
A Platform Supporting Coordinated Adaptation in Mobile Systems

Christos Efstratiou1, Adrian Friday1, Nigel Davies1,2 and Keith Cheverst1

1Computing Department
Lancaster University
Lancaster, LA1 4YR

United Kingdom
{efstrati,adrian,nigel,kc}@comp.lancs.ac.uk

2Department of Computer Science
University of Arizona

Tucson, Arizona 85721
USA

nigel@cs.arizona.edu

Abstract

Mobile environments are highly dynamic, characterised
by frequent and sudden changes in resource availability. As
a consequence, adaptive mobile applications need to be ca-
pable of adapting their behaviour to ensure they continue
to offer the best possible level of service to the user. Our
experience of developing such applications has led us to
believe that existing mobile middleware platforms fail to
consider adaptive applications on a host as an ensemble
of entities competing for the same resources; instead, fo-
cusing on the requirements of each application in isolation.
A new approach is required which offers the mechanisms
to support coordination of the adaptive behaviour of multi-
ple applications in order to achieve a common goal. In this
paper, we present a platform designed to meet this objec-
tive. Our platform is based on the notion of the definition
of system-wide flexible adaptation policies written using a
form of Kowalsky’s event calculus, that may be adapted ac-
cording to user needs. Moreover, we also believe that by
using our approach it will soon be possible to identify and
resolve conflicts caused by the need to adapt to multiple
contextual triggers.

1. Introduction

Mobile environments are characterised by frequent and
sudden change in both context and resource availability. As
a consequence, mobile applications need to be capable of
adapting to these changes to ensure they offer the best pos-
sible level of service to the user [10, 14].

Early adaptive systems have tended to focus on the spe-
cific limitations introduced by wireless connectivity [13, 21,
10]. However, more recently there has been an increasing
interest in applications that adapt to a wider range of gen-
eral environmental and contextual triggers, e.g. changes in
a system’s physical location or based on a set of personal

preferences. The GUIDE system [1, 2] for example, sup-
plies users with information tailored to their current location
and individual profile. The combination of resource driven
adaptation, together with context-aware adaptation presents
us with a new set of requirements for mobile applications;
such applications must be capable of adapting to multiple
adaptive stimuli.

The majority of current middleware platforms aiming to
support adaptation tend to focus on limited sets of triggers,
e.g. based on network Quality-of-Service. Such platforms
would require the integration of separate adaptation mech-
anisms in order to achieve the necessary multi-triggered
adaptation. In this paper we argue that this approach can
cause conflicting adaptation or suboptimal operation of the
system as a whole. We believe there is thus a require-
ment for a platform that supports multiple adaptation trig-
gers, allowing for resolution of conflicts and system-wide
behavioural optimisation.

In this paper we present a new middleware platform that
provides such support for coordinated adaptation triggered
by multiple adaptive and contextual attributes. Our platform
is based on an event calculus based policy specification lan-
guage [8], which allows the coordination and arbitration of
adaptive actions on a system-wide level. More specifically,
section 2 illustrates the shortcomings of existing adaptive
approaches using a number of example scenarios. An anal-
ysis of existing adaptive systems is provided in section 3
which feed into a set of general architectural requirements
for future mobile support platforms. The design of our plat-
form is detailed in section 4 and section 5 gives a descrip-
tion of our current implementation status. Finally, section 7
contains our concluding remarks.

2. Identifying the Problem Domain

Mobile systems need to be capable of adapting to a wide
range of system and environmental attributes, such as net-
work bandwidth, location, power and so on. In general, cur-

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

rent adaptive systems provide limited support for adaptive
applications by notifying them when certain “interesting”
changes in these attributes occur. For example, if the band-
width falls below some specified minimum threshold, it is
then the responsibility of the application to adapt in an ap-
propriate way. As we highlight in the following sections,
such approaches can be shown to lead to inefficient overall
behaviour due to the lack of coordination between the adap-
tation policies of multiple simultaneously executing appli-
cations. Furthermore, these approaches do not allow suffi-
cient control over the implications of having multiple, and
possibly conflicting, attributes triggering adaptation. In the
following sections we presenting a set of scenarios illustrat-
ing these problems.

2.1. Scenarios

Coordinated application adaptation for power manage-
ment. In this scenario we consider the case where a user is
running several applications, each incorporating a periodic
‘auto-save’ feature (which, as we shall see, has an associ-
ated effect on the power consumption of the system).

Existing power managements systems e.g. the ACPI [12]
model, enable the switching of hardware into a low power
mode when not in use. For savings in power consumption to
be made, applications should attempt to keep the hardware
resources in an idle state for as long as possible so that the
time spent in low power mode is maximised. In the case
of the ‘auto-save’ facility, the level of power optimisation
is proportional to the time intervals of consequent hard-disk
accesses. If each application periodically checkpoints it’s
state in isolation, then the disk will be accessed arbitrarily.
In contrast, if applications are able to coordinate their auto-
save processes such that the disk writes are clustered, longer
periods of inactivity will result, allowing the disk to remain
spun down for longer. Such an approach would clearly be
more power efficient.

Conflicting adaptation. In this scenario we illustrate an
example of potentially conflicting adaptation to network re-
sources. Consider a mobile system with limited available
power resources running several adaptive network-based
applications. When the battery level falls below some speci-
fied threshold, one of the applications is triggered to reduce
its power consumption by reducing utilisation of the net-
work interface. However, as the first application adapts and
relinquishes some of its share of the overall bandwidth, this
action may be interpreted independently by the other appli-
cations as an increase in available network bandwidth and
may consequently increase their use of the network. In this
case the request to utilise available bandwidth is in direct
conflict with the initial goal of reducing power consump-
tion.

Sharing demand for network bandwidth. In this sce-
nario, we consider the case of two applications; an adaptive
web browser and an adaptive video stream player, compet-
ing for the same network resources. Following a drop in
available bandwidth the two applications could react in a
number of possible ways:

1. The web browser could stop downloading in order to
dedicate its portion of bandwidth to the other applica-
tion.

2. Both applications could adapt and share the available
bandwidth equally.

3. The video stream viewer could adapt by reducing its
bandwidth requirements, e.g. by reducing its frame
rate, in order to allow the web browser to increase its
share of the available bandwidth (an important down-
load might be taking place.)

The reaction that would be most appropriate clearly de-
pends on attributes such as the total network bandwidth,
but also crucially, the user’s requirements. In order for
the two applications to adapt in a coordinated manner there
is a basic requirement for system-wide adaptation policies.
Such policies would be responsible for coordinating the be-
haviour of adaptive applications considering both the appli-
cations’ interdependencies and user specified requirements,
such as the priority to be given to individual applications.
Without such policies, coordinated adaptation between ap-
plications is difficult as each application is only capable of
independent action.

A more detailed discussion of adaptation scenarios and
the associated potential pitfalls and resulting outcomes can
be found in [6, 7].

2.2. Analysis

The scenarios we have identified above illustrate a range
of potential issues that are not addressed in current adaptive
systems and middleware platforms. Moreover, based on our
experience in this area we believe that these are not excep-
tional cases, but general problems inherent in considering
adaptation on a per application basis.

Examining current adaptive architectures has allowed us
to a develop a framework for analysing the architectural
model of such systems. The framework comprises two lay-
ers; the upper represents the application, the lower the adap-
tation support platform. Between these two layers we can
identify four distinct flows of control and information (Fig.
1).

Flow A: Represents the requirements set by the appli-
cation for resources or attributes supported by the un-
derlying infrastructure. In the case of network adap-

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

Application

Platform

A B C D

Figure 1. Directed flows between applications
and platform.

tation this flow would represent the application’s net-
work QoS requirements.

Flow B: Represents the ability of the application to
control the functionality of the underlying infrastruc-
ture. For example, in the case of accessing a GPS de-
vice this flow could represent the frequency the device
is polled for new position readings.

Flow C: Represents an information flow from the plat-
form to the application. This is provides the notifi-
cation mechanism informing the application when its
requirements cannot be met. Such notifications are in-
tended to trigger the application to adapt.

Flow D: Represents the ability of the underlying plat-
form to control the operation of the application. For
instance, this flow could be an pro-active request from
the system for the application to perform a specific
adaptive behaviour, e.g. the application might be re-
quested to reduce its demand for network bandwidth
or disk usage.

Consideration of this framework enables a classification
of current systems according to the types of flows sup-
ported. For example, network based adaptive systems such
as BAYOU[25], Odyssey [21], MOST [10] and Rover [13]
support flows A and C.

Context aware applications like GUIDE [1, 2], Stick-e
Notes [22] and Cyberguide [18] are based on flow B, repre-
senting the access to the ‘context-sensors’, and flow C rep-
resenting the information flowing from the sensors to the
application.

Provision of a flow of control has not been widely ex-
ploited by mobile adaptive systems. Some distributed sys-
tems platforms, such as ISIS-META [19], do provide such a
flow, but have not been adapted for mobile environments or
context-aware application development. One more recent
and notable exception is the Puppeteer system [5]; which
provides support for mobile environments through control
of non-adaptive applications by the platform. However,
Puppeteer does not currently support application aware
adaptation or system-wide coordinated action.

3. Architectural Requirements

The previous sections have identified the limitations of
current approaches in supporting adaptive mobile applica-
tions. These approaches lack the appropriate support for
enabling applications to adapt to multiple adaptive stim-
uli in an efficient and coordinated way. A new approach
is therefore required which provides a common space for
the coordinated, systemwide interaction between adaptive
applications and the complete set of attributes that could be
used to trigger adaptation.

In this section we provide a set of requirements that are
used to develop an appropriate architecture for supporting
adaptive mobile applications.

3.1. Sharing of adaptation attributes

The first key requirement of the architecture is to provide
mechanism for sharing the adaptation attributes used by the
system between applications. By sharing information about
adaptive stimuli and application state we are able to con-
struct applications that coordinate their adaptive strategies.
Such support would also provide a platform for constructing
applications that adapt to multiple adaptive stimuli.

3.2. Multiple adaptation attributes

Current research has already clearly identified the need
to provide adaptive solutions based on the combination of
different attributes [4, 9, 16]. It is important, however, that
new attributes can be introduced dynamically into the sys-
tem when they become significant, e.g. the cost of specific
services to mobile users or information about human physi-
ology for wearable computers. The fact that new contextual
attributes for triggering adaptation can arise implies that:

1. The set of attributes that can trigger adaptation needs
to be extensible.

2. The characteristics of all these attributes vary.

The first of these implications places a specific require-
ment on the extensibility of the architecture in order to al-
low for the incorporation of future, unpredictable attributes
that will become important as new applications and systems
are developed for mobile systems. The second implication
limits the extent to which a single unified interface appro-
priate to all devices can be provided. One possible way in
which we might mitigate this issue, is to provide a ‘meta-
layer’ that will allow each device or application to specify
the functionality of its interface itself, e.g. using XML.

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

3.3. Application Control and Coordination

A second requirement is the need to be able to control
adaptation behaviour across all components in the system.
As described earlier, one of the main limitations of current
approaches is the fact that the applications themselves are
responsible for triggering an adaptive mechanism when the
underling infrastructure notifies them about any changes. In
order to support flexible and coordinated adaptation there is
a requirement for triggering adaptation on a system-wide
level. Given this approach, the decision about when and
how an application should adapt is pushed into an external
entity, with cross-application knowledge, while the adaptive
behaviour is still a part of the application’s characteristics.

3.4. Support for System-Wide Adaptation Policies

A further requirement for our system is to support the no-
tion of system-wide adaptation policies. Such coordination
would require the externalisation of policies to some coordi-
nating entity or set of entities. We believe this requirement
to be best supported through a dedicated human-readable
policy language which should also satisfy the following re-
quirements:

1. Provide a flexible syntax for defining rules that can
take into account an arbitrary number of factors af-
fecting each adaptation decision. The policy language
should not be bound to a specific adaptation domain
(e.g. network-based adaptation).

2. The policy specification and evaluation should incor-
porate as a central tenet the fact that the triggering of
adaptation is inherently event based.

3. The specification of policy rules should allow the spec-
ification of fine grained temporal relationships be-
tween events. In most cases conflicts or instabilities
in adaptive systems occur due to a lack of considera-
tion of time or temporal dependencies between invok-
ing adaptive mechanisms, e.g. waiting for the system
to stabilise after changes are made or detected. The
policy language should allow the fine tuning of adap-
tation mechanism to allow the resolution of such types
of conflict.

3.5. User Awareness and Interaction

A final requirement that is often neglected in current
adaptation platforms is the involvement of the user in the
whole process of adaptation. Adaptation is usually an ac-
tion that affects the Quality of Service that the user experi-
ences. Moreover, it is often only the user that can determine
the relative merits of a given tradeoff – for example, the sys-
tem might attempt to optimise the running configuration of

applications to make best use of the available resources, yet
in the same situation a user might choose to pause or stop an
application that they deem insignificant to their current ob-
jectives. It is through promotion of awareness of the conse-
quences of resource limitations and the actions of adaptive
strategies, that the most profound adaptive effects can be
achieved. Thus, there is a requirement that the user can in-
trospect the adaptive behaviour of their system to determine
and affect their desired outcomes. Furthermore, it should be
possible to explicitly involve the user (as appropriate) when
a pivotal adaptation decision has to be made.

The requirement to provide user awareness in adaptive
systems can be further divided in to the following set of
goals:

1. Explicit notification of the user when adaptation takes
place. This notification should also provide informa-
tion about the reasons why this adaptation took place.
As we have stated, the provision of detailed explana-
tion to the user could allow them to alter his/her be-
haviour in order to avoid results that can cause adapta-
tion that degrades the quality of an important applica-
tion. This characteristic of the user’s behaviour could
allow us to consider the user as part of the whole adap-
tation cycle. While there is research suggesting that it
is possible to model the behaviour of the user with suf-
ficient accuracy to modify the system’s operation en-
tirely automatically [11], we do not plan to support this
in our platform, since we believe that it is non-trivial
to correctly predict how users behave in all situations.
Nevertheless, we acknowledge that user awareness can
be of great benefit to the operation of the whole system.

2. Involvement of the user in the adaptation decisions.
The definition of system wide adaptation policies is
one aspect of user involvement. Though this mecha-
nism is the most important tool for controlling the op-
eration of all parts of an adaptive system, dynamic in-
volvement of the user is necessary in order to fine-tune
the behaviour of the system according to their specific
needs at a given time. Dynamic interaction of the user
could allow the injection of policies into the platform
and/or alteration of existing ones. Such functionality
becomes highly desirable when the platform faces a
conflicting situation. There may for instance, be cases
that the currently defined policies cannot resolve. In
such a case user interaction might be the best strategy
in order to achieve the appropriate adaptive behaviour.

In the following section we present our own architecture,
designed in address the aforementioned requirements.

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

ApplicationMonitoring
Tools

Registry Adaptation
Control

User
Awareness

Triggering

Registration

Figure 2. The overall architecture

4. Architecture

4.1. Structure of the Platform

In order to realise the requirements described in the pre-
vious section, we believe a platform should be developed in
which adaptive mechanisms and policies are decoupled. In
such a platform adaptive mechanisms can be exposed and
externalised in order to enable control by independent enti-
ties.

Figure 2 illustrates the design of our platform. The ar-
chitecture is dependent on two key attributes, namely:

1. the provision of a meta-layer holding the representa-
tion of the functionality offered by the applications.

2. the coordination of the behaviour of the applications
according to the user defined policies.

More specifically, the operation of the platform is as fol-
lows. The platform allows applications and tools that mon-
itor changes in the systems’ environment to provide a de-
scription of their functionality, including the kinds of infor-
mation that they can offer and actions that they can perform.
These descriptions are collated by the platform’s ‘registry’.
The ‘adaptation control’ is responsible for making decisions
about the appropriate adaptive actions that each application
should take. This component is driven by the policies ex-
ported by each application (defined by the application au-
thor) and augmented or redefined by the systems’ user. The
active participation of the user in the adaptation process
is achieved by the ‘user awareness module’. This module
notifies the user of the adaptive decisions being made by
the platform, and allows the dynamic resolution of potential
conflicts.

4.2. Application Registration

Adaptive applications must register with the platform
when they start up. The registration includes an XML de-
scription of the different adaptation modes implemented by

the application and the set of ‘state variables’ that can be ac-
cessed by the platform in order to identify the internal state
or attributes of the application.

The application developer must implement a set of adap-
tation modes appropriate to the type of service that the ap-
plication offers. This process is intrinsic to the implementa-
tion of any adaptive application, and must occur irrespective
of the chosen support platform.

The first part of the application’s registration notifica-
tion presents the platform with XML describing the name
of each adaptation mode and the set of parameters that can
be passed into and out of each method by the platform.

The second part of the registration identifies the state
variables that affect the current state of the application.
Each state variable has a name and a ‘basic type’ (e.g. in-
teger, string, etc.) The application is required to generate
events informing the platform when one or more of its state
variables have changed. For variables that generate contin-
uous values, the platform can specify activation thresholds
on each event (based on the policy specification).

The last part of the application’s registration includes
a set of default policy specifications. These policies are
specified in accordance to the policy language described
in section 4.4 and describe the default adaptive behaviour
of the application as intended by the application developer.
This behaviour however could be altered either by the ac-
tive modification of the default policies or the introduction
of new policies by the user.

An example of a typical application registration can be
seen in figure 3. The design of the registration information
has been highly influenced by the UPnP protocol [3].

4.3. Registry

The registry component operates as the repository of all
of the adaptive applications operating within the system, ag-
gregating details of their adaptive mechanisms and current
execution status.

As described in the previous section, during start-up each
application establishes a communication channel with the
platform registry and issues its XML description (a library
for communicating with the platform is used to reduced the
burden on the application developer). Using this informa-
tion, the registry constructs a stub object to manage interac-
tions with the associated adaptive application, tracking the
state of the adaptation modes and state variables. When a
change occurs, the stub can forward events to the adaptation
controller in order to decide whether a specific adaptive re-
action is required.

An interesting aspect of the registry’s design is the fact
that applications and monitoring tools are handled in a sim-
ilar manner. Although both are conceptually different enti-
ties, considering applications and tools as generalised enti-

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

<application>
<name>WebBrowser</name>
<uniqueId>1234</uniqueId>
<methodList>

<method>
<name>SetBand</name>
<attributeList>

<attribute>
<name>bandLimit</name>
<relatedVariable>netBandwidth

</relatedVariable>
</attribute>

</attributeList>
</method>

</methodList>
<stateVariableList>

<stateVariable>
<name>netBandwidth</name>

</stateVariable>
</stateVariableList>

</application>

Figure 3. Sample XML description of an adap-
tive web browser.

ties that behave as both adaptive modules and information
providers allows more flexibility for the implementation of
coordinated adaptations. The reason for this is two-fold:

1. In most cases a monitoring tool represents a specific
hardware device within the system, such as a wireless
network interface. This means that a monitoring tool
could also provide adaptation mechanisms relating to
the specific device, e.g. a tool that monitors the activity
of the wireless network interface could also provide a
mechanism for putting that device into a low power
consumption mode.

2. Applications can be the source of information that can
trigger adaptation. The fact that one application enters
a specific state can be used as the trigger for the adap-
tation of another application. A simple example might
be when one application receives the user focus, this
information can trigger other applications to reduce the
use of resources because they are not as important for
the user.

The second point also implies that the platform provides
a mechanism for sharing of application context and state
between applications on the system. This is clearly an im-
portant mechanism for addressing the shortfall in system-
wide knowledge identified in section 2 (and could be used
to solve the auto-save scenario in particular).

event lowBand :- NetworkInterface.availableBandwidth > 19200
event highBand :- NetworkInterface.avilableBandwidth <= 19200
fluent inLowBand {

initiates(lowBand)
terminates(highBand)

}
condition {

initiates(lowBand, inLowBand, t1) and
not clipped(t1, inLowBand, t2) and
t2 = t1 + 30

}
action {

WebBrowser.LowBand()
}

Figure 4. A sample policy rule.

4.4. Policies

A central concept within our architecture is the ability
to specify policies using a policy description language. In
order to satisfy the requirements specified in section 4.4 we
have chosen to use an event-driven policy language derived
from the event calculus logic programming formalism [15,
24].

The event calculus provides a framework in which it is
possible to reason about the effects of events in an event-
based system. More specifically, event calculus defines two
distinct entities: events and fluents. An event is something
that takes place at a specific point in time. A fluent can
describe anything that has a time duration and can be de-
scribed as a situation within the system that is initiated and
terminated by an event. For example, a fluent could repre-
sent the condition “Battery is low”, initiated by the event re-
porting that the battery has dropped below a specific thresh-
old and terminated by an event reporting that the battery
level is above that threshold (e.g. during charging). The
event calculus allows the specification of propositions us-
ing a set of predicates defined as follows:

• Initiates(e, f, t) : event e initiates fluent f at time t.

• Terminates(e, f, t) : event e terminates f at time t.

• Happens(e, t) : event e takes place at time t.

• Holdsat(f, t) : fluent f holds at time t.

• Clipped(t1, f, t2) : fluent f is terminated some time
between t1 and t2.

• Declipped(t1, f, t2) : fluent f is initiated some time
between t1 and t2.

• Logical expressions of the form t1ϑt2 where t1 and t2
are time points or expressions of the same type and ϑ is
a comparison operator of the set {<,<=, >,>=,=}.

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

Based on this framework we have defined an event calcu-
lus derived policy language [8]. The policy language allows
specification of rules of the form:

event definition1 ... event definitionn

fluent definitions1 ... f luent definitionm

condition { condition body }
action { action1 ... actionk }

An event definition describes when a specific event is
considered to have taken place. Each policy defined event is
specified in accordance to the values of the application state
variables known within the system. Each event is assigned
a logical expression in terms of the values of application
state variables. The event is considered to take place at the
instant that this logical expression transits from false to true.
In figure 4, the event lowband takes place at the time the
available bandwidth of the network interface drops below
19.2Kbps.

The definition of a fluent provides a list of all the events
that can initiate and terminate it. This definition is used
by the evaluation mechanism implemented in the adapta-
tion control module to derive the actual value for a fluent
(whether it holds or does not hold at any given time).

The condition body is a logical expression that is con-
structed using the event calculus predicates. By combining
the predicates we have described, a condition rule can spec-
ify when specific events take place and reason about the du-
ration of the conditions identified by fluents. For example
in 4, the condition is true only when the fluent inLowBand
has been initiated and not been terminated (i.e. holds) for
30 seconds. Thus, the rule evaluates to true if the available
bandwidth has dropped below the low bandwidth threshold
and remained there for 30 seconds.

The action body is a list of adaptive method calls that
should be made when the condition body evaluates to true.

4.5. Adaptation Control

As introduced in section 4.1, the adaptation controller
is responsible for monitoring the state of the whole system
and making decisions about which applications are required
to adapt in order to overcome a problem or to achieve a
designated goal.

The functionality of the adaptation control is driven by
policies defined by the user and the default policies exported
by the applications. The module evaluates the policy rules
and triggers the appropriate application adaptation mecha-
nisms. The evaluation of policy rules is performed incre-
mentally as the values of the applications’ state variables
change. Whenever a state variable takes a value that corre-
sponds to the occurrence of a policy event, the appropriate
predicates are evaluated and the relating fluents take their

values (either holding or not holding). This process con-
tinues until all predicates within the rules body have been
evaluated and the whole condition evaluated to true. At this
point the adaptation control triggers the appropriate appli-
cation methods as defined by the policy rules.

The fact that default adaptation policies exist outside the
adaptive applications allows for their dynamic modification
by the user. For example, a policy rule defining how a
network application should respond to changes in network
quality can be modified in order to take into consideration
the conditions of other applications or triggers within the
system.

An issue that requires further investigation is to what ex-
tent the system can automate policy modification in order to
overcome conflicting conditions or the introduction of new
policies. More details about the policy language specifica-
tion and evaluation can be found at [8].

4.6. User Awareness Support

The user awareness module is implemented as a separate
application that registers with the platform. The adaptation
controller uses this tool in order to notify the user of adap-
tation decisions or to request assistance when conflicting
situations are detected.

The fact that the user awareness module operates as
stand-alone application allows the user to define the oper-
ations of the user awareness tool as part of a policy action.
In the policy, the user has complete control over the type
of message that will be presented by the awareness module
and at what level of intrusion. Currently the level of intru-
sion can be set at:

• Low intrusion: animating an icon on the system tray,
not actually giving information about the specific ac-
tion, but letting the user know that an action has taken
place.

• Medium intrusion: showing a balloon notification on
the system tray informing the user about the action that
has been taken.

• High intrusion: presenting a popup window with infor-
mation about the adaptation action.

As the user awareness module is just application soft-
ware an advanced user could write their own awareness sys-
tem that is more closely integrated with their needs or work-
ing practices. For example, to use less intrusive interaction
mechanisms, such as audio [20].

5. Prototype

In order to evaluate the architecture described, a proto-
type has been implemented. The prototype is implemented

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

Figure 5. The platform in action.

in Microsoft Visual C++ and provides a full implementation
of the registry and partial implementation of the adaptation
control module. Currently the policy evaluation mechanism
is capable of accepting policies specified according to the
event calculus policy language presented in section 4.4. The
evaluator is not yet capable of reconciling conflicts between
the policies. Early indications are that the platform does al-
low us to achieve system-wide coordinated action and may
provide the necessary underpinnings for identification of
potential conflicts between adaptive applications. This is
the key area of our future work.

In addition to the prototype platform, we have imple-
mented a small set of adaptive applications that comply with
our architecture in order to perform some experiments. In
more detail:

• An adaptive video streaming tool has been developed
based on the RealPlayer video client. This application
allows the platform to request specific streaming adap-
tations including switching between different quality
streams or the bit-rate that it is delivered.

• We have developed an adaptive e-mail client. This
client provides status information about all its activ-
ities (polling the pop server for new e-mails, down-
loading e-mails, showing e-mails, etc.). These activ-
ities can become triggers for adaptation of other ap-
plications in the system, or can be coordinated by the
platform according to the user policies.

• An adaptive web browser has been developed that can
perform simple network adaptations. More specifi-
cally, the web browser utilises an intermediate proxy
in order to perform network specific adaptation, e.g.

it can filter images from web pages in order to speed
up the download of web pages and it can control the
transfer rate of data over the network.

In order to be able to monitor the system resources two
monitoring tools have been developed:

• A network monitor that can check the available band-
width of the system’s connection.

• A power monitor that reports the percentage of the bat-
tery power remaining.

A snapshot of the operation of the prototype is shown in
figure 5. This figure illustrates the video player being trig-
gered to reduce the use of bandwidth in order to allow the
e-mail client to download a large e-mail within the timeli-
ness requirements specified by the user.

6. Influential Work

In this section we briefly discuss related systems that
have been directly influential on our work. ISIS/META
[19] provides an infrastructure for reactive management of
distributed systems. It introduces the concepts of sensors
and actuators that provide information about the operation
of applications and allow control by external entities. The
functionality of these elements can by viewed as similar to
the state variables and adaptation methods defined by our
platform. The fact, however, that the META system targets
the domain of reactive control imposes certain burdens in its
applicability for coordinated adaptation of mobile applica-
tions. In particular the NPL language used by META for the
specification of guarding commands is quite limiting since
it does not allow the specification of time dependencies be-
tween events received by multiple applications.

The Puppeteer system supports the introduction of non-
mobile aware applications into a mobile system. Puppeteer
follows a similar approach to ours with externalisation of
application mechanisms through XML descriptions. How-
ever, Puppeteer does not currently provide mechanisms for
dealing with the issues of coordinated adaptation and con-
flict resolution of multiple adaptive applications; a key con-
tribution of our platform.

In terms of policy systems, the event calculus policy lan-
guage follows a common approach to the PDL language
[17] used for policy based network management. PDL fol-
lows the same model of event-condition-action rules as the
event calculus policy language. PDL however does not al-
low the explicit definition of time dependencies or elements
with time duration, which we believe is essential for sta-
ble management of adaptive systems. Moreover, the event
calculus provides a much simpler and more user friendly

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

vocabulary for the definition of policy rules, which is im-
portant in order promote user involvement in policy defini-
tion. There are clearly other calculi with sufficient support
for temporal relations (such as the Situation Calculus [23])
that may be candidates for the specification of similar policy
rules as ours.

7. Conclusions

In this paper we have argued that flexible architecture
supporting system-wide coordinated adaptation is required
to appropriately support context-aware adaptive applica-
tions. We have identified the shortcomings of current ap-
proaches and have presented our own architecture that we
believe meets the following set of requirements:

1. mechanisms to support coordination between multiple
adaptive applications.

2. mechanisms to support the control of an application’s
adaptation.

3. support for user defined adaptation policies.

4. support for a common contextual space capable of re-
trieving, maintaining and sharing contextual informa-
tion.

One of our goals for the future is to provide support
for distributed adaptation coordination across and between
communicating hosts. Such an approach would allow end-
to-end policy negotiation for the adaptation of network ap-
plications. Another trend in our research is to enhance the
user involvement in the adaptation process with different in-
teraction methods and measure the effect of user awareness
in the behaviour of adaptive systems.

References

[1] K. Cheverst, N. Davies, K. Mitchell, and A. Friday. Expe-
riences of developing and deploying a context-aware tourist
guide: The GUIDE. In Proceedings of the 6th ACM In-
ternational Conference on Mobile Computing (MOBICOM)
2000, Boston, 2000. ACM Press.

[2] K. Cheverst, K. Mitchell, and N. Davies. Design of an object
model for a context sensitive tourist GUIDE. Computers and
Graphics, 23(6):883–891, Dec. 1999.

[3] M. Corporation. Universal plug and play device architecture,
version 1.0, June 2000. http://www.upnp.org/.

[4] N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple
space based platform for adaptive mobile applications. ACM
Mobile Networks and Applications (MONET): Special Issue
on Protocols and Software Paradigms of Mobile Networks,
3(2):143–156, 1998.

[5] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based adaptation for mobile computing. In Pro-
ceedings of the 3rd USENIX Symbosium on Internet Tech-
nologies and Systems, San Francisco, California, March
2001.

[6] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. Archi-
tectural requirements for the effective support of adaptive
mobile applications. Work in progress paper presented in
Middleware2000, (USA:New Yort), April 2000.

[7] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An
architecture for the support of adaptive context-aware ap-
plications. In Proceedings of Mobile Data Management
(MDM‘01), Hong Kong, January 2001.

[8] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. Utilis-
ing the event calculus for policy driven adaptation on mobile
systems. In Proceedings of the 3rd International Workshop
on Policies for Distributed Systems and Networks (POLICY
2002), Monterey, California, June 2002.

[9] J. Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In Pro-
ceedings of the Second IEEE Workshop on Mobile Comput-
ing Systems and Applications, 1999.

[10] A. Friday, N. Davies, G. Blair, and K. Cheverst. Develop-
ing adaptive applications: The MOST experience. Journal
of Integrated Computer-Aided Engineering, 6(2):143–157,
1996.

[11] J. M. III. Cognitive Radio: An Integrated Agent Architecture
for Software Defined Radio. PhD thesis, Royal Institute of
Technology, Sweden, May 2000.

[12] Intel/Microsoft/Toshiba. Advanced configuration and power
interface specification, revision 1.0, 1999.

[13] A. Joseph, J. Tauber, and F. Kaashoek. Mobile computing
with the Rover toolkit. IEEE Transactions on Computers:
Special issue on Mobile Computing, 43(3), 1997.

[14] R. Katz. Adaptation and mobility in wireless information
systems. IEEE Personal Communications, 1(1):6–17, 1994.

[15] R. Kowalsky. Database updates in event calculus. Journal
of Logic Programming, 12:121–146, 1992.

[16] R. Kravets and P. Krishnan. Application-driven power man-
agement for mobile communications. In Proceedings of the
4th ACM International Conference on Mobile Computing
and Networking (MOBICOM ’‘98), 1998.

[17] J. Lobo, R. Bhatia, and S. Naqvi. A policy description lan-
guage. In Proceedings of AAAI, Orlando, FL, July 1999.

[18] S. Long, R. Kooper, G. Abowd, and C. Atkenson. Rapid
prototyping of mobile context-aware applications: The Cy-
berguide case study. In Proceedings of the 2nd ACM In-
ternational Conference on Mobile Computing (MOBICOM),
1996.

[19] K. Marzullo, R. Cooper, M. Wood, and K. Birman. Tools
for distributed application management. IEEE Computer,
24(8), 1991.

[20] E. D. Mynatt, M. Back, R. Want, M. Baer, and J. B. El-
lis. Designing audio aura. In Proceedings of CHI’98, pages
566–573, Los Angeless, CA, April 1998.

[21] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adapta-
tion for mobility. In Sixteen ACM Symposium on Operat-
ing Systems Principles, pages 276–287, Saint Malo, France,
Oct. 1997.

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

[22] J. Pascoe. The Stick-e note architecture: Extending the in-
terface beyond the user. In Proceedings of the 1997 Interna-
tional Conference on Intelligent User Interfaces, Short Pa-
pers, pages 261–264, 1997.

[23] J. Pinto and R. Reiter. Temporal reasoning in logic program-
ming: A case for the situation calculus. In Proceedings of
the International Conference on Logic Programming, pages
203–221, 1993.

[24] M. Shanahan. The event calculus explained. In M. J.
Wooldridge and M. Veloso, editors, Articial Intelligence To-
day, Vol. 1600 of LNCS, pages 409–430. Springer, 1999.

[25] D. Terry, M. Theimer, K. Petersen, and A. J. Demers. Man-
aging update conflicts in Bayou, a weakly connected repli-
cated storage system. In Proceedings of the 15th ACM Sym-
posium on Operating System Principles, 1995.

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’02)
0-7695-1647-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

