
i

Ubiquitous Computing –

Computing in Context

A thesis submitted to Lancaster University

for the degree of

Ph.D. in Computer Science,

November, 2002

Albrecht Schmidt, MSc

Computing Department,

Lancaster University, U.K.

 ii

Abstract

Ubiquitous Computing –

Computing in Context

Albrecht Schmidt, MSc

Computing Department,

Lancaster University,

England, U.K.

Submitted for the degree of Doctor of Philosophy,

November, 2002

Computers have advanced beyond the desktop into many parts of everyday life.

Ubiquitous Computing is inevitably computing in context: it takes place in situations

in the real world. So far most research, especially in mobile computing, has focused

on enabling transparent use of computers, independently of the environment. An

orthogonal research effort is to exploit context. The research reported here is

investigating: how context can be acquired, distributed, and used and how it changes

human computer interaction in Ubiquitous Computing.

 iii

Possible sensing technologies, in particular low level physical sensors, and perception

techniques are assessed and their value for providing context in Ubiquitous

Computing systems is analysed. Abstractions on sensor level, cue level, and context

level are introduced, resulting in a flexible context acquisition architecture.

A bottom-up approach for modelling context aware systems is introduced. This makes

use of the fact that context or domain knowledge is more general on the level of

artefacts, than on the system level. The creation of context aware systems, based on

this approach, is then investigated using the method of prototyping. To generalise and

communicate results, a pattern language for context aware systems is suggested.

As context acquisition systems are mostly specific to a certain task, building such

systems involves designing and building hardware and software. The research

presented here shows methods, architectures, and tools to make the development

process more efficient. The Smart-Its platform, a rapid prototyping system for

context-aware Ubiquitous Computing systems, is introduced and use experience is

reported.

The observation that context naturally surrounds us, led to the development of a

communication platform. This platform provides an effective means to distribute and

receive information based on spatial and temporal relationships of components.

In this research the notion of implicit human computer interaction, and in particular

the use of context information as implicit input, is introduced. The implications on the

user interface and on the human computer interaction process are analysed, as context

is fundamentally different from events in user interfaces.

Finally the research presents an overview on how Ubiquitous Computing systems can

be evaluated. Different techniques are assessed, and the concept of probing users and

developers with prototypes is presented.

 iv

Declaration

The work reported in this thesis has not been submitted in support of an application

for another degree at this or any another university.

Excerpts of this thesis have been published in journals, conference and workshop

articles as well as research deliverables and patents, most notably [Beigl,98],

[Beigl,01], [Gellersen,99a], [Gellersen,00], [Gellersen,02], [Gellersen,02a],

[Laerhoven,02], [Patent,01], [Patent,02], [Schmidt,98], [Schmidt,99], [Schmidt,99a],

[Schmidt,99b], [Schmidt,99c], [Schmidt,00], [Schmidt,00a], [Schmidt,00b],

[Schmidt,01], [Schmidt,01a], [Schmidt,02], [Schmidt,02a], and [Thede,01].

__
Lancaster, November 2002, Albrecht Schmidt

 v

Acknowledgements

Hans-Werner Gellersen has given me the unique opportunity to work with him in two

exciting places to do research in Ubicomp: at TecO, at the University of Karlsruhe in

Germany, and at Lancaster University in the UK. He advised, encouraged, and

inspired my research and most importantly became a close friend. I feel extremely

lucky to have worked under his guidance and I am thankful for all the confidence he

had in me, and for freedom and responsibilities I received in my work.

I owe a great debt to Prof. Krüger who supervised my work during the time in

Karlsruhe. He gave me the opportunity to lecture, and taught me a lot about research,

teaching, and life. I appreciate his unselfish generosity of letting me go to Lancaster

and also that he did everything possible to make the move easy.

I would like to thank all my colleagues at TecO. Many ideas that resulted in the

research presented in this thesis had their origins in (late night) discussions with

Michael Beigl. At TecO I have been fortunate to always have students around with a

genuine interest in Ubiquitous Computing research. In particular I appreciate

Christian Decker’s never ending string of ideas and Martin Strohbach’s insightful

critical remarks.

I appreciate very much the way I have been welcomed by my new colleagues at

Lancaster University and for all the support I have received. I like to thank Paul

Rayson, who I have shared office with and from whom I have picked up some

knowledge on Corpus Linguistic, for his patience with all my ‘foreigner’s questions’.

I also like to extend my thanks to my colleague Kristof van Laerhoven and the

 vi

Ubiquitous Computing group. Special thanks are to Mark Taylor who volunteered to

proof-read the thesis.

Most of the research was carried out in European projects and in cooperation with

industrial research laboratories. I have been lucky to meet the most interesting people

through this path, but there are too many to enumerate. Many of them had an

important impact on the way I think about research, to name a few: Walter van Velde

(Starlab), Oliver Frick (SAP), Antti Takaluoma (Nokia), and Bernd Schiele (ETH

Zurich). A sincere thank you to all.

I would like to thank my parents for their love, encouragement, and support

throughout my education, which was, especially in the very beginning, not always

easy. I am also thankful for all the support we received from my parents-in-law.

I would like to express my deepest gratitude to my dear wife Petra Dollinger, who

made many compromises to let me finish my Ph.D. in the UK. Without your

friendship and love this thesis would not have been completed. Finally, I like to thank

my dear daughter Vivien Georgie for the encouragement she has given to me over the

last year, probably without knowing it.

Thanks to all of you!

A lot of the research presented in this thesis was funded by:

• The European Union Information Technologies Programme, Esprit Project 26900.

• Disappearing Computer Initiative, Information Society Technologies, European Union.

• EQUATOR. Interdisciplinary Research Collaboration (IRC) supported by EPSRC.

• SAP Corporate Research, Karlsruhe, Germany.

 vii

Dedication

To my parents, for teaching me what is important in life.

 viii

Contents

Abstract ... ii

Declaration ...iv

Acknowledgements ..v

Dedication..vii

Contents ... viii

Figures ..xvi

Tables ... xviii

Chapter 1..1

 Introduction .. 1

1.1 Overview...1

1.2 Ubiquitous Computing ..2

1.3 Interaction in Ubiquitous Computing..4

1.4 Context-Awareness is an Enabling Technology..5

1.5 Challenges in Context-Aware Computing ..6

1.6 Awareness of Artefacts ...8

1.7 Scope, Aims and Method ..9

1.8 Novel Issues and Contribution ..10

1.9 Research Context ..10

1.10 Thesis Outline ...11

Chapter 2..13

 Background and Related Work .. 13

2.1 Visions: Computing Beyond the Desktop ...14

2.1.1 Ubiquitous Computing ..15

2.1.2 The Invisible Computer and Computing Appliances ..17

2.1.3 Disappearing Computer...18

2.1.4 Computing in Everyday Environments – Context matters ..19

 ix

2.2 The Notion of Context ..20

2.2.1 Schilit: Applications Exploit the Changing Environment ...21

2.2.2 University of Kent: from Location to Context ..22

2.2.3 Lancaster University: Guide Project..24

2.2.4 Anind Dey: Supporting Context-Awareness ...24

2.2.5 A Semi-Formal Approach to Context..26

2.2.6 Context – A Changing Concept...27

2.2.7 Our Understanding of Context – an Evolution ..28

2.2.7.1 A Working Model for Context-Aware Mobile Computing29

2.2.7.2 Reconsidering Dimensions – Project TEA..30

2.2.7.3 Revising the Model and Further Issues ...31

2.3 Context Related Research Initiatives and Projects ..32

2.3.1 Ubicomp Experiment at PARC ...32

2.3.2 Sentient computing, Cambridge ..33

2.3.3 Aware Home and Further Context Research at Gatech...34

2.3.4 Human Centred Computing, Project Oxygen at the MIT..36

2.3.5 Further Projects on Context...37

2.4 Methodology and Evaluation ..39

2.5 Discussion ...41

2.6 Summary and Conclusions..42

Chapter 3..45

 Acquiring Context using Sensors.. 45

3.1 Perception and Cognition in Nature ..46

3.2 Sensing Situations and Representing Context ...49

3.3 Sensor Data is Related to Situations and Thus to Context ..51

3.4 Requirements on Sensing in a Ubiquitous Computing Environment53

3.4.1 Design and Usability ...54

3.4.2 Energy Consumption...54

3.4.3 Calibration...55

3.4.4 Start-up Time...55

3.4.5 Robustness and Reliability ..56

3.4.6 Portability, Size and Weight..56

3.4.7 Unobtrusiveness, Social Acceptance and User Concern ...57

3.4.8 Price and Introduced Cost ...57

3.4.9 Precision and Openness...57

3.5 Sensing Technologies and Systems for Data Capture ...58

3.5.1 Light and Vision..59

3.5.2 Audio...60

3.5.3 Movement and Acceleration ...61

3.5.4 Location and Position..62

 x

3.5.5 Magnetic Field and Orientation...64

3.5.6 Proximity, Touch and User Interaction ...65

3.5.7 Temperature, Humidity and Air Pressure..66

3.5.8 Weight ...67

3.5.9 Motion Detection...68

3.5.10 Gas-Sensors and Electronic Noses ..69

3.5.11 Bio-Sensors ...70

3.5.12 Zero-Power Sensors ..71

3.6 Composition of Sensing Systems ..71

3.6.1 Sensor Arrays and Groups of Sensors ...72

3.6.2 Placement of Sensors...73

3.7 Perception Methods for Systems with Limited Resources ..74

3.7.1 Basic Statistical Functions...74

3.7.2 Time Domain Analysis..75

3.7.3 Derivatives ..76

3.7.4 Neural Networks ...76

3.7.5 Rule Based Systems ..77

3.8 A Perception Architecture for Context-Aware Systems..78

3.8.1 Sensor Layer..78

3.8.2 Cue Layer ..80

3.8.3 Context Layer ..82

3.8.3.1 Learning...82

3.9 Discussion ...84

3.10 Summary ...85

Chapter 4..86

 Modelling and Prototyping.. 86

4.1 Context and Entities ..86

4.2 A Conceptual Model: Bottom-up Context ..90

4.3 An Implementation Model: Context Aware Artefacts ..91

4.4 Prototyping Context Aware Artefacts ...94

4.4.1 Context-aware Mobile Phone ..95

4.4.1.1 Phase 1: TEA Feasibility Study...96

Sensor Board Hardware ..96

Off-line Data Acquisition ...98

Real-time Demonstrator..99

4.4.1.2 Phase 2: Prototyping a Context-Aware Phone...100

Hardware...100

Software..102

Demonstration and Evaluation..103

4.4.2 Weight laboratory – Context-Aware Floor and Furniture ...103

 xi

4.4.2.1 Load Sensing Feasibility Study ...104

Determining 2-D Position of Objects on Surfaces ..104

Recognising Interaction on a Load Sensing Surface...106

4.4.2.2 Prototyping a Weight Laboratory ..108

Weight Floor ...109

Weight Tables and Shelves...110

4.4.2.3 Lessons learned for load sensing ...111

4.5 Learning from Prototypes – Generalising the Approach...112

4.5.1 Pattern Languages ...114

4.5.2 A Pattern Language to Describe Contexts and Awareness..115

4.6 Patterns of aware artefacts...117

4.7 Artefacts Become a Part of the Application ..118

4.8 Discussion ...119

4.9 Summary and Conclusion ...120

Chapter 5..122

 Supporting the Development and Tools for Rapid Prototyping 122

5.1 Analysis: Libraries and Tools are a Necessity ..122

5.1.1 Software Libraries and Hardware Building Blocks...123

5.1.2 Context Acquisition Design Method ...124

5.1.3 Ready-Made Deployable Rapid Prototyping Devices ...124

5.2 Context Acquisition Libraries ...125

5.2.1 Architectural Frameworks ...126

5.2.2 Hardware Library ..127

5.2.2.1 Processing Cores and Memory Units ..128

5.2.2.2 Sensor Blocks ..128

5.2.2.3 Communication ...129

5.2.3 Software library...130

5.2.3.1 Program Templates..130

5.2.3.2 Sensor Drivers ...131

5.2.3.3 Communication Drivers ..131

5.2.3.4 Perception Library ...131

5.2.3.5 Backend Software Libraries ..132

5.3 Context Acquisition Design Method and Tool support...132

5.3.1 Design Steps and Decisions ..133

5.3.1.1 Method...133

5.3.1.2 Cost Function ..136

5.4 A Rapid Prototyping Platform for Context Acquisition..137

5.4.1 The Smart-Its Idea ...138

5.4.2 Lancaster Smart-It Family...139

5.4.2.1 Rapid Prototyping System Architecture ..139

 xii

5.4.2.2 Core Board ..140

5.4.2.3 General Sensor Board..144

5.4.2.4 Load Sensor Board ..146

5.4.2.5 Further Add-On Boards ...148

5.4.2.6 Communication & Backend Integration ..149

5.5 Discussion ...150

5.6 Summary and Conclusion ...151

Chapter 6..152

 Distributing Context in an Ubiquitous Computing Environment 152

6.1 Human Understanding of Context...153

6.1.1 Spatial Issues ...154

6.1.2 Temporal Issues...154

6.2 Properties and Principles of Context in a Distributed System...155

6.2.1 Locality and Proximity..155

6.2.2 Time ..156

6.2.3 Independence Between Acquisition and Use ..157

6.2.4 Distribution and Scalability...159

6.2.5 Transparency ...160

6.3 Describing and Accessing Context..160

6.3.1 Describing Context..161

6.3.2 Content-Based Access to Context ...162

6.4 Modelling the Distribution of Context ..162

6.4.1 Fuzzy Sets ...163

6.4.2 Relevance Based on Time Difference ...163

6.4.3 Relevance Based on Distance..165

6.4.4 Transparency ...167

6.4.5 Requirements...167

6.5 FuzzySpace – A Distributed Communication Platform ..168

6.5.1 Architecture...168

6.5.2 FuzzySpace..169

6.5.2.1 Operators ...169

6.5.2.2 Message Producer..172

6.5.2.3 Message Consumer..172

6.6 A Distributed Context Platform based on FuzzySpace ...173

6.6.1 Architecture...173

6.6.2 Context Supplier..174

6.6.3 Context consumer..175

6.6.4 Context Abstractor ..177

6.7 A Context Library ...177

6.8 Discussion ...179

 xiii

6.9 Summary and Conclusion ...180

Chapter 7..182

 Interactive Context-Aware Systems ... 182

7.1 Interaction and Interactive Applications ...182

7.1.1 Traditional and Explicit Human Computer Interaction ...184

7.1.2 Excurse: Interaction and Communication Between Humans ..185

7.1.2.1 Shared Knowledge...186

7.1.2.2 Communication Errors and Recovery ...186

7.1.2.3 Situation and Context ..187

7.2 The Concept of Implicit Human Computer Interaction (iHCI) ...188

7.2.1 Motivation and Examples of iHCI ..190

7.2.2 Analyzing iHCI ...191

7.2.3 The iHCI Model ..193

7.3 Application Areas for Sensor-based Context-Awareness and iHCI......................................194

7.3.1 Proactive Applications, Trigger and Control...194

7.3.2 Adaptive UIs ...195

7.3.2.1 UI adaptation for Distributed Settings ...196

7.3.2.2 UI adaptation in a Single Display..197

7.3.3 User Interruption ...197

7.3.4 Communication Application ...198

7.3.5 Resource Management ..199

7.3.6 Generation of Meta Data, Capture...199

7.4 A Basic Problem: Pull vs. Push...200

7.4.1 Pulling for Context ..201

7.4.2 Getting Context Pushed...201

7.4.3 Combining Push and Pull ..202

7.5 Humans and Invisible Computing...202

7.5.1 How to Perceive Invisibility..203

7.5.2 The Invisibility Dilemma ..204

7.6 Discussion ...205

7.7 Summary and Conclusion ...206

Chapter 8..208

 Evaluation ... 208

8.1 Evaluating Ubiquitous Computing Systems..208

8.1.1 Basic Evaluation Problems..209

8.1.1.1 Evaluation in Context ..209

8.1.1.2 Multi Causality ..209

8.1.1.3 Evaluation Goal ...210

8.1.2 Methods Used..211

8.1.2.1 Pre-implementation Evaluation ...211

 xiv

8.1.2.2 Sub-system Evaluation ..212

8.1.2.3 Overall System Evaluation ..212

Single domain focus..213

System Feasibility...213

Prototyping ...213

Living Lab ..214

Deployment and Studies ...216

8.2 Evaluation of prototypes ...217

8.2.1 Probing Prototypes, Probing Concepts..217

8.2.2 Qualitative Evaluation of Prototypes...218

8.3 Revisiting the Hypotheses...221

8.3.1 On Context Acquisition...221

8.3.2 Context Modelling...225

8.3.3 Rapid Prototyping of Context Aware Systems..229

8.4 Discussion ...233

8.5 Summary and Conclusions..234

Chapter 9..236

 Conclusions ... 236

9.1 Contribution and Results ...237

9.1.1 Understanding research in Ubiquitous Computing..237

9.1.2 Architectures, Platforms, Methods and Tools ...238

9.1.3 Interaction with the Ubiquitous Computer ..240

9.2 Future work ...241

9.2.1 Towards a Semantic Context Model ...241

9.2.2 Creating a Physical Interface Toolkit ..242

9.2.3 Further issues...243

9.3 Concluding remarks ..244

References..245

Appendix ..265

Appendix A: Perception..265

Appendix A.1: Time Domain Analysis. ...265

Appendix A.2: A Simplified Rule Set ..266

Appendix A.3: Recognising Events on a Surface...267

Appendix B: Load Sensing System...269

Appendix C: Patterns ..270

Appendix C.1: Context Pattern #1, battery powered hand held electronic appliance270

Appendix C.2: Context Pattern #2, mains powered stationary appliance..............................272

Appendix C.3: Context Pattern #3, non electronic portable every day objects273

Appendix C.4: Context Pattern #4, non electronic stationary every day objects275

Appendix C.5: Context Pattern #5, non portable furniture with horizontal surfaces.............277

 xv

Appendix C.6: Context Pattern #6, furniture on that people sit ..278

Appendix C.7: Context Pattern #7, garment..280

Appendix C.8: Context Pattern #8, location awareness for mobile computing devices282

Appendix C.9: Context Pattern #9, context aware recoding devices with communication...283

Appendix D: Building Blocks and Libraries ...285

Appendix D.1: Hardware Building Blocks HWcore ..286

Appendix D.2: Sensor Building Blocks HWsensor..287

Appendix D.3: Communication Building Blocks HWcomm ...288

Appendix D.4: Core Libraries SWcore ..288

Appendix D.5: Sensor Drivers SWsensor ..288

Appendix D.6: Communication Drivers SWcomm..289

Appendix E: Schematics ...290

Appendix E.1: Core Board Schematic..291

Appendix E.2: Mini Core Board Schematic. ..292

Appendix E.3: General Sensor Board Schematic. ..293

Appendix E.4: Load Sensing Add-On Schematic. ...294

 xvi

Figures

Figure 1: Context feature space..29

Figure 2: 3-D Context Model. ..31

Figure 3: Layered Perception Architecture. ...79

Figure 4: TEA hardware and system setup for the feasibility study.96

Figure 5: Schematic of the first generation sensor board...97

Figure 6: Example time series plot of sensor data. ..99

Figure 7: The sensor board and the enhanced mobile phone prototype.....................101

Figure 8: Forces on a surface used to determine the 2-D position of objects.105

Figure 9: The experimental setup; objects are stationary on a table while the position

of an added object is detected...106

Figure 10: The graph shows the raw signals representing load change recorded over

time. An object is placed on the surface at position E1 and E4. At E2 an object is

knocked over and at E3 the object is removed from the surface........................107

Figure 11: The floor installed in the lab setting (left). Enlarged view of the load cell

embedded into the floor (right) ..109

Figure 12: Coffee table (top) and dining table equipped with load cells (bottom).

Close ups of the load cells and how they are fixed (right).110

Figure 13: Load sensing primitives. ...112

Figure 14: Basic System Architectures. ...127

Figure 15: Core module with a sensor board attached. ..141

Figure 16: Block diagram of the Smart-Its core. The overall diagram shows the larger

general purpose version. The part with the grey background shows the minimised

version. ...142

 xvii

Figure 17: Smart-Its Core Boards. ...143

Figure 18: Sensor board block diagram (left). Completed sensor board (right).145

Figure 19: Load-sensing Add-On Board. ...147

Figure 20: Load sensing (left) and wireless camera (right) Add-On boards..............148

Figure 21: Example of a relevance function. The temporal relevance of the context

value created at t0 decreased over time..164

Figure 22: Visualization of spatial relevance. ..166

Figure 23: components of a distributed communication platform.169

Figure 24: components of a distributed context platform. ...174

Figure 25: Implicit human computer interaction model...193

Figure 26: Factors that influence the perceived invisibility.203

Figure 27: Time series plot of raw data..222

Figure 28: comparison of characteristic features calculated for each context.225

Figure 29: calculated high level contexts based on simple MediaCup contexts.229

Figure 30: An example depicting zero crossings and direction changes in an audio

signal. ...265

Figure 31: The graph shows the pattern that reassembles 3 seconds of audio...........266

Figure 32: First generation data acquisition and communication hardware.269

Figure 33: RF packet frame..270

Figure 34: Selection of core hardware building blocks..286

Figure 35: Sensor Building Blocks. ...287

Figure 36: Communication Building blocks. ...288

Figure 37: Schematic of the Smart-Its core board..291

Figure 38: Schematic of the Mini-Smart-It core board. ...292

Figure 39: Schematic of the Sensor Add-On-Board. ...293

Figure 40: Schematic of the load sensing Add-On board. ...294

 xviii

Tables

Table 1: Contexts related to sensory input. ..51

Table 2: Constraints on Sensing...53

Table 3: Technologies for context acquisition. ..58

Table 4: Design space for deploying multiple sensors...72

Table 5: Sensor Specification Examples. ...80

Table 6: Learning and adaptation...83

Table 7: Examples of entities with typical contexts assigned.87

Table 8: Examples of intrinsic and extrinsic sensing. ..92

Table 9: Communication requirements depending on sensing paradigm.93

Table 10: Context Acquisition Library. ...126

Table 11: Steps for the design of context acquisition systems...................................133

Table 12: Using context meta data to retrieve documents. ..200

Table 13: Simplified recognition rules a context aware phone.267

Table 14: Formulae calculated to detect interaction events.268

1

Chapter 1

Introduction

1.1 Overview

Research in Ubiquitous Computing has arrived at a crossroad: A point of convergence

where a technology proliferated environment meets with the ability of people to

interact with, and make use of, the possibilities that this technology creates.

Advances in the various fields of technology allow us to create artefacts and

environments that provide computing and communication resources. The

understanding of how humans will interact and make use of such systems is however

largely unresolved and often not addressed in current research. A key to

understanding such systems and their use is the observation that humans implicitly

interact in context with their environments including technology.

The task of making this context information available to components in computer

systems has become a prerequisite to advancing human-computer interaction

processes in Ubiquitous Computing. Context awareness, or more specifically how to

create applications that are context aware, is a central issue to Ubiquitous Computing

research. Such research raises questions on context acquisition, context

representation, distribution and abstraction, as well as programming paradigms,

development support, and implications on human-computer interaction in general.

The research presented in this thesis concentrates on some of these issues. First the

question of how to acquire context in a Ubiquitous Computing environment using

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

2

simple sensors is addressed. Then a bottom-up approach for modelling context-aware

artefacts is introduced. Prototyping various context sensing devices and generalising

to patterns demonstrates the feasibility and applicability of the approach. Assessment

is further done by evaluating the ways in which providing sensor based context can be

made easier by using methods, libraries, tools, and physical building blocks. Given

that context is made available, the issue of distribution is addressed. From this, a new

human computer interaction model that includes context is proposed; a model that

also takes account of explicit and implicit user interaction. Finally ways are addressed

in which Ubiquitous Computing systems can be evaluated.

The research is motivated by the idea of a human centred approach to Ubiquitous

Computing, as outlined in the following paragraphs. The research reported however

includes hardware, software, and communication issues, as well as topics related to

interaction.

1.2 Ubiquitous Computing

Approaches in Computer Science in the last 50 years can be related to the quantitative

relationship between computers and humans. At the very beginning many people

shared a single computer, then the idea that each user has a single computer

significantly changed the way people used computer systems. In the last decade this

changed further into a many-to-one relationship, where one user has many computers,

or at least devices with processing capabilities available to, and surrounding a single

user. This recently started era is referred to as Ubiquitous Computing; however,

Ubiquitous Computing raises many issues beyond the quantitative relationship

between computer and user [Weiser,91], [Weiser,96].

From a Human computer interaction (HCI) viewpoint Ubiquitous Computing

describes the phenomenon of interacting in context with artefacts and environments

that are interwoven with processing and communication capabilities. Here the focus is

to empower humans interacting in such an environment and to enhance their

interactive experience. This viewpoint is in the tradition of early interactive computer

systems; as an early innovator in this area Douglas Engelbart, described his work as

augmenting human intellect contrasting with work that focused on automating tasks

[Engelbart,62]. Over the last few years there have been observations of a further shift

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

3

towards creating a good experience for the user [Newman,01]. From a technical

perspective many computer systems have already achieved efficiency. However,

creating a good experience for a user can improve their perception of their work and

so ultimately make the process of using a computer system more effective and

pleasurable. This is especially true of tasks where creativity of the user is essential

(e.g. writing, designing, construction) or where the task itself is recreational (e.g.

games): In these examples experience becomes the main factor. Using conventional

interfaces, such as desktop computers with screen, keyboard, mouse, and speakers

limits the design space for creating experience; however, including the real

environment as part of interaction for a computer system offers many interesting

possibilities.

A major challenge in Ubiquitous Computing is physical integration and embedding of

computing and communication technology into environments and artefacts. Such

developments lead to ‘augmented artefacts’, raising issues beyond the physical

integration. Embedding technology into everyday artefacts also inevitably implies

embedding the “computer” into tasks done by the user. This leads to new research

challenges and further questions.

• What is the consequence of artefacts and environments becoming an integral

part of the “computer”?

• How is it possible and even pleasant to interact with a system where many

artefacts and the environment is a part of the “human computer interface”?

• Where is the application and how do we influence and interact with an

application when each part of the “computer” and of “human computer

interface” is a potentially a part of many applications?

These issues that are central to research in Ubiquitous Computing lead to the research

addressed in this thesis. Context, especially making context available to the

“computer”, is regarded as a dominant prerequisite to advance on these questions

[Abowd,00].

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

4

In an optimal setting the technology disappears so that the “computer” and the

“human computer interface” are hidden at least in the perception of the human. This

implies that the user is primarily doing a task and is not aware of operating a

computer system.

1.3 Interaction in Ubiquitous Computing

The terms calm computing [Weiser,98], invisible computing [Norman,98], and

disappearing computer [Wejchert,00] describe the user interface perspective on

Ubiquitous Computing. As the interaction is interwoven with the user’s actions the

concept goes beyond the traditional understanding of a human computer interface

towards describing the relationship between the user and their augmented

environment.

Making the computer invisible is not a matter of size or a challenge of seamless

integration of hardware, it’s about how the human perceives the computer. To make

the computer disappear (at least in the user’s perception), the interaction has to be

seamlessly integrated with the primary task of the user. The user still interacts with

the tools that help them to do a certain job, but their focus is on the task itself. This is

in contrast to typical usage of a computer as a tool, where the focus usually ends on

the computer not on the task [Weiser,98]. In a Ubiquitous Computing paradigm tools

are enhanced with processing and communication capabilities to help with achieving

the task not drawing focus away from it.

Embedding interaction into tasks seems to be the obvious approach to take. However,

when it comes to modelling and implementing this vision many unresolved issues

appear. Using explicit interaction, as in conversational computer systems, there is

provision for a choice of varying modalities. The interaction designer can chose from

command line user interfaces, graphical user interfaces, and speech and gesture

interfaces. Independent of the modality the user still is required to interact with a

computer. Another issue that makes conversional interaction methods difficult is that

interface components can be physically distributed and dependent on each other. On

the other hand as there is also the potential for many applications to run at the same

time, inputs have to be directed to a particular one. Using solely this approach would

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

5

inevitably result in a complex interface and require a great deal of the user’s attention,

which is regarded as one of the most precious resources because it is limited.

When interaction is embedded it happens in context. The physical environment, the

situation, the role of the user, their relation to other users and to the environment, and

their goals and preferences can all be rich source of information. Using this

information when making a system context-aware can make the explicit interaction

process much easier or even eliminate the need for explicit interaction. A reduction in

explicit interaction will also reduce the demands on the user’s attention, assuming that

the system gets it right. This raises a further issue: how to acquire and provide

context?

1.4 Context-Awareness is an Enabling Technology

In Ubiquitous Computing, interaction with computers is inevitably in context and in

most cases context matters for not only the users directly, but it also matters indirectly

for the system. The user’s expectations about a system and their anticipation of the

reaction of a system that they are interacting with, is highly dependent on the situation

and environment, as well as on prior experience.

Interaction in the physical world is experienced from a very early age and the

knowledge about the reaction of the environment accumulated over a lifetime. This

knowledge allows intelligent behaviour; in particular the ability to predict the reaction

that a certain action will provoke is a major advantage, and at large essential for

survival. Many expectations are just extrapolated from previous experience, e.g. when

operating a light switch on a bedside lamp in a hotel we expect that this particular

light will switch on. We would be rather surprised if instead of the bedside light

coming on the fan in the shower started or the radio in our car outside the hotel starts

playing. Our expectations are based on experience and are essential to the way we

live.

In Ubiquitous Computing environments, where the real world becomes a part of the

computer and of the user interface, users expectations towards the system are also

widely based on the experience of interaction in the real world. The designer however

has a great freedom of how to design interaction processes in such systems. Many

limitations inherent in conventional engineering are no longer an issue in Ubiquitous

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

6

Computing, in fact a networked switch could operate anything else that is networked.

To make a system useful and give the user the feeling of being in charge of the system

a switch should operate what the user anticipates in a particular situation.

This simple example of a switch shows that context is essential for building usable

Ubiquitous Computing systems that respond in a way that is anticipated by the user.

Context-awareness becomes a fundamental enabling technology for Ubiquitous

Computing and is a key issue when creating computers that are invisible and

disappear in terms of the user’s perception. In these terms context-awareness goes

beyond providing context information, it also requires understanding context and

ultimately understanding situations.

1.5 Challenges in Context-Aware Computing

Examples, demonstrators, and prototypes have been used to demonstrate that context-

awareness can enhance applications and systems. Typically location is sensed and

then based on the location further assumptions about the more general context are

made. As the concept of position and location is well understood, it also provides a

powerful and easy to apply model for context-aware applications. In many cases

however awareness based solely on location lacks information that can be of interest

to a system for making it context-aware. If information beyond location information is

required, further complexity is introduced.

The following issues are central research challenges in context-awareness:

• Understanding the concept of context.

What does context mean and how is it connected to situations in the real

world? There is still a fundamental lack of understanding in terms how

contexts relate to situations and how general context information can be used

to help enhance applications. This is also associated with the question of how

to represent context in a universal way.

• How to make use of context?

Assuming that context is available in a system the question what is context

useful for becomes imminent: especially if contexts beyond location and

available resources are considered. In this instance a central question is what

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

7

type of applications can be enhanced? When considering context as additional

input, issues of reliability and ambiguity are important. Furthermore the

relation between context and other inputs into the system and how they

influence each other, have to be addressed. Ultimately this requires the

smartness of the system to understand the context it is dealing with.

• How to acquire context information?

Acquiring context is a prerequisite for any context-aware system. Generally

context acquisition can be seen as the process where the real situation in the

world is captured, the significant features are assessed, and an abstract

representation is created, which is then provided to components in the system

for further use. Approaches to acquire context are manifold and include

computer vision, location tracking, sensor systems, and also more predictive

approaches such as modelling users and their behaviour.

• Connecting context acquisition to context use.

In a location-aware system there is a close relationship between context

acquisition and context use, most often the location sensor is attached to the

device using position as context. In this case the context representation is also

agreed between these components. In more general environments context use

and context acquisition is distributed. It can be assumed that context is

provided for various applications, potentially in dynamic configurations. This

makes it obvious that mechanisms to connect context acquisition and context

use become essential. Here the challenge is twofold: overcoming the

distribution issue by networking components and agreeing on representations

that are useful for a multitude of components.

• Understanding the influence on human computer interaction.

When systems are context-aware their behaviour is dependent on the context

of use or the general situation of use. The ultimate goal is to make systems in

such a way that they react as anticipated by the user. In real life however this

creates complex problems, in particular if the system reacts differently from

the users expectations. Two critical issues are how can the user understand the

system and its behaviour? and how to give the user control over the system?

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

8

• Support for building context-aware Ubiquitous Computing systems.

Context-awareness is an enabling technology for Ubiquitous Computing

systems and therefore commonly required when realising such systems. To

build Ubiquitous Computing environments efficiently, it is inevitable that we

need to provide support for building context-aware applications. Up to now,

there are many cases where the wheel is re-invented; where all the problems

have to be solved over and over again in each system. Providing support for

context acquisition, context provision, and context use will make the process

of implementing context-aware applications much simpler.

• Evaluation of context-aware system.

As context-aware systems are used in context, evaluation itself is also required

to be done in context. In cases where functionality is only available and useful

in a certain context it is required to create or simulate a particular situation that

results in the wanted context in order to assess the system. Inducing a

particular situation and context however may have also a significant effect on

measures in the evaluation.

Many of these research issues are highly interconnected. Nevertheless some of the

issues can be tackled fairly independently of some others. In the approach pursued in

the course of research underlying this thesis, context-awareness is approached from a

bottom-up perspective. In the bottom-up approach context acquisition and context use

is related to artefacts. This approach cuts across several of the challenges above.

1.6 Awareness of Artefacts

Context and context-awareness is often regarded in a rather general way and hence the

models and concepts that can be provided are on a very abstract level. When

considering context on an abstract level, resulting models are generally applicable, but

lack help for solving specific problems. In particular the question of what entity does

the context relate to? (e.g. temperature of a room, motion of a handheld device, and

load on a surface) becomes very important for context beyond location.

In this thesis the approach is taken to investigate contexts of artefacts. In this approach

contexts are identified by regarding generic and intrinsic properties of artefacts. Using

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

9

this method of modelling context bottom-up provides a means to avoid the complexity

faced when modelling context from a top-down perspective.

At a first glance it appears feasible to identify important intrinsic properties of an

artefact with little effort. However when investing more time it seems to be an endless

list. Therefore the quest for a generic set of properties is essential, but not straight

forward. The question remains: which intrinsic properties are generic for an artefact?

This problem is similar to modelling a digital representation of an artefact, as known

from Object Oriented methods.

The proposed approach models, designs, and implements context-aware systems, by

using a set of intrinsic and generic properties of artefacts that are part of the

Ubiquitous Computing environment. This approach raises issues of distribution and

fusion of context in such systems.

A successful implementation will result in artefacts that have a digital awareness.

Here it is of particular interest that the digital self-awareness may be of no interest to

the artefact itself (e.g. why does a coffee cup have to know its temperature if it can’t

do anything to keep the coffee warm?) but may be of great interest to other artefacts,

devices, and applications in that environment.

1.7 Scope, Aims and Method

The objective of the research presented is to assess ways in which context-awareness

can be facilitated in Ubiquitous Computing systems. In particular the focus is on using

low-end, low-price computing and communication technology in order to identify

solutions that could be economically deployed in everyday artefacts and environments

in the near future.

The prime interest is on context acquisition using a variety of sensors. The aim is to

provide an overview of possible sensing technologies and abstraction methods. A

further goal is to find models, architectures, and methods that help to understand the

field and ease the development process.

The methods used include systematically surveying literature and available

information, designing and implementing prototypes to prove the feasibility of the

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

10

proposed ideas, creating models and concepts that generalise what was learned from

the prototypes, and evaluation of the proposed solutions.

1.8 Novel Issues and Contribution

The thesis raises several novel issues in the field of Ubiquitous Computing. The main

area of work is on context acquisition, context-awareness and human computer

interaction. The major contributions are:

• An overview of sensors and sensing technology with respect of their

applicability for Ubiquitous Computing environments, based on a prototypical

assessment of various sensing technologies.

• The concept of bottom-up context-awareness, where generic intrinsic

properties of artefacts are taken as the starting point to model context. Beyond

the single artefact patterns for context-awareness have been identified.

• A framework, including methods, architectures, platforms, and libraries, that

supports the design, simulation, implementation and maintenance of

distributed context acquisition systems.

• The concept of implicit human computer interaction, as a prerequisite to

invisible computing and disappearing user interfaces.

• An overview of evaluation techniques for Ubiquitous Computing systems.

1.9 Research Context

The research reported in this thesis is rooted in a number of different research

projects, most importantly the following:

The European project ‘Technology for Enabling Awareness’ (TEA) was concerned

with the development of a component that can provide context information beyond

location. The objective was to assess what sensors, sensing systems, and algorithms

can be used to facilitate this. As potential devices that use context mobile phones,

PDAs, and wearable computers were anticipated. Further information and a list of

publications can be found at [TEA,98].

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

11

In the European project ‘Smart-Its’ the focus is to provide a means for post-hoc

augmenting artefacts with context acquisition technology. Specific areas of interest in

the project are collective awareness and tools for rapid prototyping of Ubiquitous

Computing Systems. More information is available at [SMART,02].

The interdisciplinary research collaboration ‘Equator’ focuses on the integration of

physical and digital interaction. In particular in the project ‘Domestic Environments’

research is considering technologies that are compatible with everyday life in real

world environments. For further information see [EQUATOR,02].

1.10 Thesis Outline

The thesis is structured in the following way. In chapter 2 the terms of Ubiquitous

Computing, invisible computing, and disappearing computing are assessed. Then the

concept of context and context-awareness is introduced and an overview of related

work is presented.

Chapter 3 follows the basic question of how to acquire context information using

sensors. In particular the relationship between situation, context and sensor data is

examined. An overview of available sensing technologies, perception methods and

algorithms is presented, and assessed for their suitability in Ubiquitous Computing

environments. Based on the analyses a flexible and layered architecture for context

acquisition is introduced.

The concepts of prototyping context aware artefacts and bottom-up context modelling

are established in chapter 4. The basic approach of tying context to an artefact is

introduced and the consequences are investigated. A number of prototypical

implementations, following the approach, are presented. Based on these examples

patterns of context-aware artefacts are identified.

Chapter 5 concentrates on issues relevant for supporting the design and

implementation of context acquisition systems. Libraries and templates for the design

of hardware, communication, and software are provided. A new method to ease

design and implementation is introduced. Finally Smart-Its as a rapid prototyping

platform for context acquisition is presented.

Chapter 1 - Introduction

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

12

In chapter 6 one particular issue of context in Ubiquitous Computing environments is

assessed: distribution. First the distributed nature of context and context acquisition is

analysed. Then a distribution model and platform is introduced which has natural

distribution properties built into the architecture.

The user interface perspective on Ubiquitous Computing and in particular on the

usage of context is analysed in chapter 7. In particular the implications of invisible

computing and disappearing computers on the human computer interface are assessed.

Inspired by natural interaction the concept of implicit human computer interaction and

its applications are introduced.

Chapter 8 presents the overall evaluation of the thesis. The chapter starts out with a

quest for suitable evaluation methods assessing shortcomings of standard evaluation

methods known from human computer interaction, mobile computing, software

engineering, and AI in a Ubiquitous Computing environment. Evaluation methods

related to prototyping are introduced and the hypotheses stated in the thesis are

revisited and evaluated.

The conclusion in chapter 9 summarises the contributions made in the thesis, but also

critically assesses the shortcomings and limitations detected in the course of the

research. Furthermore new issues that have been surfacing while working on the

thesis are addressed in the future work section of the chapter.

13

Chapter 2

Background and Related Work

Research in Ubiquitous Computing is very diverse as the field itself has not yet been

clearly defined. Researchers from different communities that make efforts to

understand and improve concepts, technologies, interaction and applications for

computing beyond the desktop personal computer, undertake research in Ubiquitous

Computing1. The research originates from many different areas such as mobile

computing, distributed systems, human computer interaction, AI, design, embedded

systems, processor design and computer architecture, material science, civil

engineering and architecture. This very broad view on Ubiquitous Computing

research is however not commonly shared.

A more widely accepted perception of Ubiquitous Computing research is that it

involves an interdisciplinary element [Gellersen,99], [Thomas,00], [Abowd,01],

[Borriello,02]. Developing and deploying technologies with a human centric view is a

further characteristic aspect [Davies,02], [MIT,02].

Often research is carried out under a theme, in programs and initiatives providing a

framework under which many different issues are investigated. Specific issues are

explored in context of larger theme which may be a major research challenge in a

1 This impression was backed up by looking at the overall submissions received by the HUC and Ubicomp
conferences over the last four years. Information about the conferences can be found at http://www.ubicomp.org.

http://www.ubicomp.org

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

14

specific research field (e.g. mobile computing). Results that contribute to the specific

field (e.g. a new ad-hoc protocol) also then contribute to Ubiquitous Computing (e.g.

implications on the overall system and on the user’s relationship with the system).

As themes, programs, and initiatives are central to research in ubiquitous computing

so far, this chapter will present background and related work along these lines. First

the visions for computing beyond the desktop PC are presented. Then more

specifically the notion of context and how it evolves is discussed. Then an overview

of research programs carried out at different institutions is given to provide an outline

of the state of the art in context-aware computing. As the thesis is concerned in a large

part with context acquisition, the means by which context is acquired are investigated

and presented. Finally the issue of methodology and evaluation is addressed showing

newly evolved approaches.

2.1 Visions: Computing Beyond the Desktop

Most people will still associate the term computer with a Personal Computer (PC) and

its typical desktop use. In daily life many people however use “computers” or at least

computing technologies, such as microprocessors and microcontrollers, without

regarding them as computers. Devices such as mobile phones, personal stereos (MP3

players), TVs, and washing machines are often using computing technologies.

Nevertheless users still consider their TV as a TV and do not regard them as another

type of computer with a different interface.

The following vision statements offer a prediction of computing beyond the PC era.

The initial and most influential statement, which also coins the term “Ubiquitous

Computing”, is by Mark Weiser [Weiser,91]. The vision of computing appliances,

motivated more from a design and human interface perspective, by Don Norman

[Norman,98] shows further issues on the theme of “invisible computing”. A human

centric view of computers that disappear and the implications on technologies is the

focus of European Disappearing Computer initiative [Wejchert,00], which was

published 10 years after Weiser.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

15

2.1.1 Ubiquitous Computing

The article “The Computer for the 21st Century” by Mark Weiser published in 1991

in Scientific American [Weiser,91] became a cornerstone in the foundation of

Ubiquitous Computing research.

“The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from

it.” [Weiser,91].

The above statement is the motivation behind the new way of thinking about

computers and their use. By analysing how people interact with written information,

which has become ubiquitous in industrial societies, an example of a perfectly

interwoven technology is given. This level of integration can be regarded as ultimate

goal for the concept of “ubiquitous computing”. The central characteristics are:

• Technology that does not require active attention and

• Is ready to use at a glance.

The vision is that computers share these properties and become a part of the “natural

human environment” and that they “vanish into the background”. Looking at

technologies which are often regarded as having these properties, such as cars and

mobile phones, it can be observed that these properties are not only achieved by

creating technologies but also by changing the way of life. In many cases life moulds

itself to technologies.

Again comparing computing and written information Weiser states that people who

can read well will not realise that they actually read something when they are looking

at a street sign; instead, they just become aware of the information they are absorbing.

The following statement points out a main issue of Ubiquitous Computing.

“Such a disappearance is a fundamental consequence not of technology, but of

human psychology. Whenever people learn something sufficiently well, they

cease to be aware of it. […], in essence, that only when things disappear in

this way are we freed to use them without thinking and so to focus beyond

them on new goals.” [Weiser,91].

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

16

Ubiquitous computing it is not just about technology and the deployment of

technology in everyday environments; the human perception of technologies and the

interaction with technology is the crucial test.

The concept of “Ubiquitous Computing” goes beyond having computers that can be

taken everywhere and used independent of where you are. This is rather that you can

take them everywhere, but you don’t have to because computers are already

seamlessly integrated into the world: everywhere. Ubiquitous computing is a clear

contrast to the idea of virtual reality. In VR-environments technology is used to

simulate the world or to create a new world, whereas

“ubiquitous, invisible computing is so strong that some of us use the term

"embodied virtuality" to refer to the process of drawing computers out of their

electronic shells. The "virtuality" of computer-readable data […] is brought

into the physical world.” [Weiser,91].

The central question remains: how can computers disappear? The simple answer is

that if they are cheap and small enough they will become (and in fact have become)

part of other devices, they are no longer perceived as computers anymore.

Furthermore, interconnecting these devices is not a goal in itself (even when it has

many technologically challenging aspects), it becomes rather a prerequisite for many

scenarios. Research issues where interconnecting of devices is the central issue, is

also associated with the term “pervasive computing” [Burkhardt,01, p. 6].

In his statement Weiser identifies two crucial issues:

• Physical location of the usage of such devices

• The size and scale of the devices

The knowledge of physical location in later work referred to as “location awareness”

or “context awareness” [Schilit,94], [Schilit,95] is a very central concept to make

devices adaptive to their physical environments which seems central for interweaving

the technology with its environment. The research focus in Weiser’s work is to a large

extent on devices that provide access to information. For this purpose they prototyped

and deployed a great number of such devices [Weiser,93].

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

17

The vision goes beyond the prototypes. Individual devices do not provide something

fundamentally new, however:

“The real power of the concept comes not from any one of these devices; it

emerges from the interaction of all of them. The hundreds of processors and

displays are not a "user interface" like a mouse and windows, just a pleasant

and effective "place" to get things done.”

“[…]Like the personal computer, ubiquitous computing will enable nothing

fundamentally new, but by making everything faster and easier to do, with less

strain and mental gymnastics, it will transform what is apparently possible.

[…] But ease of use makes an enormous difference.” [Weiser,91].

2.1.2 The Invisible Computer and Computing Appliances

The concept of information appliances, as described by Don Norman in his book “the

Invisible Computer” shows great similarities to the idea of “Ubiquitous Computing”

[Norman,98]. The idea of information appliances is generalised to the notion of an

invisible computer, which is human-centred and task-oriented. However Don

Norman’s motivation and approach is very different as he is coming from a design

and psychology background.

“The proper way, I argue, is through the user-centered, human-centered,

humane technology of appliances where the technology of the computer

disappears behind the scenes into task-specific devices that maintain all the

power without the difficulties.” [Norman,98, p. viii]

Assessing current Personal Computers he points out that they are complex, difficult to

learn and use, expensive to maintain, and most notably used out of context. The

following statement shows the task-oriented focus.

“[…] the primary motivation behind the information appliance is clear:

simplicity. Design the tool to fit the task so well that the tool becomes part of

the task, feeling like a natural extension of the work, a natural extension of the

person.” [Norman,98, p. 52].

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

18

The transition predicted sees computers as enablers that provided value by means of

the appliance in which they are embedded, rather than as devices on their own.

Norman’s argument and also his example ‘the evolution and use of electric motors’ is

similar to Weiser’s Ubiquitous Computing vision. The analogy refers to the provision

of mechanical power. In the early days of industrialisation single steam engines were

used to drive many different and distributed machines within a factory. Later motors

were introduced that could be attached to various machines and devices. Nowadays

we have machines and systems which incorporate a number of motors unrecognized

by the user. Similarly in the information processing domain many devices only

become possible because computers can be embedded. Most often these operate

behind the scenes: invisible to the user.

Obviously there are always tradeoffs: having a PC that is general purpose and can be

used for anything (at least theoretically) versus an information appliance that is

specifically designed and built to support a specific task. To make the concept more

powerful Norman specifies that appliances can communicate with each other, stating

the requirements:

“Making a proper information appliance has two requirements: the tool must

fit the task and there must be universal communication and sharing.”

[Norman,98, p. 53].

But even so tradeoffs between systems that offer an all-in-on solution (PC) and

information appliances remain. Norman points out that “the tradeoff between ease of

use and simplicity on the one hand and convenience on the other” [Norman,98, p. 61]

is general and well known. This however is ignoring the availability and use of

context: a central argument in this thesis.

2.1.3 Disappearing Computer

The European Commission published an IST call for research proposals in 2000 in the

area of future and emerging technologies named “the disappearing computer”

[Wejchert,00]. The vision of the program is:

“A vision of the future is one in which our world of everyday objects and

places becomes infused and augmented with information processing and

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

19

exchange. In this vision, the technology providing these capabilities is

unobtrusively merged with real world objects and places, so that in a sense it

disappears into the background, taking on a role more similar to electricity -

an invisible pervasive medium.” [Wejchert,00].

The main challenge is to explore a world where everyday objects are augmented with

computing and communication technologies. The computer as such disappears into

the background and becomes a part of an everyday object. The approach is human

centric and the focus is on interaction with real objects in everyday settings. The

assumption is that new functionalities and new ways of using artefacts will enrich

everyday life. It is central to the vision that context matters:

“Artefacts will be able to adapt and change, not just in a random fashion but

based on how people use and interact with them. […], resulting in an everyday

world that is more ‘alive’ and ‘deeply interconnected’ ” [Wejchert,00].

The program states three central objectives that have to be addressed to advance the

field, namely the creation of artefacts, the understanding of the resulting emerging

functionality, and the impact on users’ experience.

The creation of new artefacts – as a merger from everyday objects and information

technology - is central to achieve the vision of a disappearing computer. It has far

reaching consequences for computer and information systems architectures as well as

fundamental implications for everyday objects. Many artefacts with communication

capabilities comprise a modular information system that is deployed and used in a real

world context. The hypothesis is that as these artefacts interact and exploited their

usage in context, new functionality will emerge. The design and prototyping of such

artefacts will provide a new dimension in peoples experience with information

technology.

2.1.4 Computing in Everyday Environments – Context matters

The three visions introduced above are examples of the transition in the understanding

of everyday computing. Various issues are common to all visions, most notably:

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

20

• Computers are used in non-desktop environments and mobile scenarios

• Computers become embedded into devices and real world artefacts

• The notion of operating a computer disappears: users perform a task using a

device not considering it as using a computer

• A shift from expert users to non-experts is anticipated

• User experience becomes central: efficiency is not longer the sole goal

These issues have been formulated in many other research statements and article in

various research communities over the last 10 years. People are approaching the

problem from a computing, design, psychology, and sociology perspective. Terms

such as “calm computing” [Weiser,98], “sentient computing” [Hopper,99], “pervasive

computing” [Burkhardt,01], and “situated computing” [Hull,97] describe specific

views on the topic. Most of the issues also relate to the transformation of computers

from primary artefacts into secondary artefacts.

Assessing and analysing visions and predictions on computing, devices,

infrastructure, and human interaction, it becomes apparent that:

• context is available, meaningful, and carries rich information in such

environments, and

• that users’ expectations and user experience is directly related to context.

• Acquiring, representing, providing, and using context becomes a crucial

enabling technology for the vision of disappearing computers in everyday

environments.

2.2 The Notion of Context

The term context is widely used with very different meaning. The following

definitions from dictionaries, as well as the synonyms, provide a basic understanding

of the meaning of context in English.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

21

Context n 1: discourse that surrounds a language unit and helps to determine

its interpretation [syn: linguistic context, context of use] 2: the set of facts or

circumstances that surround a situation or event; "the historical context"

(Source: WordNet ® 1.6, http://www.cogsci.princeton.edu/~wn/)

Context: That which surrounds, and gives meaning to, something else.

(Source: The Free On-line Dictionary of Computing, http://foldoc.doc.ic.ac.uk/foldoc/)

Synonyms Context: Circumstance, situation, phase, position, posture,

attitude, place, point; terms; regime; footing, standing, status, occasion,

surroundings, environment, location, dependence.

(Source: http;//www.thesaurus.com)

Also in computing and related subjects context is widely used often with different

meanings. Context has a specific meaning in AI [Lieberman,00] and natural language

processing (NLP) [Lenat,98] that differs to a great extent from the notion of context in

operating systems and programming languages. The understanding of context in

design and user interfaces engineering is again quite different. And in each of the

fields mentioned there is no single definition of context. In Ubiquitous Computing the

term context is central and different to the understanding of context in other fields, but

no generally accepted definition has yet been established. In the following section

import definitions and characterisations of context that have been published are

presented.

2.2.1 Schilit: Applications Exploit the Changing Environment

In [Schilit,94] “exploiting the changing environment” is stated as one important

challenge in mobile distributed computing. The term context-aware software is

introduced and characterised as follows:

“Such context-aware software adapts according to the location of use, the

collection of nearby people, hosts, and accessible devices, as well as to

changes to such things over time. A system with these capabilities can examine

the computing environment and react to changes to the environment.”

[Schilit,94].

http://www.cogsci.princeton.edu/~wn/
http://foldoc.doc.ic.ac.uk/foldoc/

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

22

The most important aspects of context: the location, the people around, and the

resources nearby, are described. On a conceptual level it is also argued that further

issues, such as lighting, noise level, communication cost, and social situation are of

interest and can be regarded as context.

On a more technical level, as described in the section “2.3.2 Context aware cycle” of

Schilit’s thesis [Schilit,95] the focus is clearly on adaptation to resources. Context-

aware software is viewed as a three step process involving “Discovery: learning about

entities and their characteristics”, “Selection: deciding which resources to use”, and

“Use: employing the resource”.

The prototypical system was developed using ParcTAB infrastructure and realising

mainly location based services. Schilit classifies context-aware software using a 2-

dimensional matrix. One dimension of context-aware software is whether an

application provides information or is calling a command: each dependent on context.

The other dimension is whether this action is done manually or automatically.

2.2.2 University of Kent: from Location to Context

Users are mobile and tasks often include mobility. With the development of portable

computers and the advances in mobile computing, location became a parameter in

such systems. A lot of work went into making location transparent systems and into

the provision of location independent services. In other areas it became evident that

location could enable new and interesting applications, when it is accessible to the

system.

At the University of Kent the research group of Peter Brown studied the use of mobile

computing systems in field work scenarios [Pascoe,99]. Various applications that use

mobile devices that are made aware of their location have been developed

[Brown,96], [Brown,98b], [Pascoe,98], [Pascoe,98a]. Their understanding of context-

awareness is reflected in the following citation:

“[…] 'context awareness', a term that describes the ability of the computer to

sense and act upon information about its environment, such as location, time,

temperature or user identity. This information can be used not only to tag

information as it is collected in the field, but also to enable selective responses

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

23

such as triggering alarms or retrieving information relevant to the task at

hand. Because of the importance of location in fieldwork applications, the

hand-held computers used in the project are normally connected to a GPS

receiver. Other environmental sensors could, of course, be added if required.”

[Ryan,98].

The focus of their work is on handheld mobile devices, which are used for

information collection and information retrieval. Nearly all applications mentioned

are based exclusively on the use of location, acquired using a GPS unit. A typical

application of this category is ‘stick-e-notes’ [Brown,96]. A stick-e-note consists of a

context and a body. If the context described in the note is matched by the readings

from sensors in the real world the body is triggered. In particular the description of

context includes location, the direction the device is facing, and the time. The body

can contain information or a script that is executed when triggered [Brown,97]. A

whole application or document consists of many notes that are bundled together.

In their research they made an interesting observation that context aware applications

can be discrete or continuous. The stick-e-notes concept is an example for a discrete

application; at certain well defined points, actions are triggered. In contrast,

continuous applications always take context into account and continuously update the

parts that are dependent on context [Brown,97].

Even as their practical focus on applications is very much on location and in particular

outdoor location using GPS, their model sees context as a nearly unlimited concept.

“Indeed you could argue that every application which takes some account of

the user is a context-aware application. In practice, the adjective “context-

aware” is attached to applications that are mainly driven by the user’s

context. They tend to be mobile applications […].” [Brown,97].

A narrower definition was then given in [Pascoe,98], where context is defined as a

subset of physical and conceptual states that are of interest to a particular entity. It is

interesting to observe that the argument is for the “user’s context”. Here implicitly a

connection between the sensor and the user is drawn. This is further explored when

discussing the distributed nature of context, see chapter 6.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

24

2.2.3 Lancaster University: Guide Project

The work carried out in the GUIDE project at Lancaster University [GUIDE,01]

focused on how context can be used to advance a mobile information system for

visitors to a historic town [Cheverst,98], [Cheverst,00], [Davies,98]. The following

statement from Keith Mitchell’s thesis outlines their understanding of context

[Mitchell,02]:

“[…] two classes of context were identified, namely personal and

environmental context. […]. Examples of environmental context include: the

time of day, the opening times of attractions and the current weather

forecast.”

The discrimination in personal and environmental context is quite interesting. Most of

the issues that are classified as personal context are often also referred to as user

profiles, especially in the domain of web information systems and artificial

intelligence. Usually these matters (e.g. the user’s interest or budget constraints) do

stay the same while the application is used (e.g. one walk around the city). Location is

also in this category, modelled as discrete variable that is changing very frequently

while running the application. These contexts are directly related to a particular user;

in contrast the environmental contexts are of a more general nature [Davies,01].

All context location is based on non-physical sensors, or in more general terms:

information. This is either specific to a particular user (e.g. the users preferences or

profile) or it is generic like information available on the World Wide Web (e.g.

opening hours or weather forecast).

In the GUIDE project the main objective when using context was to present

information in a suitable way for the context that the user is in, at any particular time.

2.2.4 Anind Dey: Supporting Context-Awareness

Anind Dey worked on the provision of architectural support for context-aware

applications and provided the following general definition of context in his thesis

[Dey,00]:

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

25

“Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and

application themselves.”

The central point of this application-centric definition is that information that

describes the situation of an entity is context. This definition clearly states that context

is always bound to an entity. This is similar to the approach followed in this thesis, as

outlined in chapter 4. The entity itself is regarded as something that is relevant to the

interaction between a user and an application. The user-application relationship is

rooted in the traditional notion of an application, but not limited to it.

By considering the application, and implicitly the state of the application, as an entity

that is characterised by context a feedback loop is introduced. A change in the

application will inevitably lead to a change in the context, perhaps as reaction to a

changing situation. For certain types of applications and scenarios this is an elegant

way of influencing context, however in other domains this cycle may increase the

complexity of the model and eventually of the implementation.

The following definition for context-aware systems introduces the user’s task as a

concept, which is itself context (as it characterises the user’s situation) but it is also

used to determine the relevance of information and services. This illustrates that

context can hardly be seen in isolation.

“A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s task.”

[Dey,00, p.6].

The application focus of systems that are considered context-aware are on systems

that provide information and services dependent on context. In their work they also

include applications that capture and tag information in the background and also

systems where context is used to customise the interaction and the interface, while

always providing the same information.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

26

2.2.5 A Semi-Formal Approach to Context

In [Crowley,02] the assumption is made that user’s actions are generally goal driven.

It is acknowledge that most often actions are related to a number of goals that are

pursued simultaneously rather than to a single well-defined goal. This is extended to

satisfy the notion of invisible computing where explicitly interacting with the

computer is usually is not regarded as a goal of the user. The term activity is

introduced to model the observation that the user is concerned with several tasks at

once. Also tasks that are not directly within the current activity are included and

refereed to as background tasks. Altogether this is considered as the user’s context. In

their argument they make a further distinction between the user’s context and the

system’s context:

“The system’s context is composed of a model of the user’s context plus a

model of its own internal context. The system’s model of the user’s context

provides the means to determine what to observe and how to interpret the

observations. The system’s model of its own context provides a means to

compose the federation of components that observe the user’s context.”

[Crowley,02]

A general approach for recognition systems is assumed, where sensors provide low

level information which is then available as observable variables which are numeric

or symbolic. The data generated may be synchronous or discrete. The basic

recognition process is modelled as a series of transformations. Data or events are put

into a component, influenced by control data a transformation is done which results in

new data or events together with a possible change in state and capabilities. By these

means a common approach from computer vision is generalised to be used in

ubiquitous computing perception systems.

The formal definition of context is connected to a user and a task. A context for a

particular user and a specific task implies the roles and relations that are in common to

all situations, which are described by the context. The ontology is further extended

and includes bottom-up components that relate to sensing and also top-down

components that relate to derivation.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

27

The approach has two major contributions: the software architecture and the

conceptual model. The software architecture suggested provides means to reduce

complexity by regarding calculations as a series of transformations. This also allows

independence between components. The suggested model relies on a well defined

user task model that is often used in classical HCI. Even so it is more difficult to find

specific goals in off-desktop computing, the more general goals (e.g. Norman’s

pleasurably axiom, [Norman,98, p.67]) fit also into such a model. Decomposing these

general goals seems for many ubiquitous computing scenarios difficult. Dependent on

the domain in the decomposition process sub goals are created and then refined into

activities and tasks. However when this is done successfully the effort will result in a

solid model.

2.2.6 Context – A Changing Concept

Looking at the explanations for context (such as those described above) and more

detailed explanations of context in PhD theses in the field [Schilit,95], [Dey,00],

[Pascoe,01], [Mitchell,02] it can be observed that the notion of context evolves with

the work that is carried out. As we have been exploring various fields in Ubiquitous

Computing and in particular in context-acquisition, our understanding of context has

also evolved and changed (see the next section).

It seems that the understanding of context is connected to the feasibility of context

acquisition. Changes in the state of art in context acquisition, e.g. a new indoor

location technology becomes available, influence the use and the understanding of

context. In many cases this is a two step process: first a new technology becomes

available and is then used in specific applications that are tailored to use this

technology. Later this technology is regarded as a context provider and if necessary

the conceptual model of context-aware systems is updated to include such contexts.

When looking at definitions or characterisations for context the following issues are

central:

• Scope. What is the scope a particular notion of context covers? Is it only a

certain type of context (e.g. location) or is it a general concept?

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

28

• Separation. Does the notion of context help to separate concerns in a given

model? Separation is interesting in two ways. First, how context is interlinked

with the application and second, how modular are the concepts for context

acquisition and context provision.

• Abstraction. Is context regarded as a particular piece of information, which is

tailored to fit a specific application or is it a general concept that may apply to

anything?

• Relation. What does context relate to? Does context describe the situation of

the user, the device, or the application?

A further general observation is that scope, separation, and abstraction include a

trade-off. The more specific context is regarded, the easier it becomes to implement

systems based on that model. However if the view is very specific it is unlikely to be

helpful for many different types of application domains. Vice versa, a very general

model is covering most application domains but does not provide a lot of help when

realising a specific system.

The discrimination between user, device, and application becomes more important if

the domain is moved away from handheld, mobile computing scenarios. In mobile

computing systems where the user carries a PDA or a wearable computer running a

particular application, discrimination is not necessarily required. However in

Ubiquitous Computing environments where the user does interact simultaneously with

many different embedded and mobile systems and also where the term application is

unclear discrimination becomes important.

2.2.7 Our Understanding of Context – an Evolution

In the course of the research that was undertaken different projects that relate to

context-aware computing have been carried out. In the beginning the understanding

was driven from the idea that context can add a new quality to mobile computing

devices and applications [Schmidt,98]. At the IMC99 workshop we proposed a tree

that offers structure for context. After further developments we realised that having a

such a tree is a very pragmatic approach and helpful to implement a certain class of

applications, however it lacks generality. In [Schmidt,99] we published a “Working

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

29

Model for Context-Aware Mobile Computing” which is presented in the following

paragraphs. This model extends the closed tree originally proposed for an open tree

model that offers a general structure that can be extended to suit the application

domain.

2.2.7.1 A Working Model for Context-Aware Mobile Computing

To structure the concept of context we propose the following model:

• A context describes a situation and the environment, a device or user is in.

• A context is identified by a unique name.

• For each context a set of features is relevant.

For each relevant feature a range of values is determined (implicit or explicit) by the

context.

In terms of this model, a hierarchically organised feature space for context can be

developed. At the top level we propose to distinguish context related to human factors

in the widest sense, and context related to the physical environment. For both general

categories we propose further classification into three categories each, as shown in

Figure 1. We use the six categories at this level to provide a general structure for

Figure 1: Context feature space.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

30

context. Within each category, relevant features can be identified, again

hierarchically, whose values determine context. Additional context is provided

through history that changes in the feature space over time.

Human factors related context is structured into three categories: information on the

user (knowledge of habits, emotional state, bio-physiological conditions, etc.), the

user’s social environment (co-location of others, social interaction, group dynamics,

etc.), and the user’s tasks (spontaneous activity, engaged tasks, general goals, etc.).

Likewise, context related to physical environment is structured into three categories:

location (absolute position, relative position, co-location, etc.), infrastructure

(surrounding resources for computation, communication, task performance, etc.), and

physical conditions (noise, light, pressure, etc.).

The described model provides some structure for consideration of context. For

pragmatic use of context, the general challenge is to identify the set of relevant

features in terms of which a situation or environment can be captured sufficiently.

Situations and environments are generally characterised by a large degree of

continuity over time, so that context history itself becomes an important feature for

approximation of a given situation or environment. Time is implicitly captured in the

history.

2.2.7.2 Reconsidering Dimensions – Project TEA

In the research project Technology for Enabled Awareness [TEA,98] we defined

context as follows:

“Context awareness is knowledge about the user’s and IT device’s state,

including surroundings, situation, and, to a lesser extent, location.”

To describe contexts we moved to a three-dimensional space as depicted in Figure 2,

with dimensions Environment, Self, and Activity. A fundamental difference to earlier

work was the observation that context is not necessarily related to location.

This is similar to the previous tree structure but discrimination on the top-level is

different. With the introduction of a “self” dimension the issue to what context is

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

31

related to (device, user, and application) is addressed. Context has many aspects and

this model is especially targeted at mobile appliances (e.g. PDAs, phones).

2.2.7.3 Revising the Model and Further Issues

Both models above have been developed with a focus on mobile systems. When

developing embedded and stationary context-aware systems [Gellersen,99a],

[Schmidt,02] we investigated further approaches. In chapter 4 a bottom-up approach

for identifying parameters that are relevant to make things context-aware is presented

in more detail.

Within the Smart-Its project [SMART,02], where the notion of collective awareness is

a central research issue, it became apparent that the relation between artefacts and

other artefacts, or artefacts and humans, is essential for modelling context-aware

systems, however at this point such a model has still to be developed.

The following observations conclude the discussion of definitions, characterisations,

and models for context, and point out a few issues to consider when re-defining

context or proposing a new model:

• Stimulate Discussions. In many cases models or definitions have been weak

or not complete, yet they have led to serious discussions of the subject. Even if

Figure 2: 3-D Context Model.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

32

a definition or model only explains part of the issues it can lead to an

interesting scientific discussion.

• Revising Viewpoints. Definitions should not to be considered as absolute and

models can evolve or transform. When a model is not useful in a new domain

or for new types of contextual information it has to be revised. This does not

suggest that the “old” model was bad it’s just a way of moving on and

improving.

• Scoping. As explained earlier a very restrictive model usually helps to

efficiently implement systems, whereas a general model can explain

everything. Often this issue comes down to an attempt of modelling the whole

world vs. modelling a specific application. The purpose of the model or

definition should be used to determine the scope. In some cases it may even

lead to models on different levels.

2.3 Context Related Research Initiatives and Projects

Many institutions and large scale projects have investigated the use of context; in

particular location as source of information to enhance applications and systems. The

following sections provide an overview of larger research efforts where context is a

central concern.

2.3.1 Ubicomp Experiment at PARC

The Ubicomp experiment at PARC was the first project that investigated the idea of

Ubiquitous Computing at a larger scale: in this context the term Ubiquitous

Computing was coined [Weiser,91], [Want,95]. To research the implications of

Ubiquitous Computing, especially in the area of networking, device technology, and

human computer interaction, the ParcTab system was implemented and deployed.

The ParcTab system included different mobile and stationary devices of various sizes,

in particular Tabs (small handhelds), Pads (tablet style units), and Boards (wall sized)

and a Ubiquitous Computing infrastructure.

The main goals in the project were: “To design a mobile hardware device, the

PARCTAB, that enables personal communication”, “To design an architecture that

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

33

supports mobile computing”, and “To construct context-sensitive applications that

exploit this architecture” [Want,95, p. 4].

Room level location awareness was provided by the communication infrastructure

that was based on infrared (IR). The main difference of a ParcTab in comparison with

a standard computer is portability, communication, and context-sensitivity [Want,95,

p. 22]. Many different mobile applications have been developed on the platform

making use of the environment.

From the discussion and also from the summary it becomes apparent that

communication and mobile use have had the greatest impact on the applications

developed and on the acceptance of applications by the users. Regarding the

applications that were used, context did not have a great influence at that time.

It is also interesting to note that the way the system was deployed and evaluated has

now become a common method in Ubiquitous Computing research. The goal for

evaluation was “to test the entire system in an office community of about 41 people

acting as both users and developers of mobile applications.” [Want,95, p. 4].

2.3.2 Sentient computing, Cambridge

The term sentient computing was coined at the ORL research labs in Cambridge (later

the AT&L Labs) [Hopper,99]. The sentient computing project is more a conceptual

framework in which many different projects are carried out, rather than a single large

project. They define the term as follows.

“Sentient Computing: Using sensors and resource status data to maintain a

model of the world which is shared between users and applications.”

[AT&T,01].

The idea behind this approach is that humans observe their environment and that the

interaction they carry out is directly related to these observations. To give applications

similar capabilities, basically to act in context, a world model has to be provided.

Humans implicitly acquire a world model that is permanently updated by observation

and perception. For the system, it is suggested that a similar world model is created,

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

34

which is constantly updated by sensors. This shared perception has far reaching

consequences:

“What could we do if computer programs could see a model of the world? By

acting within the world, we would be interacting with programs via the model.

It would seem to us as though the whole world were a user interface.”

[AT&T,01].

The sentient computing technologies to enable sensing such models rely heavily on

sensing the whereabouts of people and objects. In the early work the location of the

user was at the centre of interest [Want,92], [Harter,94]. The Active Badge system

provided information on the current location of people a coarse scale (e.g. mainly

room level). Later work concentrated on more precise location information of objects

and of people [Wart,97]. The Active Bat system, an ultrasonic location system, can

provide location information of the mobile unit (called a bat) with a precession of

about 3 cm. The bat can be attached to people and objects; it also can be used as an

interaction device [AT&T,01]. The availability of location information allows new

programming paradigms, e.g. using spatial relations as invocation mechanisms.

Within the sentient computing project various applications have been developed.

Many of them are classical prototypes of location aware systems [Addlesee,01]

2.3.3 Aware Home and Further Context Research at Gatech

At Georgia institute of technology a number of projects are concerned with context

and context-aware applications. The aware home initiative is a multi-disciplinary

research program to investigate new classes of information technologies that can

enhance the quality of life in home environments. Broadband communication,

context-awareness, and personalisation are regarded as the basic building block for

novel applications and technologies [Gatech,00].

Important goals in context-aware computing are stated as follows in the research

proposal [Jayant,99]:

“The research will identify multimodal technology that robustly locates a

person, and tracks activity in the short and long term, and in relation to key

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

35

objects or aspects of the residential environment. Tracking technologies

include arrays of smart cameras and microphones, as well as force-sensitive

smart floors – all leading to an environment that is aware of its occupants and

their activities.”

In the area of context-aware applications two major issues are addressed: presentation

of context information to the user and tailoring the interaction according to the context

and to changes in context [Kidd,99]. As the implementation of such systems is rather

difficult a further goal is to provide appropriate tools and a software infrastructure to

support the development.

The Context Toolkit [Salber,99] was designed and developed to allow separation of

concerns for context-aware systems. In particular the insulation between the actual

sensors and the application is the main objective [Dey,99]. The concept has many

analogies to Graphical User Interface (GUI) systems.

Sensors are encapsulated by sensor widgets, which provide access to the sensor. As

sensor systems have different characteristics compared to GUIs the architecture also

takes into account that sensors are potentially distributed and unreliable. By this

means context acquisition is transparent for the application. For applications often

more complex contexts, the result of combining the information from several sensors,

are of interest. For the aggregation of information the concept of entity servers is

introduced. These entities or context servers can access context widgets and provide

themselves information to applications. In cases where the translation between sensor

information and context information is required interpreters are used. Interpreters are

a general mechanism to translate between context values. The context toolkit was

used to implement a variety of applications. The notion of context acquisition is very

general in the model, basically providing a mechanism to include any sensor in the

system. However the systems implemented only use a few types of sensors, mainly

from the information domain [Essa,99].

A physical sensing system is described in the smart-floor project. The idea is to place

floor tiles on load cells and to detect the person walking over that spot [Orr,00].

Similar work has been carried out a Cambridge [Addlesee,97] and also in sport

physiology [Kistler,02]. The experiments show that the integration of load sensing

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

36

technology can provide an unobtrusive means to track and discriminate people.

Discrimination is done using the force profile that is specific to a particular person.

From the figures published it seems possible to discriminate a small group (typically

sharing a home environment) with a very high reliability.

In the classroom 2000 project (now eClass Project) context capture in a teaching

setting was investigated. A lecture theatre was equipped with display and capture

technology, in particular cameras and microphones. Lectures and courses were

captured, not only audio and video, but also the annotations. The captured material

was then made available for access. Context was used as a significant way of

structuring the material and easing access [Abowd,99].

Earlier work at Georgia Tech included a location aware visitor system called

CyberGuide [Long,96], [Abowd,97] and the CyberDesk, an architecture that

dynamically creates information pages based on virtual context [Dey,97].

What most of these research projects have in common is that they are evaluating in a

living lab environment. Some are also evaluated with techniques normally used in

HCI. The concept is similar to the one stated in the ParcTab Experiments. Researchers

build systems and use them in their daily work life [Abowd,00].

2.3.4 Human Centred Computing, Project Oxygen at the MIT

The starting point of the vision for Oxygen is a critical assessment of the last 40 years

of computation revealing that up to now humans adapt to machines [MIT,02]. A

major criticism is that computers have not been aware of peoples needs. Their vision

for the future predicts the opposite.

“In the future, computation will be human-centred. It will be freely available

everywhere, like batteries and power sockets, or oxygen in the air we breathe.

It will enter the human world, handling our goals and needs and helping us to

do more while doing less.” [MIT,02].

The challenges for such a vision are characterised by the following adjectives:

pervasive, embedded, nomadic, adaptable, powerful, intentional, eternal. The

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

37

explanations for most of the challenges refer directly or indirectly to the concepts of

context and awareness.

The approach focuses on four technological areas embedded computational devices

(E21s), handheld devices (H21s), networks (N21s), and also on adaptive software

(O2S). Perception is a central issue, however the focus is mainly on vision and speech

aiming to replace explicit traditional input mechanisms with conversational and

gesture input.

Beyond vision and speech sensing and perception is hardly addressed. In the criticism

of conventional computing and in the vision stated, awareness is a very important

factor. In the approach however context-awareness is not addressed as a central issue.

2.3.5 Further Projects on Context

Further research institutes are investigating context as a central source of information

in different projects. The previous sections show the variety of research and also

outlines the diversity of approaches. In the following paragraphs some further projects

are mentioned to round up the picture.

Including reasoning, planning, and learning in devices and artefacts, and hence

embedding intelligence, is suggested by researchers at Essex University in the UK.

These concepts, rooted in AI and robotics, are explored in various projects, such as

iDorm (intelligent student dormitory) and e-Gadgets [eGadget]. Context sensing

includes capturing explicit interaction as well as measuring environmental conditions.

A central issue is how embedded intelligent agents can facilitate intelligent domestic

environment [Callaghan,01]. A research focus is the development and deployment of

adaptive learning algorithms, such as Incremental Synchronous Learning (ISL)

[Hagras,02], which can transfer cognitive tasks from the user to artefacts and into the

environment.

The adaptive house at Colorado concentrates on adaptive automation for home

environments [Colorado,01]. They argue that programming home automation systems

is difficult and in disproportion to the benefits gained by such a system. To “develop a

home that essentially programs itself by observing the lifestyle and desires of the

inhabitants and learning to anticipate their needs” [Mozer,99] was a main target of

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

38

the adaptive house project. Their system ACHE (Adaptive Control of Home

Environments) is connected to various environmental sensors and controls lights,

fans, and heaters. To acquire knowledge and to provide adaptive behaviour artificial

neural networks using reinforcement learning are deployed [Mozer,98]. The system is

an example how concepts from autonomous control system can be applied to

Ubiquitous Computing scenarios.

The EasyLiving project at Microsoft Research is developing an architecture and

technologies for Ubiquitous Computing [Microsoft,00], [Brumitt,00]. The EasyLiving

concept sees three general components: the application, the UI-services which rely on

UI devices, and the world model which is using sensors. The geometry of the physical

world is regarded as an essential property in the system [Brumitt,00a], this is similar

to other work were location was the central concern [Leonhardt,96], [Leonhardt,98].

In the area of sensing, the focus is on vision and especially with the application

regarding people tracking.

The Portolano project at University of Washington within the Expeditions program is

also investigating the idea of invisible computing. General goals are to ‘connect the

physical world to the world wide information fabric’ and ‘to get computers out of the

way’ [Portolano,02]. An example application area in the project is a cell biology

laboratory. One of the aims is to realise invisible user interfaces based on context

information such as user movement, proximity, and location. It is argued that data

fusion can extract the user’s intent and help to get the UI out of the way offering a

lower cognitive load for the user [Portolano,99].

At TecO, based at the University of Karlsruhe, we investigated how the use of sensors

can provide context from and for everyday objects [Schmidt,99c], [Schmidt,99]

[Beigl,01], [Gellersen,02]. In various projects we built prototypical systems to study

the implications of context acquisition and context use in everyday environments.

Some of the projects are introduced in more detail in chapter 4.

In the area of wearable computing context plays a significant role [Starner,99].

Location is an obvious context of interest, but also further sensors supporting different

applications are reported. Sensing physiological parameters to control a camera is

investigated in [Healey,98] which is similar to work on affective wearable computers

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

39

[Picard,97]. Movements and gestures of the user are also considered as context as

reported in [Randell,00], [Laerhoven,00], [Laerhoven,02].

2.4 Methodology and Evaluation

As Ubiquitous Computing is a very young field no standard research methodology is

yet established. Researchers come into the field of Ubiquitous Computing often from

other backgrounds, such as mobile computing, distributed systems, human computer

interaction, computer vision, and psychology, each discipline having well established

methods and evaluation techniques. With regard to Ubiquitous Computing and in

particular to context-awareness these methods and evaluation strategies are often not

optimal, covering only a subset of problems [Scholtz,01].

In Weiser’s paper a case for real prototyping, and living and working with the created

technology, is made:

“Some researchers, using themselves and their colleagues as guinea pigs…

[…] We have built enough liveboards to permit casual use […]. By building

and using these boards, researchers start to experience and so understand a

world in which computer interaction casually enhances every room.”

[Weiser,91].

Building on Weiser’s statement and extending the request for researchers to live with

the technologies developed in their everyday environment Abowd and Mynatt

propose the living lab approach.

“It is important in doing ubicomp research that a researcher build a

compelling story, from the enduser’s perspective, on how any system or

infrastructure to be built will be used. […] The purpose of the compelling

story is not simply to provide a demonstration vehicle for research results. It is

to provide the basis for evaluating the impact of a system on the everyday life

of its intended population. The best situation is to build the compelling story

around activities that you are exposed to on a continuous basis. In this way,

you can create a living laboratory for your work that continually motivates

you to “support the story” and provides constant feedback that leads to better

understanding of the use.” [Abowd,00].

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

40

This approach implies a biased exploration of results by the researchers themselves.

This is in contrast to traditional evaluation techniques where independent and

objective user groups are involved. In Ubiquitous Computing however there are good

reasons for a living lab research method, from our experience the following are

important:

• Cutting edge technologies. When creating new Ubiquitous Computing

systems often cutting edge technologies are created. Often it is not possible to

build a large number of prototypes in an early phase, as the design is improved

from iteration to iteration. Furthermore these prototypes are often still fragile.

• Multi-variant Experiments. In an early prototyping phase when the design

space is explored experiments often include changes of many variables within

one experiment. To understand the implications of such experiments and to

gain from the findings a deep understanding of the system is required which is

often only available to the researcher. This process is not comparable to

experimentation in natural science subjects, but instead is rather related to

design oriented approaches.

• Prototyping to gain Understanding. When Ubiquitous Computing systems

are created, prototyping and the use of prototypes provide insight into the

technology and its implications. To prototype systems for the purpose of

understanding issues and to learn about technologies, has an ongoing and long

tradition in practical computer science [Engelbart,62].

• Documentation and Training. The ultimate goal when designing Ubiquitous

Computing systems is in most cases to have devices and environments which

are usable without manuals and training. In intermediate steps, when devices

are still not perfected limitations on the use of such devices often apply. These

limitations, which are not relevant to explore further design steps, are obvious

to the researcher, but difficult or very time consuming to document.

The living laboratory research provides an efficient means experiment and to narrow

down the design space with minimal expenditure. However evaluation in the real

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

41

context of use and deployment beyond the lab is essential when systems mature

[Abowd,00].

The research methodology and evaluation techniques used in the research undertaken

are manifold. In particular prototyping was used to explore sensing, context

acquisition and interaction, as described in the following chapters. To evaluate

systems and the rapid prototyping platform users and developers have been probed

during informal studies that have been conducted. In chapter 8 more evaluation issues

are raised and the results discussed in more detail.

2.5 Discussion

The vision of networked and embedded computing in everyday environments is

referred to with a variety of terms such as Ubiquitous Computing, invisible computing

or disappearing computing. These terms are widely used for the overall vision and its

implication on the relationship between humans and computational devices. Other

terms such a calm computing [Weiser,98] and pervasive computing [Burkhardt,01]

highlight specific issues, in the first case unobtrusive interfaces and in the second

extensive networking.

It is interesting to see that independent research ([Weiser,91] and [Norman,98]) from

very different backgrounds (computer systems and design psychology) lead to a

similar hypothesis about the future of computing in everyday life. Even though these

visions and the mission statements of various projects surveyed share the notion of a

human centric future relationship between humans and computers, the actual research

projects are still often very much centred on technology.

To achieve a truly human centric environment that is enriched by computational

devices it is inevitable that the knowledge about the world, naturally continuously

perceived by humans, is also available to the system. It is interesting that the need for

context is also widely shared and not disputed. Furthermore in recent years also the

notion of context has been broadened and is reflected in the characterisation of

context by various researchers. It is understood that context is a concept that is beyond

knowing the location of objects or people. Similarly here the vision includes all types

of context.

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

42

A standard research methodology and in particular a widely accepted evaluation

technique of ubiquitous computing systems and context-aware systems is not yet

established. Looking at projects and publications that originate from the research

carried out, it is interesting to see opportunistic topic selection and evaluation that is

dependant on the audience which is targeted, e.g. if a ubiquitous computing system is

presented at a mobile computing conference it is positioned as mobile computing

system evaluated according to the standard methods in mobile computing, if it is

presented at a human factors conference the HCI issues are highlighted and evaluated

according to standard HCI methods. With workshops and conference that focus on

ubiquitous computing, e.g. [Gellersen,99], [Thomas,00], [Abowd,01], [Borriello,02] a

move towards new evaluation methods can be observed.

2.6 Summary and Conclusions

In this chapter two original and influential visions of the future relationship between

computers and people have been discussed, namely Weiser’s Ubiquitous Computing

vision [Weiser,91] and Norman’s concept of information appliances and invisible

computing [Norman,98]. To illustrate the developments since these statements the

vision of the disappearing computer as formulated by the European research council

has been presented [Wejchert,00]. This document also outlines which research should

be carried out to reach the goals stated in the vision. Common to all statements is the

observation that context: the real world around is essential to such systems.

A range of characterisations and definitions for context and context-aware systems

has been surveyed and analysed. It can be observed that context-awareness and

context-aware system evolved from location-awareness by generalisation. Further

concepts that constitute the environment and that can be measured are included in the

understanding of context. Exemplarily, several projects that reflect current trends in

ubiquitous computing research and in the area of context-awareness have been

presented. It can be observed that even if the notion of context is widened in most

research groups, the systems that have actually been implemented rely mostly on

location. Location as a prime context is very well understood [Leonhardt,98] and

context-acquisition devices are available off-the-shelf, at least for outdoor use.

Furthermore, the value of location as context is obvious. The value of other context

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

43

information, especially about the environment, is often not clear and measuring them

often requires specific hardware.

The research surveyed lead to the following observations. Based on these

observations issues to take on in the course of the research were identified:

• Most of the work on context acquisition is centred on location or shows an

opportunistic sensor selection. In contrast in chapter 3 context acquisition and

perception using a variety of sensing technologies is assessed systematically

with respect to their potential use in ubiquitous computing systems.

• As seen from examples above context is not isolated, it is linked to entities.

This fact is used to create a model where context acquisition and context use is

related to artefacts. By structuring context in this way the model offers an

effective means to reduce complexity. This bottom-up model is strongly

connected to the approach of prototyping as shown in chapter 4.

• Related research suggests software architectures and libraries to ease the use

of context when developing applications. However as there is no standard

sensing infrastructure or common hardware most approaches excluded

hardware or only include very specific solutions. To advance this matter a

context acquisition platform consisting of hardware, software, and

communication was developed and is presented in chapter 5. This is extended

to a more general physical rapid prototyping system for ubiquitous computing.

Together with the tools a methodology was developed, too.

• In the literature so far the distribution of context assumes an active

management of such information, e.g. based on subscription models. In

chapter 6 an alternative approach is suggested where context is around and

available depending only based on spatial and temporal relationships.

• The very basic idea of invisible computing, interaction with a system that is

not regarded as operating a computer, questions many concepts in traditional

human computer interaction. An alternative implicit human computer

Chapter 2 - Background and Related Work

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

44

interaction model is presented in chapter 7. Also the notion of invisibility is

investigated further.

• The research methodology that can be observed in the work reviewed in this

chapter varies to a great extent. In many cases the reported evaluation is

opportunistic. In chapter 8 a systematic overview of evaluation techniques and

their applicability is provided.

45

Chapter 3

Acquiring Context using Sensors

In this chapter mechanisms to gain context information by the use of sensors are

introduced. The reasoning behind this is that context-aware applications rely on the

availability of information about the situation they are used in. The ultimate goal is to

make available to the system, a representation of the world around that is close to the

perception of the user. In this chapter it is assessed which steps are needed to provide

basic perception for context-aware systems. This approach looks systematically on

how to narrow the gap between the user’s and the system’s perception of the real

world in certain situations.

As outlined earlier context sensing received little attention in ubiquitous computing

research so far. In many cases context is solely based on location. For location

different means of sensing and interpretation are well established. However the

physical world offers a much richer environment. With respect to situation and

context the contribution of further sensors, especially monitoring the physical world,

is little understood.

Sensing and sensor technologies are widely used in robotics, automation, and

engineering. In these environments sensors proofed to be an essential source of

information to create useful systems. In general in such systems the task is well

defined and specific requirements (e.g. regarding accuracy and update rate) can be

determined. In contrast in Ubiquitous Computing environments sensors are often used

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

46

to monitor unstructured phenomena and new methods and techniques are required

[Estrin,02].

In the following the concepts of cognition, perception, recognition, and abstraction are

discussed based on the hypothesis, that context is related to parameters that can be

observed when a certain situation occurs. Starting from these observations various

types of sensors and algorithms are introduced and assessed for their utility for

building context-aware systems. In particular sensing technologies and perception

algorithms are evaluated with respect to the requirements implied by Ubiquitous

Computing environments. Furthermore a layered recognition architecture is

introduced that offers interfaces on various levels and supports distribution.

3.1 Perception and Cognition in Nature

In this section a short overview of perception and cognition in nature is presented as a

motivation and inspiration for the further work on context acquisition. These

processes in nature are extremely complex and there is no attempt in this research to

recreate or simulate them. However looking at perception, cognition and the way

sensory inputs are processed in nature provides many interesting ideas that can

influence the design and development of Ubiquitous Computing systems.

Acting and reacting with respect to the current situation is a basic property of most

intelligent systems. Looking at flora and fauna it is a major advantage in the struggle

for survival to have the ability of being adaptive. The capability to adapt to new

circumstance and situations is a vital quality for virtually all living organisms and a

major advantage in the struggle for survival [Darwin,59].

Considering the evolution of life, adaptation over generations is a key success factor;

this can be compared to anticipating the context of use at design time. This also

relates to development processes of context-aware systems, which often occurs in

generations, e.g. project TEA [TEA,98] and project Smart-Its [SMART,02]. The basic

concept is to use experience from one generation for an improved design of the next

generation, optimising and specialising the system. This approach is widely used

[Want,02].

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

47

The use of context at run-time is comparable to the adaptation of life-forms to short

term or sudden changes in their environment, such as day and night, danger, drought,

and temperature changes. A prerequisite to these short-term adaptations is the

availability of perception and cognition mechanisms.

Having perception and cognitive functions are the foundation of intelligent behaviour

of creatures and these concepts are strongly related. The following basics of sensing,

perception, and cognition are described to provide some insight in these processes. In

this work it is not anticipated to model these processes for building systems, but

nevertheless they are taken as motivation and as a source of inspiration for the design

of the sensory part of context-aware systems.

The research into the senses that are the basis for human perception has been a

challenge for a long time. A description can already be found in the works of Aristotle

[Aristotle,00]. In this theory, based on the knowledge of elements at that time, it is

argued that the five senses are enough to perceive everything that can be perceived.

The senses named are: vision, hearing, smell, taste, and touch. This list of human

senses was extended in the 19th and 20th century by: the perception of position and

constellation of parts of the body, the vestibular system, and perception of pain and

temperature.

Research in zoology showed that some animals have developed further senses. There

are fishes and amphibians that can perceive electric fields as shown in [Scheich,86].

In [Able,90] evidence suggests that some birds have the ability to sense the direction

of the magnetic field of the earth. The quality of the sense and the ability for

perception varies between creatures to a great extent. In nature it can be observed that

the perception capabilities of different species are closely related to their way of life.

It can be observed that the requirements imposed by the environment influence the

senses and perception developed by a life form.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

48

The following senses have been a point of inspiration when searching for sensing and

perception technologies2.

• Vision

• Hearing

• Smell

• Taste

• Touch

• Temperature

• Gravity and acceleration (similar to the vestibular system)

• Position and constellation of (body) parts

• General magnetic fields and in particular the magnetic field of the earth

• Electric fields

Senses in nature cannot be directly compared to sensors in a technical world. Senses

comprise the whole process from the reception of the stimulus, translation from

stimulus to signal, signal transport and the processing on several levels. In particular

the processing of neural signals is very complex and not fully understood. The basic

assumption is that the information sensed from the environment is translated into

patterns. These patterns are than associated in further process steps with meaningful

concepts. This leads to the assumption that perception is not possible without

memory, as claimed in [Neisser,76] and in [Goldstein,97, p. XXI].

To understand or at least interpret information that is sensed from the environment

knowledge or experience is required. Creatures learn during their development how to

assign meaningful and abstract situations to complex stimuli received by the sensory

system. This is based on the presupposition that similar situations are characterised by

similar stimuli, as discussed in detail later. Comprehension of a situation or

understanding of the implications given by a situation is a further step, which is to a

great extent based on the recall of experience.

2 The perception of pain is not further investigated because they are very specific to creatures. Similarly sense that
are more complex such as perception of emotions are left aside, because they are not directly related to a sensory
input as they rely on multiple senses mentioned above.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

49

3.2 Sensing Situations and Representing Context

In a very general view the concept situation describes the circumstances, the current

conditions, and state someone is in. In this thesis the term situation will be used in this

general form, based on the following definition from an observer’s viewpoint.

Definition: Situation

A situation is the state of the real world at a certain moment or

during an interval in time at a certain location.

This general definition of situation has implications when it comes to the task of

describing a situation. To fully describe the state of the real world at a given moment

in time is almost impossible. Any description of a situation is therefore incomplete. A

description is hence always an abstraction of the real world; the real complexity of the

situation is reduced to the characteristic of the situation. The step to select the

characteristic properties of a situation is always subjective. The decision which

aspects are characteristic for a certain situation is left to the person who makes the

description. Unstructured descriptions for the same situation made by different people

will most often result in diverse descriptions. Different levels of abstraction (e.g.

forced by different maximal length) of a description will inevitably lead to different

reports on the same situation. A further and important issue is that a description is also

dependent on the goal of the person who produces the description. In general it can be

observed from daily experience that humans characterise and describe situations

differently based on their role, task, goal, expectations, emotions, and knowledge.

Nevertheless descriptions are the most used means in everyday life to communicate

knowledge about situations, well knowing that these descriptions are neither objective

nor complete.

More structured ways of describing situations are questionnaires and check-lists.

Using these mechanisms the characteristic features of a situation that are of interest

are predetermined by the person producing the questionnaire or check-list. To some

extent the level of abstraction that is expected from the person who fills the form is

determined by the space (e.g. number of lines, words expected, text box size)

provided.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

50

Matching similar situations is a task that is essential in life. By recalling similar

situations creatures have means to transfer accumulated knowledge and experience

from the past and gain therefore advantage. E.g. a car driver recognises a situation

where there is ice on the street and proceeds slower because the driver knows from

previous experience or knowledge that driving fast in this situation may be dangerous

and could result in an accident. This even works if the driver has never travelled this

particular road before, because for this type of situation it is not important that this is a

specific road. This example explains a further challenge: the description of a situation

has to be specific enough to match only relevant situations but as general as possible

to match all similar and related situations where the knowledge is useful.

Definition: Context

A Context is identified by a name and includes a description of a

type of situation by its characteristic features.

The description can constitute of a number of conditions that can be evaluated to true

or false, possibly with an assigned certainty. Having such a context it can be evaluated

whether or not a specific situation belongs to that context, which is described. Context

is a mechanism to describe situations by their defining features and group them into

one unit. In certain cases the description can consist of a single complex condition that

is not necessarily human readable, e.g. an artificial neural network.

Definition: Situation S belongs to a Context C

A situation S belongs to a context C when all conditions in the

description of C evaluate to true in a given situation S.

The following properties are desired for the description of a context:

a) All situations that are of the described type should be matched by the

description

b) A situation that does not belong to the described type should not be matched

c) Given a) and b) the description should be minimal

Creating a description of a context includes similar problems to creating a query for

information retrieval. To assess the quality of a description measures such a precision

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

51

and recall, well known from information retrieval can be used [Baeza-Yates,99].

Based on these definitions context can be regarded as a pattern, which can be used to

match situations of the same type.

It is obvious that a situation in the real world can belong to many contexts. This is an

observation that is coherent with experience in everyday life. Most often a situation

does not solely belong to one type of situation. Therefore situations in the real world

will be treated as belonging non-exclusively to a context. That means a certain

situation can belong to none, one, or a number of contexts.

To reduce complexity it is possible to create a restricted model which only allows

exclusive contexts. The set of contexts has to be selected in a way that possible

situations are exclusive of each other. This makes the development of perception

systems as well as context-aware applications much easier.

3.3 Sensor Data is Related to Situations and Thus to Context

A certain type of situation has characteristic features and humans recognise that a

particular situation belongs to this type. This process of assessing situations is done

over and over in any action humans do. It is mainly based on an implicit analysis of

the sensory input from the surrounding, combined with the internal state and

knowledge available. This observation leads to the following more general

hypothesis.

Hypothesis 1: For all situations that belong to the same context the

sensory input of the characterising features is similar.

Table 1 illustrates that assumptions can be made on specific sensory inputs, which

determine the occurrence of a certain type of situation.

Context Related sensory input
User sleeps It is dark, silent, type of location is indoors, time is “night-

time”, user is horizontal, specific motion pattern, absolute
position is stable

User is watching TV Light level/colour is changing, certain audio level (not silent),
type of location is indoors, user is mainly stationary

User is cycling Location type is outdoors, user is sitting, and specific motion
pattern of legs, absolute position is changing.

Table 1: Contexts related to sensory input.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

52

Table 1 also shows that there are inherent limitations to the approach of finding

characteristic features. Taking the first context “User sleeps” the stated related

sensory input is correct for the vast majority of cases where this situation occurs.

Nevertheless the “context-recall” is certainly not 100%. Looking at the following

examples at least one of the characteristic features is not true: someone sleeps in a

sleeper during a train journey, a home less person sleeping in the street, and a

nightshift worker sleeping during the day. As humans we still would consider these

situations belonging to the context “user sleeps”, but the further context-recall is

pushed to an optimum, the more complex the descriptions become and the closer we

get to modelling the world. Also examples can be created where “context-precision”

is not at 100% either; consider a situation where a detective is doing an observation,

laying on the floor in a dark room watching someone.

If systems should be enabled to make use of context there is a need for providing

access to a sensory system. A prerequisite to find out whether or not a specific

situation belongs to a context is to have information sources, such as sensors, that

deliver the sensory input. Knowing the values of the characteristic features at a

specific time or over an interval makes it feasible to determine if the situation belongs

to a context or not.

To verify the hypothesis sensor data collected in various situations that belong to a

certain context as well as situations that do not belong to the context has to be

analysed. For the selected characteristic features there has to be a similarity between

all the situations that belong to the context, whereas for the situations that don’t

belong to the context there has to be significant dissimilarity. Based on the selection

of sensory systems and characteristic features it can be decided whether or not the

hypothesis holds. When creating systems this is usually an iterative and constructive

process, rather than just testing the conditions. Data mining techniques have been

successfully used in our projects to find characteristic features. See chapter 5 for a

detailed discussion of a method to build systems that acquire and use context.

The remainder of this chapter will introduce the topic of sensing in Ubiquitous

Computing scenarios. In particular guidance for the selection of sensory systems,

feature processing algorithms and architectures will be given. These insights should

help to choose the right sensors that represent the important issues of the situation and

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

53

also are compliant with the requirements imposed by this type of situation.

Furthermore it will also offer help for choosing the right algorithms and architectures

for the usage of context.

A general problem is to find the borders of a context, situations all belonging to one

context are still different.

• on the non characteristic features they vary to a great extent

• within the characteristic features they vary to some extent

Algorithms that are built to match contexts from sensory input must take this into

account, in particular allowing variance in sensor data, because situations are never

exactly the same.

3.4 Requirements on Sensing in a Ubiquitous Computing

Environment

When developing, designing and building devices that facilitate context-awareness the

technical and economic constraints have to be taken into consideration; see Table 2

for an overview. Technical constraints are related to the type of devices or system that

should be enhanced by context-awareness, economic constraints are mainly bound to

the cost of a device, the system or service, and social constraints are based on the

anticipated users. Most of the issues are of particular interest for mobile devices but

many of them are also important when building embedded or stationary devices and

systems. Using sensors in Ubiquitous Computing environments to gain context and to

facilitate new ways of human computer interaction requirements are very different

from robotics where sensing is also widely used [Siegert,96,p.28].

Requirements on Sensing in a Ubiquitous Computing
Design and Usability
Energy Consumption
Calibration
Start-up Time
Robustness and Reliability
Portability, Size and Weight
Unobtrusiveness, Social Acceptance and User Concern
Price and Introduced Cost
Precision and Openness

Table 2: Constraints on Sensing.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

54

The following criteria give guidelines as to what questions should be considered when

selecting sensors and algorithms. These issues are not isolated. Most often there is

also a trade-off between certain issues discussed here and the added value provided by

a sensor or algorithm.

3.4.1 Design and Usability

Introducing sensing technology in devices can have severe consequences on design

and usability. It becomes a major challenge to include sensors into the design without

compromising aesthetics and usability. In particular if sensors need a window to the

real world (e.g. light sensors and gas detector) this becomes a major issue. Also if

sensors require a certain user interaction, e.g. touch sensors that can tell if the user

holds the device in his hands, they become an integral part of the design of the

system. Sensors that are directed or where a certain basic position during operation is

assumed (e.g. gyroscope) must be integrated into the design so that these requirements

are met.

When constraining the way people can use a device because of the sensing technology

that is build into the device there has to be a convincing added value that comes from

sensing. More general the utility and usability of a device should not be compromised

by the inclusion of sensing technology.

3.4.2 Energy Consumption

For many mobile devices, especially in the consumer sector, battery life time is a

crucial aspect. For mobile phones, PDAs, and wearable computers the operating time

before they have to be recharged is an important discriminating factor. This class of

devices is however very much suited to be enhanced using context, because they are

used in different situations [Schmidt,98]. When sensing and perception is build into

such devices the additional power consumption becomes a major issue. Therefore it is

of great importance to design the perception module with the goal of minimising

power consumption. This includes decisions on which sensors are used, what

processing hardware and algorithms are deployed and how often sensing is invoked.

To argue in favour of sacrificing battery power for sensing and perception the added

value for the device, application, and ultimately for the user, must be significant.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

55

A goal should be to add perception with a positive power balance. Here the basic idea

is that due to the availability of context information power saving on the main device

can be more effective and the energy saved here is more than the energy spent on the

perception module. An example is to switch on a PDAs screen only when it is touched

by the user, as we have shown in [Schmidt,00a]; similar work for a watch is reported

in [Cakmakci,02].

3.4.3 Calibration

Sensors most often involve complex electronic, mechanical, or chemical processes to

measure certain environmental conditions. To get precise sensor data it is often

necessary to calibrate sensors before use. If this can be done during production of

systems using such sensors introduces extra costs. When it has to be done in the user’s

environment it makes the device much more complicated to deploy. When calibration

has to be performed more often (e.g. each time before using the device) this will

impose a negative effect on the usability. Especially sensors that need specific

calibration procedure or have a tendency to de-calibrate over time are difficult to use

in a consumer market.

To minimise the need for calibration or to avoid it at all appropriate post-processing

mechanisms and algorithms can be used on certain types of sensors. One general

approach is to work on relative values, changes in reading, and derivatives rather than

on absolute values of sensors wherever possible.

3.4.4 Start-up Time

The time needed before a device is operational is critical for certain applications.

Especially where an instant-on feature is required additional setup-time or boot-up

time introduced by the perception module is not acceptable. For the selection of

sensors and algorithms these are important criteria. Therefore sensors that need a

warm-up time (e.g. location sensor via GPS, gas sensing) are only useful when the

delay is accepted by the user, or if it is of no particular interest to the application.

Methods and algorithms can take this into account and can be adapted to support

instant-on behaviour. Consider a perception module that provides information about

the audio environment (e.g. noise level, type of noise, number of speakers, etc).

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

56

Typically the device will give this information by analysing a time interval (e.g. the

last 20 seconds). This would then lead to a start-up time of the module, in the example

at least 20 seconds. To overcome this problem different approaches can be used, such

as using the information that was valid before the device was switch off, calculating a

rough estimate of the values in a much shorter time when the system is booted (e.g.

just looking a two seconds of audio), or just providing a default value until calculated

values are available.

3.4.5 Robustness and Reliability

To make devices useful in everyday environments they have to be robust. Many

sensors and sensing devices are designed to be used in a laboratory environment with

great care, how people use consumer devices is however completely different. For

example, it is not expected that a mobile phone requires servicing for re-calibration

after it was dropped it from a table, whereas for a scale in the lab this would be

perfectly fine. Sensors also impose constraints on the way devices are designed, e.g. if

the device should be able to pick up gas concentrations in the environment it is

extremely difficult to make the device water-proof. Building windows for the sensors

into devices can reduce the robustness.

Many sensors are very sensitive and fragile; therefore it is difficult to integrate them

into everyday devices to work reliably over the lifetime of the artefact. When

selecting sensors this should be taken into account. The algorithms selected should

counter the effect of unreliable sensor information or at least be designed to cope with

it.

3.4.6 Portability, Size and Weight

Adding sensors and processing for perception will usually add to the size and weight

of an artefact. For mobile devices in particular the increase in size and weight has to

be considered because it can easily lead to decreased portability. This is especially

important for mobile artefacts as decreased portability can easily result in a worsened

usability.

Size and weight are not only connected to sensors but also indirectly to the perception

algorithms used. More complex and computing intense algorithms may need more

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

57

processing power and storage. This leads to a greater demand on the processor and

can ultimately lead to higher power consumption and hence to a heavier and bigger

device, due to the batteries required.

3.4.7 Unobtrusiveness, Social Acceptance and User Concern

By the introduction of sensors the appearance of a device or environment can be

changed dramatically. Building sensing unobtrusively into artefacts and environments

is a goal that is shared in many Ubiquitous Computing projects and is also related to

the concepts of calm technology as introduced in [Weiser,98] and ambient interfaces

[Wisneski,98], [Gellersen,99b].

When considering the inclusion of sensing technology it is important to assess user

concerns about the sensors that should be used and their appearance in the design.

Especially when devices are equipped with complex optical or acoustic sensing

capabilities, users are often concerned about their privacy [Mann,01].

3.4.8 Price and Introduced Cost

Devices become more complex and also additional components are needed for built-in

perception. The additional cost introduced by sensors, additional processing power,

development cost, and potentially increased maintenance costs have to be related to

additional benefit that an application gains by being context-aware.

Calculating the benefit of having context information available vs. the introduced cost

is not easy. Often it is highly subjective because it is dependent on the value that

people assign to the additional functionality enabled through context. Moreover many

variables affect each other so it is more of a design decision than a calculation.

Nevertheless given that certain context information should be available in the device

or the environment, price and introduced cost can be used to assess what sensing and

perception option is the most useful.

3.4.9 Precision and Openness

In traditional sensing systems the require precision of the sensors can be determined

by the application that is supported. In a closed system requirements and conditions

can be matched by a specific sensing system. When creating a Ubiquitous Computing

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

58

environment that can support many different applications and should be open to new

developments, the requirements and conditions can not be clearly determined upfront.

In many cases the selected precision is a trade-off with other requirements. It is

therefore useful to select sensing systems so that the information offered is

sufficiently precise to support anticipate applications while keeping the constraints on

other requirements minimal. Creating a system that is open to new sensors and

perception methods will further ensure that new applications with different

requirements can still be realised.

3.5 Sensing Technologies and Systems for Data Capture

Sensors and sensing technologies are widely applied in robotics, automation, and

process control. In the field of sensor technology major advances have taken place

resulting in significant improvements with respect to physical size and weight, power

consumption, processing requirements, interfacing options, reliability, robustness, and

price [Göpel,95], [Saffo,97], [Sensor,99], [Baltes,01], [Sensor,01]. These

developments suggest that a variety of sensors are useful and deployable in

Ubiquitous Computing environments to provide information about the real world. An

overview of technologies considered in more detail in this chapter is presented in

Table 3.

The range of sensors available is large, e.g. the nomenclature of the ‘sensor 99’ fair

lists more than 130 categories of sensors [Sensor,99]. However many of these sensors

are very specific to certain applications or they impose very specific requirements for

Sensing Technologies
Light and Vision
Audio
Movement and Acceleration
Location and Position
Magnetic Field and Orientation
Proximity, Touch and User Interaction
Temperature, Humidity and Air Pressure
Weight
Motion Detection
Gas-Sensors and Electronic Noses
Bio-Sensors
Zero-Power Sensors

Table 3: Technologies for context acquisition.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

59

their operation so that their application in a Ubiquitous Computing environment is not

practicable.

Within the research carried out, many different sensors have been examined and

evaluated with respect to their applicability for Ubiquitous Computing applications.

The survey presented here will provide the reader with a selection of sensors and

sensing systems that were most useful.

3.5.1 Light and Vision

Single optical sensors (photo-diode, colour sensor, IR and UV-sensor, etc.) can be

used to gain information on the light intensity, the density, the reflection, the colour

temperature of the light (wavelength), and the type of light (sunlight, type of artificial

light, etc). Different light sensors are available that are receptive to a specific

wavelength or a specific spectrum of light (UV, IR, or human eye like) [TAOS,02].

Light sensors are a source of rich information at a very low cost. Energy consumption

is fairly low (e.g. TSL250 1mA at 5V); most sensors are simple to interface (e.g.

analog output, pulse-width output) to a microcontroller, these sensors are also mostly

robust and cheap.

Beyond the immediate features further information can be deduced when monitoring

the signal over time. From patterns in the light (e.g. 50Hz flickering or light emitted

by a TV) cues about the environment can be calculated [Schmidt,99a].

Combining more light sensors on one device (e.g. 2 on the lower side of a PDA, one

at the front, one at the back, and 2 on the top) information about the light distribution

can be used to reason on movement and further contexts (e.g. direct light, indirect

light, device placed on a surface, held by the user, etc).

C-MOS Camera-modules can be used similar to an arrangement of light sensors by

using lenses and appropriate algorithms. Beyond this, cameras offer a wide spectrum

of information that can be sensed, such as visual information about the environment,

which can be obtained with little processing power (e.g. main colour, motion) or

richer contexts that need more processing power (detection of objects, landmarks,

people, gestures etc). Many algorithms are available to gain further information such

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

60

as a colour histogram, recognition of shapes, markers and objects, and motion

tracking.

Camera modules have become inexpensive but for most applications they have higher

demands on processing and storage that cannot be met by low end microcontrollers.

Increasingly digital camera modules that have processing power already built-in

become available. When cameras are used, the direction that they are facing becomes

a major design issue. In contrast to light sensors people often feel uncomfortable

when cameras are around.

3.5.2 Audio

The audio environment is a further rich source of information; humans use audio as

one main communication media. The information available from paying attention to

audio is manifold, reaching from simple features such as volume and spectrum to full-

fledged audio processing including speech recognition.

Microphones and amplifiers can be used to capture the audio in the environment.

Microphones are available for different frequency spectra. By these means and the

usage of band pass filters the detection of audio can be restricted to certain

frequencies.

The output of the amplifier can then be attached to an analog input of a

microcontroller or to an analog-to-digital converter. Depending on the features that

are of interest sampling rates between 4 kHz and 100 kHz with 4 to 16 bit accuracy

are useful. For gathering the audio data the Nyquist theorem applies; the sampling rate

has to be at least twice the frequency of the maximum frequency that is required to be

sampled. In some case, e.g. when only the noise level is of interest, lower sampling

rates over a longer time may be used and than the values are estimated based on

statistical measures. For specific features such as volume and spectrum specific

Integrated Circuits (ICs) providing these functions in hardware are available, e.g.

[National,02].

A variety of further features (e.g. based frequency) can be calculated even on minimal

hardware. As we have shown in the project TEA it is feasible to discriminate different

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

61

types of audio input (noise, music, speech) on a microcontroller using little resources

[TEA,98].

Using multiple microphones that are interconnected can provide information about the

location of an audio source [Svaizer,97]. Having a number of spatially distributed

microphones (e.g. on each corner of a device or in the environment) identifying

context that is related to distributed sound sources becomes possible [Schmidt,99b].

Correlating the audio streams from different distributed microphones is a

computationally cheap way to acquire more information about the environment

[Schiele,01]. Using more powerful systems speech analysis can by carried out.

A option is to sense audio that is beyond human perception, for example the use of

ultrasonic sensors to augment human sensory capabilities.

3.5.3 Movement and Acceleration

Acceleration and patterns of movement are very valuable as information when

considering mobile and wearable artefacts. Knowing whether or not devices have

been moved and in what way they are handled can become a helpful source of context

information. A basic constraint in the real world is that creatures and artefacts do not

change their whereabouts other than by movement and acceleration.

When humans interact with other humans it most often involves some act of

movement of a certain body part. Also when humans interact with artefacts in their

environment this is often connected to some movement or acceleration of the artefact.

Sensing these movements and accelerations can be realised in various ways and at

various costs. Exemplarily the following three options: motion switches,

accelerometers, and gyroscopes, are assessed further.

Motion switches offer a simple form for detecting movement. Usually they are

mounted to a device in a way that the anticipated movement will result in change of

the position of the conductive element in the switch. This will then lead to a change in

the state of the switch (e.g. from open to closed or vice versa) and this can be

exploited when connected to an interrupt line or a digital input of a system. These

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

62

sensors offer a fairly simple mechanism to wake-up microcontrollers when they are in

an energy saving sleep mode.

Accelerometers are available as integrated micro-machined devices combined with

driving electronics in an IC, e.g. the ADXL202E [Analog,01]. Accelerometers

provide information on the acceleration, but the acceleration output is dependant on

the orientation of the devices. This has the advantage that accelerometers can be used

to measure the orientation of a device with a great accuracy if the device is not

moved. The drawback is however, that the absolute acceleration value is less useful if

there is no knowledge about the orientation. This is especially true for mobile and

handheld devices where it is a major issue. One solution is to look at relative values

rather than absolute ones. These sensors are fairly easy to interface to a

microcontroller (analog or pulse width) and their power consumption is rather small

(e.g. ADXL202E 0.6mA at 3V). Also the device size is minimal. The changes in

acceleration are reflected quickly in the sensors output, in the order of milliseconds.

Using Gyroscopes is another option when angular velocity is of interest. These

devices are generally more expensive, bigger in size, and also need more power

[Murata,99]. They usually supply an analog signal that represents the represents the

angular velocity in volt per degree per second.

For many applications, especially when no prior knowledge about the orientation of

the device is available, it can be very useful to combine three accelerometers or three

gyroscopes to gain information about acceleration in all dimensions [Sato,01].

3.5.4 Location and Position

Location and position have been widely investigated for their use in context-aware

systems, as evident from many projects. When discussing location and position, issues

such as co-location and proximity are also relevant.

For sensing location outdoors GPS and dGPS are most popular and easy to use

[Hofmann,97], [Letham,01]. However GPS has a long boot-up time (typically 30

seconds to one minute). This time can be reduced by using further information gained

earlier or over a data connection. The output of a GPS location system provides the

position of the device. Depending on the number of satellites which are visible the

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

63

accuracy is within a few meters and with dGPS in the region of centimetres. Most

devices support the standardised NMEA0183-format that is exchanged over a serial

line protocol. Most GPS systems offer additionally a propriety protocol that is more

powerful.

Another option is to use information provided by a cellular network, such as the

information about GSM base stations in range and their link quality or just the GSM-

cell booked in. The location information is usually only supplied to services in the

network [Nakanishi,00], [Park,02]. On some GSM modules or phones the information

about the base station booked in and the signal strength can be read out and captured

over a serial line protocol (e.g. debug mode of an Ericsson PF768 phone).

In certain setups radio beacons can also be used to provide location information. Here

both specific hardware and software is used or the location system is built on top of an

exiting infrastructure (e.g. as in GUIDE using WaveLAN [Cheverst,00a]). Further

issues on outdoor location systems are discussed in [Bulusu,00].

Another method is to look at what TV and radio stations can be received (e.g. using

Radio Data System – RDS), on which frequencies and with what signal strength. This

can be realised using a radio and/or TV module where this information is accessible.

The location is then determined by matching the reception patterns with reception

patterns of which the location is known. There are no commercial products available

using this technique but it seems to be an interesting option for systems that include a

radio or TV receiver, such as car radios or TV sets.

Comparing these methods GPS offers the service to find the location anonymously,

whereas in the other systems it is very much a design decision whether or not a central

system is involved in finding the position. The accuracy of the position gained from

outdoor location systems can be ranging from town level down to centimetre level.

In indoor scenarios where coverage of a building is required different technologies are

available and deployable, in particular IR-beacon systems [Butz,00], RFId-Tags, and

ultrasonic location systems [Ward,97], [Nissanka,00]. Further approaches are

researched, such as WaveLan triangulation, location systems based on existing

infrastructure, and RF-beacons [Bahl,00], [Small,00]. When setting up such systems

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

64

the design decision can be made as to whether or not anonymous location finding is

supported. This usually comes down to the question whether the location is calculated

on the local device or within the network. The accuracy of indoor systems is very

much dependent on the environment [Regenstein,01].

In our experiments and from reports of other researchers it appears that most indoor

location approaches provide very high accuracy under laboratory conditions, but still

perform poorly in real environments where people walk around, doors are opened and

closed, laptops and PDAs use WaveLAN and Bluetooth and where CRT-screens are

switch on and off. Exceptions are the AT&T active bat system [Wart,97] and the MIT

cricket location system [Nissanka,00] which are not commercially available.

In order to sense co-location the approach of using radio beacons that can adjust their

outgoing signal, or measure the strength of the incoming signal, can be taken. By

making the communication range adjustable the degree of co-location can be selected.

As shown in the Smart-Its project [SMART,02] this can give an accuracy of about a

metre most of the time, however changes in the environment introduce significant

errors. Co-location between devices and the environment can also be realised using

RFId technology with long range readers. The use of strong readers and large

antennas is very disputable in an environment where people live or work.

Location sensing is somehow different from the sensors discussed earlier. The aim of

most location systems is to offer a ‘sensor’ that gives meaningful symbolic or

geometric location information. This information is then most often used as a trigger,

or an index to access further information.

3.5.5 Magnetic Field and Orientation

Different types of sensors are available to detect magnetic fields. Some are designed

to detect the earth’s magnetic field whereas others are constructed to detect the

proximity or change of a generated magnetic field. Hall-sensors detect the flux of the

magnetic field applied.

Sensors that detect the earth’s magnetic field are the basic building blocks for an

electronic compass. The output is related to the direction of the magnetic filed and can

be used to figure out which direction is north. These sensors are also available

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

65

combined with electronic circuits in one component that provide this information on a

higher level [Honeywell,02], [Philips,02]. Advanced modules offer information

similar to a compass, so the direction of a device or of a movement can be

determined.

In our experiments we realised that in modern environments (e.g. offices with

computers monitors) this sensor can give false information. Nevertheless there are

many application areas where the orientation is of significant value.

3.5.6 Proximity, Touch and User Interaction

Similar to the argument introduced with movement and acceleration it is also a basic

observation of the real world that people often interact with things by touching them.

Sensing that a user interacts with an artefact can be implemented in various ways and

also with different levels of detail, ranging from the mere fact that the user touched

the device, to the way the artefact is hold.

Before the user can touch an artefact they have to come close to it; therefore sensing

the proximity can offer information that user interaction is likely to be ahead. A very

simple way to sense proximity is to use a capacitive sensor. Such capacitive sensors

are available off-the-shelf and offer a digital signal when approached and a threshold

is crossed. For larger settings or to integrate them into artefacts, such capacitive

sensors can also be built into objects using metal sheets and a driving electronic

circuit. Proximity sensors that offer the distance of an object or the user hand are also

available based on light. The analog output is related to the actual distance of an

object in front of the sensor.

Humidity sensors can also be used to provide information on the proximity of users.

The humidity rises when users approach an artefact. This rise however is extremely

small, and high quality sensors are required to measure that change.

Conductive surfaces on artefacts can be used to get information on touch

[Hinckley,99]. These surfaces can also be used to measure the skin conductance of the

user and to some extent muscle tension. There are additional amplifiers required to

provide the signal in a way that it can be read by a microcontroller. The values on skin

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

66

conductance and muscle tension are also dependent on how strong the users grip on

the artefact is, because the measurement also includes the transition resistance.

A further option to measure user interaction and touch is force sensitive resistors.

These surfaces change their resistance according to the force applied to them. Putting

them on the surface of an object, means that the object can be use to measure how

strong the grip of the user is. Using strain gauges on the structures of artefacts can

also provide information about the way a device is held. By the user’s grip the artefact

is minimally deformed and that can be measured, as our experiments with a ball pen

showed.

Other sensors such as light sensors, temperature sensors, and CMOS-cameras can also

be used as the source for information about touch and proximity. Typically light

sensors are covered when a user holds the device and when held for longer the device

also heats up from the body heat.

Acquiring information about touch and proximity can be utilised to realise when the

device is being used or in the case of proximity to anticipate that the device will be

operated in the near future. By these means these sensors can reduce energy

consumption significantly, especially for devices that only need to be operational in

the user’s hand. Touch and the way artefacts are gripped can also offer further

information about the interaction process and in some cases about the user’s

emotional state.

3.5.7 Temperature, Humidity and Air Pressure

Temperature can be sensed using extremely simple thermal resistors or more

sophisticated temperature sensors with built-in driving circuits. Such temperature

sensors are available with analog or digital interfaces and offer high accuracy. A

rough knowledge of the temperature can be used to help identifying the type of

environment the device is in, often the temperature can be used to rule out a certain

condition rather than to indicate one. E.g. given a temperature reading of -10°C can be

used to rule out with a very high probability that the device is used indoors at that

moment. Whereas a reading of +20°C (room temperature) does not strongly indicate

that someone is indoors because this temperature appears quite often outside, too.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

67

Using high accuracy temperature measuring (e.g. resolution of 0.1°C) can help to find

transitions between situations, indications on the usage patterns, and also changes in

whereabouts of an artefact. For example having temperature sensors on various

artefacts and also in the environment can help to determine co-location of artefacts.

Looking at the time-stamped temperature history of objects co-location at certain

periods can be assumed or ruled out.

When building applications that are operated in environments where temperature has

an important impact, for instance, for fire fighters, in arctic regions, cold storage

rooms, or desert environments the information can be of great value at little cost.

Sensors for humidity are slightly more complex and also more expensive than sensors

for temperature. Humidity sensors are available based on capacitive and resistive

technologies and also as modules that provide an analog output that is proportional to

the humidity level. Humidity sensors react slowly to changes, in the order of seconds.

Beyond applying humidity sensors for measuring whether conditions they also can be

used to get information about transitions and changes. People that are in spaces also

change the humidity, which can then be measured, e.g. when people are entering a

room the humidity will increase.

Absolute air pressure gives an indication on the altitude and it can also be used as a

barometer. Detecting changes in air pressure can indicate certain actions, e.g. a

closing door in a room or vehicle will change the pressure minimally, similar changes

happen when driving trough a tunnel.

3.5.8 Weight

Weight is an intrinsic property of all objects and creatures. The straightforward way

of measuring weight of objects and creatures unobtrusively is to create environments

that have load sensing technology built in.

Load cells are sensors that can be used to measure weight. These types of sensors are

widely deployed in industrial systems and also commonly used in electronic scales.

Load cells can be manufactured to measure loads on nearly any scale, ranging from

measuring ingredients for pharmaceutical productions in milligrams, to the weight of

a freight train with several hundred tons. The resolution is dependent on the range and

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

68

also on the quality of the device. Load cells are available based on different

technologies and also with different interfaces. Commonly used industrial load cells,

based on resistive technologies incorporate a Wheatstone-Bridge, and provide an

analog output signal. Without signal conditioning they typically provide an output

range from 0 to 20mV. This voltage has to be amplified and can then read into the

microcontroller via an analog-to-digital converter. Off-the-shelf load cells are

available in different physical shapes and sizes (e.g. low profile, beam, and S-beam).

Depending on the object that is going to be equipped with load sensing capabilities

the appropriate one can be selected. If specific measurements are required strain

gauges can be used to measure deformation of structures and so load sensing can be

directly integrated.

The obvious quantity to measure is the absolute weight of the objects as a

discriminating property, as used in [Konomi,99]. This is using the basic scale

functionality. Analysing the change of load when an action occurs can reveal further

information, such as who is walking over a floor tile, e.g. as described in

[Addlesee,97] and [Orr,00]. In the experiments described in chapter 4 and published

in [Schmidt,02] and [Schmidt,02a] we show that distribution of weight, hierarchies of

load cell arrangements and analysis of the events is beneficial to build context-aware

systems.

3.5.9 Motion Detection

Detecting and observing the presents of people in a space is interesting to many

applications in Ubiquitous Computing. Detecting motion of subjects and objects in a

certain space can be facilitated using different technology.

A common way for motion sensing is the use of Passive Infrared Sensors (PIR). These

sensors detect changes in the heat flow in the environment and can therefore detect

humans and animals moving in the detector region of the sensor. PIR sensors are

available with analog output detecting a moving heat source. As modules with an

additional driving circuit they are also available providing digital output offering the

binary information whether or not someone entered or left the detector region. These

sensors always have a directed input and are available with different lenses offering

observation angels of 30° and 180°, and ranges of 2 to 15 meters.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

69

In stationary devices and shared environments, motion sensing can offer great value at

minimal cost. In mobile devices, motion sensing is more difficult because when the

device is moved, it is hard for the sensor to tell if something around it is moving or if

the device itself is in motion. However, when the mobile artefact can also sense

movement this conflict can be resolved.

Motion detection using PIR sensors, compared to video analyses, is less powerful, but

by far cheaper and simpler to implement. Also in areas where people object to the

presents of cameras, the option of using PIR sensors is an alternative.

3.5.10 Gas-Sensors and Electronic Noses

Many types of gas sensors are available to measure gas concentration in the air. Also

available are gas sensors that are designed for specific tasks, e.g. detecting food or

alcohol. Generally these sensors need to be pre-heated before a measurement can be

taken, typically the heating time is around a minute [Figaro,02]. This results in a

rather long delay before useful values are available; for many applications this is a

severe constraint. In environment based sensing scenarios it is an option to always

heat the sensors, for mobile devices the high energy consumption often rules out this

option. The heating often consumes around one watt, for about one minute. The

output is most often analog and can be interfaced to a MCU after amplification or

directly.

These sensors are not applicable for general mobile context-aware applications due to

the this high energy cost. Specific mobile appliances for security forces, fire fighters,

and mining personal can however benefit from these sensors. These sensors can also

provide interesting information for systems where sensors are embedded in the

environment and power is a minor concern.

The term electronic nose describes multi-gas sensors or arrays of gas sensors that are

usually used to recognise a particular smell or a variety of smells [Nose,02].

Technically they are more complex than sensors for a single gas. These sensors are

usually developed for very specific applications, such as in the food industry.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

70

3.5.11 Bio-Sensors

The term ‘bio-sensors’ is used to describe sensors that measure signals from life forms

in various ways. Many bio-sensors are highly specialised and are only usable in lab

conditions, whereas other sensors are fairly simple to integrate in personal devices. In

general these sensors can be discriminated into two classes: invasive and non-invasive

sensors. Invasive sensors are mainly used in medical appliances and are only applied

when there is an evident medical indication to measure a certain parameter. For

context-aware systems non-invasive sensors are of interest. In general their setup and

application does not require a medical procedure. The following parameters can be

measured with non-invasive sensors.

The pulse or heart rate indicates how calm, excited, or exhausted someone is. There

are various sensors available to measure heart rate at different body points, e.g. on the

finger, on the wrist, or on the chest. Including such a sensor in appliances that are

designed to be used during exercising, means that this context information can be of

great value.

Skin resistance is related to the ability of the skin to conduct an electrical current.

Skin resistance gives an indication on the tension and excitement of the user, which is

the same technique that is used in lie-detectors. However the resistance is also

dependent on the type of skin (e.g. where on the body) and how the electrodes are

fixed (e.g. just by holding, as finger ring, or with a plaster and conductive lubricant.

Muscle tension can be measured using electrodes that touch the skin. These sensors

have been widely applied in bio-feedback systems. However muscle tension can be

also used to recognise gestures and movements [Rekimoto,01].

Sensors are available that acquire blood pressure based on a module that observes

blood flow. These sensors can be fairly simple, integrated in devices worn at the body.

However the parameter of blood pressure is mainly interesting in medical

applications. Non invasive sensors to measure the oxygen concentration in the blood

are also available [Nonin,02].

Using electrodes placed on the body in a certain pattern the activation pulse for the

heart can be measured, referred to as Electro Cardio Gram (ECG). By using electrodes

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

71

on the head of the user the activation of certain regions of the brain can be measured.

The method known as Electron Encephala Gram (EEG) requires expensive equipment

and qualified personnel to set it up.

In summary the value of these sensors is obvious for medical devices and bio-

feedback applications. These sensors can also be deployed directly in appliances that

are designed to be used during sports and exercise, and also for people working under

extreme conditions.

Some of these sensors can be used to acquire information, or at least some hints about

the emotional state of the user (e.g. how tensed he is, or how excited she is). These

sensing technologies can also be used to create new input mechanisms [Affective,02],

e.g. to be exploited in games [Moberg,02].

3.5.12 Zero-Power Sensors

When designing systems where the main concern is to save power sensors should be

deployed to support that goal. In these settings sensor circuits are usually deployed to

generate an external interrupt to wake up a MCU or a whole system that is in sleep

mode. The main design goal is that the sensor system consumes only minimal power,

or at optimum no power while nothing happens.

Typical sensors that can be used to design such wake-up mechanisms are motion

switches (available to detect angle, shock, and vibration) and solar panels. The

switches are attached to the device that they are open while the system is in sleep

mode and that they close and generate a signal when the device is moved. The solar

panel can be used together with a capacitor to generate a signal when the light level is

changing.

3.6 Composition of Sensing Systems

When designing systems it is also an option to deploy multiple sensors to make a

perception task easier or even feasible. Sensor fusion is investigated in automation

and robotics for domains with a clearly defined sensing objective [Brooks,98].

In Ubiquitous Computing environments several options for creating a sensing

infrastructure are possible. Table 4 illustrates the design space for deploying sensing

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

72

technologies. Sensors can either be in one place or they can be spatially distributed.

When selecting sensors they can be homogeneous or heterogeneous. References to

projects and publications are mentioned for each region. It is assumed that there is

always communication between sensing modules.

A major issue, especially in a distributed networked setting, is where the sensors are

placed with regard to the observer. For example having a sensor to can sense someone

walking by can provide similar information, then a device that is worn and detects the

movement of the wearer. This also makes it than necessary to consider to which

identity a context or activity is assigned and how transformation between different

observers can be realised. These decisions have also implications on privacy.

Distribution aspects are assessed in more detail in chapter 6.

3.6.1 Sensor Arrays and Groups of Sensors

Putting a number of sensors of the same type into an array often provides additional

information that is hard to get from just one sensor. To illustrate this consider the

usage of microphone; using a single microphone it is quite hard (and needs extensive

processing power) to separate different distributed sound sources. Having two

microphones or an array of microphones physically distributed this task becomes

rather simple and can be solved on a microcontroller as we have showed in

[Schmidt,99b]. In our experiments we could see that it is often feasible to ease the

perception task significantly by adding additional sensors of the same type to the

system.

When building sensing technology into mobile and handheld devices it is often

necessary to use multiple sensors of the same type placed at different physical

positions of a device. Especially when there are little restrictions in the way a device

is held or carried; this can help to ensure that at least one sensor gets a reading that is

 All sensors at same
position

Sensors distributed

Homogeneous sensing system
(one type of sensor)

e.g. orientation aware
PDA, [Schmidt,98]

e.g. load sensing system,
[Schmidt,02]

Heterogeneous sensing system
(different types of sensors)

e.g. context-aware mobile
phone, [Schmidt,99c]

e.g. distributed sensing
boards, [SMART,02]

Table 4: Design space for deploying multiple sensors.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

73

useful. A typical example is a light sensor: having only one on a handheld device may

lead to the case that the user puts their finger on top of the sensor resulting in a false

reading (as many people have experienced with cameras where often the light sensor

is mounted in a way that it can be conveniently covered when holding the camera).

Having multiple sensors, such situations can be detected or even avoided.

Grouping sensors of different types closely together, as we investigated in TEA

[TEA,98] and in [Beadle,97], has the advantage that these devices are fairly easy to

produce. The drawback however is that these sensors are for most applications not

optimally placed.

3.6.2 Placement of Sensors

Where sensors are mounted or attached is of major importance and has a great

influence on the quality of the data that is gathered. When putting all sensors together

in one place, e.g. mounting them on a sensor badge, perception of contexts becomes

much harder than for a case where sensors are physically distributed and placed at an

optimal point. This is especially true when considering applications in wearable

computing, where it is of great value to distribute sensors over the body to positions

where the parameters of interest can be most easily read, [Laerhoven,00] and

[Laerhoven,02].

Finding and selecting the ‘right’ position for a sensor is very much dependent on the

contexts that should be recognised. E.g. when it is of interest what manual task the

user is carrying out, mounting accelerometers on the wrist is quite useful. Whereas

when contexts regarding movements, such walking or running, are of interest, then the

hip is a good position to mount the accelerometer.

In the case of environment based sensors analysing the physical conditions of the

space can provide important information. E.g. building a sensor that can tell that a

room is occupied can be either realised by sensing the actual room or by sensing the

entries to that room.

In most case, where there is no prior knowledge about sensor placement, the best

position can be found by acquiring test data with sensors mounted at different

positions, and then selecting the optimal position based on this data.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

74

3.7 Perception Methods for Systems with Limited Resources

In this section, a selection of perception methods is discussed. The focus is on simple

techniques that can be used on devices that have very limited processing power and

memory. For some methods the approach was to approximate calculations usually

carried out on powerful systems (with no real limitation regarding processing power

and memory) in the best possible way on the limited system.

3.7.1 Basic Statistical Functions

The average of the data samples provided by a single sensor over a given time-

window can be calculated with minimal cost3. Calculating the average is meaningful

for data from nearly any sensor, e.g. light, acceleration, temperature, and pressure

sensor.

The median is a valuable measure to eliminate extreme values and false readings in

the signal that is supposed to be stable or slow changing. However if the sample size

is very small the median may proof of little value. To avoid the need for a division in

the calculation an uneven number of samples can be taken.

Calculating the standard deviation can give an indication on how stable a signal is,

or how much change there is in the signal. The measure is less useful if it is known

that the signal sometimes carries wrong values, because even a single value can

distort the result.

The range of the samples collected can be easily calculated by finding the minimum

and maximum. This can be done on the fly without the need to save all samples, by

always updating minimum and maximum after each reading. Range is however very

vulnerable to single false readings. These errors are avoided by the use of percentiles,

e.g. using the interquartile range is more robust. Sorting the data and calculating the

distance between values at one quarter and three-quarter is obviously more reliable

than using the range, e.g. a few faulty values do not wreck the calculated feature. A

compromise between both measures that can be calculated without storing all samples

3 By selecting the number of samples over which the average is calculated as 2n the division operation can be
replaced by a shift. When calculating the average of 256 Byte values and storing the sum in a 2 Byte variable,
instead of dividing only the MSB can be taken as result.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

75

is to hold, not just minimum and maximum, but also the runner-up for minimum and

maximum (or even the n smallest and n largest values).

An indication of the amount of change in a signal can be gained by calculating the

sum of absolute differences between the average, and each data sample in a window.

Summing up the differences between following samples can be done on the fly and

gives information on how rapidly a signal changes.

3.7.2 Time Domain Analysis

To avoid the transformation into the frequency domain feature extraction procedures

in the time domain can be used. This has been used in particular on data from

accelerometers, light sensors and audio.

Finding the average value is computationally cheap and can be done on the fly with

little need for memory. For audio the average itself has no meaning but it is useful to

calculate further features. Knowing the average means that calculations on how often

the average is crossed in a certain time and also the average distance between crossing

the average, can be performed. It is also possible to calculate the distribution of the

distances between crossing the average. This is an indicator for the base frequency

and the stability of the base frequency in the signal. Counting the direction changes in

the signal is also possible on the fly. The ratio between the average crossings and the

direction changes gives an indication on the type of signal and allows discrimination

between contexts. For example in the audio signal it is possible to discriminate music,

speech, and noise, and in the acceleration signal it is possible to find characteristic

values for certain patterns of movement. More details and an example are shown in

Appendix A.1: Time Domain Analysis.

For fast changing signals like audio signals, the peaks or energy (root mean square) of

the signal in small time windows (e.g. getting a indication every 100ms) provides

information about the sampled data. Certain audio events (speaking of a word, ringing

of the phone, applause, music) result in a characteristic series of values. See Appendix

A.1: Time Domain Analysis.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

76

3.7.3 Derivatives

For many signals it is of interest to find information about the change rather than

about the absolute values. Calculation or estimation of the first derivative of the

sensor data indicates the direction of change in the signal. This information is

especially helpful to find transitions in the observed conditions, e.g. going into the

dark or speeding up. In the simplest cases this can be estimated by checking whether

or not the samples are continuously falling or rising. Another indication is to sum up

the differences of consecutive samples.

Analysing higher derivatives provides information on how the changes that occur,

are changing over time. A simple way of doing this is to hold a history of features

(e.g. the changes in light) and analysing these features similarly.

3.7.4 Neural Networks

To provide abstract or symbolic information, it is necessary to process the calculated

features and cues further. Neural networks can be set up so that they take the cues and

features calculated as input and provide context or the context class as output. Many

neural networks are computationally demanding. The following approach however

can be implemented on very restricted hardware platforms.

Logical Neural Networks as described in [Aleksander,95] offer a computationally

cheap method to learn and recognise patterns. In the learning phase the applied input

patterns are transformed into binary vectors, which are then subdivided into shorter

parts. For each class of input pattern a logical storage unit is used. The short patterns

are then use as memory addresses of the assigned storage unit (e.g. internal or external

RAM). For each pattern seen the value of the storage is 1. In the recalling phase an

incoming pattern is also transformed into a binary vector and subdivided into parts.

The output is then the class of the memory unit that has the most sub-patterns in

common with the incoming vector. For an example see [Schmidt,96,p24ff].

Implementing learning as well as recall is feasible on very simple hardware.

Depending on the number of contexts to be recognised and the size of the input vector

additional storage is required.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

77

It is also possible to implement Backpropagation Neural Networks on restricted

hardware. Basically it is possible to implement small backpropagation networks

directly on these devices, however due to storage restrictions and also to increase

training speed, a distributed implementation is often preferable. This is a two step

process. In the first phase, when the contexts are learned, the input vectors consisting

of cues or sensors values, or a mixture of both, are acquired on the microcontroller

device and communicated to a backend system (e.g. over serial line or RF to a PC).

These data samples are annotated with the context they are recorded in. In the

backend these data is used to train a backproagation network of appropriate size and

structure. When the training process is finished and all weights are calculated these

can then be coded into the recognition software that will run on the microcontroller

device. By coding the weights directly into the recognition code the size of the

network is mainly limited by the program memory.

Nearest neighbour matching is a very simple technique for pattern matching. When

implementing this technique on a microcontroller it can be done with varying

complexity depending on the requirements. In a simple implementation for each class

a representative vector is calculated and stored during the learning phase. When the

system is in operational mode, an incoming vector is compared to the stored sample

vectors and the distance is calculated. The nearest neighbour is then selected as the

class to which the input belongs. In the TEA project we used this approach in one of

the experiments to recognise different motion patterns.

If the clusters are not known in advance using the Kohonen Self-Organizing Map

(SOM) or one its many variants is another option [Fausett,94,p169ff]. The clustering

algorithm is able to learn new clusters at any time and can also handle noisy data. To

make the output meaningful, the produced clusters must be labelled with context

names [Laerhoven,99]. The topology preserving property of the SOM makes it very

probable that the nearest label will indeed be the right context. Generally, the longer

the system is trained, the better the recognition becomes.

3.7.5 Rule Based Systems

The straight forward approach is to integrate rules while programming. This usually is

done without much thought, when the domain is limited and easy to understand. This

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

78

is particularly simple when sensors map well to contexts of interest and the number of

contexts is small. An example, developed in the project TEA, is a device which can

detect the context ‘in a pocket’, ‘on the table’, ‘in the user’s hand’ by sensing

acceleration, light, temperature and touch, for a similar experiment see Appendix A.2:

A Simplified Rule Set.

To build rule based systems a two step process is used. In a first phase data is

collected and transferred to a backend system. The data annotated with the contexts

that the samples belong to, and then analysed to find appropriate rules. Knowing the

rules resulting from the data analyses, these can then be implemented on the

microcontroller device. This can be done by hard-coding the rules into the source

code of the software that will run on the microcontroller. Another option is to build an

interpreter that runs on the microcontroller and can take rules as input and interpret

these.

A further option for systems where rules are applicable, but the borders between states

are less clear, is the use of Fuzzy Logic [Zadeh,73], [Traeger,94].

3.8 A Perception Architecture for Context-Aware Systems

As described above there is a variety of sensors, low level perception methods, and

high level abstraction algorithms available and usable, to acquire context. The

following architecture offers a flexible and yet efficient framework to build perception

systems and offers an abstraction for context-aware applications. The approach is to

deploy a layered architecture, as depicted in Figure 3. The architecture consists of four

layers, sensors, cues, contexts, and an application layer. With interfaces between the

layers the architecture also caters for settings where sensors, cue extraction, context

processing and applications are distributed, as detailed in chapter 6. Optionally the

layers can be connected via a network.

3.8.1 Sensor Layer

On an architectural level sensors are components that can provide information about

the world. No discrimination is made between physical sensors and logical sensors.

Physical sensors are hardware components that measure parameters in the

environment and provide the information on electronic level, typically as analog

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

79

output or as digital signals. Logical sensors are components that provide information

that is not directly taken from the environment but represents information about the

real world, e.g. a clock as a sensor that offers time and a server offering the current

exchange rate. These sensors supply the information most often as digital signal over

a common interface such as a serial data connection or an HTTP-connection.

More formally each sensor Si is regarded as a time dependent function that returns a

scalar, vector, or a symbolic value (X). A set (finite or infinite) of possible values

(domain D) for each sensor is defined. This is a common way of describing sensors

[Brooks,98]

Si: t � Xi

t is the time (discrete), Xi ∈ Di, i is the identification of the sensor

To simplify calculations and regarding the fact that processing is done on digital

systems the time is considered as a discrete variable.

To achieve exchangeability and hence flexibility for each sensor, a physical and

logical interface is defined. The physical interface consists of the mechanical

specification of the connector and the electrical specification. In Table 5 an example

of these descriptions for three different sensors is given. For high level sensors the

optional Cue Distribution Platform / Network

optional Context Distribution Platform / Network

Sensor 1 Sensor 2

Cue
1,1

Sensor n

Cue
1,2

Cue
1,i

Cue
2,1

Cue
2,2

Cue
2,j

Cue
n,1

Cue
n,2

Cue
n,k

Context

Applications and Scripting

Figure 3: Layered Perception Architecture.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

80

level of detail for the specification is straightforward (e.g. as for a GPS receiver),

whereas for low level electronic components the specification could be extended to

include all the information available about a sensor. However if the specification is

too detailed it fits only one sensor. To make it feasible to exchange and replace

sensors with compatible ones the specification should only denote the really essential

parameters for its operation.

The specification of a sensor always reaches a level where the output data can be

directly accessed from the software running on the systems, e.g. on the

microcontroller. The method of access is usually done over an interface, such as

accessing an analog-to-digital converter or reading from the serial line.

3.8.2 Cue Layer

The concept of Cues provides an abstraction of physical and logical sensors. As seen

from Figure 3, each cue is dependent on one single sensor, but using the data of one

sensor, multiple cues can be calculated. In contrast the term feature is used, a general

concept of abstraction where the input data does not necessarily originate from the

same sensor.

 GPS-Location
sensor (e.g.
Garmin Etrex
Vista)

Light sensor based on
a light to voltage
converter (e.g.
TSL250)

Service on the
internet that
provides foreign
exchange rate

Mechanical
specification

Female Sub-D
connector 9 Pins,
RS232 pinout

three pin hole-
through soldering
connection with
2.54mm grid where
pin 1 is GND, pin 2 is
Vdd, pin 3 is Vout,
Vout is connected to
an analog input of the
MCU.

Ethernet
connection

Electrical
specification

+12/-12 Volt,
RS232
specification

GND is 0V, Vdd is
5V and Vout is
between 0 and Vdd,

Ethernet
specification

Logical interface NMEA format, 0V is dark,
increasing voltage,
in full light ouput is
Vdd,

TCP / HTTP
protocol spec.
URL to get the
exchange rate, data
type of the answer.

Software access Serial line API Analog/digital
conversion API

TCP/HTTP API

Table 5: Sensor Specification Examples.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

81

A cue Cij is regarded as a function taking the values of a single sensor i up to a certain

time t as input and providing a symbolic or sub-symbolic output Y. A set (finite or

infinite) of possible values (domain E) for each cue is defined.

Cj: Si(t) x Si(t-1) x … x Si(t-n) � Yij

t is the time (discrete), Yij ∈ Eij, t≥0 n≥0, j is the identifier for the cue

As seen from the definition, each cue is dependent on one single sensor but using the

data of one sensor, multiple cues can be calculated. Cues are one way to reduce the

amount of the data provided by the sensors. For physical sensors, introducing a layer

for cues also can ease the calibration problem.

To implement cues all perception methods introduced earlier applied to the data from

a single sensor can be used. In particular basic statistical functions and time domain

analysis proved to be of great value. They can either provide a summary of the values

over time or they help to extract features from the raw data that characterise the data

over the last period of time.

The decision of what time window to use as basis for calculating the features, has

implication on the meaning of the feature as well as for the implementation. In general

longer time windows need more storage and the features have a longer delay before

they are available. But longer time windows allow more analysis over time and hence

often offer valuable information. When generating multiple cues that need data

collected over a longer time window a buffer can be shared between all these cues

calculated from one sensor [Chen,99]. The buffer is then a layer between the sensor

and the cues. A reasonable time window depends on the sensor and ranges between

100ms and a few minutes.

When designing cues the properties of the sensor should be taken into account.

Working on relative values or on changes in the signal is often useful to help

eliminate effects introduced by de-calibration of sensors.

In building prototypes, the concept of cues proved to be very useful to make changes

of the hardware transparent for the context recognition layer. When including new

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

82

sensors with different characteristics, only changes in the corresponding cues must be

adapted.

3.8.3 Context Layer

As defined earlier a context is a description of the current situation on an abstract

level that can be matched against previously specified situations. These descriptions

consisting of conditions may or may not be human readable; in general they can be

regarded as a function that takes cues as input and evaluates to true or false stating

whether the current situation belongs to a context or not. The context layer holds all

possible context descriptions that are relevant and modelled for a given scenario or a

particular application. In a certain situation none, one, or more of the contexts may

satisfy the relation that the situation belongs to the context. The evaluation of

conditions to true or false can be enhanced by assigning a certainty to the decisions on

the relationship.

Depending on the dimensionality of the data available from the output of the cue-layer

different perception algorithms can be deployed to evaluate contexts. To realise a

system working with just a few well understood cues and a small set of contexts,

simple rules (e.g. first-order logic) can be used to determine whether or not the current

situation belongs to a context.

The hardware constraints (e.g. memory, processing power) and the anticipated

behaviour of the recognition algorithm (e.g. fixed, able to learn, and reaction time)

also have to be taken into account when deciding on which method to use.

3.8.3.1 Learning

How to incorporate learning capabilities and learning behaviour into context-aware

systems is a major design decision, see Table 6. Basically three concepts can be

discriminated:

• No learning after the development is completed

• Dedicated learning phase during use

• Continuous learning

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

83

When the contexts that should be recognised and the conditions that indicate these

contexts are independent of where the system is applied, then no learning is required

after the system has been developed and deployed. Based on collected data algorithms

can be found beforehand that recognise these contexts. The conditions can be hard-

coded; typically this can be done using rule based algorithms and supervised neural

networks.

Learning capabilities can be incorporate into the system. In a specific learning phase

knowledge is acquired. When contexts differ depending on the usage of a device, but

are stable over time, a system using a dedicated learning process is required. An

example is a device that offers different behaviour in the contexts ‘at home’ and ‘at

work’. After purchasing a device it has to learn what the contexts are like in this

specific case. This requires that the learning algorithms are implemented on the actual

device. In this phase the conditions for a context are determined.

Having continuous learning built into a system is an option for devices that operate on

contexts that may (slightly) change over time but still have the same meaning. To

implement this, flexible algorithms are required and also mechanisms that supply, at

least from time to time, the labels for recognised contexts. Algorithms such as the

self-organising map can be used to realise this form of adaptive behaviour.

In chapter 6 this architecture is extended with capabilities for the distribution of

sensing, processing and context usage.

Concept of
Learning/adaptation

Usage Algorithms examples

No learning, fixed Contexts are
globally valid

Design time data
analysis

Static Rule based
systems,
Preset Supervised
NN

Learning phase Contexts are stable
but different
depending on the
use case

Training and/or data
analysis capabilities
built in

Dynamic Rule
based systems
Supervised Neural
nets

Fully adaptive,
always learning

Contexts are
changing over time

Adaptive algorithms SOM,
ISL [Hagras,02]

Table 6: Learning and adaptation.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

84

3.9 Discussion

Having the right sensing infrastructure is just a prerequisite, to make use of it,

perception and the ability to match the stimuli acquired with patterns that indicate

actions is also an essential part. Senses, as we know them from biological systems,

incorporate all these steps, whereas sensors in a technical context only provide very

basic information.

When considering sensing and perception in Ubiquitous Computing it becomes

inevitable to assess the cost introduced vs. the gain provided. In nearly all cases

sensing is not for free, typical costs introduced are: higher power consumption, more

fragile devices, and more complex hardware and software. For many applications

sensing can provide new qualities that would otherwise not be possible.

Considering the appropriate sensing infrastructure to get a particular context is tricky,

often it is easily feasible to detect a context when there are no restrictions (e.g. large

number of sensors and unlimited processing power). In real settings the central issue

is to create a minimal sensing and perception system that can provide the information

required.

When using sensors to spot contexts and to detect situations, one has to be aware that

sensing systems have limitations. As contexts often do not have well defined

boundaries there will always be cases where it is not clear whether or not a situation

belongs to a context or not. This is not necessarily a problem of a poor perception

system; this problem may even apply when having several human observers who have

to make the decision. Using a human observer as a simulation for the optimal context

sensing system is motivated by this observation and discussed in more detail in

chapter 8.

A further problem that can lead to ambiguities is that when creating systems, only a

limited number of possible situations that should be matched by a context are

assessed. Usually these are the situations that are expected by the designer. In real use

however it is likely that situations no one considered before,will appear and possibly

result in a context that was not desired. If the system is well engineered these

exceptions are rare but still it will be not possible to guarantee 100% reliability.

Chapter 3 - Acquiring Context using Sensors

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

85

In contrast to standard automation systems and also to applications in robotics sensing

in Ubiquitous Computing has to consider the human in the loop. In process

automation the tasks and requirements are usually well understood. Also the question

as to what has to be sensed and how the sensor reading should be interpreted is clearly

defined by the process. A process that is set up usually stays the same with all

operational functions that were anticipated at design time. In robotics and in particular

for autonomous robots sensing is also clearly related to a task, such as finding a path

or trying to avoid hitting an obstacle. In Ubiquitous Computing where sensing is

deployed, providing the system with a world model that relates to the user’s world

model, the sensing and perception task is less focused and often more general.

3.10 Summary

In the beginning of this chapter the concept of sensing and context acquisition is

motivated by biology and in particular by looking at the senses that are around in

nature. A terminology for situation, context, and their relationship is introduced.

Context is considered as an abstract description of a type of situation. For a particular

situation it can be determined whether or not this situation belongs to a context. The

overall hypothesis that the sensory stimuli received in situations of the same type, at

least in their discriminating features, are similar is stated.

From a more technical perspective the requirements on sensing with a specific focus

on Ubiquitous Computing are analysed. Based on these requirements and drawn from

the experience gathered in various projects, an overview on sensors and sensing

systems that are interesting for context-aware computing is outlined. This is

complemented by the consideration how the deployment of multiple sensors can ease

perception tasks. A selection of perception methods with respect to systems with very

limited resources is assessed. The sensors and algorithms discussed here are the

foundation for the building blocks and libraries introduced in chapter 5.

In the final part of the chapter a layered perception architecture is introduced.

Discriminating between sensors, cues, and contexts the architecture provides a

framework for context acquisition systems for Ubiquitous Computing. This

architecture is the groundwork for device and software frameworks introduced later.

86

Chapter 4

Modelling and Prototyping

Sensing and perception provides means to acquire context. In this chapter it will be

investigated how context can be modelled and in particular how situation and context

relate to entities. This results in a conceptual model, suggesting context as entity-

based information. The corresponding implementation model is based on to the

approach of embedding context and context-awareness into artefacts.

4.1 Context and Entities

The term context-awareness is used in various ways. However most often it is not

explicitly clear how context is anchored in its environment, and who or what has

awareness of this context. Usually it is assumed that this is implicitly clear.

This can be illustrated considering the example of a context-aware information system

that is mainly based on location; for examples see [Brown,96], [Abowd,97], and

[Davies,98]. The context ‘location’ does not have meaning on its own it is always

related to a user, device, or application. Awareness is either performed by the device,

by the application, or by the user. Similarly the models developed for context aware

applications are often opportunistic and strongly related to the technologies deployed.

In our understanding the following properties of context are central:

• Each context is anchored in an entity.

• Context-awareness is always related to an entity.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

87

An entity is a place, an artefact, a subject, a device, an application, another context, or

a group of these. When creating sensing systems that supply context about an entity

the domain knowledge that is available on the entity can be exploited, leading to the

following hypothesis:

Hypothesis 2: The domain knowledge about a specific single entity is

more universal and easier to establish than the domain

knowledge of a complex system, and hence it is simpler to

identify and implement contexts on entity level than on system

level.

To illustrate the concept consider the example of a coffee cup with the contexts

described in Table 7. It can be observed that these contexts of single artefacts are

greatly independent on the general situation of use, so on this level there is no

difference whether the cup is used at home, in the office, or in a restaurant.

The approach followed here is to take these issues into account when designing

context-aware systems. The following definition underlines the basic relationship

between context and entity.

Definition: Context-Aware Entity

A context-aware entity is an entity that has contexts that are

anchored in it.

In a context-aware information system a context-aware entity can provide and/or use

context. Modelling context around entities seems to be a natural way of building such

systems, because on the level of objects the concept of contexts and their relation to

Type of
entity

Entity Examples of typical Contexts Contexts relations in
example

Person Athlete Running, walking, sitting,
cycling, lying.

Exclusive

Body part Hand Moving, moving fast, still. Non-exclusive
Artefact Coffee cup Empty, full, hot, cold, moved,

drank from.
Non-exclusive

Part of an
artefact

Handle of a
coffee cup

held, not-held Exclusive

Table 7: Examples of entities with typical contexts assigned.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

88

situations is in most cases very well understood. The shared understanding of

situations and contexts relating to artefacts, as communicated in every day language,

offers a starting point with little complexity. Relating situations and tasks to objects

and properties is a bottom-up approach to understanding and modelling context.

When connecting contexts to artefacts an inherently decentralised model of the world

is anticipated, because artefacts are distributed in the real world.

For many scenarios in Ubiquitous Computing it is a prerequisite to have access to a

digital representation of the real world. In the bottom-up approach introduced here the

main goal when constructing aware artefacts is to create a digital shadow of the real

world, similar to the goal defined in the sentient computing project [Hopper,99].

This is a more general approach than providing a specific context for a specific

application. Having a complete representation of the world would require that all

artefacts in the real world are completely aware of everything around them and it

seems at this point in time a distant goal. However, as our research indicates having

some artefacts that are aware to some degree already provides a system with an

impression about the surrounding world. Furthermore, the assumption is that the

digital shadow gets clearer with each aware artefact added to the scene and also as the

awareness of single artefacts gets better.

This bottom-up context-awareness is an approach to model, design and implement

context-aware systems. Here basically for each artefact the main contexts are

modelled that are directly related to this artefact, accepting that this may be

incomplete, rather than trying to model the whole world from a top-down perspective.

Assuming that many entities are aware of their contexts it is appealing that there can

be more context information by combining the context knowledge that is around to

get a better understanding of what happens in the real-world. In particular two ways to

discriminate are:

• Creating context for entities where the contexts of their sub-entities are known

• Establishing context for a group of entities that have a relationship

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

89

In the first case this is a compositional approach, where the is-part-of relationship is

exploited. Whereas the second one is more general; examples of such relationships are

spatial, temporal and thematic arrangements of entities. The contexts can be in both

cases either very basic to contexts of the entity or groups of entities or contexts that

are semantically on a more abstract level. This observation leads to the following

hypothesis:

Hypothesis 3: Contexts for an entity or a group of entities can be

established by fusing the contexts of entities that make up the

entity or the group. Thereby artefact centric context enables

versatile uses and becomes the foundation for a platform for

applications.

The strong relationship between context and entities motivates the conceptual model.

The following major issues are considered in the creation of the conceptual context

model and are also significant for the implementation model:

• Conceptual Bond between Context and Entity

Context and entities are in many cases tied together. This conceptual bond is

relevant to context acquisition and also to context use. Context can often be

described by describing entities and their handling. Sensing on entity level

carries additional information related to the domain knowledge of the entity.

• Context on Entity Level

Modelling and implementing context acquisition and use on artefact level

reduces the complexity. Sub-dividing entities into smaller entities modelling

becomes a structured process. Similarly implementing context acquisition and

context use for smaller units is in general simpler.

• Composing Context, Extensibility

Providing context in a natural structure, related to entities, a potential for

further compositions and extensions is introduced. Similar to approaches in

Object Oriented modelling it is assumed that by these means the versatility

and reusability of components is increased.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

90

• Roles of Artefacts

Entities can act differently within a system. Basically they can provide

context, they can use context, and they can do both. Later entities will be

referred to as context suppliers and context consumers to mark their roles.

4.2 A Conceptual Model: Bottom-up Context

When modelling context in a bottom-up approach it is always related to an entity. The

entity is a subject, a part of a subject, an artefact, or a part of an artefact. Contexts

related to subjects, as central to wearable computing, are concerned with a person or

with parts of the body of a person. Context relates to artefacts and this is a key aspect

to gain a digital shadow of the real world for use in Ubiquitous Computing. In Table 7

examples of contexts related to entities are shown. The table also illustrates two other

issues:

• There is an inherent relationship between entities, especially when one entity

is a part of another.

• The list of contexts that can be related to one entity is never complete and it is

subjective.

When modelling bottom-up contexts can informally be seen as what can be observed

about an entity. Typically contexts represent the state of an entity or the relationship

of an entity to other entities. The latter one also includes the way artefacts are used by

humans, as they are an important form of context. One assumption on the

relationships between entities is that if an entity A is a part of entity B then it is useful

to know the contexts of A to determine the contexts of B. In reverse it is also assumed

that the context of an entity can be estimated by knowing the contexts of all its

subparts.

When designing aware artefacts it becomes a major issue: how to select the contexts

that should be included for a specific entity? Especially while knowing that the list of

contexts for an entity is unlikely to be comprehensive, the decision when to stop

modelling is non-trivial. The suggested way to find out what contexts are relevant for

an entity is to monitor typical situations which the entity is in. For example asking

questions such as ‘what is the entity doing?’ or ‘what is it used for?’. Knowing the

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

91

possible situations in which an entity is involved the most common ones are selected

and represented as contexts. At this point decisions have to be made weighting the

gain vs. cost; and this can in the real world hardly be done without looking at possible

applications. To minimise the cost odd situations or situations that appear to be

unimportant are left out. This includes the risk of missing contexts that may be quite

important on a higher level; however it is practically impossible to include all

situations.

The bottom-up approach suggested here, focuses on contexts that are important on the

entity level rather than considering high levels of abstraction at this point. This

assumes that if each single entity is modelled with its most important contexts it is

quite likely that the information needed on a higher level can also be deduced from

this information. Going this way, the resulting system is more general, and it is more

likely that applications that emerge can be supported even after certain artefacts have

been made context-aware without anticipating them. However, it has always to be

remembered that selecting contexts for an entity is a deliberate choice of the designer.

Contexts that are selected for an entity can have different relationships between each

other. In simple cases they are exclusive, meaning that only one context can be valid

in a given situation. The contexts for the ‘handle of the coffee cup’ as described in

Table 7 are an example for exclusive contexts. Whereas the contexts stated for the

‘coffee cup’ are non-exclusive. So it can be the case that there is a situation so that the

contexts ‘cup full’ and ‘cup is hot’ are both valid. The design decision whether or not

to allow non-exclusive contexts has implications for building the recognition system

as well as for the programming model when using context. In general recognition is

easier to realise when contexts are exclusive. In the programming model it has to be

considered that contexts can appear at the same time and are valid over an interval in

time, which is quite different from standard event models used in GUIs and suggested

in [Salber,99].

4.3 An Implementation Model: Context Aware Artefacts

Analogous to the conceptual model the implementation model is entity centric.

Concentrating on contexts that are related to an entity there are various ways in which

the context can be acquired, as introduced in chapter 3. In general, two different

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

92

sensing approaches can be discriminated: intrinsic and extrinsic sensing. In the case of

the first one sensing is built-in to the artefact and in the second case the entity is

observed. In Table 8 examples are given. In many cases there is also a combination of

both approaches used to realise systems. In the case where only the artefact itself uses

the context this can be realised with intrinsic sensing without communication to other

entities, however obvious implication of extrinsic sensing in this case is the need for

communication. In the case where the observer is using context it is the other way

round. In the general case when context is made available to the system,

communication is needed in both cases, see Table 9.

Communication is most often understood as connection between various artefacts

where information can be exchanged instantly; sometimes this is referred to as online-

communication. In specific cases, where context is collected and used asynchronously

[Thede,01], communication can be realised only at specific synchronisation points.

An example is a piece of garment that records the contexts of the wearer and put the

time stamped contexts into a database when put a coat hanger.

In the process of modelling and designing context-aware systems using the bottom-up

approach, several issues have to be regarded, most notably:

• Context Selection. A central design decision is to select the contexts that are

regarded as relevant for an entity.

• Subdivision. By subdividing entities in sub-entities the problem of modelling

and recognising contexts can also be sub-divided. An example is to decide

whether to model a coffee cup as one object or to model its sub parts, e.g. the

handle, the bottom, and the container.

• Exclusive vs. non-exclusive Contexts. When selecting contexts for a

particular entity the decision of what contexts to include has to be made. When

Intrinsic sensing
(built-in)

MediaCup,
Context-aware Mobile Phone,
Weight table

Extrinsic sensing
(observer)

Video capture
Environmental Sensors

Table 8: Examples of intrinsic and extrinsic sensing.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

93

modelling the choice between using only contexts that exclude each other or

contexts that are non-exclusive can be made.

• Intrinsic vs. Extrinsic Sensing. The selection of contexts and also other

constraints inherent to objects and their usage have implications how a sensing

system can be implemented. In particular the question has to be addressed

whether sensing is built into an entity or sensing is provided by observation, or

a combination of both. This has consequences for the communication

requirements.

• Synchronous vs. Asynchronous Context use. A further design issue is the

way the information about context is used in the system. Basically it can be

discriminated between an immediate synchronous (if used in interfaces often

with real-time constraints) or a time-stamped context logging with

asynchronous use.

For most entities there is also domain knowledge of how far reaching the implications

of context of this specific entity are. Therefore it is also feasible to determine how far

a context of a specific artefact should be visible in a system. The domain knowledge

of how far a context is visible may have implications and is not as general as the

contexts themselves, because it also depends on the environment where an entity is in,

however the knowledge available here is still more general than on a system level. A

more precise estimation of an appropriate range of visibility of context can only be

established by knowing the applications. The notion of spatial relevance is elaborated

in chapter 6.

Context user
Entity Observer Anyone

Intrinsic sensing
by the entity

No communication communication communication

Extrinsic sensing
by the artefact

Communication No communication communication

combined sensing communication communication communication

Table 9: Communication requirements depending on sensing paradigm.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

94

4.4 Prototyping Context Aware Artefacts

To build and use system prototypes to develop an understanding of the design issues

in ubiquitous computing was fundamental to the pioneering work of Weiser at PARC

[Weiser,91], [Want,95]. Since then this method has been adopted as principal research

approach by many researchers in the ubiquitous computing community. As ubiquitous

computing engages with new device concepts, with new interactions between devices

and their physical environment, and with embedding of devices in everyday objects

and structures, this commonly involves prototyping of physical system components

alongside the development of communication, system and user interaction software.

Physical prototyping however often involves tedious tasks such as circuit board

design and selection of electronics components at a very low level.

When building prototypes it can be observed that learning occurs at different stage in

the process most notably when:

• An idea is transferred into a prototype

• People are getting the prototype to work

• Prototypes are used to communicate ideas and inspire

• Prototypes are deployed in a living lab

• The prototypes are used in studies

From the understanding gained when building prototypes more general concepts such

as models, patterns, and architectures evolve.

Within the research leading to this thesis a number of different prototypes have been

developed, partly at TecO at the University of Karlsruhe (Germany) and partly at

Lancaster University (UK). Most importantly the following:

• Different context-aware PDAs [Schmidt,98], [Schmidt,99], [Schmidt,00a],

• A prototype of a context-aware mobile phone [Schmidt,99a], [Schmidt,99c],

[Schmidt,00],

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

95

• A mug equipped with perception technology [Beigl,01], [Gellersen,00],

[Gellersen,02],

• Context-aware garments [Schmidt,99b], [Schmidt,00b], [Laerhoven,02],

• Load sensing floor and furniture [Schmidt,02], [Schmidt,02a].

The development of these prototypes served multiple purposes. First it illustrates that

implementing certain context aware artefacts is feasible in environments with

constrained resources. Secondly they provide evidence for a proof of concept of the

conceptual and implementation model of context aware artefacts, based on a bottom-

up approach.

In this chapter the context-aware mobile phone and the load sensing environment will

be described in more detail. The development and implementation of these prototypes

exemplify the approach. In the latter section it is shown how to generalise from

prototypes to generally applicable patterns of context aware artefacts.

The approach to prototyping was similar for most of the entities. First determine

relevant contexts for the entity by observing how the artefact is used or deployed.

Then the main constraints for the artefact are identified and used to define the

requirements that the design had to conform with. Weighting the contexts of interest

vs. the requirements and looking for a compromise results in an implementation that

supplies contexts related to the artefact. These contexts are then used to make

applications context-aware.

4.4.1 Context-aware Mobile Phone

In the project TEA (“Technology for Enabling Awareness”) [TEA,98] we explored

the possibilities for building add-on devices that supply context to a host system. In

particular mobile phones were investigated as a potential host platform that can make

use of context.

The project was carried out in two phases. In the first phase the basic feasibility was

assessed with regard to the requirements and constrains imposed by the application

scenario. In a second phase a prototype was developed and integrated into a

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

96

commercial mobile phone. Using this prototype the added value provided by context

to applications was investigated, in particular the possibility of a device to adapt

transparently to the current situation.

4.4.1.1 Phase 1: TEA Feasibility Study

Hardware, software, and applications were developed to build a demonstrator to prove

the feasibility of making a context-aware mobile phone. In particular it was of major

interest how contextual knowledge that is meaningful in the domain of a mobile

phone, using low level sensors, can be gained. As the system was also built as an

experimentation platform a main requirement for the prototype was flexibility. In

particular the system should offer an efficient tool for finding the appropriate sensors

and recognition algorithms.

The experimental setup used is depicted in Figure 4. The main components are a

custom developed sensor board, a portable computer and a mobile phone. The sensor

board and the mobile phone are connected over serial line to the host.

Sensor Board Hardware

To acquire information about the environment several sensors are used. They have

been chosen to mimic typical human senses, as well as more subtle environmental

Sensor
Board

Mobile
Phone

Notebook
Computer

Figure 4: TEA hardware and system setup for the feasibility study.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

97

parameters. An outline of the schematic is given in Figure 5. The photodiode yields

both a nominal light level (as experienced by humans) and any oscillations from

artificial sources (not a human sense). It is sampled at a rate of approximately once

per millisecond, but only for a few hundred milliseconds at a time, allowing other

signals to be multiplexed in. The two accelerometers provide tilt and vibration

measurements in two axes; the signal is filtered down to 200 Hz. The passive IR

sensor detects the proximity of humans or other heat-generating objects. This sensor is

sampled at the same rate as the photodiodes. The temperature and pressure sensors

each provide a conditioned signal between 0 and +5 volts directly, and need no

amplification. These sensors are sampled a few times a second. Sampled at the same

rate as the temperature and pressure sensors is a CO gas sensor. The MCU

(PIC16C73) controls the heating and reading of this sensor. Each of the sensors

provides an analog signal between 0 and 5 volts which is read by the 8 bit, 8 channel

analog-to-digital converter.

The micro-controller oversees the timing of the analog-to-digital converter and the

sensors as well as manipulating the data from the analog-to-digital converter’s bus to

the RS-232 serial line. Finally, the serial line connects to the data-gathering computer

(Host). Higher bandwidth signals like the accelerometers and photodiodes are polled

Figure 5: Schematic of the first generation sensor board.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

98

often, on the order of every millisecond, while slower signals like temperature are

only polled once a second

Another requirement of the system is mobility. In order to simulate mobile devices the

board also has to meet certain size constraints. Here the compromise between

experimentation flexibility and mobility resulted in a PCB size of 100mm x160 mm.

See Figure 4 for the hardware implementation.

Off-line Data Acquisition

The sensor board sends periodically a block of data, representing the digitised sensor

outputs, through its serial port. In the off-line data acquisition experiments the sensor

board is connected to a notebook computer, which receives and stores the data. Using

a specifically developed reader software, data is collected and annotated before

written into a file. The annotations contain the time the sample was taken and also the

manually assigned label describing the situation.

To gather data the sensing system is deployed in typical situations. For each situation,

readings are taken over a certain time (between a few seconds and up to an hour). The

experiments are repeated at various physical locations and with slightly different

settings (but being considered the same situation). In particular the following data sets

were collected.

• Set 1: holding device in hand vs. device in a suitcase vs. device on a table

• Set 2: walking while using the device vs. stationary usage

• Set 3: using the device inside a building vs. using the device outside

• Set 4: in car vs. on a bus vs. on a train.

• Set 5: having a device in a stationary car vs. in a moving car

The data sets are then analysed using data analysis and visualisation tools. Based on

the raw data it is assessed what prediction systems and learning algorithms are most

appropriate. A simple way to get an impression of the data, is by plotting the output of

all sensors directly on a time scale in parallel.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

99

The time series plot in Figure 6 shows the sensor values of the acceleration sensors

and the light sensor in three different contexts. Initially, the sensor board was placed

on a table and remained there for about 100 seconds. After this period, the device was

taken along and stayed in the hands of its user for another 100 seconds. Finally, the

TEA board was put in a suitcase for yet another 100 seconds. In the plot the context,

or situations, can clearly be discriminated by a human observer.

Real-time Demonstrator

Based on the results from the data analysis methods have been developed and selected

to implement a real-time recognition system. A set of basic statistical functions is

used to calculate cues individually for each of the sensor values. To determine the

contexts sets of logical rules are used. These rules are identified by analysing the data

collected in different situations, as described in the last section. The complete

recognition system is implemented on the notebook computer, calculating the contexts

in real time from the sensor data acquired. The contexts recognised by the

demonstrator are based on the data sets introduced in the last section. Each of the sets

contains only exclusive contexts. Working with exclusive contexts makes the

development of the recognition algorithm easier and also simplifies the development

of applications. For details see Appendix A.2: A Simplified Rule Set.

accel1
accel2
light

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

time

se
ns

or
 v

al
ue

s

time series

Figure 6: Example time series plot of sensor data.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

100

To demonstrate the feasibility of context aware applications a mobile phone is

manipulated using the contextual information. The context enhanced applications

running on the Nokia 6110 mobile phone receives information about the current

situation from the recognition software. The profiles of the mobile phone are selected

automatically based on the recognised context.

The experiment shows that different contexts can be recognised using a subset of the

simple sensors from the initially built board. Given the feasibility we went to the next

phase: prototyping a context-aware mobile phone.

4.4.1.2 Phase 2: Prototyping a Context-Aware Phone

Based on the results of the feasibility study the design was revised. To implement a

deployable prototype the portable notebook computer had to be eliminated from the

system. Furthermore, the sensor board had to be integrated with the actual mobile

phone to make it usable. The aim was to design a prototype of an integrated device in

a way that it can be used as a normal phone with additional capabilities. Therefore

size, weight, and also energy consumption became major requirements in the

development.

Hardware

The redesign of the hardware resulted in a sensing and processing board that can fit,

together with the phone battery into the case of the enlarged battery pack on the back

of the phone. The selected sensors are placed at various positions in and on the phone

body, to optimise the data that can be gathered.

An additional battery is used to power the sensor and processing board. The

communication between the context-sensing board and the phone is realised using a

wired serial line connection (RS232 at 3.3V). By these means the resulting prototype

is still the size of a standard mobile phone. In particular the phone used (a Nokia

6110) looked as if the standard battery was replaced by a long life battery, see Figure

7.

The selection of sensors is based on the results and experience gathered in the first

phase. In particular the pressure and gas sensor are eliminated from the design. The

contribution of the pressure sensor was weighted against the size added to the board if

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

101

included. The power consumption of the gas sensor, in particular for heating the

sensor, is too high and also the cues produced by the sensor are weak and therefore

this sensor is also removed from the design. The PIR sensor is too large in size to be

included into a phone but the information of proximity is rather valuable. To resolve

this, the PIR is replaced by a touch sensor on the surface of the phone body. As the

light sensor provides a major contribution two light sensors are included in the new

design, distributed over the phone. The acceleration is of great values to determine

contexts, especially user interaction, therefore in the revised design the two analog

accelerometers are replaced with an integrated two axis digital accelerometer.

To make the board simpler, smaller and also more energy efficient the external A/D-

converter is removed from the design. The MCU is exchange for a newer version, a

PIC16F877 that offers 8 analog inputs and is also flash programmable. The analog

sensors are directly connected to the analog inputs of the microcontroller. Also the

fact that the MCU is flash-programmable eases the development process. For

communication the built-in UART of the MCU is used and connected via serial

connection to the phone. The wiring is done internally.

Figure 7: The sensor board and the enhanced mobile phone prototype.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

102

Software

The context recognition software is realised completely on the MCU. The used MCU

influenced the development significantly. The four major parts of the software, sensor

reading, cue extraction, context calculation, and communication, had to be

implemented on 8k of 14-bit words of program memory and using 368 Bytes of

RAM.

The sensor reading and cue extraction is realised in a single loop to save RAM. For

each sensor raw values are read into a buffer and then the features are calculated on

this buffer. This is repeated for all sensors. The number of values and the speed of the

reading are dependent on the type of sensor and in accordance with what was found

out in the first phase. The cues that are calculated are statistical functions, mainly to

reduce the amount of data that needs to be stored over one cycle before the context

calculation.

Before implementing context recognition, example sensor readings for various

contexts have been taken. The readings were taken using the sensor arrangement built

into the phone. Cues are already processes on the board in phone. The output is used

for further analyses providing a set of sample feature vectors for each context. Two

recognition approaches are implemented.

One approach for context recognition is rule based and the rules are hard-wired in the

program code. These rules are determined by analysing the sample vectors.

Furthermore, common sense knowledge has been coded into the rules as well (e.g.

between the context ‘on the table’ and ‘in a pocket’ there is probably a context ‘in the

hand’).

The other approach is to use the sample vectors to calculate representative vectors for

each of the contexts. Using these vectors as patterns a nearest neighbour matching

algorithm is implemented. During run-time for a new feature vector the closest pattern

is determined, as the winning context.

The communication to the phone is realised by using the propriety protocol of the

phone. In particular the context-board mimicked a Nokia Data Suite running on a PC,

which can be used to manipulate the settings of the phone.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

103

On the phone no additional software is needed. To specify the behaviour of the phone

for different contexts the appropriate ‘profiles’ are configured. When a context is

recognised and communicated to the phone, the phone switches to the related profile

and by these means adapts the behaviour that is specified for this context.

Demonstration and Evaluation

In the demonstration and test scenarios contexts that are similar to the contexts

explored in phase one are used. In particular for validation and demonstration purpose

the following contexts are implemented and successfully recognised: ‘Hand’, ‘Table’,

‘Box’, ‘Pocket’, ‘Outside’, and ‘General’. The behaviour of the phone is as follows:

• Hand. When the user holds the phone in their hand, the audio alarm is not

used. The phone rings by vibrating.

• Table. Here a meeting situation is assumed. The phone is almost silent.

Incoming call is indicated by a very gentle sound.

• Box. Phone is silent. Here it is assumed that the phone is put a way in a box or

suitcase, and must be silent. The phone still receives calls, so that the callers'

numbers can be recalled later.

• Pocket. Here the ring volume goes higher and vibra-alarm is on.

• Outside. Here the ring volume goes as high as possible and vibra-alarm is on.

All possible ways to get the users attention are used.

• General. General mode is used when none of the above applies. The phone is

at standard settings.

Changes in the behaviour of the phone for particular contexts can be applied by the

user by changing the profiles. A different set of contexts however requires

reprogramming of the context acquisition board.

4.4.2 Weight laboratory – Context-Aware Floor and Furniture

The weight laboratory was prototyped to investigate the utility of load sensing for

context acquisition. In general three context primitives can be extracted from sensory

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

104

observations on load-sensitive surfaces: weight, position, and type of interaction.

Weight is an obvious contextual parameter that can and has been used for instance as

key to identify objects. Novel in this approach is to use load sensing for acquisition of

object position and interaction events.

The research was carried out in two phases. First a series of experiments to

demonstrate that high accuracy object positioning, and classification of interactions is

feasible; this was accomplished. The experiments explicitly consider conditions in

everyday environments, such as pre-loading of surfaces with a multitude of objects. In

the second phase the experience and results from the feasibility study are used to

design and implement a living laboratory environment where load sensing is built in.

4.4.2.1 Load Sensing Feasibility Study

Before building a context-acquisition system based on load sensing technology a

number of issues had to be resolved. In particular it was important to understand the

requirements and constraints imposed by such systems. Furthermore, it is also of great

interest how accurate and robust such technologies can be deployed in everyday

environments. To answer these questions a number of experiments were carried out.

Determining 2-D Position of Objects on Surfaces

For the experiment a table-top is placed on four industrial load cells each of which can

detect forces of up to 500N. The load cells are placed at the corners of the table-top

and each connected to a commercial signal conditioning unit. The conditioning units

are in turn fed to a standard 16-bit Analog to Digital Converter (ADC) which links to

the serial line of the PC. As these components are normally used for scales, the

sampling frequency is necessarily rather low (each load cell can be read up to 4 times

a second). The resolution of load sensing in this setup is approximately 16g.

To detect the position of an object the centre of pressure on the surface is calculated

based on the load measured at each corner of the table. The overall force on the

surface introduced by an object placed on the surface at (x,y) is denoted by Fx. The

setup assumes static forces, so the sum of all 4 load cells F1, F2, F3, and F4 is equal to

Fx, see equation 1 and Figure 8. If there is already an object (or the weight of the

table-top itself, or multiple objects) on the table-top that is represented by F0x that can

be measured by the forces on each load cell F01, F02, F03, and F04, see equation 2,

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

105

then these need to be incorporate into the algorithm for computing the position of a

new object. The algorithm for identifying the position of a new object on a pre-loaded

surface is described by equation 3 and 4 below.

4321 FFFFFx +++= (Equation 1)

4321 00000 FFFFF x +++= (Equation 2)

)0(
)0()0(3322

max
xx FF

FFFF
xx

−
−+−= (Equation 3)

)0(
)0()0(4433

max
xx FF

FFFF
yy

−
−+−= (Equation 4)

To carry out the experiments a Visual Basic program was developed, which reads

periodically from the ADC, calculates the point of pressure, and visualises the result.

In the program the user can manually reset the preload by pressing a button, storing

the currently measured forces into F01, F02, F03, and F04.

In the first experiment, the position of objects on the table-top is detected. Before each

object was placed on the surface, the preload F01, F02, F03, and F04 (resulting from

the table top itself) is measured and stored. Then selected six well distributed

positions are marked on the surface. The x and y coordinates of each position is

measured manually and recorded for later comparison. Objects are systematically

placed, one object at a time, onto the selected points. After the object is put down and

the values stabilised, the load values F1, F2, F3, and F4, are measured and its position

Force Fx
at (x,y)

Force F1
at (0,0)

Force F3
at (xmax,ymax)

Force F4
at (0,ymax)

Force F2
at (xmax,0)

Figure 8: Forces on a surface used to determine the 2-D position of objects.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

106

is calculated. This is repeated multiple times and for different objects (ranging

between 100g and 5kg). The results of the experiment show that it is possible to

achieve an accuracy of about 2% of the surface length in each dimension.

To simulate a more realistic environment, the experiment is repeated with a number of

different objects already placed on the table (overall weight about 34kg). The table

top is also covered with a tablecloth. Figure 9 illustrates this setup. The same set of

measurement tests are repeated, whereby the objects are placed on top of the objects

already on the table (on the TV-set, on the magazine, and the on the tablecloth).

The results we obtained are similar to those obtained in the experiment with the empty

table. This experiment shows that using load sensing the static position of an object on

a surface can be recognised irrespective of objects already on the surface or between

the surface and the new object. The success of such an experiment also leads to

postulate that the approach for object detection is deployable in non-lab environments

and is especially well suited to Ubiquitous Computing settings.

Recognising Interaction on a Load Sensing Surface

As the world is not static and humans interact with objects, place them on surfaces

and remove them again it is of interest to recognise events that relate to these actions.

In the second series of experiments, it is explored how interaction resulting from

events on a load sensitive surface can be recognised with a simple algorithmic

approach.

Figure 9: The experimental setup; objects are stationary on a table while the

position of an added object is detected.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

107

The setup used for the experiment is a wooden table-top, 80x80cm, resting on 4

industrial load cells. Each of the load cells can handle a maximum load of 20N. The

weight of the table-top is about 1kg. For this setup a specific hardware that allows a

higher sampling rate (about 250Hz, as suggested in [Addlesee,97]) was designed. The

microcontroller based system is connected to a PC via a serial line. The objects used

to generate the events in this experiment are a 500ml water bottle (520g) and a book

(~200g). More details are published in [Schmidt,02].

To detect the events an algorithm which considers the last 500ms using a sliding

window and the sum of load (Fx) is used. At the selected sampling frequency, this

equates to the last 125 sample values. At each sample interval the analysis algorithm

is run, for details see Appendix A.3: Recognising Events on a Surface.

In the experiment it is investigated whether or not it is possible to recognise different

events based on the features extracted from the data gathered. The focus is on the

most important primitives: putting objects down onto the surface and removing

objects from the surface. A further event: knocking an object over which is already on

the surface is also included.

Overall, this experiment results in 70 recorded events for analysis. Using the simple

algorithms 94% of the events were classified correctly, 6% were missed, and no

events were misclassified. An example of a raw data stream is visualised in Figure 10.

1000

1500

2000

2500

Time

Lo
ad

E1 E2 E3 E4

Figure 10: The graph shows the raw signals representing load change recorded

over time. An object is placed on the surface at position E1 and E4. At E2 an

object is knocked over and at E3 the object is removed from the surface.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

108

The experiment was repeated on a table that was covered with a tablecloth. On the

table were also 4 static objects, a notebook computer (about 2.2kg), a book (about

500g), a newspaper (about 200g) and a water bottle (about 520g). The same sets of

interactions were performed. About half of the interactions were made on the

tablecloth and the remaining half on top of static objects. Out of the 70 events

recorded, the algorithm could classify 96% correctly, 4% were missed.

As seen from the results of the experiments, it is feasible to detect basic interaction

events with a high degree of probability, even when using simple algorithms. It is also

observable that covering the surface has a negligible effect on the data that was

recorded. The result that preload has little influence on detecting the events or

identifying an object’s position, suggests that it is feasible to implement a system that

can dynamically track objects that are added, moved, or removed from surfaces in

everyday environments.

4.4.2.2 Prototyping a Weight Laboratory

To explore load sensing to acquire rich context unobtrusively in everyday

environments a “weight lab” as an integral part of our living lab area has been

designed and implemented. In the weight lab, a number of surfaces are load sensitive

and equipped with networked data acquisition units. The setup was not driven by a

single application, but developed bottom-up by considering the context primitives that

can be obtained from load sensing, and the construction of higher-level context

capture techniques.

The weight lab is comprised of four ‘load sensitive’ artefacts: the floor, two tables and

a shelf. Other, non-load sensitive artefacts can be arranged on these surfaces. The

arrangement of these artefacts is not fixed; all components can be moved to create

new experimental configurations, for details see [Schmidt,02] and [Schmidt,02a].

In order to make the artefacts aware of the load placed upon them and also of the

position of an object or a subject, the surface is augmented with load cells. Dedicated

hardware has been developed to drive the load cells and facilitate the data acquisition,

see Appendix B: Load Sensing System. The current prototype offers both wired RS-

232 and wireless communication interfaces.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

109

Weight Floor

The floor is constructed from a wooden structure of 240cm by 180cm. The surface of

the floor is mounted on three supporting timber beams resulting in an overall height of

approximately 9cm. At each corner of the floor a single load cell is mounted into the

supporting timber, see Figure 11. The whole floor rests entirely on the four load cells

and the remaining structure is not in contact with the conventional load bearing floor

of the building.

An estimate of the typical load in our environment is: 2 people (70kg each), 2

armchairs (15kg each), a coffee table (10kg), a shelf (20kg), and the weight of the

floor (80kg) resulting in 280kg. Due to the structure and anticipated loading of the

floor, we selected S-load cells each with a capacity of 1000N (overload safe to

2000N).

The four load cells are connected to the data acquisition hardware. The floor system

incorporates an ‘auto-tare’ mechanism which allows discounting the position of

stationary objects. More specifically, whenever the load is considered stable this

preload is stored (F01, F02, F03, and F04) then factored into successive calculations to

determine the point of pressure of further objects, e.g. the position of someone is

walking on the floor. Using this mechanism, furniture can be added to the floor and

automatically included in the position calculation once the floor is not occupied for

Figure 11: The floor installed in the lab setting (left). Enlarged view of the load

cell embedded into the floor (right)

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

110

several seconds. Note that in case when only a single person is on the floor the

position of the person is determined, whereas in case of more people, the point of

pressure is the centre of mass of the group. Although not yielding their individual

positions, such information may still help us determine the locus of activity.

The floor recognises three types of event: no interaction, people moving and

stationary occupation (e.g. someone is sitting in an armchair or standing in front of the

pin board). These events can be recognised with an accuracy of over 99%. The

position of a single person moving in a space already populated with furniture and

covered with a rug can be acquired with approximately 10 centimetre accuracy. The

accuracy is also dependent on the physical structure of the floor.

Weight Tables and Shelves

Load sensing technology is embedded in several pieces of furniture: a small coffee

table, a larger dining table, and a shelf/drawer unit. Both tables are constructed using

load cells installed between the table top and the frame, such that the table top rests on

a load cell at each corner (see Figure 12).

Figure 12: Coffee table (top) and dining table equipped with load cells

(bottom). Close ups of the load cells and how they are fixed (right).

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

111

The coffee table can measure a maximum load of 8kg (including the 1kg table top).

For the larger ‘dining’ table load cells with a capacity of 500N each, resulting in an

overall capacity of 200kg are selected. The tables and shelves use the same data

acquisition hardware as the floor, but run different software on the microcontrollers.

The shelf unit is placed on 4 load cells of the same type as the ones used for the large

table. The position of the interaction is assigned to a column of the shelf, as a single

set of load cells cannot detect where in the vertical axis the interaction took place.

Additionally, some of the shelf boards within the unit are equipped with load sensing

boards. These boards are built based on cheap consumer load cells.

4.4.2.3 Lessons learned for load sensing

Prototyping the load sensing technology and finally a complete load sensing

environment was a time consuming and expensive effort, with regard to space,

development cost, and technology. Nevertheless building a large system with multiple

surfaces was necessary to proof the usefulness of such a technology. In particular the

setup in a living lab environment, deploying full scale furniture, was essential to

evaluate important properties.

The setup showed that it is possible to realise sensing and tracking technologies

unobtrusively and compatibly to everyday environments. Creating the weight lab it

became apparent that the basic load sensing technology introduces little complexity

and allows for simple integration in the design of artefacts. And as it is a proven and

robust technology the system is running with little attention since it was installed.

Having this permanent setup allows data collection and different methods for

evaluation of the system to be explored.

From the prototypes we learned that providing basic primitives is an important issue.

In particular primitives related to the interaction with the artefact have been a useful

abstraction for further developments. Some of the primitives are shown in Figure 13,

using the notation suggested in [Crowley,02]. These abstractions make the use of load

sensing systems more versatile.

In further projects primitives that provide information about the placement and

removal of objects from surfaces have been used. One example is a retail shelf where

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

112

these primitives correlate to the user’s interaction with products on the shelf. By

recognising that a product the user takes out of the shelf actions, similar to

recommender systems in e-commerce applications, can be taken. Other examples are

in a series of designs that have been carried out by Bill Gaver and his group at the

Royal College of Art in London. In this work, which originates from the cooperation

in Equator, designs are created that use load sensing technology, see [EQUATOR,02].

4.5 Learning from Prototypes – Generalising the Approach

Illustrated with various prototypes in the previous sections the feasibility of realising

bottom-up context-awareness is demonstrated. Each of the prototypes made one

specific artefact context-aware; however each of the artefacts also reflects a type of

entity. To learn and communicate from the experience of building the prototypes it is

desirable to describe the result as well as the process by which that was achieved. To

reuse the knowledge and also potentially parts of an implementation an efficient way

to communicate details of contexts and awareness about entities, as well as about the

process has to be found. This is in particular relevant within the research community

to make it easier to build on one another’s work. As Ubiquitous Computing and in

particular context-awareness is a multi-disciplinary field the communication also has

to bridge gaps between subjects.

The aim when describing context aware systems is on one hand to precisely layout the

way contexts are established for a particular entity and on the other hand to formulate

Figure 13: Load sensing primitives.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

113

it as general as possible, so that transfer and reused for similar entities is easy. A

formal way of describing it could be very powerful, however completely formalising

the description seems to be not practical with the current understanding of context and

awareness.

When describing context and awareness in an entity centred style, further different

issues have to be included, such as

• How does the entity, and thus contexts of this entity, related to other entities?

• What are major side conditions and requirements stated by the way the entity

is deployed?

• Whether and how the contexts described for the entity are restricted to a wider

scenario of use?

• How do contexts relate to each other?

The quest for a way of describing context brings to mind a statement by C. Alexander

[Alexander,79,p.67] where the use of patterns is motivated:

“If I consider my life honestly, I see that it is governed by a certain very small

number of patterns of events which I take part in over and over again.

Being in bed, having a shower, having breakfast in the kitchen, sitting in my

study writing, walking in the garden, […] There are surprisingly few of these

patterns of events in any one person’s way of life, perhaps no more than a

dozen. […] Of course, the standard patterns of events vary very much from

person to person, and from culture to culture.” [Alexander,79,p.67]

Similarly it appears that the number of contexts that are relevant for a single entity is

quite small; however, by combining entities in temporal and spatial ways, complex

scenarios are generated. Entities and contexts related to these entities seem to be a

logical extension of the patterns describing types of places in [Alexander,77], but on a

smaller scale. Before describing a pattern language for context the next subsection is

meant to recall the origin of pattern languages.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

114

4.5.1 Pattern Languages

In the books “the timeless way of building” [Alexander,79] and “a pattern language”

[Alexander,77] Alexander founds a language to describe buildings and architecture on

a greater scale by viewing it more from a social perspective than from a

constructional. The 253 patterns that are described provide a basic ‘vocabulary’ to

express buildings.

“The people can shape buildings for themselves and have done it for

centuries, by using languages which I call pattern languages. A pattern

language gives each person who uses it the power to create an infinite variety

of new and unique buildings, just as his ordinary language gives him the

power to create an infinite variety of sentences.” [Alexander,79,p167].

This statement also suggests that the language is already there and that by writing

down the pattern language it was discovered rather than created.

Central to the pattern language is that it includes a hierarchy and also that patterns are

not to be seen in isolation. The relationships between patterns are an inherent part of

the language. It is also apparent that already a subset of patterns forms a language of

its own.

These properties and the fact that a pattern language can be constructed using plain

language so that it can easily understood without specific knowledge on a notation

made it appealing for other research areas, too. It was in particular adapted to the

problem of software reuse in the field of software engineering, as given in

[Gamma,95]. Recently also researchers in HCI proposed the use of patterns to

communicate design solutions [Borchers,01].

Understanding the use of technology in relation to context, especially in a home

environment, is researched by a team at the University of Nottingham within Equator

[EQUATOR,02]. Here ethnographic studies have been carried out to find typical

patterns of usage, of technologies in home environments [Crabtree,01]. To

communicate their findings they extended the pattern language described by

Alexander with the inclusion of technologies into material arrangements

[Crabtree,01a].

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

115

4.5.2 A Pattern Language to Describe Contexts and Awareness

The very basic observation by Alexander, from an architect’s viewpoint, is that life is

organised around space and takes place in repeating patterns of events, as pointed out

in the statement “… these patterns of events which repeat themselves are always

anchored in space” [Alexander,79,p.69]. When taking this further into the domain of

context-aware systems the notion of space and place can be extended so that any

entity can be an anchor, considering contexts as, or patterns of, events.

In our research so far we have identified a number of entities and their contexts;

however we are far from a comprehensive vocabulary. However even starting out

with these few ‘words’ that we have identified so far, can help to form understanding

of context and context-awareness. Recognising that only a small number of aspects

are addressed, there is no specific order or hierarchy to the patterns.

The pattern language proposed in this section is, like most languages, not static, and

as new entities, new contexts, new methods, or new approaches arise additional

concepts may be added to the language.

Each pattern has two major logical parts. In the first one the entity and the related

contexts are described, it is also placed within a scenario, and relations to other

entities, which are similar, are described. In the second part a particular solution of

how this particular entity was made context-aware, is described.

Each pattern has a name and a number. As already pointed out in [Alexander,77], the

names of the patterns are important because they create the vocabulary which is used

to reference the concept described using a pattern. So far numbers are chosen

sequentially with developing context-aware artefacts, rather than providing a

hierarchical structure.

Then the entity is described. As explained earlier the entity may by a subject, an

artefact, or a part of either one. The entity should be as specific as necessary but as

general as possible. The entity is often strongly related to the name of the pattern. The

entity is followed by a scenario explaining more about the entity, together with

examples of such entities.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

116

Derived from the scenarios a list of contexts of interest is stated. Here contexts that

are particular to an entity are described. Contexts can incorporate what an entity does

or what it is used for, the relation to its environment as well as intrinsic properties.

Potentially this list can be infinite, however selecting context should be orientated on

‘what is normal’ and leave the ‘odd cases’ out. The contexts that are perceived with

the implementation, described later, will be repeated there.

If applicable, it should then be stated to who the contexts are of interest, when this

is possible to say. This may be a particular device, the entity itself, or in most cases

this is open and not further specified.

Forces are the major constraints to an entity, as described in the previous chapter. In

particular there should be explanations of what important side conditions are for this

entity, such as robustness, weight, battery life, and unobtrusiveness.

Then sensing technologies which are used to acquire contexts are described. Here in

particular is should be stated which sensing approach (local, distributed, homogenous,

or heterogeneous), which sensing perspective (intrinsic, observed), and which

physical sensors are selected. When using contexts of other entities as sensors these

should be included here as well. Often it is argued that the more sensors and the more

diverse they are the better perception is supported [Laerhoven,02], however here the

value of the description is to point out what the important sensors are.

Then perception techniques which are deployed to get the contexts are specified

(e.g. rules, statistics, and Neural Nets). Here in particular the learning behaviour of the

systems is described (fixed, learning phase, adaptive) and motivated.

Also the device architecture, in particular how sensing, perception, and processing is

arranged is described. Here in particular the question of how much processing power

and storage is available (e.g. processor, ram) and where the processing takes place

(e.g. local, in the backend) is discussed. Here the motivation for the selected device

architecture should be provided.

Dependent on the device architecture and also on the partners that use context the

communication technologies incorporated are stated. In particular the technologies

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

117

such as wireless (e.g. radio and infra-red) or wired, are described and the motivation

behind the decision stated. In certain cases there may be no communication.

As an important part, an implementation example is given, providing more details

on realisation issues. This may be accompanied by a photo, schematics, code or

similar material or may contain references to these materials.

Finally references to other patterns that are related should be stated. Here the

references should be ordered in three categories: first patterns where entities are

described that are used as a sensor in the current patterns (lower level patters), second

patterns that are similar to the current pattern (same level), and third patterns that are

using the current pattern as a sensor (higher level patterns).

4.6 Patterns of aware artefacts

During the research that was carried out a number of different prototypes were built to

develop an understanding of the problem space related to context-aware systems.

Building prototypes as a methodological research approach is discussed in more detail

in chapter 8.

Some of the prototypes reflect large scale projects behind them whereas others

evolved from rather small projects. However theses prototypes represent certain

patterns. So far the following patterns have been identified, which are included in

Appendix C: Patterns (see page 51).

• Context Pattern #1, battery powered hand held electronic appliance

• Context Pattern #2, mains powered stationary appliance

• Context Pattern #3, non electronic portable every day objects

• Context Pattern #4, non electronic stationary every day objects

• Context Pattern #5, non portable furniture with horizontal surfaces

• Context Pattern #6, furniture that people sit on

• Context Pattern #7, garment

• Context Pattern #8, location awareness for mobile computing devices

• Context Pattern #9, context aware recording devices with communication

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

118

As the number of patterns, or the vocabulary, is still limited the references to other

patterns are less meaningful. Therefore this is omitted in the descriptions. When the

vocabulary is increased this becomes a powerful mechanism to relate knowledge.

These 9 patterns introduced above do not provide a complete pattern language for

context-aware systems in Ubiquitous Computing. The first 7 patterns are closely in

line with idea of bottom-up context-awareness that is tied to an entity.

Pattern #8 “location awareness for mobile computing devices” is different to some

extent, because it is restricted to a certain type of context for these entities. Also the

approach is not modelling the contexts of a device. Location is used as reference to

access services. Nevertheless this pattern is very important, and was the focus of

much research carried out so far. Pattern #9 is also different somehow as it is

concerned with the very specific application of tracking. Nevertheless this pattern is in

line with idea of modelling an entity, in this case a transport box. The contexts of

interest however differ on the content of the box, as for certain goods the temperature

is more important and for other the surrounding magnetic field.

The patterns can be extended further, either by considering new entities or by creating

patterns that only look at subset of entities described in the patterns above, e.g.

creating a new pattern ‘chairs’ that restrict and refines pattern #6.

However, in certain cases new entities can be reduced or at least related to patterns

already described. For examples a pattern “Body Parts” including foot, hand and head

can be related to pattern #7 garment, where the entity is the extrinsic observer of the

body part. Another example is “Accessories” such as a handbag and a watch. These

entities can be considered using the patterns #1 portable electronic device or #3

everyday objects.

4.7 Artefacts Become a Part of the Application

The approach described regards artefacts as being context-aware without targeting a

specific application. However when artefacts supply context to a system, even if they

are themselves non-electronical, they become a part of ‘the computer system’. When

supplying context they become at the very least an input device to the system.

Inherently the notion of ‘computer system’ and also of ‘application’ becomes unclear

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

119

with this background. In particular the following issues evolve from this change and

when designing computer systems and user interfaces they have to be considered.

• Physical distribution of artefacts and their relation matters.

• Communication of artefacts among each other and also with the underlying

system becomes central.

• The development process, building computer systems and applications, has to

include artefacts and context acquisition as relevant aspects.

Artefacts and entities in the real world are inherently distributed; and their distribution

is most often meaningful [Kirsh,95], [Beigl,00]. Taking this into account and

providing a platform that supports communication and also recognises the semantic of

distribution, is essential to efficiently support the development process. In chapter 6

these issues are further investigated.

Making artefacts aware and providing context information to a system also has severe

implications on human computer interaction. The balance between invisible

computing and meaningful interaction poses particular further questioning. These

issues are discussed further in chapter 7.

4.8 Discussion

The work presented here suggests that it is useful to anchor context at entities, such as

subjects and artefacts. Starting out from a specific entity the central question arises:

What is a generic set of intrinsic properties or contexts for this particular entity?

The question can be made more fundamental, is there such a generic set?

For most artefacts that have been investigated in the research carried out it appears to

be manageable to find a set of properties that cover the most common situations.

However the attempt to model all possible situations an artefact may encounter will

result in a model of the world for each object. In this bottom-up approach one of the

most difficult decisions is when to stop modelling and to what degree of detail the

model should go.

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

120

The relationship between artefacts, which is essential to the understanding of

situations in many cases, is also a central issue when modelling. Modelling

relationships directly in entities can lead to fairly complex models as the number of

entities increases. Here generalising the relationship is helpful. Instead of modelling

the relationships between two specific entities it is simpler to model the relationship

between a specific entity and an abstraction of other entities, e.g. modelling the

relationship of a cup on a horizontal surface, instead of many relationships between a

cup and a specific table. Similarly when this is modelled for the table (e.g. an object

placed on the table instead of specifically a cup on the table) using correlation over

time can easily reveal a specific relationship.

When implementing and prototyping aware artefacts or context acquisition systems

many different decisions are taken, e.g. what is sensed, where is it sensed, who is

benefiting from the context, which situations are regarded and which are not

considered, and how is communication facilitated. Making these decisions explicit

and consciously knowing the alternatives optimises the development process and

increases the understanding of the system design.

As advocated in this chapter prototyping is a central way of understanding context-

aware systems and their use in real world environments. In most of the projects

mentioned central aspects and applications emerged by engineering a solution and

deploying a system in a real world environment [Schmidt,00], [Schmidt,02a].

However prototyping, especially building functional physical prototypes, is a time and

resource consuming task. The lessons learned from one prototype will help to build

the next one. In many labs this knowledge is bound directly to people as such

knowledge is difficult to communicate. The use of patterns as a less formal way of

description is helpful especially when sharing experience with other disciplines (e.g.

design and ethnography).

4.9 Summary and Conclusion

In this chapter the concept of bottom-up context-awareness has been introduced. The

central idea is that context is always connected to an entity. This concept provides

means to structure context aware systems in a natural way. The design space for this

Chapter 4 - Modelling and Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

121

way of modelling is described and the basic approach is explained. Closely related to

bottom-up modelling is the method of prototyping systems.

After providing a short overview of prototypes that have been built over recent years

two of them are presented in more detail. The report on prototyping a context-aware

mobile phone provides insight into the method. The development of the weight lab

explains how experiments are carried out to understand the basic context acquisition

capabilities of systems and how they can be integrated in everyday environments.

The experience reported shows that aware artefacts are a useful abstraction and can

act as a foundation for further applications. Looking at the realisation a close

relationship between the conceptual model and the actual implementation can be

observed. This close relationship makes it simpler to understand systems and also

opens ways for extensibility of systems. Furthermore it also supports the composition

of systems.

A main value of building functional prototypes is that during this process a great

understanding, of specific technologies and the whole system, is gained. Creating

prototypes often reveals side issues that have not been considered before. Chance

inventions and side findings are often triggered by building prototypes.

Prototyping is expensive in every sense; nevertheless from the work reported here it

appears that there is no real alternative. Simulations, such as Ubiwise

[Vijayraghavan,01], are only applicable when the domain is well understood.

Especially in the domain of sensor based context acquisition, physical prototypes

seem to be the only method to collect real data. To ease this problem methods and

tools for prototyping of context acquisition systems is a central concern. In the next

chapter this will be addressed introducing a rapid prototyping platform.

122

Chapter 5

Supporting the Development and

Tools for Rapid Prototyping

Context acquisition is a central concern in Ubiquitous Computing as it is the

prerequisite for all context-aware systems and applications. In this chapter it is

assessed how context acquisition can be efficiently supported by tools and methods.

Acquiring and providing context is crossing fields such as device and hardware

design, system and perception software, as well as communication. Providing efficient

development support is therefore difficult and still in many ways an unsolved issue.

5.1 Analysis: Libraries and Tools are a Necessity

In previous chapters an overview of sensing technologies and a selection of

prototypes of aware artefacts are presented. Looking at the projects described and at

the patterns identified it becomes obvious that certain sensor, perception, software,

hardware, and communication problems are solved over and over again. Looking at

the implementations the wheel is re-invented slightly differently in each system.

As the process of creating a system that comprises of hardware, software, and

communication, system design is time consuming and also expensive. It is appealing

to provide tools and methods to reuse knowledge and also to automate steps in the

process. The concept of informal reuse can be seen when looking at publications and

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

123

demonstrators from institutions where there is an extensive experience in a certain

platform. It is apparent that a basic design will reappear in different projects.

Developers build up their building blocks which are then used again to save

development time. This knowledge is often very much tied to a particular developer.

Tools and methods to support the implementation of sensor based context acquisition

systems can be deployed in various ways. It ranges from decision support when

selecting sensing technologies for a particular context, ready-made rapid prototyping

systems for context acquisition, libraries and building blocks, to an integrated

development environment that can support design, hardware, communication and

software development.

5.1.1 Software Libraries and Hardware Building Blocks

A general approach in computer science is to provide libraries that ease the

development of applications in a certain domain. Functions and procedures that are

repeatedly needed are developed once and shared and reused in following

developments. Software libraries however are most often bound to a particular

operating system or execution environment assuming an underling software system

and a basic hardware configuration.

When providing software libraries for context acquisition systems the issue becomes

wider as there is no standard sensor system or sensing platform. Especially the

software (comparable to system drivers in conversional systems) that realises

interfacing with the actual sensors is mostly dependent on the sensing system. Here

libraries and building blocks can be provided to make the development of hardware

related code easier. Furthermore, in context acquisition systems communication with

potential context consumers is a major issue. In many cases this also includes the

distribution of data. Libraries that facilitate communication between sensing devices

and other devices and also with the backend infrastructure are useful to make this

process more efficient.

As context acquisition systems include sensors this often involves the design and

implementation of specific hardware using a particular set of sensors arranged in a

specific way to suit the task. Providing basic sensor building blocks to speed up the

process of hardware design becomes an obvious goal. Similarly processing and

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

124

communication building blocks are also helpful for these functional units. It is

suggested that a variety of libraries for different platforms (e.g. embedded systems

and PCs) and device building blocks (e.g. schematics, board layouts, and physical

designs) can improve and hence ease the development process.

5.1.2 Context Acquisition Design Method

When designing a context acquisition system one of the first steps is to select the right

sensors, algorithms, processing cores, energy supplies, and communication

technologies. The decisions made here have far reaching consequences for the context

acquisition system.

At this step it is central to have knowledge about what sensors and algorithms can

contribute to get information about a particular context. The selected sensors and

algorithms have implications on the processing system, energy consumption, and

what type of communication is required. As for a particular context there is often

more than one sensor that can contribute and there is also different cost associated

with different solutions.

Given that the knowledge about architectures, building blocks and libraries is

available a method to guide trough the design of such systems can be of significant

value. Having a method this is then a starting point to develop further tools that

support particular parts of the design process.

5.1.3 Ready-Made Deployable Rapid Prototyping Devices

Additionally, devices that offer the most common sensing opportunities built-in,

combined with basic processing capabilities and communication can help to get a

system deployed and explored in very short time.

Hypothesis 4: A rapid prototyping platform to make artefacts

context-aware can be provided. Such a platform will simplify

and speed up the prototyping process of such systems.

The advantage of a hardware platform is that creating a specific context acquisition

system only requires the development of context specific software on the sensor

devices and potentially in the backend. As the set of sensors is defined by the

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

125

hardware implementation also efficient software libraries and contexts acquisition

software can be supplied.

A prerequisite for rapid prototyping systems for context awareness is that they are

made in a way that they can be attached, included, embedded, or integrated with

whatever artefact should become context-aware. This is a real challenge for the

physical design of such tools – especially size and power consumption become a

major issue.

As it is impractical (or even impossible) to include all sensors that may be used in one

sensor board it is important that a simple way of attaching and detaching sensors is

included in the design. As it is not likely to foresee all sensors developers want to use,

ways for extension have to be included.

All three paths – libraries, development method and tools, and a rapid prototyping

platform – have been explored in the research that led to this thesis. In the following

sections the main issues in each of the approaches are presented.

5.2 Context Acquisition Libraries

When designing a library for context acquisition the main problem that appears is that

there is no standard sensor platform. Furthermore, when looking at the patterns

presented in the last chapter it becomes apparent that in many cases context

acquisition systems have to be designed from scratch to be useful beyond an early

prototype stage. The physical design and the host artefacts must be taken into account.

This process of designing whole context acquisition systems rather than providing

software for a given platform sets new challenges for the provision of a library. It

includes system architectures and hardware issues and is also concerned with

communication, protocols, and software. The libraries can not be viewed in isolation.

System architecture, hardware platform, and communication are dependent on each

other and also influence the software deployed.

The libraries presented in this section reflect the experience gained from

implementing various prototypes. The hardware building blocks and software

components evolved by factoring out common parts of a union of all implementations

carried out in different projects. An overview of the library is given in Table 10.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

126

5.2.1 Architectural Frameworks

The overall architecture of a system has implications on the hardware, software, and

communication. The following three general architectures are suggested as framework

when building context-aware systems.

• Attached Sensing Architecture. This architecture is used when context

acquisition is attached to the context consumer directly. A single sensor

system is physically built into or onto a device that makes use of context. The

connection between sensor system and device is wired (e.g. using a serial

line). Examples are sensor boards connected to handheld devices or phones

[TEA,98]. See Figure 14 (top).

Context Acquisition Library Structure
Category Sub Categories Implementation

Architectural
Frameworks

� Attached sensing architecture.

� Wireless single consumer architecture.

� General wireless sensing architecture

System architectures

Hardware
Library

� Processing cores and memory units.

� Sensor blocks

� Communication blocks

� Power supply blocks.

EAGLE CAD files

� Program Templates Program skleletons in C and

function in PIC-C

Software
Library

� Sensor drivers

� Communication drivers

Drivers implemented in

functions (PIC-C)

Perception
Library

� Statistical functions

� Time domain analyis

Function in PIC-C

Backend
Library

� Serial line access

� Network access

� FuzzySpace access

Variety of skeletons and

functions/classes in Java,

C/C++, and Visual Basic for

Linux and Win32.

Table 10: Context Acquisition Library.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

127

• Wireless Single Consumer Architecture. The sensing system consists of one

or more sensing nodes which are wirelessly connected to a base station. The

base station is connected via wires to the device that is making use of context.

The sensor system can be distributed. See Figure 14 (middle).

• General Wireless Sensing Architecture. The sensing system consists of one

or more sensing nodes which are connected to one or more base stations. The

base stations are connected to the network or more specifically to a

distribution platform (e.g., a FuzzySpace see chapter 6). All applications that

make use of context are also connected to the network or distribution platform.

See Figure 14 (bottom).

For each of the architectures a basic hardware framework, software framework, and

communication setup is be provided. These frameworks are then filled with building

blocks as outlined in the following sections.

5.2.2 Hardware Library

The requirements on the design of devices that provide context are manifold. In many

cases only an individual design, that is targeted to the artefact which should become

context-aware, offers a usable solution.

Sensing
Device

Sensing
DeviceSensing

Device
Sensing
Device

Network

((((((((((
(((

(((((((((((((((((

Context
Consumer

Sensing
Device

Sensing
DeviceSensing

Device
Sensing
Device

((((((((((
(((

(((((((((((((((((

Base
Station

Context
Consumer

Sensing
Device

Context
Consumer

Context
Consumer
Context

Consumer

Base
Station

Figure 14: Basic System Architectures.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

128

Hardware libraries are a possible solution. In conventional electronic CAD systems

libraries with a wide range of components are included. These components can then

be added to schematics and PCB designs. Mostly these components are single

devices, such as resistors, capacitors, connectors, and processors. In most cases a

schematic (and also the PCB) consists of a number of components connected together.

The connections are made according to the datasheets of theses components and using

general knowledge about hardware design. This is a time consuming process.

The approach with the hardware library is to provide larger building blocks to speed

up the design process. The library developed is implemented as EAGLE schematic

and PCB layout [CadSoft,02]. The building blocks provided are designed and

documented in a way that the developer can ‘copy&paste’ them into his designs.

5.2.2.1 Processing Cores and Memory Units

For all units in the system, either sensing units or communication units, a processing

core is required. The processing core includes a microcontroller with a number of I/O

pins. The building block is designed in a way that all I/O lines can be used when

power is connected without further components. In some cases the core is a single

component (e.g. using a PIC16F628) but typically this includes the MCU together

with an oscillation circuit and a reset mechanism. Also one unit with high resolution

A/D conversion is included in the library.

For an overview of the processing core library see Appendix D.1: Hardware Building

Blocks HWcore.

The storage in the microcontrollers used is very limited, therefore additional memory

may be required. Therefore a 64Kbit FRAM chip is included in the library, too. The

memory unit (containing the FRAM chip and pull-up resistors) is connected via I2C

and offers a non-volatile storage at minimum energy consumption.

5.2.2.2 Sensor Blocks

In chapter 3 different types of sensors and their use for context acquisition is

discussed. This library contains building blocks for various sensors. As many sensors

can not directly be attached to a microcontroller the building blocks also include the

signal conditioning circuits.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

129

Each building block in the library is created so that it can be connected directly to

power (typically 3 or 5V) and the output of the sensor can directly be connected to the

MCU. Dependent on the sensors this may be one or more analog pins, one or more

digital input pin, or a more complex communication interface such as SPI or I2C.

The library deploys a naming schema, where AOUT* is a analog output of the sensor

which should be connected to an analog input of the processing unit, DOUT* is a

digital output of the sensor and should be connected to an digital I/O pin, DIN* is a

digital input pin to manipulate the sensor and should also be connected to a digital I/O

pin. Names ending with *OP indicate that these pins are optional – so they can be

connected but it also will work if they are left open.

On overview of the library is given in Appendix D.2: Sensor Building Blocks

HWsensor.

5.2.2.3 Communication

In all cases where context acquisition systems are created communication is required.

By choosing a particular architectural framework the basic communication

architecture is specified.

In the simplest case this is a wired connection between the processing core and a

device that accommodates the context consumer. For these links the library offers

designs for serial line communication (RS232) and I2C connectivity.

The library also includes different types of wireless units. As AM and FM transmitter

and receiver have different parameters, especially regarding communication speed

and energy consumption various building blocks are provided. Additionally to

transmitters and receivers also transceivers are included. Building blocks also contain

an antenna (e.g a PCB track) which size is depending on the frequency of the module.

A further option is a wireless link based on infrared transmitters and receivers.

All communication building blocks in this library are designed so that they can be

directly interfaced to a MCU and accept serial data that is appropriately coded and not

exceeding the speed specified, see also the software library description later.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

130

The library is presented in Appendix D.3: Communication Building Blocks

HWcomm.

There are further collections of hardware building blocks, such as the power supply

library, which are useful to rapidly build systems.

5.2.3 Software library

The software libraries are designed to ease the development of sensing and context

acquisition systems. In particular the functions support programming of systems

which are running hardware that is constructed using the building blocks from the

above hardware libraries.

The library includes program templates that relate to the building blocks, functions

that provide hardware drivers for sensing and communication, and functions

implementing basic perception. These software parts are all implemented in C, written

for the CCS-PCM compiler [CCS,02]. Additionally, the library also contains backend

functions to access the context acquisition system; those are available in various

languages and for different PC platforms (e.g. C, Visual BASIC, and Java).

5.2.3.1 Program Templates

For each of the cores specified in the HWcore-library a program template is provided.

The template is divided in two parts. A general c-file that will be used as starting point

by the developer and will be extended with further functionality is one part. And a C-

file that implements a driver for a particular core is the second4.

Similarly for the additional memory also a C-driver file to include is provided. It

offers basic read and write access to particular memory addresses. It can be extended

with functionality to store typed values in the memory.

An overview of core-drivers and memory drivers is listed in Appendix D.4: Core

Libraries SWcore.

4 The CCS compiler used does not support precompiled modules as usually known from standard C development.
Before each compiler-run the main file is extended with all includes to one single file which is then compiled.
This makes it necessary to include the c-code of functions.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

131

5.2.3.2 Sensor Drivers

For each sensor building block a driver, realised as a C-file, is provided. The driver

file provides access functions to the sensor values. This is implemented in different

ways depending on the sensor and how the sensor is connected to the core. Before

including a sensor driver in the code it must be defined to what pins the pins of the

sensor is connected. This is realised using a set of ‘define’-commands. The ‘define’-

commands required are specified in the header of the driver file and if appropriate

default values are set. See Appendix D.5: Sensor Drivers SWsensor.

5.2.3.3 Communication Drivers

Different communication drivers and functions are provided for the building blocks

specified. This makes the implementation of communication, in particular wireless

communication, easier. Similarly to the sensor drivers the connections between the

communication units and the core have to be described using ‘define’-commands.

Also the speed for a connection has to be specified using a ‘define’-statement.

As the complier offers already functionality for wired serial communication and wired

I2C communication, the library is mainly concerned with wireless communication.

The library offers a ‘printf’-function, which is similar to the RS232-‘printf’-function

provided by the compiler, for sending data. On the receiver side two types of

functions are implemented, one actively polling and another one using carrier detect

(CD) to trigger an interrupt. In particular these functions realise error detection using

a CRC-based mechanism.

As wireless communication is a main energy consumer in many designs also

functions to power down these components are implemented if supported by the

hardware.

An overview of functions offered in the communication library is given in Appendix

D.6: Communication Drivers SWcomm.

5.2.3.4 Perception Library

In the perception library (SWperception) algorithms for cue and feature calculation

are collected. The implementation reflects some of the perceptions methods discussed

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

132

earlier. In particular functions that are light weight, such as basic statistics and time

domain analysis are included.

The functions which operate on a vector of data are implemented in two versions; one

where the data is held in a global array and the other were data is passed through

parameters. Using a global array seems like poor software engineering practice,

however, given the minimal storage and the speed of the MCUs it can save memory

and copy operation. Given the constraints of the MCU the functions working on a

global buffer are included in the library.

5.2.3.5 Backend Software Libraries

Recalling the three basic architectures presented above it can be seen that the context

consumer has to communicate in one of the following ways:

• accesses directly the sensing device,

• accesses directly the base station, or

• accessing the context acquisition system indirectly via the network

In the first two cases a standard way to do it is to use the serial line (or USB which

emulates a serial line). In the third option the access is done using UDP or HTTP over

an IP network (which can be encapsulated in a high level library such as a distribution

platform).

The backend library caters for those cases. The implementation for Visual BASIC

uses the Microsoft Comm-control. The C implementation for a Win32 and Linux uses

native API calls to provide the functionality. The java version uses the javax.comm

package that is available for different platforms.

5.3 Context Acquisition Design Method and Tool support

To support the design process of context acquisition systems it is useful to assess what

steps are usually accomplished in this process. In particular it is important to identify

at which point decisions are taken. Furthermore it is important to recognise how these

decisions influence the process further. These observations lead to a description of the

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

133

design space. Based on this knowledge it becomes possible to create tools that provide

advice and support in this process.

5.3.1 Design Steps and Decisions

The following steps reflect on the design process of a context acquisition device as

done in a number of projects and also reported by other researchers. The steps

outlined can also be regarded as method to build context acquisition systems. In Table

11 the method is summarised.

5.3.1.1 Method

The method outlined here provides a general overview on the central steps and design

decisions made when designing context acquisition systems. Depending on domains

further intermediate steps may be introduced or steps may be omitted because of pre-

specified constraints.

Step 1. Identifying contexts that matter; checking whether or not context matters

at all.

In a first step the usage of the application or the artefact that should become context-

aware is analyzed. If it can be concluded from the following questions that the

situation does not matter it is probably not worthwhile to use context.

A method for designing context acquisition systems
Step Action
1 Identifying contexts that matter.

2 Determine variables that distinguish contexts selected.

3 Finding appropriate Sensors to cover all variables at minimum
cost.

3a (optional) Building and assessing a prototypical sensing device.

4 Selecting recognition and abstraction technologies.

5 Specification of a context acquisition system.

6 Build applications.

Table 11: Steps for the design of context acquisition systems.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

134

• Is the application or artefact used in changing situations?

• Vary the expectations of the user towards the application or artefact with the

situation?

• Is the human computer interaction pattern different in various situations?

• Does the user’s interaction with the real world environment offer information

that is valuable to the application?

If it can be concluded that context may provide additional information all situations

that matter are identified. For these situations the conditions of the informational,

physical and social environment are identified. Real world situations that should be

treated the same by the application, are grouped into one context that is named.

Step 2. Determine variables that distinguish contexts selected.

By considering possible real world situations that fall under a context variables that

discriminate the context are identified. Such variables may be of informational,

physical and social nature (e.g. time of day, location, number of messages,

temperature, number of people in the vicinity, relationship with people near by,

interaction with the device, etc.). For the minimal set of variables that make it possible

to discriminate the selected context the values (e.g. ranges, sets) for variables are

specified.

Step 3. Finding appropriate Sensors to cover all variables at minimum cost.

For the variables identified in step 2 possible sensors are identified. When considering

sensors the following points are taken into account:

• accuracy of the sensor in relation to the variable

• the cost to provide the information (see for a cost assessment below)

• feasibility and appropriateness of using a certain sensor in a certain domain.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

135

The resulting selection of sensors should be done in a way that the sensors cover all

variables with sufficient accuracy at a minimal cost. The selection of sensors at this

stage is often done based on the experience of the developer or based on datasheets

and lab environment tests of sensors.

Given the knowledge about the sensors to use and the side conditions for the context

acquisitions system the physical layout can be specified.

Variant: Step 3a. Building and assessing a prototypical sensing device.

On common approach is also to create after step 3 a physical sensing device using the

actual sensors and providing the raw data for analysis. This intermediate step has to be

taken when there is little knowledge about the sensors in question or the contexts to

recognise.

Based on the decision on sensors a prototypical sensing device, e.g. sensors attached

to a board in a similar form factor as the actual device and connected to data storage

on a standard computer is created. Here it is especially interesting to experiment with

the positions of the sensors on the device. Then the sensing device is used in the

situations that should be detected and data is recorded. In a next step the recorded data

is analyzed (e.g. statistics, clustering) to identify whether the raw data differs

significantly for the different situations or not. If the data differs not significantly

different sensors have to be selected or even different contexts have to be identified or

in some case it may turn out that it is not feasible to recognise the contexts at all.

Step 4. Selecting recognition and abstraction technologies.

Based on knowledge or on data recordings available a set of cues is identified that

provides a reduction of the amount of data but does not decrease the knowledge about

the context. Features and algorithms are chosen in a way that all variables can be

calculated from the data that is obtained from the sensors selected.

In an optimal case algorithms are found that do not reduce the knowledge about the

situation with regard to the variables of interest. In this step also side conditions,

especially with regards to processing and bandwidth are taken into account.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

136

Step 5. Specification of a context acquisition system

After all components, the physical design and the algorithms are assessed the overall

architecture of the system is determined. In particular the question is a single sensing

device used (e.g. often in mobile systems) or is a distributed collection of sensing

devices used (common in embedded settings) has to be addressed. This also includes

decisions on the distribution with respect to sensors as well as processing. This is

mainly to determine the overall architecture of the system. A decision could be that

the sensing device is integrated in the environment and the contexts recognised are

communicated to a mobile device. Communication issues and how the sensing system

is connected to potential context consumers (in a distributed setting) have to be

defined, too. In this step also the decision how context is provided to the context

consumer such a particular application is made, typically by specifying an API.

Step 6. Build applications.

When context information is available the final step is to build applications on top of

the context-aware artefact and environments that make use of context.

5.3.1.2 Cost Function

When selecting sensors and algorithms the cost is a major issue. Cost in these terms

depends much on the type of artefact or application (e.g. mobile, stationary) that is to

be build, the anticipated usage scenarios, and the potential user group. The issues that

are taken into account reflect the requirements discussed earlier in section 3.4.

Specifically the restrictions on the overall design resulting from the sensors is a major

point, as well as power consumption, robustness, reliability, social acceptance, and

additional monetary cost.

A cost function is highly dependent on the side conditions that are given for a specific

system. Depending on the issues that are important for a specific realization these cost

factors have to be weighted according to their importance in the problem domain.

However, for most sensors and algorithms it is possible to describe their relative cost

in certain areas such as size, weight, and power consumption.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

137

The knowledge accumulated in the building blocks, libraries, and in the method is

also used to follow the orthogonal path of providing a rapid prototyping platform.

5.4 A Rapid Prototyping Platform for Context Acquisition

Hardware building blocks, tools, and libraries offer great flexibility as outlined above,

however it requires in each project the development of a new hardware platform. The

value of this approach is undisputed, however it still is very expensive compared to

the development of software. Especially in early phases in a research project where

the feasibility of the detection of a certain context has to be assessed a different

approach is often more useful. Instead of instantly designing a new hardware platform

first the feasibility is assessed using a rapid prototyping platform for context

acquisition. When the initial trials are successful and it can be shown that certain

contexts can be detected and are useful for applications it can be moved on to the

design of a specific platform using the building blocks and tools.

The method introduced above mentions the optional step 3a “Building and assessing a

prototypical sensing device”. In domains where there is little knowledge of how

sensor data for particular contexts looks like, it is hard to select the right sensors. To

find out what sensors can provide a significant contribution towards the variables of

interest deploying sensing devices and recording cues and features calculated from the

sensor data is a useful way to go. For this step it is very helpful to a have ready-made

deployable rapid prototyping platform available. Even if these devices do not

optimally integrate with the design of the artefact that is made context aware it offers

a way to gain essential real world data.

In cases where physical size and power consumption are minor issues (e.g. pattern #2,

pattern #4, pattern #5, and pattern #6) providing a ready-made base platform makes

the development process much simpler. In this case the base platform can include

processing, memory, and communication. The development is then reduced to the

connection of sensors to this base platform. Within the European Project Smart-Its

these issues are addressed.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

138

5.4.1 The Smart-Its Idea

Creating a platform that eases the development and deployment of context-aware

artefacts is at the centre of the project Smart-Its. The basic idea is to build a platform

which offers sensing, processing, and wireless communication that can be attached to

artefacts to make them context-aware. The interest of the project is beyond the context

represented by a single node. One of the hypotheses is that bringing context

information together from various context sources results in collective awareness,

which offers more information than the sum of all individual context sources taken

into account.

The approach can be characterised by creating a device family rather than a specific

device. The devices have the following properties in common:

• sensing,

• processing,

• wireless communication, and

• configurability or programmability.

As the vision is to augment everyday artefacts it is central that the technology is

realised in a way that allows to post-hoc attach “Smart-Its” to these objects. The

metaphor is that “Smart-Its” can be attached to objects like “Post-Its”, and provide

then context-awareness for the device they are attached to. This is a realization of the

concept of bottom-up context awareness.

Within the family different branches are assessed. Also within each branch an

evolution can be observed resulting in various family members. The following

branches evolved within the project:

• TecO-Smart-It

The main design objective is to minimise the physical size and the power

consumption of the devices. For more details see [Teco,02].

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

139

• ETH-Smart-It

The focus in the development of this branch is interoperability with consumer

devices. The communication is therefore based on Bluetooth, see [ETH,02].

• Lancaster-Smart-It

In this branch the main goal is to provide a simple to use rapid prototyping

platform that can be easily extended with minimal learning effort.

In the reminder of the chapter the Lancaster Smart-It is described in more detail,

especially providing an insight into the design rational and the resulting realization.

5.4.2 Lancaster Smart-It Family

When designing the platform simplicity is a high priority while maintaining maximal

flexibility. In particular the core hardware design is done with minimal complexity

using widely available components. A further objective is that the design and

operation basics of the components used should be understandable with little effort by

students. Also from the experiences in educational use a further requirement evolved:

the electrical design should be very robust. Similarly the core software for the

complete system should be easy understandable and extensible. The hardware and

software should be quickly and easily reproducible. One target audience is students

and another is researchers who need a rapid prototyping tool for a proof of concept.

All information about the design should be free and open.

On the other hand the system should not neglect the basic Smart-Its idea. The physical

design should be compact and robust. Extensions, in particular the inclusion of new

sensors should be easy – physically, electrically and in terms of software. Also the

system should offer wireless operation. To speed up development time support for

debugging distributed applications should be provided. Finally, the system should be

mass-deployable; especially the price of individual units should be significantly

cheaper than a wireless PDA.

5.4.2.1 Rapid Prototyping System Architecture

The design concept evolved from the requirements stated above. The basic

functionality for each unit – independent of its function (e.g. sensing node or base

station) – is incorporated into the core board. The core board offers processing, non-

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

140

volatile memory, power, and wired as well as wireless communication. It also has a

physical connector for Add-On boards, offering analog inputs, digital I/O, and I2C

communication. All specific functionality, in particular sensing, is realised as an Add-

On board that can be physically and electrically attached to the core. Figure 15 shows

a core board with a sensor board attached.

The software is also tied to these hardware modules. Specifically the software

framework for the core board offers primitives for the base functionality and also to

access the Add-On boards.

In the following sections the implementation of the core board, several Add-On

boards and the back-end integration is described.

5.4.2.2 Core Board

The basic design of the core board is centred on a PIC16F8765 Microcontroller

offering processing, analog inputs, and digital I/O. A Ramtron FM24C64 ferro-

electric memory is connected via I2C to the MCU [Ramtron,02]. The FRAM-chip

provides 8KByte of non-volatile memory. These components are the only two parts in

the core board that hold state information. Therefore they are not directly soldered in

the board; they are hold in a socket. By physically moving the MCU and the FRAM

from one board to another all program and data memory is moved. This makes it

easier to keep old versions – instead of reprogramming the system or storing the

whole system, only the MCU and the FRAM have to be stored for a particular version

of a prototype. Furthermore the ability to transfer the processor with the software and

the memory chip to another board also eases debugging.

Wireless communication, another Smart-Its key requirements, is realised using a

BIM2 transceiver module from Radiometrix [Radiometrix,02]. The transceiver offers

raw data rates up to 160KBits/s in half duplex mode. Running at higher data rate the

module requires a balanced code (50% “0” and 50% “1”), however at lower data rates

this is less critical and a serial data stream can be sent directly. As the wireless

transmission is unreliable securing the transmission in software is inevitable.

5 The board is also compatible with the PIC18F252 microcontroller which is available since 2002.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

141

Directly on the core board there is also a RS232 connection included. To ease the

connection to PC or PDAs and hence debugging a SUB-D connector is included,

despite the size of the connector. The TTL-signal on the MCU is converted into a

RS232 signal using converter. In the design the MAX233, which does not require

external capacitors was favoured over the MAX232 to reduce the component count on

the board.

As the core board should offer a flexible platform – for mobile as well as stationary

use – various ways for providing power are included. For mobile use the power can be

provided by 4 AAA-rechargeable or by 4 AAA-batteries. In stationary use there is

also a further option to provide power externally by a supply that outputs 6-18V DC.

If the power is provided by batteries or by an external source a power regular (low

voltage drop version) provides a 5V supply. In case of rechargeable the 4.8V are used

directly. The type of power supply can be selected by a dip-switch. To ensure that the

device is not damaged in case the power is provided with wrong polarity a diode and a

fuse are included.

A connector with 20 pins provides the electrical and physical extension to the core

board. Add-on boards can be pluged into the connector. The connector has three

groups of pins: one for I2C, one for digital I/O, and one for analog inputs. In summary

the 9+8+3 connector provides 3x GND, 2x 5V-power, 5x analog-input, 7x digital I/O,

one digital output and a I2C connection (2 pins, SDA and SCL).

Figure 15: Core module with a sensor board attached.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

142

The overall design results in a device with about 30 components. To understand the

basics of operation it requires only looking at 5 datasheets (Microcontroller

PIC16F876, RF Transceiver BIM2, Serial line driver MAX2322, Memory FR16C64,

and voltage regulator 78L05). The physical size is about 55x70x29 mm and about 58

grams (110 g with 4 AAA-batteries). In Figure 16 the block diagram is shown; in

Figure 17 (right) the module is depicted.

Exclusively for mobile use a further version of the core board which is much smaller

45x50x19 mm and only weights 24 grams (29 grams with a 3V battery) is developed,

see Figure 17 (left). It has the same main components (processor, FRAM, and RF

transceiver) and offers the same 20-pin Add-On connector. It is software compatible

to the other version. The differences are in the power supply – it runs from a single

3V Lithium battery. Also RS232 level conversion and the 9-Pin Sub-D connector are

omitted.

The design rational for the PIC microcontroller was the manifold. One important

reason was that the MCU is widely used in education and therefore a lot of

Microcontroller
(PIC16F876 or PIC18FXXX)

FRAM Memory

Analog Input

Digital I/O

I2C Bus

Radio transceiver

RS232
Driver

Sub-D
connector

Voltage Regulator

Battery Holder
DC

connector

A
dd

-O
n

C
on

ne
ct

or

Digital I/ODigital I/O

Analog InputAnalog Input

Figure 16: Block diagram of the Smart-Its core. The overall diagram shows the

larger general purpose version. The part with the grey background shows the

minimised version.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

143

information is easily available. Compared to other microcontrollers (e.g. ATmega103)

it is fairly cheap and power consumption is low however it offers less memory.

Furthermore the availability of a compiler (which is commercial) that provides a large

set of libraries was another reason for choosing this MCU. To compensate for the lack

of memory the cheap and power saving FRAM chip is included in the design.

To make the hardware easily reproducible it was opted for a conversional design

using no SMD technology. This decision resulted in a larger physical size however it

eases assembly, soldering and debugging dramatically. Also to ease debugging 2

LEDs have been included in the design – on which is permanently on indicating the

availability of power and the other which can be controlled by software.

For the core board a library and software templates are provided. The library provided

functions to access all functionally offered by the core board. In particular for

• sending and receiving messages using wired or wireless communication,

• storing data in and retrieving data from the external memory,

• accessing analog input,

• reading and writing digital I/O, and

• switching the LED.

Figure 17: Smart-Its Core Boards.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

144

The templates are programs that can be compiled and run on the core board. They

make use of the libraries and provide a particular function. They are intended to be

used as starting point for new development. Examples for templates are

• base-station template

This program reads from the wireless connection and hands on everything that

was received to the serial RS232 connection. This template is a starting point

for developing code for modules that provided base-station functionality.

• Sensing loop template

This program contains a infinite loop in which all analog inputs are read and

then send over the wireless link as well as over the serial line. This template is

the starting point for developments that read sensor data, process them, and

provide them to other components in the system.

The schematics are depicted in Appendix E.1: Core Board Schematic. and Appendix

E.2: Mini Core Board Schematic. Further technical details, in particular an electronic

version of the schematic, the PCB-layout, and the header file are available at

[Schmidt,02b].

5.4.2.3 General Sensor Board

The general sensor board is designed as an Add-On board to the core providing a

basic sensing system. It is intended for prototyping of context-aware rooms and

artefacts, especially in an early proof of context phase. The included sensors make it

easy to collect data in situ on a real artefact or in a real world setting. The data can

then be used to find out which of the sensors are useful in the setting investigated.

Based on these initial experiments a specific device or Add-On can be developed.

The block diagram of the sensor Add-On is depicted in Figure 18 (left). Specifically

the following sensors are included:

• Two light sensors. The boards can be equipped with a variety of pin

compatible light sensor of the TSL25X and TSL26X series [TAOS,02].

Aiming at different wavelength and amplification factors.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

145

• Acceleration/orientation in two dimensions. An ADXL202E sensor provides

information about acceleration and that is dependent on the way the device is

hold. If no acceleration occurs the output represents the spatial orientation.

• A capacitive touch sensor. To get information about user interaction a

capacitive touch sensor is included. The sensing surface can be extended to

any conductive surface on the artefact (e.g. a door handle can be made touch

sensitive).

• A passive infrared sensor (PIR) module is mounted on the board. The digital

output signals movement of people or animals around. The lens – a half sphere

– offers a viewing angle of 360º with an opening of 180º. This sensor works

only on the 5V version of the core board.

• Also a digital temperature sensor is on the board. The sensor is on the I2C bus

and provides a resolution of 0.5º centigrade.

Beyond the sensors also two LEDs are included in the design. Having visual output on

the boards makes it easy to give simple feedback, especially when debugging

applications. The sensor board is depicted in Figure 18 (right). The full schematic is

depicted in Appendix E.3: General Sensor Board Schematic.

Analog Input

I2C Bus

Light Sensor
(TSL261)

A
dd

-O
n

C
on

ne
ct

or

Light Sensor
(TSL251)

Analog Input

Digital I/O
Touch

(QT110)

Digital I/O
Acceleration
(ADXL202)

Digital I/O PIR Module

Temperature
(DS1621)

Figure 18: Sensor board block diagram (left). Completed sensor board (right).

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

146

To run the core board with a sensor Add-On as wireless sensing node, basic software

is provided. It implements a sensing loop at the end of which the current results are

sent via RF and also over serial line. The code is also a basic framework for more

elaborate usage of the sensor Add-On.

A more advanced version of the sensing software is configurable. It also executes a

sensing loop, but keeps a history and calculates basic statistics of the sensor values

over time. The serial line can be used to change the configuration, in particular which

sensors are read, the transmission format, the sensing speed, and how often a wireless

transmission is carried out.

5.4.2.4 Load Sensor Board

To carry out load sensing experiments as describe in detail in section 4.4.2 and in

[Schmidt,02] a custom hardware was developed. The result of the deployment phase

resulted in a list of possible improvements:

• Increased AD resolution.

To avoid the influence of single bit errors in the position calculation and also

to increase the weight range of the objects that can be detected, an ADC with

higher resolution has been chosen (an external 16 bit ADS8320 analog to

digital converter). This chip offers only one input so a multiplexer was used.

• In order to improve the performance of the amplification instrumentation

amplifiers (e.g. INA122 from TI) are used instead of Op-Amps. The INA122

offers an amplification range of up to a factor of 10000.

• As the load on the surface changes and as it is also desirable to be able to

detect very light objects or minimal interaction, the factor for the amplification

can be selected at runtime from the microcontroller. Two amplification factors

are implemented (factor 150 and 1000) using two instrumentation amplifiers

for each sensing input.

• Additional RAM.

In some advanced scenarios it becomes eminent that keeping a history on the

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

147

artefact is useful to detect more complex events or patterns of events. This

requires additional storage, which is already included in the core board.

Instead of redesigning the original board the load sensing system is realised as an

Add-On to the Smart-Its core board. The block diagram is depicted in Figure 19, and a

photo is shown in Figure 20 (left). Technical details are included in Appendix E.4:

Load Sensing Add-On Schematic.

The software framework is an extension of the software used in the experiments

reported earlier. The software is configurable using a serial terminal which is

connected to the serial port of the core board. In the simple version all forces are

measured and the point of pressure is calculated. The sampling speed, communication

interval, and the communication format can be selected. In the advanced version low

basic weight events (object put at, object removed, etc.) are recognised and

communicated. These programs are also the starting point for further developments

using this Add-On board.

Add-On Connector

D
ig

ita
l I

/O

8-1-Multiplexer

Analog Digital
Converter

x1000x150x1000x150x1000 x150 x1000 x150

D
ig

ita
l I

/O

Load
Cell

Load
Cell

Load
Cell

Load
Cell

 I
nA

m
p

 I
nA

m
p

 I
nA

m
p

 I
nA

m
p

 I
nA

m
p

 I
nA

m
p

 I
nA

m
p

 I
nA

m
p

Figure 19: Load-sensing Add-On Board.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

148

5.4.2.5 Further Add-On Boards

Within different projects further Add-On boards have been developed and used. All

boards have in common that they are build around the Add-On connector. The

development is simplified because the core already offers digital I/O, analog inputs,

and power. In particular the following boards have been built.

• Vision Sensor Board. This board is developed in the course of the Smart-Its

project. It includes a CMOS-video camera, an analog video transmitter,

several sensors (acceleration, light, PIR). Beyond the basic functionality of the

core the software framework allows reading of sensors and controlling camera

and transmitter, see Figure 20 (right).

• Weather & Health Board. The Add-On board is designed to include a number

of sensors that can be used to monitor weather conditions. Additionally two

further serial lines are included to connect a GPS unit and an Oximeter

[Nonin,02]. The serial line of the core is connected to a mobile phone. Using

this setup sharing of weather information can be realised. Additionally health

monitoring and emergency calling is included.

• AM-RF Bridge. For certain applications – especially when physical size and

power are a major concern and bandwidth is less important using AM

transmitters is an option. The AM-RF Bridge is an Add-On that includes an

AM-transmitter and receiver. Having artefacts that provided their information

using an AM transmitter this module can be used to bridge it to serial line or to

FM-RF.

Figure 20: Load sensing (left) and wireless camera (right) Add-On boards.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

149

• Experimentation Boards. Different types of experimentation boards have been

developed. They contain solder holes for all pins on the Add-On connector and

also a breadboard area. These boards make it relatively easy to test new

hardware Add-On (e.g. a new sensor). In the evaluation workshop several new

Add-On boards have been developed using these boards.

The complexity of designing an Add-On module is much less than of designing an

entire system. In particular having modules, that can be separately debugged

(hardware and software), speeds up the development process. As it will be discussed

in more detail later (see chapter 8) people without a deep knowledge in electronics

can add new sensors using this approach.

5.4.2.6 Communication & Backend Integration

The Smart-Its boards can be used in any of the system architectures shown earlier in

this chapter. One option is to use a single board and connect this directly to a context

consumer, e.g. the serial line of a PC or PDA. The other option is to use a single or

multiple wireless boards and one core board as a base station. As the RF

communication is realised as broadcast also multiple base stations can be set up, all

receiving the same information.

The base station is the same hardware as the core board. It does not require any Add-

On to be attached. In some cases it may be useful to attach a sensor board to the base

station and use the unit twofold. Having the sensor information from the base station

may be interesting when dealing with context proximity.

The basic software which is running on the core board acting as base station receives

the information broadcasted by other units, checks that the packets are valid (e.g. the

CRC is ok), and forwards them to the serial line. This code can be easily extended to

filter packets or do further calculation on the incoming information.

On the backend systems (usually PCs and PDAs) the information has to be received

from serial line. In different projects various solutions have been used. In particular

implementations for Visual Basic under Windows, C/C++ under Windows and Linux,

and JAVA under Windows and Linux have been realised. Additionally also a serial

terminal is developed that can be used to communicate with the base station.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

150

Depending on the application domain the data is directly used on the target device, or

the information is handed on to the network, e.g. using the FuzzySpace (see next

chapter for details), UDP broadcast, or offering the data via HTTP.

5.5 Discussion

In many application domains where context-aware applications are novel it is most

often inevitable to build prototypes to assess the feasibility of a system. Building

functional prototypes in size and weight appropriate to do user testing is usually not

possible using standard hardware (e.g. PCs, PC104, PDAs). But the development of

custom hardware systems is expensive and time consuming. Prototyping can be

supported in various ways.

Two complementary approaches are:

• Easing the process of building full custom designed prototypes,

• Providing a flexible platform that can be used for such systems.

In the experiences gained in different projects it appears that these approaches are

useful in different phases during the development process. In an early phase where the

feasibility is assessed it is useful to have a quick solution to see whether or not it is

useful to go on further and build a custom system. In this phase it is often acceptable

if the physical constraints imposed by the application are not fully met. However even

in this phase it appears to be problematic when the physical constraints are ignored.

For example when assessing the feasibility of a context-aware system built into a

shoe, having a sensing system mounted on a notebook computer does not provide a

proof of concept.

In a latter phase of a project when experiments with real users are conducted (even if

they are only users inside the living lab) it appears crucial to have devices that meet

the actual physical constraints drawn from the host artefact. In the Mediacup

[Beigl,02] project this was an important finding. In many cases building context-

aware systems into everyday artefacts or devices – not changing the physical

appearance significantly – will make the development of a custom hardware

inevitable.

Chapter 5 - Supporting the Development and Tools for Rapid Prototyping

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

151

5.6 Summary and Conclusion

To prototype context-aware systems and in particular context acquisition systems

more efficiently tools and mechanism for reuse are required. The design,

development, and implementation include the overall system architecture, software,

hardware, and communication. Therefore the problem becomes more general than in

software development as all areas influence each other.

Three areas of work are described: libraries and building blocks, tools and methods,

and a rapid prototyping platform for context acquisition systems. Libraries and

building blocks are the way in which the experience in hardware and software

development is accumulated and made accessible for further use. At the centre of

building a development tool is a step-by-step method to develop context acquisition

systems. The rapid prototyping system evolved from the developments in various

projects. The components that are required in virtually any development are included

in the core. Depending on the application scenarios and on the contexts of interest

different Add-On modules providing specific sensor constellation can be added.

A detailed report on the evaluation of the prototyping platform is described in chapter

8. The often inherent distribution of sensing and perception has emerged to be a

central issue, which is also assessed in the next chapter. Up to now the use of context

and context-aware applications has been regarded only on the side. In chapter 7 these

topics and in particular the impact on the human user and on the concept of human

computer interaction is investigated in more detail.

152

Chapter 6

Distributing Context in an

Ubiquitous Computing Environment

In a Ubiquitous Computing environment context is inherently distributed. Artefacts in

the real world are physically distributed. Considering the original mean of context

(‘context is what is surrounding something else’) and taking into account the model of

aware artefacts it becomes apparent that distribution has a significant role.

Distribution occurs on different levels, firstly on a conceptual level where information

– that is regarded as context – is distributed, and secondly on an implementation level

where system components, dealing with context are also distributed.

When implementing context-aware systems three main functional areas have to be

considered: context acquisition, context synthesis, and context use. As artefacts in the

real world are spatially distributed also the acquisition and use of context in

Ubiquitous Computing is spatially distributed when bound to artefacts. For the

synthesis or fusion of contexts no explicit locality is required, nevertheless the input

to the process (e.g. various context sources) and the output are anchored in artefacts

and therefore in space and hence this process is in general distributed.

Besides the spatial distribution of context there is also a distribution over time,

because contexts are rather observed as states than as events and therefore time and in

particular intervals play an important role.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

153

A fundamental assumption is that the spatial and temporal relationship between

context sources and context users is meaningful and of value for the development of

applications.

As seen from the rational above and also when analysing implemented context-aware

systems, it can be seen that distribution aspects are central to the realization of such

systems. To ease the design of context aware systems in Ubiquitous Computing on a

conceptual level a distribution model that incorporates the common issues is required.

Furthermore to simplify the implementation and to support a rapid development

process a mapping from the model to the implementation is desirable. Other concerns

are support on system level (e.g. context middleware) and functionality offered by

programming languages to make these distribution issues transparent for the

developer.

Main goals when designing a platform to ease the development of context-aware

applications in distributed settings are to enable:

• Easy sharing of context information that is created in an artefact with the other

parts of the system.

• Seeing and having access to context information that is around an application.

• Spatial and temporal distribution of context information within the system

according to human understanding of context but transparent to the developer.

• Offering a minimal and straightforward API.

Viewing context as what is around an artefact follows logically along the same lines

as modelling context in a bottom-up approach. Context information that is created at a

certain point in space and time – at an artefact – is visible and usable in a certain time

interval and in a certain distance – in the vicinity of the artefact.

6.1 Human Understanding of Context

Before designing a platform for context distribution it is worthwhile to look closer at

the human understanding and perception of environment, surrounding, and context. In

particular spatial and temporal issues are of interest.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

154

6.1.1 Spatial Issues

Humans are always at a certain position in space. Usually the current position – ‘the

here’ – is the centre of action, perception, and attention. The perception, e.g. what

someone feels, hears, and sees, is dependent of the position and the spatial distances

to the source of context. This results in the fact that the context that is perceived is

strongly dependent on the position where someone is.

Moving position is also a human way of selecting an appropriate context for the

activity that is performed. An example is walking towards the lights when observing

something very closely; the lighting condition – the context – is changed by changing

the position. This is a very powerful concept and adapted in many location-aware

applications.

Humans use space and locality as an efficient tool for structuring the environment and

also to support tasks and actions [Kirsh,95], [Beigl,01]. Spatial arrangements of

artefacts are a most natural way for humans to order things. These spatial

arrangements play a vital role when interacting with objects. Especially the concept of

co-location is powerful and very often used, e.g. the books that are physically close on

the shelf are often also similar in content.

6.1.2 Temporal Issues

Similar to the ‘here’ in location humans are always at a certain point in time – the

‘now’. This point of time is where one acts and also where one perceives the

environment, analogous to the perception in space. The perception of contexts that are

around is restricted to the point in time. The contexts to be seen at this moment in

time must exist at the same time as they are encountered.

Unlike in space where one can decide where to go, it is not possible to make this

decision in time. Humans can only interact with the environment at the very moment

in time where they are. However mankind has developed strategies to extend the

understanding and perception of time.

It is not possible to go back to another time, however by recording what is going on

and replaying it, it becomes somehow possible to simulate a step back in time. A good

memory or making notes are the obvious examples for this.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

155

Stepping into the future appears more difficult as there is always some uncertainty

about what is going to happen. However in life most of the actions rely on these

everyday predictions of the future and humans have developed a fairly good

understanding of how to make these predictions. As we influence the string of events

in our life we also influence the future and therefore we are able to predict it to some

extent. E.g. I am leaving home 25 minutes before I am going to meet someone at work

to discuss a project. This example relies on various predictions, e.g. it will take me

about 20 minutes to go to work, the other person I am going to meet will be there, the

issues we will discuss are not yet solved, etc.. On a smaller time scale, e.g. seconds,

humans are used to a very stable environment and therefore the predictions how our

surrounding is going to look like in two second is close to what is observed now.

6.2 Properties and Principles of Context in a Distributed System

Perception of situations and acting in context is for humans a major part when

interacting and communicating in everyday life. Taking into account that context is

related to artefacts and also the observations how humans perceive context in space

and time the following basic properties for context are stated. These basic qualities of

context foster a systematic foundation for a system that supports nature-like context in

a Ubiquitous Computing environment. The properties are extended by basic design

criteria for complex and distributed systems.

6.2.1 Locality and Proximity

Situation and context can be seen as phenomenon that is related and bound to a

particular place or region. The place or region where context information emerges –

or that is assigned to this context information – plays an important role, especially in

mobile and embedded systems. The place or region must not be seen isolated, it is

always an attribute assigned to an identity, a process, a device, a task, an application,

or to data. In mobile location-aware systems the position is an attribute of the device

and implicitly of the user who is carrying the device.

Collecting data from the environment and acquiring context out of this data is

inherently bound to a location. The readings are collected at a particular position and

therefore they represent the context for this particular position or the area related to

this position. The information is fully relevant at this position. Generally the relevance

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

156

of the data as well as the certainty on the correctness of the data declines with the

distance from its point of origin. An example is measuring the temperature at a certain

point. At this point the temperature is correct and relevant, however when interested

in the temperature at a point nearby it is observable that with an increasing distance

between the points the uncertainty whether or not the temperature is also valid for the

new point gets larger. And when the distance between the point of origin and the point

of interest is too large the reading is meaningless. This leads to the conclusion that if

several sensors of the same type with similar quality exist the one that is closest to the

point of interest is the most relevant to look at.

As seen from these observations locality of context is quite important and should

therefore be included in the model as one of the basic principles. For the model the

following aspects and requirements should be taken into account:

• context information has a point or region of origin

• at the point or region of origin the relevance of the context information is

maximal

• the relevance decreases with an increasing distance from the point or region of

origin

• if several sensors of the same type are available the one which is spatially

closest has the highest relevance

6.2.2 Time

Time is for the human understanding and classification of situations a vital aspect. It

is also highly relevant for sensor data that is acquired from the environment. Using

concurrency or exploiting the fact that events take place coincidental or within close

timely boundaries are a basic way of relating different aspects of complex situations.

Regarding the time aspects when acquiring sensor data and contexts a similar

semantic as for location is observable. Values are created at a certain point in time;

and these values are in general more relevant to an event that happens roughly at the

same time than to an event that takes place much later or earlier.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

157

The concept of time should also be included in the model, exploiting the following

basic observations:

• context information has a time of origin

• the relevance is maximal at the time of origin

• relevance decreases with an increasing time distance from time of origin

• if several sensors of the same type are available the one which provides the

most timely reading has the highest relevance

In certain application areas it may be useful and beneficial to relate the relevance to

issues that are specific to the application rather than to the temporal and spatial

distance. In the model and platform described in this chapter this case will not be

further regarded, as for many application areas in Ubiquitous Computing time and

space are a prime concern.

6.2.3 Independence Between Acquisition and Use

The context, regarded as the type of situation that surrounds something else, is widely

independent of the way it is used. From everyday experience we know that the

perception of a situation does not change the current situation. Similarly in a context-

aware system, acquisition of context does not influence the context. Again as we can

recall from everyday experience after perceiving a situation the action taken may have

an influence on the future situation. This again is similar in a context-aware system,

knowing a context and changing the behaviour of an application according to the

current context may change future contexts.

For modelling and designing a distributed platform it is desirable to reduce the

number of dependencies as much as possible. To realise a loosely coupled system

identifying issues that can be dealt with separately is of major importance.

There is a great variety of methods and technologies available for the acquisition of

context in Ubiquitous Computing environments. The process of inferring context from

data collected in the environment is itself usually a multi-level process that is

conducted by components that are independent to some extent [Schmidt,99c],

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

158

[Golding,99], e.g. sensors, feature extraction, and perception of context should be

independent.

It is also desirable that the algorithms and methods that supply context do this in a

most general way abstracting from supplying context to a specific application. If

context is delivered in a general way and independent of a specific application it

becomes also feasible to develop context-aware applications without a particular

sensing environment in mind. In the area of location aware systems this is already the

case. Everyone can develop an application making use of location, e.g. by using a

general description such as geographic coordinates, without knowing what the actual

sensing system will be.

Having independence between context acquisition and context use also makes it

possible to simulate either side to test and debug the other.

This compiles into the following wish list summarising the requirements:

• context acquisition and context use is highly independent

• all levels in context acquisition are highly independent

• it is possible that more entities that supply context exist independently (even

for the same context)

• it is possible that more entities that uses context exist independently (even for

the same context)

• applications are modelled independent of time and location but using these

properties implicitly

The property of independence between context acquisition and context use is not

necessarily general. In some application areas where acquisition is specifically

designed for an application it may advantageous not to insist on independence.

However this has usually the price of less flexibility and greater complexity.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

159

6.2.4 Distribution and Scalability

In everyday life humans have a great ability to filter information and shift to

information that is relevant, one prominent example is the so called ‘cocktail party

effect’ [Handel,89]. This basic mechanism protects our information processing system

from information overload, because the processing system is limited. Similarly the

question of scalability arises in systems that deal with many stimuli from the

environment and potentially a vast number of contexts.

As artefacts and infrastructures are inherently distributed it is one obvious approach to

exploit the spatial and temporal properties of context to achieve scalability. This

follows the concepts described earlier on the basic properties of locality and time for

context. Scalability over time can be realised by modelling data in a way that it

disappears after a certain time.

The concept of spatial and temporal scalability can be illustrated by the following

examples describing human perception. The perception of sound scales spatially, as

with an increasing distance to the source of sound the volume as well as the quality

decreases. From a certain distance the sound not audible at all. The scalability over

time can be illustrated when considering the human perception of smells. At the

moment they are created the smell is at the maximum (e.g. while cooking). Over time

the smell fades till it is not recognizable anymore. If this scalability would not be

‘built-in’ to our world life as we know it would be hardly possible; just imaging sound

would not be locally limited.

The following aspects related to scalability and distribution are taken into account for

building the model:

• the distribution of information is locally restricted – localised scalability

• the lifetime of information is restricted – scalability over time. (In the case

where is no new information added the amount of data decreased over time.)

• the spatial distribution of individual components is a basic property

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

160

6.2.5 Transparency

Again looking at the human way of perceiving context it becomes apparent that the

spatial and temporal distribution is transparent. It happens to be around without

further considerations. The reference to a person’s position and to the current time is

implicit and usually unnoticed.

When designing a system that supports the use of context in applications it seams

desirable to offer a similar degree of transparency about the distribution of context.

The challenge is to create a system that provides context information for applications

dependent on the temporal-spatial relationship between the application and its

environment. The underlying mechanism for distribution and spreading of context

should however be transparent for the context user as well as for the one who

produces context information. The components that offer context should be able to

influence the spreading of the context they are creating.

In summary this results in the following demands for the model and architecture:

• context is always bound to the current location and time

• distribution and fading mechanisms are built into the model and the platform

• context is transparently distributed for context creators and users

The description of the nature of context in a Ubiquitous Computing environment –

seen from a human perspective – led to the extraction of basic properties. These

observations become the foundation for the distribution model and platform described

in the reminder of this chapter.

6.3 Describing and Accessing Context

Context is a description of a situation, as defined in chapter 3. To make use of context

in a distributed system and also to make an implementation feasible a specific data

structure has to be defined. Furthermore there is also need to specify ways by which

contexts can be compared, because that is a prerequisite for accessing context

information.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

161

6.3.1 Describing Context

As seen in chapter 2 context can have many different structures and forms of

appearance. Providing a single formal model to suit all the needs of context-aware

applications appears similar to the problem of providing a single formal description

for all world knowledge. To avoid the task to create a comprehensive world model

(and thereby avoiding the risk of creating a model that explodes in size and

complexity) it is decided that the distribution architecture does not enforce a particular

way in which context is described.

The context data structure is used to communicate information about the environment

between different components in the system. In this model no implications are made

on the actual content of the data structure, there is no fundamental difference between

a sensor value, a calculated feature, and an inferred context in the data structure.

There is no basic restriction to the domain or to the values themselves; they may be

scalar, vectors, or arbitrary character stings. The choice of format for the description

of context is of minor relevance for distribution and communication, however for

building applications it becomes more important.

As suggested from the observations above contexts have a reference to a location and

also to a point in time. This reference is however implicit given by the position of the

artefact or the users and therefore there is no need on the level of a context to include

this information. As location and time information is relevant for implementing

distribution they are modelled in distribution platform.

Context information is represented as a 3-tuple:

C = (ID, context-data, probability)

The context information (C) is identified by an ID and contains data in context-data

which is a data type that is defined by the system developer. In the structure given

above the provision of probabilities for the context value is included. If the perception

system is offering this information it can be included.

The information about place and time are not contexts on their own. They are treated

as meta-information about a context. This information is used in the model as well as

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

162

in the platform to control the spreading of contexts. Time and place are always related

to an entity such as a person, an object, and an application. Even if only location is

used as context this is implicitly assigned to an entity.

6.3.2 Content-Based Access to Context

The model proposed provides content-based access to context. To realise content-

based access context-templates are used. These templates are a mechanism to describe

conditions that allow filtering for contexts that have certain properties.

Such a template is tailored to the data structure. By creating a context template

basically a search query over all existing and visible context information is specified.

Semantically all conditions given in the template are AND-connected. Only contexts

that match all conditions specified in all categories of the template are selected. A

wildcard symbol (‘*’) is provided that matches anything. By these means more

general context templates can be specified.

A context template consists of three parts:

CT = (ID|*, context-data template|*, minimal

probability|*)

If in the template an ID is given then only context elements that have exactly this ID

are selected. The ID is usually related to a specific domain, typically to a specific type

of context supplier. The context-data template gives a description which contexts

should be matched. The description template has to be tailored to the description

format used in the context element. In the simplest case, when the description is just

text, the template holds single words and for matching a sub-string comparison is

performed. When providing a minimal probability this is included when matching,

too. Only context that have at least this probability assigned are matched. An example

of a more structured context representation and template is published in [Schmidt,01].

6.4 Modelling the Distribution of Context

By creating a model for the distribution of context in a Ubiquitous Computing

environment many of the ideas and concepts discussed earlier in this chapter are put

together in one coherent body.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

163

A basic assumption of the model, and also requirement to make use of an

implementation of the model, is that context information comes into existence at a

well-defined position and at a well defined time. The same is assumed for components

that use context; they are always associated with a point in space and time.

The model describes the spatial and temporal distribution of context with relation to

the point of origin of this context. The basic concept of the model is that context

information is associated with a relevance that is decreasing with the spatial and

temporal distance from the origin.

6.4.1 Fuzzy Sets

As known from everyday experience situations change most often gradually. E.g.

there is no sharp cut about how far you can see or hear something. For contexts it

seams not appropriate to have borders where they are true on one side but not true on

the other side. Here also a notion of fading is required in the model.

This fading, or fuzziness, is related to the relevance of the context. It is modelled

similar to the idea of fuzzy sets and fuzzy logic [Zadeh,73], [Traeger,94]. In fuzzy

sets the basic idea is that the membership of an element to a set is not just binary. It is

rather fuzzy – meaning that an element has a degree of membership to a set. A single

element may also belong to a number of different sets, having for each a degree of

membership assigned. Typically the degree of the fuzzy membership is modelled by

using functions that give a relevance value between 0 and 1, typical triangular and

trapezoidal membership functions are used.

To model the distribution of context this concept of relevance is used for representing

the spatial and temporal relevance of contexts, based on the distance from the point of

origin. Using this method with appropriate functions it is possible to assign each

context value a temporal and spatial relevance at any given point in time and at any

location in the system.

6.4.2 Relevance Based on Time Difference

As each context value is created at a certain time and this time is known, it becomes

possible to assign a relevance to the context information at any point in time based on

the time distance between the two events. To model the relevance value any arbitrary

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

164

monotonous decreasing function can be deployed to describe how the relevance

changes with an increasing time distance between creation of the context and the time

when it is of interest to an application.

Triangular and trapezoidal functions are used, similar to membership functions in

fuzzy logic systems. In Figure 21 an example of a decreasing relevance over time is

given. In this example the context value was created at t0 and the assumed function is

a trapezoidal function.

In principle any function could be used to calculate the temporal relevance. As seen in

Figure 21 the function translates a time difference into a relevance value between 0

and 1. To keep the semantic of the model coherent with the everyday experience as

described earlier it is required that the function is monotonously decreasing. The

relevance gets smaller the longer the creating of the contexts is ago. In certain cases it

may be useful to consider a negative time difference. This is the case if the creating

data of a context that is in the future, but the context value is already around.

Especially when contexts can be predicted, e.g. someone is driving onto the parking

then it can be predicted that the context ‘person entering the building’ is going to be

created in the near future. In these cases a function that is symmetric around the

creation time may be used.

The relevance function is a mapping from the domain of the real numbers

(representing the distance in time) to the interval [0,1], which is representing the

relevance:

creations
tmax

R

0

1

t 0 atmin

Figure 21: Example of a relevance function. The temporal relevance of the

context value created at t0 decreased over time.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

165

[]1,0: →RfRT

Further requirements for the relevance function that have evolved from observations

stated earlier in this chapter, in particular that the relevance becomes smaller with a

longer time that has passed.

)()(2121

0

tftftt

ttt

RTRT ∆≤∆⇒∆≥∆
−=∆

Additionally it is required that the relevance becomes zero when the time distance

between the creation of the context and the current time is greater than a certain value:

0)(: =∧∞<∈∃ tftRt RT

The following trapezoidal function fulfils the requirements stated. The parameter tmax

defines the maximal temporal difference from which on the relevance is zero. The

parameter tmin is the distance at which the relevance is still one.

else

tx

tx

tt

xt
xfTrapezium min

max

minmax

max :

:

:

1

0

)(≤
≥











−
−

=

This relevance function is depicted in Figure 21.

6.4.3 Relevance Based on Distance

As each context value comes into existence at its point of origin, the model describes

the spreading of the information from this position. The main purpose is to provide

information on the relevance of the context at any point in the system. The spatial

relevance is defined similarly to the temporal relevance using functions inspired from

a fuzzy system. In Figure 22 relevance of a context in a 2 dimensional location model

is illustrated.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

166

As foundation for the spatial distribution model any location model that supports the

calculation of a distance between two points may be deployed. Location models can

be built on coordinates, where the distance calculation is simply based on an

arithmetic model. However the model is not limited to that, symbolic location systems

that provide a functionality to calculate distances can also be used. These models are

of particular interest when dealing with human readable location identifiers, such as

room numbers, levels, building, streets, towns, and countries. In these cases the result

of the distance calculation may be discrete. A more detailed discussion of location

modelling can be found in [Leonhardt,98]. In the reminder of the section two

dimensional Cartesian coordinates are assumed, which eases the visualization of the

relevance function.

In Figure 22 the spatial spreading of a context element with a point of origin at x=650

and y=400 is visualised. The function used is a trapezoidal function where the

argument is the distance between the point of origin of the context value and any other

point. So it is possible to calculate for any point in the x,y-plane the assigned

relevance of the context, displayed in the z-direction. As seen in the figure the

relevance of a context is maximal at the point of origin, decreasing with a greater

distance, and from a certain distance on the relevance becomes null. The following

Euclidean Distance function in a two dimensional coordinates system is used:

Figure 22: Visualization of spatial relevance.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

167

2
21

2
212211)()()),(),,((yyxxyxyxl −+−=∆

For the selection of a spatial relevance function the same requirements apply as for

temporal relevance functions discussed above.

6.4.4 Transparency

Spatial and temporal relevance become inherent properties of context anchored in the

distribution model. However for the context producer and also for the context

consumer these properties are transparent at the first place.

Context producers create contexts without caring about distribution and context

consumers. The users of contexts take the context information that is visible, without

caring who supplied them. To make this transparency feasible, distribution and

spreading as well as a mechanism to filter context information has to be built into the

system. In the system described here this is provided by assuming an information pool

on to of which temporal and spatial relevance is defined as modelled above.

6.4.5 Requirements

The model introduced here assumes that specific information about the creators and

users of context is available in the system.

In particular it is required that for each component that creates context and also for

each component that makes use of context the physical location is know. The model

does not impose restrictions on how exact the location has to be known. Depending on

the applications the location information required may be the room where a

component is in, the building, or just the site. In many practical cases this information

is available without having an explicit location system. For components that are

embedded in the environment (e.g. sensing system) the location can be hard-wired at

installation time, for mobile components this coarse location information may be

deduced from the communication system used. For applications where a fine grained

location is required an additional position system may be used.

Furthermore communication is also required between all components in the system.

The communication system must provide basic functions that allow components to

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

168

communicate with other components in the system without prior knowledge of these.

A typical example of such a communication primitive is a broadcast mechanism.

To calculate the temporal relevance time information is required, too. As

communication is available time may be acquired using communication or time

stamps may be added while communicating to avoid having distributed synchronised

clocks.

6.5 FuzzySpace – A Distributed Communication Platform

The model to spread context information and the change of relevance based on

temporal and spatial distance is created with regard to context. However it can be

observed that for other communication purposes in Ubiquitous Computing the notion

of relevance and spatial and temporal distance is also applicable.

In this section a communication platform incorporating these features will be

presented. The FuzzySpace is a general communication platform with an underlying

semantic distribution model targeted for Ubiquitous Computing environments. In a

later section the FuzzySpace will be refined for the use in context-aware systems.

6.5.1 Architecture

This communication architecture consists of three types of components: message

producers, message consumers, and the FuzzySpace as communication platform in

between. The FuzzySpace is based on a tuple space that is extended with spatial and

temporal semantic. The general architecture is depicted in Figure 23.

Components that supply messages to the system are denoted as message producer,

components that read messages from the system are denoted as message consumer.

Each message producer and consumer is at any given point in time at a specified

position.

Consumer and producer can communicate with the FuzzySpace. If a component

supplies messages and also reads messages it incorporates a consumer and a producer.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

169

6.5.2 FuzzySpace

The FuzzySpace realises the underlying communication platform. It is developed as

an extension to tuple spaces [Gelernter,82]. The FuzzySpace offers the possibility for

independent communication between components without prior knowledge of each

other. To provide a communication semantic similar to the observations stated earlier

a spatial and temporal spreading semantic is built into the platform. Designing

FuzzySpaces as an extension of tuple spaces was a deliberate choice as it allowed to

reuse findings and implementations available.

All elements in the FuzzySpace are inherently bound to a location and a time. When

communication facilitates the FuzzySpace each element has assigned a relevance

value dependent on the time and location of access.

In tuple spaces that are deployed for loosely coupled systems common basic operators

are add, read, and remove [Wyckoff,98]. The FuzzySpace offers a subset of these

operations, which are extended by location and time. Elements that are added to the

FuzzySpace are always associated with a location and are implicitly associated with a

time – the time when they are added. When reading from the FuzzySpace this is

similar – it implicitly happens always at a certain time and is explicitly bound to a

location. Typically the location is related to the device that is communicating.

6.5.2.1 Operators

The following operators are derived from standard operators for tuple spaces extended

to support the requirements stated above. The main differences result from

mechanisms to dynamically include temporal and spatial relevance with each tuple.

The primitives presented here are basic operators for the management of FuzzySpaces

FuzzySpace

Message Producer

Message Consumer

Figure 23: components of a distributed communication platform.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

170

as communication instances as well as primitives that allow system components to

access the FuzzySpace.

The following basic operators support the creation, deletion, and querying of

particular instances of a FuzzySpace.

CREATE_FS(<description>?, <FuzzySpace_Handle>!)

The function CREATE_FS creates a FuzzySpace in the system. The only input

parameter is the description for the instance of the FuzzySpace. The description is an

arbitrary data structure. In the implementation a string of characters is used to

represent the description, this can be used to provide a free form description or to

store a structured description by using data types on top of the character string, such

as an XML description. The description can then be used to identify FuzzySpace. The

return value is an object that is the identifier for the FuzzySpace.

DROP_FS(<FuzzySpace_Handle>?, <Status>!)

Using the function DROP_FS a FuzzySpace can be deleted from the system. The input

parameter <FuzzySpace_Handle> identifies uniquely the instance of the

FuzzySpace that should be deleted. When an instance of a FuzzySpace is removed

from the system all data that is still in the FuzzySpace at this time is delete as well.

Ongoing communications between other components in the system and the

FuzzySpace are terminated, too. The return parameter <Status> offers information

whether or not the operation was successful.

DESCRIBE_FS(<FuzzySpace_Handle>?,<description>!)

The function DESCRIBE_FS is used to access the <description> for a FuzzySpace

that is identified by the <FuzzySpace_Handle>. The description that is retrieved

with this command was stored with the create command.

QUERY_FS([<search_term>?],{<FuzzySpace_Handle>}!)

By using the function QUERY_FS the handles to all available FuzzySpaces can be

retrieved from the system. The function returns a set of handles that identify

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

171

FuzzySpaces matching the query. When no <search_term> is supplied all handles

available in the system are provided as a result. If a value for this optional parameter

is specified, only FuzzySpaces that contain the search term in their description are

returned.

System components that use the FuzzySpace to communicate, such as message

producer and message consumer, need basic operators to provide and read data. In

contrast to standard tuple spaces no operator for removing data elements is required.

The existence of elements is strictly defined by the characteristic of the spatial and

temporal distribution. Operations are executed at a specific position and at a defined

point in time, these values are represented by the variables <Location> and

<Time> which are used in the primitives.

ADD(<FuzzySpace_Handle>?, <Element>?,

<Location>?, <Time>?,

<spatial_Relevance_Function>?,

<temporal_Relevance_Function>?

<Status>!)

The function ADD is used to add elements to an instance of a FuzzySpace that is

identified by <FuzzySpace_Handle>.

The <Element> can be any vector or scalar value. The time and spatial position

where an element is added to the FuzzySpace is encoded in the parameters

<Location> and <Time>. Further two parameters are used to specify the functions

that describe the spatial and temporal relevance of the element that is added. The

return parameter <Status> provided information whether or not the operation was

successful.

MATCH (<FuzzySpace_Handle>?,

<Element_template>?,

<Location>?, <Time>?,

<Minimale_spatial_Relevance>?,

<Minimale_temporal_Relevance>?,

{<Element>}!)

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

172

The function MATCH realises a query for elements in the fuzzySpace identified by the

handle. The query is related to the position and time encoded in <Location> and

<Time>. All elements that have a spatial and temporal relevance which is at least as

specified (<Minimale_spatial_Relevance> and

<Minimale_Temporal_Relevance>) and match the template provided

(<Element_template>) are selected. These elements are returned in a set together

with their relevance values.

6.5.2.2 Message Producer

Message producers are components that generate messages and add them into the

FuzzySpace. The message producer utilises the ADD-operator to put elements in the

FuzzySpace.

The parameters for using the ADD-operator are gained as follows. The handle to the

FuzzySpace is either predetermined (in the case where systems only use one

FuzzySpace) or determined using the QUERY_FS-operator. The element that is added

is the message itself. The location and time are implicitly given by the time the ADD-

operator is executed and by the whereabouts of the component at this time. When

implementing a message producer there is knowledge about the semantics of this

component, especially how far these messages should be visible and how long they

should be available. This knowledge about the specific instance of the message

producer is encoded into the spatial relevance function and into the temporal

relevance function.

A message producer is characterised by the following 4 parameters:

MP=(<current_location>, <current_time>,

<spatial_relevance_function>,

<temporal_relevance_function>);

6.5.2.3 Message Consumer

Message consumers are components that request messages from the FuzzySpace. The

message consumer utilises the MATCH-operator to ask for elements that are of

interest and that are available in the FuzzySpace.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

173

Similar to the message producer the handle to the FuzzySpace is either predetermined

or gathered via the QUERY_FS-operator. The consumer uses an element template to

filter results from the FuzzySpace. This template is dependent on the data structures

used. The time and location parameter are filled with the current time and current

location of the component. A further mechanism to filter the result set is to state

minimal relevance required. Only elements that have a higher local and temporal

relevance are then matched by the operator.

A message consumer is characterised by the following 4 parameters:

MP=(<current_location>, <current_time>,

<required_spatial_relevance >,

<required_temporal_relevance>)

The result can be used by the message consumer directly; as the result set is ordered

one option for the message consumer is to use only the first element that is returned

and not further process other elements.

6.6 A Distributed Context Platform based on FuzzySpace

The FuzzySpace platform is designed as a general communication platform for

Ubiquitous Computing environments. Many of the design decisions however relate to

the notion of context in such systems, therefore it is obvious to utilise the FuzzySpace

as a platform for distributed use of context.

6.6.1 Architecture

The architecture is a more specialised form of the general FuzzySpace. In Figure 24

the architecture is depicted, comprising of a FuzzySpace as communication space, a

context producer, a context consumer, and a context abstractor.

Applications and devices in such an environment can embody multiple components.

The minimal requirement for an application that uses context is to be a context

consumer. A device or application that generates context must include a context

producer. Applications that create new contexts based on already existing ones are

incorporating a context abstractor.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

174

The FuzzySpace has to be available at least once in the communication range of all

components participating in the system. Using a single instance results in a centralized

system, running several instances within different components results in a distributed

setting.

6.6.2 Context Supplier

A context supplier is a component that provides context to the system. In the

architecture presented here, context suppliers do not need to have someone who is

interested in the context they supply. A context supplier can be a simple sensor that

communicates raw values or a complex recognition system providing high-level

context information.

The contexts that are provided to the system are based on the data structure agreed in

the system. The context supplier is uniquely identified and provides contexts from a

certain domain. The context information created has assigned a time and location of

origin. This is usually the physical or logical place where the context supplier is

located. As the context supplier is built as a specific recognition system, domain

knowledge is available during implementation. This domain knowledge is then used

to assign the context value with describing features. This knowledge is also used to

define the temporal and spatial distribution rules.

A context supplier has a number of static properties that are defined at the design time

of the context supplier.

CSs = (ID, description

spatial_relevance_function, temporal_relevance_function)

FuzzySpace

Context Producer

Context Consumer

Context Abstractor

Figure 24: components of a distributed context platform.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

175

These properties are valid over the lifetime of the context supplier. The properties ID,

and description are related to the context data structure. The spatial and temporal

relevance functions define the spreading characteristics of the context that is produced

within the FuzzySpace. The model is open about the functions that can be used

provided the function has the properties explained above.

For each value that is created and supplied there are also dynamic pieces of

information in the context supplier:

CSd = (ID, context-data, probability, location, time)

The ID is not dynamic, but necessary to mach it with the static part of a context

supplier. The context-data is the actual value of the context that is supplied. This

value is meaningful for the place and time given by the parameters location and time.

If the context supplier can determine the probability of the value this is also provided.

The static parameters (CSs) are defined when a context supplier is instantiated. The

dynamic parameters (CSd) are gathered when a value should be provided to the

system. At this point the information is used to complete the data structure that is

needed to call the ADD-operator. In some case it may be useful to update the static

parameters, in particular when the spreading characteristics change, during runtime.

6.6.3 Context consumer

Context consumers are components that use context information available in the

system. A context consumer has access to any context element in the FuzzySpace that

is visible to the component. A context element is visible when is has a temporal and

spatial relevance related to the context consumers position and request time which is

greater than zero. As a prerequisite to determine the local relevance it is necessary that

a context consumer knows its current position. Context elements in the system for

which the relevance is zero with respect to a context consumer are not visible for the

component. In general context consumers are built to perform a certain task (e.g. a

context-aware application). The domain knowledge for the application determines the

contexts that are of interest to this particular context consumer.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

176

Working with contexts as facts that are around, as motivated in the introduction to this

chapter is realised in this way. Context is information that is around – whether or not

we need it. For the context consumer component – or in particular for the developer of

such components, it becomes transparent where and how the context is created and

how it is spreading.

A context consumer is a dynamic structure, comprising the following properties:

CC = (location, time, element template,

minimal local relevance, minimal temporal relevance)

The values for location and time are determined by the current logical or physical

position of the component. The element template is used to specify in what contexts

the consumer is interested. This template is either static or dynamic – depending on

the application. If the template is static it is specified when the component is

initialised. In the case of a dynamic template it can be changes at any time during

runtime. The minimal values for local and temporal relevance are also regarded as

dynamic parameters. For certain applications however they may be specified during

instantiation and not changed afterwards.

The properties of the context consumer are used to fill the parameters required to call

the MATCH-operator to access the contexts:

MATCH (<FuzzySpace_Handle>?, element template, location,

minimal local relevance, minimal temporal relevance,

{<Element>}!)

The result received by the context consumer after the request is a set of context

elements that meet the requirements specified in the request. The set can be empty; it

can have exactly one element, or more elements. The usage of the context information

is encapsulated in the context consumer component.

In the general case a context consumer is a context-aware application. The usage of

context is completely separated from the acquisition of context. This allows writing

and specifying the application without a specific infrastructure in mind. Therefore

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

177

context suppliers and context consumers can be developed and tested independently

of each other.

6.6.4 Context Abstractor

A context abstractor is a component that reads context information from the

FuzzySpace and also puts new context elements into the FuzzySpace. A context

abstractor has the properties of a context consumer as well as of a context producer.

The basic concept of a context abstractor is to take context that is available in the

system and to generate new contexts and to provide these again. The functionality is

similar to the basic principles known from black-board architectures.

Typically this can be regarded as a step of context abstraction, where simple context

information (e.g. sensor values) is combined to more abstract context information that

is then provided again. Context abstractors can also operate on the relevance functions

associated with context elements in the FuzzySpace.

The location of a context abstractor is usually logical, because it is a process that is

running somewhere in the network. However it is important that there is a location

assigned to each subcomponent – the consumer and the supplier. These logical

locations do not need to be the same. This opens means to transport context

information from one physical location to another one.

6.7 A Context Library

To access the distribution platform a context library is implemented which provides

the basic functions in a simple application programmer interface.

Access to all context information is implemented using this library. As introduced

earlier a major goal is to make it as easy as possible for the application programmer to

use context – transparently of distribution and acquisition issues. When designing the

context library, a main issue was to keep the number of functions and their complexity

minimal to make it usable without extensive training. The functions offered in the

library are designed to support the implementation of software that consumes context

as well as for software that produces context. The following four functions are the

essential core of the library:

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

178

• InitContextLib()

before functions in the library can be used the library and the underlying

system must be initialised. This is done by calling this function. In particular

network connections are initialised in this stage.

• InitContextPos(<pos>)

As the physical position is a key property in the system the location

information must be provided. The position can be altered at any time. All

further access functions assume the last given position as valid.

• GetContext(<name>|<id>|*, <element template>|*,

 <min_local_relevance>|*,

 <min_temp_relevane>|*, <P>|*)

From the application the current value for a context can be requested at any

time. This is done using a context template. The parameters of this function

are used to create a context template that is used in the MATCH-operator. Is in

the system a value available that matches the template then this is returned by

the function. To compose templates, wildcards (‘*’) can be used instead of a

parameter value. Additionally also minimal values for the local and temporal

relevance as well as for the probability associated with a context can be

specified. The result is a character string that contains a formatted list of all

matching context values.

• PostContext(<name>|<id>, <element>|<URN>, <P>)

For applications that provided context information, such as context producers

or context abstractors this function offers a simple mechanism to add context

information into the FuzzySpace. The application identifies the context

element by a name or identifier, supplies a context value or a reference (URL)

to it, and the probability for the context value.

The implementation of the library and in particular the data types used in the function

are dependent on the class of device (MCU vs. PC), programming language used and

also the underlying operating system. In particular the return values are designed to fit

the requirements of the platform. Within various projects, implementations have been

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

179

assessed for different platforms, in particular C and JAVA on PCs and C on a

microcontroller. In the first cases Ethernet was used as communication media on the

microcontroller serial line and low bandwidth RF was used.

6.8 Discussion

The distribution model and platform is closely tied to the concept of time and space.

Time and space are obvious restrictions when dealing with subjects and artefacts in

the real world. However one major advantage of computer systems is that restriction

on time (data storage) and limitations in space (networking) can be overcome. Using

networks and storage allows that information can be made available always and

everywhere. Nevertheless the limitations introduced in the model were done so

deliberately. From the experience gathered from different projects restricting the

visibility of information – and in particular context information – in time and space

makes it easier for developers to use. By these means there is no need to subscribe or

register to get a specific context, this happens implicitly by being at a certain place at

a certain time which simplifies the API. The model presented here shows an example

of how information distribution is strictly modelled on time and space. In cases where

the application domain imposes different requirements, the distribution rules may be

modelled differently.

Running all communication between context providers and context consumers via a

distribution platform may decrease the performance of the system. However using a

dedicated communication platform, debugging and simulation becomes much easier.

All messages that were sent can be traced and this allows to find components with

malfunctions. Furthermore the decoupling of components makes it easy test context

producers and consumers independently. A new context provider can be tested and the

output received by the FuzzySpace can be used to ensure that the component works as

expected. Also it is possible to run context consumers (e.g. context-aware

applications) without having a sensing infrastructure in place. The sensor

infrastructure can be simulated using software that produces context information. In

different projects programs using graphical user interfaces have been developed

where the context values could be selected. The component behaved then as a sensing

system providing the information to the FuzzySpace.

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

180

Restricting information to a particular location and time can provide a mechanism to

realise access control. Only components that are in a particular location at a specific

time can see the information. This model takes then the security from the computer

system level into the physical domain. This is however not without problems. To

make such a system safe it would require mechanisms that ensure that time and

location are authentic and that these parameters can not be faked by context

consumers and producers. Furthermore it is necessary to ensure that all components

running in the system are trusted and do not violate the distribution rules. If for

example a component keeps information that was seen at a certain time in its storage

and uses this information later, then it is not possible by the system to ensure that the

data is not visible after a certain time. Similarly if a component in the system has

access to the network and sends data received at a certain location to some other

physical location the spatial distribution can not be assured.

6.9 Summary and Conclusion

Context is not an abstract concept; it is a part of everyday life. Situations happen

timely and locally. Human understanding of situation and context is always

influenced by these basic properties. These observations and additional design

principles of distributed systems constitute the foundation for a distribution model.

Motivated by the fact that changes in the real world are usually not abrupt, concepts

from fuzzy sets are also included in the model.

These ideas combined lead to the FuzzySpace distribution model and platform. The

FuzzySpace is a tuple space that is extended by a spatial and temporal distribution

semantic. Elements are entered into the FuzzySpace at a location and time. Based on

distance measures a spatial and temporal relevance can be assigned to each element

when this is accessed at a particular location and time. Operators to add elements and

to retrieve information provide the interface to the FuzzySpace.

Based on this distribution platform message providers and message consumers can

communicate. Sharing and using context information is modelled on top of this

general Ubiquitous Computing communication platform. Context elements are added

by context providers, can be retrieved by context consumers, and context abstractors

Chapter 6 - Distributing Context in an Ubiquitous Computing Environment

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

181

can generate new context information based on information already available

combined with domain knowledge.

The FuzzySpace is an example of a communication platform that is designed to cater

for specific needs in Ubiquitous Computing environment. As such environments and

also the usage scenarios differ greatly it is unlikely that one platform fits all needs.

Nevertheless the example given in this chapter shows a concept that is generally

applicable: modelling system properties into the communication platform.

The mechanisms presented in this chapter aim at easing the development of

distributed context-aware systems. In the next chapter the implications of using

context on the user interface are investigated.

182

Chapter 7

Interactive Context-Aware Systems

The availability of context and using context in interactive applications offers new

possibilities to tailor applications and systems “on-the-fly” to the current situation. To

show how context influences and often fundamentally changes interactive systems

first a brief introduction to interactive applications is provided.

7.1 Interaction and Interactive Applications

The communication of information from computer systems to a human user and

influencing the operation of the computer system by a human user is referred to as

human-computer-interaction (HCI).

Interactive applications offer a timely bi-directional communication between the

human user and the computer system. When using interactive applications the user

and the system are in a direct dialog. This dialog is a sequence of communication

events between the user and the system [Dix,98, chapter 3]. Interactive applications

have evolved over the last 35 years, use different modalities, and are applied in

various application areas. The distinctive property of interactive systems is that there

is a direct and timely interaction between the user and the system. Non-interactive

systems, such as batch processing of punch cards as used in the sixties or background

processes in current systems do not allow a direct dialog between the user and the

program.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

183

Typical user interfaces (UIs) of interactive programs are text based (e.g. command

line), graphical user interfaces, voice interfaces, gesture interfaces or a combination of

those, often referred to as multimodal interfaces.

A characteristic feature of interactive systems is the response time, the time between

the user interaction that is carried out and the response of the system [Miller,68],

[Nielsen,94]. Most applications that are used on desktop systems in the home and

office domain, such as text processor, spreadsheet, graphic tools, web browser, and

games can be regarded as interactive programs. Also the operating system itself and

many programs that are running in the background often include interactive modules,

mainly for configuration purpose.

Human computer interaction is not restricted to conventional desktop systems. As

processing devices (e.g. logic circuits, DSPs, and microcontrollers) are included in

many other interactive devices, such as VCRs, cameras, and mobile phones, human-

device interaction becomes an important design criterion. Designing interaction and

user interfaces for such systems has its distinctive challenges depending on the type of

device. Examples for UI consideration on PDAs are comprehensively analyzed in

[Bergman,00].

Design, development and implementation of interactive systems are extensively

researched and for most modalities guidelines, approaches, methods, and tools are

widely described and available. Commonly used approaches are graphical user

interfaces (GUIs) that are build on event based interaction. The basic concept is to

assign events to interactions carried out by the user (e.g. pressing a button, dragging

an icon). In the applications these events are linked to actions (e.g. calls of certain

functions). For the development of applications using GUIs and user generated events

development support is widely available at different levels in most current

programming languages and development environments.

Interactive applications are not restricted to a single application, they can also be

distributed. Here a standard method is to separate the UI from the processing

component. Applications implemented based on Web infrastructure are a typical

example of this type of interactive applications [Krüger,01]. The visualization of the

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

184

content and the immediate interaction is at the users system. However the response

time of the server influences the interactive user experience.

7.1.1 Traditional and Explicit Human Computer Interaction

A key criterion of interactive applications is that they are used explicitly by the user.

The basic procedure of a user initiated explicit interaction can be summarised by the

following steps:

1. The user requests the system to carry out a certain action.

2. The action is carried out by the computer, in modern interfaces providing

feedback on this process.

3. The system responds with an appropriate reply, which in some cases may be

empty.

Consider the example of moving a file from one folder to another folder using a GUI.

The user drags the file from the source folder to the destination folder requesting by

these means explicitly the move action (1). The system moves the file from one folder

to the other providing progress visualization (2). After the interaction the GUI is

presented with the file in the destination folder (3).

When observing an interaction that is initiated by the system, then the steps are

preceded by a step where the system provides notification to the user. In certain cases

reaction from the user is enforced (e.g. a system modal dialog box). In other cases it is

up to the user whether or not to take action (e.g. ringing of a phone, email audio cue).

The interaction model “the execution-evaluation cycle” discussed by Norman

[Norman,88] reflects a similar pattern, however 1) and 3) are subdivided into more

detail.

This elementary interaction structure can be found in simple command line systems,

in graphical direct manipulation interfaces [Shneiderman,83], and also in systems

using speech recognition and natural language processing. All these interfaces have in

common that the user explicitly requests an action from the computer. However the

way this request is formulated varies a lot, from cryptic but powerful text based

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

185

commands with many parameters (e.g. in shells), manipulation of graphical objects in

a GUI, and by spoken commands. The basic interaction of these communication

processes is similar. The main difference between these modalities is the

representations of objects and interactions. There are different levels of abstraction

that certain commands offer, the level of abstraction, however is widely independent

of the modality used. With regard to usability and the time needed to learn how to

operate a system significant differences are observed [Shneiderman,83], [Dix,98,

chapter 4].

In the following the group of conventional interactive systems as described above will

be refereed to as system with explicit interaction, independent of their modality.

Observation: Explicit interaction contradicts the idea of invisible

computing and disappearing interfaces. New interaction paradigms

are required to realise the vision of a Ubiquitous Computing

environment which can offer natural interaction. It appears that

explicit interaction – independent of the modality – is not

sufficient to reach the goal.

Explicit interaction requires always a kind of dialog between the user and a particular

system or computer the user is currently interacting with. This dialog brings the

computer inevitably to the centre of the activity and the users focus is on the interface

or on the interaction activity. This form of interaction is obviously in contrast to the

visions of calm and Ubiquitous Computing [Weiser,91], [Weiser,98]. Also the idea of

a disappearing computer [Wejchert,00] is hard to imagine with explicit interaction

only. The realization of these visions can only be achieved when parts of the

interaction between the computer and the human are transparent and not explicit, as

stated above.

7.1.2 Excurse: Interaction and Communication Between Humans

Interaction between humans is the most natural form of interaction human’s use. This

type of communication and interaction is highly complex and manifold. A complete

model of this form of interaction seems at the moment impossible. Nevertheless

analyzing key issues in interaction and communication between humans offers a

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

186

starting point for a quest for new forms of interaction. In the following especially the

influence of context will be central, and in particular three concepts: shared

knowledge, communication error recovery, and surrounding situation.

7.1.2.1 Shared Knowledge

When observing communication and interaction between humans it is apparent that a

common knowledge base is essential for understanding each other. The common

knowledge is extensive and is usually not explicitly mentioned. A discrepancy in the

shared knowledge often leads to communication problems as probably most people

have experienced in everyday life, especially when travelling abroad. Any

communication between humans takes a minimum common knowledge for granted.

In most cases this minimum common knowledge however includes a complete world

and language model, which however seems obvious but is very hard to grasp

formally.

A search for modelling this knowledge, knowledge representation, and to make this

knowledge accessible for machines has influenced many approaches in research in

robotics and artificial intelligence [Russell,95]. The expectation of humans towards

other humans and to some extent also towards machines and computers is strongly

influenced by the implicitly shared common knowledge.

7.1.2.2 Communication Errors and Recovery

Communication between humans is not at all error free. Many conversations include

short term misunderstandings and ambiguities; however in a dialog these problems are

resolved by the communication partners. Often ambiguities are rephrased and put into

the conversation again to get clarity by reiteration of the issue. Similarly

misunderstandings are often detected by the monitoring the response of the

communication partner. In case there is a misinterpretation issues are repeated and

corrected.

When monitoring conversations it becomes apparent that efficient communication

relays heavily on the ability to recognise communication errors and to resolve them.

When building interactive systems that are invisible the ability to detect

communication problems and to have ways to resolve it becomes crucial. In certain

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

187

cases knowledge about the situation can provide the essential cues to solve the

problem.

7.1.2.3 Situation and Context

Communication and interaction between humans happens always in a specific

situation, a certain context, and in a particular environment.

When observing verbal communication it can be seen that the meaning of words,

sentences, and also the communication behaviour, as well as the way the

communication is carried out, is heavily influenced by the situation, context, and

environment. The situation in which the communication takes place provides a

common ground. This common ground generates implicit conventions, which

influence and to some extent set the rules for interaction and also provide a key to

decode the meaning of words and gestures. Single words have often many different

meanings but the context and situation is the key to the “right” meaning. The

behaviour related to the communication, e.g. initiating a communication, is also

greatly dependent on the situation, and in particular the cultural conventions, roles of

the participants, and communication goals. The type of conversation (e.g. formal or

informal) is also defined by the situation.

In the field of natural language processing the situational knowledge is often reduced

to the textual context. In [Lenat,98] an analysis of this view on context and its role for

understanding natural language is given. However, non-verbal communication, such

as body language and gestures, is also essential for decoding spoken language. With

body language and gestures information is shared in an implicit and subtle way which

can be significant for the overall communication. A simple example is that humans

recognise if their communication partner is in a hurry or not. Given this implicit

knowledge the communication is most likely different for either case. The ability to

learn and interpret implicit communication is a part of the social education and critical

to be accepted as an appropriate communication partner.

Regarding applications and interaction processes with computers that are carried out

in context, it seems natural that the context has a major influence on the interaction

process. Examples for relevant context information are:

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

188

• verbal context (direct communication)

• roles of communication partners

• goals of the communication, goals of individuals

• local environment (absolute, relative, types of environment, e.g. office or

street)

• social environment (e.g. who is there?)

• physical and chemical environment

Comparing the complex ways in which people interact to the way humans are

operating machines, it becomes apparent that in general HCI does take the real world

context of interaction and situation only very little into account. What humans expect

when interacting with other humans is dependent on the situation. We expect other

people to act appropriate to a certain situation. However, as this is little regarded in

current HCI most computers (and in a wider sense systems that include computer

technology) do not react appropriately to a situation. This is easy to explain with the

following example. Two people are in a conversation. A third person likes to remind

one of them about a meeting that is going to take place in 10 minutes. Typically the

person will wait for an appropriate pause in the communication and then interrupt and

tell the person about the meeting. Also the level of detail will be appropriate to the

situation. In contrast the calendar on a PDA will notify the user at a certain time with

a certain level of detail independent of the circumstances.

These observations on the differences between interaction between humans, and

current computer systems motivate the quest for new forms of human computer

interaction.

7.2 The Concept of Implicit Human Computer Interaction (iHCI)

As explained above there are many things that influence the interaction between

humans that are not contained in traditional “human computer interaction”. The

influence of situation, context, and environment offers a key to new ways of HCI. To

come closer to the aim of creating interaction between humans and systems that is

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

189

closer to natural interaction it becomes crucial to included implicit elements into the

communication in addition to the explicit dialog that we already use.

The following definition characterises the new paradigm of implicit human computer

interaction (iHCI). In this thesis the focus is mainly on implicit input. However within

the research also implicit output and the related concepts of ambient media were

investigated. The results are published in [Gellersen,99a], [Schmidt,01a],

[Gellersen,02a].

Definition: Implicit Human-Computer Interaction (iHCI)

iHCI is the interaction of a human with the environment and with

artefacts which is aimed to accomplish a goal. Within this process

the system acquires implicit input from the user and may present

implicit output to the user.

Definition: Implicit Input

Implicit input are actions and behaviour of humans, which are

done to achieve a goal and are not primarily regarded as

interaction with a computer, but captured, recognised and interpret

by a computer system as input.

Definition: Implicit Output

Output of a computer that is not directly related to an explicit input

and which is seamlessly integrated with the environment and the

task of the user.

The basic idea of implicit input is that the system can perceive the users interaction

with the physical environment and also the overall situation in which an action takes

place. Based on the perception the system can anticipate the goals of the user to some

extent and hence it may become possible to provide better support for the task the user

is doing.

The basic claim is that Implicit Human Computer Interaction (iHCI) allows

transparent usage of computer systems. This enables the user to concentrate on the

task and allows centring the interaction in the physical environment rather then with

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

190

the computer system. A similar concept called “incidental interaction” is introduced in

[Dix,02].

Realising implicit input reliably as general concept appears at the current stage of

research close to impossible. A number of subtasks for realising implicit input, such

as recognition and interpretation of situations as well as general anticipation of user

intension, are not solved yet. However in restricted domains it is feasible, and as the

following examples shows often simple or even trivial. The following examples are

devices that are already used or easy to imagine. These systems incorporate the basic

idea of iHCI without naming the paradigm explicitly.

7.2.1 Motivation and Examples of iHCI

A very simple example of a device that incorporates the basic concept of iHCI is an

automatic outdoor lantern. Such lights are often found at the entrance of buildings.

Whenever a human comes close and it is dark the light switches automatically on.

Two simple sensors (light level and PIR) are used to acquire the context. A simple

electronic circuit detects the situation of interest. The situation is then hard-coded with

an action (switching on the light for a certain period of time). The link between

situation and action comes from the anticipation that the person wants light when

moving towards the place. In this example the recognition of the situation, the

interpretation, and the reaction is simple to describe and to implement.

Using additional sensors and communication technology the following scenarios can

be easily implemented, some are commercially available. These examples motivate

the starting point for iHCI, however most of them are currently still not widely used.

• The user drives into the driveway with her car. The car and the garage are

equipped with communication units. The car communicates with the garage

(e.g. a challenge response authentication protocol) and if the car has

permission to enter the doors open automatically.

• The heating/air condition control system of an office building has access

diaries of the people working in the building. Office rooms are not

heated/cooled when people work offsite or are away. Meeting rooms are

heated/cooled in advance of scheduled meetings.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

191

• A garment that can measure pulse, skin temperature, and breathing combined

with an outdoor location sensor and a communication unit can be used to

monitor a users vital health signals. In case of a problem an emergency call

can be issued.

In contrast the following examples for iHCI show that recognising the situation as

well as to reason about the user intension is non-trivial and often extremely hard.

Even for relatively simple problem domains, such as light and device control in a

home environment, this is difficult. One problem is to recognise situations reliably. A

further problem, often an even more difficult one, is to assign user intensions to

situations. Consider the following example of a reading light and a TV. When the user

is sitting in the arm chair reading a book the reading light should be on, when he shifts

the attention towards the TV then it should be switched on. When the user takes again

a book or a news paper and goes back to reading the TV should be switched of and

the reading light should be on. The recognition of the situations seems feasible to

some extent and also to link actions to it, however it is easy to construct cases where

the system fails. E.g. the user watches TV and turns to TV-guide magazine. How

should the system react? This also opens the question how transitions are made and

how long situations have to last before they are taken into account.

7.2.2 Analyzing iHCI

Observing these examples and considering applications leads to the basic question of

what the model for iHCI is. In particular the issue of how to link context to actions is

a central concern. In this section the basic principals on iHCI will be accessed which

are then taken up by the model introduced later.

Analyzing applications and domains relevant to iHCI the following basic issues are

central and have to be addressed in order to create such applications:

• Perception as precondition.

To create applications that offer iHCI capabilities it is inevitable to provide the

system with perception for context. This includes the domains of sensing,

abstraction and representation.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

192

• Finding and analyzing situations relevant for the application.

When applications are based on implicit interaction it becomes a central

problem to find the situations that should have an effect on the behaviour of

the system.

• Abstracting from situations to context.

Describing a situation is already an abstraction. To describe what should have

an influence on applications classes of situations have to be selected which

will influence the behaviour of an application.

• Linking context to behaviour.

To describe an iHCI applications classes of situations and in a more abstracted

way contexts must be linked to actions carried out by the system.

Furthermore when considering the use and development of iHCI systems the

following questions become imminent.

As it is often not possible to describe contexts, especially reflecting complex types of

situations, in well defined sets the following question arises:

• How to represent fuzzy borders and dynamic thresholds?

When users interact with a system, interface stability is a critical issue. However, the

concept of iHCI includes that without explicit user intervention changes are

happening. Two central questions come out of this issue:

• How to achieve a balance between stability and dynamic using concepts such

as refractory periods and hysteresis?

• How to keep the user in charge of the interaction and not wondering about the

actions taken by the system?

As implicit interaction is rarely the only form of interaction, it becomes important that

it can be integrated with explicit interaction.

• How can implicit interaction be tied in with explicit interaction?

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

193

Implicit interaction is often ambiguous. Ways have to be found to deal with this issue.

Work in the area of ambiguity in interfaces is investigated in [Mankoff,01]. This puts

the question:

• how to deal with ambiguities in iHCI?

7.2.3 The iHCI Model

To support the creation of systems that use implicit interaction it is important to

provide a simple model that reflects this interaction paradigm. In Figure 25 an abstract

model of implicit interaction is shown.

All actions carried out by a human are taking place in context – in a certain situation.

Usually interaction with our immediate environment is very intense (e.g. sitting on a

chair, feet on the ground, garment on the body, moving books on the table, drinking

from a glass, etc.) even if we don’t recognised it to a great extent.

All contexts and situations are embedded in the world, but the perception of the world

is dictated by the immediate context someone is in. Explicit user interaction with an

application is embedded into the context of the user and is also a way of extending the

context of the user, e.g. by having access to the network.

Figure 25: Implicit human computer interaction model.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

194

Applications that make use of iHCI take the context into account as implicit input and

also have an influence on the environment by implicit output.

The proposed model is centred on the standard model in HCI where the user is

engaged with an application by a recurrent process of input and output. In the iHCI

model the user’s centre of attention is the context – the physical environment where

the task is performed. The interaction with the physical environment is also used to

acquire implicit input. The environment of the user can be changed and influenced by

the iHCI application.

The system and also the network are to some extent part of the context but are also

accessible by the application directly.

7.3 Application Areas for Sensor-based Context-Awareness and iHCI

Implicit HCI is applicable in a great number of application areas and offers solutions

in different problem domains. Especially for systems that should not distract the user

from the main task and the interaction in the physical iHCI is of particular interest. As

there are numerous specific domains and application areas the following subsection

discusses these by considering classes of applications.

7.3.1 Proactive Applications, Trigger and Control

Using events or more general situations to trigger the start of applications is a

common approach for using context and widely discussed and published [Schilit,94],

[Brown,97]. In most of these applications there is direct connection between the

context and the application that is executed. Starting and stopping represents the

minimal proactive application. Further typical applications are warning systems and

control systems that carry out a predefined action when certain context is recognised,

e.g. thresholds are violated.

Selecting applications based on the current context is a further approach. A typical

example is to have a device that is general purpose but becomes a specific information

appliance depending on the context. One example is a PDA that runs its applications

automatically according the context, e.g. when the PDA is close to a phone it runs the

phone book application, in the supermarket the shopping list application is executed,

and in the living room it becomes a remote control.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

195

Using the current context information as parameter for proactive applications is a

further approach. The behaviour of the application is then changed according to

context. A simple example of this type of application is a navigation system. The

context information – e.g. the current position and ground speed – is provided as

parameter to the application. The application uses this information to provide the

appropriate information (e.g. a map centred to the current position using a scale

appropriate for the travel speed). A further example is the use of context information

to set default values so that they fit the current situation, e.g. in meeting minutes the

form is already preset with appropriate default values for time, date, location, and

participants. This type of application is closely related to applications that generate

meta data.

A general and severe problem that occurs in this type of applications is the way how

implicit and explicit user interaction goes together, see [Cheverst,01]. The basic

question is how to resolve conflicting inputs? And furthermore how is it possible to

achieve stability in the user interface without confusing the user. E.g. when a device is

showing different behaviour depending on the situation and the user does not

understand why the system behaves differently and in which way it might lead to

confusion and frustration. It is therefore central to build user interfaces where the

proactive behaviour of the system is understandable and predictable by the user even

if the details are hidden (e.g. someone does not know how the automatic outdoor light

works in detail but has a simple model of the reaction to expect when walking by

during the night). In most cases it is also important to provide some way of allowing

manual overwrite – where the user and not the context defines the parameters.

7.3.2 Adaptive UIs

Having information on the current situation available it becomes possible to build user

interfaces that adapt to context. This is in particular interesting with regard to physical

changes in the environment. Here again it is useful to draw a comparison with

information appliances. When designing a conventional information appliance the

context of use is taken into account at design time. Assumptions about potential users

and usage scenarios are made in the design process. Based on this analysis the user

interface is created to support the anticipated use in an optimal way. Examples

become obvious when comparing the design of mobile computing systems that are

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

196

primarily targeted at different groups, e.g. PDAs for managers, Game-PDAs for kids,

rugged mobile computers for harsh environments, and devices used for fieldwork.

These examples show that the context of use drives hardware design decisions (e.g.

type of display, batteries, casing, and number of buttons) and software issues (e.g.

visualization, menu structure, and use of colours).

In systems were context is available during runtime it becomes feasible to adjust the

software part of the UI at runtime. In a very general view the requirements for the UI

are dependent on the application, the UI hardware available, the user and the context.

The requirements defined by the application may be quality parameters for the

visualization of certain content. The UI can be a single device with specific properties

or a distributed configurable UI system with various input and output options. The

requirements defined by the situation, in particular context and user, may vary a lot.

Examples are:

• That in the event of danger it is essential to provide information in a simple

and quick to recognise way to the user;

• When the user is engaged in a task it should not be necessary to move the

focus in the real world in order to interact with the system. This can be

archived by selecting the right display in a multi-display environment;

• Privacy issues are a further concern. Interaction and visualization should be

realised in a way to preserve the user’s privacy depending on the situation.

A variety of challenges are evolving from the topic of adaptive UIs. The following

two areas show exemplarily the problem domain.

7.3.2.1 UI adaptation for Distributed Settings

In environments where there is a choice of input and output devices it becomes central

to find the right input and output devices for a specific application in a given situation.

In an experiment where web content, such as text, images, audio-clips, and videos are

distributed in a display rich environment we realised that context is a key concept for

determining the appropriate configuration [Beigl,98]; a similar observation is also

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

197

reported in [Pham,00]. In particular to implement a system where the user is not

surprised where the content will turn up is rather difficult.

7.3.2.2 UI adaptation in a Single Display

Adapting the details in a single user interface a runtime is a further big challenge.

Here in particular adaptation of visual and acoustic properties according to a situation

is a central issue. Simple examples that are by now available in different commercial

products are the adjustment of the volume according to the environmental sound level

and the regulation of backlight depending on the ambient light level. We carried out

experiments where fonts and the font size in a visual interface became dependent on

the situation. Mainly dependent on the user’s activity the size of the font was changed.

In a stationary setting the font was small whereas when the user was walking the font

was made larger to enhance readability [Schmidt,00a]. The orientation aware display

described in [Schmidt,98] belongs also in this category.

7.3.3 User Interruption

Mobile computing devices and in particular communication device are designed to

accompany the user and to notify the user about certain events. On a basic observation

two types of notification events can be discriminated. One type is pre-scheduled

events, such as calendar entries that are specified to notify the user at a certain time.

The other type is interruptions that are triggered by something else, e.g. a phone call

from someone or a warning that batteries are low.

For both types it is interesting to exploit context for selecting the communication

channel (e.g. visual, tactile, and acoustic) that is used to notify the user. Based on the

context the intensity (e.g. volume, size of visual note) of the notification can be

selected. Especially in the area of wearable computing these issues are of major

interest. In the project TEA several experiments have been carried out to assess how

sensor based context can be used to modify notification interfaces at run-time.

In the case of pre-scheduled events context can be valuable to find the right time for

delivery. In communication between humans rules for interruption are implicitly

shared. Depending on the urgency of the notification a suitable time can be found for

delivery. Context can enable devices to mimic this behaviour as reported in

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

198

[Sawhney,98]. We showed similar findings in [Schmidt,99b]. For pre-scheduled

events context can also help to determine whether or not there is still need for this

particular notification or if it is already void. A simple example is a context aware

meeting reminder; when the user is already in the meeting (e.g. in a given room

together with certain people) there is no need to remind her to go there.

7.3.4 Communication Application

Context information can help to enhance remote communication between people.

Sharing of context information between people can avoid embarrassing situations for

communication partners, as often the social environment determines what form of

communication is acceptable (e.g. using a mobile phone during a church service is

still embarrassing to the receiver of the call and most likely also to the caller). The

acceptance for communication is also dependent on the current task a user is doing

and in particular on the cognitive load.

In general there are two areas that can be discriminated:

• Context to filter communication.

The basic idea is to filter communication dependent on the context. For each

possible context filter properties are defined to determine the behaviour. This

approach was taken in the TEA project. Similarly dependent on the current

context the most relevant information for this particular situation is selected.

Location-aware systems often centre on this concept.

• Context as communication mediator

In many application domains automated filtering is rather difficult and often

errors are not acceptable. In these cases where even a performance of 99% is

not acceptable to the user context can become a mediator for communication

partners. Setting up a phone conversation is due to a lack of context very

different for a face to face communication. Phone calls “hit” the receiver often

at an inconvenient point in time. Using – and especially sharing context – can

help to ease the problem as we demonstrated in [Schmidt,00]. In this

experiment the called party provides automatically some abstract context

information to the caller. By this means the caller can decide whether or not it

is appropriate to proceed with calling or not.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

199

A number of issues that have to do with communication are close to user interruption

as outlined earlier. In different cases they are also relevant for the management of

resources as described in the next section.

7.3.5 Resource Management

Using resources dependent on the context and in particular on the location was a main

motivation in the early attempts of using context [Schilit,95]. An often used example

is to automatically detect the printer that is close to the current whereabouts of the

user.

Using resources that are physically close or in proximity of the user is central to this

type of applications. The concept of physical proximity and the use of physical space

as a criteria for ordering items and accessing them is a very natural concept for

humans [Kirsh,95]. As demonstrated in [Beigl,00] this enables very powerful local

communication paradigms.

When taking into account the variety of context information that can be made

available further application areas emerge. Especially in the domain of

communication it is important to select resources that best meet the requirements of

the current situation. E.g. dependent on the available battery power, the networks

close by, and the requirements of the application the appropriate communication

medium is chosen. Similarly the processing resources can be used context dependent.

This category of applications can be characterised as applications that use context to

detect and find appropriate resource in a given situation as well as to adjust the use of

resource to mach the requirements of the context.

7.3.6 Generation of Meta Data, Capture

Data hold in computer systems is often tagged with meta information – sometimes

visible in the interface and also on system level. A typical example is the file system;

the data contained in files is also associated with meta data such as the file name, the

time and date of creation, and information on ownership and access control. Such

meta data is either explicitly assigned by the user or taken out of the context of the

system. The meta data is then available for the user (e.g. show files listed by creation

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

200

data), for applications (e.g. UNIX make command) and also used by the system (e.g.

granting access). Typically meta data is used as search and order criteria.

Using context that is outside the system further information becomes available and

also usable as meta data. In Table 12 examples are given of how context can be used

to retrieve documents.

Meta information can become an important part of the data stored. Applications that

automatically capture context are central to the idea of Ubiquitous Computing

[Abowd,99] and also to iHCI.

In the B2B domain (business to business e-commerce) we could show that long term

capture of context information within business processes, such as transportation of

goods and more general logistic, can enable new application scenarios [Thede,01].

This summary of application areas and the provision of examples shows that the iHCI

model is widely applicable.

7.4 A Basic Problem: Pull vs. Push

As context offers additional information it becomes a major design decision how to

incorporate the information in the system. The following discussion is related to

issues of context based “information push and pull” as discussed in [Cheverst,01a],

but it also addresses the resulting implementation issues on system and application

level.

Context used Sample user query
Who was around when this document was created? People around,

Social context Show all documents that were created while X was around.
Where was this document created? Location information
Show all documents that I have accessed while I was in
London.

Location and time
information

Show all documents that have been open together with this
document.
(same time and same location)

Environmental information Show all documents that were created when it was cold.

Table 12: Using context meta data to retrieve documents.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

201

7.4.1 Pulling for Context

In general “context pull” means that the consumer of context, e.g. the user, the

application, or the system actively requests context that is required. In this mode the

consumer controls when context is requested and used.

To implement applications that make use of context pulling context has the advantage

that the application is in control when context is requested and when context has an

influence on the system. The application programmer will build applications in a way

that context is pulled at a convenient point in time for the application. Typically when

a change in the interfaces appears anyway (e.g. due to an explicit interaction) context

is requested and also taken into account. This can enhance and calm visual interfaces

[Intille,02]. Another common option is that context is pulled when the application has

time anyway and the received context is used later at an appropriate time.

The disadvantage of using a pull approach is that the information must be requested at

least in the interval in which it could affect the application. Especially when

implementing systems where the change of context is less frequent than the possible

update interval in the application this is a waste of communication resource. When

devices are using a wireless communication this can be a costly option. Having many

consumers that request periodically context information from a supplier can also

create a severe scalability problem.

7.4.2 Getting Context Pushed

In contrast “context push” describes a mode where the context producing entity

provides context to possible consumers. The decision when to supply the context is up

to the context provider in the system.

For the context provider this makes distributing context straightforward. Always when

new context is available this is pushed to potential receivers. However this leaves the

question open who are the potential receivers? Possible options to this issue are to

deploy a subscriber model where a receiver can subscribe to a type of context

[Salber,99] or to use broadcast as a general way of distributing context [SMART,02].

The push-model has the advantage for the context consumer does not actively have to

query for context. However in terms of implementation this can be also an enormous

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

202

drawback. As context information can potentially arrive at any time this has to be

taken into account. On a system level this requires a way of handling interrupts or

multitasking functionality. The application has to store or buffer incoming context

information to a point where they can be processed or presented. In cases where

systems are connected wireless it requires that the receiver is available all the time

because context information can be pushed at any time.

7.4.3 Combining Push and Pull

There are various options how to combine the approaches introduced above. An

option is to introduce intermediate components such as proxies or subsystems that

offer push or pull interfaces to consumers and producers depending on their

requirements.

Consider the following example. An application can only make use of context at

certain points in the program. For the application programmer it is the easiest option

to pull at these points for context information, e.g. each time a transition in the

interface is made. This is possibly very often. However when assuming that the

application runs on a device that is connected to the network wirelessly and that

context changes happen rarely using context pull becomes on a system level

questionable. Introducing a subsystem running on the mobile device that offers

applications a pull interface but acts as a push receiver towards the network is a useful

option. In this way programming model is kept simple and also the network traffic is

reduced.

7.5 Humans and Invisible Computing

The notion of invisibility and disappearing computing is common to the vision of

Ubiquitous Computing as discussed in chapter 2. Invisibility is not primarily a

physical property of systems; often it is not even clearly related to the properties of a

system. In this section the factors that influence the perception of invisibility are

discussed. Investigating the effect of making everyday artefacts part of the digital

world brings up the inherent dilemma - invisibility vs. added value.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

203

7.5.1 How to Perceive Invisibility

It is not disputed that invisibility is a psychological phenomenon experienced when

using a system while doing a task. It is about the human’s perception of a particular

system in a certain environment. Taking this into account invisibility has four factors

that have a major influence: the human, the system, the task, and the environment, see

Figure 26.

Only the relationship between all of them can determine the degree of invisibility that

is experience. Again the degree of invisibility is hard to assess. Going along with the

Normans argument [Norman,98,p.52] that the system becomes a natural extension to

the task the following test can be helpful. The simple question “what are you doing?”

can help to reveal the basic relationship between the tool, the user and the task. If to

this question already the tool is mentioned the tool is central to the user’s attention. If

only the task is mentioned the tool has some degree of invisibility to the user. By

detailing the question further: How are you doing the task? and What steps are you

performing to accomplish the task? eventually the tool will be mentioned.

These questions can help to understand how much the tool is on the user’s mind and

how much she is taking the tool for granted and concentrating on the task. But in the

same way the weakness of the concept of invisibility becomes obvious. Imagine you

ask two people who are writing a text document. One person who is writing using the

Perceived
Invisible

Task User

Environment

System

Figure 26: Factors that influence the perceived invisibility.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

204

text based Unix programs vi and latex, the other one using a graphical word processor

on a Apple. Assuming that both have been using the system for a number of years the

answers – and also their psychological perception of their tool – will in many cases

not differ much. Both will probably have formed a relationship with the tool so that it

is used subconsciously.

This gives evidence that degree of invisibility perceived is strongly related to the

familiarity of a tool for solving a particular task. This puts into perspective the notion

of a “natural extension” [Norman,98] and the idea of “weave themselves into the

fabrics of everyday life” [Weiser,91] as this could be achieved by training the user.

For many tasks there are no natural ways of doing it, take manual writing – children

spend years in school to learn it. Nevertheless in many cultures writing is considered

to be natural.

Basically invisibility to some degree can be achieved for any tool – it doesn’t matter

how awkward it is – if the user spend enough time using it. This notion of invisibility

does not relate to the basic ideas of Ubiquitous Computing. Therefore when

considering systems the immediate invisibility is an interesting criterion. This is the

question about how obviously can the tool be used to solve a task building on the

common knowledge a user has.

7.5.2 The Invisibility Dilemma

The physical disappearance and in particular the integration has also an effect on the

user’s perception. Especially when digitally enhancing artefacts that are known and

used in everyday live the physical invisibility of the technology plays a significant

role.

When building computing and communication technology into everyday objects – and

specifically technology for context-acquisition – there are two conflicting goals that

pull the design in opposite direction:

• Goal 1: invisible integration.

The technology that is needed to make everyday artefacts a part of the digital

world should be invisible. The expression of the artefact should not be

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

205

changed by technology. With regard to the usage of the object there should be

no change to the behaviour – the technology should be completely transparent.

• Goal 2: added value.

When digitally enhancing everyday artefacts there should be an added value

for the user. The added value can be on the artefacts themselves or in the

overall system.

As we investigated in the project Mediacup [Gellersen,02] these goals appear in the

first place not conflicting. In particular assuming the constellation that the artefact is

enhanced and the added value is in the backend (e.g. coffee cup provides location of

the user and on a map of the building activities are visualised). However the first goal

also includes that people do not change their behaviour as the technology is

transparent. But offering added value will stimulate human creativity to exploit what

is available.

Even if an artefact only senses information and provides this to the system it becomes

a handle for the user to manipulate the system. As humans are creative to find ways to

use technology in a way to efficiently achieve their goals, they will change their

behaviour to optimally exploit the capabilities of the system.

This does not question the design of transparent and invisible system but the designers

should be aware that people will make use of the added value provided – often even in

an unintended way. Examples are objects that become location tokens for their users

(ActiveBadge [Want,92], MediaCup [Beigl,01]) and they will be used as such – and

not necessarily in a similar way as their non digital counterparts (a badge and a mug).

7.6 Discussion

In some models and implementations context is seen as just another form of user

interface component that provides information to the system [Salber,99]. In such

approaches context information is treated similarly to events that originate in the

graphical user interface. This approach however has drawbacks concerning the

predictability of the user interface. When a user interacts explicitly with a user

interface (e.g. by pressing a button) she expects something to happen (e.g. get a

different form onto the screen). The user action relates directly to the change interface

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

206

and is therefore easily understandable. When context is used similarly than a change

happens without an explicit interaction beforehand – in this case the user may be

surprised by the change in the system. When designing such interfaces it is important

to be aware of the difference between an event explicitly generated by the user and

information acquired from context. In case of explicit interaction user’s expectations

are clearly related to the interaction carried out (e.g. pressing the back button has a

semantic assigned). In the case of a context driven change the semantic of the

situation or context (e.g. lowering oneself in the armchair in front of the TV) is often

ambiguous. In [Mankoff,01] further issues about the integration and representation of

ambiguity in user interfaces are elaborated. Therefore it is important to distinguish

these concepts when designing an interactive system and to provide hints in the

interface so that the user has a chance to find out what action provoked the reaction of

the system.

One very basic question to address when designing interactive context aware systems

is the trade-off between stability in the interface and adaptation of the interface. The

main argument for stability is that humans picture the interface and know where to

look for a function. This spatial memorising becomes much harder or even impossible

if interface keeps changing. The counter argument is that if adaptation works well the

right functions are always at hand and there is no need to memorise where they are.

Depending on the system that is designed one or the other argument is more

important. For the design of context aware systems these issues should be taken into

account and the trade-off should be assessed.

7.7 Summary and Conclusion

In Ubiquitous Computing most systems consider that there are humans in the loop.

These systems are obviously interactive. As humans interact in many ways with their

environment the term interactive application goes beyond the well established user

interfaces. Traditional user interaction is in most cases dialog oriented whereas the

communication and interaction between humans and humans and also between

humans and their environment is much richer. In particular the situation in which a

communication takes place has a significant role for the common understanding.

Chapter 7 - Interactive Context-Aware Systems

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

207

Taking the environment into account a new interaction model can be established –

regarding explicit as well as implicit interaction. This model can be used to explain

different application areas of context aware systems.

Implementing systems that make use of context information require basic design

decisions on the way context is integrated. Basically pushing context to the system

and eventually to the UI and pulling context from the resource are the two pure

options. In most real system the design will result in a combination of both. Important

factors on push and pull are the system architecture and distribution as well as the

constraints on the user interface.

Invisibility is not a property of the system it is rather a complex relation between the

user, the system, the environment, and the task carried out. The idea of invisibility is

dependent on the knowledge of the potential user and her expectations on a “natural

tool”. Integrating computing technology into everyday objects also addresses the issue

of physical disappearance. But building invisible systems the designer is always

subject to the dilemma between true invisibility and added value. Including

technology that provides added value of a certain form will in many cases trigger the

ingenuity of the user and make her use the object differently. Object and artefacts

which could be used for their original purpose transparently become different objects

because they are a manipulator for the digital world.

208

Chapter 8

Evaluation

8.1 Evaluating Ubiquitous Computing Systems

The evaluation of Ubiquitous Computing systems is not yet fully understood.

Researchers, with their own roots in different fields, seldom share a common

understanding of how evaluation has to be conducted. In many cases even the very

basic question what to evaluate can lead to controversial discussions. In research

projects and publications it can be seen that often sub-parts of a Ubiquitous

Computing system are evaluated with well known methods from well researched

fields, rather than the whole system. In context-aware computing evaluation

techniques for sub-parts are also borrowed from other fields. In particular the context

acquisition systems are often evaluated using methods known from AI and neural

networks; whereas the context aware user interfaces are evaluated with standard HCI

methods.

It is recognised that evaluation of sub parts is essential to ensure that components

fulfil the requirements. But it is also clear that evaluation of parts of a system does not

necessarily provide an overall assessment of the system. Recently there is a growing

interest in understanding specific evaluation problems that arise from Ubiquitous

Computing systems [Scholtz,01], [Dey,02] [Scholtz,02].

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

209

8.1.1 Basic Evaluation Problems

When looking at Ubiquitous Computing systems and in particular context-aware

systems there are still very basic problems. Some of those problems are just an issue

the evaluator has to be aware of whereas others are more fundamental and require re-

thinking of evaluation methods.

8.1.1.1 Evaluation in Context

Context-aware systems are designed to develop their full potential in context. Systems

are designed to help users in a certain situation and provided information that is useful

for a particular task. To practically evaluate such a system it is preferable to evaluate

them in context. However this is often not easy as a situation may not happen very

frequently. By forcing a situation to happen the usage experience is probably changed

so that the result does not reflect the real usage in this situation.

Consider the following example experienced in the project TEA. In the interaction

design it was identified that the mobile phone should show a different behaviour when

there is an incoming call and the user has the phone already in her hand. A case that is

rarely happening but it still may be of value. Doing an evaluation and giving the user

a phone to use it over a period of two weeks it is unlikely that this situation will

happen and therefore an assessment of the usefulness of the feature by the user would

not be possible. There are two straightforward options to solve the problem, either

prolonging the experiment to make sure that the situation will happen (at least with a

certain probability) or to force the situation. The first case is usually not practicable

when situations are unlikely as user studies would take years. And the second one

may change the results as the user’s expects the situation.

This problem is inherent to context-aware systems. It is necessary that this is taken

into account when planning the evaluation of such systems. Depending on the system

and other requirements a strategy has to be developed.

8.1.1.2 Multi Causality

By setting up a Ubiquitous Computing system in an environment, often many changes

are made. In many cases this means that new devices are deployed, context

acquisition systems are set up, new interaction metaphors are introduced, and so the

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

210

environment is changed. However from an application view only a new application is

introduced, where all these parts play their role.

When now the application is evaluated it is hard to tell which part has played the

major role. In conventional interfaces it is often possible to separate changes and do

evaluations for each of the changes. E.g. to assess the influence of font size and colour

of a label in a button it is possible to vary both independently and assess the

implications on the user’s behaviour. In Ubiquitous Computing this is often not

possible. In some cases many components have to be introduced in the first place to

enable certain functionality. In the evaluation it is then not possible or very hard to

find the contribution of a particular design decision for the success or failure of the

overall system. When evaluating Ubiquitous Computing systems it is important to

minimise the number of variable elements to make it possible to figure out what effect

is caused by which decision.

8.1.1.3 Evaluation Goal

In conventional systems it is often clear what the overall system is evaluated for, most

often the goal is to proof that a system is more efficient. Variables associated with

efficiency are the time to complete a given task or the number of errors that have been

made while fulfilling the task (e.g. when writing a document). In Ubiquitous

Computing when a system augments an environment enabling a user to do new things

or to make boring tasks more interesting or more pleasurable, the metric is not straight

forward anymore. In some instances this is similar to the evaluation of designs.

In cases where the user is empowered to do something novel which was not possible

without the technology it is usually not possible or not useful to compare task

efficiency. In cases where a task is made more exciting, pleasurable, or appealing the

evaluation is always dependent on the subject doing the task. Therefore results will

not be objective; however that does not mean they are not reproducible. If the group

of subjects is well defined and large enough such evaluations can provide a very good

insight.

It is important before evaluating a system to figure out what is the evaluation goal.

Such goals can be to demonstrate the feasibility of a concept, show the ease of use,

evaluate enhanced user experience, proof the efficiency or stability of an

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

211

implementation, and estimation of administration effort. All these issues require

different evaluation procedures.

Beyond the evaluation goal it is also a central concern what to evaluate. Ubiquitous

computing research includes more than prototypical systems. Theoretical concepts,

system designs, user interface concepts, simulations, demonstrators, and deployed

systems have to be also considered when discussing evaluation. It is obvious that

there is not a single method, but it is important to identify what should be evaluated

before doing it. In the following section some appropriate evaluation methods are

discussed.

8.1.2 Methods Used

In this section a number of methods and approaches used to evaluate Ubiquitous

Computing systems are presented. As there is not yet an established evaluation

framework the following description aims at raising awareness and is open to further

discussion.

8.1.2.1 Pre-implementation Evaluation

In many cases the design of a complete system can cost substantial effort. Moreover

implementing and deploying systems is yet more costly. In cases where the feasibility

and usefulness of systems is still in questions it is appropriate to evaluate before doing

a full-blown realization.

At first sight it looks rather difficult to evaluate a system that does not exist. In many

cases however a method known from other fields – called “Wizard of Oz” – can be

helpful, [Dahlbäck,93], [Salber,93]. Instead of implementing a system one or more

humans are used to mimic the system intelligence and interacting through interfaces

which leave it open to the user whether there is a computer or human behind.

Basically the computer’s behaviour is mimicked by a human to save implementation

time [Maulsby,93].

If the system performance and the user experience is not as expected this is an

indication that the implementation of the system may be rather hard and that it is

useful to rethink the concept. It has to be mentioned that the human is used to mimic

components which involve tasks at which humans are better than computers.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

212

Examples are as language understanding, situation recognition, and prediction of

behaviour. It is obvious not to let humans do tasks where computers are more useful

(e.g. database lookups).

8.1.2.2 Sub-system Evaluation

The currently widely used practice of evaluating parts of the system based on well

know methods from the field where these parts belong to is an important step. If the

system includes a new networking protocol it is obvious that this should be evaluate

with methods used in networking and compared to the metric used in this field. In

most systems it is fairly straightforward to identify these parts and to use appropriate

evaluation procedures. In project TEA we exercised this for hardware and for the

recognition algorithms [Schmidt,99c].

Further examples of useful evaluation techniques are:

• simulation and test runs for network protocols

• usability test for new user interface concepts

• data collection and recognition performances analysis for context acquisition

• prototyping and demonstrators to proof feasibility of system design

Evaluation of sub-systems is essential but not enough. To evaluate complete systems

further steps have to be taken.

8.1.2.3 Overall System Evaluation

When evaluating the overall system many different ways can be pursued, but it is

essential to keep the basic problems describe above in mind. Depending on the system

and the evaluation goal a strategy to include context has to be found. Furthermore it is

central to minimise the number variables that have an influence on the evaluation to

acquire useful results. The following approaches provide means to evaluate the

overall system.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

213

Single domain focus

The system is evaluated from the view of a single domain, such as human computer

interaction or embedded systems. This is similar to the evaluation on sub-system level

but includes further issues that appear in the overall system. In this approach only in

the domain in question changes are made, everything else is kept constant. This

evaluation helps to identify new issues in this specific domain and also offers a means

to provide proof of advances made.

System Feasibility

The purpose of such an evaluation is to provide a proof of concept for a particular

system. Usually by building a demonstrator it is shown that the implementation of

functionality can be realised. Feasibility is however more than just showing it is

possible; most often the statement is also that it is feasible given certain conditions

such as overall cost, complexity, device size, and development time. Beyond showing

feasibility, this type of evaluation also helps to gain experience while realising the

systems. In many case the research path taken to show feasibility, including all the

dead ends, is as valuable as the proof of concept itself. When proofing feasibility not

everything must be implemented – parts that are obviously simple to implement, or

that have been implemented before, are often taken for granted and not included. As

this strategy speeds up the process and allows concentrating on novel issues it still

bears the risk that the overall system may not be feasible after all.

Prototyping

To show major issues in a system it is necessary to build prototypes that are similar to

the envisioned system. In many cases this includes that prototypical systems provide a

similar usage experience as anticipated for the real system. The advantages are

twofold. First, this makes it possible to experience the system as it is intended and can

therefore give more insight on different usability issues. Secondly, by adhering to real

conditions (e.g. power constraints, weight constraints, cost, and size) to some extent

(including effects of future developments) the experience gained by implementing

prototypes will be very useful to create the final system. Abstracting from these

conditions while prototyping can make the life much easier but it often just delays

tackling the difficult aspects. Prototypes can be used as tools to communicate with

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

214

potential users – and it offers communication in both ways. This issue of probing is

addressed later.

Living Lab

Having prototypes – even with their limitations – in everyday use can give substantial

insight into new technologies. The term living laboratory is used for different ways of

deployment. When using this approach it is important to explain the characteristics of

the experiment. The following questions raise some issues.

• Who is using it? Is it only the developer or also her colleagues?

• Is the prototypes shared or are there different prototypes available?

• How long is the prototype used?

• Who is administering and fixing the system when it breaks?

• How is the data from the experiment gathered? Is it complete? Did it interfere

with the anticipated normal use?

When using a living lab evaluation it has to be kept in mind that this is always very

subjective, however in many cases – especially with early prototypes – it is the only

practical option to get experience.

In several projects at TecO and Lancaster the artefact and systems where used in a

living laboratory style. In following some lessons learned are reported:

• Stability.

As people work in a laboratory it is important that the prototypes work – at

least with their basic, not enhanced, functionality. If things are awkward to

use, the experiment is more like probing colleagues with a new system than

using it in a living lab.

• Novelty Effect.

New gadgets are always exciting, but how are things used in the long run? In a

living lab environment it is important to keep things around for a long time. To

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

215

evaluate a system it is important to discriminate between the novelty effect of

having a new gadget and the added value of a new artefact.

• Generation Incompatibility.

Often prototypes evolve over generations. As knowledge is gained systems are

improved or at least altered. These changes lead to incompatibilities between

artefacts (e.g. the protocol on the MediaCup generations). To resolve this all

systems have to be updated. A precaution is to include version numbers into

protocol, even if it is not intended to have a second version.

• External Dependencies.

If systems are used over longer term different problems occur. As systems are

not isolated changes in other parts of the system (even beyond the reach of the

developer) force changes in the system. A typical example is the usage of a

web service (e.g. cinema booking system) where the web server

implementation disappears (e.g. the company providing it goes out of

business). To keep the system running a reimplementation of a subsystem is

required.

• Maintenance and Support.

Prototypes are most often not maintenance free, even if the envisioned system

will have this property. In these cases it is important to have people taking care

of maintenance and support – even if it is to support a “poster application” on

the wall [Schmidt,01a]. Maintenance is a time critical issue. It is important to

get systems quickly going after a breakdown to keep people using them.

• Incomplete Systems.

When starting to build a system it is obvious that at the beginning this system

is not complete. However it is often useful to already deploy working parts of

the system in the living lab. This requires that parts of the system are built in a

way that they can run without the rest of the system and optimally that they

already provide some benefit, even in an incomplete state.

• Compiling Results.

It is a central question how to acquire results from a living lab experiment.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

216

Usage statistics, interviews and questionnaires are standard ways of getting

this information. In many cases having questionnaires or interviews along the

experiment (e.g. 5 questions every week) to establish the change in use is also

very beneficial. However one has to be aware that by selecting and posing the

questions the outcome of the evaluation can be greatly influenced.

Deployment and Studies

When systems are mature in technology or build on top of off-the-shelf technologies,

deploying systems with genuine users is a very good option. By deploying systems in

real usage issues that are central to the application will turn up. The great challenge

here is to keep the system running over the time of the experiment. This is not just a

problem of system stability this is also a question of discipline. Often in the very early

stage of the deployment it becomes apparent that a slight change would improve the

system. Then by doing the slight change new issues come up. This may be a good

way to improve the system but in terms of evaluation it makes it much harder.

Another challenge is to get the results from the users who participate in the

experiment as the immediate value for them is often limited.

Deployment of systems has a further ethical dimension. Especially in the care domain

if systems are deployed for a longer period and prove valuable to staff and patients it

is difficult to take them away again. Often project resources only allow the

administration of the system for the evaluation period. After this period the systems

are removed, returning the environment for staff and patients back to the old situation.

When planning such a study where systems are deployed in a real environment this

must be taken into account. A minimal requirement is to make potential participants

aware that the system is temporary and that they may have to go back to the “old”

system after the trial even if it is successful. Another option is to plan to keep the

systems running in case the trail is successful. These issues have emerged within

Equator [EQUATOR,02] where there was a discussion to replace a paper wall

calendar with an extended electronic version based on a Smart-Board.

As the discussion above shows many of these concepts are different form classical

evaluations. One issue that appears over and over is that the purpose is to acquire

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

217

experience with the development, usage, and deployment of Ubiquitous Computing

systems.

8.2 Evaluation of prototypes

As presented in chapter 4, prototypes have been a central tool while conducting the

research leading to this thesis. Many prototypes have been built and a number of them

have been evaluated in more depth. Two exemplarily evaluation efforts are presented

here: probing prototypes and quantitative evaluation.

8.2.1 Probing Prototypes, Probing Concepts

Communicating novel ideas and concepts to the non-technical and non-research

community is often very difficult as there is often little common understanding.

However, getting feedback of potential users and ultimately buyers at an early stage is

very beneficial for the development of technologies. If there is no communication

with potential users there is a serious risk that research will explore issues that are of

no interest to anyone. On the other side, potential users will often not consider their

needs and requirements because the technology is very abstract and rather recite ideas

from the science fiction genre.

The idea is to use prototypes and demonstrators as communication medium. The

researcher can show what the technology is and what it can do for the potential user.

And the potential user can imagine this technology in her life and assess the impact on

everyday tasks. This is even possible if not all functionality is implemented.

In the project TEA this concept was used in a very early stage of the development. A

workshop was held where an interested audience of potential users were invited. First,

the audience received an introduction to the overall theme, in this case the idea of

context-awareness, and then the prototype was demonstrated. People were allowed to

discuss with researcher the prototype and its functionality. Often the discussion

centred on every day scenarios of the visitors (e.g. an architect visiting a number of

building sites a day), placing the technology virtually in their context. As potential

users imagined the technology to be used in their context, questions about the

functionality came up and where given to the researchers (e.g. “Could the phone know

that it rains or that I am in the car?”). Based on these questions the users constructed

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

218

their own scenario which had value to them (e.g. “When I am visiting a building site

and it is raining I don’t want to take phone calls. I rather want to call back when I am

in the car again.”). These discussions were very fruitful for the researchers and fun for

the users.

The workshop was concluded with a questionnaire asking about the technology and

its implications. However, it showed that the questionnaire, as it was written by the

researcher with little knowledge about the users needs, provided very much the

information that was expected. In contrast the individual discussions in which

technology was virtually put into people’s lives, provided more interesting results.

The questionnaire and the results are documented in a deliverable for the project TEA

([TEA,98,D4.2, not public]).

People who are not involved with research but who are potential users of the

technology often have a very different view on the technology developed. The results

obtained from them may significantly differ from the findings of a living lab

experiment. As in the living lab environment everyone knows what the purpose of the

system and the technology is, thinking goes along these lines. When probing concepts

and prototypes the potential users know much less and therefore will in many cases

think more freely about the technology and its application.

In different projects, within the equator initiative, probing technology and concepts

also proofed to be helpful and inspiring. Here again prototypes or just representations

of prototypes [Boucher,01] provided a good way to communicate between different

disciplines, namely designers, ethnographers, and technologists. By putting the

concept into a prototypical representation (even if this is only a mock-up or visual

representation) the imagination of the counterparts was stimulated and led to fruitful

discussion and further development.

8.2.2 Qualitative Evaluation of Prototypes

When analysing the problem domain and also during the design phase often a number

of requirements are identified and stated, this can also be called the specification.

These requirements relate to the expected functionality of the system, but also may

follow design decisions which were made for practical or aesthetical reasons.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

219

In the qualitative evaluation the central question is: does the prototype meet the

specification? This can be extended beyond the binary decision into a more detailed

analysis. How well are individual requirements in the specification met, and what is

the cost for meeting these specifications. When matching requirements versus the

actual implemented prototype, the cost assessment is of particular interest. To further

develop the prototype it is important to know which of the requirements introduced

the major cost. This is then also view from the opposite prospective by asking how

much easier, cheaper, more robust, or smaller the system would get when a certain

requirements would be dropped.

Using the experience and knowledge gained by prototyping the system it is often

useful to revisit the specification, possibly restating requirements. In some cases it

becomes apparent that certain requirements can not be met and in other cases further

requirements can be added to the specification as they have to be appeared useful in

the prototype. However, this already shows a basic problem with qualitative

evaluation. As the specification is not fixed people are tempted to produce

specification after the implementation of the prototype matching the specification to

the implementation which does not provided any insight or evaluation at all.

The following example shows exemplarily how a qualitative evaluation is carried out.

In the project Equator we were interested in the tracking of people in particular where

they are, how they move, and also detecting accidents such as falls. These objectives

evolved after considering accidents statistics showing that most accidents of elderly

people are falls, that people fall repeatedly, and that most falls happen in the home

environments [Fuller,00], [NCHS,02]. The central functionality is to provide a sensor

that can be used to alarm others when a fall has been detected. And further more to

monitor a history of fall to make medical interventions possible. The main

requirements are stated as follows:

• detection of position

• detection of falls

• calculation of the overall movement

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

220

• suitable for all rooms in home environments

• unobtrusive

• privacy preserving

• robust implementation

The load floor, see section 4.4.2, is prototyped using load sensing technology. Each of

the requirements is revisited and the feasibility is assessed based on the actual

implementation. Considering a single person in the environment it appeared that the

detection of position and falls is fairly easy to do. However for multiple people this is

becoming much harder and potentially impossible. In coherence with the original

scenario the requirements are restated to a single user scenario. The reports of falls

with elderly also revealed that many of the accidents happen in the bedroom or in the

bathroom therefore privacy becomes an important issue. As privacy is not an absolute

value it has to be compared to other options available (e.g. Granny Cam,

[Greene,02]), and here it shows that the load based solution preserves privacy much

better.

This shows that the load based tracking solution passes a qualitative evaluation of the

requirements stated in the first place, but with the restriction to a single user in the

space. In the scenario envisioned this does not jeopardise the usefulness, as the benefit

of the system is to people when they are alone.

Qualitative evaluations are a standard method in practical computer science where

systems are designed and build. It is apparent that this way of evaluation is subjective;

however in many cases it is the only possible solution to evaluate the prototype of an

overall system.

In this thesis the main arguments in chapter 3, 4, and 5 are concentrated in

hypotheses. To show how evaluation of context aware systems can be done in the

reminder of this chapter each of the hypotheses is revisited.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

221

8.3 Revisiting the Hypotheses

Four hypotheses are stated to highlight main points that are investigated in the course

of this research. The first looks at the very basic question of context acquisition using

sensors, the two following are concerned with modelling of context starting out from

artefact, and the final one is concerned with the prototyping of context aware systems.

In the following each of the hypotheses is stated again and analysed. Than arguments

that provided evidence that support the hypothesis are presented.

8.3.1 On Context Acquisition

Recalling the fact that in the real world all situations are different it is interesting that

from everyday experience humans still think of the “same thing” happening again and

again. When assessing a situation not all information is taken into account, only the

information that is characteristic or discriminating. In the terminology used here an

abstraction from situation to context is implicitly carried out.

Waiting in a queue to pay is an example of a situation familiar to many people. The

context “waiting in a queue to pay” can be found in very different settings, just

consider different types of shops, different types of goods purchased, in different

countries and cultures, different methods of payment, and different times of a day.

Still humans have little problem to find out whether or not a specific situation fits that

description. This indicates that only the subset of characteristic features is used to

assess whether or not a situation fits a context. This leads to the first hypothesis,

which is already stated in section 3.3.

Hypothesis 1: For all situations that belong to the same context the

sensory input of the characterising features is similar.

In this subsection it is illustrated exemplarily how such an evaluation can be done. For

a comprehensive evaluation a greater number of situations and more data samples

would be used.

The sensory input originates from a sensing system, or more technically from sensors,

which can be seen as changing variables over time.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

222

In Figure 27 the raw sensor values for selected sensors for four different situations are

shown (each context is 100 time steps long). The situations are described on page

51.The readings are taken from a general sensor board that is attached to a cup. The

top graph shows all sensor values, the middle only light values, and the bottom one

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

1 101 201 301 401

time

se
n

so
r

va
lu

e

People

Touch

Light 1

Light 2

Accel X

Accel Y

Temp

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

1 101 201 301 401

time

se
n

so
r

va
lu

e

Light 1

Light 2

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401

time

se
n

so
r

va
lu

e

Accel X

Accel Y

Figure 27: Time series plot of raw data.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

223

acceleration data. Just from observing the data plot it becomes apparent that the

situations generate different sensory inputs. However, it is also clear that not all

sensors are equally helpful to discriminate the contexts and that a processing of the

raw data into cues and features is useful.

To show that when selecting the characteristic features it becomes possible to

discriminate situations into context the following procedure is performed. This

approach has been used in various projects described earlier. In this section it is

exemplarily carried out to support hypothesis 1.

After specifying all contexts that are of interest, sensory input in various situations

belonging to these contexts is collected using physical sensing systems. Based on the

domain knowledge and from analysing the data characteristic features are selected.

For each of the contexts a set of typical stimuli is calculated and stored. For any new

situation the same stimuli is calculated and matched against the representative stimuli.

The fact that the difference between the stimuli based on characteristic features is

much smaller than over a larger number of calculated stimuli provided evidence that

supports the hypothesis.

In this evaluation this is shown using the following example. The following four

contexts were selected and data in various situations belongs to these contexts have

been recorded.

• Context 1: cup on table while person is working on the desk, the office light is

on, the cup is not touched

• Context 2: user holds cup in her hand thereby touches the handle, as the cup is

used it is moved

• Context 3: the cup is in the cupboard and the cupboard door is closed

• Context 4: the cup is in the unoccupied office, only emergency light is on, no

one is around

To discriminate the situation the following cues have been identified as characteristic:

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

224

• Cup touched or not (capacitive touch) over a 3 second interval

• Someone moving in the space (passive IR) over a 3 second interval

• Light level (averaged both sensors over the last 3 seconds)

• Accumulated absolute change in acceleration over a 3 second interval

To compare to a richer stimuli the following additional cues have been calculated and

used to assess similarity.

• Accelerometer value in x and y direction (averaged over the last 3 seconds)

• Current temperature (averaged over the last 3 seconds)

• Change in light over a 3 second interval

• Light level of each light sensor (averaged over the last 3 seconds)

For each of the contexts, data is recorded and a representative stimulus on all cues is

calculated, normalised, and stored as a sample vector. New situations belonging to

one of the four contexts are recorded and the normalised cue vector is calculated. The

vector is then compared to the four sample vectors and thereby the closest context can

be found. In Figure 28 the average distance for calculated vectors from 48 situations

recorded in a certain context (12 situations in each context) and the sample vector for

a context is depicted. The top diagram shows the distance based on the small cue set

and the bottom one based on the extended one. The distance to the context where the

situation belongs to is always the smallest. It is interesting to see that the extended cue

does not always perform better, e.g. the difference between the sample vector for

context 4 and the recorded vectors for situations in context 3 is better with the small

cue set. By increasing the number of stimuli – and not selecting characteristic features

– the process becomes more depended on the learning and generalization ability of the

matching algorithm.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

225

Similar to this experiment a number of other experiments supporting the hypothesis

have been carried out, [Schmidt,99c], [Schmidt,02], [Beigl,02]. These experiments do

not proof the hypothesis but provide strong evidence that it is correct.

8.3.2 Context Modelling

When modelling complex systems there is always the choice where to start. The

experience gained in building prototypes suggest that for context acquisition systems

it is useful to start at the artefact, doing a bottom-up model rather than a top-down

model. This is discussed in section 4.2 and leads to the following hypothesis.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Context 1 Context 2 Context 3 Context 4

Small Cue Set

Difference 1

Difference 2

Difference 3

Difference 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Context 1 Context 2 Context 3 Context 4

Extended Cue Set

Difference 1

Difference 2

Difference 3

Difference 4

Figure 28: comparison of characteristic features calculated for each context.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

226

Hypothesis 2: The domain knowledge about a specific single entity is

more universal and easier to establish than the domain

knowledge of a complex system, and hence it is simpler to

identify and implement contexts on entity level than on system

level.

This hypothesis comprises multiple claims:

• the domain knowledge about an entity is more universal than of a complex

system

• this domain knowledge is also easier to establish

• and as it is simpler it also becomes easier to implement

When looking at artefacts in everyday life there can be found a strong support for this

argument. Consider a wine glass – the domain knowledge of this artefact is greatly

independent of the surrounding it is used in. The basic actions people do with a wine

glass (e.g. pouring a drink in, drinking from the class, cleaning it, and storing it in

some place) is independent of whether the class is used in a home setting, in a

restaurant, at a banquet, or on a ship. The basic domain knowledge will hold in most

cases without any knowledge about the surrounding situation.

This approach was successfully used to identify the basic context relevant for

different artefacts in a number of projects, such as TEA, load sensing table, and

MediaCup. When identifying the basic context for objects very little disagreement

arose whereas when identifying contexts on system level it is hard to agree on a

common set of contexts. Within workshops this approach was used to identify

artefacts and potential relevant contexts. It showed that after identifying artefacts

relevant in a given environment there was in most cases a general agreement on the

basic dynamic properties. These dynamic properties related then to contexts.

To support the hypothesis a short account of a particular workshop is be given here.

The workshop was held at TecO, University of Karlsruhe, on the 27th and 28th of

June 2002 (The results of this workshop are not published yet). From different

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

227

European projects15 people were invited to participate. All participants had a

computer science background, but with different fields of expertise including HCI,

computer networking, AI, neural networks, and embedded systems. The prime goal

was to create a selection of aware artefacts by specification. The specification

included:

• the contexts that are specific to a particular artefact,

• the sensing infrastructure that would be need,

• the processing system and algorithms,

• and the communicating requirements.

Participants worked in groups of 3 to 5 people. Each group selected artefacts which

they found interesting and created the specification for those. Examples of artefacts

assessed are: table, chair, cushion, cup, book, pen, phone, sink, door, door handle,

bottle opener, ski, and bike.

The results and the experience reported by the participants strongly supported the

hypothesis. In most case a strong agreement of the main contexts relevant for an

artefact was reported. Similarly after having found the relevant contexts the

specification of the implementation was straight forward, given the selected contexts

can be implemented by regarding basic side conditions on sensors and processing

(mainly defined by the Smart-Its platform).

Given that contexts for many artefacts are available the next hypothesis becomes very

interesting and central for building useful systems.

Hypothesis 3: Contexts for an entity or a group of entities can be

established by fusing the contexts of entities that make up the

entity or the group. Thereby artefact centric context enables

versatile uses and becomes the foundation for a platform for

applications.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

228

The hypothesis claims that new contexts can be created when contextual knowledge is

already available and that this leads to more flexible use. In different projects where

contexts of artefacts have been made available new applications evolved. These

applications often use contexts that are related to artefacts or environments that do not

supply context themselves. These contexts are established by fusing contexts of

artefacts that are available and spatially or logically related to the artefact or

environment of interest.

To support the hypothesis a closer account of the contexts provided in the project

MediaCup is presented. Each cup provided the following basic contexts:

• cup on the table

• drinking from the cup

• playing with the cup

• temperature context (hot, warm, cold)

Contexts are communicated regularly and also include an identity and coarse location

information. The contexts are communicated via IR to the backend and the gateway

propagates them via UDP-broadcast into the local network.

This information is then available and can be used to fuse higher level contexts that

may be of interest to other applications. Especially the information of co-location and

co-occurrence of contexts provided effective means to calculate further contexts.

Examples of new contexts that evolved in the MediaCup are: “a room is used”,

“people having a meeting”, and “chat in the hallway”, see Figure 29 for an application

of the second context.

Looking at these examples it is also apparent that the reverse reasoning is not valid. It

is not possible to rely on these sensors to detect a meeting. In just a simple case where

people don’t take a cup with them the system would not work. Nevertheless having

information of sub-parts available makes it feasible and useful to calculate new

contexts. In an environment with a large number of aware artefacts and hence with a

lot of context information, fusion of new contexts becomes a very powerful tool.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

229

Similar to the MediaCup experiment it could be observed that providing basic context

can lead to the creation of new contexts based on these. It is also interesting that the

new contexts often are not envisioned by the one developing the original contexts for

the artefact. However as these contexts are related to artefacts and therefore easy to

understand it is easy for developers to built on them and create new contexts, often

more abstract.

8.3.3 Rapid Prototyping of Context Aware Systems

To make it feasible to create many artefacts that provide context it is inevitable to ease

the development and implementation of context acquisition systems. In chapter 5 the

argument for a rapid prototyping platform is made, stating the following hypothesis.

Hypothesis 4: A rapid prototyping platform to make artefacts

context-aware can be provided. Such a platform will simplify

and speed up the prototyping process of such systems.

This hypothesis contains multiple claims, first that it is possible to build such a

platform, second that this will simplify the development of context aware systems,

Figure 29: calculated high level contexts based on simple MediaCup contexts.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

230

and finally that this results in a quicker development process. To support the

hypothesis it was obvious that such a platform had to be designed, built and evaluated.

To validate the first claim building the platform and ensuring its functionality can be

done by a qualitative evaluation matching the requirements with the actual

implementation. However, in this research the second and third claim are of more

importance. To support these claims it is clear that the platform has to be used to

develop context-aware applications and to analyse the development and

implementation process and comparing it to others ways of implementing such

systems. By doing so the first claim is implicitly proofed, as without a platform this

would not be possible.

To assess rapid prototyping of context aware systems based on the platform

developed a developer’s workshop was organised. The aim of the workshop was to

get people together who are familiar with the idea of ubiquitous and context aware

computing but who have a computer science background and have no or only a

minimal knowledge about the design of electronic systems. The task for the

participants was to develop a new context aware device, consisting of:

• context acquisition hardware,

• context acquisition software,

• communication,

• and backend application.

The two and a half day workshop was held in Lancaster. 15 researchers and students

with a computer science background working on projects in the European

disappearing computer initiative [DC,02] and in Equator [EQUATOR,02] were

invited and participated. They came from 4 European countries, and 7 different

institutions. Of the participants 14 were male 1 was female. 3 of the participants were

completing their master, 9 working towards their PhD, and three were senior

researcher. All but one of the participants had never designed and built a MCU

system. About half of the people had programmed a microcontroller before. Several

people had never soldered before.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

231

The workshop was organised so that people worked in groups of two or three people

together. In the first day the hardware for the core board and for a sensor Add-On

board was build. To ease the construction of the boards a visual step by step manual

was provided, see tutorial [Schmidt,02b] and the video documenting the atelier

[Schmidt,02c]. To test the basic functionality (sensing and communication) software

templates provided were compiled and programmed onto the systems. On average

every participant built 1.5 core boards (22 in total) and 1.1 sensor Add-On boards (16

in total).

For the reminder of the workshop it was left to the individual groups to invent, design,

and implement a context-aware system. Each group had at least three core boards and

two sensor Add-On boards. This allowed two mobile units and one base station. The

following devices were realised within the available one and a half days:

• Smart Ball

A ball which includes a sensing board that recognises that it is thrown and

caught. The ball communicates these contexts to the base station which is

connected to a PC. When a context appears a sound is played. In this case the

implementation played an explosion sound when a user caught the ball.

• Wireless Gesture Remote Control

In this project a sensor board is used as a wireless gesture remote control. By

turning the device the volume can be adjusted and with other gestures tracks

are skipped. The mobile unit is wirelessly connected to a core board working

as base station. The integration is realised using an adopted WinAmp plugin.

• Singing Smart-It

The sensor board was extended by a piezo module to produce sound.

Depending on how the object is handled it plays a certain tune.

• Wireless RFId Sensor

One group decided to use one of the experimentation Add-On boards and put a

RFId module on it. The RFId module is connected to the core board using the

digital I/O pins but running a serial line protocol. The software developed on

the core board communicates with the RFId module and sends the Ids that are

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

232

read back to the bases station by RF. Another core board is used to receive the

data.

• Wireless Gesture Joystick

In contrast to all other groups where the base stations were connected to the

serial line this group decided to built an Add-On board that allows to

connected the base station to the game port of the PC. Using a digital

potentiometer the two axis of the joystick can be simulated. The mobile unit, a

core board with a sensor Add-On, was used to identify gestures; these were

then communicated via RF to the base station and translated into joystick

movements.

One further project, a system that can detect the walking behaviour of a group, by

having a sensing unit attached to each one in the group, was not finished in the time of

the workshop.

These results and the response to the workshop indicate that the rapid prototyping

platform is a very efficient tool for building context-aware Ubiquitous Computing

applications. In particular participants were amazed how quickly they had working

wireless sensing systems. The approach that each of the participants had to build the

hardware from scratch – costing about a day – was questioned at first. However, in the

course of the workshop people found it very positive and commented that this

increased the understanding for the process and the system to a great extent. This also

explained that people felt quite confident with the platform right from the start.

Further comments also suggested that this may have speeded up the further

development process significantly.

Furthermore, it was interesting to observe how people build the overall architecture of

their systems. Specifically two dominant ways are pursued. A section of the attendees

changed the code on the MCU only a little, mainly adding an identifier to their RF

packets, and sending all sensor data at the maximum data rate to the backend. In this

approach all processing was done in the backend. The other section of the attendees

followed the opposite approach, doing as much processing on the mobile node as

possible and only communicating contexts. This second approach is preferable in

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

233

terms of bandwidth use and power consumption. However the first approach saved a

lot of time, as development is much faster for the backend system.

8.4 Discussion

The evaluation of Ubiquitous Computing systems is a central issue [Dey,02].

Different methodologies can be followed all of them have both advantages and

disadvantages. In most case there is no single optimal way. Often doing different

evaluations, based on different methods and techniques is the most practical way.

With all steps taken it needs to be borne in mind that a prime goal of evaluation is to

ensure the quality of research, particularly that the knowledge gained is valid and

reproducible.

For Ubiquitous Computing systems it is central to discover what the objective of a

system is and than look for evidence that supports the claim that the objective is met.

The first step to find the objective is to realise what gets better, simpler, quicker, or

more pleasant, with the system being proposed. In contrast to conventional systems

this is not straight forward for most Ubiquitous Computing installations. It is only

possible to do a useful evaluation when the purpose of the original system is

understood. Where systems are at the design periphery, such as ambient displays,

describing the functionality becomes very difficult, because it is beyond

communication of information and aesthetics issues become central.

In the evaluation of prototypical systems there is also the question whether or not it

should be abstracted from shortcomings of current technology. In many installations,

where the prime goal is to explore the implication of a new user experience and a new

relationship between the human and the computer, the actual technology used to

prototype is not of central interest. Often it is assumed that at the point when such

installations will be widely available the technology will have changed anyway.

Under this assumption often the administration effort with current technology, the

complexity, and power consumption is not assessed. However, in many cases

including the shortcomings of current technology into the evaluation could give

insight for the development of next generation technologies.

One central problem that goes beyond evaluation is how to communicate the

knowledge gained by exploring and prototyping systems. Furthermore the question is

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

234

also how to extract the knowledge that is valid beyond the single case and is useful in

further development. Many results which are published are taken from a very specific

installation and therefore the results may be valid but in most cases they are not

reproducible. Proofing the validity of a more general claim, abstracted from a single

case or from a few applications, is in many cases hard or even impossible.

In this thesis the approach of probing people with technology is assessed. From the

experience so far this helps that people can put new technologies into their context

and consider the implications. As probes are specific and non abstract artefacts it

avoids that people respond with science fiction fantasies which they have read or

seen. Also having a physical artefact that has a certain functionality which people can

explore and play with scenarios become more realistic. Compared to other methods

this is a relatively quick way of getting feedback in early stages of the development.

Running workshops where the exploration is extended over a day or even a few days

improves the outcome; however this is a fairly expensive way to evaluate.

8.5 Summary and Conclusions

In the research carried out within this thesis different ways to evaluate Ubiquitous

Computing systems and in particular context aware systems were explored. In general

it can be seen that evaluation is in most cases not simple and borrowing methods from

other fields is not satisfactory. In publications it is often seen that sub parts of a

system are evaluated with well known methods but that the complete system is not

evaluated due to the lack of a standard method. Therefore it is important that

evaluation methods are developed for Ubiquitous Computing.

To show the potential range of how evaluation can be conducted, methods for the

evaluation of systems in the design stage, of sub parts of systems, and in more detail

of complete systems are presented. These methods have been explored in various

projects carried out within this research work.

Motivated from the research carried out, a more in depth discussion on the evaluation

of prototypes is presented. It is argued that prototypes are a very useful and powerful

tool in Ubiquitous Computing research. In particular the idea of probing potential

users with prototypes is explained. A method successfully used in different projects.

Chapter 8 - Evaluation

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

235

The experience gained, suggests that probing “ordinary people” with prototypes and

using prototypes in a laboratory environment is orthogonal. From probing people real

life issues, concerns, and possible new applications emerge. In lab usage results are

more of technical nature and also common usability problems can be detected. In

general probing can be done with early prototypes whereas in a living lab a certain

stability of the system is already required.

Given this background information on evaluation the hypotheses stated in chapters 3,

4, and 5 are revisited. For each of the statements evidence is provided that supports

the claims made. In two cases results from workshops have been used to evaluate

methods and tools.

In discussions with researchers from fields where evaluation is formal and well

understood the evaluation methods in Ubiquitous Computing are sometimes criticised.

In contrast when comparing to evaluation in social science, design, and arts the way

research is evaluated in Ubiquitous Computing is very acceptable.

236

Chapter 9

Conclusions

In this thesis research in Ubiquitous Computing and in particular in the area of context

aware systems is presented. The thesis touches on many subjects, such as context

acquisition, sensing and perception, modelling and prototyping context aware

Ubiquitous Computing systems, development support, distribution, human interaction

with computers, and evaluation. In retrospect, and having insight gained in the time

since, it may have been wise to concentrate on just one of the issues, however when

the research that led to this thesis started, in the beginning of 1998, the picture was

less clear.

The rapid change in understanding can be illustrated by looking at the first hypothesis

stated in chapter 3. Currently it is widely accepted to use different sensors to acquire

context information. At the beginning of the TEA project this was still regarded a

disputable research question, but considered worthwhile for funding. Similarly the

understanding that “context is more than location”, as we pointed out in [Schmidt,98],

and that different physical sensors can offer a significant contribution to the context

information perceived by the system, has only evolved in the research community

over the recent years.

Since then, the interest in Ubiquitous Computing and context awareness has changed

dramatically. Looking back at the research carried out, the papers published, and on

the contributions made, it is interesting to observe that certain issues, which we

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

237

regarded novel and an important contribution a few years ago, are now considered

common sense. In the following section the main contributions and results are

summarised.

9.1 Contribution and Results

The main contributions of this thesis are in three areas. Firstly contributions towards

understanding the research in Ubiquitous Computing are made. Secondly

architectures platforms, methods and tools are developed; and finally this is put into

the context of humans using it.

9.1.1 Understanding research in Ubiquitous Computing

In this thesis steps are made towards understanding the nature of research in

Ubiquitous Computing. Compared to other well established subject areas (e.g. neural

networks, the area of my master thesis research) the approach is still in its early

stages. In particular the following issues have been found

• In chapter 2 roots of research in Ubicomp are assessed and their influence on

the research methodology used. In particular it can be observed that most often

there is not a specific Ubiquitous Computing methodology. In many cases

rather it is an adapted methodology that is strongly related to the background

of the researcher (e.g. HCI, mobile systems, and AI).

• In chapter 4 the bottom-up approach to the design of context-aware systems is

introduced. This research methodology relies strongly on prototyping and

documentation of the experience gained in this phase. This methodology can

be extended to Ubiquitous Computing in general. As prototyping is costly,

methods and tools are required. This became a central issue, as introduced in

chapter 5. These tools and methods can also provide a foundation for the

reproducibility of research carried out.

• Evaluation of Ubiquitous Computing systems, as a major consideration for

assuring quality of the research carried out, is assed in chapter 8. The

contribution is firstly to compile a record of methods and techniques used and

secondly to introduce the approach of probing people with demonstrators and

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

238

prototypes. Probing is orthogonal to most of the other techniques and aims to

provide feedback to the developer in an early stage of the research. Also a

report and example of the application of evaluation methods is provided.

• The quest for the “killer application” in Ubiquitous Computing leads us into

the wrong direction. In the first review for the project TEA one important

question was: what is the killer application of context-aware systems. Within

the work of this thesis it became clearer that this is not a central question.

Ubiquitous computing introduces incremental changes to many areas and

hence enables new ways of interaction between humans and their environment

and provides new dimensions for applications. The quest for the killer

application distracts the attention from basic research that is required to get the

infrastructure in place. It many areas it is a good idea to use applications which

are obviously not killer applications but are useful to provide insight into

certain problem domains, examples can be seen in [LaMarca,02],

[Antifakos,02].

The issues presented in this thesis do not result in a coherent new research

methodology. They rather provide a set of “tools” that can help to facilitate

reproducible research. As the research field is very diverse and also the focus of

researchers is often different it is inevitable to accept a broad set of evaluation

methods, as long as they ensure the quality of the research.

9.1.2 Architectures, Platforms, Methods and Tools

A major part of the work was dedicated to the development of tools that support

prototyping of Ubiquitous Computing systems and in particular the acquisition of

context. Also methods, architectures and frameworks have been developed. However

before stating methods and developing tools it is essential to understand the task that

needs to be done and systems that should be built.

• In chapter 3 it is assessed how perception can be realised and what technical

sensing options are available. This analysis is tailored to the domain of

Ubiquitous Computing and in particular focusing on systems with highly

restricted resources. This goes beyond surveying sensors and considers further

questions such as learning and suitable abstraction. In chapter 4 issues on how

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

239

sensing is integrated with artefacts deepens these issues. The knowledge about

sensing systems is then used to implement sensing building blocks, sensor

drivers, and perception libraries, as shown in chapter 5.

• To build software abstraction for context acquisition systems, as presented in

chapter 5 and 6 is inevitable to understand possible architectures of such

systems. In chapter 3 a perception architecture is introduced providing

different abstraction layers and interfaces between sensors, cues, contexts, and

applications. Distribution is identified as a central aspect when contexts are

related to artefacts in the real world. The model and platform introduced in

chapter 6 takes spatial and temporal distribution into account. The contribution

is to show how principles observed in human understanding can be used to

create a model for Ubiquitous Computing and also how to make these

principles a central part of the communication platform.

• In chapter 5 a method is introduced that offers support when building context

acquisition systems. The method reassembles the knowledge acquired when

building various prototypes. Tools have been built to ease certain steps. The

method itself becomes the foundation for further developments; as it offers a

structured model how to create such systems.

• Building context acquisition systems involves in most cases hardware,

software, and communication. Up to now a standard sensing platform has not

been available. In chapter 5 contributions are reported to ease this issue.

Firstly building blocks and libraries for the most commonly used sensors are

provided together with a modules (software and hardware) that provide

processing and communication. Secondly a prototyping platform with

readymade sensor boards that can be attached to processing and

communication boards is presented. From the patterns of aware artefacts three

most common architectures evolved. Given the hardware building blocks and

the prototyping platform for each of the proposed architectures a software

framework is provided.

• Ubiquitous computing systems are often complex and the development may be

incremental. For many considerations (e.g. architecture in chapter 3, bottom-

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

240

up approach in chapter 4, Smart-Its boards design in chapter 5, and

distribution platform in chapter 6) the support for the development process

was a central concern. Especially the two questions how to simulate parts of

the system and how to debug such systems had a great influence on decisions

made. The models, architectures, and tools presented in this thesis are

designed to support debugging and simulation on different levels.

It is shown that through the availability of tools, and the understanding communicated

by models, architectures and methods, the process of prototyping context aware

Ubiquitous Computing systems becomes simpler and quicker.

9.1.3 Interaction with the Ubiquitous Computer

The visions of calm computing, invisible computing, and the disappearing computer

have in common the inclusion of a strong focus on how users experience new

technologies, and environments augmented by computing technology. The “human in

the loop” was always a central issue when thinking of models, architectures, and

systems.

• Within the research for this thesis it became apparent that explicit user

interfaces, independent of their modality, do not satisfy the properties on the

human computer interaction stated in the visions presented in chapter 2. With

this thesis the concept of implicit human computer interaction is contributed,

as introduced in chapter 7. Implicit interaction aims at the interpretation of

human behaviour as input to a computer system. Combining implicit and

explicit interaction new, and more subtle, forms of human computer

interaction become possible and can be realised.

• The usage of context, and more general of implicit input, in combination with

explicit input is investigated. Different options, context push and pull, are

discussed. Advantages and disadvantages depending on the requirements of

systems are presented.

• The concept of invisibility of interfaces is critically assessed. In this thesis the

term “perceived invisibility” is introduced to highlight that invisibility is not

an absolute concept. The environment, the user, the task, and the systems are

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

241

identified as main factors that influence the degree of invisibility. Before

designing and building user interfaces that should be perceived as invisible the

influencing factors must be understood for each case.

The points mentioned above are central to the design of user interfaces for Ubiquitous

Computing systems. However interaction with non-standard interfaces creates further

challenges, which are addressed in the thesis, even so if there is no answer to some of

the questions, providing awareness for the problems is a contribution in itself.

9.2 Future work

Usually with each prototype finished, each system evaluated, and each paper

published a number of new issues that pose interesting challenges appear. Extending

the vocabulary of the pattern language towards a semantic context model and creating

an integrated tool that eases development of Ubiquitous Computing systems are two

issues of central importance.

9.2.1 Towards a Semantic Context Model

In this thesis 9 patters have been presented based on the prototypes build. These 9

patterns are not a complete language yet. To make the language more expressive

further words should be added. It is however essential that patterns, as they become a

foundation, are validated, preferable by prototyping instances of them.

Having now a tool in hand, such as the Smart-Its rapid prototyping platform, creating

new context aware artefacts becomes easier and quicker, and as we see already in our

lab more new prototypes flourish. To communicate the knowledge gained in the

prototyping phase patterns describing the experience should be added.

For a number of patterns it is also of interest to provide more detail. This can be either

done be rewriting the patterns. In most cases specifying patterns that are just looking

at a sub part of one of the patterns is preferable. To compare it to the original pattern

language [Alexander,77] the current patterns are the types of “houses” and there is

still a long way to go to describe “room” and “the parts that construct room”.

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

242

Extending the pattern language, describing the experience gained, and interlinking the

vocabulary can eventually lead to a semantic context model based on a sound

foundation.

The pattern language as introduces in chapter 4 is tailored to context and context

aware artefacts and systems. It would be beneficial to extent it to Ubiquitous

Computing systems in more general.

9.2.2 Creating a Physical Interface Toolkit

In this thesis building blocks and libraries are presented. Relating these to the

architectures and to the method introduced it becomes feasible to provide tools that

ease certain steps in the development process. Ultimately such tools can become a

physical user interface builder for Ubiquitous Computing systems, which supports

implicit as well as explicit user interaction.

• A tool that helps the developer to identify the contexts that matter for the

application in mind can be realised based on an expert system. The output of

this step is then a list of context. Interactively the developer can then select a

set of variables and features to mach the requirements.

• The developer can specify architectural constraints, e.g. who is the context

users. Based on the list of sensors, cues, and features, and also taking into the

account further constraints, an architecture can be suggested. With this

information interactively established the tool can provide libraries, software

frameworks, and documentation tailored for this particular system.

To build an integrated development tool the key issue is to combine knowledge and

building blocks from all the areas that have to be covered. The goal is to build a tool

to create a complete hardware and software design of the device that can be given into

production. The overall result of the system would comprise:

• A block diagram of the architecture

• A comprehensive hardware description of each unit in the architecture,

including schematic, a PCB layout that fits the physical size, and a part list

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

243

• Software source code for each of the units.

• An API as specified by the designer that can make use of the contexts.

The input to the system is to specified by the developer and comprises following:

• The physical shape and size, in 3D

• The power source to use,

• The possible placement of the sensors, which requires knowledge about the

physical design (where can be hole for sensors to peak out, where does motion

happen).

From the experience gathered in the course of the research such a system is possible

and could be incrementally extended to a physical user interface builder.

9.2.3 Further issues

The investigation of context and especially context in relation to communication and

distribution is an area with many open questions. Initial investigations suggest that

using context to address communication partners can be a powerful concept. The idea

of “ContextCast” as a non-id based addressing extents the idea from location based

addressing, as suggest in GEOcast [Navas,97] to context in general. ContextCast is

based on the idea that proximity in a multi-dimensional context space is meaningful

and can be exploited to select communication partners.

Experimenting with context information gathered from prototypes in our living lab

environment made us again aware that privacy is a very hard problem to address in

Ubiquitous Computing. Making context information anonymous is no solution to the

problem. Temporal and spatial correlation of different bits and pieces of context

information is very powerful. Often the information that can be inferred from

correlating parts reveals more than the sum of the original pieces. Building privacy

into devices and architectures at a low system level seems challenging but could offer

a high degree of efficiency.

Chapter 9 – Conclusions

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

244

9.3 Concluding remarks

Despite Ubiquitous Computing entering the teaching curriculum and many institutions

conducting research in this area, it is still a field in its infancy. It appears that slowly a

common and shared understanding of what “good practice” and “valid research” in

Ubiquitous Computing means is evolving.

Many advances in technologies, seen as enabling technologies for Ubiquitous

Computing, are taking place. In particular in the areas of wireless networks,

processing, and sensing significant progress can be observed. However many of the

research demonstrators and prototypes have still a long way to go before they will be

found in the “real world”. For many context-aware applications it becomes apparent

that they are most useful when integrated in the environment and with other systems.

This is usually not a problem when building a particular prototype, however it makes

the deployment in real life very hard.

In Weiser’s article he characterises Ubiquitous Computing technologies that disappear

as follows:

“They weave themselves into the fabric of everyday life until they are

indistinguishable from it.” [Weiser,91]

This is certainly true from a psychological point of view. However to make

Ubiquitous Computing reality it often means that:

We have to weave technologies into the fabric of everyday life until they are

indistinguishable from it.

When developing concepts, models, and systems it is important to realise and keep in

mind that the technologies have to be interwoven with the fabric of everyday life.

245

References

[Able,90] Able, K. P. & Able, M. A., “Calibration of the magnetic compass of a migratory

bird by celestial rotation.” Nature, 347:378–389. 1990.

[Abowd,97] Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.,

“Cyberguide: A Mobile Context-Aware Tour Guide”. ACM Wireless Networks 3. 421-433.

1997.

[Abowd,99] Abowd, G.D., “Classroom 2000: An Experiment with the Instrumentation of a

Living Educational Environment”, IBM Systems Journal, Special issue on Pervasive

Computing, Volume 38, Number 4, pp. 508-530, October 1999.

http://www.research.ibm.com/journal/sj/384/abowd.html

[Abowd,00] Abowd, G. D., Mynatt, E. D., “Charting Past, Present and Future Research in

Ubiquitous Computing”, ACM Transactions on Computer-Human Interaction, Special issue

on HCI in the new Millenium, 7(1):29-58, March 2000.

[Abowd,01] Abowd, G.D.; Brumitt, B.; Shafer, S. (Eds.): “Ubicomp 2001: Ubiquitous

Computing”, Proceedings of the 3rd International Conference Ubiquitous Computing, Lecture

notes in computer science; Vol 2201. Springer-Verlag., September 2001.

[Addlesee,97] Addlesee, M.D., Jones, A., Livesey, F., and Samaria, F.: ORL Active Floor. In

IEEE Personal Communications, Vol.4, No 5, pp. 35-41, October 1997.

[Addlesee,01] Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggles, P., Ward, A.,

Hopper, A., “Implementing a Sentient Computing System”, Cover Feature in IEEE Computer,

Vol. 34, No. 8, pp 50-56, August 2001.

http://www.uk.research.att.com/pub/docs/att/tr.2001.8.pdf

http://www.research.ibm.com/journal/sj/384/abowd.html
http://www.uk.research.att.com/pub/docs/att/tr.2001.8.pdf

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

246

[Affective,02] Affective Computing Research at MIT, “Research on Sensing Human Affect”

2002, http://affect.media.mit.edu/AC_research/sensing.html

[Aleksander,95] Aleksander, I. and H. Morton. An introduction to neural computing (2 ed.).

London, U.K.: Chapman and Hall. 1995

[Alexander,77] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

Angel, S., “A Pattern Language: Towns, Buildings, Construction”, Oxford University Press,

New York. 1977.

[Alexander,79] Alexander, C. “The Timeless Way of Building”, New York: Oxford

University Press, 1979.

[Analog,01] Analog Devices, “ADXL202 Datasheet”, 2001.

http://products.analog.com/products/info.asp?product=ADXL202

[Antifakos,02] Antifakos, S., Michahelles, F., Schiele, B., “Proactive Instructions for

Furniture Assembly”, UBICOMP 2002, International Conference on Ubiquitous Computing,

Goteborg, Sweden, September 2002.

[Aristotle,00] Aristotle, “On the Soul”, (de anima), Translated by J. A. Smith, 2000.

http://classics.mit.edu/Aristotle/soul.html

[AT&T,01] AT&T Laboratories Cambridge, “Sentient Computing Project Home Page.”

2001. http://www.uk.research.att.com/spirit/.

[Baeza-Yates,99] Baeza-Yates R. and Ribeiro-Neto B., "Modern Information Retrieval",

Addison Wesley, New York, 1999.

[Bahl,00] Bahl, P., Padmanabhan, V., “RADAR: An in-building RFbased user location and

tracking system“, In Proceedings of IEEE INFOCOM, volume 2, pages 775--784, March

2000.

[Baltes,01] Baltes, H., Gvpel, W., Hesse, J., “Sensors, Sensors Update 9“, Wiley, September

2001.

[Beadle,97] Beadle, H.W.P., Maguire, G.Q. and Smith, M.T. Smart Badge: It beeps, It

flashes, It knows when you are hot and sweaty. IEEE Intl. Symposium on Wearable

Computing, Cambridge, MA, USA, Oct. 1997.

http://affect.media.mit.edu/AC_research/sensing.html
http://products.analog.com/products/info.asp?product=ADXL202
http://classics.mit.edu/Aristotle/soul.html
http://www.uk.research.att.com/spirit/

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

247

[Beigl,98] Beigl, M. Schmidt, A., Lauff, M., Gellersen, H.W., “The UbicompBrowser”, 4th

ERCIM Workshop on "User Interfaces for All", Sweden, 19-21 October 1998.

[Beigl,00] Beigl, M. “Kommunikation in interaktiven Räumen“, Dissertation (PhD Thesis),

Karlsruhe University, October 2000.

[Beigl,01] Beigl, M., Gellersen, H-W., Schmidt, A.: MediaCups: Experience with Design and

Use of Computer-Augmented Everyday Objects, Computer Networks, Special Issue on

Pervasive Computing, Elsevier, Vol. 35, No. 4, Elsevier, p. 401-409, March 2001.

[Beigl,02] Beigl, Michael, “MediaCup Project Page”, 2002. http://mediacup.teco.edu

[Bergman,00] Bergman, E., (Ed.), “Information Appliances and Beyond”, Morgan Kaufmann

Publishers, February, 2000.

[Borchers,01] Borchers, J., “A Pattern Approach to Interaction Design”, John Wiley & Sons;

2001.

[Borriello,02] Borriello, G.; Holmquist, L.E. (Eds.): “Ubicomp 2002: Ubiquitous

Computing”, Proceedings of the 4th International Conference on Ubiquitous Computing,

Lecture notes in computer science; Vol 2498. Springer-Verlag., September 2002.

[Brooks,98] Brooks, R.R., Iyengar, S.S., “Multi-Sensor Fusion”. Prentice Hall, 1998.

[Brown,96] Brown, P.J., “The Stick-e Document: A Framework For Creating Context-aware

Applications”, In the Proceedings of the Electronic Publishing, pp. 259-272, Laxenburg,

Austria, IFIP. September 1996.

[Brown,97] Brown, P.J., Bovey, J. D. and Chen, X., “Context-Aware Applications: From the

Laboratory to the Marketplace”, IEEE Personal Communications, 4(5): pages 58-64, October

1997.

[Brown,98b] Brown, P.J., “Triggering information by context”, Springer-Verlag, Personal

Technologies 2(1), : pp. 1-9. September 1998.

[Brumitt,00] Brumitt, B., Meyers, B., Krumm, J., Kern, A., and Shafer, S., “EasyLiving:

Technologies for Intelligent Environments”, In Hans-W Gellersen and P. Thomas, (Eds),

HUC2000, Second International Symposium on Handheld and Ubiquitous Computing,

http://mediacup.teco.edu

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

248

Bristol, UK, September 25-27, 2000. Springer-Verlag as Lecture Notes in Computer Science,

vol. 1927, pp. 12-29. September 2000.

[Brumitt,00a] Brumitt, B., Krumm, J., Meyers, B., and Shafer, S.: "Ubiquitous Computing

and the Role of Geometry". In IEEE Personal Communications, Vol 7, No. 5, pp. 41-43.

October, 2000.

[Bulusu,00] Bulusu, N., Heidemann, J., Estrin, D., “GPS-less Low Cost Outdoor Localization

For Very Small Devices”, IEEE Personal Communications, Special Issue on Smart Spaces

and Environments, Vol. 7, No. 5, pp. 28-34, October 2000.

[Burkhardt,01] Burkhardt, J. (Ed.), Henn, H., Hepper, S., Rindtorff, K., Schaeck, T.

“Pervasive Computing: Technology and Architecture of Mobile Internet Applications”,

Addison-Wesley, November 2001.

[Butz,00] Butz, A., Baus, J., Krüger, A., “Augmenting Buildings with Infrared Information”,

Proceedings of the International Symposium on Augmented Reality (ISAR), IEEE Computer

Society Press, 2000.

[Buxton,97] Buxton, W., “Living in Augmented Reality: Ubiquitous Media and Reactive

Environments” K. Finn, A. Sellen & S. Wilber (Eds.). Video Mediated Communication.

Hillsdale, N.J.: Erlbaum, 363-384, 1997.

[Cakmakci,02] Cakmakci, O., Coutaz, J., Van Laerhoven, K., Gellersen, H.-W., “Context

Awareness in Systems with Limited Resources”. In Proc. of the third workshop on Artificial

Intelligence in Mobile Systems (AIMS), pp. 21-29, ECAI 2002, Lyon, France. 2002.

[Callaghan,01] Callaghan V, Clarke G, Colley M, Hagras H “Embedding Intelligence:

Research Issues for Ubiquitous Computing”, The 1st Equator IRC Workshop on Ubiquitous

Computing, 13-14 Sept 2001, Nottingham UK. 2001.

[CCS,02] CCS, Inc., “CCS PCM compiler for PIC MCU”, 2002. http://www.ccsinfo.com/

[Chen,99] Chen, D., Schmidt, A., Gellesen, H.W., ”An Architecture for Multi-Sensor Fusion

in Mobile Environments”, Proceedings International Conference on Information Fusion,

Sunnyvale, CA, USA, volume II, pp 861-868, July 1999.

http://www.ccsinfo.com/

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

249

[Cheverst,98] Cheverst, K., Davies, N., Mitchell, K., Friday, A., “Design of an Object Model

for a Context-Sensitive Tourist Guide”, Proceedings of the IMC'98 Workshop on Interactive

Applications of Mobile Computing, Rostock, Germany, November 1998.

[Cheverst,00] Cheverst K., Davies N., Mitchell K., Friday A. and Efstratiou C., “Developing

Context-Aware Electronic Tourist Guide: Some Issues and Experiences”, Proceedings of

CHI'2000, Netherlands, pp. 17-24, April 2000.

[Cheverst,00a] Cheverst K., Davies N., Mitchell K. & Friday A., “Experiences of

Developing and Deploying a Context-Aware Tourist Guide: The GUIDE Project”,

Proceedings of MOBICOM'2000, Boston, ACM Press, pp. 20-31, August 2000.

[Cheverst,01] Cheverst, K., Davies, N., Mitchell, K. and Efstratiou, C., “Using Context as a

Crystal Ball: Rewards and Pitfalls”, Personal Technologies Journal, Vol. 3 No5, pp. 8-11

2001.

[Cheverst,01a] Cheverst K., Davies N., Mitchell K. and Smith P., “Exploring Context-Aware

Information Push”, in Proceedings of Third International Workshop on Human Computer

Interaction with Mobile Devices (Mobile HCI), 10 Sept 2001, At IHM-HCI 2001, Lille,

France. 2001.

[Colorado,01]. “The Adaptive House” Boulder, Colorado, 2001.

http://www.cs.colorado.edu/~mozer/nnh/

[Crabtree,01] Crabtree, A., “Wild Sociology: Ethnography and Design”, Ph.D. Thesis,

Lancaster University: Sociology Department. 2001.

[Crabtree,01a] Crabtree, A., Hemmings, T., Rodden, T. and Schnädelbach, H., “Patterns of

Technology Usage in the Home: Domestic Legacy and Design”, Technical Report Equator-

01-015, 2001.

[Crowley,02] Crowley, J. L., Coutaz, J., Rey, G., Reignier, P., "Perceptual Components for

Context Aware Computing", UBICOMP 2002, International Conference on Ubiquitous

Computing, Goteborg, Sweden, September 2002.

[Curwen,99] Curwen, R., Hopper, A., Steggles, P. Ward, A., “Sentient Computing”, AT&T

Laboratories Cambridge Technical Report 1999.13 (video), 1999 .

http://www.uk.research.att.com/pub/videos/qsif-200/spirit-qsif-200.mpg

http://www.cs.colorado.edu/~mozer/nnh/
http://www.uk.research.att.com/pub/videos/qsif-200/spirit-qsif-200.mpg

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

250

[Dahlbäck,93] Dahlbäck, N., Jönsson, A., & Salber, D. “ Wizard of Oz Studies - Why and

How?” In Gray, W.D., Hefley, W.E., and Murray, D. (Eds) Proceedings of the 1993 ACM

International Workshop on Intelligent User Interfaces, pp 193-200. ACM Press: New York.

1993.

[Darwin,59] Darwin, C., “On the Origin of Species”, John Murray, 1859. Online Version at

http://www.literature.org/authors/darwin-charles/the-origin-of-species/.

[Davies,98] Davies, N., Mitchell, K., Cheverst, K. and Blair, G.S., “Developing a Context

Sensitive Tourist Guide”, Proc First Workshop on Human Computer Interaction for Mobile

Devices, Glasgow. March 1998.

[Davies,01] Davies, N., Cheverst, K., Mitchell, K. and Efrat, A., “Using and Determining

Location in a Context-Sensitive Tour Guide”, IEEE Computer Journal, Vol. 34, No. 8, pp. 35-

41, August 2001.

[Davies,02] Davies, N., Gellersen, H.W. “Beyond Prototypes: Challenges in Deploying

Ubiquitous Systems”, IEEE Pervasive Computing Vol 1 No 1, March 2002.

[DC,02] “The Disappearing Computer Initiative”, proactive initiative of the Future and

Emerging Technologies (FET) activity of the Information Society Technologies (IST)

research program. European commission, 2002. http://www.disappearing-computer.net/

[Dey,98] Dey, A.K., Abowd, G.D. and Wood, A., “CyberDesk: A Framework for Providing

Self-Integrating Context-Aware Services”, Knowledge Based Systems 11(1): pp. 3-13.

September 30, 1998.

[Dey,99] Dey, A.K., Salber, D., Abowd, G.D., “A Context-based Infrastructure for Smart

Environments”, In the Proceedings of the 1st International Workshop on Managing

Interactions in Smart Environments (MANSE '99), pp. 114-128, Dublin, Ireland, Springer

Verlag. December 13-14, 1999.

[Dey,00] Dey, A., “Providing Architectural Support for Building Context-Aware

Applications”, Ph. D. Thesis Dissertation, College of Computing, Georgia Tech, December

2000.

[Dey,02] Dey, A. “Evaluation of Ubicomp Applications and Systems”, Summer School on

Ubiquitous and Pervasive Computing, Schloss Dagstuhl, Germany, August 7-14, 2002.

http://www.inf.ethz.ch/vs/events/dag2002/program/lectures/dey_3.pdf

http://www.literature.org/authors/darwin-charles/the-origin-of-species/
http://www.disappearing-computer.net/
http://www.inf.ethz.ch/vs/events/dag2002/program/lectures/dey_3.pdf

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

251

[eGadget,02] “e-Gadgets Project”, European Disappearing Computer project. 2002.

http://www.extrovert-gadgets.net

[Dix,98] Dix, A., Finlay, J., Abowd, G., and Beale, R. Human Computer Interaction, 2 a Ed.,

Prentice Hall Europe, 1998.

[Dix,02] Dix, A.. “Beyond intention - pushing boundaries with incidental interaction.”

Proceedings of Building Bridges: Interdisciplinary Context-Sensitive Computing, Glasgow

University, 9 Sept 2002.

[Engelbart,62] Engelbart, D. C., “Augmenting Human Intellect: A Conceptual Framework”,

Summary Report, AFOSR-3233, SRI Project No. 3578, October 1962.

http://www.bootstrap.org/augment/AUGMENT/133182-0.html

[EQUATOR,02] “The EQUATOR Interdisciplinary Research Collaboration”, 2002.

http://www.equator.ac.uk

[Essa,99] Essa, I., Abowd, G.D., “Building an Aware Home: Understanding the symbiosis

between computing and everyday activities.”, Presentation given at MERL, Georgia Institute

of Technology, 1999. http://www.cc.gatech.edu/fce/house/presentations/merl99/.

[Estrin,02] Estrin, D., Culler, D.,Pister, K., Sukjatme, G., "Connecting the Physical World

with Pervasive Networks", IEEE Pervasive Computing, 1(1):59-69, Jan. 2002.

[ETH,02] Distributed Systems Group, ETH Zurich, “The Smart-Its Project”, 2002.

http://www.inf.ethz.ch/vs/res/proj/smartits.html

[Fausett,94] Fausett, L., “Fundamentals of Neural Networks: Architectures, Algorithms, and

Applications”, Prentice-Hall, 1994.

[Figaro,02] Figaro, “Semiconductor Gas Sensor Technology”, 2002.

http://www.figarosensor.com/

[Fuller,00] Fuller, G.F., “Falls in the Elderly”, American Academy of Family Physicians,

April 1, 2000. http://www.aafp.org/afp/20000401/2159.html

[Gamma,95] Gamma, E. R., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

http://www.extrovert-gadgets.net
http://www.bootstrap.org/augment/AUGMENT/133182-0.html
http://www.equator.ac.uk
http://www.cc.gatech.edu/fce/house/presentations/merl99/
http://www.inf.ethz.ch/vs/res/proj/smartits.html
http://www.figarosensor.com/
http://www.aafp.org/afp/20000401/2159.html

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

252

[Gatech,00] “The Aware Home Research Initiative”. Georgia Institut of Technology, 2000.

http://www.cc.gatech.edu/fce/ahri/.

[Gelernter,82] Gelernter, D. and Bernstein, A., “Distributed Communications via Global

Buffer”. ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, Ottawa,

Canada, pp. 10-18, August 1982.

[Gellersen,99] Gellersen, H.W., “Handheld and Ubiquitous Computing”, Processing of the

1st International Symposium on Handheld and Ubiquitous Computing (HUC '99), Lecture

notes in computer science; Vol 1707. Springer-Verlag. September 1999.

[Gellersen,99a] Gellersen, H.W, Schmidt, A., Beigl, M., “Ambient Media for Peripheral

Information Display”, Personal Technologies Volume 3(4), pp199-208, December 1999.

[Gellersen,99b] Gellersen, H.W., Beigl, M., “Ambient Telepresence: Colleague Awareness

in Smart Environments”, 1. Intl. Workshop on Managing Interactions in Smart Environments

(MANSE 99), Dublin, Irland, Dec 1999 & Springer Verlag: Managing Interactions in Smart

Environments, P.Nixon, G.Lacey, S.Dobson ed, pp 80-88, 1999.

[Gellersen,00] Gellersen, H-W., Beigl, M., Schmidt. A, “Sensor-based Context-Awareness

for Situated Computing”, Workshop on Software Engineering for Wearable and Pervasive

Computing SEWPC00 at the 22nd Int. Conference on Software Engineering ICSE 2000.

Limerick, Ireland, 6.June 2000.

[Gellersen,02] Gellersen, H-W., Schmidt, A., Beigl, M. “Multi-Sensor Context-Awareness in

Mobile Devices and Smart Artefacts”, ACM journal Mobile Networks and Applications

(MONET), Vol. 7, No. 5. October 2002.

[Gellersen,02a] Gellersen, H.W., Schmidt, A., “Look who's visiting: supporting visitor

awareness in the web”, International Journal of Human Computer Studies IJHCS 56(1), pp.

25-46, January 2002.

[Golding,99] Golding, A. R. and Lesh, N. “Indoor navigation using a diverse set of cheap,

wearable sensors”, Proceedings of the third International Symposium on Wearable

Computers. San Francisco, California, pp. 29-36, 18 - 19 October, 1999.

[Goldstein,97] Goldstein, E.B., “Wahrnehmungspsychologie. Eine Einführung“, Spektrum

Akad. Vlg., Hdg., 1997.

http://www.cc.gatech.edu/fce/ahri/

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

253

[Greene,02] Greene, K., “Support for nursing-home cameras”, THE WALL STREET

JOURNAL, March 7, 2002, http://export.msnbc.com/news/720532.asp?cp1=1

[GUIDE,01] “The GUIDE Project Home Page”, Lancaster University, 2001.

http://www.guide.lancs.ac.uk/overview.html

[Göpel,95] Göpel, W., Hesse, J, Zemel, J.N., “Sensors, Volume 9, Sensors Volume 9:

Cumulative Index: A Comprehensive Survey”, Wiley, 1995.

[Hagras,02] Hagras, H. A. K., Callaghan, V., Clarke, G. S., Colley, M. J., Pounds-Cornish,

A., Holmes, A., and Duman, H., “Incremental Synchronous Learning for Embedded-Agents

Operating in Ubiquitous Computing Environments”, Soft Computing Agents: A New

Perspective for Dynamic Information Systems, IOS Press, 2002.

[Handel,89] Handel, S. Listening: An Introduction to the Perception of Auditory Events. MIT

Press, 1989.

[Harter,94] Harter, A. and Hopper, A. “A Distributed Location System for the Active

Office.”, IEEE Network, Vol. 8, No. 1, 1994.

[Healey,98] Healey, J. and Picard, R. StartleCam: A Cybernetic Wearable Camera.

Proceedings of the International Symposium on Wearable Computing, pp. 42-49, Pittsburgh,

Pennsylvania, 19-20 October 1998.

[Hinckley,99] Hinckley, K., Sinclair, M., “Touch-Sensing Input Devices”, ”, Proceedings of

the Conference on Human Factors in Computing Systems (CHI '99), Pittsburgh, PA, May 15-

20, pp. 223-230, 1999.

[Hofmann,97] Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J. “Global Positioning

System: Theory and Practice”, Springer Verlag, 4th Rev edition, May 1997.

[Höllerer,99] Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., Hallaway, D., “Exploring

MARS: Developing Indoor and Outdoor User Interfaces to a Mobile Augmented Reality

System”, Computers and Graphics, 23(6), pp. 779-785, Elsevier Publishers, Dec. 1999.

[Honeywell,02] Honeywell International, “Magnetic Sensors, Datasheets”, 2002.

http://www.ssec.honeywell.com/magnetic/datasheets.html

http://export.msnbc.com/news/720532.asp?cp1=1
http://www.guide.lancs.ac.uk/overview.html
http://www.ssec.honeywell.com/magnetic/datasheets.html

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

254

[Hopper,99] Hopper, A., “Sentient Computing”, The Clifford Paterson Lecture, Phil. Trans.

R. Soc. Lond. A (2000) 358, 2349-2358, 1999.

http://www.uk.research.att.com/pub/docs/att/tr.1999.12.pdf

[Hull,97] Hull, R.; Neaves, P.; Bedford-Roberts, J., “Towards Situated Computing”, Tech

Reports: HPL-97-66, HP Labs Bristol, 1997.

[Intille,02] Intille, S.S., “Change Blind Information Display for Ubiquitous Computing

Environments”, UBICOMP 2002, International Conference on Ubiquitous Computing,

Goteborg, Sweden, September 2002.

[Jayant,99] Jayant, N., Abowd, G., Jayaraman, S., Ingram, M.A., “Enhancing the Quality of

Life with Context-Aware Computing, Personalized Information Processing and Secure

Broadband Communications”, NSF 99-167 PREPROPSAL: ITR-RC+ HCI, 1999.

http://www.cc.gatech.edu/fce/house/proposals/final-pre-proposal.doc.

[Kidd,99] Kidd, C. D., Orr, R. J., Abowd, G. D., Atkeson, C. G., Essa, I. A., MacIntyre, B.,

Mynatt, E., Starner, T. E. and Newstetter, W., “The Aware Home: A Living Laboratory for

Ubiquitous Computing Research”, Proc. of the Second International Workshop on

Cooperative Buildings (CoBuild'99), October 1999.

[Kirsh,95] Kirsh, D. “The Intelligent Use of Space”, Journal of Artificial Intelligence, 73 (1-

2), 31-68, 1995.

http://icl-server.ucsd.edu/~kirsh/Articles/Space/AIJ1.html

[Kistler,02] Kistler force plate, 2002. http://www.kistler.com/

[Konomi,99] Konomi, S., Müller-Tomfelde, C., Streitz, N., “Passage: Physical

Transportation of Digital Information in Cooperative Buildings”, In: Streitz, N., Siegel, J.,

Hartkopf, V., Konomi, S. (Eds.), Cooperative Buildings - Integrating Information,

Organizations, and Architecture. Proceedings of the Second International Workshop

(CoBuild'99). LNCS 1670. pp. 45 -54. Springer: Heidelberg. 1999.

[Krüger,01] Krüger, G., Schmidt, A., “Web Engineering”, Course at University of Karlsruhe,

2001. http://www.teco.edu/lehre/webe/

http://www.uk.research.att.com/pub/docs/att/tr.1999.12.pdf
http://www.cc.gatech.edu/fce/house/proposals/final-pre-proposal.doc
http://icl-server.ucsd.edu/~kirsh/Articles/Space/AIJ1.html
http://www.kistler.com/
http://www.teco.edu/lehre/webe/

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

255

[Kymissis,98] Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N,. “Parasitic power

harvesting in shoes”. In Proc. of the Second IEEE International Conference on Wearable

Computing (ISWC), IEEE Computer Society Press, pages pp. 132-139, October 1998.

[Laerhoven,99] Van Laerhoven, K. “Online Adaptive Context Awareness, starting with low-

level sensors”. Thesis at the Free University of Brussels (VUB). Brussels, Belgium.1999.

[Laerhoven,00] Van Laerhoven, K., Cakmakci, O., “What shall we teach our pants?”, Proc.

of the Fourth Internation Symposium on Wearable Computers, ISWC 2000, Atlanta, 2000.

[Laerhoven,02] Van Laerhoven, K., Schmidt, A., Gellersen, H.W., "Multi-Sensor Context-

Aware Clothing". In Proceedings of the sixth International Symposium on Wearable

Computers, ISWC 2002, Seattle, WA. IEEE Press. 2002.

[LaMarca,02] LaMarca, A., Brunette, W., Koizumi, D., Lease, M., Sigurdsson, S.B.,

Sikorski, K., Fox, D., Borriello, G., “Making Sensor Networks Practical with Robots”,

International Conference on Pervasive Computing (Pervasive 2002), p. 152 ff., Zurich,

Switzerland, September 2002.

[Lenat,98] Lenat, D. “The Dimensions of Context Space.”, Technical report, CYCorp,

October 1998. Invited talk at the conference Context 99.

http://www.cyc.com/context-space.rtf.

[Leonhardt,96] Leonhardt, U., Magee, J., Dias, P. “Location Service in Mobile Computing

Environments.” Computer & Graphics. Special Issue on Mobile Computing. Volume 20,

Numer 5, September/October 1996.

[Leonhardt,98] Leonhardt, U. "Supporting Location-Awareness in Open Distributed

Systems". Phd Thesis, Department of Computing, Imperial College of Science, University of

London. 1998. http://www-dse.doc.ic.ac.uk/~ul/pdf/thesis_w_bookmarks.pdf

[Letham,01] Letham, L., “GPS Made Easy : Using Global Positioning Systems in the

Outdoors”, Mountaineers Books, 3rd Edition, February 2001.

[Lieberman,00] Lieberman, H., Selker, T., “Out of Context: Computer Systems That Adapt

To, and Learn From, Context”, IBM Systems Journal, Vol 39, Nos 3&4, pp. 617-631, 2000.

http://www.cyc.com/context-space.rtf
http://www-dse.doc.ic.ac.uk/~ul/pdf/thesis_w_bookmarks.pdf

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

256

[Long,96] Long, S., Kooper, R., “Rapid Prototyping of Mobile Context-Aware Applications:

The Cyberguide Case Study”, Proc. 2nd ACM International Conference on Mobile

Computing (MobiCom), pp 97-107, Rye, ACM Press, New York, 1996.

[Mankoff,01] Mankoff, J., “An architecture and interaction techniques for handling

ambiguity in recognition-based input”, Ph. D. Thesis Dissertation, College of Computing,

Georgia Tech, May 2001.

[Mann,01] Mann, S., Niedzviecki, H., “Digital Destiny and Human Possibility in the Age of

the Wearable Computer”, Doubleday of Canada, November 2001.

[Maulsby,93] Maulsby, D., Greenberg, D. & Mander, R., “Prototyping an Intelligent Agent

through Wizard of Oz”, Proceedings of InterCHI `93, 277-284, April 24-29, Amsterdam.

1993.

[Microchip,02] Microchip Technology Inc., “PIC Microcontroller”, 2002.

http://www.microchip.com/

[Microsoft,00] “The Easy Living Project”, 2000. http://research.microsoft.com/easyliving/

[Miller,68] Miller, R. B. “Response time in man-computer conversational transactions”, Proc.

AFIPS Fall Joint Computer Conference Vol. 33, pp. 267-277, 1968.

[MIT,02] MIT Project Oxygen. “Pervasive Human-Centred Computing”. MIT Laboratory for

Computer Science, July 2002. http://oxygen.lcs.mit.edu/Overview.html

[Mitchell,02] Mitchell, K, “Supporting the Development of Mobile Context-Aware

Computing”, Ph.D. Thesis, Department of Computing, Lancaster University, January 2002.

[Moberg,02] Moberg Research, Inc., “BrainBall”, 2002.

http://www.moberg.com/MobergFiles/products/entertainment/brainball.htm

[Mozer,98] Mozer, M. C., Miller, D., “Parsing the stream of time: The value of event-based

segmentation in a complex, real-world control problem”, C. L. Giles & M. Gori (Eds.),

Adaptive processing of temporal information (pp. 370-388). Berlin: Springer Verlag. 1998.

[Mozer,99] Mozer, M. C., “An intelligent environment must be adaptive”, IEEE Intelligent

Systems and their Applications, 14(2) , 11-13, 1999.

http://www.microchip.com/
http://research.microsoft.com/easyliving/
http://oxygen.lcs.mit.edu/Overview.html
http://www.moberg.com/MobergFiles/products/entertainment/brainball.htm

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

257

[Murata,99] Murata Manufacturing Ltd., “Gyrostar – Piezoelectric vibrating gyroscope”,

1999. http://www.murata.com/catalog/s42e2.pdf

[Nakanishi,00] Nakanishi, Y., Tsuji, T., Ohyama, M., Hakozaki, K., “Context Aware

Messaging Service: a Dynamical Messaging Delivery using Location Information and

Schedule Information”, Journal of Personal Technologies, Vol.4, No.4, pp.221-224, 2000.

[National,02] National Semiconductor Corporation, “LM3915, Dot/Bar Display Driver”,

2002. http://www.national.com/ds/LM/LM3915.pdf

[Navas,97] Navas, J.C., Imielinski, T., “Geographic Addressing and Routing”, Proc. of the

Third ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom'97), Budapest, Hungary, September 1997.

[NCHS,02] National Center for Health Statistics, 2002. http://www.cdc.gov/nchs/

[Neisser,76] Neisser, U., “Cognition and Reality”, San Francisco: Freeman, 1976.

[Newman,01] Newman, M., Edwards, K., Sedivy, J., “Building the Ubiquitous Computing

User Experience”, CHI 2001 Workshop, http://www2.parc.com/csl/projects/ubicomp-

workshop/, April 2001.

[Nielsen,94] Nielsen, J., “Usability Engineering”, Morgan Kaufmann, San Francisco, 1994.

Excerpt on “Response Times: The Three Important Limits”,

http://www.useit.com/papers/responsetime.html

[Nissanka,00] Nissanka B. Priyantha, N.B., Chakraborty, A., Balakrishnan, H., “The cricket

location-support system”, In Proceedings of MOBICOM 2000, ACM Press, Boston, MA, pp

32-43, August 2000.

[Nonin,02] Nonin Medical Inc., “Xpod Pulse Oxymetry”, 2002.

http://www.nonin.com/xpod.html

[Norman,98] Norman, A. D., “The Invisible Computer”, Cambridge, Massachusetts; MIT

Press. 1998.

[Nose,02] The Ninth International Symposium on Olfaction and Electronic Nose - ISOEN 02.

2002. http://pendragon.eln.uniroma2.it/

http://www.murata.com/catalog/s42e2.pdf
http://www.national.com/ds/LM/LM3915.pdf
http://www.cdc.gov/nchs/
http://www2.parc.com/csl/projects/ubicompworkshop/
http://www.useit.com/papers/responsetime.html
http://www.nonin.com/xpod.html
http://pendragon.eln.uniroma2.it/

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

258

[Orr,00] Orr, R. J., Abowd, G. D., “The Smart Floor: A Mechanism for Natural User

Identification and Tracking”, Proceedings of CHI'2000, Netherlands, (April 2000), The

Hague, Netherlands, April 1-6, 2000.

[Paradiso,00] Paradiso, J.A., Hsiao, K.-Y., and Benbasat, A., “Interfacing the foot: Apparatus

and applications”, In Proceedings of the ACM CHI Conference. Extended Abstracts, pages

175-176. 2000.

[Park,02] Park, A.; Lipperts, S.; Wilhelm, M., “Location Based Services for Context

Awareness - Moving from GSM to UMTS”, In: SSGRR 2002w, L'Aquira, Italy, January

2002. http://www.ssgrr.it/en/ssgrr2002w/papers/143.pdf

[Pascoe,98] Pascoe, J., “Adding Generic Contextual Capabilities to Wearable Computers”, In

the Proceedings of the 2nd IEEE International Symposium on Wearable Computers

(ISWC'98), pp. 92-99, Pittsburgh, PA, IEEE. October 19-20, 1998.

[Pascoe,98a] Pascoe, J, Ryan, N. S. and Morse, D. R., “Human-Computer-Giraffe Interaction

- HCI in the Field”, In the Workshop on Human Computer Interaction with Mobile Devices,

Glasgow, Scotland. May 21-23, 1998.

[Pascoe,99] Pascoe, J., Ryan, N., “Mobile Computing in Fieldwork Environments

Homepage”, University of Kent, UK, 1999.

http://www.cs.ukc.ac.uk/people/staff/nsr/mobicomp/Fieldwork/index.html

[Pascoe,01] Pascoe, J. “Context-Aware Software”, PhD thesis, Computing Laboratory,

University of Kent at Canterbury, August 2001.

[Patent,01] Method and apparatus for providing context-based call transfer operation. US

patent, US 2001/0031633 A1, Oct. 18, 2001.

[Patent,02] A system and method for supporting aware goods. International patent, WO

02/46973 A2, 13 June 2002.

[Pham,00] Pham, T.L., Schneider, G., Goose, S., Pizano, A., “Composite Device Computing

Environment: A Framework for Augmenting the PDA Using Surrounding Resources”,

Workshop on Situated Interaction in Ubiquitous Computing at CHI2000, April 2000.

http://www.teco.edu/chi2000ws/papers/35_pham.pdf

http://www.ssgrr.it/en/ssgrr2002w/papers/143.pdf
http://www.cs.ukc.ac.uk/people/staff/nsr/mobicomp/Fieldwork/index.html
http://www.teco.edu/chi2000ws/papers/35_pham.pdf

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

259

[Phillips,02] Phillips, “KMZ51; Magnetic field sensor”, 2002.

http://www-us.semiconductors.philips.com/pip/KMZ51

[Picard,97] Picard, R., Healey, J., “Affective wearables”, Personal Technologies, vol. 1, no.

4, pp. 231--240, 1997.

[Portolano,02] “Portolano: An Expedition into Invisible Computing”, University of

Washington, 2002. http://portolano.cs.washington.edu/

[Portolano,99] “Portolano/Workscape: Charting the new territory of invisible computing for

knowledge work”, A proposal to DARPA in response to BAA 99-07, 1999.

[Radiometrix,02] Radiometrix Ltd., “433MHz High Speed FM Radio Transceiver Module”,

2002. http://www.radiometrix.co.uk/products/bim2.htm

[Ramtron,02] Ramtron Intl. Corp., “FRAM Datasheets”, 2002.

http://www.ramtron.com/products/datasheets.htm

[Randell,00] Randell, C., Muller, H., “Context Awareness by Analyzing Accelerometer

Data”, Fourth International Symposium on Wearable Computers (ISWC'00), p. 175-176,

Atlanta, Georgia, October 18 - 21, 2000.

[Regenstein,01] Regenstein, K. “Lokationsbestimmung für rechnerunterstützte Artefakte des

Alltäglichen Gebrauchs“, Diplomarbeit (Master Thesis), Department of Physics, University of

Karlsruhe, 2001.

[Rekimoto,01] Rekimoto, J., “GestureWrist and GesturePad: Unobtrusive Wearable

Interaction Devices”, Proceedings of the Fifth International Symposium on Wearable

Computers (ISWC'01), 2001.

[Russell,95] Russell, S.J., Norvig, P., “Artificial Intelligence: Modern Approach”, Prentice

Hall; January 1995.

[Ryan,98] Ryan, N. S., Pascoe, J., Morse, D. R., "Enhanced Reality Fieldwork: the Context-

aware Archaeological Assisstant", in V. Gaffney, M. van Leusen and S. Exxon (eds.)

Computer Applications in Archaeology 1997, 1998.

http://www.cs.ukc.ac.uk/projects/mobicomp/Fieldwork/Papers/CAA97/ERFldwk.html

http://www-us.semiconductors.philips.com/pip/KMZ51
http://portolano.cs.washington.edu/
http://www.radiometrix.co.uk/products/bim2.htm
http://www.ramtron.com/products/datasheets.htm
http://www.cs.ukc.ac.uk/projects/mobicomp/Fieldwork/Papers/CAA97/ERFldwk.html

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

260

[Saffo,97] Saffo, P., Sensors: The Next Wave of InfoTech Innovation, 1997 Ten-Year

Forecast, Institute for the Future, 1997. http://www.saffo.com/sensors.html

[Salber,93] Salber, D., Coutaz, J. “Applying the Wizard of Oz Technique to the Study of

Multimodal Systems”, EWHCI'93, pp219-230. Springer-Verlag, Berlin, 1993.

[Salber,99] Salber, D., Dey, A.K. and Abowd, G.D., “The Context Toolkit: Aiding the

Development of Context-Enabled Applications”, Proceedings of the Conference on Human

Factors in Computing Systems (CHI '99), Pittsburgh, PA, May 15-20. pp 434-441, 1999.

[Sato,01] Sato, Y., Shingyouuchi, M., Furuta, T., Beppu, T., “Novel Device for Inputting

Handwriting Trajectory”, Ricoh Technical Report No.27, November, 2001.

[Sawhney,98] Sawhney, N., Schmandt, C., “Speaking and Listening on the Run: Design for

Wearable Audio Computing”, Proceedings of the International Symposium on Wearable

Computing, Pittsburgh, Pennsylvania, 19-20 October 1998.

[Scheich,86] Scheich, H., Langner, G., Tidemann, C., Coles, R., Guppy, A.,

“Electroreception and electrolocation in platypus”, Nature 319:401-404. 1986.

[Schiele,01] Bernt Schiele., B, Antifakos, S., “Beyond Position Awareness”, Proceedings of

the Workshop on Location Modeling at UBICOMP 2001, Atlanta, 2001.

[Schilit,94] Schilit, W. N., Adams, N. I. and Want, R., “Context-aware Computing

Applications”, In the Proceedings of the 1st International Workshop on Mobile Computing

Systems and Applications, pp. 85-90, Santa Cruz, CA, IEEE. December 8-9, 1994.

[Schilit,95] Schilit, W. N., “A System for Context-Aware Mobile Computing”, Ph.D. Thesis,

Columbia University, New York, 1995.

[Schmidt,96] Schmidt, A., “A modular neural network architecture with additional

generalisation abilities for high dimensional input vectors”, MSc thesis, Manchester

Metropolitan University, UK, September 1996.

[Schmidt,98] Schmidt, A., Beigl, M. and Gellersen, H. W., “There is More to Context than

Location”, In Interactive Applications of Mobile Computing, Rostock, Germany, 24-25,

November 1998.

http://www.saffo.com/sensors.html

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

261

[Schmidt,99] Schmidt, a., Beigl, M., Gellersen, H. W., "There is More to Context than

Location," Computer & Graphics Journal, vol. 23, no. 6, pp. 893-902, Dec. 1999.

[Schmidt,99a] Schmidt, A., Forbess, J., “What GPS Doesn't Tell You: Determining One's

Context with Low-Level Sensors”, The 6th IEEE International Conference on Electronics,

Circuits and Systems, September 5 - 8, 1999, Paphos, Cyprus. 1999.

[Schmidt,99b] Schmidt, A., Gellersen, H.W. and Beigl, M., “A Wearable Context-Awareness

Component - Finally a Good Reason to Wear a Tie”, IEEE Proceedings of the third

International Symposium on Wearable Computers. pp 176-177, San Francisco, 18-19. Oct.

1999.

[Schmidt,99c] Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven, K. V.

and Velde, W. V., “Advanced Interaction in Context”, In the Proceedings of the 1st

International Symposium on Handheld and Ubiquitous Computing (HUC '99), pp. 89-101,

Karlsruhe, Germany, Springer-Verlag. September 27-29, 1999.

[Schmidt,00] Schmidt, A., Takaluoma, A. and Mntyjrvi, J., “Context-Aware Telephony over

WAP”, Springer-Verlag, London, Ltd., Personal Technologies, Volume 4, pages 225-229.

Short paper presented at Handheld and Ubiquitous Computing (HUC2k), HP Labs, Bristol,

UK, September 2000.

[Schmidt,00a] Schmidt, A., “Implicit Human Computer Interaction Through Context”,

Personal Technologies Volume 4(2&3), pp191-199, June 2000.

[Schmidt,00b] Schmidt, A., Gellersen, H.W., Merz, C., “Enabling Implicit Human Computer

Interaction - A Wearable RFID-Tag Reader”, International Symposium on Wearable

Computers (ISWC2000), pp193-194, Atlanta, GA, USA. October, 16-17, 2000.

[Schmidt,01] Schmidt, A., Gellersen, H.W.,“Modell, Architektur und Plattform für

Informationssysteme mit Kontextbezug”, Infromatik Forschung und Entwicklung. Band 16,

Heft 4. pp213-224, November 2001.

[Schmidt,01a] Schmidt, A., Gellersen, H.W., “Visitor Awareness in the Web” 10th World-

Wide Web Conference (WWW10), W3C, Hongkong, May 2001.

[Schmidt,02] Schmidt, A., Strohbach, M., van Laerhoven, K., Friday, A., Gellersen, H.W.,

“Context Acquisition Based on Load Sensing”, UBICOMP 2002, International Conference on

Ubiquitous Computing, Goteborg, Sweden, September 2002.

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

262

[Schmidt,02a] Schmidt, A., van Laerhoven, K., Strohbach, M., Gellersen, H.W., “Ubiquitous

Pointing”, UI4ALL 2002, 7th ERCIM Workshop User Interfaces For All, Paris, October

2002.

[Schmidt,02b] Schmidt, A., “Smart-Its technical details, schematics, PCBs”, 2002.

http://www.comp.lancs.ac.uk/~albrecht/smart-its/platform/

[Schmidt,02c] Schmidt, A., “Smart-Its prototyping video”, DC Atelier Sep 2002.

http://ubicomp.lancs.ac.uk/~albrecht/smart/

[Scholtz,01] Scholtz, J., “Workshop on Evaluation Methodologies for Ubiquitous

Computing”, Workshop at Ubicomp 2001. http://zing.ncsl.nist.gov/ubicomp01/

[Sensor,99] Sensor 99. 9th international trade fair and conference for sensors, transducers &

systems. AMA Service. Nürnberg, Germany,1999.

[Sensor,01] Sensor 2001. Internationaler Kongress. 10. 2001 May. 1 rnberg, Oldenburg

Verlag, Germany, 2001.

[Shneiderman,83] Shneiderman, B., “Direct manipulation: A step beyond programming

languages”, IEEE Computer, 16(8), p.57-69, August 1983.

[Siegert,96] Siegert, H.-J., Bocionek, S.: Robotik: Programmierung intelligenter Roboter.

Springer 1996.

[Small,00] Small, J., Smailagic, A., Siewiorek, D., “Determining User Location For Context

Aware Computing Through the Use of a Wireless LAN Infrastructure” December 2000.

http://www-2.cs.cmu.edu/~aura/docdir/small00.pdf

[SMART,02] “The Smart-Its Project”, European Disappearing Computer Project, 2002.

http://www.smart-its.org/

[Starner,96] Starner, T., “Human-Powered Wearable Computing”, IBM Systems Journal,

Vol. 35, No. 3&4, pp. 618-629, 1996.

[Starner,98] Starner, T., Schiele, B., Pentland, A., “Visual Contextual Awareness in

Wearable Computing.” Proceeding of the Second Int. Symposium on Wearable Computing.

Pittsburgh, October 1998.

http://www.comp.lancs.ac.uk/~albrecht/smart-its/platform/
http://ubicomp.lancs.ac.uk/~albrecht/smart/
http://zing.ncsl.nist.gov/ubicomp01/
http://www-2.cs.cmu.edu/~aura/docdir/small00.pdf
http://www.smart-its.org/

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

263

[Starner,99] Starner, T. "Wearable Computing and Contextual Awareness", PhD thesis, MIT

Media Laboratory, Apr 30, 1999.

[Svaizer,97] Svaizer, P., Matassoni, M., Omologo, M., "Acoustic Source Location in a Three-

dimensional Space using Cross-power Spectrum Phase." Proc. of International Conference on

Acoustics, Speech, and Signal Processing (ICASSP97), Munich, Germany, April 1997.

[TAOS,02] TAOS, Texas Advanced Optoelectronic Solutions, “Light to Volatge Familiy”,

2002. http://www.taosinc.com/light_to_voltage.htm

[TEA,98] “Technology for enabling Awareness (TEA)”, European Esprit Project 26900.

http://www.teco.edu/tea/, 1998.

[Teco,02] TecO, University of Karlruhe, “Smart-Its Project page”, 2002.

http://smart-its.teco.edu

[Thede,01] Thede, A., Schmidt, A., Merz, C., “Integration of goods delivery supervision into

E-Commerce supply chain”, Second International Workshop on Electronic Commerce

(WELCOM'01). Heidelberg, Germany. November 16-17, 2001.

[Thomas,00] Thomas, P.; Gellersen, H.-W. (Eds.): “Handheld and Ubiquitous Computing”,

Proceedings of the Second International Symposium on Handheld and Ubiquitous Computing

(HUC 2000), Lecture notes in computer science; Vol 1927. Springer-Verlag, September 2000.

[Traeger,94] Traeger, D.H. “Einführung in die Fuzzy – Logik”, 2. Auflage. Teubner,

Stuttgart. 1994.

[Vijayraghavan,01] Vijayraghavan, V., Barton, J.J., “WISE - A Simulator Toolkit for

Ubiquitous Computing Scenarios”, UbiTools-'01 workshop, 2001.

http://www.hpl.hp.com/personal/John_Barton/Publications/WISE_Ubitools_3.pdf

[Want,92] Want, R., Hopper, A., Falcao, V. und Gibbons, J. “The Active Badge Location

System.”, ACM Transcation on Information Systems 10 (1992) 1, pp. 42-47. 1992.

[Want,95] Want, R., Schilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis

J.R., Weiser, M., “The ParcTab Ubiquitous Computing Experiment”, Technical Report CSL-

95-01, Xerox Palo Alto Research Center, March 1995.

http://www.ubiq.com/parctab/csl9501-abstract.html

http://www.taosinc.com/light_to_voltage.htm
http://www.teco.edu/tea/
http://smart-its.teco.edu
http://www.hpl.hp.com/personal/John_Barton/Publications/WISE_Ubitools_3.pdf
http://www.ubiq.com/parctab/csl9501-abstract.html

References

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

264

[Want,02] Want, R., Pering, T., Borriello, G., Farkas, K., "Disappearing Hardware", IEEE

Pervasive Computing Journal, Vol. 1. Issue 1, pp36-47, April 2002.

[Ward,97] Ward, A. J., Hopper, A., “A New Location Technique for the Active Office”,

IEEE Personal Communications, vol. 4, pp. 42-47, 1997.

[Weiser,91] Weiser, M., “The Computer for the 21st Century”, Scientific American,

265(3):94-104, September 1991.

[Weiser,93] Weiser, M., “Some Computer Science Issues in Ubiquitous Computing”,

Communications of the ACM, 36(7):75-84, 1993.

[Weiser,96] Weiser, M., “Ubiquitous computing Homepage”,

http://www.ubiq.com/hypertext/weiser/UbiHome.html, March 1996.

[Weiser,98] Weiser, M. & Brown, J. S. “The coming age of calm technology”. In P. J.

Denning & R. M. Metcalfe (Eds.), Beyond calculation: The next fifty years of computing. pp

75-85. New York, NY, 1998.

http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm

[Wejchert,00] Wejchert, J. “The Disappearing Computer”, Information Document, IST Call

for proposals, European Commission, Future and Emerging Technologies, February 2000.

http://www.disappearing-computer.net/mission.html

[Wisneski,98] Wisneski, G., Ishii, H., Dahley, A., Gorbet, M., Brave, S., Ullmer, B. and

Yarin, P. Ambient Display: Turning Architectural Space into an Interface between People and

Digital Information. In Proceedings of the First International Workshop on Cooperative

Buildings (CoBuild’98), Darmstadt, Germany, Springer-Verlag Heidelberg, p. 22-32,

February 1998.

[Wyckoff,98] Wyckoff, P., McLaughry, S. W., Lehman T. J. and Ford, D. A., “T-Spaces”,

IBM Systems Journal, Vol 37, No. 3 - Java Technology. pp 454–474, 1998.

[Zadeh,73] Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex Systems”,

IEEE Transac-tions on System, Man and Cybernetics, vol. 3, no. 1, pp. 28-44, Jan 1973.

http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm
http://www.disappearing-computer.net/mission.html

265

Appendix

Appendix A: Perception

Appendix A.1: Time Domain Analysis.

To discriminate the audio signal of the contexts silence, noise, speaking, and music on

a minimal computing hardware a simple time domain analysis is used. The algorithm

finds the point where there is a zero crossing (red dots in Figure 30) and when a

direction change happens (green dots in Figure 30). The ration between the counts is

an indication of the type of audio signal.

Figure 30: An example depicting zero crossings and direction changes in an

audio signal.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

266

If there is knowledge about the average value (avg) these measures can be calculated

on the fly without storing all samples.

Zero crossing condition:

(x(t-1)>avg & x(t)<avg) | (x(t-1)<avg & x(t)>avg)

Direction change condition:

(x(t-1)>x(t-1) & x(t-1)>x(t)) | (x(t-1)<x(t-1) & x(t-1)<x(t))

A further algorithm that also works in the time domain indicates the level of the audio

signal over time. The algorithm can be compared with what can be observed in an

audio editor when a sound signal over a longer period of time is viewed. All the

values are compressed in time, resulting that only the maxima are visible. In Figure 31

the resulting output is depicted. These cue can also be calculated by observing the

maximum on the fly and without storing the whole data.

Appendix A.2: A Simplified Rule Set

The simplified rule set to discriminate between the situations where a device is hold in

the hand, the device is stationery on the table, and the device is in a suitcase, is shown

in Table 13. The recognition in this example is based on only three sensors: light, and

acceleration in two directions (X and Y). The rules are built on observation of usage

in contexts and from an analysis of the data collected in test scenarios. The sample

data is also used to calculate the threshold values that are used for comparison:

The values Dx and Dy indicate the threshold for movement. For the data it could be

observed that when the device is held by the user the standard deviation of the

acceleration values always exceed a certain threshold.

Figure 31: The graph shows the pattern that reassembles 3 seconds of audio.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

267

The acceleration values indicate the orientation of the device when it is not moved.

The collected data was used to calculate the normal values that are measured when a

device is stationary on a table, denoted Xnormal, Ynormal. As sensor readings

have a distribution a threshold D was introduced. If the difference was smaller than D

it was still assumed that the position is the same.

Similarly when the device is not moved the changes in acceleration should be

minimal. The quartile distance was used to check this; Q is the threshold that was

calculated from the data sets. For light the threshold for a reading in the dark was set

by the value L.

Appendix A.3: Recognising Events on a Surface

To detect events in the load sensing system the following algorithm is used. A 500 ms

sliding window is used and only the absolute sum of load (Fx) is regarded. At the

selected sampling frequency, this equates to the last 125 sample values, denoted by

Fx(t),…, Fx(t-124). For each sample the cues described in Table 14 are calculated.

The expressions have been selected to be as simple as possible to facilitate easy

implementation on a microcontroller while at the same time yielding reliable event

detection and differentiation.

Using the calculated cues three different events are discriminated by the rules

described for each primitive.

Hand(t):- standard_ deviation(accelX,t) > Dx,
 standard_ deviation(accelY,t) > Dy,
 % device is slightly moving in X and Y
 average(light,t)>L. % not totally dark

Table(t):- Abs(average(accelX,t)-Xnormal)<D,
 Abs(average(accelY,t)-Ynormal)<D,
 % the device is level in X and Y
 quartile(accelX,t)<Q, quartile(accelY,t)<Q
 % the device is stationary
 average(light,t)>L. % not totally dark

Suitcase(t):- average(light,t)<L. % it is totally dark

Table 13: Simplified recognition rules a context aware phone.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

268

• Putting an object on the surface.

This is characterised by an increase in the overall load. In other words, before

the event the overall load is smaller than after the event (As+δ< Ae). The

threshold of weights is denoted by δ. Assuming that once the object has been

put down on a surface it remains stable, it can be seen that Ds is close to zero

(Ds<ε). In the middle of the interaction the change to the signal is greater (the

moment the object hits the surface) than later (when the object is already on

the surface), stated as (Dm> De).

• Removing an object from the surface.

This is inverse of placing an object on the surface, so the overall load is

reducing (As>Ae+δ). To begin with the signal is stable (Ds<ε) and the change

during the interaction is greater than at the end (Dm> De).

• Knocking an object over.

When an object is knocked over, this results in a large change in the middle of

the interaction, greater than at both the start and the end, and also greater than

a set threshold φ, (Dm>φ ∧ Dm>Ds ∧ Dm>De). As the overall weight on the

surface stays the same, As and Ae are similar (|As-Ae|<δ).

25

)(
)100)..(124(

∑
−−== ttj

x

s

jF

A
As is the average value of the first 25 values in the window
that is currently processed. This is used as an indicator for the
overall load on the surface before the interaction.

75

)(
)25)..(101(

∑
−−== ttj

x

m

jF

A
Am is the average value of the middle 75 values in the
window that is currently processed. This value is required for
the calculation of Dm.

25

)(
)24)..((

∑
−== ttj

x

e

jF

A
Ae is the average value of the last 25 values in the window
that is currently processed. This is used as an indicator for the
overall load on the surface after the interaction.

25

)(
)100)..(124(

∑
−−=

−
= ttj

sx

s

AjF

D
Ds is an indicator for the change in the signal during the first
25 samples. If no interaction takes place Ds is close to 0.

75

)(
)25)..(101(

∑
−−=

−
= ttj

mx

m

AjF

D
Dm is an indicator for the change in the signal during the
middle 75 samples.

25

)(
)24)..((

∑
−=

−
= ttj

ex

e

AjF

D

De is an indicator for the change in the signal during the last
25 samples.

Table 14: Formulae calculated to detect interaction events.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

269

Appendix B: Load Sensing System

The load cells used in the experiments are based on resistive technology. Put simply,

each cell is a wheat stone bridge providing a maximum output signal of 20mV at a

driving voltage of 5V. The AD-converter included in the microcontroller can measure

voltages between 0 and 5V. To best utilise this range, the output is amplified by a

factor of 220 using an LM324, resulting in an output signal of 0 to 4.4V (the exact

values vary slightly between the load cells). The amplified output voltage of each of

the load cells is converted into a 10 bit sample; the best resolution offered by the

MCU’s internal AD converter. Each of the four input channels can be sampled up to

250Hz. The four input values correspond to the load that is measured on each of the

load cells.

Events from the table and shelf unit are sent wirelessly using an RF transceiver

module (Radiometrix BIM2) that offers data rates of up to 64kbit/s. The

communication is run at 19,200 bits/s. Events, such as putting an object down at a

certain position, removing an object, tracking over the surface or pressing down, are

sent in a single packet. Each packet comprises a preamble, followed by a start-byte, an

object identifier to determine the origin (coffee table, large table, or shelf), the event

type, and the event dependent data. Finally, two bytes of 16-bit CRC are attached to

ensure that the transmitted data will be received correctly. The protocol frame is

depicted in Figure 33. The data acquisition unit only transmits data (there are no

acknowledgements), however, in the experimental setting the protocol was very

Figure 32: First generation data acquisition and communication hardware.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

270

reliable at the low transmission speed.

The hardware module used for data acquisition (as depicted in Figure 32) also acts as

a base station that receives the events and sends them to the host PC via RS-232. The

floor is directly connected to the PC.

Learning from the experience gained by deploying the system a second hardware

iteration that offers some improvements over our first design was designed as Add-On

board to the Smart-Its platform.

Appendix C: Patterns

Appendix C.1: Context Pattern #1,

battery powered hand held electronic appliance

… this pattern looks at contexts that are relevant for battery powered, hand held

electronic appliances. In particular the usage of such devices and the interaction with

them is at the centre of the interest to this pattern.

The entity is a small handheld device that incorporates electronics to provide the

functionality. It is also assumed that the device is built to provide a specific

functionality. Furthermore the energy for the device comes from a battery, which can

also be rechargeable.

Scenario: A user takes out their mobile phone from their jacket and puts it on the

desk. At lunch time they go for a walk and takes the phone in their hand and write an

SMS. After finishing they put the phone in their bag. Back at the office they put the

phone in the phone recharging station.

Typical examples of such devices are mobile phone, pager, PDAs, gaming

appliances, calculators, and pocket translators.

Preamble
Start
Byte

Object
ID

Event
Type

Event Data CRC (16Bit)... ...

Figure 33: RF packet frame.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

271

Contexts of interest include: device in users hand, device in a pocket on the body,

device lying on an open surface, device in a locker, device in a carry bag, device in

operation, device picked up, device put down, device lying on a surface, and device in

recharging station, light conditions, way the device is held.

The contexts mentioned above are of interest to the device and more specific to

applications running on the device. In more general scenarios the contexts can also be

of interest to anyone around.

Major constraints and forces on the implementation include power consumption,

robustness, weight, size, and unobtrusiveness.

The prime sensing technologies that are appropriate include: accelerometers (position

and acceleration), touch and proximity sensors on the device, light sensors at different

positions of the device, temperature sensor.

As the contexts of interest are universal, on-the-fly learning is not required. Therefore

the following perception methods are appropriate: calculation of low level cues

using statistic, off-line trained supervised artificial neural networks, and rules that

operate on the calculated features.

The device architecture for this pattern allows to generally different approaches:

incorporated design and add-on design. The incorporated design is applicable when a

device is newly designed. The sensing and perception technology can be closely tied

in with the design, e.g. using the same processor, controller, or DSP. If context has to

be provided to a device that is already designed the sensing and perception is built as

a separate module that is connected to the device.

Typically communication will be realised in a wired way, because the sensing and

perception part becomes a component of the system. If an incorporated architecture is

followed the communication can happen on various points in the design, for add-on

components a serial protocol, such RS232 or I2C, are useful. If the contexts should

also be available in the environment, wireless communication has to be taken into

account.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

272

Implementation examples are a context-aware mobile phone [Schmidt,99c],

[TEA,98] and a context-aware PDA [Schmidt,98], [Schmidt,99].

This pattern is related N.N.

Appendix C.2: Context Pattern #2,

mains powered stationary appliance

… this pattern looks at contexts that are applicable to stationary appliances that are

connected to a permanent power supply. In particular the interaction with these

devices is at the centre of the interest to this pattern.

The entity is a stationary device that is based in the environment. It is electrically

powered and connected to mains. It incorporates electronics to provide a specific

functionality.

Scenario: A person is in the living room and switches the TV on to watch the news.

The phone rings and they pick up the hand set and mute the TV. After talking on the

phone they increase the volume on the TV again. After the news they switch off the

TV and go to the kitchen, and open the fridge to get a drink. Then they switch on the

stereo to listen to some music. When their partner comes they start to talk and one of

them lowers the volume of the stereo.

Typical examples of such devices are lights, TV sets, radios, stereos, PCs, fixed line

phones, fridges, and washing machines.

Contexts of interest include: someone is approaching the device, interaction with the

device, mode of interaction (device dependent), the noise around the device, the light

conditions around, and whether or not the device is in operation.

The contexts mentioned above are of interest to the device and the services provided

by the device. However the contexts can also be of interest to other devices in the

environment.

Few constraints and forces are seen in this pattern, main concerns are incorporation in

the design, reliability, and introduced cost.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

273

The prime sensing technologies that are appropriate include: audio sensors, touch and

proximity sensors on the device, light sensors, and also logical sensors that allow to

access information about the state of the device (e.g. which channel is selected).

Most of the contexts of interest are universal and can be set up before, so that no on-

the-fly learning is required. Given the fact that there are neither power nor size

restrictions any perception method that appears to be appropriate could be used.

However to keep the introduced cost down, processing should be kept as simple as

possible.

The device architecture applicable for this pattern also allows to different

approaches: incorporated design and add-on design. For new developments building-

in context-perception into the design is the most appropriate solution. For devices that

are programmable and offer a connection add-on devices can be built.

If perception is built into the device communication will be implicit in the hardware

and software. For add-an modules a connection will be most easily realised in a wired

way. To provide the contexts that are acquired in the device to other entities in the

system further communication is required, here power line communication or a

wireless solution should be considered.

Implementation examples are a context-aware stereo and TV.

This pattern is related N.N.

Appendix C.3: Context Pattern #3,

non electronic portable every day objects

… this pattern looks at contexts that are relevant for every day objects that are

portable. In particular the usage and whereabouts of such objects is central to this

pattern.

The entity is an every day object that people can carry around. The object does not

necessarily provide a specific functionality. A main property of such objects is that

they are virtually maintenance free (besides from dusting or cleaning them from time

to time). For its own purpose there are no electronics built into the device.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

274

Scenario: A person walks from the kitchen to living room carrying two mugs of tea.

They put the mugs down on the windowsill. After a while they hand one of the mugs

over to another person and lifts up their own to drink. They keep their mug in their

hands while talking to the other person. From time to time they drink from the mug

again. After a while they put the mug down on the coffee table.

Typical examples of such objects are cups, mugs, wineglasses, books, scissors, pens,

and paper clips.

Contexts of interest include: object in users hand, object in a pocket or carry bag,

object places on an open surface, object in a cupboard, object operated (entity

dependent, e.g. drinking from a cup, reading the book, cutting with the scissors),

object picked up, object put down, way the object is held, other object in the

neighbourhood.

The contexts mentioned above are of interest to the environment and the underlying

system. In particular it is also of interest to electronic artefacts that provide

functionality that is related to object. It is not of interest to the object itself, because it

is passive.

Major constraints and forces on the implementation include power consumption,

unobtrusiveness, robustness, and portability. The constraints are particular crucial,

because the objects are not regarded as ‘electronic gadgets’ and therefore additional

maintenance (e.g. rebooting, recharging) is in most cases not acceptable for the user.

The prime sensing technologies that are appropriate include: zero energy sensors (e.g.

ball switches to find out when an object was picked up), accelerometers (position and

acceleration), touch and proximity sensors on the device, and sensors that are

specifically aimed to get knowledge about properties and the operation of that object

(e.g. temperature sensor in a cup to get the coffee temperature).

The contexts of these everyday objects can mainly be defined in a general way, so that

no learning is required once the device is built. Perception methods such as

calculation of low level cues using statistic, off-line trained supervised artificial neural

networks, and rules that operate on the calculated features are therefore appropriate.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

275

The device architecture for context-aware every day artefacts is in general an

electronic add-on component where the sensors are interwoven into the physical

design of the object. Here the placement of the sensors is a major concern, influencing

the processing that will be needed and hence the power consumption as well as the

robustness of the artefact.

Because the contexts are of interest only to the outside world communication from

the device to its environment is required. To realise this unobtrusively and without

compromising usability a wireless solution should be used.

Implementation examples are a context-aware cup [Gellersen,02] and a context-

aware book. The Smart-Its project [SMART,02] takes this further and looks into how

a general technical solution can be provided for this pattern.

This pattern is related N.N.

Appendix C.4: Context Pattern #4,

non electronic stationary every day objects

… this pattern looks at contexts that are relevant for every day objects that are kept in

the environment. In particular the interaction with such objects is central to this

pattern.

The entity is an every day object that people keep stationery in the environment. The

object does either provide a specific functionality or has a different value to the

owner. These objects are most often maintenance free, besides from cleaning them.

These artefacts do not include electronics to fulfil their purpose.

Scenario: A person has a number of paintings and photos in their apartment, which

are framed and mounted on the walls in the kitchen and the bedroom. In the living

room they have a wooden sculpture of an elephant. On the windows there are curtains

and the rooms are separated by doors.

Typical examples of such objects are paintings, pictures frames, sculptures, art pieces,

doors, and curtains.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

276

Contexts of interest include: someone is approaching the artefact, interacting with

the artefact, mode of interaction (depends on the artefact), and the surrounding

conditions such as temperature, light, and noise.

The contexts are of interest to the environment and the underlying system, only. The

context is not helpful for the artefact because the artefact is passive. The contexts

however can be of particular interest to electronic devices that are related to the

artefact, e.g. a spot light for a certain sculpture.

Major constraints and forces on the implementation include unobtrusiveness,

robustness, and in some cases power consumption. Especially for art pieces and art

related artefacts it is important that the expression of the artefact is not changed by

making it context-aware. These artefacts are not seen as technology and hence

therefore additional maintenance is hardly acceptable for the user.

The prime sensing technologies include touch and proximity sensors, preferably

implemented by extrinsic sensing. Furthermore audio sensors and light sensors can be

deployed to get access information about the environment. For objects that are fixed

in the environment and that can be moved (e.g. doors, curtains) also accelerometers

can give valuable information.

To some extent these contexts of these everyday artefacts are general and therefore

can be built independently of the environment. Perception methods depend very

much on the decision of type of sensors and the selected contexts that are of interest in

this pattern.

For the device architecture two approached can be pursued. When realising sensing,

extrinsically a context-component that is only logically attached to the artefact, which

is designed so that it can be physically placed somewhere else. This sensing device is

then designed as a standalone component. If sensing is built into the artefact sensors

become physically integrated, however because there are no electronics in the device

the sensing component is also stand-alone.

The context should be made available to other devices in the neighbourhood therefore

external communication from the device to its environment is required. To realise

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

277

this in an unobtrusive way a wireless or wired solution may be used, depending on the

artefact and the sensing approach taken.

Implementation examples are a picture frame that is aware of its observer, door that

knows its state [Buxton,97], and a curtain that also knows it state.

This pattern is related N.N.

Appendix C.5: Context Pattern #5,

non portable furniture with horizontal surfaces

… this pattern looks at contexts that are relevant for furniture. It is concerned with

furniture that is fixed in the environment.

The entity in this pattern is a piece of furniture that is stationary in a place after it has

been set up. A discriminating property is that these artefacts incorporate surfaces

where other thinks can be put on. In this pattern the term furniture is extended to also

cover fixed installations and decorations.

Scenario: A person opens the door, put their coat on the coat hanger and walks into

the kitchen. They open a cupboard, get out a bowl, put it on the kitchen table, then

open another cupboard, get out some crisps and put them into the bowl. Then they sit

down on the sofa putting the bowl down next to themselves on the windowsill.

Typical examples of such artefacts are tables, lockers, cupboards, sofas, windowsills,

and raised floors.

Contexts of interest include: someone is interacting with the artefact, something is

put down on the surface at a certain position (or lifted), and the object is approached.

The contexts mentioned above are of interest to the system where the furniture is a

part of. The contexts of which the artefact is aware off can be of interest to any object

around.

Major constraints and forces on the implementation are unobtrusiveness and social

acceptance of the technology. Further concerns are the design and also the robustness

of the artefact.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

278

The prime sensing technologies that are appropriate include: distributed weigh

sensing using load cells (position of objects on the surface), touch and proximity

sensors.

The basic contexts – such as where was an object put down on the surface, are general

and require not learning capabilities. More complex scenarios, e.g. recognising a

specific object on the surface does however require learning while in operation. For

more complex contexts a whole variety of perception methods is appropriate because

there a few constraints on computing power. Typically artificial neural networks, self

learning systems, and systems based on rules can be deployed.

The device architecture for context-aware furniture includes the incorporation of

sensors into the artefacts. Because the furniture is fixed in the environment and in

general little space restrictions apply processing can be done somewhere in the

artefact or even in the background.

The contexts should be communicated to other artefacts in the environment, therefore

a form of communication is necessary. Depending on the type of furniture and how it

is fixed in the environment wireless or wired communication may be appropriate.

Because entities can be fairly large, e.g. a raised floor, communication between

individual sensors and the processing unit may be required.

Implementation examples are a context-aware tracking table [Schmidt,02a], a

weight-aware shelf, and a weight tracking floor [Addlesee,97], [Schmidt,02].

This pattern is related N.N.

Appendix C.6: Context Pattern #6,

furniture on that people sit

… this pattern looks at contexts that are relevant for furniture that people primarily

use to sit on.

The entity in this pattern is a piece of furniture that is used as seat. It can be either

fixed in a certain location or portable. Furniture to sit on incorporates artefacts that are

built to sit individual people or groups of people.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

279

Scenario: A person sits down on a chair next to the kitchen table having both feet put

to the floor. After a while they pick up a newspaper and lean back putting one leg

over the other. When finished with reading they put the paper to the table, put both

feet to the floor and get up. For watching TV they join their friend on the sofa, sitting

down next to them.

Typical examples of such artefacts are chairs, benches, seats, sofas, and armchairs.

Contexts of interest include: someone is approaching the artefact, someone is sitting

down on it, someone is getting up, number of people sitting on it, type or identity of

person sitting on an entity, the way people sit on it (e.g. leaning back, dependent on

the artefact), and if the artefact is moved.

The contexts mentioned above are of interest to the system or the environment where

the furniture is a part of. The contexts of which the artefact is aware off can be of

interest to any object around.

Similar to other furniture major constraints and forces on the implementation are

unobtrusiveness and social acceptance of the technology. Further concerns are the

design and also the robustness of the artefact. In case of portable furniture energy

becomes an issue, too.

The prime sensing technologies that are appropriate include: surface weight sensing

based on force sensitive resistors, distributed weight sensing in frame using load cells,

acceleration sensors for portable artefacts, touch and proximity sensors.

In the single artefacts the basic contexts, such as someone is sitting on it, are general

and can be implemented without online learning capabilities. Personalised contexts,

e.g. the identity of the person sitting on a chair, require learning or at least calibration

capabilities. The basic perception can be realised by calculating the weight, and the

distribution of weight for the load sensing sensors. Statistics are suitable to calculate

general features from the other sensors. For higher level complex contexts a variety of

perception methods can be used.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

280

The device architecture for context-aware seats includes the incorporation of sensors

into the artefacts and into the seat surface. Processing can also be incorporated in the

entity, because usually space is available.

As contexts need to be communicated to other artefacts in the environment a form of

inter-device communication is necessary. Depending on the type of furniture and

how it is fixed in the environment wireless or wired communication may be

appropriate.

Implementation examples are a context-aware swivel chair, context aware sofa

[Microsoft,00], and an aware bench.

This pattern is related N.N.

Appendix C.7: Context Pattern #7,

garment

… this pattern looks at contexts that are relevant for garment worn by the user. In

particular the activities of the user are at the centre of the interest to this pattern.

The entity is a garment that can be worn be the user. Typically the artefacts do not

incorporate any electronics to provide their functionality. Beyond the basic functions

provided by garment they are also considered as a fashion statement.

Scenario: A user wears shoes, socks, underwear, trousers, a t-shirt, and a jacket. They

are walking in the street. They walk through a door into a house. There they welcome

a friend by giving them a hug. They put their jacket on the coat hanger and sit down.

Typical examples of such devices are shoes, socks, dresses, trousers, and shirts.

Contexts of interest include: garment is worn, garment is in the locker, garment is on

the coat hanger, action of the person wearing then garment (dependent on the

garment), arrangement of garments on the body, interaction with garments, and

environmental conditions around.

The contexts mentioned above are of interest to devices in the body network of the

user an also to some extent to the environment.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

281

Major constraints and forces on the implementation include design, power

consumption, robustness (e.g. sustain washing in a machine), weight, size, and

unobtrusiveness.

The prime sensing technologies that are appropriate include: accelerometers (position

and acceleration), bio-sensing, touch on the garment, temperature at different

positions and light sensors.

The basic context, such as worn or in the locker, can be easily discriminated without

learning. However complex contexts concerning the actions of the wearer are much

more individual and therefore are difficult to be hard wired into the device. Here

perception methods that offer flexible learning, such as self-organising maps, are a

useful option.

The device architecture is highly depended on the design of the garment, which is

one of the most important requirements for this pattern. For many sensing tasks it is

inevitable to integrate the sensors with the fabrics of the garment, or at least distribute

them over the garment. As power is a further concern processing power should be

kept minimal and therefore low power MCU are appropriate. If possible within the

anticipated design power harvesting can provide energy, [Starner,96], [Kymissis,98].

When the contexts are provided for other components in the body network a number

of options for communication are available, such as wired bus, short range wireless,

wired with self-arranging connectors, and using the skin as communication media. For

communication to the environment a wireless connection is required; a central

component- e.g. a wearable computer can act as communication hub also providing

access control. Off-line communication is a further option for garments. If only a log

of the activity is required the garment can store this and only in a deliberate act, e.g.

by connecting it to a docking station the data is communicated.

Implementation examples are a context-aware shoe [Paradiso,00], context tie

[Schmidt,99b], and a context-aware wearable computer using the distributed TEA

approach [Laerhoven,00], [Laerhoven,02].

This pattern is related N.N.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

282

Appendix C.8: Context Pattern #8,

location awareness for mobile computing devices

… this pattern looks at location as a special case of context that is relevant for mobile

computing devices. This pattern concentrates on where a device is used.

The entity is a mobile computing system that incorporates a computer and also a

graphical or text-based user interface. The prime functionality is to ease and filter

access to information and commands based on the whereabouts of the device and

respectively of the user.

Scenario: A user carrying a PDA walks as tourist in a city that has certain spots

which are particular interesting. When approaching the castle they get information

displayed that is related to the place. Walking further outside a cinema they get

information about the films that are on tonight and also an interface to order tickets.

Typical examples of such devices are tablet pc, mobile phone, PDAs, wearable

computers, and augmented reality systems.

Contexts of interest include: the position of the device and the direction the device is

facing.

The contexts mentioned above are primarily of interest to the device itself and more

to the applications running on the device. The applications may communicate the

contexts further.

Major constraints and forces on the implementation include precision and reliability,

power consumption, robustness, weight, and size.

The prime sensing technologies are sensors that provide location (e.g. outdoors GPS,

dGPS, and GSM/MPS; indoors RF and IR beacon systems). Furthermore a compass

can provide orientation. Also accelerometers or gyroscopes may be appropriate to

compensate for the movement of the device.

As the sensors above already provide position (e.g. in NMEA183-format) and

orientation (e.g. the angle in º) in a symbolic representation, no low level perception is

required. Perception methods on a higher level include usually rules that map

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

283

symbolic position and orientation information onto concepts that are used in the

information domain, such as places.

The device architecture for this pattern is most often a computing device that is

equipped with a component that provides the sensor information. This functionality

can be realised in an add-on component or when communication infrastructure is used

(e.g. GSM) this is already built in. In the case of a RF-beacon or IR-beacon based

systems also built-in sensors (e.g. IrDA-port, Bluetooth transceiver) can be used.

When external modules are plugged into the device communication will be realised

by wire, e.g. a PC-card with GPS and a GPS/compass modules attached via serial line.

When internal sensors are used communication is realised with software.

Implementation examples are a context-aware tour guides and augmented reality

experiences [Höllerer,99].

This pattern is related N.N.

Appendix C.9: Context Pattern #9,

context aware recoding devices with communication

… this pattern looks at artefacts that record contexts over time as a specific type of

context aware devices. This pattern concentrates on the recoding and tracking of

contexts.

The entity is a mobile context recoding system that incorporates a sensing

infrastructure, processing, storage, and communication. The prime functionality is to

record contexts that appear over time and make them available at synchronisation

points for further processing.

Scenario: A box of hard drives is prepared for shipping from Taiwan to the UK. The

manufacturer puts a context recording device into the box that measures the

temperature, humidity, magnetic field, and acceleration of the box constantly. When

pre-specified thresholds are violated the sensor readings are saved together with a

timestamp. The receiver of the goods reads out the contexts.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

284

Typical examples of such devices are temperature, humidity, location, acceleration,

and shock logging devices used in logistics.

Contexts of interest include: the violation of thresholds to the specific sensors related

to the time.

The contexts mentioned above are primarily of interest to backend systems

processing the transfer of goods. Logically the recorder is attached to the objects

nearby performing extrinsic sensing.

Major constraints and forces on the implementation are price, robustness, reliability,

power consumption, weight, and size.

The prime sensing technologies are sensors that provide temperature, humidity,

location, acceleration, and magnetic field information.

Perception methods are in these cases simple and usually based on rules that observe

whether or not specified conditions have been violated.

The device architecture for this pattern is a sensing module, a processing component,

storage, and a communication module tied together in one device.

The communication is carried out at designated points and when defined events

occur. When the device is designed to be synchronised at specific points only the

communication can be based on wired connections, IR or short-range RF. When

devices should have the ability to communicate a critical context without any delay a

long-range communication technology, such as GSM, has to be included.

Implementation examples are intelligent tracking systems, as we explored in the

project aware goods [Thede,01], [Patent,02].

This pattern is related N.N.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

285

Appendix D: Building Blocks and Libraries

The following sections show selectively building blocks and libraries that are essential

for the rapid prototyping platform introduced in chapter 5.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

286

Appendix D.1: Hardware Building Blocks HWcore

Three different core modules for PIC microcontrollers [Microchip,02] are depicted in

Figure 34.

Figure 34: Selection of core hardware building blocks.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

287

Appendix D.2: Sensor Building Blocks HWsensor

In this section the hardware building blocks of some of the most commonly used

sensors are presented, see Figure 35.

Figure 35: Sensor Building Blocks.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

288

Appendix D.3: Communication Building Blocks HWcomm

The following building blocks show a wireless communication module and two

options for connecting the MCU to a serial line, see Figure 36.

Appendix D.4: Core Libraries SWcore

The following functions are provided in the core library:

// switch the LED on and off
void led_on()
void led_off()

// print out a boot message and toggle LED
void boot_sign()

// initialize core functionality, e.g. watch dog timer
int init_core()

// access function, external ram
void write_ext_fram(long int address, byte data);
byte read_ext_fram(long int address);

Appendix D.5: Sensor Drivers SWsensor

To use the sensor drivers in the beginning of the program the connections pins must

be defined:

// accelerometer output is connected to PIN_B5 and PIN_B6
#define PIN_ADXL_XOUT PIN_B6
#define PIN_ADXL_YOUT PIN_B5

// light output is connected to analog input 0

Figure 36: Communication Building blocks.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

289

#define LIGHT_ANALOG 0

// PIR sensor is connected to PIN_B1
#define PIN_TOUCH PIN_B1

// Touch sensor is connected to PIN_B2
#define PIN_TOUCH PIN_B2

The following functions are a selection of primitives to access sensors.

// access full scale acceleration values
// PIN_ADXL_XOUT, PIN_ADXL_YOUT must be defined
unsigned long get_accelerationX();
unsigned long get_accelerationY();

// byte size acceleration
unsigned int get_accX();
unsigned int get_accY();

// read the analog light value, LIGHT_ANALOG must be defined
long light();

// read the passive infrared sensor, PIN_PIR must be defined
short int PIR1();

// read the touch sensor, PIN_TOUCH must be defined
short int touch();

// reads the current temperature, takes about 1 second
byte temp();

Appendix D.6: Communication Drivers SWcomm

To use the communication functions the pins to which the communication module is

connected must be defined at the beginning of the program. The a set of high level

functions for printing and receiving over RF is provided for the application

programmer. These functions are based on a set of low level functions. The following

examples shows this exemplarily for the Radiometrix BIM2 transceiver.

// connection pins
#define RF_TX_PIN PIN_C3
#define RF_RX_PIN PIN_C0
#define RF_CD_PIN PIN_B0
#define RF_TX_ENABLE_PIN PIN_C2
#define RF_RX_ENABLE_PIN PIN_C1
#define RF_SPEED 19200

// high level functions

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

290

// to be used by the application programmer
// clear buffer, use before printf
void reset_rf_buffer();
// the following function is used as first argument in printf
void to_rf_buffer(char c);
// send the buffered output in an RF package
void RF_printf();
// switch BIM2-module in power down mode
void rfPowerDown();
// switch BIM2-module in transmission mode
void rfTxOn();
// switch BIM2-module in receive mode
void rfRxOn();
//print the version over RF
void RF_version();

// support functions
// write a long to RF
void RF_put_long(unsigned long ldata);
//write/get a char to RF
void RF_putc(char data);
char RF_getc();
// check for a char on RF
int RF_kbhit();
// calculate a crc16 offline
unsigned long crc16(char * msg, int len)
// switch BIM2-module in self test mode
void rfSelfTest();
// transmit a number of characters via RF
int rfTransmit(char * msg, int len);
// receive a packet via RF
int rfReceive(char *buf, int maxLen);
// receive a packet via RF
int rfReceiveOnCD(char *buf, int maxLen, long timeOut)

// important global variable:
// rf_buffer

Appendix E: Schematics

In this section the full schematics off the main parts of the rapid prototyping platform

are presented. These schematics are electronically available at

http://www.comp.lancs.ac.uk/~albrecht/smart-its/platform.

http://www.comp.lancs.ac.uk/~albrecht/smart-its/platform

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

291

Appendix E.1: Core Board Schematic.

Figure 37: Schematic of the Smart-Its core board.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

292

Appendix E.2: Mini Core Board Schematic.

Figure 38: Schematic of the Mini-Smart-It core board.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

293

Appendix E.3: General Sensor Board Schematic.

Figure 39: Schematic of the Sensor Add-On-Board.

Appendix

Ubiquitous Computing – Computing in Context, PhD Thesis. Copyright Albrecht Schmidt, Lancaster University, 11/2002.

294

Appendix E.4: Load Sensing Add-On Schematic.

Figure 40: Schematic of the load sensing Add-On board.

