
Density Control Through Random Sampling : an Architectural Perspective

Geoffrey Ellis
School of Computing and Mathematics

University of Huddersfield
Queensgate, Huddersfield, HD1 3DH, UK

+44 1484 472912
g.p.ellis@hud.ac.uk

Alan Dix
Computing Department

Lancaster University
Lancaster, LA1 4YR, UK

+44 7887 743 446
alan@hcibook.com

http://www.hcibook.com/alan/topics/random/

Abstract

Information visualisation systems often have to cope
with presenting large amounts of data. In this paper we
look at the problem of reducing the display density
through the use of random sampling. We review some of
the uses of sampling and examine density reduction
techniques currently used in visualisation. We then look
at a proposed novel visualisation that utilises sampling
and discuss many issues that arise. Furthermore, we
propose the ζDB sampling database architecture and
demonstrate how this can be used to enhance current
visualisation applications. Finally, we describe the
architecture of a sampling aware application and
illustrate its advantages.

1. Introduction

In 1546, John Heywood [14] recorded the proverb
‘Plentie is no deinte, ye see not your owne ease. I see, ye
can not see the wood for trees', which can be interpreted
as, if there are too many trees in the way, one may miss
the important information. Imagine that you are walking
amongst the trees or just on the edge of the forest and
unknown to you there are lots of soldier ants, with
potentially dangerous bites, in the vicinity. You can be in
danger if you cannot see the routes of the ants because of
the number of trees!

This paper looks at the problem of reducing the
density of information visualisations, through the use of
random sampling. Unlike other techniques that utilise
filtering (which may remove the ants altogether from the
view), random sampling allows us to see the overall trends
in the visualisation but at a reduced density. In the forest
scenario, selectively felling 90% of the trees would in fact
allow us to see the routes of the ants, although this

measure may be unpopular with the forest ranger!
Compared with techniques such as filtering or clustering,
random sampling requires no prior knowledge of the
underlying data and is typically less computationally
intensive. As a result, random sampling is ideal for
exploratory interactive visualisation.

As well as the obvious use in simulation, randomness
has been increasingly used in 'mainstream' applications
and algorithms ranging from optimisation, signal-
processing, telecommunications and cryptography.
However, we shall see that there is surprisingly little use
of sampling within existing visualisation algorithms,
despite very large data sets being regarded as a 'problem'.
This at first seems surprising. The data being visualised
is often itself sampled from the real world and so, re-
sampling to reduce the data-set size to manageable
proportions appears to be a natural extension of this
external sampling. However, it seems that the 'throwing
away of information' that is inherent in internal sampling
from stored databases just seems unnatural to those trained
to get the most out of limited data. Indeed, despite the
success and importance of stochastic algorithms in many
areas, most computing curricula are predominantly focused
on deterministic algorithms.

In this paper, we will show that the simplicity and
elegance of randomness in computational solutions can
equally be applied to information visualisation. In our
recent paper [7], we demonstrated how sampling could be
used to enhance various standard visualisation and
information retrieval techniques including applications
which we have previously developed, HiBrowse [9] and
Query-by-Browsing [6]. In addition we introduced a novel
visualisation, the Astral Visualiser.

Although the advantages of sampling in appropriate
circumstances are clear, it also raises some new usability
issues, for example, users interpreting sampling artefacts
as real trends or patterns. In order to compare user

mailto:g.p.ellis@hud.ac.uk
mailto:alan@hcibook.com
http://www.hcibook.com/alan/topics/random/

responses to different solutions we need a flexible
sampling-base visualisation architecture to allow different
options to be examined. We also want to make sampling
part of the standard battery of visualisation techniques.
Again this requires a flexible architecture to allow
sampling to be used with existing and novel applications.

This paper focusses on the use of sampling to reduce
data density in visualisation and the database and
visualisation architecture necessary for achieving this. In
the next section, we will review some background
material. the use of randomness in existing computing
applications, ongoing research in sampling from databases
and alternative techniques for density reduction in
visualisation. Section 3 will then look at random
sampling in visualisation including a brief description of
the Astral Visualiser and a summary of some of the
usability issues it raises. Finally, section 4 considers the
requirements for database support and introduce a simple
sampling database API, ζDB, to show how it can be used
in a sampling-based visualisation architecture and also
how it can be constructed as a thin layer using a standard
SQL database.

2. Background

2.1. Use of randomness in computer science

Computation may be used to remove or ameliorate
unwanted randomness, for example noise reduction in
Digital Signal Processing and statistical processing of real
world data. However, there are yet more examples where
randomness is deliberately introduced into algorithms:
• optimisation and search: genetic algorithms, simulated

annealing
• machine learning: neural networks
• setting initial states: hill-climbing, relaxation

techniques
• simulation: Monte Carlo methods
• digital signal processing: adding resolution to A-to-D,

spreadspectrum & CDM (wireless networks)
• user interfaces: random walks through interfaces
• testing: generating test cases
• telecommunications routing: avoiding overloading 'best'

routes
• network protocols: random standoff after contention
• parallel computing: breaking Byzantine cases
• cryptography: generating keys, primality testing, digital

signatures
• databases: query optimisation, approximate aggregate

results
The use of randomness in solving computational or

mathematical problems is often to do with tradeoffs –
when an exact solution can never be found (e.g. NP-hard

ones) or when it is much quicker to find an approximate
solution (e.g. primarility tests, neural networks) or even
in symmetry breaking situations (e.g. dining philosophers
and narrow-door problems). A comprehensive survey of
the use of randomisation in algorithms is presented by
Gupta [13] and he asserts that "In an age of rising software
complexity and cost, the simplicity of randomized
algorithms will be a key determining factor in the
acceptance by the software community".

Other reasons for using randomness are based on its
very unpredictability. This can help avoid Byzantine
situations, such as the systematic failures that brought
down the US east coast telephone backbone some years
ago, can allow information to be spread over the
frequency-range in spread-spectrum techniques, or can
simply be hard to guess in the case of cryptographic keys!

For more details on these issues see Gupta's review
[13] or our own web page.

2.2. Sampling from databases

If we are going to use randomness to help solve the
visualisation problem of too much data then we need to
sample our data set, which is typically held in a database.
Our recent paper [7], examined some issues regarding
sampling from databases and suggested techniques for
sampling standard SQL databases. It is important that the
statistical properties of the sample are recognised,
especially when multiple samples are required. This will
be discussed further in section 4.

There has been considerable research in the database
literature, since the advent of data warehousing and related
data mining application, on the use of sampling in
connection with query optimisation. The cost of executing
ad-hoc queries on very large databases is considerable,
hence the ability to calculate an approximate answer based
on a random sample from the database is desirable.
Another area of interest in data mining is clustering, where
the user wishes to discover distributions and patterns in
the underlying data. A technique that uses random
sampling and partitioning has been demonstrated to be
efficient and accurate even for large databases [12].

Although it is possible to sample from standard SQL
databases, this is typically of the order of o(N) where N is
the size of the entire database rather than the sample size.
It is potentially far more efficient to include sampling
primitives into the database manager and thus take
advantage of the implementation structure of the database.
For example, to obtain a very sparse sample one could
randomly choose a small number of blocks and then
choose records from these blocks. Efficient strategies have
been developed for single joins [4] and also for some
aggregate queries [5]. Despite this fruitful research, it

may still be some time before random sampling is a
primitive operation in relational databases.

2.3. Density reduction in visualisation

In recent times, more and more information is being
gathered, whether in companies information systems or in
scientific experiments and consequently the size of
databases have been increasing. Information visualisation
systems often have to cope with presenting large amounts
of data. Various ways of avoiding cluttered visual displays
through data density reduction have been devised and some
of these can be categorised as follows:

Filtering − In systems using starfield displays [1], slider
controls are provided which filter the data on one or more
attribute values, thus reducing the amount on the screen.
In addition to reducing the density, this may unwittingly
remove trend or distribution information depending on the
filter values.

Distortion − Fisheye views [11] distort the display so
that more screen space is given to the area of interest. The
density of this area is reduced at the expense of crowding
the peripheral display area. Hyperbolic browser [19] uses a
similar technique to deal with hierarchical data. However
some users may find this type of distortion disorienting.

Filtering and distortion − A combination of
filtering and distortion has been employed in the form of
dynamic queries via moveable filters [10] giving the user
manual control of the data density on specific areas of the
display.

Clustering − Scatter/Gather [22] is one of a number of
applications that utilises clustering to reduce the dataset to
a manageable density. Clustering reduces the overall
density as clusters, rather than individual data items,
become the focus of visualisation. Each cluster is
typically visualised as a single object, either by showing a
representative document (as in scatter/gather) or by some
description of the cluster (e.g. feature vector). Some 3D
systems such as VR-VIBE [3], also employ clustering to
give an overall view of the document space at the expense
of individual detail.

Clustering + fisheye − In their Focus+Context
system, Kreuseler and Schumann [16] combine a
smoothed fisheye view, the Magic Eye View, with
dynamic hierarchical clustering of information units to
cope with large data sets.

Aggregation − Aggregation is similar to clustering in
that it groups data into manageable sets for visualisation.
However, the grouping is implicit in clustering, whereas
aggregation groups data items based on chosen attributes.
Influence Explorer [26] does this by producing histograms

so users can see the distribution of data, use brushing to
find relationships and utilise the groups (histogram bars)
to filter the data. Query previews [8] also makes use of
aggregation of attribute values, but the principle objective
in this case is to reduce the data to a manageable amount
prior to transmission over a network. The user formulates
an approximate query with the help of the aggregate data,
details are then downloaded and the query can be refined
further. The PDQ-Tree Browser [17] provides both an
aggregated, hierarchical view of the data set and a tightly
coupled detailed view, that allows users to 'prune' the trees
using various controls. Irrelevant data is therefore removed
thus allowing the users to concentrate on the details of a
smaller, hopefully relevant, data set.

One of the problems with visualising information
that has not yet been mentioned, is what to display when
the user zooms in on an area of the information space. If
all the data points are being displayed then the display will
become sparse. The two techniques that have been adopted
to deal with this problem are: semantic zoom and constant
density display.

Semantic zoom − An example is Pad++ [2] which
automatically controls the amount of detail present in the
display depending on the elevation, z. A similar
technique is used in online road map displays [e.g.
Multimap] which allows us to zoom in from a map of the
UK showing the motorways, to see the major A roads,
followed by minor roads and eventually footpaths and
perhaps telephone boxes.

Constant information density − A related system
employing a form of semantic zoom is VIDA [28] which
helps users manually construct applications that maintain
a constant overall display density, irrespective of the
information space being displayed. These systems preserve
the data distribution in x and y dimensions, however this
may generate sparse areas in the display. In order to utilise
the maximum display area possible, Woodruff et al [29]
demonstrate a system of constant information density,
where more information is given in areas where there are
less data points, thus maximising the display space.
Obviously, the actual data density is distorted so care must
be taken on the choice of data to display.

Pixelation − An extreme form of semantic zoom is to
reduce the data items to a single pixel. Keim [15] has
made very effective use of this in high density displays of
millions data items. Furthermore, TableLens [23] converts
numbers to mini-histogram bars when rows are reduced to
single pixel height.

3. Using sampling in visualisation

As far as we are aware, there is little research on the
use of sampling as a technique for density reduction in
visualisations. References to the use of random sampling
occurs in several commercial statistical and data mining
applications. For example, Statistica [25] mentions using
sampling with very large sample size and Enterprise Miner
[24] notes the use of sampling for predictive modelling.

An interesting application of randomisation
techniques has been applied to the analysis of spatial data
from archaeological studies [18]. The problem there was to
overcome the often non-random distribution of data to see
statistically valid patterns. Inferential solutions using
standard methods were intractable, yet random sampling
gave useful approximations.

Olken [21] points out that sampling is used in certain
GIS to reduce dataset size prior to graphical display of the
data, both with an aim to reduce computational effort and
to match the resolution limits of the display.

The Influence Explorer [26] also uses sampling as it
is based on data from several hundred simulations with
random parameters. This is an extreme form of density
reduction as their total design space is infinite!

3.1. An example – the Astral Visualiser

In a recent paper [7], we proposed a new sampling-
based visualisation technique that is derived from the
metaphor of a star-gazers telescope, called the Astral
Visualiser which is illustrated in figure 1.

Two attributes or derived values are chosen for the x,y
coordinates and a small set of a few hundred sampled
records are originally chosen and plotted. The user can
select an area of interest and as the Visualiser zooms in, it
samples more records in that area (that is a sample
constrained by the x and y coordinates). The sample, is
chosen so that the density of sampling increases with the
square of the zoom value, this means that the actual
visible density remains constant (see figure 1). One way of
thinking about this, is that we determine the x and y
coordinates from the attributes, but randomly allocate a z
coordinate and then decide how far away we see by the
current zoom factor.

In addition to enabling automatic resampling as the
user zooms, a separate 'aperture' control can be applied to
alter the sampling density. This is used when the user has
panned to an area with much lower or higher density of
points. The metaphor is like the aperture in a camera
which alters the amount of light reaching the film or CCD
– opening the aperture makes the dimmer, more distant
'stars' visible.

3.2. Issues arise from sampling

The concept of using random sampling to control the
display density is fairly straightforward but gives rise to a
number of issues. We will discuss some here and see [7]
for additional interface issues related to sampling.

Zoom in. The metaphor of the Astral Visualiser
implies that in order to zoom in by a factor of 2, we need
to increase the sampling density by a factor of 4.
Generating a given number of new points is not a problem
and neither is the distribution, as they are randomly
chosen. However we must decide between producing a
totally new sample of data points and adding points to the
existing sample. Clearly, we need an appropriate sampling
method but we must also consider the users perception of
the changes in the display. Research has shown [27] that
users require landmarks when navigating to develop their
spatial knowledge as quickly as possible. So, this
suggests that adding points would be the better solution as
the existing sample could act as a landmark.

Appearance of new points. Another issue is
whether the new points should be displayed differently. In
figure 1, the 'old' points are drawn bigger and although
this has been exaggerated in the diagram, it is intended to
add to the sense of zooming into a starfield. Instead of
using size, other visual attributes can be altered such as
brightness, colour, or even something more exciting like
sparkle or shimmer. It is known [20] that the latter are
good candidates for preattentive visual processing, so
would be easily 'seen' by the user. Although there are
some hints from the literature this is a new technique and
so we cannot be sure at this point which are the best
visual cues to use.

(i) initial user view, (ii) user selects top left and zooms,
(iii) more points become visible, (iv) selects top right

and zooms, (v) yet more points appear

Figure 1. User views of Astral telescope
(sizes exaggerated)

Zoom out. If a new sample of data points is generated
every time the user zooms in, the same process can be
applied when zooming out. However, if the policy of
adding new points has been adopted, then we need to decide
which points should be removed. When zooming back to
a previous magnification, the obvious candidates to
remove are the ones that were recently added, which
implies that some form of history needs to be maintained.
But when zooming out to an 'unvisited' magnification, it
is more problematic to decide on which points to remove.

Density control. Similar problems as zooming need
to be considered when the user changes the global density
control. Opening the 'aperture' requires more points,
closing the aperture requires less. A new dataset would
however be more confusing when changing density as the
user does not expect a major change.

Artefacts and coincidence. It is easy to look at
random data and see patterns in it that are simply 'artefacts'
of the sampling process or coincidental alignments such as
lines or clusters. But how can the user know whether these
patterns are in fact features or trends. One option is to add
a 'reality check' button that resamples the data; so when
the users see a potential pattern in the data, they can press
the button and if the pattern persists, they can be
reasonably sure that it is real. This is the visualisation
equivalent of jack-knife techniques used in the statistical
modelling and machine learning literature. Note that this
will also change the users' visual landmarks so they may
become disoriented.

Z-index. We noted that the Astral Visualiser could be
regarded as giving data values a randomly chosen z value.
In fact, we do actually construct such a random z-index as
it simplifies the implementation of many of the issues
discussed above. The use of a randomly allocated z-index
ensures display inertia when zooming in and also provides
the history required whilst zooming out 'for free'. The z-
index also makes it easy to ensure continuity if zooming
out to an 'unvisited' magnification and when panning.
Density control is again simply a matter of filtering on
the z-index. Finally, the 'reality check' button corresponds
to selecting a fresh z-index. This should be set against the
initial cost of preprocessing the z-index information, but
our experience with sampling from standard SQL databases
shows that this is often necessary (see web page). The
notion of a z dimension is used in visualisation tools such
as DataSplash [29], which employ semantic zoom
techniques, but in these instances, z refers to a layer with
different visual attributes (e.g. a point becomes a picture
of a tree when viewed at a ‘lower’ level) rather than a
sampling attribute, as we propose.

3.3. Non-uniform sampling

Although the Astral Visualiser changes the level of
sampling when zooming, this does not depend on the
density of the data points but is more a matter of the
overall 'view settings' of the user interface. However, in
some applications, sampling needs to be more tuned to the
location and kind of data.

As an example, consider the data warehouse of a large
UK store chain. Sales data is visualised on a map of the
United Kingdom. This is achieved by sampling checkout
data and then plotting the location of each sale as a dot
with colour to indicate product and brand.

Constant density. Constant density systems [28,29]
are principally concerned with changing the size of a data
point to give more information should there be room on
the display. Although this is still possible with our
sampling-based visualisation, we have an additional option
of increasing the level of sampling in sparse areas in order
to maximise the use of the display space. A schematic
algorithm would be to repeatedly choose a new data point
at random, excluding all points that are within radius r of
existing plotted points until there are no suitable points
remaining.

This would be the case if we wanted to visualise the
sales of particular brands of washing powder across the
United Kingdom. There are of course few supermarkets
and few sales in less populated parts of the country, so a
'fair' sample would mean it is impossible to see what was
happening in the Highlands and Islands of Scotland (too
few points) and London would just be an untidy pile. By
altering the sampling density based on data density, we can
get an even spread of datapoints over the whole country
and thus easily spot trends of preferences .

This technique distorts the actual density and so
cannot be used if correlations are being sought in the x and
y plane. Hence we cannot look for trends in the overall
sales of washing powder, we can only look at the relative
sales between brands.

Attribute-dependent density. Assume we now want
to see if there are patterns relating sales of washing
machines and washing powder. There are of course many
hundreds more sales of the latter and if we sampled both
uniformly we would only see washing powder plotted on
our map. Instead, we need to sample the two types of
product separately to ensure approximately similar overall
numbers of each so that relative differences in different
areas become apparent.

Again this technique distorts density and cannot be
used to compare actual sales of the two product types, but

it can be used to look for correlations and trends between
them.

4. Building sampling-based visualisation

4.1. ζDB database interface

The literature on random sampling from databases
emphasises the importance of linking sampling and query
operators. Olken [21] argues that sampling operators
ought to be embedded within the query processing to
reduce the amount of data retrieved and effectively exploit
indices created by DBMS. However, there are as yet no
standard SQL extensions for sampling.

The simplest sampling interface would be an
extension of SQL such as:

SELECT ... WHERE ... + sample clause
where the sample clause may be: "sample size is N"

or "sample size approximately N", or "sample probability
p".

Olken [21] also identified several issues for database
sampling:
1. the manner in which the sample size is determined
2. whether the sample is drawn with or without

replacement
3. whether access pattern is random or sequential
4. whether or not the size of the population from which

the sample is drawn is known
5. whether or not each record has a uniform inclusion

probability
Some of these have clear answers in visualisation.

The sample size (or sampling probability) will be defined
as part of the interaction (zooming or density control). The
data points are to be plotted or otherwise visualised and
hence should normally be drawn without replacement.
The entire sample is likely to be used at once, but it may
be refined later by the user. The population size is the
size of the data set to be visualised, although filtering may
mean that the size of the filtered dataset may not be known
without querying the database. Finally, we may want to
have non-uniform inclusion probability as discussed in the
previous section when we considered constant density or
attribute-based density.

In addition, visualisation raises some further
requirements:
6. the ability to have 'repeatable' samples
7. the ability to chose to resample and have labelled

samples
8. the ability to have a randomised output that can be

used as a 'z' index.

Note that the 'repeatable' samples refers to the
requirement (when we considered zoom in and zoom out)

that increasing the sample size includes the original
sample. In terms of database operations, this means that
the sampling operator has nice algebraic properties. So if
Sp is sampling at probability p and Fc is filtering on
some condition c, we have properties such as:

if p ≤ q then Sp(db) ⊆ Sq(db)
Sp(Fc(db) ∪ Fc'(db)) = Sp(Fc(db)) ∪ Sp(Fc'(db))

...
We have found that the inclusion of one or more

generated random z-index fields is not only useful for
visualisation itself, but also makes it easy to satisfy these
quite stringent conditions. So, if the z-index is chosen in
the range [0, Zmax-1], we can translate "with probability
p" into "z less than p*Zmax" etc. Repeated sampling
based on the same z-index will be identical (requirement
6) Different z-indices correspond to different labelled
samplings (req. 7). Also, since the named z-index fields
are regarded like other fields for selection purposes they
can be included in the query result (req. 8). Furthermore,
the selection condition on the z-index can be varied
depending on other field values, thus allowing non-
uniform sampling.

The resulting database interface therefore has two
main functions:

sample(table, field_list, condition, prob, z-index-name)
generate_z(table, z-index-name)

Note that field_list may include named z-indices and
prob may depend on field values.

We refer to the resulting sampling database as ζDB
(zetaDB). We have worked with this as a thin
implementation layer over a standard SQL database,
although it would be better to use a database with
sampling as primitive when these become available.

4.2. Non-sampling visualisation architecture

Before describing the architecture of our sampling
aware applications, we will first look at a typical
visualisation architecture as shown in figure 2.

Figure 2. Typical visualisation architecture

In order to gain an insight into the data being
presented, users alter some controls (e.g. slider, checkbox,
option list). These actions send commands to the
visualisation/graphics display processor (vdp) for

operations such as pan, local zoom or distortion, and can
also make changes to the database filter (e.g. update an
SQL command) which will result in the local data set
being updated. The user receives visual feedback.

4.3. ζDB architecture

Figure 3 shows a generalised view of the ζDB sampling
database management system. Its function is to receive
sample requests and return this data together with a z-index
which can be used by the visualisation controller for local
processing.

Figure 3. Sampling database architecture

The 'sample' request generates a named random index
(z-index). In our SQL wrapper, this is simply
implemented by either adding a random column to the
original table or by creating a special index table of key–z-
index pairs.

The 'sample' request includes the items of data required
and filter conditions (if any) together with a data quantifier
(typically a proportion or number of samples) and
specified z-index. This is converted into an SQL request
using the z-index for sampling.

Our SQL wrapper does not include any caching of
results over and above those of the underlying database,
but this could be added to reduce database load, especially
for small samples from very large or networked datasets.

4.4. Sampling-based visualisation architecture

Sampling-based visualisation using ζDB can be
achieved in two different ways, firstly, by adding sampling
to an existing visualisation application and secondly by
developing a sampling-aware application. We will now
consider each of these in turn.

Loosely coupled visualisation. In this option, we
take an existing visualisation and simply substitute the
full data set in the data source (in figure 2) with a sample
from the ζDB (see figure 4).

Figure 4. Sampling architecture, with separate
density control

A separate density control can be added and
manipulated by the user to increase the sampling rate.
The sampling controller takes this and instructs ζDB to
generate more or less data points. This function is useful
in applications where there are just too much data to
display. The original application needs to know nothing
about the sampling except that it must know when its data
has changed in order to refresh the visualisation.

Note how filtering and sampling are separated in the
diagram. The original application controls the filtering
whilst the external density control changes the sampling.

We could nearly implement Astral Visualiser in this
way by taking a simple 2D scatter plot with zoom and pan
as the base system. But such a loosely coupled architecture
would not allow the density to be automatically increased
as the user zooms into a region.

Tightly coupled visualisation. When the
application needs to directly control the sampling in
tandem with the filtering (as with the non-uniform density
examples discussed in section 3.4), a more tightly coupled
architecture is required, as shown in figure 5.

Figure 5. Sampling aware application
architecture

Using the Astral Visualiser as an example, the user
has a zoom control, as found in many visualisation
applications, and also a data density control. As the user
zooms in, the application increases the sample probability
and changes the filter. The sampling controller therefore

instructs ζDB to generate more data points in the new
display area so that the overall density of the display
remains constant. Note also how the z-index becomes part
of the resulting data set and so it can be used in the
visualisation (as described in section 3.3).

The density controls are now integrated into the
application interface and all filtering and density functions
are handled by the sampling controller. As discussed
earlier, filtering and density are related and their functions
can therefore be optimised by one controller. Similarly,
the ζDB can optimise the sampling, thus making a
separate sample database redundant.

The two store chain scenarios from section 3.4 can be
implemented over this architecture. In the case of washing
machines vs. washing powder, the visualisation
application simply sets the sampling probability to be an
SQL 'if expression' with value dependent on the product
type.

In the case of the different washing powder brands
where we wanted constant density, this is a little more
complicated as the final level of sampling has to be done
in the application. The latter must divide the display area
into a reasonably small number of sections over which the
raw density does not vary too much. These sections can
then be given different probabilities when sampling the
database to give a near uniform, but deliberately slightly
over-dense distribution. Lastly, the application has to
perform the final selection based on the schematic
algorithm in section 3.4, choosing at each stage the data
with the lowest z-index.

Note how significant performance benefits can also be
gained from associating a z-index with each data item.
Without a z-index, ζDB would need to determine the new
data set whenever the user zooms in or increases the
density. Instead, with the z-index, the local visualisation
application can change the upper bound of z until the
required density is achieved. The application can also sub-
sample based on the z-index knowing that this will yield
the same answers as the ζDB request. In the case of
constant density, this is particularly important as the
conditions required 'not within radius r of previous items'
would be extremely inefficient or impossible to
implement through SQL queries.

5. Summary and future work

In previous work we have argued that random
sampling is a potentially powerful method to use in
visualisation. In this paper we have built upon this,
looking particularly at the issue of density reduction for
large data sets.

We have described the Astral Visualiser, a novel
visualisation technique that uses sampling as a

fundamental part of its interaction. We have also
discussed other scenarios where sampling can be used. As
a result of our practical experience and analysis of
scenarios, we have proposed a sampling database interface
ζDB (currently implemented as a thin layer over an SQL
database) and two visualisation architectures, one suited as
a loosely coupled 'bolt on' for existing visualisations and
the other for situations, such as the Astral Visualiser,
where the sampling is more tightly coupled to the
visualisation control.

Of particular importance in ζDB is the use of named
z-indices that enable us to ensure repeatability in sampling
or force different samples where required. As well as being
useful for ensuring appropriate properties of samples, the
z-index can be made available to the visualisation itself, as
is the case in the Astral Visualiser.

There are many interesting user-interface issues raised
by sampling and one reason for the construction of a
generic sampling-based visualisation architecture is to
make it easier to study visualisation options as part of our
ongoing work. Furthermore, going beyond the
visualisation of flat data structures and looking also at
relationships, there are yet more issues, for example, if we
have a uniform sample we are likely to underestimate
inter-relationship.

Even before the results of this more systematic study
we believe that in many situations sampling can already
be an effective tool in the visualisation of large datasets.

6. References

[1] C. Ahlberg and B. Shneiderman, “Visual Information
Seeking: Tight Coupling of Dynamic Query Filters
with Starfield Displays,” Proc. CHI'94, ACM Press,
Boston, April 1994, pp. 313-317.

[2] B.B Bederson and J.D. Hollan, “Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics,” Proc. UIST'94, ACM Press, Marina del Rey,
CA, Nov 1994, pp. 17-26.

[3] S. Benford et al. “VR-VIBE: A Virtual Environment for
Co-operative Information Retrieval,” Proc.
Eurographics 95 , Blackwell Publishers, 1995.

[4] S. Chaudhuri, R. Motwani and V. Narasayya, “On
Random Sampling Over Joins,” Proc. SIGMOD '99,
ACM Press,1999, Phi ladephia, pp. 263-274.

[5] S. Chaudhuri, G. Das and V. Narasayya, “A Robust,
Optimization-Based Approach for Approximate
Answering of Aggregate Queries,” Proc. SIGMOD '01,
ACM Press, Santa Barbara, CA, May 2001.

[6] A. Dix and A. Patrick, “Query By Browsing,” Proc. 2nd
International Workshop on User Interfaces to
Databases (IDS'94), Springer Verlag: Workshops in
Computer Science, Lancaster, UK, April 1994. pp.
236-248.

[7] A. Dix and G.P. Ellis, “By Chance: Enhancing
Interaction with Large Data Sets Through Statistical
Sampling,” to be published in Proc. AVI '02, Italy, May
2002.

[8] K. Doan, C. Plaisant, B. Shneiderman and T. Bruns
“Interface and Data Architecture for Query Preview in
Networked Information Systems,” HCIL Technical
Report No. 97-09, http://www.cs.umd.edu/hcil, 1997.

[9] G.P. Ellis, J.E. Finlay and A.S. Pollitt, “HIBROWSE
for Hotels: Bridging the Gap Between User and System
Views of a Database,” Proc. 2nd International
Workshop on User Interfaces to Databases (IDS'94),
Springer Verlag: Workshops in Computer Science,
Lancaster, UK, Apr. 1994. pp. 45-58.

[10] K. Fishkin and M.C. Stone, “Enhanced Dynamic
Queries via Moveable Filters,” Proc. CHI'95, ACM
Press, Denver, May 1995, pp. 415-420.

[11] G. W. Furnas, “Generalized Fisheye Views,” Proc.
CHI'86, ACM Press, Boston, Apr. 1986, pp. 16-23.

 [12] S, Guha, R. Rastogi and K. Shim, “CURE: An Efficient
Clustering Algorithm for Large Databases,” Proc.
SIGMOD '98, ACM Press, Seattle, June 1998, pp. 73-
84.

[13] R. Gupta, S.A. Smolka and S. Bhaskar “On
Randomization in Sequential and Distributed
Algorithms,” ACM Computing Surveys, Vol. 26, No.
1, Mar. 1994.

[14] J. Heywood, A dialogue Conteynyng the Nomber in
Effect of all the Prouerbes in the Englishe Tongue, 1546

[15] D. A. Keim, “Pixel-oriented Visualization Techniques
for Exploring Very Large Databases,” Computational
and Graphical Statistics, vol. 5, no. 1, 1996, pp. 58-
77.

[16] M. Kreuseler and H. Schumann, “Information
Visualization Using a New Focus+Context Technique
in Combination with Dynamic Clustering of
Information Space,” Proc. New Paradigms in
Information Visualization and Manipulation
(NPIV'99), Missouri, November 1999, pp. 1-5.

[17] H. Kumar, C. Plaisant and B. Shneiderman, “Browsing
Hierarchical Data with Multi-level Dynamic Queries
and Pruning,” Human-Computer Studies, 46, 1997,
pp. 103-124.

[18] K.L. Kvamme, “Randomisation Methods for Statistical
Inference in Raster GIS Contexts,” Dept. of
Archaeology & Center for Remote Sensing, Univ. of
Boston, USA.

[19] J. Lamping and R. Rao “Visualizing Large Trees Using
the Hyperbolic Browser,” Proc. CHI'96, ACM Press,
Vancouver, Apr. 1996, pp. 388-389.

[20] K. Nakayama and G.H. Silverman, “Serial and Parallel
Processing of Visual Feature Conjunctions,” Nature,
320: 1986, pp. 264-265.

[21] F. Olken, Random Sampling from Databases, Ph.D.
dissertation, UC Berkeley, LBL Technical Report
32883, April 1993.

[22] P. Pirolli et al., “Scatter/Gather Browsing
Communicates the Topic Structure of a Very Large Text
Collection,” Proc. CHI'96, ACM Press, Vancouver,
May 1996, pp. 213–220.

[23] R. Rao and S. Card, “The Table Lens: Merging
Graphical and Symbolic Representations in an
Interactive Focus + Context Visualization for Tabular
Information,” Proc. CHI'94, Boston, ACM Press,
1994, pp. 111–117.

[24] http://www.sas.com/products/miner/
[25] http://www.statsoftinc.com
[26] L. Tweedie, R. Spence, H. Dawkes and H. Su.

“Externalizing abstract mathematical models.” Proc.
CHI'96, ACM Press, 1996, pp. 406–412.

[27] N.G. Vinson, “Design Guidelines for Landmarks to
Support Navigation in Virtual Environments,” Proc.
CHI'99, ACM Press, Pittsburgh, May 1999, pp. 278-
285.

[28] A. Woodruff, J. Landay and M. Stonebraker, “Constant
Information Density in Zoomable Interfaces,” Proc.
AVI'98, ACM Press, L'Aquila, Italy, pp. 57-65.

[29] A. Woodruff, J. Landay and M. Stonebraker, “Constant
Density Visualizations of Non-Uniform Distributions
of Data,” Proc. UIST'98, San Francisco, 1998, pp. 19-
28.

http://www.cs.umd.edu/hcil
http://www.sas.com/products/miner/
http://www.statsoftinc.com

