that exploits IP identifiers (IP ID) to infer aliases. IP ID is

a counter that a router increments after sending a packet and is used for reassembly of

fragmented IP datagrams. Consecutive packets will normally be tagged with consecu-

tive IP identifiers, so Ally sends consecutive probes (e.g. x→ y→ z) to the suspected

aliases and compares their IP ID fields. If IDx < IDy < IDz and IDz − IDx is small

then the interfaces are likely to belong to the same router. To add confidence Ally also

compares the TTL of the responses. Compared with the Routeviews data, Rocketfuel

discovers less AS adjacencies (for AS 1239 it discovers 30% less links) although Rock-

etfuel’s data include links not present in BGP routing tables (mainly links between large

ASes). The only available dataset by Rocketfuel is a one-off measurement in 2002 and

it is available from the project’s website6.

Skitter [126] is one of the most widely used topology discovery tools developed

by CAIDA as part of its Macroscopic Topology Project. During the period 1998-2008

skitter has been deployed to 25 different probing locations (monitors) dispersed all over

the world to collect daily data based on ICMP traceroute probes. Every monitor had

a destination list of IP address that combined resulted to a set of one-half million IP

addresses covering all routed /24 IP prefixes. These destinations were gathered either

by collecting the source address from DNS queries or from addresses found in the web

(webservers or other sources). Skitter integrates a tool called iffinder [10] to perform

6http://www.cs.washington.edu/research/networking/rocketfuel/

http://www.cs.washington.edu/research/networking/rocketfuel/
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Figure 2.5: The alias probing method used by Skitter for discovering interfaces that belong to
the same router. The Mercator host sends a UDP packet to a high port number
with destination address A. If a ICMP Port Unreachable message is received with
source address B then the addresses A and B belong to two different interfaces of
the same router.

alias resolution similar to that of Mercator (see figure 2.5).

Archipelago (Ark) [62] is the successor of Skitter. It is built upon scamper, an

active measurement tool that supports UDP, ICMP and TCP traceroutes and allows

IPv6 measurements. Scamper uses Paris traceroute. A significant addition in Ark is the

use of a distributed shared memory (tuple-space) that allows decentralized coordination

of the distributed monitors. For alias resolution it integrates two tools, iffinder and

APAR (Analytical and Probe-based Alias Resolution) [114]. APAR is based on the

observation that two router interfaces connected with a point-to-point link often are

consecutive and belong to the same /30 or /31 prefix. Using reverse traceroutes APAR

can find the interfaces connected by point-to-point links and by aligning the reverse

traces it infers the aliases as explained in figure 2.6. It has been shown that APAR

combined with Ally result in the most inferred aliases [112]. Ark is deployed in 46

monitors as of May 2010. Both Ark and Skitter datasets are publicly available from the

CAIDA website7.

DIMES (Distributed Internet Measurement and Simulations) [184] is another

well-known topology discovery tool. DIMES is a distributed scientific project similar

to SETI@home where DIMES agents are voluntarily installed in end-user computers

across the Internet and issue traceroute and ping probes at low rate. DIMES agents

cover a very wide geographic area thus can discover more links than Skitter. However

7http://www.caida.org/data/overview/

http://www.caida.org/data/overview/
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Figure 2.6: The traceroutes from R1 to R2 and from are R4 to R3 reveal that interfaces E and
F are connected by a point-to-point link. By aligning the traces it can be inferred
that D,E and F,G are interfaces of the same router.

many of these links overlap since DIMES agent can locate in the same geographic area.

Unlike the above-mentioned tools, DIMES does not perform alias resolution. DIMES

dataset is also publicly accessible from its website 8.

2.6.3 Relationship Inference Algorithms

Internet studies demand knowledge on the relationships between ASes. However

most ASes try to hide their business relations. In the last decade researchers have

introduced a number of algorithms to infer the AS relationships.

Gao [97] was the first to study the inference of AS relationships. Her solution

relies on the assumption that BGP paths are hierarchical, or valley-free, i.e., each path

consists of an uphill segment of zero or more c2p or sibling links, zero or one p2p

links at the top of the path, followed by a downhill segment of zero or more p2c or

sibling links. The valley-free assumption reflects the typical reality of commercial

relationships in the Internet: if an AS were to announce routes learned from a peer or

provider to a peer or provider (creating a valley in the path), it would then be offering

transit for free. Gao’s algorithm thus tries to derive the maximum number of valley-

free paths, by selecting the largest-degree AS in a path as the top, and assuming that

ASes with similar degrees are likely to be peers (p2p). Gao validated her results using

information obtained from a single Tier-1 AS (AT&T). Xia and Gao [202] proposed

an improvement to Gao’s algorithm that uses a set of ground truth relationships to

seed the inference process. Transit relationships are then inferred using the valley-

free assumption. Gao’s algorithm [97] is used for remaining unresolved links. They

validated 2,254 (6.3%) of their inferences using 80% of their validation data and found

their algorithm was accurate for 96.1% of p2c links and 89.33% of p2p links.

8http://www.netdimes.org/DIMESControlCenter/MonthlyData.jsp

http://www.netdimes.org/DIMESControlCenter/MonthlyData.jsp


2.6. Related Research 50

Subramanian et al. [191] formalized Gao’s heuristic into the Type of Relationship

(ToR) combinatorial optimization problem: given a graph derived from a set of BGP

paths, assign the edge type (c2p or p2p, ignoring sibling relationships) to every edge

such that the total number of valley-free paths is maximized. They conjectured that the

ToR problem is NP-complete and developed a heuristic-based solution (SARK) that

ranks each AS based on how close to the graph’s core it appears from multiple vantage

points. Broadly, as in Gao [97], ASes of similar rank are inferred to have a p2p rela-

tionship, and the rest are inferred to have a p2c relationship. Di Battista, Erlebach et

al. [40] proved the ToR problem formulation was NP-complete in the general case and

unable to infer p2p relationships. They reported that it was possible to find a solution

provided the AS paths used are valley-free. They developed solutions to infer c2p rela-

tionships, leaving p2p and sibling inference as open problems. Neither Subramanian et

al. or Di Battista, Erlebach et al. validated their inferences; rather, they determined the

fraction of valley-free paths formed using their inferences.

Dimitropoulos et al. [76] created a solution based on solving MAX-2-SAT. They

inferred sibling relationships using information encoded in WHOIS databases. Their

algorithm attempted to maximize two values: (1) the number of valley-free paths, and

(2) the number of c2p inferences where the node degree of the provider is larger than

the customer. The algorithm uses a parameter α to weight these two objectives. They

validated 3,724 AS relationships (86.2% were c2p, 16.1% p2p, and 1.2% sibling) and

found their algorithm correctly inferred 96.5% of c2p links, 82.8% of p2p links, and

90.3% of sibling links. Their validation covered 9.7% of the public AS-level graph

and has thus far been the most validated algorithm. However, MAX-2-SAT is NP-hard

and their implementation does not complete in a practical length of time for recent AS

graphs.

UCLA’s Internet Research Laboratory produces AS-level graphs of the Internet

annotated with relationships [25]. The method is described in papers by Zhang et

al. [206] and Oliveira et al. [166]. Their algorithm begins with a set of ASes inferred

to be in the Tier-1 clique, then infers links seen by these ASes to be p2c; all other links

are p2p. Zhang [206] describes a method to infer the clique; Oliveira [166] assumes the

Tier-1 ASes are externally available, such as a list published by Wikipedia. There are

a growing number of region-specific c2p relationships visible only below the provider
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AS, causing this approach to assign many p2p relationships that are actually p2c. Gre-

gori et al. [108] used a similar approach; for each AS path, their algorithm identifies

the relationships possible and infers the actual relationship based on the lifetime of the

paths. None of [206, 166, 108] describes validation.

2.6.3.1 Limitations of Relationship Inferences

It has been shown AS path inference based on AS relationships results in poor

results. Mao et al [153] was the first to approach the problem of inferring the AS

paths between any two ASes based on the AS relationships. One of their main findings

is that the quality of the AS relationships is the most possible cause of mismatches

and propose a new relationship inference algorithm based on the observed AS paths.

For all the BGP gateways the achieve accuracy close to 60% in the sense that one of

the inferred best paths matches with the actual AS path, and accuracy up to 62% for

path length match. They further increase the accuracy of their predictions to 70% by

assuming direct access to the destination hosts in order to infer the first hop. They

conclude that multihoming and complicated AS relationships are the main reasons for

not achieving higher correct prediction rate. Deng et al. [70] concluded that the valley-

free assumption is a fundamental limitation of path prediction algorithms that depend

on AS relationships.

In [172] the authors propose two algorithms for AS-level path prediction, by utiliz-

ing the AS paths that appear in BGP tables to infer AS paths not present in the available

tables. Their algorithms infers AS paths on the granularity of destination prefix instead

of destination ASes. The accuracy of this algorithm depends on the amount of the

known BGP paths. When a substantial amount AS paths are available the prediction

rate can approach 80%. This approach requires a much larger amount of input data and

has the drawback that it cannot predict potential routing changes in case of link failures

but only the best paths as these are observed at some specific time snapshot.

An alternative approach is followed by [159, 160] where the authors do not model

the ASes as an atomic entity but each AS consists of a number of quasi-routers depend-

ing on its size. Also, recognizing that AS relationships are more complex than the ones

described by the existing models their simulations are relationship-agnostic. Instead,

they infer the import and export policies again by using a large number of known AS
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paths as a training dataset.

2.7 Summary
The discovery of the Internet topology relies on three data sources, BGP tables [21,

16], traceroute paths [4, 148], and IRRs [12]. All of these sources of routing data have

not been designed for the discovery of the Internet topology but rather for the debugging

of routing policies. Therefore, their use as connectivity data sources is essentially a

hack due to the absence of dedicated topology discovery tools [198]. As a result each

dataset has its own limitations that introduce significant challenges in the study of the

Internet topology.

Importantly, none of the available topology discovery methodologies are able to

capture the complete inter-domain topology [65, 178, 124]. The incompleteness of the

resulted topologies is mainly a result of policy-based routing that restricts the prop-

agation of certain link types, and especially links with attached peering and backup

relationships [167, 36]. Therefore the collected topologies are not only incomplete but

also biased towards certain link types.

The incompleteness problem limits significantly the applications of the collected

topologies and the research community proposed a number of different approaches to

extend our current link visibility. A promising approach is the large-scale deployment

of traceroute probes at edge hosts through crowd-sourcing [184, 15, 180]. Installing

new traceroute vantage points is easy and inexpensive, but there are many challenges

involved in translating the collected IP-level paths to router or AS paths. Anonymous

and unresponsive routes, IP aliases, third-party addresses and multiple-origin addresses

pose significant open problems [80, 154].

The AS topology graph alone is not enough for studying the Internet inter-domain

routing. This is because the business relationships between the ASes play a crucial role

in the decision process of BGP routing. Only combined knowledge of the AS rela-

tionships and the AS topology can allow researchers to run more realistic simulations

and enable engineers and operators to make more informed decisions. However, for

business reasons, ASes do not want to disclose their relationships. In recent years a

number of algorithms have been proposed to infer AS relationships based on the AS

topology data [191, 41, 76, 202, 197, 166]. They have applied a variety of heuris-
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tics with increasing sophistication. The quality of their results have been questioned

and it has been shown that the current inter-domain models yield poor simulation re-

sults [153, 172, 159, 160]. The lack of correctness and predictability led operators

and engineers to criticize many fundamental assumptions of the existing modelling ap-

proaches [179]

The problematic lack of validation puts AS relationship inference research in a

precarious scientific position. Nonetheless, research continues to build on the assump-

tion that meaningful AS relationship inference can be achieved and applied to the study

of the Internet, from deployment of security technologies [100], Internet topology map-

ping [36, 58, 28] and evolution [72, 73], to industry complexity [88] and market con-

centration [75]. Due to the diversity in inter-domain connectivity, relationship infer-

ences do not (by themselves) consistently predict paths actually taken by packets; such

predictive capabilities remain an open area of research [160].

Given its importance to the field of Internet research, the science of AS relation-

ship inference should be revisited, with particular attention to validation.



Chapter 3

Revealing the Complexity of BGP

Policies

Past studies on the inference and modelling of BPG policies and AS relation-

ships relied almost exclusively on connectivity data that were translated to policy data

through various heuristics. These heuristics typically offered a simplistic or even inac-

curate abstraction of the actual policies leading to a distorted picture of inter-domain

routing.

Despite the information-hiding nature of BGP, the available data include attributes

beyond the AS path that encode policy data which when collected can broaden con-

siderably our measurement horizons. Therefore, instead diving directly to the design

of increasingly sophisticated but questionable heuristics for the parsing of connectivity

information, it is necessary to take a step back and analyse the routing paths through the

lens of policy data. The ground-truth of BGP policies is held in the BGP router configu-

rations and is expressed through the BGP attributes, as documented in section 2.3. Two

attributes, the BGP Communities and the Local Preference (LocPref) are of particular

interest since they are used to implement two of the three policy functions, tagging and

routing. This chapter describes a measurement framework to mine BGP Communities

and LocPref values to extract ground truth policy data for around 40% of the AS links.

The collected ground truth allows me to observe and analyse a number of issues

in BGP routing, such as the non-valley-free paths, the hybrid relationships, the backup

links and the differences between IPv4 and IPv6 AS relationships. It also enables

the evaluation the existing inference algorithms. This study offers new insights in the

complexity of the actual BGP policies and creates a strong foundation for building the
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TYPE: TABLE DUMP V2/IPV4 UNICAST
PREFIX: 1.22.73.0/24
FROM: 206.223.115.10 AS4589
ORIGIN: IGP
ASPATH: 4589 15412 18101 45528
NEXT HOP: 206.223.115.10
COMMUNITY: 4589:2 4589:410 4589:612 4589:14413 15412:604
15412:614 15412:621 15412:705 15412:1431 18101:1344
18101:50120 18101:50420

Figure 3.1: Entry from a BGP routing table dump tagged with multiple Communities.

accurate measurement and inference techniques that will be described in chapters 4-6.

3.1 Introduction

One of the biggest challenges in developing accurate inter-domain models is the

lack of ground truth data which are only held in router configurations. However, many

of the BGP policies are implemented using the BGP Communities, a highly expressive

transitive BGP attribute that tags BGP paths with meta-data [79]. Utilization of the

Communities attribute can provide a rich source of policy data that cannot be obtained

otherwise, but its utilization in previous topology studies has been minimal at the best

due to the difficulties involved in interpreting the encoded data. By implementing a

new framework for the systematic extraction, interpretation and evaluation of BGP

Community values, I collect ground-truth policy and relationship data from more than

6,800 Community values that provide meta-data for over 40% of the visible AS links.

A second important BGP attribute that strongly expresses policy intentions is the

Local Preference (LocPref) that expresses how preferable a route is to the local AS. The

LocPref attribute is not transitive, namely it is not included in the BGP announcements

received by RouteViews and RIPE monitors. The LocPref values can be obtained by

having a direct interface to a BGP router. Remote access to such interfaces is provided

through public Looking Glass servers that allow remote execution of non-privileged

BGP commands over the SSH or telnet protocols. I have developed an API to query 28

Looking Glass to collect the LocPref for more than 10% of the visible AS links.
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3.2 BGP Communities Attribute
The BGP Communities is an optional BGP attribute that contains a series of 32-

bit numbers [54]. BGP Communities are applied to prefix advertisements to tag the

relevant routes with additional information. The first 16-bits of each Community value

represent an ASN while the last 16-bits encode a value with a pre-determined meaning.

This meaning can correspond to relationship information, geolocation, or request for

triggering traffic engineering policies. The BGP Communities is a transitive attribute

which means that Communities values can be propagated through different ASes which

are free to edit this field by adding or removing values. The BGP Extended Communi-

ties attribute [182] is a 64-bit value that extend the range of the BGP Communities and

provide structure through a type field.

Values of the Communities attribute are not standardised. Many ASes explain the

meaning of their Communities values in their Internet Routing Registry (IRR) records

[12] or in the resources of their Network Operation Centres (NOC). A database of NOC

websites can be found in the PeeringDB records [14].

Figure 3.1 shows an entry from a BGP table dump. From the AS PATH I ob-

tain three AS links, AS4589–AS15412, AS15412–AS18101, and AS18101–AS45528.

Communities values beginning with ‘4589:‘ are determined by AS4589 to describe the

AS link with AS15412. If the value 4589:612 encodes the meaning ’Route received

from a LINX peer’, I infer the relationship AS4589 – AS15412 as p2p. Similarly, if the

value 15412:705 corresponds to ’Route received from customer’, I infer the relation-

ship AS15412 – AS18101 as p2c.

BGP Communities have been increasingly used by AS operators to implement a

wide range of BGP policies, such as the valley-free rule, black-holing traffic, or com-

plex load balancing techniques [92]. A rigorous classification of BGP Community val-

ues is provided in [79]. For June 2011 I have observed in RouteViews and RIPE RIS

BGP data 26,055 distinct Community values, set by 2,964 different ASes in 15,167,572

paths, after I filter out records with (1) reserved and private AS numbers (i.e. 23456 and

56320–65535) and (2) path cycles that result from misconfigurations. Figure 3.2 show

the number of distinct Community values per AS number. For the majority of ASes I

observe less than 10 Community values but for a few ASes I observe some hundreds of

values.
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Figure 3.2: The number of ASes as a function of the number of unique Community values that
an AS has (log-log scale).

3.2.1 Interpretation of BGP Community Values

Successful interpretation of the encoded information in the Community values

would significantly reduce the dependence of BGP simulations on heuristics in favour

of real policy data. However, the usage of the BGP Community attribute is not stan-

dardized and each AS is free to define and use arbitrary values. RFC1997 [54] defined

three Community values for suppressing route advertisements, but they serve limited

applications and often they are ignored by AS operators. RFC4384 [157] proposed a

more complete standardization to facilitate data collection, but it has not been adopted

by the operators. Hence, the interpretation of the Community values requires additional

sources of documentation.

Many operators document the usage of their Community values in the remarks

section of their Internet Routing Registry (IRR) records [12], or in the resources of

their Network Operation Centres (NOC). This documentation is in free text, without

specific format or terminology, and consequently significant manual work is required

to process and extract the available information. As an example, Figure 3.3 lists some of

the different ways observed in the IRR to document route redistribution Communities

that prepend an AS path twice, and that suppress the prefix advertisement towards

specific peers.
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12713:9422 Prepend to LINX peers Twice
12578:162 Prepend AS12578 2x to Cogent AS174
13645:2 Prepend 13645 13645 to route
29113:6060 - ! Advertise to Telia (AS1299)
1836:11100 No Export to European Peers
2764:7 Announce to customers only

Figure 3.3: Examples of parsed BGP Communities documentation. Different ASes not only
use different values to implement the same policy (e.g. prepend twice), but also
may document these policies with different language. To parse such documentation
I developed a Natural Language Processing tool since the lack of certain structure
in documentation makes impractical the development of regular expressions.

Figure 3.4: The daily number of AS paths with decoded BGP Communities versus the total
number of paths with BGP Communities

Transforming these Community values to input for BGP simulation policies would

require manual processing, which is not possible regarding the large number of Com-

munity values. The lack of standardisation in the usage and documentation of BGP

Communities is the main reason for their under-utilization in research studies. To over-

come these difficulties I developed a Natural Language Processing (NLP) tool to trans-

form the unstructured documentation to the JSON structured data format, based on

Python’s Natural Language ToolKit (NLTK) [43]. Unfortunately, to the best of my

knowledge there does not exist any annotated corpus of network policy documenta-

tions. Instead the million-word Brown corpus [94] was used to train a Part-of-Speech

(PoS) tagger using Maximum Entropy methods as explained in [152]. For route re-

distribution Community values I extract the (i) type of the Community, (ii) the target
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{"value":"29113:6060","type":"announcement","target":"AS1299","action":"deny"}
{"value":"2764:7","type":"announcement","target":"non-customers","action":"deny"}
{"value":"1836:11100","type":"announcement","target":"EU Peers","action":"deny"}

Figure 3.5: Examples of parsed BGP Communities documentation. The NLP parser will take
as input the text in Figure 3.3 and will return a JSON file which identifies the type,
target and action of each Community value.

Figure 3.6: Methodology for the extraction policies from BGP Communities

of the Community action, and (iii) the actual action that determines how the policy is

applied. For route tagging Communities I only extract the corresponding type and tag.

Figure 3.5 illustrates how the documentation for the announcement Communities of

Figure 3.3 will become.

Figure 3.6 presents the overall methodology for the extraction of policy data from

BGP Communities.

3.2.2 Sanitisation of the Communities Documentation

To ensure that the correctness of the documented Community values I use three

steps:

1. Sanity checks: Stub ASes are tagged only as customers, while Tier-1 ASes are

never tagged as customers.

2. Cross-validation: For the AS links that I have relationship information from both

ASes I test if they agree.

3. Consistency: Many ASes also provide Communities for triggering AS Path

Prepending (ASPP) policies which are often conditioned in terms of relationship
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Table 3.1: The number of unique Community values per Community category. The types
marked with * indicate Communities set by the local AS to label a route, while
the other types are set by the remote AS to request an action.

Community Type Number of values
Announcement control 1910
*Geography 1305
*Relationship 1302
Prepending control 1204
*Point-of-Presence 446
*Origin 401
LocPref Control 208
Misc 120
Blackhole 18

types, e.g. “Prepend prefix 2x to upstream providers”. I test whether ASPP con-

trol Communities affect only the paths where the next- hop AS has been tagged

with the corresponding relationship Community. For example consider a path

P1: A - B - C where the link B - C is tagged by B as c2p. Consider also a non-

prepended path P2: C - B - D and a Community c which corresponds to 2x path

prepending towards providers. If c is applied on P2 I expect P2 to become P p
2 :

C - B - B - A. If that change does not happen I conclude that the Communities of

the specific AS are not consistent.

Furthermore, to avoid stale information in IRR I only parse records which have

been updated within one year of my measurement data (i.e. after June 2010). I am able

to interpret 6,852 distinct Community values from 375 different ASes. Although the

decoded Communities cover only 26% of all the observable Communities, they mostly

belong to Tier-1 or Tier-2 ASes or large IXPs and cover 65% of the paths that are

tagged with Community values (Figure 3.4). Table 3.1 lists the types of the decoded

Communities. Note that some of the decoded Communities belong to more than one

Community types. For example the Community 3491:200 corresponds to customers in

North America which provides both relationship and geo-location information. Route

redistribution Communities account for 50% of the decoded Communities, but - as ex-

pected - the informational Communities appear far more often in the AS paths (Figure

3.7).
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Figure 3.7: Daily number of BGP Communities per usage type

Figure 3.8: Mapping of Community values to AS links. The ASPATH attribute gives a series
of AS numbers (ASN) that form a routing path. The COMMUNITY attribute lists
a series of 16-bit integer pairs in the format of x : y where x is an ASN and y is an
Community value.

3.2.3 Inference from BGP Communities

As shown in figure 3.7, relationship Community values is the second most widely

used Community type. Relationship Communities are used as a flexible way to im-

plement routing policies such as the valley-free rule [92]. This is a strong incentive

for AS operators to encode the correct relationship information in BGP Communities,

otherwise their policies will be affected resulting in policy violations.

Relationship Communities are applied at the ingress points of an AS network and

indicate the relationship type with the neighbour from which a path advertisement is re-

ceived. To infer the AS relationships from the BGP Communities I parse the COMMU-

NITY and the ASPATH attributes of the collected BGP records to extract the Commu-

nity values that encode relationship information and assign them to the corresponding

AS links. For example, in the BGP record of figure 3.8, the COMMUNITY attribute

contains two values that encode relationship type: 209:209 tags customers of AS209,
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Figure 3.9: Three entries from the routing table of Hurricane Electric (AS 6939), obtained
by querying its Looking Glass server. In this case values of the LocPrf attribute
indicate the relationship types with the first AS in the Path. For example the highest
value 140 corresponds to customers, the value 100 to peers and the lowest value 70
is assigned to routes learned from providers.

and 4436:903 tags peers of AS4436. By mapping these communities to the AS path I

infer that AS4436 – AS209 is a p2p link, while AS209 – AS19581 is a p2c link.

I am able to infer 41,542 different relationships from BGP Communities which

include 58% transit links, 41.5% peering and 0.5% sibling links.

3.3 The Local Preference Attribute
Local Preference (or LocPref) is a local attribute and is not included in the BGP

announcements received by RouteViews and RIPE monitors. LocPref values can be

obtained by having a direct interface to a BGP router. Remote access to such inter-

faces is provided through public Looking Glasses that allow remote execution of non-

privileged BGP commands. For example, the command show ip bgp <prefix>

dumps the full router table which includes the LocPrf attribute. Figure 3.9 shows three

entries from the routing table of AS6939 obtained by querying its public Looking Glass

server.

I collected weekly table dumps from 28 public Route Servers (that belong to 26

large ISPs) in the same periods of time as above (August 2010 and February 2011

respectively). I accumulate 12,441 links which contain 5,839 ASes.

3.3.1 Analysing LocPref Attribute Values

In the simplest case, an AS uses only three LocPref attribute values; the largest

value (most preferable) is for the c2p relationship, the smallest value (least preferable)

is for the p2c relationship and the middle is for the peering relationship [195].

However I observe that most ASes use many LocPref values. An extreme exam-

ple is illustrated in Figure 3.10. For example customers can use Communities values to

request for up-scaling or down-scaling their LocPref value for traffic engineering pur-
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Figure 3.10: The appearance frequency of LocPref values of AS4436 in (a) AS links and (b)
AS paths, respectively, in my BGP data.

poses. For each of such ASes, I try to identify the default LocPref values that are most

frequently used:

1. For each LocPref value, I find out the number of links that the AS has assigned

the value to. I also search for the number of AS paths in my BGP data that contain

these links. I then calculate the distribution of links and paths, respectively, as a

function of LocPref values (see Figure 3.10).

2. The LocPref values with the highest frequencies are chosen as the default values.

I may choose more than three default values if their frequencies are significantly

larger than the rest. This happens when two similar LocPref values are widely

used for the same type of relationship with slightly different routing preference.

In my work, I have chosen at most 5 default values.
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3. I use the meaning of Communities attribute values obtained in the above to cre-

ate a mapping between decide the relationship type of the default LocPref values.

Usually the largest default value is for the c2p relationship and the smallest de-

fault value is for the p2c relationship.

In certain cases I can infer the meaning of more LocPref values based on the

default values obtained from the above. For example if the majority of prefixes received

from a peer AS are tagged with the default peer LocPref value and a few prefixes from

the same AS are tagged with a slightly smaller LocPref value, and if this smaller value

does not coincide the default transit value, I conclude that it is also a peer value with

a reduced preference. I verify such conclusions against the Communities information

and I discard any discrepancy. Note that the LocPref attribute values can only be used

to infer transit and peering relationships.

3.4 Relation Inference based on BGP Attributes
A first application of the collected policy data from BGP attributes is to infer

AS relationship directly from those attributes without involving further heuristics. I

combined the inference results obtained from the Communities and LocPref attributes.

As shown in Table 3.2, I am able to infer AS relationship for 43,155 links in total,

which account for 39% of the links that are present in my BGP data. These links

include all links among the Tier-1 ASes and most links between Tier-1 and Tier-2

ASes. A hybrid link is counted as both a transit link and a peering link. The partial-

transit links and the backup links are included in the total number of transit links. When

the relationship of a links is inferred from both BGP attributes, I only accept it if the

two reach the same conclusion. It should be noted that the percentage of the inferred

links decreases from 38.7% for August 2010 to 37.5% for February 2011. This happens

because the topology growth between these two snapshots mainly happened with the

addition of stub ASes at the edge of the AS topology while my Community data are

mainly obtained by backbone ASes. This is manifested by the observation that in the

BGP data for February 2011 there are 5,044 new ASes compared to August 2010, but

only 5,208 new links.

I did not attempt to extract as many AS relationships as possible. Rather, my focus

is to increase the certainty of the inferred AS relationships.
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Table 3.2: AS Relationships Inferred From Routing Policies

Aug 2010 Feb 2011
Number of paths 18,570,393 24,549,355
Number of AS links 111,511 116,719
Number of ASes 33,559 38,603
Number of inferred links 43,155 43,821

Number of ASes 16,877 16,918
Transit relationship 25,892 26,075
Peering relationship 17,996 18,603
Sibling relationship 176 177
Hybrid relationship 909 1,034
Indirect peering 708 811
Partial-transit relationship 1,526 1,828
Backup links 1,087 1,205
Inferred from Communities 36,340 38,130
Inferred from LocPref 12,441 12,602

• The Communities and LocPref attributes are configured by ASes themselves and

are used by them in the BGP routing process. It is expected that ASes should use

them to accurately reflect their business relationships.

• I collect the BGP data from the available sources that have been well studied and

widely used. Some of the sources, e.g. the public Route Servers, are playing a

crucial role in facilitating the Internet BGP routing.

• I cross-examine results obtained from different attributes or data sources. I dis-

card any inconsistency or ambiguity from my results. This sometimes involves

large amount of manual checks.

• I try to use as few heuristics as possible. When I have to use a heuristic, for exam-

ple, to identify the default LocPref values, I make sure that the heuristic complies

with engineering practice and supported by previous studies, and I impose safety

checks.

The routing policy information enables me to reveal the following four special

types of AS relationships that would not be discovered by existing inference heuristics.
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3.4.1 The Hybrid Relationship

The traditional model of AS relationships assumes that two ASes have the same

type of relationship for all the underlying physical connections. Hence, it is a 1-to-1

model that assigns one relationship type per AS pair. In reality AS interconnections

can be more complex, resulting in a cases where two ASes agree different relationship

types for different connections.

A hybrid relationship arises when two ASes agree to have both a peering relation-

ship and a transit relationship. We identify two categories of hybrid links.

• IP version-dependent. Routing policies and paths for IPv4 traffic can differ sig-

nificantly from those of IPv6. ASes often negotiate separate relationships for

prefixes of different IP versions. Therefore two ASes may have a hybrid relation-

ship if they are connected on both IPv4 and IPv6 planes.

• Location-dependent. The location of the Points-of-Presence (PoP) can affect AS

relationships. Two ASes can have a hybrid relationship when they collocate at

more than one private Network Access Points (NAP) or Internet eXchange Points

(IXP). Figure 3.11 shows an example of a location-depended hybrid relationship.

• Some hybrid links are dependent on both IP versions and PoP locations. For

instance, two ASes may have an IPv6 transit relationship at a private NAP and

an IPv4 peering relationship at an IXP.

A hybrid relationship is identified when a same AS link is tagged with different

sets of Communities values in different BGP Update messages. For example, consider

the AS link AS3549 – AS3292. We observe that in a record from a RIPE monitor

this link is tagged with the Communities 3549:2771 (route received from peer) and

3549:31208 (route received in Denmark), meaning that it is a peering relationship at

a connection point in Denmark. Whereas in another record from a RouteViews mon-

itor the same link is tagged with the Communities 3549:4354 (route received from

customer) and 3549:30840 (route received in the USA), meaning that it is a transit

relationship at a connection point in the USA.

It should be noted that if a link is tagged with different sets of Communities val-

ues in the same BGP Update message, we can not conclude it is a hybrid link. This
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Figure 3.11: Example of hybrid relationships between AS A and AS B. The relationship for
the AS link through the IXP is p2p, while the relationship for the link through the
private NAP is p2c.

mainly happens when an AS specifies dual meanings to Communities values. For ex-

ample, AS1273 uses the values 1273:1*** to tag customers (where 1*** means all

numbers starting with 1) and it uses the values 1273:3*** to tag both providers and

route prepending. When we observe a link tagged with both 1273:1*** and 1273:3***

in the same BGP record, we can only identify that it is not a hybrid link but a prepended

p2c link after we learn (from the IRR and NOC data) that these Communities values

are only settable by customers. Setting dual meanings for a Communities value is not

a good practice but we observe thousands of such cases in my BGP data. When this

happens, we only infer an AS relationship if sufficient extra information is available

from other data. Otherwise we do not include it in my result.

As shown in Table 3.2, we discovered that 909 AS links have the transit/peering

hybrid relationships in the August 2010 data. Although a small number, hybrid links

are often between well-connected ASes. We observe that as high as 13% of AS links

that carry both IPv4 and IPv6 traffic are hybrid links and more than 10% of all AS

routing paths in the BGP data contain at least one hybrid link.

3.4.2 The Indirect Peering Relationship

The indirect peering relationship consists of two peering links, which together

function as one ‘virtual’ peering link. It typically occurs when two ASes are peering

with the same route server at an IXP such that they gain access to each other’s network

as if they have a peering link (without actually having a physical connection). We can
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Figure 3.12: Example of the partial-transit relationship. AS A has a partial-transit relationship
with the partial provider, which only transit its traffic to non-Europeean ASes.

detect this indirect peering relationship by the fact that both of the ASes tag the route

server as a peering IXP.

Using the Communities data collected from BGP update messages, we discover

that of the peering links, there are 708 peering links that can form 354 pair of indirect

peering relationship. Each of the peering link can appear alone in their own routing

paths. When two adjacent peering links form an indirect peering relationship, they do

not violate the valley-free principle. From the prospect of Internet routing, these two

peering links can be replaced by one peering link.

3.4.3 The Partial-Transit Relationship

A customer AS can multihome to more than one providers. The partial-transit

relationship is a special case of the transit relationship where providers of a multihomed

customer agree to offer transit within a limited geographical scope. A multihomed

customer may use Communities values to instruct a national provider to serve traffic

destined in the same country and an international provider to serve international traffic

(Figure 3.12).

For example we observe AS3300 (as a provider) provides the customer-settable

Communities value 3300:2100 which prevents a customer’s route to be announced in

Europe. A partial-transit link is only visible and used locally. Occasionally it can be

fully activated (by the customer) if a provider of the customer fails (by setting relevant
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Communities values.

3.4.4 The Backup Links

Backup links are usually invisible and they do not carry any traffic. When there

is a disruption in the network, they are activated and become visible globally. But they

will disappear once the network recovers. The backup links are not a new type of AS

relationship. Rather they are transit links that have the backup function. Backup links

are relevant to the Internet routing robustness and reliability. Backup links can be set

in the following two ways. In my inference I identify both types of backup links.

When an AS has more than one available routes to a destination, it can set a default

route and make other routes artificially less favourable. This is usually achieved by the

traffic engineering technique of path prepending. AS path prepending is applied on

at least 12% of the routes in the global routing table [128, 208], while it is possible

that more routes with path prepending exist but are hidden because prepended paths

become less preferable. The same technique can be used to create the backup links. The

advantage is that such backup links can be automatically and instantly activated when

the default route is disrupted. We identify a prepended backup link if the followings

are satisfied: (a) it is a transit link; (b) the customer prepends the AS PATH attribute

such that the link is in an artificially longer path; and (c) we only observe the link for a

short lifespan, e.g. less than 5 consecutive days in my monthly data.

Another technique to achieve backup links is the use of the Communities values

of NO-EXPORT and NO-ADVERTISE that instruct a provider not to advertise the cus-

tomer routes to anyone.

3.4.5 Analysis of Existing Algorithms

The following three existing algorithms are widely cited in the Internet research

community.

1. PTE algorithm by Xia and Gao [202] The authors published their source

code [20] but did not release any dataset. Here we examine a PTE dataset pro-

vided by [58].

2. CAIDA algorithm by Dimitropoulos et al. [76]. We examine three latest monthly

datasets published by the authors for Nov. 2009 to Jan. 2010.
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3. UCLA algorithm by Oliveira et al. [166]. We examine 31 daily snapshots pub-

lished by the authors for August 2010.

The PTE and UCLA algorithms were based on AS topology data extracted from

BGP data. The CAIDA algorithm was based on AS topology extracted from the tracer-

oute data. They relied on various heuristics to infer AS relationships

3.4.5.1 Comparison.

I compare the AS relationship data inferred by my Attribute-Based (BAB) algo-

rithm against those of the above algorithms. For each algorithm, I find the common

links present in both my BAB data and their datasets, and I then evaluate their agree-

ment for each type of AS relationships. I also consider the number of AS cycles in

each dataset. If p2c links are represented as directed links, we can define an AS cycle

as a sequence of p2c links where the last link leads to the first AS of the directed path.

AS cycles should not exist on the Internet at all [129]. It is an indication of incorrect

inference if AS cycles are present in the inference result. AS cycles create strongly con-

nected components in the directed AS topology graph. I record the number of strong

components and the size of the largest component. My results are shown in Table 3.3.

We can see the existing algorithms are not able to infer any of the special relation-

ship types. Comparing with BAB data, the transit relationships inferred by CAIDA and

PTE are only 43% and 70% correct, respectively. UCLA inflates the number of peering

relationships and it contains a large number of AS cycles.

I also examine UCLA data from May to December 2009 (260 daily snapshots). I

find that 46% links had changed their relationship type at least once in that period and

16% had changed more than once. It is possible that some ASes occasionally renegoti-

ate and change their relationships, but intuitively such change should not happen to so

many AS links so often.

The ability and correctness of the existing algorithms are inherently impaired by

the fact that they solely reply on the AS path data, which does not contain sufficient

useful information on AS relationships. Therefore they have to develop increasingly

sophisticated heuristics to infer AS relationships from AS topology data. Here I show

that the two important assumptions underlying their heuristics are problematic.
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Table 3.3: Three past inference algorithms and comparison with the BGP attribute-based
(BAB) algorithm

Existing algorithms (EA) PTE CAIDA UCLA

Number of ASes 31,843 33,499 38,269
Number of AS links 143,102 80,128 141,651

Transit links 94,632 73,246 79,037
Peering links 48,470 6,654 62,614
Sibling links - 228 -

Connected Comp. (max.size) 3(75) 3(694) 21(411)
Common links with BAB 25,552 25,168 38,409

Transit links
BAB 13,459 17,937 21,816

EA 16,179 22,221 20,741
agreement 12,490 17,777 20,084

Peering links
BAB 11,574 6,553 15,775

EA 9,373 2,926 17,668
agreement 8,247 2,816 14,068
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Figure 3.13: Distribution of the degree difference between ASes with the peering relationship.

3.4.5.2 The effect of degree difference on relationship misinferences.

Degree is defined as the number of links an AS has. The CAIDA and PTE algo-

rithms assume that only ASes with “comparable” degrees can be possibly connected

with a peering relationship; whereas ASes with ‘very’ different degrees tend to have a

transit relationship.

Figure 3.13 shows the degrees of ASes with the peering relationship in my BAB

data. It is obvious that peering ASes do not need to have similar degrees. In fact many
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ASes with the peering relationship have large degree differences. This explains why

CAIDA and PTE mistake many peering links as transit links. Also it indicates that

the surprisingly large percentage (13%) of invisible customer links reported in [58]

is probably an artifact of the inference methodology. These observations confirm the

results of past studies that indicated limitations in traceroute datasets [117].

Figure 3.13 supports the intuition of the so-call ‘Internet topology flattening’

[99, 118], i.e. the connectivity of ASes are becoming independent from their rela-

tionships and hierarchy. Therefore, degree-based heuristics should be avoided as an

AS relationship inference method.

3.5 Analysis of Valley-free violations
One of the most widely cited BGP properties is the valley-free rule [97], which

is described in section 2.4. Fig.3.14) illustrates the patterns of valley-free and non

valley-free paths.

To avoid loosing money, an AS usually avoids consuming network resources for

transiting traffic between non-customer neighbours. The valley-free routing is a logical

outcome of the economic model described by the AS relationships. It has been consid-

ered as a property of the entire Internet routing and it is only violated due to transient

BGP configuration errors.

Detecting and analysing the valley-free violations is of particular importance for

understudying the network economics and the inter-domain routing dynamics. The de-

tection of non valley-free paths requires accurate AS relationship data which are usually

not publicly disclosed.A fundamental assumption of the existing inference algorithms

is the universality of valley-free paths. Most algorithms approach the relationship in-

ference as an optimization problem where the goal is to infer AS relationships so that

the number of valley-free paths is maximised [97, 41, 76], or try to extend some pre-

knowledge about AS relationships assuming that all ASes along a path comply to the

valley-free export policy [202, 197, 166]. As a result the available relationship datasets

are biased towards valley-free paths and may introduce a significant number of false-

negatives when used to detect valley-free violations.

I systematically mine the BGP Community attribute to construct a bias-free AS

relationship dataset. I then use my AS relationship data to assess the valley-free path
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violations. My assessment is conservative because I only identify the violations that

can be confirmed by my AS relationship data, but there must be more violations that

can not be identified yet. My results reveal a number of surprising findings.

• Valley paths are more than twice frequent than previously reported [173] .

• A large fraction of the valley-free violations (up to 50%) are not misconfig-

urations but intended policies from ASes that are either non-profit (e.g. re-

search/educational networks) or follow a distinct economic model and establish

relationships not described by the c2p/p2p/s2s model. Such valley paths persist

for a long period of time, contrary to previous assumption that valley paths are

resulted from transient configuration errors.

• IPv6 paths exhibit a disproportionately larger number of valley paths compared

to IPv4 (5.4% in BGP tables and 22.3% in BGP Updates). The reasons for such

large numbers of violations include the low traffic volumes, the configuration

complexities and most of all the central role of non-profit/governmental organi-

zations in todays IPv6 Internet.

Each of these finding is relevant to a better understanding of the BGP routing and

should be appreciated in AS topology research and network operation.

Figure 3.14: Patterns of valley-free paths (a, b) and examples of non valley-free paths (c, d, e).
A valley-free path contains at most one p2p link, an ‘uphill’ leg of n ≥ 0 c2p links
and a ‘downhill’ leg of m ≥ 0 p2c links. Any other patterns are non valley-free
paths, or I called them valley paths.

3.5.1 Related Work

BGP routing and the AS topology have been widely studied research subjects. The

valley-free rule has been coined by Gao in her seminal work on AS relationships [97].
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A number of significant works followed up to propose relationship inference algorithms

based on the valley-free rule [191, 41, 76, 202, 197, 166]. The most recent of these

algorithms recognize that valley paths may exits as result of BGP configuration errors

and propose filtering based on the persistency of the AS paths, although no standard

methodology exists.

The first approach to study export policy violations has been provided by Maha-

jan et. al. [151] which was based on Gao’s algorithm to infer the AS relationships.

They presented the most common cases of valley-free violations due to transient mis-

configurations. They also showed that their analysis contains only a limited number of

false-positives due to relationship misinferences. However, their results may missed a

large number of false-negatives in detecting the violations due to relationships misin-

ferences. Gao’s algorithm mistakes many p2p relationships as p2c, and as shown in

section 3.5.3 a large number of valley paths would not be detected if p2p relationships

were substituted by p2c. The last observation is confirmed by [84] which showed that

the valley-free maximization problem can be solved using only p2c relationships.

Feamster et.al. [89] highlighted the need for a solution that will enable filtering of

the erroneous valley announcements without revealing relationship information. Such

a solution was proposed in [173] as a BGP extension, where the authors also provide

a measurement of the valley paths based on Gao’s algorithm. In [203] the authors

observed that export misconfigurations may affect the levels of traffic received by an

AS and therefore proposed a filtering mechanism based on the fluctuations of the traffic

volumes.

Unlike the previous works, I do not approach the valley paths as a misconfigura-

tion problem but I try to investigate whether alternative models of export configurations

exist. My results complements some of the conclusions of [179] that there is no uni-

versality in Internet routing due to the complexity of the Internet ecosystem.

3.5.2 Methodology

Analysis of valley-free paths can be very sensitive to relationship misinferences

depending on the centrality of the misinferred links. To ensure that my relationships

data are as free from wrong relationships as possible, for the analysis of valley-free

paths I only use relationships extracted from the BGP Communities attribute. As I
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Table 3.4: Inference results based on BGP Community data

IPv4 IPv6

BGP Tables

ASes 38,654 4,540
AS links 112,501 18,210
AS paths 6,170,769 355,366
Identified valley paths 102,741 19,210
Fraction of valley paths 1.7% 5.4%

BGP Updates

ASes 38,734 4,569
AS links 122,828 19,217
AS paths 16,623,077 902,618
Identified valley paths 676,355 201,578
Fraction of valley paths 4.0% 22.3%

AS relationships inferred from Community 38,433 9,620

mention in section subsec:discussion, Local Preference offers indirect relationships in-

formation while BGP Communities offer direct relationship information. Even though

I apply a series of checks to sanitize the Local Preference values I want only direct

relationship information for the assessment of the valley-free rule. For the BGP Com-

munities we follow the inference methodology described in sections 3.4 and 3.2.3, for

RouteViews and RIPE RIS data that span June 2011.

As shown in Table 3.4, to better understand the effects of the valley paths on

BGP routing, I split the BGP data into two sets. The first contains AS paths and AS

links extracted from BGP tables and the second contains the corresponding information

extracted from BGP updates. BGP tables include only the best AS path towards a

certain prefix, while the updates include additional AS paths that are not selected as

active.

3.5.3 Results

By definition, single-hop paths can only be valley-free. I identify an AS path as

a non valley-free path, or valley path, if the AS relationship of any two adjacent links

in the path are known and they follow one of the following relationship patterns: (1)

p2c− c2p (2) p2p− p2p (3) p2c− p2p (4) p2p− c2p. Since my AS relationship dataset

does not cover all the AS links, my assessment of the valley paths are conservative, i.e.

the real number of valley paths must be even larger than what I have identified.
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Table 3.4 shows the number of AS paths, the number of identified valley paths, and

the ratio of valley paths to all paths. I observe a high number of valley-free violations

present both in tables and updates datasets. The percentage of valley paths in IPv4 BGP

Updates is more than twice of previously reported in [173] (4% compared to 1.4%),

highlighting the effect of my bias-free relationship data in revealing more valley paths.

An interesting finding is the exceptionally large number of valley-free violations

in IPv6 paths, especially in the BGP Updates. Currently, IPv6 is only partly deployed

and the IPv6 traffic levels are less than 0.5% of all the Internet traffic [139]. The low

popularity and traffic levels of IPv6 mean that IPv6 economics can be considerably

different from IPv4, from which ASes generates most of their profit. Moreover, in

order to encourage IPv6 connectivity a large number of large governmental and non-

profit networks have been globally deployed. Such networks do not aim to maximize

their profit from traffic exchange, and therefore they may choose BGP policies for

improving IPv6 reachability instead of complying with the valley-free rule.

3.5.3.1 Persistency of Valley Paths

The valley paths have been considered as transient configuration errors that should

last only for a limited time. To test this assumption I study the persistency (a) of all the

AS path (Fig. 3.15), and (b) of the valley paths identified by my BGP Community data

(Fig. 3.16).

The IPv4 valley paths follow roughly the same persistency pattern as all the AS

paths. On the other hand, IPv6 valley paths exhibit a higher fraction of short-lived

paths attributed to export misconfigurations. This difference between IPv4 and IPv6 in

policy errors is expected due to the complexity and largely experimental nature of IPv6

networks. For the IPv6 BGP Table data, 30% of the valley paths persist for more than

24 days while 40% appear for less than four consecutive days. What is remarkable is

that for the IPv4 BGP Tables data, more than half of the valley paths persist for the

entire month while only 19% have a lifetime less than a week. This finding implies

that a large fraction of valley announcements are the deliberate BGP policies followed

by ASes whose primary concern is not commercial profit. I call the long-lasting valley

paths the persistent valley paths.

To further investigate such paths, I infer the function of the relevant ASes by pars-
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Figure 3.15: Distribution of the AS paths as a function of their persistency, where the persis-
tency is measured as their largest number of consecutive days of appearance in
my BGP data.
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Figure 3.16: Distribution of the valley paths as a function of their persistency.

ing keywords in its WHOIS record [77]. There are four major types of functions:

Internet provider, content provider, research/educational, and Internet Exchange Point

(IXP). I find most persistent valley paths are due to the last two types of ASes. About
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Figure 3.17: Fraction of valley paths per day. With sole exception the IPv6 Updates, the frac-
tion of valley paths is stable throughout June 2011.

53% of the persistent valley routes are contributed by research/educational ASes, e.g.

AS7575, AS11537 and AS7660, which are mostly non-profit with the purpose to unify

university networks and facilitate their communication. Such ASes often establish a

special type of AS relationship called indirect peering, where an AS functions as a

mediate link between two other ASes who wish to peer but have common Point-of-

Presence (PoP) only with the mediate AS but not between each other. Such rela-

tionships are often perceived as p2c by the previous relationship reference algorithms,

which result in a large number of false-negatives when studying the valley paths. IXPs,

e.g. AS4635 and AS6695, also contribute to a significant portion of the persistent val-

ley paths (21%). Specifically, in many cases of public peering at IXP route servers, the

AS number of an IXP is injected in the AS paths advertised to the IXP members. This

is in fact another type of indirect peering since the IXP operates as a link between two

ASes who are not directly linked but agree on a p2p relationship.

Valley paths also exhibit a relative stability over time, as shown in Fig. 3.17. Only

the valley paths in IPv6 BGP Updates exhibit large fluctuations, indication of the high

number of transient errors in IPv6 Updates. On the contrary, the fraction of valley

paths in IPv4 and IPv6 Tables are remarkably stable, which highlights the baseline of

consistent valley announcements.
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Figure 3.18: Distribution of paths as a function of path length (in hops). I compare the valley
paths against all other paths (not identified as valley paths) for IPv4 and IPv6
respectively.

3.5.3.2 Length of Valley Paths

Figure 3.18 shows the distribution of (non-prepended) path length for the identi-

fied valley paths and all the other paths (not identified as valley paths). Valley paths

are generally longer than valley-free paths. Paths with a length of over 10 hops are

exclusively valley paths. The main reason is that the valley-free rule is essentially an

export filter that blocks the advertisement of AS paths if they are received from specific

types of neighbours. For instance, a customer will not forward a path from a peer to

another peer if it obeys the valley-free rule. When the valley-free rule is absent, further

forwarding of such routes is possible which results in paths with more hops.

The longer length of the valley paths provides an explanation of why BGP updates

contain more valley paths than BGP tables . The path length is a BGP tie-breaking

metric for route selection between routes that are equally preferable. For example when

an AS receives two routes from the same category of neighbours with the same Local

Preference value, it is more likely to choose a shorter valley-free path (which then

appears in BGP table as the preferred route) than a longer valley path (in BGP update

as an alternative route). Also, some of the valley paths in the BGP Updates are too

short-lived to be captured by the BGP Table snapshots.
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3.6 The IPv6 AS Relationships
The existing ToR algorithms analyze the IPv4 and IPv6 AS links using exactly the

same principles. However, the AS links carrying IPv6 traffic may follow unconven-

tional BGP routing policies, including relaxed peering requirements and even free IPv6

transit. These distinct policies may result in AS links with different relationship type

between the IPv4 and the IPv6 Internet. Such relationships are called hybrid IPv4/IPv6

relationships and cannot be captured by the existing ToR algorithms. Hence, measure-

ment artifacts are unavoidable under the current ToR inference approaches.

To rigorously analyse the IPv6 AS relationships and detect the hybrid relationships

I rely on the BGP Communities relationship information, and the Local Preference

(LocPrf) attribute. I utilize the metric of “customer tree” [76] to assess the impact of

hybrid links on the IPv6 routing structure.

In August 2010, there are 346,649 IPv6 AS paths and 10,535 IPv6 AS links. 7,618

IPv6 AS links are also visible in the IPv4 topology. From the Community and the Local

Preference attributes I am able to extract the actual AS relationship for 72% (7,651) of

the all IPv6 links and for 81% (6,160) of the IPv4/IPv6 links. A number of interesting

results can be observed from those data.

Firstly, 779 (or 13%) of the IPv4/IPv6 links have hybrid AS relationships. 67%

of such hybrid links have a peering relationship for IPv4 and a transit relationship for

IPv6; the rest are p2p for IPv6 and p2c for IPv4, except a single case where the two

ASes have a p2c for IPv4 and a c2p for IPv6.

Secondly, the hybrid links usually happen among tier-1 or tier-2 ASes with large

numbers of connections. As a result the hybrid links have a high visibility in IPv6 AS

paths. More than 28% of the IPv6 paths contain at least one IPv4/ IPv6 link with hybrid

AS relationships.

Thirdly, 13% of the IPv6 paths do not follow the valley-free rule (valley paths).

The large number of IPv6 valley paths is a major reason underlying the inference errors

of the existing ToR algorithms. My analysis indicates that 16% of the valley paths

are due to the relaxation of the valley-free rule in order to expand the reachability

of IPv6 prefixes. The IPv6 topology is partitioned in terms of valley-free routing 1

1An example is the peering dispute between two transit-free ASes in the IPv6 plane, AS6939 and
AS174, as described in [143]
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Figure 3.19: The change in the customer tree when the link 1–2 is (a) p2c or (b) p2p. In (a)
AS1 can reach all the nodes through p2c links, while in (b) it can reach only AS3
through a p2c link.

and the relaxation of the valley-free rule is necessary in some cases to maintain IPv6

reachability.

The substantial existence of hybrid IPv4/IPv6 links suggests that the IPv4 and

IPv6 Internet topologies should be studied separately. This is consistent with a recent

study on the evolution of IPv4 and IPv6 AS topologies [207].

The ToR-annotated AS topology is very sensitive to misinference of AS relation-

ship. An expressive metric to assess the impact of misinferred relationships is the

“customer tree” of an AS (root), which contains all the ASes that the root can reach

through p2c links. Figure 3.19 shows an example where the change of relationship be-

tween two ASes results in two different topologies. I find that when I replace the IPv6

AS relationships that were misinferred in [166] with the correct relationships inferred

from the BGP Communities, the average length and the longest length (diameter) of

the shortest valley-free AS paths of the union of the IPv6 customer trees are reduced

from 3.8 to 2.23, and from 11 to 7 hops, respectively (Figure 3.20).

In summary, my results reveal substantial differences between the IPv4 and IPv6

relationships, including a significant number of IPv6 paths that are not valley-free,

sometimes in exchange for better reachability. The IPv6 topology should be studied

separately using new models that capture its distinct characteristics.

3.7 Summary
This section presented a new measurement framework to systematically extract

BGP policy data from two attributes, the Communities which is used to tag BGP routes

with additional meta-data, and the LocPref which is used to rank the AS paths. The
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Figure 3.20: The change of the average shortest path and the diameter of the IPv6 AS cus-
tomer trees as I gradually correct the misinferred relationship of the 20 hybrid AS
relationships with the highest visibility in the IPv6 AS paths.

collected data provide a more informative data source that can be used to study the AS

relationships and the derived policies without relying on heuristics. This methodology

allows the inference of about 40% of the AS relationships that cover the majority of the

AS links among the top-tier ASes.

The data extracted from the BGP attributes leads to a new AS relationships cate-

gorization and the extension of the valley-free rule, both of which are key features of

inter-domain routing models.

• The existing model of AS relationships assign one relationship type to each AS

link from three abstract relationship categories, customer-to-provider (c2p), peer-

to-peer (p2p), and sibling-to-sibling (s2s). Each of these relationship types ex-

presses a set of economic and routing rules and determine how paths are ad-

vertised and selected. However, these relationship abstractions cannot faithfully

describe all the actual routing policies used and can introduce significant arti-

facts. Accordingly, an extended relationship categorisation has been proposed

that can provide an accurate representation of complex routing policies. Addi-

tionally, I provided evidence that relationships to AS links do not always follow

a one-to-one mapping, but often more than one relationship types can be agreed

by two ASes for different geographical locations or for different types of traffic.

• The valley-free rule defines path patterns that allow ASes to minimize their rout-

ing costs through selective announcement of BGP routes. The valley-free rule

has been widely perceived as a universal property of the Internet BGP routing
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that is only violated due to transient configuration errors. Consequently, it has

been used as the ground for studying the AS topology and inter-domain rout-

ing. Even though it is prevalent policy for advertising reachability information,

I find that the valley-free pattern is intentionally violated by ASes that follow

distinct economic models. Valley-free violations happen at least two times more

often than previously estimated. Especially for the IPv6 topology, non valley-

free paths appear in 20% of the paths in BGP Updates and more than 5% paths

in BGP tables.



Chapter 4

Inference of Conventional AS

Relationships

The Internet consists of thousands of independent interconnected organizations,

each driven by their own business model and needs. The interplay of these needs in-

fluences, and sometimes determines, topology and traffic patterns, i.e., connectivity

between networked organizations and routing across the resulting mesh. Understand-

ing the underlying business relationships between networked organizations provides

the strongest foundation for understanding many other aspects of Internet structure,

dynamics, and evolution. This chapter presents a novel algorithm for the inference of

conventional AS relationships that is based on the insights gained by the preliminary

inference. The algorithm has been validated against three datasets to 99% accuracy.

This algorithm will provide the foundation for the inference of complex relationships

that will be presented in chapter 5.

4.1 Introduction
Business relationships between ASes, which are typically congruent with their

routing relationships, can be broadly classified into two types: customer-to-provider

(c2p) and peer-to-peer (p2p). In a c2p relationship, the customer pays the provider for

traffic sent between the two ASes. In return, the customer gains access to the ASes

the provider can reach, including those which the provider reaches through its own

providers. In a p2p relationship, the peering ASes gain access to each others’ cus-

tomers, typically without either AS paying the other. Peering ASes have a financial

incentive to engage in a settlement-free peering relationship if they would otherwise
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pay a provider to carry their traffic, and neither AS could convince the other to become

a customer. Relationships are typically confidential so must be inferred from data that

is available publicly. This paper presents a new approach to inferring relationships

between ASes using publicly available BGP data.

Measurement and analysis of Internet AS topologies has been an active area of

research for over a decade. While yielding insights into the structure and evolution of

the topology, this line of research is constrained by systematic measurement and in-

ference challenges [179]. First, the BGP-based collection infrastructure used to obtain

AS-level topology data suffers from artifacts induced by misconfigurations, poisoned

paths, and route leaks, all of which impede AS-relationship inference. The algorithm

incorporates steps to remove such artifacts. Second, AS topologies constructed from

BGP data miss many peering links [28]. This lack of visibility does not hinder the

accuracy of inferences on the observed links. Third, most AS-relationship algorithms

rely on “valley-free” AS paths, an embedded assumption about the rationality of rout-

ing decisions that is not always valid [179], and which the algorithm does not make.

Fourth, import and export filters can be complicated; some operators caveat their c2p

links as being region or prefix specific. However, they still describe themselves as cus-

tomers even if they do not receive full transit. Therefore, a c2p inference is made when

any transit is observed between two ASes. Relationship inferences can still be c2p or

p2p with the caveat that the c2p relationship may be partial. By developing filtering

techniques the effects of such hybrid relationships are mitigated when computing an

AS’s customer cone, described later in this section. Finally, a single organization may

own and operate multiple ASes; the inference of sibling relationships is left as future

work because it is difficult to distinguish them from route leaks.

The proposed algorithm does not seek to maximize the number of valley-free (hi-

erarchical) paths, since at least 1% of paths are non-hierarchical (section 4.2.6). In-

stead, inferences are made using AS path triplets (adjacent pairs of links) which allow

to ignore invalid segments of paths that reduce the accuracy of valley-free path maxi-

mization approaches.

The algorithm relies on two key assumptions: (1) an AS enters into a c2p rela-

tionship to become globally reachable, i.e. their routes are advertised to their provider’s

providers, and (2) there exists a clique of ASes at the top of the hierarchy that obtain
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Figure 4.1: Number of ASes providing BGP data to Route Views and RIS over time. Currently,
a third of all contributors provide a full view. The number of ASes providing a full
view has not grown since 2008.

full connectivity through a full mesh of p2p relationships.

4.2 Data
This section presents the sources of data used: public BGP data, a list of AS

allocations to RIRs and organizations, and multiple sources of validation data.

4.2.1 BGP Paths

BGP paths are derived from routing table snapshots collected by the Route Views

(RV) project [21] and RIPE’s Routing Information Service (RIS)[16]. Each BGP peer

is a vantage point (VP) as it shows an AS-level view of the Internet from that peer’s per-

spective. For each collector, one RIB file per day is downloaded between the 1st and 5th

of every month since January 1998, and then the AS paths that announce reachability to

IPv4 prefixes are extracted. Paths that contain AS-sets and compress path padding (i.e.

convert an AS path from “A B B C” to “A B C”) are discarded. All AS paths that are

seen in any of the five snapshots are recorded, and their union is used to subsequently

infer relationships. This means that all paths are used and not just “stable” paths be-

cause backup c2p links are more likely to be included if all AS paths are used, and

temporary peering disputes may prevent a normally stable path from appearing stable

in the five-day window of data.

Figure 4.1 shows the number of ASes peering with RV or RIS between 1998 and

2013, and the number providing full views (routes to at least 95% of ASes). RV is

the only source that provides BGP data collected between 1998 and 2000, and while

more than two thirds of its peers provided a full view then, it had at most 20 views

during these three years. For the last decade, approximately a third of contributing
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ASes provide a full view. Most (64%) contributing ASes provide routes to fewer than

2.5% of all ASes. The operators at these ASes likely configured the BGP session with

the collector as p2p and therefore advertise only customer routes.

4.2.2 Allocated ASNs

To identify valid AS numbers assigned to organizations and RIRs, IANA’s list of

AS assignments [3] has been used. BGP paths that include unassigned ASes are filtered

out, since these ASes should not be routed on the Internet.

4.2.3 Validation Data Directly Reported

CAIDA’s website provides the ability to browse the relationship inferences and

submit validation data. There are two separate datasets inferred from these corrections,

one created in January 2010 and the other in January 2011 using an older relationship

inference algorithm. This older algorithm did not produce a cycle of p2c links but as-

signed many more provider relationships than ASes actually had; 93% of the website

feedback consists of p2p relationships, and 62% of that consists of correcting the in-

ference of a c2p relationship to a p2p relationship. In total, feedback was received 129

c2p and 1,350 p2p relationships from 142 ASes through the website.

Follow up communication with the operators aimed to clarify unchanged infer-

ences, as well as submissions that seemed erroneous compared to observations in public

BGP paths. More than 50 network operators responded to the follow up emails. 18 re-

lationships submitted through the website were later acknowledged by the submitting

operator to have been inaccurately classified (9 by one operator) or to have changed

subsequent to the submission. Additionally, based on email exchanges with operators,

a file containing 974 relationships was assembled – 285 c2p and 689 p2p (contained

within the “directly reported” circle of figure 4.2, described further in section 4.2.6).

4.2.4 Validation Data Derived from RPSL

Routing policies are stored by network operators in public databases using the

Routing Policy Specification Language (RPSL) [29]. The largest source of routing

policies is the RIPE WHOIS database, partly because many European IXPs require

operators to register routing policies with RIPE NCC. The routing policy of an AS is

stored as part of the aut-num record [29]. The aut-num record lists import and export
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rules for each neighbour AS. An import rule specifies the route announcements that

will be accepted from the neighbour, while an export rule specifies what routes will be

advertised to the neighbour. The special rule ANY is used by an AS to import/export

all routes from/to the neighbour, and is indicative of a customer/provider relationship.

Using the RIPE WHOIS database from April 2012, a set of c2p relationships has been

extracted using the following method: if X has a rule that imports ANY from Y, then

a c2p relationship is inferred if a similar rule is observed in Y’s aut-num that exports

ANY to A. Limiting the collection process to records updated between April 2010 and

April 2012 to ensure the “freshness” of data, RPSL records contributed 6,530 c2p links

between ASes with records in RIPE NCC’s database.

4.2.5 Validation Data Derived from Communities

AS relationships can be embedded in BGP community attributes included with

each route announcement. Community attributes can be tagged to a route when it is

received from a neighbour. Community attributes are optional transitive attributes; they

can be carried through multiple ASes but could be removed from the route if that is the

policy of an AS receiving the route [54]. The tagging AS can annotate the route with

attributes of the neighbour and where the route was received, and the attributes can be

used to control further announcements of the route. The commonly used convention

is for the tagging AS to place its ASN, or that of its neighbour, in the first sixteen

bits. The use of the remaining 16 bits is not standardized, and ASes are free to place

whatever values they want in them. Many ASes publicly document the meaning of

the values on network operations web sites and in IRR databases, making it possible

to assemble a dictionary of community attributes and their policy meanings. I used a

dictionary of 1286 community values from 224 different ASes assembled from [104] to

construct a set of relationships from BGP data for April 2012; in total, there are 41,604

relationships in the collected dataset (16,248 p2p and 23,356 c2p).

4.2.6 Summary of validation data

Figure 4.2 uses a Venn diagram to show the size and overlap of the validation

data sources. Overall, 2203 of 2225 relationships that overlap agree (99.0%), with

multiple explanations for the discrepancies. For the directly reported source, some op-

erators reported a few free transit relationships as peering relationships, i.e., they were
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Figure 4.2: Summary of validation data sets collected and agreement among sets (first number
inside intersections is number of overlapping relationships that agree). Overall,
2203 of 2225 relationships agree (99.0%) suggesting a limit on the accuracy of any
source of validation data.

reported in the traditional economic sense rather than in a routing sense. For the RPSL

source, some providers mistakenly imported all routes from their customers and some

customers mistakenly exported all routes to their providers. For the BGP communities

source, some customers tagged routes exported to a Tier-1 AS as a customer. While

there are limits to the accuracy of all the sources of validation, the 99.0% overlap in

agreement gives confidence in using them for validation.

A validation data set has been assembled by combining all four data sources in

the following order: (1) directly reported using the website, (2) RPSL, (3) BGP com-

munities, and (4) directly reported in an email exchange. Where a subsequent source

classified a link differently, the classification is replaced; relationships acquired through

email exchanges are trusted more than relationships submitted via the website. The val-

idation data set consists of 48,276 relationships: 30,770 c2p and 17,506 p2p.

To estimate possible biases in the validation data set, their characteristics are com-

pared with those of the April 2012 BGP dataset in terms of the link types and the

minimum distance from a VP at which those links were observed. The closer the link

is to a vantage point, the more likely it is to see paths that cross it. Links are classified as

follows: clique (one endpoint is in the clique), core (both endpoints are not in the clique

and are not stubs), and stub (one endpoint is a stub and the other endpoint is not in the

clique). Figure 4.3(a) shows clique links are over-represented in the validation data set

as compared to BGP data, while stub links are under-represented. This disparity is due

to the validation data from BGP Communities, which mostly comes from large ASes.

Figure 4.3(b) shows links directly connected to a VP (distance 0) are over-represented
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Figure 4.3: Characteristics of validation data. Relative to BGP data, clique links and links di-
rectly connected to VPs are over-represented and stub links are under-represented.
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Figure 4.4: Computing the transit degree of ASes using paths. While the node degrees of ASes
A and B are both three, A’s transit degree is two because A it is not observed to
announce D’s prefixes to any neighbours. Nodes with a transit degree of zero (C,
D, E, F) are stub ASes.

in the validation data relative to April 2012 BGP data, likely due to the Communities

dataset, many of which involve ASes that provide VPs.

4.3 Inference Algorithm for Conventional AS Relation-

ships
First I present the algorithm for inferring conventional relationships of type c2p

and p2p. This algorithm will be extended in chapter 5 for the inference of complex

relationships.

Two metrics of AS connectivity are used: the node degree is the number of neigh-

bours an AS has; and the transit degree is the number of unique neighbours that appear

on either side of an AS in adjacent links. Figure 4.4 illustrates the transit degree metric;
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Algorithm 1 AS relationship inference algorithm.
Require: AS paths, Allocated ASNs, IXP ASes

1: Discard or sanitize paths with artifacts (§4.3.3)
2: Sort ASes in decreasing order of computed transit degree, then node degree (§4.3)
3: Infer clique at top of AS topology (§4.3.4)
4: Discard poisoned paths (§4.3.3)
5: Infer c2p rels. top-down using above ranking (§4.3.5)
6: Infer c2p rels. from VPs inferred not to be announcing provider routes (§4.3.5)
7: Infer c2p rels. for ASes where the provider has a smaller transit degree than the

customer (§4.3.5)
8: Infer customers for ASes with no providers (§4.3.5)
9: Infer c2p rels. between stubs and clique ASes (§4.3.5)

10: Infer c2p rels. where adjacent links have no relationship inferred (§4.3.5)
11: Infer remaining links represent p2p rels. (§4.3.5)

ASes with a transit degree of zero are stub ASes. Transit degree is used to initially sort

ASes into the order in which their relationships is inferred, breaking ties using node

degree and then AS number. ASes inferred to be in the clique are always placed at the

top of this rank order. Sorting by transit degree reduces ordering errors caused by stub

networks with a large peering visibility, i.e., stubs that provide a VP or peer with many

VPs.

4.3.1 Assumptions

The algorithm relies on three assumptions:

Clique: multiple large transit providers form a peering mesh so that customers

(and indirect customers) of a transit provider can obtain global connectivity without

multiple transit provider relationships.

A provider will announce customer routes to its providers. All ASes, except

for those in the clique, require a transit provider in order to obtain global connectivity.

It is assumed that when X becomes a customer of Y, that Y announces paths to X to its

providers, or to its peers if Y is a clique AS. Exceptions to this rule include backup and

region-specific transit relationships.

The AS topology can be represented in a directed acyclic graph. Gao et al.

argue there should be no cycle of p2c links to enable routing convergence [98].

4.3.2 Overview

Algorithm 1 shows each high-level step in the conventional relationship inference
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Figure 4.5: ASes inferred to be in the clique over time. The plot shows the 22 of the 26 ASes
inferred to be in the clique at any time after January 2002. The clique’s small size
and consistent membership lend confidence in the inference methodology. As an
artifact of the AS3356/AS3549 merger process in 2013, clique member AS6461
was inferred not to be in the clique.

algorithm. First, the input data are sanitised by removing paths with artifacts, i.e., loops,

reserved ASes, and IXPs (step 1). The resulting AS paths are used to compute the node

and transit degrees of each AS, and produce an initial rank order (step 2). Then, the

algorithm infers the clique of ASes at the top of the hierarchy (step 3). After filtering

out poisoned paths (step 4), a sequence of heuristics is used to identify c2p links (steps

5-10). All remaining links that are unclassified by this step are inferred as p2p. The

algorithm contains many steps, a consequence of trying to capture the complexity of the

real-world Internet and mitigate limitations of public BGP data [179]. The output from

this process is a list of p2c and p2p relationships with no p2c cycles, by construction.

4.3.3 Filtering and Sanitizing AS Paths

The first step is to sanitize the BGP paths used as input to the algorithm, especially

to mitigate the effects of BGP path poisoning, where an AS inserts other ASes into a

path to prevent its selection. A poisoned path implies a link (and thus relationship)

between two ASes, where in reality neither may exist. Poisoning is inferred in AS

paths (1) with loops, or (2) where clique ASes are separated. Paths with AS loops are

filtered out, i.e., where an ASN appears more than once and is separated by at least one

other ASN. Such paths are an indication of poisoning, where an AS X prevents a path

from being selected by a non-adjacent upstream AS Y by announcing the path “X Y X”

to provider Z, so if the route is subsequently received by Y it will be discarded when

the BGP process examines the path for loops [130]. For BGP paths recorded in April
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2012, 0.11% match this rule. After the clique has been inferred in step 3, the next step

is to discard AS paths where any two ASes in the clique are separated by an AS that is

not in the clique. This condition indicates poisoning, since a clique AS is by definition

a transit-free network. For BGP paths recorded in April 2012, 0.03% match this rule.

Additionally, paths containing unassigned ASes are also filtered out; BGP paths

from April 2012 contain 238 unassigned ASes in 0.10% of unique paths. 222 of these

ASes are reserved for private use and should not be observed in paths received by route

collectors. In particular AS23456, reserved to enable BGP compatibility between ASes

that can process 32-bit ASNs and those that cannot [194], is prevalent in earlier public

BGP data and can hinder relationship inferences.

The algorithm also removes ASes used to operate IXP route servers because the

relationships are between the participants at the exchange. To identify IXP route server

ASes I utilized the Euro-IX IXP directory [6], to compile a list of 56 ASes known to

operate route servers; these ASes are removed from paths so that the IX participants

are adjacent in the BGP path.

Finally, all paths from 167.142.3.6 for May and June 2003, and from

198.32.132.97 between March and November 2012 have been discarded; the former

reported paths with ASes removed from the middle of the path, and the latter reported

paths inferred from traceroute [145].

4.3.4 Inferring Clique

This section describes how to infer the ASes present at the top of the hierarchy.

Since Tier-1 status is a financial circumstance, reflecting lack of settlement payments,

the focus is on identifying transit-free rather than Tier-1 ASes. First, the Bron/Kerbosch

algorithm [46] is applied to find the maximal clique C1 from the AS-links involving the

largest ten ASes by transit degree.1 Second, the algorithm tests every other AS in order

by transit degree to complete the clique. AS Z is added to C1 if it has links with every

other AS in C1 and it does not appear to receive transit from another member of C1;

i.e. no AS path should have three consecutive clique ASes. Because AS path poisoning

may induce three consecutive clique ASes in a false BGP path “X Y Z”, the algorithm

1 Starting with ten ASes reveals most clique ASes and is small enough to prevent the incorrect
inference of a clique below the top of the hierarchy. If there are multiple cliques, the clique with the
largest transit degree sum is selected.
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adds AS Z to C1 provided there are no more than five ASes downstream from “X Y

Z”. A nominal value of five ASes will still capture clique ASes even in paths poisoned

multiple times, yet is unlikely to wrongly place a large transit customer in the clique

since a clique AS is likely to announce (and it is likely to observe [167]) more than five

customers of large transit customers. If an AS would be admitted to C1 except for a

single missing link, that AS is added to C2. Finally, because an AS might be in C1 but

not in the clique, the Bron/Kerbosch algorithm is re-used to find the largest clique (by

transit degree sum) from the AS-links involving ASes in C1 and C2. The product of

this step is a clique of transit-free ASes.

Figure 4.5 shows ASes inferred to be in the clique since January 2002. Nine ASes

have been in the clique nearly every month, and ASes that are inferred to be in the

clique are almost continuously present. The consistency of the inferred clique and feed-

back from operators increase the confidence in the proposed clique inference method-

ology. However, peering disputes and mergers of ASes can disrupt the inference of

the clique. ASes may form alliances to prevent de-peering incidents from partitioning

their customers from the Internet. If such a disconnection incident triggers activation

of a backup transit relationship, a peer will disappear from the clique and instead be in-

ferred as a customer of the allied peer. The process of merging ASes can can also result

in peers being inferred as customers. For example, in 2013 Level3 (AS3356) gradu-

ally shut down BGP sessions established with Global Crossing (AS3549), shifting ses-

sions to AS3356. In order to maintain global connectivity during this merger process,

Level3 advertised customers connected to AS3549 to peers that were only connected

to AS3356. As a result, ASes in the clique appeared to be customers of AS3356, when

in reality they were peers. Specifically, in figure 4.5, AS6461 was not inferred to be a

member of the clique because it had shifted all peering ports with Level3 to AS3356.

4.3.5 Inferring Providers, Customers, and Peers

The remainder of the algorithm infers p2c and p2p relationships for all links in the

graph. Step 3 infers p2p relationships for the full mesh of links between clique ASes.

The rest of this section uses figure 4.6 as reference.

AS path triplets: Inferences use only AS path triplets (adjacent pairs of links).

Triplets provide the constraints necessary to infer c2p relationships while allowing to
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Notation Description
X < Y X is a customer of Y
X − Y X is a peer of Y
X ? Y No inferred relationship

Table 4.1: Notation used to describe relationships.

ignore non-hierarchical segments of paths, and are more computationally efficient than

paths. For example, in figure 4.6 path 1 is broken into two triplets: “1239 3356 9002”

and “3356 9002 6846”.

Notation: The notation in table 4.1 is used to describe relationships between

ASes. A p2c relationship between X and Y is presented as “X > Y”. The notation

reflects providers as typically greater (in degree or size or tier of a traditional hierarchi-

cal path) than their customers. A triplet with no inferred relationships is presented as

“X ? Y ? Z”.

Sorting of ASes: ASes are sorted in the order according to which their c2p re-

lationships are estimated. ASes in the clique are placed at the top, followed by all

other ASes sorted by transit degree, then by node degree, and finally by AS number

to break ties. Transit degree is used rather than node degree to avoid mistaking high-

degree nodes (but not high-transit degree, e.g., content providers) for transit providers.

Figure 4.6 shows the sorted order of the ASes in that graph.

Preventing cycles of p2c links: When a c2p relationship is inferred, the algorithm

records the customer AS in the provider’s customer cone, and adds the AS to the cones

of all upstream providers. Any ASes in the customer’s cone not in the cones of its

upstream providers are also added to the cones of those providers. A c2p relationship

will not be inferred if the provider is already in the AS’s cone, to prevent a cycle of p2c

links.

Step 5: Infer c2p relationships top-down using ranking from Step 2. This step

infers 90% of all the c2p relationships, and is the simplest of all the steps. ASes are

traversed top-down, skipping clique ASes since they have no provider relationships.

When an AS Z is visited, the algorithm infers Y > Z if it observes “X − Y ? Z” or “X

> Y ? Z”. To have observed “X− Y”, X and Y must be members of the clique (step 3).

To have inferred “X > Y” by now, one must have visited Y in a previous iteration of

this step. No cycle of c2p links can be formed because c2p relationships are assigned
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27065, 6846, 721, 7377, 6432, 2629, 13395, 36040

6846:33

9002:2318

3356:3286 1239:989

6461:1014 701:1839

11164:118

2152:82

15169:129

6432:2

7377:3 36040:0

27065:34

721:6

2629:013395:0

Partial VP

Clique Clique

Relationships inferred:
Step 5: 3356 > 9002
Step 5: 9002 > 6846
Step 5: 1239 > 721
Step 6: 6432 > 36040
Step 7: 721 > 27065Path 1: 1239 3356 9002 6846

Path 2: 1239 13395

BGP paths:

Path 3: 1239 15169 6432
Path 4: 3356 1239 721
Path 5: 1239 721 27065

p2c (>)
p2p (−)
VP

Key:

Path 6: 1239 721 27065 2629
Path 7: 9002 3356 1239
Path 8: 9002 11164 2152 7377
Path 9: 15169 6432 36040 Step 11: 1239 − 15169

Step 11: 1239 − 9002
Step 10: 15169 > 6432
Step 9: 1239 > 13395
Step 8: 2152 > 7377
Step 8: 11164 > 2152
Step 8: 11164 − 9002
Step 7: 27065 > 2629

Sorted order: 3356, 701, 6461, 1239, 9002, 15169, 11164, 2152

Figure 4.6: Inferring providers, customers, and peers. Each AS is labelled “AS Number:Transit
Degree”. VPs are in double squares, and (by definition) on the left side of all raw
BGP paths. This set of paths to illustrates the inferences made at each step of the
algorithm. Relationships listed use notation in Table 4.1.

along the degree gradient, i.e. no c2p relationship is inferred between two ASes where

the provider has a smaller transit degree, a necessary condition to create a cycle. For

example, in figure 4.6, the algorithm first considers (after the four clique ASes) c2p

relationships for 9002 (3356), then 15169 (none), etc.

The order of the ASes in the triplet is important, at this step and for most of the

remaining steps. To minimize false c2p inferences due to misconfigurations in one

direction of a p2p relationship (an AS leaks provider or peer routes to peers), a c2p

relationship is inferred when the provider or peer is closer than the customer to at least

one VP in at least one triplet. This heuristic builds on the intuition that an AS enters a

provider relationship to become globally reachable, i.e., at least one VP should observe

the provider announcing the customer’s routes. For example, when it is inferred that

3356 > 9002 in figure 4.6, the algorithm uses the triplet “1239 3356 9002” from path

1 and not triplet “9002 3356 1239” from path 7 because 3356 appears before 9002 in

path 1.

Step 6: Infer c2p relationships from VPs inferred to be announcing no

provider routes. It is assumed that “partial VPs” providing routes to fewer than 2.5%
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of all ASes either (1) export only customer routes, i.e., the VP has configured the ses-

sion with the collector as p2p; or (2) have configured the session as p2c, but have a

default route to their provider, and export customer and peer routes to the collector.

Given a path “X ? Y ? Z” where X is a partial VP and Z is a stub, the link XY can either

be p2c or p2p, requiring Y > Z. In figure 4.6, path 9 is used and the inference of 15169

as a partial VP to infer 6432 > 36040.

Step 7: Infer c2p relationships for ASes where the customer has a larger

transit degree due to path poisoning. Given a triplet “W > X ? Y” where (1) Y

has a larger transit degree than X, and (2) at least one path ended with “W X Y” (i.e.

Y originates a prefix to X), then the algorithm assigns X > Y. It is assumed that c2p

relationships against the degree gradient are rare, although they can arise from path

poisoning. Condition (2) mitigates the risk of using poisoned paths because poisoned

segments of a path do not announce address space. In figure 4.6 the algorithm infers

721 (X) > 27065 (Y) because path 5 shows 27065 announcing a prefix to 721. In

the absence of path 5, it would be inferred that 2629 poisoned path 6 with 27065 and

the algorithm would not assign a c2p relationship. When the relationship X > Y is

assigned, Y > Z is also assigned where triplets “X > Y ? Z” are observed; in figure 4.6

the algorithm uses path 6 to infer 27065 > 2629.

Step 8: Infer customers for provider-less ASes. Provider-less ASes are visited

top-down, skipping clique members because their customers were inferred in step 5.

This step is necessary because steps 5 and 7 require an AS to have a provider in order

to infer customers. Examples of provider-less ASes are some regional and research

networks, e.g., TransitRail. For each provider-less AS X, the algorithm visits each of

its neighbours W top-down. When a triplet “W X Y” is observed, the algorithm infers

W − X because W was never observed announcing X to providers or peers in previous

steps; therefore, X > Y. The condition in step 5 that the peer AS must be closest to

the VP is removed, because provider-less ASes are mostly observed by downstream

customers providing a public BGP view. In figure 4.6, 11164 (X) is a provider-less

AS; path 8 is used to infer 9002 (W) − 11164 (X) and 11164 (X) > 2152 (Y). When

the algorithm assigns X > Y, it also assigns Y > Z where triplets “X > Y ? Z” are

observed; in figure 4.6 path 8 is used to infer 2152 (Y) > 7377 (Z).

Step 9: Infer that stub ASes are customers of clique ASes. If there is a link
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9100:0 39040:6 51768:0
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207.65.41.0/24701 2828
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701 2828 6203(x)
6453 7922 6203
7922 6203 2828

(y) 207.65.0.0/16
207.65.0.0/16

(z)

7922:181

2828:9836453:575

(c) Leaking or Poisoning (6203)

Figure 4.7: p2c-c2p valleys caused by unconventional routing policies between (a) siblings,
(b) mutual transit, and (c) leaking/poisoning. Each AS is labelled with its transit
degree, which influences the order of p2c inferences. An AS-to-organization map
would resolve (a) but not (b) because the ASes in (b) are independent ASes. Leak-
ing as in (c) results in paths with spurious p2c-c2p valleys when an AS leaks a
route from a provider to another provider. Note that in (c) AS6203 could instead
be poisoning to prevent AS2828 from selecting the more specific route (traffic en-
gineering); (c) is an example of a prefix-list leak because AS2828 is the only origin
AS observed for that prefix. All examples are present in April 2012 BGP data.

between a stub and a clique AS, it is classified as c2p. This step is necessary because

step 5 requires a route between a stub and a clique AS to be observed by another clique

AS before the stub is inferred to be a customer. Stub networks are extremely unlikely

to meet the peering requirements of clique members, and are most likely customers. In

figure 4.6, path 2 reveals a link between 1239 and 13395, but there is no triplet with

that link in the set, perhaps because it is a backup transit relationship.

Step 10: Resolve triplets with adjacent unclassified links. The algorithm tra-

verses again ASes top down to try to resolve one link as p2c from triplets with adjacent

unclassified links. This step is necessary to avoid inferring adjacent p2p links in step

11, since adjacent p2p links imply anomalous behaviour, e.g., free transit or route leak-

age. The requirement in step 5 that the first half of the triplet must be resolved is

loosened. When visiting Y, the algorithm searches for unresolved triplets of the form

“X ? Y ? Z”, and attempts to infer Y > Z. For each unresolved triplet “X ? Y ? Z”, the

algorithm looks for another triplet “X ? Y < P” for some other P. If one is found, the

algorithm infers X < Y (and Y will be inferred as a peer of Z in step 11). Otherwise

it searches for a triplet “Q ? Y ? X”, which implies Y > X, and therefore both sides of

the original unresolved triplet to X < Y and Y > Z would be resolved. Since there is
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only confidence of resolving one side of the original triplet (embedding an assumption

that most p2c links have already been resolved at earlier steps), no inferences are made

in this case. Otherwise, the algorithm infers Y > Z in this step, and X − Y in step 11.

Step 11: Infer p2p links: A p2p relationships is assigned for all the links that

have no inferred relationships.

4.3.6 Limitations of the Algorithm

Sibling Relationships and Mutual Transit: The above algorithm does not in-

fer sibling relationships, where the same organization owns multiple ASes, which can

therefore have unconventional export policies involving each sibling’s peers, providers,

and customers. Similarly, the algorithm does not infer mutual transit relationships,

where two independent organizations provide transit for each other in a reciprocal ar-

rangement. Both of these arrangements can lead to paths (and triplets) that violate the

valley-free property, and in particular produce p2c-c2p valleys in paths. Gao’s algo-

rithm [97] inferred that two ASes involved in a non-hierarchical path segment were

siblings, which maximizes the number of valley-free paths. Dimitropoulos et al. used

WHOIS database dumps to infer siblings from ASes with similar organization names,

because policy diversity among siblings makes it difficult to infer siblings from BGP

data [76]. The present algorithm does not attempt to resolve these unconventional rout-

ing policies because it is difficult to accurately classify them; as a result, it produces

p2c-c2p valleys in paths.

Figure 4.7 provides three examples of non-hierarchical path segments caused by

siblings (figure 4.7(a)), mutual transit (figure 4.7(b)), and route leaks or path poisoning

(figure 4.7(c)). In figure 4.7(a), ASes 9398 and 9822 are ASes owned by the same

organization, Amcom Telecommunications, which implements complex export poli-

cies with these ASes. Specifically, customers of 9822 are exported to 9398’s peers and

providers, and routes originated by 9398 are exported to 9822’s providers. These poli-

cies induce a p2c-c2p valley in a path, because 9398 is inferred as a customer of both

9822 (path x) and 2914, and it appears that 9398 announces customers of its inferred

provider 9822 to its other inferred provider (path y). In figure 4.7(b), independently op-

erated ASes 6772 and 15576 implement mutual transit, owing to complementary traffic

profiles: AS6772 is an access provider with mostly inbound traffic, while AS15576 is a
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content provider, with mostly outbound traffic. A WHOIS-derived database of sibling

relationships does not help infer mutual transit arrangements. Finally, route leaks and

path poisoning can also result in a p2c-c2p valley in a path. Figure 4.7(c) provides an

example of a route leak from 6203, where it provides transit to a /24 prefix announced

by one of its providers (AS2828) to another provider (AS7922). The prefix AS2828

announces is a more specific prefix of a /16 prefix that AS6203 announces, and has

likely leaked because of a prefix list configured in AS6203. An alternative explanation

is that AS6203 is poisoning that path so that AS2828 cannot select the more specific

prefix. A route leak is the more plausible explanation because AS2828 is the only AS

to originate the prefix. Without the use of prefixes, it is not possible to distinguish this

valley from mutual transit or siblings. Detecting and validating route leaks and path

poisoning remains an open problem.

To evaluate how the sibling links in were classified, I used sibling inferences de-

rived from WHOIS database dumps [134]

These sibling inferences are not used in the inference algorithm because (1) there

are no available supporting WHOIS databases going back to 1998, (2) in validation the

sibling inferences contained a significant number of false-positives (where two ASes

were falsely inferred to belong to an organization), and (3) they do not help distinguish

mutual transit between independent ASes from other anomalies such as path poisoning

and route leaks. In total, there were 4537 links observed between inferred siblings for

April 2012; 4238 (93%) of these were inferred to be p2c. Because most of the siblings

are inferred to have p2c relationships (i.e. a transit hierarchy) the sibling inferences

were also used to examine if the ordering of ASes in paths supported the classification.

Of the 312 organizations for which at least two siblings were observed in a path, 275

(88%) had a strict ordering; i.e. AS x was always observed in a path before sibling AS

y. For example, there can be observed 21 Comcast sibling ASes in BGP paths with

at least two siblings present; all of these ASes were connected beneath AS7922. It is

possible that Comcast’s siblings exported routes received from their peers (if any) to

other siblings. However, no peering links can be seen from beneath AS7922 (perhaps

due to limited visibility), and it would make more engineering sense to share peer routes

among siblings by connecting the peer to AS7922.

Partial Transit, Hybrid Relationships, and Traffic Engineering: The algo-
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Figure 4.8: Two ASes may have hybrid relationships. In this example B is a customer of A in
region X and B is a peer of A in region Y. However, the algorithm infers a single
relationship between B and A: c2p. If A routes rationally, it will only advertise
paths to F and G from B to customers.

rithm infers either a p2p or c2p relationship for all links. A partial transit relationship

typically restricts the propagation (and visibility) of routes beyond a provider to the

provider’s peers and customers. Similarly, complex import and export policies can pro-

duce hybrid relationships [160]. Figure 4.8 depicts an AS pair with a c2p relationship

in one region, and a p2p relationship elsewhere. Similarly, ASes A and B may enter

into a p2p relationship, but B may not advertise all customers or prefixes to A, requiring

A to reach those via a provider.

The presence of hybrid relationships can cause the algorithm to incorrectly infer

a c2p link as a p2p link. In figure 4.8, if there cannot be observed providers of A

announcing routes to E via A then the algorithm infers the c2p link between A and E

as p2p. This inference occurs because step 10 collapses triplets with no relationships

inferred for either link; i.e., it does not adjust the triplet “E ? A > B”. A separate

step is necessary to distinguish partial transit relationships visible from a VP below the

provider from peering relationships.

Paid Peering: An assumption behind c2p and p2p relationships is that the cus-

tomer pays the provider and p2p relationships are settlement-free, as historically p2p

relationships were viewed as mutually beneficial. Modern business relationships in the

Internet are more complicated; ASes may enter into a paid-peering arrangement where

an AS pays settlements for access to customer routes only. Multiple network opera-

tors confirmed several aspects of paid-peering: (1) approximately half of the ASes in

the clique (figure 4.5) were paid-peers of at least one other AS in the clique as of June

2012; (2) paid-peering occurs between ASes at lower-levels of the AS topology; and (3)

routes from paying and settlement-free peers have the same route preference. This last

condition prevents the algorithm from distinguishing paid-peering from settlement-free

peering using BGP data alone.
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Step Description Validation (PPV) Fraction
3 clique at top of AS topology 136 p2p @ 100% 153 (0.12%)
5 c2p relationships top-down 26664 c2p @ 99.8% 71160 (56.4%)
6 c2p relationships from VPs announcing no provider routes 116 c2p @ 99.1% 532 (0.42%)
7 c2p relationships to smaller degree providers 205 c2p @ 96.1% 2420 (1.92%)
8 relationships for ASes with no providers 120 c2p @ 93.3% 842 (0.67%)

152 p2p @ 96.7% 333 (0.26%)
9 c2p relationships for stub-clique 422 c2p @ 95.0% 651 (0.52%)
10 collapse adjacent links with no relationships 524 c2p @ 94.7% 2474 (1.96%)
11 p2p relationships for all other links 15274 p2p @ 98.7% 47517 (37.7%)

43613 @ 99.3% 126082 (100%)

Table 4.2: Validation of inferences (PPV) and number/fraction of inferences made at each step.

Algorithm c2p p2p
PPV TPR Errs PPV TPR Errs
(%) (%) (1/) (%) (%) (1/)

CAIDA 99.6 99.3 250 98.7 99.3 77
UCLA 99.0 94.7 100 91.7 98.8 12
Xia+Gao 91.3 98.6 11 96.6 81.1 29
Isolario 90.3 98.0 10 96.0 82.4 25
Gao 82.9 99.8 5.8 99.5 62.5 200

Table 4.3: The proposed AS relationship algorithm accurately classifies both c2p and p2p rela-
tionships, with high precision (PPV) and recall (TPR).

Backup Transit: A backup transit relationship occurs when a customer’s export

policies prevent their routes from being exported outside a provider’s customer net-

works. The export policies used while the provider is in backup configuration are iden-

tical to peering; the difference between backup transit and paid peering is due to export

filters instead of a contractual agreement. The present algorithm infers most backup

transit relationships as peering.

4.3.7 Validation

This section presents an evaluation of the positive predictive value (PPV) and true

positive rate (TPR, or recall) of the algorithm heuristics against the collected validation

dataset (section 4.2.6). The AS relationships dataset consists of 126,082 links of which

43,613 (34.6%) were validated. Table 4.2 shows the PPV of inferences made at each

step of the algorithm. Most relationship inferences are made in steps 5 (56.4%) and 11

(37.7%), and both of these stages have excellent PPV (99.8% and 98.7% respectively).

Table 4.3 compares the PPV of the inferences and those made by four other pop-

ular inference algorithms for April 2012 BGP paths. The algorithm correctly infers

99.6% of c2p relationships and 98.7% of p2p relationships. Unfortunately the authors
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of SARK [191], CSP [160], and ND-ToR [197] did not respond to requests for the

source code for their algorithm, or for a set of relationships inferred from April 2012

BGP paths. Gao’s PPV for p2p relationships is the highest of the algorithms tested

because it makes the fewest number of p2p inferences of all the algorithms, inferring

many more c2p relationships than exist in the graph. The algorithm that performs clos-

est is UCLA’s; however, the improvements of the present algorithm result in six times

fewer false peering inferences. I assembled additional historical validation datasets

by extracting relationships from archives of the RIPE WHOIS database (RPSL, sec-

tion 4.2.4) and public BGP repositories (BGP communities, section 4.2.5) at six month

intervals between February 2006 and April 2012. The validation performance of Gao,

UCLA, and CAIDA algorithms are quantitatively similar as shown in table 4.3.

I investigate the types of errors that these four algorithms produce, focusing on

the two cases with significant occurrence: where the algorithm correctly infers c2p

(p2p), but another algorithm mistakenly infers p2p (c2p). It should be noted that when

the ground truth is p2p, Gao often infers the link as c2p, usually with the customer

having a smaller degree than the provider. On the other hand, UCLA and Isolario

produce errors where a p2p link is inferred to be c2p, often with the customer having a

larger degree than the provider. The UCLA algorithm often infers c2p links to be p2p

because it uses the visibility of a link from tier-1 VPs to draw inferences, and defaults

to a p2p inference for links it cannot see (see section 3.5.1). Although a variant of this

visibility heuristic used in the present algorithm, additional heuristics are also applied

to accommodate for phenomena that inhibit visibility through tier-1 VPs, e.g., traffic

engineering, selective announcements.

I compared the inferences with 82 partial transit relationships that were flagged by

a community string. The algorithm correctly inferred 69 (84%) of them as p2c; 66 p2c

inferences where made in step 10. In comparison, UCLA’s dataset identified only 13

(16%) of the partial transit relationships as p2c. I also compared the inferences against

a small set of 27 backup p2c relationships, of which only 2 were correctly identified

as p2c. Validation data for partial and backup transit relationships is scarce because of

their rarity and their limited visibility.

It is well-known that the public view misses a large number of peering links [28,

105]. While inferences can be made only for visible links, an important question is
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whether the accuracy is affected by a lack of (or increasing) visibility. To understand

this question, the following experiment was performed 10 times. Paths are selected

from a random set of 25% of VPs, and successively more VPs are added to obtain

topologies seen from 50%, 75% and all VPs. Then, the PPV of the inferences is cal-

culated for each topology subset. The results show that the PPV of c2p inferences was

consistently between 99.4% and 99.7% on all topology subsets. The PPV of p2p links

varied between 94.6% and 97.7% with 25% of VPs, and 97.2% and 98.4% with 50% of

VPs, indicating that the algorithm performs better when it has more data (VPs) avail-

able. Consequently, if the visibility of the AS topology increases in the future (e.g., due

to new VPs at IXPs), the accuracy of the algorithm at inferring the newly visible links

should not be affected.

4.4 Applications of AS Relationships

4.4.1 Assessing the market power of ASes

The customer cone is defined as the ASes that a given AS can reach using a cus-

tomer (p2c) link, as well as customers of those customers (indirect customers) [76]. An

AS is likely to select a path advertised by a customer (if available) over paths adver-

tised by peers and providers because the AS is paid for forwarding the traffic. The most

profitable traffic for an AS is traffic forwarded between customers, as the AS is paid by

both.

The customer cone is a metric of influence, but not necessarily of market power.

Market power requires the ability to restrict the mobility of customers; in general, an

AS can enter into a provider relationship with whoever offers a suitable service. For

large transit providers, particularly those in the clique where a full p2p mesh is required

for global connectivity, the customer cone defines the set of ASes whose service might

be disrupted if the AS were to have operational difficulty.

Due to ambiguities inherent in BGP data analysis, there are multiple methods to

infer the customer cone of a given AS. This section will use the Provider/Peer Observed

(PPO) customer cone which was found not to over-estimate the size of the customer

cone and to be the least sensitive to complex agreements [146]. The PPO customer

cone of an AS A is computed using routes observed from providers and peers of A, and

not recursively as first defined in [76].
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Figure 4.9: The size of the customer cones for the seven ASes that were among the three largest
ASes between Jan. 1998 and Aug. 2013. The three largest ASes in Jan. 1998 (701,
1239, and 3561) are no longer in the top three.
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Figure 4.10: Relative size of provider/peer observed cone over time. 701 acquired part of 3561
in 1999 and moved customers across.

Figure 4.9 plots the seven ASes that ranked in the top three ASes by provider/peer

observed customer cone size at any point from January 1998. Several interesting trends

can be observed with just these seven ASes. First, the three ASes ranked in the top

three for January 1998 (ASes 701, 1239, and 3561) are no longer in the top three. In

absolute terms, the customer cone of 701 decreased in size between January 2002 and

October 2012. The customer cone of 3356 reflects two other interesting events: (1) in

early 2003, AS1 (Genuity/BBN) merged with 3356 to create the third largest network

at the time, and (2) in late 2010, 3549 (the second largest AS by customer cone) was

purchased by Level3 (the largest AS by customer cone). 3549’s customer cone has

since shrunk as new customers connect to 3356 and some of 3549’s customers moved

across.

Figure 4.10 plots the customer cone sizes for the same seven ASes, but as a fraction

of the topology size: (1) ASes 701, 1239, and 3561 all had the same customer cone size
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Figure 4.11: Fraction of ASes in X’s customer cone that were reached via X from an AS in
X’s customer cone over time. Most ASes show a decline in the fraction of cone-
internal paths.

in January 1998, (2) some customers of 3561 (MCI) shifted into 701 (Worldcom) due

to the MCI-Worldcom merger in 1998, (3) 1239 held a third of the ASes in its customer

cone for ten years until 2008, and (4) while 3356 had the largest customer cone in

2012, its relative cone size, i.e., as a fraction of the entire AS topology, was slightly

smaller than AS701’s was in January 2000. This last fact reflects massive growth in the

Internet’s AS topology since 2000, in addition to the consolidation undertaken by both

ASes, yielding the largest customer cones of the two respective decades.

Since most companies providing Internet transit are by now also in other lines

of business and do not report financial information specific to their transit business, it

is not possible to correlate BGP consolidation with financial performance. But of the

three ASes whose relative customer cone sizes have plummeted in the last decade (701,

1239, 3561), two of them (Verizon and Sprint) have moved into more profitable cellular

service.

4.4.2 Topology Flattening

The introduction of CDNs and richer peering has resulted in a flattening of the

Internet topology [99, 140] where ASes avoid sending traffic via transit providers. An

intriguing question is how valid is the customer cone in a flattened Internet topology?

How many paths still travel to the top of a given cone to reach destinations?

While public BGP data contains a small fraction of all peering links [28, 105] it

is possible study shifts in routing behaviour from the paths of individual VPs because

they reveal the peering links they use. For each VP that provides a full view to RV or

RIS and is also in X’s customer cone, the fraction of cone-internal paths, i.e., fraction
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of paths from that VP that transit X (the cone’s top provider) when reaching another

AS in X’s cone which is not also in the customer cone of the VP can provide a metric

of measuring the flattening. Figure 4.11 shows the five-month moving average of this

fraction for the seven ASes once they have at least 1000 ASes in their cone. Five of

these networks show a steady decline in the fraction of cone-internal paths.

The AS relationship inferences also shed light on the continually increasing rich-

ness of peering in the Internet. As the number of full VPs has increased an order of

magnitude since 2000 (from 12 to 125 in October 2012), the number of p2p links ob-

servable from these VPs jumped by two orders of magnitude (from about 1K to 52K),

fraction of the entire graph from 10% (in 2000) to 38%. (even after the number of

full VPs stabilized in 2008). This increase in peering (flattening) was not observed by

individual VPs, most (75%) of which experienced almost no change in the fraction of

links inferred as p2p. Instead, the increase in relative presence of p2p links in the graph

is due to individual VPs seeing more unique p2p links.

4.5 Summary
This section presented, and validated to an unprecedented level, a new algorithm

for inferring AS relationships using publicly available BGP data. The algorithm toler-

ates prevalent phenomena that previous algorithms did not handle. I validated 34.6%

of the relationship inferences, finding the c2p and p2p inferences to be 99.6% and

98.7% accurate, respectively. Since even different sources of the validation data dis-

agree by 1%, the algorithm reaches the limit of accuracy achievable with available data.

The validation data set (excluding the feedback from operators) and the inferred re-

lationships are publicly available at http://www.caida.org/publications/

papers/2013/asrank/

Analysis of the Internet at the AS granularity is inherently challenged by measure-

ment and inference in a dynamic complex network. A known concern is that public

views of the AS topology capture only a fraction of the p2p ecosystem, since so few

ASes share their full view of the Internet with BGP data repositories. Another challenge

is the variety of complex peering relationships that exist. The next chapter explains how

to infer such relationships by adapting this algorithm and by incorporating additional

data from the control and data plane.

http://www.caida.org/publications/papers/2013/asrank/
http://www.caida.org/publications/papers/2013/asrank/
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The accurate inferences shed new light on the flattening Internet topology, reveal-

ing a decline in the fraction of observed paths traversing top-level (clique) ASes from

2002 (over 80%) bottoming out in 2006 (just above 60%), followed by a slow rise

back to 77% today, perhaps as these clique ASes adjust their peering strategies to try to

recover some transit revenue.



Chapter 5

Inference of Complex Relationships

The traditional approach of modelling business relationships between ASes ab-

stracts relationship types into three broad categories: transit, peering, and sibling. More

complicated configurations exist, and understanding them would advance our knowl-

edge of Internet economics as well as routing, but inferring them and validating the

inferences with ground truth data is challenging. This chapter extends the conventional

AS relationship inference algorithm to infer relationships that are complex in two di-

mensions: prefix granularity (relationships that differ across prefixes), and geography

(relationships that differ across regions). Using this new algorithm, I find that 4.5% of

the 90,272 provider-customer relationships I inferred for March 2014 were complex,

including 1,071 hybrid AS relationships and 2,955 partial-transit relationships. I used

two types of data to validate my inferences with 94.9% accuracy: feedback from op-

erators and BGP communities. Using data from BGP and traceroute, I found that only

25% of the inferred hybrid relationships are established between different continents

among large transit providers, while the majority of hybrid and partial transit relation-

ships involve medium-sized European ISPs.

5.1 Introduction
The abstraction of AS relationships to three classes (and sometimes only the first

two are used) provider-customer (p2c), peering (p2p) and sibling (s2), facilitates the

development of inference heuristics at the cost of having a coarse-grained classification

that may not accurately represent the actual relationship agreements.

This oversimplification ignores more complex relationships and may introduce

artifacts into the study of inter-domain routing [179], such as spurious relationship
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Figure 5.1: These graphs show how A’s export policy to B changes based on A relationship to
B, with the filled nodes exported to B.

cycles [78], artificial policy violations [173, 155], and generally inaccurate AS path

inference [153, 70]. These problems have inspired the development of a relationship-

agnostic AS topology model as an alternative [159, 160].

Specifically, AS relationships can vary in three dimensions: over time, over ge-

ographic region or by individual prefix. Inferring complex relationships requires in-

ferring relationships at finer granularities, which imposes significant measurement and

computational requirements, as well as the challenge of distinguishing the observable

effects of complex relationships from the observable effects of traffic engineering poli-

cies [146].

Highlighting the challenge, a recent attempt to infer complex relationships by

analysing policy anomalies at Points-of-Presence (PoPs) revealed only a single hy-

brid relationship [163]. As a result complex AS relationships remain obscure and the

ability to infer them has been recently described as the holy-grail of relationship in-

ference [163]. In a similar vein, Dimitropoulos et al. characterized the inference of

complex relationships as a formidable task and hypothesized that that it requires direct

access to the BGP configuration of border routers [76]

In this section I present a new algorithm to infer the two most common types of

complex AS relationships: hybrid peering (or dual peering/transit [82]) relationships,

which differ by interconnection location; and partial transit (or regional [83]) rela-

tionships, which restrict the scope of a provider-customer relationship to the provider’s

peers and customers (but not providers) [82, 83, 76, 88, 146].

These complex relationships can be defined as special cases of the traditional tran-

sit and peering types, which allows us to leverage the relationship inference algorithm



5.2. Background 111

presented in section 4 instead of designing an entirely new algorithm. To achieve a

more fine-grained relationship inference the algorithm combines passive BGP mea-

surements, active measurements, and geolocation data. For March 2014 I inferred 1K

hybrid relationships and 3K partial transit and regional transit relationships, used by

not only tier-1 and tier-2 ASes, but also middle-sized multi-national European ISPs.

The data also reveals how IXPs are driving the evolution of complex relationships as

they alter the traditional symmetry of traffic flow between peering ASes. I use feed-

back from operators and BGP community information to validate to 94.9% accuracy

the inferred complex relationships.

5.2 Background
As we have seen in the previous sections, to enable the development of inference

heuristics an abstraction of AS relationships is required. Gao’s seminal work [97] pro-

posed a classification into three abstract relationship types: provider-to-customer (p2c)

or transit relationship, peer-to-peer (p2p) relationship, and sibling-to-sibling (s2s) re-

lationship.

Although the above classification captures the majority of AS interconnections,

more complicated relationships can also exist. Norton lists two additional types of in-

terconnections, dual peering/transit and partial transit, which happen predominantly

in Europe [82, 83]. Hybrid relationships arise when two ASes agree to different rela-

tionship types at different inter-connection points. In the partial transit scenario (also

defined as regional) a provider sells, for a discounted price, transit access to its cus-

tomers and peers but not to its providers. Faratin et al. suggested that the AS re-

lationships become increasingly complex because the growth of Content Distribution

Networks (CDNs) and eyeball networks change the perceptions of symmetry in traffic

delivery costs [88]. A survey by Dimitropoulos et al. [76], among AS administrators

on the types of complex configurations, confirmed the existence of relationships that

vary across different peering points and different prefixes.

Relationship abstractions coarser than the hybrid granularity may lead to artifacts

in the study of inter-domain routing, such as spurious relationship cycles [78] or arti-

ficial policy violations [173, 155]. Mao et al. concluded that the existence of complex

relationship types may be partly responsible for the inability to accurately infer AS-
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level paths [153]. Similar conclusion has also been reached by the authors of [70].

Mühlbauer et al. proposed a relationship-agnostic AS topology model to capture the

complex BGP policies that cannot be modelled based on the simple relationship ab-

straction [159, 160].

Unfortunately data on hybrid and partial transit relationships are very limited.

Fine-grained relationship inference across two dimensions, prefixes and geography,

imposes significant measurement and computational requirements that inhibited the

development of appropriate algorithms [76]. On the other hand, inference at coarser

granularity does not allow to distinguish complex relationships from traffic engineer-

ing policies that produce similar routing behavior [146].

Neudorfer et al. proposed a method to analyse the policy violations at different

Points-of-Presence (PoPs) to enable the inference of complex relationship types [163].

However, they were only able to manually identify a single hybrid relationship which

highlights the difficulties involved in the inference of complex relationships.

5.3 Data Sources
I combine three different data sources, to support per-prefix routing inferences at

the Point of Presence (PoP) level of the AS connectivity1: BGP data, active measure-

ment, and geolocation data

5.3.1 BGP measurements

I obtained per-prefix routing information from BGP table snapshots from Route-

Views (RV) [21] and RIPE RIS [16], which collect BGP routing information by peering

with globally distributed ASes (vantage points). Each BGP table snapshot provides an

AS-level view of the Internet as seen by the corresponding vantage point (VP). For

each RV and RIS collector I downloaded one RIB every five days for the first three

months (January-March) of 2014. I extracted three attributes from each BGP entry, the

AS Path, the Network Prefix and the Communities string. I discard AS paths that ex-

hibit symptoms of misconfigurations or poisoning [146], e.g., loops, unassigned ASes,

and non-adjacent Tier-1 ASes. I also discard prefixes longer than /24, which are com-

monly blackholed.

1A PoP is a physical location where ASes interconnect.
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Figure 5.2: Geographical distribution of Ark nodes and traceroute servers used.

I use path and prefix attributes to identify candidate hybrid links that guide tracer-

oute probing (Section 5.3.2). I use the Communities attribute to obtain additional in-

formation on collected paths. In total I used interpreted 6,001 Community values from

312 different ASes, that encode three types of information: geographic location of in-

terconnection point (1,533 values from 117 ASes), route redistribution policies (2,966

values from 40 ASes), and type of relationship (1502 values from 281 ASes).

5.3.2 Active Measurements

To derive the geographical footprint of AS links, I aggregate interface-level paths

derived from traceroute measurements. These paths are then processed to infer the PoP-

level AS connectivity. I use two sources of active measurement data: CAIDA’s IPv4

Routed /24 Topology Dataset March, 2014 [131] gathered by the Archipelago (Ark) [4]

measurement infrastructure, and coordinated probing from thousands of public tracer-

oute servers.

Archipelago supports continual Paris traceroute measurements from 94 monitors

in 84 different ASes distributed in 39 different countries, probing to one random IP

address in each /24 of the entire routed IPv4 space approximately every three days. To

expand coverage beyond what these existing measurements capture, I develop an over-

lay interface to interact with 2,509 public traceroute hosts among 507 different ASes

in 77 different countries. To avoid being blocked by traceroute servers for too frequent



5.3. Data Sources 114

path prefix community
4589 4436 20940 16625 23.211.232.0/23 4436:41718
4436 20940 72.246.99.0/24 4436:22220
4436 20940 72.246.99.0/24 4436:22122

Table 5.1: Paths tagged with geographic communities.

probing, I limit probing through this interface to one query every 10 seconds per host.

Thus these measurements are carefully coordinated (using BGP data to inform target

selection) to capture links and prefixes most likely to reveal complex relationships.

Figure 5.2 shows the geographical distribution of traceroute hosts I use for my active

measurements.

5.3.3 Geolocation data

To differentiate paths by geographic location, I use three sources of data, in order

of preference: published BGP community information, strings founds in DNS host-

names, and a commercial database (NetAcuity).

Some ASes use geographic communities to indicate the ingress location of routes

entering their network. Table 5.1 depicts two paths tagged with geographic communi-

ties. The first 16 bits of a 32-bit community value encode the AS that sets the com-

munity value; the second 16 bits encode a geographic location. For example, AS 4436

labels routes received in Los Angeles, Amsterdam, and London with community val-

ues 4436:41718, 4436:22220, and 4436:22122, respectively. This convention allows

us to map community values to links in the AS paths and infer the entry point for the

corresponding prefixes.

I use two data sources to map IP addresses to geographic locations: DRoP and Ne-

tacuity. DRoP is a constraint-based geolocation system developed by CAIDA [127] that

depends on the IP address having a hostname containing a known geographically mean-

ingful string such as an airport code (e.g., lax in dc-lax-peer1–lax-core1-ge.cenic.net)

but then uses active measurements to validate whether the location inferred from the

DNS string is consistent with RTT and TTL measurements taken from 66 monitors.

If DRoP reveals no clear location, I use Netacuity [13], a commercial geolocation

provider, to map the IP address to a geographic location. NetAcuity provides more

coverage than the other methods, but it is optimized to accurately infer edge hosts

(servers and end users) rather than router infrastructure IP addresses.
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Figure 5.3: The process for inferring the hybrid and partial AS relationships.

5.4 Inference Methodology
I implement the method for inferring hybrid and partial transit relationships as an

extension to existing relationship inference algorithm [146]. I first derive a base set of

simple relationships between AS pairs that we will use in later steps. Figure 5.3 shows

the entire inference process which this section explains in detail.

5.4.1 Classify AS link per Prefix Export Policies

In this section I will classify each p2c link as either: a conventional provider-

customer , partial transit, or candidate hybrid relationship. First I infer the export

policy for each p2c link by examining each prefix and the set of AS paths leading to

them every five days throughout March 2014. I focus on p2c links because the baseline

algorithm [146] always infers the transit part of a hybrid relationship.

For each prefix, I annotate each of its AS path links with its simple relationship

inferred by the baseline algorithm. I discard AS paths that break the valley-free pol-

icy [146] and split the remaining paths into AS triplets. I iterate through the list triplets

and tag the cp2 links according to the following criteria. If both links on the triplet are

p2c, I tag the prefix as full transit for the link with its provider AS in the middle of the

triplet regardless of its current tag, A→B→C or A←B←C. If the triplet contains a p2c

link and a peer link, and the prefix has not yet been taged as full transit for the p2c link,

A–B→C or A←B–C, I tag the prefix as partial transit for the p2c link. If a prefix has

never been tagged for any p2c link in the triplet, I tag the prefix as peering for that p2c
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Figure 5.4: Hybrid relationship between ASes A and B. In PoP0, A is a provider of B, while
in PoP1 they are peers. A’s export policy depends on the relationship type at each
PoP .

link.

If I found no transit prefixes for a link, it was likely mis-inferred as p2c and is

discarded. If all prefixes crossing a link are tagged as full transit, then the link is left

as a conventional provider-customer relationship. If all the prefixes crossing a link

are tagged as partial transit, the the link is classified as partial transit. If a link has

a mixture of full transit and partial transit or has any peering prefixes, I tag it as a

candidate hybrid and classify it in section 5.5.

Since this methodology requires the AS to have provider links, I am currently not

able to infer complicated links among the ASes that are members of the Tier-1 clique.

At the end of this process, I infer 2,955 partial transit and 6,682 candidate hybrid links.

5.5 Hybrid Relationships
Hybrid relationships differ by region. Figure 5.4 illustrates a hybrid relationship

between ASes A and B. Assuming that B follows a valley-free export policy, it will

export prefixes A0 and A1 differently at each location. B will export prefixes A0 re-

ceived in PoP0 to its customers, providers and peers because it provides But B will

export prefixes A1 it receives at PoP1 only toward A’s customers. PoP-specific export

policies will be observed only for B. If A also follows the valley-free policy it will ex-

port prefixes received by B only to its customers irrespective of the PoP. This example

illustrates how I infer a hybrid relationship by associating different export patterns with
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community DRoP Netacuity
num.
links 2,305 36.7% 2,931 46.7% 1,046 16.6%

Table 5.2: The number of links which were geolocated by each system. The systems are at-
tempted in order: community, DRoP, and Netacuity.

a0 a1 b0

a0 a1 b0

border
internal

PoP3

IP address x3

A BB

A A B

router

link

PoP1

x3

X owned by X
in region 3

PoP1

Figure 5.5: Regardless of which two routers form the interdomain link, interface a1 is always
part of the pair forming the interdomain link and so will be located in the same
region.

different interconnections points (PoPs).

5.5.1 Geolocation of Ingress Points

Different export policies for different prefixes is an indication of hybrid relation-

ships, but it may also reflect traffic engineering practices that restrict the scope of route

advertisements. To distinguish between hybrid relationships and traffic engineering,

my technique relies on the ability to differentiate paths based on geographic locations.

To do so I attempt to geolocate to a city the ingress point of each prefix seen crossing

a candidate hybrid link. Geographic locations can be expressed in different levels of

granularity, from continent to street address. I choose city as the level of geolocation

granularity because it offers the best trade-off between geolocation accuracy and level

of detail. It is part of the future work to try to distinguish PoPs in the same city [68]

to improve the geolocation accuracy. For each candidate hybrid link’s prefixes I search

for a BGP community that stores a geographic hint, which is the most trusted source

of data and also minimizes the workload we impose on public traceroute servers. This

first step resolves 36.7% of links.

For each remaining prefix I try to find a traceroute to the prefix across its candidate

hybrid link in Ark traces. I map the IP path each Ark trace with a destination in the

targeted prefix to an AS path, using the longest matching prefix in the original BGP

table. If the resulting AS path contains the candidate hybrid link, I geolocate the IP

address just before the AS changed, first by hostname string and then by Netacuity.
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Although it is easy to identify the point where the AS changes, identifying the

interdomain link is more difficult, since changing the position of the interconnect link

does not affect the observed order of the IP addresses. Consider the observed IP path a0

a1 b0 in figure 5.5: changing the interdomain link from a0–a1 to a1–b0 has no effect on

the IP path. That is, although it is not clear whether the interdomain link was just before

or after the AS changed in the path, it does not matter for geolocation. The IP address

just before the change will be on one of the two routers connected to the interdomain

link (figure 5.5) and so will be in the same location as the target link.

For the set of prefixes for which I find no usable Ark trace, I coordinate a dis-

tributed traceroute campaign among the public traceroute servers. I first determine

which monitors might targeted prefixes through the candidate link, depending on their

relationship to the provider of the candidate link. We divide the available vantage points

into three sets.

The first set includes traceroute hosts under the customer cone of the provider of

the candidate link, which may be able to reach any of the targeted prefixes through the

candidate hybrid link. I name this group our full-visibility team of vantage points for

the specific link.

The second group of vantage points includes only traceroute hosts that reside in

ASes that peer with the provider of the candidate link, or in ASes under whose customer

cone the provider belongs. I consider traceroutes from these hosts able to reach prefixes

tagged as either full transit or partial transit through the candidate hybrid link, but not

prefixes tagged as peering, since it would violate the valley-free rule. I group these

hosts into the limited-visibility vantage points.

The third group of vantage points includes those monitors that, according to the

valley-free rule, should not be able to reach any of the targeted prefixes; I consider

these as the zero-visibility host group, and subsequently do not use them to probe the

particular candidate link.

Considering the example in Figure 5.4, a vantage point inside AS E would belong

to the full-visibility set. A vantage point inside AS C or AS D would belong to the

limited-visibility set, while a vantage point in a provider of D would belong to the

zero-visibility set. 93 of the treceroute monitors are in zero-visibility set for all of the

candidate hybrid links; I do not use these monitors for my active measurements. Note
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Figure 5.6: CDF of the number of traceroute vantage points for each candidate hybrid link per
type of visibility. For 3% of the candidate hybrid links we have no full-visibility
vantage point. For 85% of the candidate links we can distribute probing across
more than 10 full- and limited- visibility vantage points.

that having a traceroute host in the full- or limited-visibility groups does not necessarily

mean that paths originating from this host will cross the target prefixes, only that it

could.

Completely measuring the PoP-level connectivity for a candidate hybrid link re-

quires at least one vantage point of full visibility that reaches the target prefixes through

the candidate link. Figure 5.6 shows that for 97% of the candidate hybrid links there

is at least one traceroute monitor of full-visibility, and for 85% of the of the links there

are more than 10 full-visibility monitors. For 462 of the 6,682 candidate hybrid links,

we could not identify ingress points due to lack of both full-visibility vantage points

and geographic communities.

After classifying vantage points I randomly select an IP address from each tar-

get prefix and distribute probing to it across vantage points. I sanitize the collected

paths to remove incongruities. If a path contains loops, unresponsive or unresolved IP

interfaces before or after the candidate link, I retain only the portion of the path that

includes the candidate hybrid link. If an unresponsive interface lies between the ASes

of the candidate hybrid link (e.g. “B1B2 ∗ A1A2”), I discard the path. If an unresolved

interface lies between the ASes of the candidate hybrid link (e.g. “B1B2?A1A2”), I use

the PeeringDB’s reverse DNS scan [14] to determine if it belongs to an IXP. If it does,

I use the location of the IXP as the interconnection point, otherwise I discard the path.

After path sanitation, I have an IP address associated with the each AS link, fig-

ure 5.5. I first try to map this IP address to a hostname, so I can use the DNS string
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Figure 5.7: Number of customers for each AS involved in the inferred hybrid relationships.

rules to geolocate it; this step gave me locations for for an additional 46.7% of links.

I resolved the remaining 16.6% of links by mapping their border IP address using the

NetAcuity geolocation database.

Before doing the final AS link classification, I need to classify each of its PoPs,

with the export policies observed across the link at that PoP. For each PoP, I examine the

tagged prefixes that cross it using the same logic we used when we tagged its prefixes.

If at least one full transit prefix crosses the PoP then it is added to the link’s full transit

PoP set. If no full transit prefix crosses the PoP, but at least one partial transit prefix

crosses the PoP then we add that prefix to the link’s partial transit set. If no transit

type prefix crosses the PoP, but at least one peering prefixes does, I add that prefix to

the link’s peering set. If all the PoPs end up in the same type of set, I classify the link

as that type. Note that it is impossible for a link to only have peering PoPs, since links

with only peering prefixes are discarded. The remaining links we label as some type of

hybrid, based on the combination of sets with PoPs (full/partial, full/peering, etc).

5.5.2 Results

Of the 90,272 provider-customer relationships inferred for March 2014, I infer

4,026 of these relationships as complex, including 1,071 hybrid AS relationships and

2,955 partial-transit relationships. Therefore, 4.5% of all the transit relationships in-

ferred were are either hybrid or partial-transit. The inferred hybrid relationships in-

clude 969 full-transit/peering relationships, 72 partial-transit/peering relationships and

30 full-/partial-transit relationships. In four cases I encountered hybrid relationships

with three relationship types across different PoPs (full-transit, partial-transit, and peer-
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Hybrid Partial
TP FP FN TP FP FN

Direct feedback 33 2 1 2 0 0
Communities 124 10 4 158 5 0
RPSL 45 - - 38 - -

Table 5.3: Validation results, showing true positives (TP), false positives (FP), and false neg-
atives (FN). My algorithm has a 94.9% positive predictive value using direct and
communities data.

ing).

The results indicate that hybrid relationships not only between large transit

providers, but often between smaller ASes. Figure 5.7 plots the CDF of the number

of customers (customer degree) for ASes involved in each hybrid link. In 25% of the

hybrid peering relationships, the smaller AS of the relationship has fewer than 10 cus-

tomers. The many hybrid links at the edge of the AS graph are mainly due to the

prevalence of IXPs in Europe, which enables small ASes to achieve multinational pres-

ence within Europe and manage different relationship types for different countries. For

61.5% of the inferred hybrid links, the peering relationship crosses a European IXP.

Moreover, a common practice among European IXPs is to mutually exchange routes,

which further increases the density of international peering. I found that 12% of the

intra-European hybrid relationships cross two interconnected IXPs.

The prevalence of IXP peerings within Europe also leads to the many observed

partial-transit relationships. According to my findings, 88% of the inferred partial tran-

sit links are established between European ASes making partial-transit an interconnec-

tion practice which is almost exclusive in Europe. However, the number of customers

does not necessarily indicate a network’s size. For instance, I inferred 21 hybrid rela-

tionships that involve Akamai (AS 20940). Although Akamai has no customers it is

one of the top 10 networks in terms of interdomain traffic volume [140]. According

to self-reported network type in PeeringDB, 27% of the ASes involved in the inferred

hybrid links consider themselves to be heavy-outbound content providers.

5.5.3 Validation

I use three sources of validation data: direct e-mail feedback, BGP communities

that signal relationship type, and relationship types expressed in different Routing Pol-

icy Specification Language (RPSL) objects.
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Direct feedback: I obtained feedback from seven operators (of twelve contacted)

that previously contributed AS relationship corrections through CAIDA’s web inter-

face [146]. I sent each operator my inferences for their ASes and asked them to specify

if they were correct, and asked them if they were involved in other hybrid or partial-

transit relationships not included in my inferences.

BGP communities: I compiled a dictionary of 1,502 communities defined by

281 ASes, which I used to extract a set of 40,820 relationships for March 2014, as

explained in [146]. Relationship communities enable the implementation of sophis-

ticated routing policies, so operators have a strong incentive to configure community

values with correct relationship annotations [92]. I considered five types of relationship

communities: customer, partial-customer, peer, partial-provider, and provider. I used

the partial-customer and partial-provider communities to obtain validation data for par-

tial transit relationships. The algorithm captures hybrid relationships when it observes

that an AS tags different inbound prefixes from the same neighbour with different com-

munity values depending on the ingress PoP. To mitigate transient misconfigurations I

required that the same communities to be observed in all BGP snapshots I collected.

RPSL: I used RPSL objects to evaluate only true positives, since RPSL objects

are commonly expressed at a high level and in most cases do not encode complex

relationships.

Table 5.3 summarizes my validation results. Overall, I was able to confirm 202

hybrid relationships (19.4% of the total hybrid inferences), and 198 partial-transit rela-

tionships (6.7% of the total partial-transit inferences). For the validation datasets that

allowed us to test both true- and false-positives the algorithm had the correct inference

for 157/169 (92.8%) of the inferred hybrid relationships, and for 160/165 (97%) of

inferred the partial transit relationships. The algorithm failed to infer five hybrid re-

lationships present in my validation dataset. For four, both the transit and the peering

PoP were located in the same city, and my city-level geolocation granularity was too

coarse to identify the different PoPs.

5.5.4 Discussion

Despite the large number of complex relationships inferred, and positive valida-

tion, there are several limitations. I have not studied the time dimension of relation-
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ships, which would require periodic execution of the inference algorithm. I also do not

attempt to infer paid peering relationships because their routing behaviour is similar to

unpaid peering [146]. The only difference of paid peering is that one of the peers pays

to gain access to the other peer’s customers and own networks, while in the conven-

tional peering there is no cost involved for any of the two peers. However, in terms

of export and import policies paid peering appears to follow identical rules with con-

ventional peering. Therefore, paid peering follows a financial settlement similar to that

of a transit relationship (one AS pays another AS to gain access to parts of its routing

table), but the routing behaviour of a conventional peering relationship.

Generally, unconventional relationships can have arbitrary complexity that may

not be expressible in terms of relationship types, which is why focused on two most

common types of complex relationships according to operator feedback and the existing

literature.

A second limitation relates to the well-known AS topology incompleteness prob-

lem [179]. The algorithm can only infer hybrid links for which the peering component

is observable. To discover a hybrid transit/peering relationship the peering part should

be visible to the available vantages points, Finally, the algorithm depends on the accu-

racy of external data such as the inference of conventional AS relationships and geolo-

cation information. Errors in these data sources can corrupt my inference of complex

relationships. Fortunately, CAIDA’s AS relationship inference algorithm in [146] has

been extensively validated and was found to exceed 99% accuracy.

Via feedback with AS operators I found that three of the inferred hybrid links were

the result of misconfigurations, where the intended relationship was provider-customer.

One operator followed up with a request for a semi-live system to alert operators of

hybrid peering links, since they may be unintentional. Such misconfigurations are dif-

ficult to be detected because an accidental peering link does not cause violations of

the valley-free rule and does not lead to sudden peaks of traffic volumes, as it happens

when a peering or customer link is leaked as transit. The reported misconfigurations

happened because an operator forgot to shut down a peering session, and because some

IXP route server filters were not set properly to block the customer from receiving

peering routes.
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5.6 Summary
This chapter presented a new algorithm to infer the two most common types of

complex AS relationships: hybrid and partial transit. I combined passive and active

measurements along with geolocation data to achieve per-prefix relationship inference

at the granularity of PoP-level connectivity. I inferred 1,071 hybrid and 2,955 partial-

transit relationships for March 2014. I validated our inferences against a dataset of

417 AS relationships obtained through direct feedback from AS operators, and BGP

communities, and found our results to be 94.7% accurate. I believe this is the first partly

validated attempt to infer complex (fine-grained) AS relationships. My results reveal

that complex relationships are more prevalent in the periphery of the AS topology than

previously thought, while 61% of hybrid peering and 88% of partial transit relationships

are between European ASes that leverage the Europe’s extensive IXP ecosystem.



Chapter 6

Inference of Multilateral Peering

This section describes, implements, and validates a new method to reveal currently

invisible AS peerings using publicly available BGP data sources. My approach infers

peerings established over IXP-provided route servers. Most ASes at an IXP use a route

server to implement multilateral peering (MLP) and maximize their peering. MLP is

the prevalent peering paradigm in terms of number of p2p links [200, 57], therefore

unearthing those links is a critical step towards more complete AS topologies. The

default behaviour of route servers is to advertise all the routes they learn to all con-

nected peers, though many IXPs allow their members to control how their prefixes are

advertised by using a set of special-purpose BGP community values. I implement an

algorithm to mine these community values, extract the route server participants, and

infer their export policies. By combining BGP data from multiple sources I infer more

than 206K p2p links from 13 IXPs for May 2013, 88% of which are not visible in

publicly available BGP AS paths.

I validated 26K of these links using 70 publicly available looking glasses, finding

at least 98.4% exist. In particular, these new methods find most of the peering at DE-

CIX: 54K links. This IXP had more than 50K links in 2011 [28]. The peering not

found by the algorithm are established bilaterally across the IXP peering fabric; this is

a small fraction of the peering at the IXPs under study because my result for DE-CIX

are comparable to that in [28], and the ASes that engage in bilateral peering are more

likely to be selective or restrictive in their peering decisions, i.e. peer with a small

fraction of members at an IXP.

I also analyse revealing topological characteristics of the discovered links. No-

tably, 25K (12.4%) of the links are between two stub ASes, making them impossible
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to observe via BGP unless a vantage point is present in one. Similarly, 114K in my

set (55.6%) involve at least one stub, reinforcing Ager’s reports of dense peering con-

nectivity at the edge [28]. I show that while some ASes publicly advertise a restrictive

or selective peering policy, they engage in dense multilateral peering in selected geo-

graphical regions.

6.1 Introduction
Many findings in the AS topology research have been characterized as controver-

sial due to the widely documented incompleteness of the existing topology datasets

[59, 141, 65, 178, 58, 166]. The most widely-used data sources for compiling the AS

graph use BGP and/or traceroute data. The incompleteness problem derives from the

inability of these data sources to observe most p2p links due to policy restrictions im-

posed by operators that limit propagation of p2p links. The proliferation of Internet

eXchange Points (IXPs) to support cost-effective dense peering amplifies the gap be-

tween what exists and what can be observed. Researchers have proposed a number

of methods to find missing p2p links, such as more effective placement of vantage

points [209, 186, 109], aggressive deployment of traceroute monitors at edges of the

network [58, 184, 180], or combining different data sources including Internet Routing

Registries (IRRs) and looking glass servers [55, 206, 124, 36]. In 2012, Ager et al.

used sampled traffic (sFlow) data from a large European IXP to discover more peering

links at this single IXP than were previously believed to exist in the whole Internet [28].

BGP data is the most widely used source of AS topology data. Route collectors

operated by Route Views [21] and RIPE RIS [16] passively collect BGP messages and

provide public archives of routing tables and update messages. Routing tables and

update messages include an AS Path attribute which identifies the sequence of ASes

visited before the route was received, also known as the control path. The AS path is

the primary source of AS links and is generally considered a reliable source.

However, misconfiguration, route hijacks, and path poisoning may induce false

links [166, 179]. Other sources of BGP data include Looking Glass (LG) servers that

allow the remote execution of non-privileged BGP commands through a web interface

or remote login. In the general case LG servers do not allow full BGP table dumps,

and typically they are used in one-off queries and not periodic data collection due to
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RS2

Figure 6.1: Bilateral (a) vs Multilateral (b) peering for a full-mesh connection between six
ASes. Bilateral peering requires n · (n − 1)/2 BGP sessions, while multilateral
peering requires only c · n sessions with c route servers.

the high cost of performing prefix-specific queries.

A second popular source of topology information is IP-level paths collected

through globally distributed traceroute monitors. AS links can be inferred by map-

ping the collected IP addresses to ASNs. However, such mapping is a heuristic and can

produce considerable artifacts arising from IP addresses returned by routers in paths

that map to a third-party ASes [207].

A third source is the Internet Routing Registry (IRR), a publicly accessible

database where AS administrators voluntarily and manually register adjacency and pol-

icy information. IRR data are frequently inaccurate, incomplete or intentionally false,

although certain databases - notably RIPE - are more reliable. It has been shown that

with the proper filtering techniques the IRR can provide a useful source of topology

data [187, 42]. Other topology data sources exist, e.g. syslogs, but they are usually

proprietary and not available to the research community.

6.2 Multilateral Peering
An increasing number of IXPs offer two interconnection paradigms, bilateral and

multilateral peering, both of which are illustrated in figure 6.1. Bilateral agreements

require establishing a new BGP session for every peering, which scales poorly at IXPs

that mostly have participants with open peering policies who wish to maximize their

peering. For IXPs with more than 50K reported peerings [28], managing a separate

BGP session for each peer would involve considerable overhead. MLP offers a scalable

way to support such dense peering; participants connect with one or more route servers

which reflect routes learned from one participant to other participants. Further, some
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Figure 6.2: Controlling route advertisements in a route server using BGP communities. In (a),
X advertises a route to two selected peers, while in (b) X advertises to all peers
except two.

ASes will not enter into bilateral peering unless traffic requirements are met, but will

advertise routes to a route server so that smaller ASes can reach them directly. The

most notable example is Google, whose peering policy requires at least 100Mbps peak

traffic to establish bilateral peering; they invite networks with less than 100Mbps traffic

to peer with them via route servers [8]. Although connection to route servers is optional,

a large percentage of IXPs’ members opt in. For example, about 77% of the members

of the two largest IXPs (DE-CIX and AMS-IX) are connected to the route servers. For

the rest of this chapter I will use the term RS members to refer to route server members.

By default, routes sent to a route server are advertised to all RS members. How-

ever, members can control which networks receive their routes through the route server.

Filtering mechanisms are essential for IXP participants because even ASes with very

open routing policy may not wish to peer with everybody at a given IXP. There are sev-

eral techniques to implement policy filters, but the most popular practice is through the

use of BGP communities, an optional 32-bit BGP attribute used to encode additional

information on a BGP route [125]. The values of BGP communities are not standard-

ized, but IXPs clearly document the usage of their community values in IRR records or

support pages. There are four common community types among all the IXPs I studied

that define the following actions:

• ALL: routes are announce to all RS members. This is the default behavior.

• EXCLUDE: block an announcement toward a specific member. This action can

be used in combination with the ALL community to exclude specific RS mem-
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DE-CIX MSK-IX ECIX

RS-ASN 6695 8631 9033
ALL 6695:6695 8631:8631 9033:9033
EXCLUDE 0:peer-asn 0:peer-asn 64960:peer-asn
NONE 0:6695 0:8631 65000:0
INCLUDE 6695:peer-asn 8631:peer-asn 65000:peer-asn

Table 6.1: Examples of patterns of community values for controlling announcements by a route
server. Typically, members use ALL+EXCLUDE or NONE+INCLUDE to control
announcements.

bers from receiving a route.

• NONE: Block an announcement toward all RS members. When a community

type signals this action, no member receives the route unless they are listed with

an INCLUDE community.

• INCLUDE: Allow an announcement toward a specific member. This action can

be used in combination with the NONE community to allow only specific RS

members to receive a route.

Table 6.1 shows some examples of community values for different IXPs. The

peer-asn corresponds to the ASN of the RS member that will be included or ex-

cluded from receiving an advertisement. In this chapter I label route server community

values RS communities. Because the peer-asn part of a community value is 16 bits

wide, it is not possible to directly encode 32-bit ASNs. Many IXP operators map the

32-bit ASNs of their members to 16-bit ASNs in the private ASN range to enable fil-

tering of 32-bit ASNs.

Figure 6.2 illustrates how operators use RS communities to control the announce-

ment of routes by a route server, with rs-asn 6695. Figure 6.2a shows an example of

the NONE+INCLUDE scenario listed in table 6.1. A route tagged with communities

0:6695 6695:8359 6695:8447 is advertised by the route server to ASes 8359

and 8447 only. Figure 6.2b shows an example of the ALL+EXCLUDE scenario. A

route tagged with communities 6695:6695 0:5410 0:8732 is advertised to all

members except ASes 5410 and 8732. Therefore, two ASes can peer via a route server

if two requirements are satisfied: connectivity and reachability. Connectivity is enabled

by establishing a session with the route server. Reachability is enabled by configuring
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Figure 6.3: Inferring peering links over a route server using RS communities. The communities
sent to the route server are shown in (a) while (b) shows the links that result. C’s
routes are received by A, but C blocks A from receiving its routes, so I do not infer
a p2p link between A and C.

outbound filters using RS communities (when communities are used for advertisement

control) and inbound AS-PATH filters.

6.3 Link Inference Algorithm

The discovery of IXP links is key to obtaining complete AS topologies. In this

chapter, I explore how to discover IXP links on a regular basis, at low cost, with public

or reproducible measurements. This section presents a framework for the inference of

invisible IXP peering links through public BGP data. The key idea behind my method-

ology is that by obtaining both connectivity and reachability data via IXP infrastructure,

it is possible to infer the peering links established with a route server without having to

observe them in a BGP or traceroute path.

Connectivity data, namely which ASes are connected to a given route server, can

be obtained from three sources of data: (i) looking glass (LG) servers that provide

an interface to route servers, (ii) RPSL AS-SETs registered in IRRs by AS operators,

and (iii) IXP websites that list connected networks. Information obtained from LGs

is the most reliable as it explicitly reports the status of the route server routing table,

although previous studies (and my own analysis) have found the other two sources to

be accurate and current [124, 36]. Reachability data (RS community strings in route

advertisements) can be extracted from public BGP data sources; these include passive

BGP measurements (e.g. Route Views and RIS repositories) and active BGP queries of

available IXP LG servers.

Before I describe the link inference methodology in detail I first illustrate an ex-
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ample in figure 6.3 to explain the logic behind my algorithm. In figure 6.3 ASes A,

B, C and D are connected to an IXP route server operated by ASN 6695. Each of

these ASes advertises routes tagged with a set of RS community values. According

to these RS communities, all ASes will receive each others’ routes except C which is

excluded by A. To infer peering links over the route server it is also required to know

the import filters because an AS may filter some routes received. However, data on the

import filters of all RS members are not available; I overcome this limitation by making

the following reciprocity assumption: If an RS member i does not exclude another RS

member j from receiving its prefix advertisements, i will also not block the incoming

advertisements from j. Hence, a p2p link between two RS members is inferred if they

have a reciprocal ALLOW export policy. In figure 6.3 (b) only A and C do not have

a p2p link. In section 6.3.4 I validate the correctness of this reciprocity assumption

against a 230 IRR-based import and export filters set by AMS-IX RS members.

6.3.1 Inference based on Active BGP Queries

Many IXPs provide public LG interfaces to their route servers which allow the

use of non-privileged BGP commands to query the status of the route server routing

table. The following steps describe the basic version of my algorithm for using the LG

commands to infer the peering links over a route server:

Step 1: Obtain the ASNs and IXP IP addresses of the networks connected to the

route server using the show ip bgp command. Let ARS be the set of all connected

networks on the route server.

Step 2: For each ASN a ∈ ARS collect the set of prefixes advertised to the

route server using the show ip bgp neighbor [address] routes com-

mand. Let Pa be the set of advertised prefixes for an ASN a ∈ ARS .

Step 3: For each ASN a ∈ ARS query the prefix information for a subset of its

prefixes P ′a ∈ Pa using the

show ip bgp [prefix] command. The prefix information will give us the

set of RS community values Ca,p applied by ASN a when it advertises a prefix p ∈ P ′a
to the route server.

Step 4: From steps 1-3, both the connectivity data (ARS) and the reachability data

(Ca,p) have been obtained, so I can infer the peering links established via the route
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server. For each ASN a ∈ ARS I construct a set Na =
⋂
p

Na,p with Na,p ⊂ ARS , which

contains the route server participants toward which all of its routes are advertised. There

are two cases depending on the type of RS communities used:

1. ALL + EXCLUDE: Na,p = ARS − Ep, where Ep is the list of the route server

participants excluded by the RS communities, with Ep ⊂ ARS .

2. NONE + INCLUDE:Na,p = Ip, where I is the list of the route server participants

included by the RS communities, with Ip ⊂ ARS .

Step 5: For every pair of ASNs (a, a′) ∈ ARS a p2p link between them is inferred

if a ∈ Na′ and a′ ∈ Na, i.e. only if both ASes a and a′ allow each other to receive their

routes.

If the IXP does not provide a LG, the RS communities can be obtained from third-

party LGs of networks connected to the IXP, i.e., RS members. However, these third-

party LGs cannot provide the full view of the RS communities for all the RS members,

but only for those members that allow their routes to be advertised to the network that

operates the LG.

6.3.2 Inference based on Passive BGP Data

In addition to active BGP querying via LG servers, my algorithm also works with

passive BGP collections from Route Views and RIPE RIS archives. Using passive BGP

collections offers three benefits. First, it allows us to extend my inference of p2p links,

since not all IXPs provide LG interfaces to their route servers. Second, it can also

reduce the number of LG queries necessary, which is explained in this section. Third, it

allows us to infer historical peering trends, in conjunction with historical connectivity

data through archived IRR records or website archiving services such as the Wayback

Machine [19].

Although passive collections do not show the complete route server BGP table, it

is still possible to obtain some RS community values. BGP communities are optional

transitive attributes; they can be propagated by BGP speakers in the control plane. If

at least one route server participant (or one of its customers) provides a vantage point

to a Route Views or RIS route collector, it is possible to obtain the RS communities

for a large number of IXP participants, depending on the number of RS peerings. For



6.3. Link Inference Algorithm 133

6695:6695

BGP
Route

Collector

E

0:6695
6695:A
6695:C
6695:D

D B

A
0:6695
6695:B
6695:D

C

E D A 0:6695 6695:B 6695:D
E D B 0:6695 6695:A 6695:C 6695:D
E D C 6695:6695

Figure 6.4: Inference of Route Server peering links through passive BGP measurements. Even
though the AS paths with A–B and B–C links cannot be observed, their existence
is inferred through the community values attached to routes received by E.

example, I was able to collect the RS communities for 101 of LINX’s RS members

from AS11666 which participates in LINX RS and contributes a BGP view to the Route

Views EQIX collector. Figure 6.4 extends the example from figure 6.3. Suppose that

AS E is a customer of AS D and contributes a BGP view to a collector. The IXP

links that involve D (D–A, D–B, D–C) will be visible in AS paths archived by the

route collector, although links (A–B, B–C) will not be seen in AS paths observed by

E. However, these paths are also accompanied by the RS communities that B, C and D

have applied if RS community values are propagated from the route server to AS D and

then to E. Since D is the AS that provides a view of the IXP route server to the BGP

collector, I will call it the RS feeder. Even if I have only one RS feeder from an IXP, if

this feeder is densely connected I can obtain the RS communities for a large number of

RS members.

One challenge with the inference of route server peerings using archived BGP data

is to determine which AS applied the RS communities and at which IXP. The IXP can

be determined based either on the upper or the lower 16 bits of the RS community

values which typically encode the ASN of the route server. For example, it can be

inferred that the RS community values in figure 6.4 were set at DE-CIX route servers

because they contain DE-CIX’s ASN (6695). However, sometimes there may be no RS

community that encodes the ASN of the IXP. For example, consider the RS commu-

nity values defined by MSK-IX in table 6.1. In the ALL+EXCLUDE scenario only the

ALL community encodes 8631 which is the ASN of MSK-IX route servers. Since the

ALL community is unnecessary because it is the default behaviour it may be omitted.

Instead, the RS communities may only contain an array of EXCLUDE values of type
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0:peer-asn which makes it difficult to determine the IXP route server as I described

above. In such cases I infer the IXP by examining the excluded ASes; each of the ex-

cluded ASes may connect to route servers at different IXPs, but often the combination

of ASes is only found at a single IXP.

After the RS communities have been extracted and the route server has been iden-

tified, I need to pin-point the AS that applied these communities, which I call the RS

setter. I check every AS in the path against the list of the IXP’s participants obtained

either through RPSL objects or the IXP’s website. I distinguish the following cases:

1. If the AS path contains less than two IXP participants I cannot pin-point the

setter.

2. If the AS path contains two IXP participants, I identify as the RS setter the AS

closest to the origin. For the first route in figure 6.4 I know that D and A are RS

members; if AS E is not also a RS member then I infer A is the RS setter.

3. If the AS path contains more than two IXP participants, I need to determine

which two have a p2p relationship (normally only one p2p relationship should

be observed in an AS path, as explained in 2.4). For this purpose I use the AS

relationships from [146] which have been shown to have over 99% accuracy

for c2p relationships inferred. After I find the IXP participants with the p2p

relationship, I identify the RS setter as the AS whose position in the path is closer

to the IP prefix. For example, in figure 6.4, if all E, D and A are members of the

route server I check the relationships of the links E – D, and D – A. Since E – D

is of c2p type I infer A as the RS setter.

Having identified the RS setters SRS and their community values Cs,p I can then

infer the route server peerings following steps 4 and 5 in section 6.3.1. When both

active and passive measurement data are available for the same IXP route server I com-

bine their data before executing steps 4 and 5.

6.3.3 Querying Cost

The cost of active measurements is expressed in terms of the number of queries

that must be issued and processed [36]. Minimizing this querying cost facilitates more

frequent collection. Keeping the cost low means that each measurement experiment
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Figure 6.6: CCDF of the number of RS members advertising a given prefix to the DE-CIX
route server. 48.4% of prefixes were announced by more than one member.

completes within a short time-frame that ensures the “freshness” of the obtained data.

The cost c of my algorithm is given by the following equation:

c = 1 + |ARS|+
⋃
a

P ′a (6.1)

The total number of queries depends on the number of RS members (|ARS|) and

the number of prefix information commands issued for each prefix queried at step 3.

During my five month analysis (January - May 2013) I found the community values

applied by each RS member were remarkably consistent among their different prefix

announcements toward a specific route server. In fact I found less than 0.5% of cases

when a RS member had prefix announcements with different RS communities, and

these differences were only found in less than 2% of their prefixes.1 Therefore by ran-

domly selecting 10% of the prefixes advertised by each RS member, with a maximum

of 100 prefixes, I can obtain a consistent view of the RS communities.

I further reduce the querying cost by carefully selecting which IP prefixes to query.

Figure 6.6 shows that 48.4% of prefixes received by the DE-CIX route server were

1Here I refer to prefix advertisements toward the same route server. When an AS is member of
more than one IXP route servers its prefix announcements can differ significantly across IXPs, but my
algorithm is applied on each route server separately.
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advertised by at least two RS members. By strategically querying BGP information

from an LG server for a prefix advertised by multiple RS members, I can obtain the

RS communities attached by those members with a single prefix query. Consequently,

I sort in decreasing order the prefixes in Pa according to the number of RS members

mp that advertise each prefix to the RS, and I start querying prefix information from

the prefix with the highest mp. In the case of the DE-CIX LG this optimization reduces

the total number of queries to 8,400, which is the maximum cost I observed among all

the route servers. Without these optimizations it would require 18x more queries. To

even further reduce the number of LG queries, I exclude from the active queries the RS

members for which the communities are collected through passive BGP measurements.

Thus my optimized querying cost can be now expressed as:

c = 1 + |ARS − Apassive
RS |+

⋃
a

(P ′a − P passive
a ) (6.2)

where Apassive
RS is the set of RS members whose RS communities can be obtained

through passive measurements, and P passive
a = ∅ for each a /∈ Apassive

RS . Excluding

those prefixes from the active queries reduces the total number of queries to 5,922. By

conducting active measurement queries for different IXPs in parallel I can complete all

measurements in less than 17 hours even with a rate limit of 1 query per 10 seconds.

6.3.4 Import and Export Filters

At the beginning of this section, I stated a reciprocity assumption according to

which I infer the import filters: if a RS member is (not) blocked by the export filter it

will also be (not) blocked by the import filter. In other words, if an AS is willing to

send traffic to a RS member it will also be willing to accept traffic from it. To validate

the correctness of this assumption I use import and export filter data from the mem-

bers of the AMS-IX route servers. AMS-IX uses an IRR-based filtering mechanism

from which the BGP configurations are automatically generated [2], so both import

and export filters can be obtained for the AMS-IX members that utilize IRR filtering.

I extracted the filters of 230 AMS-IX RS members by parsing RIPE, ARIN and

RADB databases from April 2013. For all of the AMS-IX members the import filters

were at most as restrictive as the export filters, and often more permissive. None of
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IXP LG ASes RS Pasv Active Links

AMS-IX N 574 444 296 55 49249
DE-CIX Y 483 369 113 256 54082
LINX N 457 177* 137 39 14759
MSK-IX Y 374 348 23 325 58501
PLIX Y 222 211 37 174 21911
France-IX Y 193 169 103 25 8117
LONAP N 120 109 30 65 4458
ECIX Y 102 83 33 50 2751
SPB-IX Y 89 78 0 78 2828
DTEL-IX Y 74 71 0 66 1725
TOP-IX Y 71 52 19 33 1272
STHIX N 69 42 4 23 340
BIX.BG Y 53 52 0 52 950

Table 6.2: Results for the inference of MLP links per IXP. The ASes column shows the num-
ber of ASes at each IXP, and the RS column shows how many of these ASes are
connected to the route server; LINX is marked with an asterisk because it does not
provide a list of RS members either from its website or an AS-SET. I could only ob-
tain partial data by searching the IRR records of LINX’s members for AS8714, the
ASN of LINX’s route server. The pasv column shows the number of RS members
whose community strings I obtain from passive BGP data, and the active column
shows the number of RS members whose community strings I obtain via querying
LGs, either directly from the IXP’s LG (Y in the LG column) or from the LG of
a member of that IXP. Finally, the links column shows the number of MLP links
inferred for each IXP.

the IRR import filters blocked an AS that was not blocked by the corresponding export

filter, confirming my assumption. However, about half of the import filters blocked

fewer ASes than the export filters, meaning that many RS members are more open at

receiving traffic, even from ASes which they do not wish to send traffic. Hence, my

assumption is conservative, it does not introduce false-positives but it will miss asym-

metric peering links where traffic flows in a single direction. Inference of asymmetric

multilateral peering links is an open issue.

6.4 Results
I gathered the RS members and supported RS communities for 13 large European

IXPs listed in table 6.2. I first collected RS communities through passive BGP data to

minimize the querying load on LG servers. I accumulated daily BGP table dumps and

update messages from Route Views and RIPE RIS repositories for 1-7 May 2013. I fil-

tered out paths that contain (1) reserved, unassigned, and private ASNs (i.e. 23456 and



6.4. Results 138

N
um

be
rd

of
dp

ee
ri

ng
sd

(l
og

)

Passive
MLP

d1

d10

d100

d1000

d0 d200 d400 d600 d800 d1000 d1200 d1400
RSdmembersdrankeddbydpeerdcount

Active

Figure 6.7: Comparison of the number of MLP links found through my algorithm against pas-
sive BGP data (Route Views, RIPE RIS, PCH) and active traceroute data (Ark,
DIMES). The inferred MLP links have little overlap with links observed from cur-
rent active and passive data sources.

CustomerLDegreeL(logLscale)

12.4%

58.1%55.6%

L1

L0.8

L0.6

L0.4

L0.2

L0
0 L1 L10 L100 L1000

C
D

F

SmallestLcust.LdegreeLonLlink
LargestLcust.LdegreeLonLlink
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63488–131071) which should not have appeared in BGP advertisements and (2) path

cycles that resulted from misconfiguration and poisoning. I also filtered out transient

AS paths to avoid inferring short-lived links that may result from misconfigurations

in setting community values. The next step is to query the available LGs for the RS

communities of the remaining RS members. I wrote a script to automate this (HTTP)

querying of LGs and parsing of responses. Nine of the IXPs provided an LG interface

to their route servers2; for the remaining IXPs I use 11 LGs provided by their RS mem-

bers. I can only obtain partial connectivity using only passive BGP data and third-party

LGs to collect an IXP’s RS communities; in the future I plan to integrate more data

sources to expand our view of these IXPs. I filter out results with truncated output to

2France-IX’s LG does not output RS communities, so I used Renater’s LG which has a feed from
France-IX RS.
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avoid underestimating the number of the included or excluded RS communities. Trun-

cated output occurs when certain LG interfaces do not print the entire response from the

router because it exceeds a length threshold. From the 20 LGs I used in my measure-

ments, only ECIX’s LG has truncated output for 1 RS member, which I discarded. By

combining connectivity information and the RS communities collected by passive and

active measurements, I inferred 206,667 multilateral peering links between 1,363 dif-

ferent ASNs. The summation of links in table 6.2 is larger than 206,667 because 11,821

of the inferred links appear between ASes that co-locate in multiple IXPs. AMS-IX and

DE-CIX have the largest link overlap with 7,502 common route server peerings, which

is expected given that 123 of the ASes in my study are connected in both IXPs. How-

ever, I was only able to collect community data for a part of the AMS-IX and LINX

members and therefore the actual link overlap may be larger.

Figure 6.7 compares the visibility of the MLP links in my dataset against topo-

logical data obtained from passive (BGP AS paths) and active (AS paths inferred from

traceroute [4, 5]) measurements during the same period. I ordered the RS members by

their inferred MLP links, so the line breaks correspond to clustering of IXPs; that is,

the BGP-based visibility of each IXP is relatively consistent for all members of that

IXP. In the Route Views and RIPE RIS data there were 58,952 visible peering links

out of 153,837 total AS links. Only 24,511 (11.9%) of the p2p links are common be-

tween my dataset and the public BGP view. Hence, my measurements reveal 209%

more peering links, and 18% more AS links than the public BGP view. The inferred

links have very little overlap with the links visible to the existing publicly available

traceroute topology data: I found only 3,927 links that also appeared in Ark-based and

DIMES-based (traceroute-inferred) AS links for the same period [4, 5]. This mini-

mal overlap can be explained by the fact that both Ark and DIMES do not infer links

across IXP Route Servers, but report them as links between the RS members and the

Route Servers. Therefore, it is likely that the common links between my dataset and

the traceroute topologies are between ASes that peer both through Route Servers and

bilateral connections.

To further explore the low visibility of these links in BGP and traceroute-derived

AS paths, I examined the customer degrees of the ASes I infer established a p2p link

via a route server. The customer degree expresses the number of customers to which
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Figure 6.9: The fraction of successfully validated MLP links per AS, classified by the LG type
used for validation. Circles correspond to ASes whose LG displays all paths, while
triangles correspond to ASes whose LG displays only the best path. LGs that dis-
play only the best path may result in lower successful validation ratio when less
preferred links are hidden.

an AS provides transit. The customer degree is not affected by the number of invisible

links which are almost exclusively p2p links (see section 2.6.1). Figure 6.8 shows the

degree distributions for the AS with the smallest degree on the link and for the AS with

the largest degree. In contrast to what is observable in public BGP data, 12.4% of the

p2p links in my MLP-inferred dataset are between two stub ASes at the edge of the

network. Because these links occur at the edge they are visible in a path only from the

ASes involved; unsurprisingly only 1.4% of these links are present in BGP AS paths at

Route Views and RIPE RIS. Reinforcing the dense peering at the edge which is enabled

by IXPs, 55.6% of all 206K links involve a stub, and 58.1% of the links involve ASes

with at most 10 customers.

The small overlap between the MLP-revealed links and the publicly available

topologies indicates that MLP links constitute the largest fraction of the invisible AS

links in these IXPs.

6.4.1 Validation of Link Inference Algorithm

To validate the correctness of my link inference framework I test the agreement

of the inferred links against connectivity information extracted from other public LG

servers. By querying the PeeringDB database I collected the addresses of 70 LGs that

are relevant to the inferred links, meaning the LG offers an interface to the collectors of

an RS member or one of its customers. For every inferred link relevant to a particular

LG, I try to confirm its existence by examining the AS paths returned from the com-

mand show ip bgp [prefix]. I use up to six different prefixes to ensure that

path diversity due to traffic engineering policies will not cause the validation to miss

existing links. I select the prefixes to be as geographically distant from each other as
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Figure 6.11: Participation in route servers compared to the self-reported peering policy. Most
participants have an open peering policy and use the route servers. Route server
participation is common among selective ASes, and rare with restrictive ASes.

possible, based on Maxmind’s geolocation database [7].

I repeated the validation at two different time periods to ensure that the correctness

of my algorithm is stable over time. In May 2013 I tested 18,100 links and I success-

fully confirmed the existence of 98% of those links. In October 2013 I tested 14,513

links and I was able to confirm 98.9% of them. In total I tested 26,392 different RS

peerings, and I succeeded in confirming the existence of 98.4% of them. As shown

in table 6.3 the validation results are consistently above 97% for all of the IXPs under

study. In the intervening period between link inference and link validation some RS

members were disconnected from the route servers or became idle. These cases were

filtered out from the October 2013 results explaining the higher validation rate.

Observing a link in the BGP paths of an LG’s output confirms the existence of this

link, but the reverse does not necessarily hold (not observing a link does not necessarily
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IXP Links Validated Links Confirmed

DE-CIX 6250 11.6% 6152 98.4%
AMS-IX 6190 12.6% 6134 99.1%
MSK-IX 4171 7.1% 4122 98.8%
LINX 3597 24.4% 3492 97.1%
PLIX 2565 11.7% 2515 98.1%
France-IX 1162 14.3% 1126 96.9%
DTEL-IX 732 42.4% 726 99.1%
ECIX 553 20.1% 548 99.1%
LONAP 460 10.3% 455 98.9%
SPB-IX 425 15.0% 422 99.3%
TOP-IX 288 22.6% 288 100%
STHIX 77 22.6% 76 98.7%

Table 6.3: Validation of the inferred MLP links per IXP. I validate between 7.1% and 42.4% of
the links inferred per IXP, and I confirm between 96.9% to 100% of the links tested.

mean that it does not exist). A path can be hidden from a LG if another path with

higher local preference or lower hop count is available, and the LG displays only the

active (best) path and not all the available paths. As a result the existence of links that

are part of less preferred paths cannot be confirmed by querying LGs that only show

active paths. Typically, paths learned from customers are assigned with higher local

preference and may hide paths learned from peers. I also found that 14 ASes (out of

the 70 used for validation) assigned a higher local preference value to bilateral peers

than route server peers. Moreover, in 3 cases the ASN of the route server was not

removed from the path making the path appear artificially longer. In all the October

2013 cases where a link failed validation a more preferred path existed. Figure 6.9

compares the validation results between the looking glass that display all the available

paths against the looking glasses that display only the active path. I can see that LGs

that only show the active paths restrict the validation effort.

6.4.2 Peering Policies of RS Members

As shown in table 6.2, on average 73% of an IXP’s members chose to participate

in MLP via an available route server. To explain this high participation rate, I collect

self-reported peering policy information of IXP members from PeeringDB [14] or on

the IXPs’ websites where the information is available, e.g., PLIX. I was able to collect

policy data for 904 out of the 1,667 IXP members, 72% of which reported an open
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peering policy, 24% reported a selective peering policy, and 4% claimed a restrictive

peering policy.

Figure 6.11 shows for each of the three self-reported peering policies of IXP mem-

bers, the distribution of their participation in route servers at 11 IXPs (or only 8 IXPs

that involved participants with restrictive peering policies). 92% of the ASes with open

peering policies are connected to at least one route server, consistent with their self-

reported interest in peering. Interestingly, 75% of the ASes with selective policy and

43% of the ASes with restrictive policy are also connected to at least one route server.

These ASes decide to connect to a route server depending not only on their peering

policy but also on their business strategy at a given IXP location and their desired rela-

tionships with that IXP’s candidate peers.

Figure 6.12 compares the number of route servers where an AS is connected

against the total number of the IXPs where the same AS is present. Most (55.8%)

ASes in my set are at a single IXP and use its route server. 7.9% of the ASes with pres-

ence at multiple IXPs do not have consistent RS participation. For instance, AS9002,

a large Ukrainian ISP with a selective peering policy, opts out of connecting to the

route servers of Eastern-European IXPs (DTEL-IX and MSK-IX) where many of its

customers co-locate, but appears to have an open peering policy in the route servers of

Western-European IXPs (DE-CIX and AMS-IX). This suggests peering policies often

can have local scope.
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6.4.3 Route Filtering Patterns of RS Members

Export filters determine the set of RS members with which another RS member

intends to peer. Figure 6.13 shows that there is a binary pattern for most ASes: either

very few ASes receive routes, or the vast majority do. Specifically, almost all RS

members block fewer than 10% or allow fewer than 10% of other RS participants from

receiving their paths. This pattern is congruent with the nature of the most common

RS community filters (ALL + EXCLUDE and NONE + INCLUDE); the use of these

RS communities does not scale well for implementing finer-grained filtering over route

servers, especially for IXPs with hundreds of members.

While the fraction of ASes that use an IXP route server is smaller for ASes that

self-report their routing policies as selective and restrictive than for those self-reporting

as open (figure 6.11), it is still the case that most ASes using route servers have an open



6.4. Results 145

peering policy. Also, a network’s observable MLP behaviour is not always consistent

with its reported peering policy. Indeed, 69.2% of ASes self-reporting as restrictive and

connecting to route servers are also open in establishing RS peerings, though perhaps in

only certain regions. An example of dual peering policy is Blackberry which advertises

open peering at Route Servers, but selective peering for bilateral arrangements. A more

meaningful classification of RS participants’ policies relies on observing their export

filters, rather than the peering policy they self-report in PeeringDB. Studying individual

IXPs reveals region-specific (differences in) peering policies. For example, AS12779,

an Italian ISP, allowed only 3 RS members of TOP-IX (an IXP in Italy) to receive its

prefixes, but blocked only 5 RS members in DEC-IX (an IXP in Germany).

6.4.4 Peering Density

Peering density can be expressed as the fraction of peering links that a RS member

has established over the number of all possible peering links they could establish via

the RS. Figure 6.14 plots this peering density metric for members of the route servers

for which I have full connectivity data through the corresponding LG interfaces.3 The

density of RS peering links is between 80%-95%, depending on the number of RS

members with open peering policies. Previous work has found the overall peering

density of European IXPs to be around 70%, including multilateral and bilateral agree-

ments [36, 28, 51], suggesting that the density of RS-based peering environments is

higher than the density of bilateral peering environments.

6.4.5 Repellers

RS members that are blocked by the EXCLUDE communities can be described

as repellers by the ASes that set those community values. Of the 1,363 RS members

in all the IXPs, 570 are blocked by at least one AS. Figure 6.15 shows the number of

times an AS is blocked compared to the geographic scope of its operations. Although it

may seem surprising that global networks are the top repellers of routes by other ASes,

these networks are connected to multiple IXPs and there is a significantly larger num-

ber of potential RS members they may repel. Of the 1,795 applications of EXCLUDE

RS communities, only 12% are set by a provider to block a customer that co-locates in

3DTEL-IX is excluded because its LG server restricts queries for 5 RS members who do not wish to
disclose their connectivity.
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the same route server. To explore the rest of the exclusions, I calculate the customer

cones for each RS member using the algorithm in [146]. The customer cone includes

the set of ASes in the downstream path of a provider. I find that 77% of the EXCLUDE

community values are used to block an AS that is part of the customer cone. Inter-

estingly the most widely blocked network is AS15169 (Google), which is blocked 82

times by 75 different ASes. This filtering behavior is counter-intuitive for networks

characterized by open peering, as AS15169 is an attractive peering partner due to the

large volume of traffic that it carries. But in these cases, the AS that blocks AS15169

has a private peering with it in the same IXP or another PoP and prefers the use of the

direct peering over the multilateral peering, which I confirmed through the available

looking glasses and the IRR records of the RS members. The same behaviour is also

observed for other large content providers like AS20940 (Akamai), which is blocked

14 times. Hence, the repulsiveness of an RS member is relative to the route server and

not necessarily a global characteristic.

6.4.6 Hybrid Relationships

I observed that 1,230 of the RS links visible in passive BGP data are inferred as

provider-customer by CAIDA’s relationship inference algorithm [146]. I attempted to

clarify whether these relationships are indeed hybrid p2p/p2c relationships, if they have

been mistakenly inferred p2c, or if they are actual transit relationships over IXPs which

are known to exist although IXP operators discourage such relationships. I collected
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422 relationship-tagging and ingress-point tagging BGP community values, defined by

85 different ASes that are involved in 440 hybrid relationships. Combining the two

community types, I can learn the relationship type at the different points-of-presence.

I was able to verify 202 of these relationships as location-specific hybrid relationships.

Moreover, I observed asymmetric routing for 16 of the links for which I obtained data

from both ASes involved, namely the provider selected the path through the transit

interconnection point while the customer preferred to route through the IXP. However,

it is difficult to generalize these findings for all the links given the lack of additional

data.

6.4.7 The Full Picture

My results reveal that the incompleteness problem is much larger than previously

believed. Not only the publicly available data miss the majority of peering links but also

past works on link discovery underestimated the peering density at IXPs (e.g. [36, 58]).

For example [36] inferred a peering density of 26.8% for AMS-IX according to the

published data [34], which is much lower than the observed peering densities both in

this chapter and in [28]. To put into perspective the topology incompleteness problem

and the contribution of my work, in this section I attempt to estimate the number of

IXP peerings globally.

Past works have found that the peering density of Europeans IXPs ranges between

60% – 70% [28, 52]. These findings are supported by data obtained through public

IXP peering matrices [11, 9, 17]. According to Cardona et al. [52] the peering density

depends heavily on the pricing model. Flat-fee pricing encourages the establishment of

more peerings and results in peering density close to 70%, while usage-based pricing

leads to peering density close to 60%. The availability of route servers is a second

important factor that leads to increased peering density by enabling multilateral peer-

ing [200, 57]. I utilise these findings to calculate the number of peering links within

large European IXPs. For the 37 largest European IXPs with at least 50 members, I

collected data from peering registries [6, 14] and individual IXP websites on the mem-

bers, the pricing model, and the availability of route servers. For IXPs with a flat-fee

pricing and available route servers I assume a peering density of 70%, for IXPs with

usage-based pricing and available route servers I assume a peering density of 60%,
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while for IXPs with no route servers I assume a peering density of 50%. Based on

these assumptions I estimate the number of European IXP peerings to 558,291. In the

case of the highest possible link overlap among those IXPs I estimate 399,732 unique

AS peering links.

To expand my estimation I gathered data for all the IXPs globally with at least 50

members. In total I compiled data for 61 IXPs (37 in Europe, 14 in North America, 11

in Asia/Pacific, 1 in Latin America, and 1 in Africa), in which 8,577 different ASes are

connected. I maintain the same assumptions on peering density except for the North

American IXPs that have a primarily for-profit business model that results in lower

peering density [36, 57]. Assuming a peering density of 40% for North American IXPs

I estimate the global number of IXP peering links to 686,104, and the number of unique

AS peering links to 510,870. For a more conservative estimation I assume that no IXP

has peering density over 60%; in this case the global number of IXP peerings would be

596,011, while the total number of unique AS peerings would be 422,423.

6.4.8 Limitations of my methodology

Despite the substantial number of invisible links discovered, a large fraction of

the AS topology is still missing. First, my methodology is limited to the discovery of

multilateral peering agreements, and does not capture bilateral peering links. MLP is

more prevalent in the European Internet, where I focused this work. IXPs in North

America support mostly bilateral peerings, although there are notable exceptions such

as Equinix, Any2 and Telx. Moreover, my algorithm requires that a route server utilize

BGP communities to control path advertisements, and that these communities are not

filtered out. Although this configuration is popular, alternative techniques exist. For

example, the Vienna Internet Exchange (VIX) and the Hong Kong Internet Exchange

(HKIX) provide a web portal to configure export filters, while the Netnod route servers

strip out all community values before propagating paths to its RS members.

6.5 Summary
A variety of challenges in sustainable measurement instrumentation, the nature of

the Internet’s routing architecture, and the complexity of the ecosystem render topology

incompleteness an inherent part of Internet science.
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Using new techniques to mine IXP route server data with a mapping of BGP com-

munity values, I inferred 206K p2p links from 13 large European IXPs, four times more

p2p links than are directly observable in public BGP data. My approach uses only exist-

ing BGP data sources, and requires only few active queries of LG servers, facilitating

reproducibility of the results. I plan to apply the methods presented in Chapter 6 to

additional IXPs and BGP data sources. I will also investigate how my algorithm can

reduce the cost of traceroute measurements that target the discovery of IXP peering

links, to enable sustainable operational measurement infrastructure using such meth-

ods.

Although I implemented and validated a new capability to analyse the dense estab-

lishment of peering at IXPs, I emphasize that a significant open question relates to how

much traffic such IXP peering links carry, which would be an enlightening measure of

their relative importance in the global topology.



Chapter 7

Conclusions

This thesis presented a set of novel measurement and inference algorithms to de-

velop a new type of Internet inter-domain map that improves the state-of-the-art in

inter-domain cartography. The produced map aims to accurately capture the diverse

but complex AS connectivity annotated with the appropriate business relationships.

The results contribute towards moving the field of inter-domain research beyond the

coarse-grained representations of the AS topology as simple graphs, to a more realistic

abstraction that is both mutli-graph and hyper-graph.

7.1 Summary of Research Work
When I begun my PhD research it had became evident that the existing approaches

for the inference of business relationships were overly simplistic with questionable ac-

curacy. Therefore they could not be utilised to tackle actual Internet engineering prob-

lems, such as the prediction of AS paths [153, 65, 179]. Despite this realisation, the

research community lacked the data to develop more sophisticated inference techniques

and instead it had been suggested that relationship-agnostic models should be preferred

to mitigate the uncertainties of inference algorithms [159, 160]. However, agnostic

models are inevitably more limited in terms of applications. At the same time, the dif-

ferent inference algorithms produced conflicting results despite claiming incompatible

levels of accuracy [202, 76, 197].

I realised early in my Ph.D. that to achieve progress in relationship inference it was

necessary to obtain ground-truth data on BGP policies in order to thoroughly under-

stand the actual complexity of inter-domain routing and reduce the reliance on poorly

validated heuristics. Although operators do not allow direct access to their router con-
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figurations, BGP attributes that encode their policies can be found in publicly available

BGP data. Benoit and Bonaventure [79] showed that BGP Communities indeed encode

a rich set of policy data and urged their use in inter-domain research. However, inter-

preting the Communities to meaningful information requires an intimidating amount of

manual effort to discover and parse relevant documentation sources [129]. As a result

their use for data collection has been minimal in Internet research.

My first contribution (Chapter 3) was to develop a tool-chain for automatically

collecting, interpreting and sanitising BGP Communities by processing IRR records

and online policy documents found in PeeringDB. The result was to compile an ex-

tensive dictionary of Community values that provided an unprecedented amount of

ground-truth data. This dataset was augmented with policy data encoded in Local Pref-

erence values. The ground-truth dataset provided a new tool to critically assess popular

modelling heuristics, such as the valley-free “rule”, the perceived symmetry in peering

links, and Gao’s abstraction of AS relationships.

My preliminary results attracted the attention of the Cooperative Association for

Internet Data Analysis (CAIDA), who are the leading research groups of Internet mea-

surements. CAIDA acknowledged the limitations of their past algorithm (section 3.4.5)

and sought to develop a more accurate algorithm. Our collaboration offered me the

chance to further develop my understanding on the problem of relationships inference,

and provided me with access to valuable private datasets, including direct feedback

from 142 AS operators. The outcome of our collaboration was the development of

a new relationship inference algorithm, the complexity of which is indicative of our

efforts to avoid generalisations and simplistic assumptions (Chapter 4). Even though

the algorithm infers only conventional relationships, the inference process is composed

by 11 different steps, each one designed to capture a different aspect of the observed

complex behaviour of BGP policies. The algorithm’s predictive policy value (PPV) has

been validated to 99.6% for c2p links, and 98.7% for p2p links. The high level of accu-

racy allows the study of the transit IP market through the customer cones, and reveals

the effects of topology flattening on the interconnection practices of the top providers.

A significant limitation of the above algorithm is the fact that it can simply an-

notate AS links with a single relationship type. Consequently, it can only infer the

conventional relationship types of provider-to-customer (p2c) and peer-to-peer (p2p).
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As shown in section 3.4 more complicated relationships exist, such as the hybrid and

partial transit agreements. The geographical dimension of the complex relationships,

and their restrictive export policies make it hard to distinguish them from traffic engi-

neering applied on conventional relationship types. The PoP-level topology provides

the appropriate resolution to model complex relationships [163], but there are great

difficulties in obtaining the PoP-level connectivity of each AS link due to the limited

coverage of the measurement infrastructures, and the inaccuracies in router geoloca-

tion.

To enable the inference of hybrid and partial transit relationships (Chapter 5), I

combined an array of recent techniques in traceroute probing (Ark, distributed tracer-

oute servers) and router geolocation (Communities, DDRoP and Netacuity). Combin-

ing different measurement techniques instead of treating them as disjointed allowed

me to maximise their utility, since they offer different advantages in terms of accuracy

and coverage. One of my priorities was to implement a measurement methodology

that does not incur unrealistic computational and querying cost. By using hints from

passive BGP data to orchestrate targeted traceroute probing I reduced the number of

required traceroute measurements to fingerprint only the potential complex relation-

ships. My results revealed that about 5% of the visible inferred p2c links are either

hybrid or partial transit. A surprising finding to me was that complex relationships

were not only observed among large providers who have more power to negotiate un-

conventional agreements, but 61.5% of the inferred hybrid relationships involved stub

ASes. The large number of hybrid relationships at the periphery of the AS graph can

be explained by the extensive IXP ecosystem in Europe, and the peering openness of

many large ISPs that favour peering relationships even with their customers.

A second great challenge in inter-domain topology research has been the incom-

pleteness of the visible topology [65, 28]. During my study of the routing and peering

policies I realised that a particular IXP technology, the route servers, has been highly

influential in the evolution of peering at the edge of the AS graph. Route servers operate

as route reflectors among the members of an IXP, and allow them to switch their peer-

ing on and off through the use of simple redistribution policies. Hence, by observing

these policies it is possible to infer the peering connectivity over route servers, given

that we already know which ASes connect on the fabric of an IXP.
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The above observation led me to develop a new topology inference algorithm that

accurately discovers multilateral peering links at IXPs that support route server redis-

tribution Communities. My results from 14 large European IXPs revealed massive

peering meshes among the IXP participants and contributed 200% more p2p links in

the visible AS topology. This approach succeeded in revealing such a large number

of new links because it constitutes a completely new paradigm in topology discovery.

Past works relied solely on the direct observation of AS links which requires the ever-

increasing deployment of new vantage points [124, 36, 58], that leads to diminishing

returns due to the nature of path propagation in inter-domain routing [149]. Further-

more, my algorithm relied solely on public data which have been shared with the re-

search community, in contrast to recent works that were restricted by non-disclosure

policies [28, 56].

7.2 Discussion
The practical use of internet cartography is part of an ongoing debate within the

academic networking community regarding the applicability of topology research in

real-world engineering problems. During my Ph.D. work I had the opportunity to es-

tablish direct communication with a large number of network operators from different

geographic regions that manage diverse types of ASes. The interaction with the oper-

ators allowed me to understand how the industry utilises the topology and relationship

datasets. I found that most network operators are highly interested in accurate infer-

ences and are willing to initiate lengthy communication and spend considerable time to

validate the data and suggest improvements. AS relationship data are actively used in

policy making, network intelligence, and connectivity coordination. The existence of

highly successful commercial services that rely on topology measurements to provide

business intelligence such as Dyn Research (Renesys) [176] indicates that operators are

not only willing to spend time but also money to obtain topological insights. However,

business intelligence methods are private within each organisation and therefore they

are hard to be appreciated by outsiders.

Another point of discussion is why over a decade of Internet topology research

did not result in the deployment of a new routing protocol given the shortcomings of

BGP. Nonetheless, this is an inherent problem with Internet research in general, due
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to the cost involved in transitioning from an existing technology to a new one. The

delays in the deployment of the IPv6 protocol are indicative of this problem: despite

the depletion of IPv4 addresses has been predicted at least since 2000 [53], the deploy-

ment of IPv6 has been predominantly experimental until very recently [132, 66]. More

importantly, the fact that past measurement and inference methodologies suffered from

serious limitations led many researchers to distrust past findings which clearly hindered

the adoption of proposed algorithms and protocols. I believe that extensive validation

efforts like the ones presented in this thesis can significantly increase the confidence of

Internet engineers in the outcomes of the Internet cartography research.

7.3 Future Directions
Although the field of inter-domain cartography has been active for over a decade,

it has suffered from the very limited availability of topological and policy data that

introduced bias and uncertainties in the results of many past studies. To tackle

this fundamental challenge new research initiatives are funded to perform large-

scale collection of network data, increasingly from the edge of the Internet topol-

ogy [15, 93, 50, 192, 39, 180]. The new datasets create new opportunities for more

accurate Internet mapping, but require careful handling to avoid the mistakes of the

past.

Future research should strive to make measurement data publicly available, when

not restricted by privacy and security concerns. Although my experience has been that

data sharing incurs a significant maintenance overhead for the contributors of data, it

can greatly benefit further research by enabling individual researchers with limited re-

sources to access measurements from heterogeneous data sources. Furthermore, data

sharing allows the re-examination and re-appraisal of past results which is a crucial as-

pect of robust scientific analysis [31]. A large part of the work carried out in this thesis

was focused on re-examination of past assumptions and heuristics which proved to be

valuable for developing new measurement techniques. Also, the topology datasets pro-

duced by my work have become publicly available and have been already downloaded

by more than 100 times.

Additionally, since no single source of topological data can provide a complete

topology, advancing our understanding of Internet topology will require extracting all
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insights we can from all data sources available, including combining data sources where

possible and appropriate. Today there exists many different measurement platforms,

such as Ark [4], iPlane [148], Atlas [15] and Bismark [192], that collect the same type

of data independently, often leading to overlapping and redundant measurements. This

thesis and past works [124, 36] illustrated that synthesis of different routing data can

provide new intuition that each dataset separately cannot provide. However, the many

different formats and the lack of a centralised data source prevents researchers from

fully utilising the available data and prevents the repeatability of experiments. There-

fore, I believe that the orchestration of the different measurement platforms should be

an important part of future works.

To raise the bar in Internet measurements it is necessary to develop sound val-

idation strategies. Although the collection of validation data is difficult and time-

consuming due to the confidential nature of AS connectivity that is often protected by

non-disclosure agreements, thorough validation will assist in avoiding common mis-

takes that led the field of AS topology research in a precarious position [179, 198].

The work presented in this thesis involved a great effort to collect validation data from

multiple sources, and to ensure the hygiene of the collected and produced datasets.

The validation datasets have become publicly available to encourage a community ef-

fort to develop a repository of validation meta-data, as envisioned by Krishnamurthy et

al. [138]

The future work should continue the research in extending the completeness of

the AS map. Despite the progress achieved in this thesis, according to the estimations

in section 6.4.7 about 50% of the AS topology remains invisible. Unearthing more

links will also benefit the inference of hybrid relationships, since it would be possible

to capture the peering part of potentially more hybrid relationships.

Further research should also be devoted in illuminating the role of IXPs in the evo-

lution of AS connectivity practices. The IXP ecosystem becomes increasingly compli-

cated by offering a range of different peering paradigms, such as bilateral, multilateral

and remote peering. Despite recent works on IXPs [52, 28, 57, 56] the field is rel-

atively undeveloped and more work is required to gain a better understanding of how

IXPs influence the resiliency of the inter-domain connectivity, what are the regional dif-

ferences in peering strategies and how the imbalance of the geographical distribution
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of IXPs can lead to inefficiencies due to circuitous routes [115].

More work is also needed for the improvement of the AS relationships. In par-

ticular, future research should focus on developing relationship inference algorithms

for the IPv6 topology. As explained in section 3.6, a large fraction of the AS links

have different relationships between the IPv4 and IPv6 topologies. Despite the increas-

ing congruity of the two topologies [74], the IPv6 market exhibits distinct economics

- partly due to the significantly smaller traffic volumes. Therefore different heuristics

should be developed to accurately capture the IPv6 relationships.

Finally, a possibly fertile area of future research would be to explore the predic-

tive capabilities of customer-cone-related metrics on Internet evolution and dynamics,

such as characteristics that correlate with an impending switch from a c2p to a p2p re-

lationship. More metrics should be derived to correlate the influence of ASes in global

routing with their relationship types. Study of traffic volumes can offer new insights

in this area but unfortunately, there are very limited data publicly available. Therefore,

future research efforts on AS ranking should focus on collecting traffic traces.
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