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ABSTRACT 

Since its introduction over a decade ago the tuple space paradigm has 
attracted interest from the distributed systems community. Despite being 
developed for shared memory parallel architectures, the simplicity and 
elegance of the model has led researchers to attempt to realise it in loosely 
coupled distributed environments. This paper argues that these attempts have 
largely failed due to their selection of inappropriate target domains, lack of 
multicast support and failure to operate in heterogeneous environments. We 
present the design and implementation of a new tuple space platform 
engineered using IP multicast. The platform is designed to support complex 
distributed applications such as groupware and mobile applications, operates 
over a range of end-systems and networks and offers performance 
comparable to existing RPC based platforms even in tests designed to benefit 
the RPC paradigm. 

1. Introduction 

Since its introduction in 1985 the tuple space paradigm [Gelernter,85a] has attracted 
interest from the distributed systems community. Despite being developed for shared 
memory parallel architectures the simplicity and elegance of the model has led 
researchers to attempt to realise it in loosely coupled distributed environments [Xu,89], 
[Pinakis,93], [Douglas,95]. 

These attempts have, in the opinion of the authors, for the most part failed. We justify 
such an assessment by noting that none of the major distributed systems platforms 
(CORBA, DCE, DCOM etc.) are based on the tuple space paradigm and that there have 
been relatively few papers on the topic in recent ICDCS/ICODP conferences. We attribute 
the failure of these initiatives to the following factors: 

(i) Performance Oriented Target Application Domains 

Tuple spaces were designed as a paradigm for parallel programming. As a result, 
previous platforms have typically been used to implement parallel algorithms 
which are often assessed largely on performance. This in turn places great 
significance on the performance of the tuple space platform, effectively 
condemning many implementations before they have had a chance to evolve in a 
way which would be normal for new enabling technologies. 

(ii) Reliance on Unicast Protocols 

Until the advent of multicast IP and the development of application level framing 
techniques in SRM [Floyd,95] distributed tuple space platforms were forced to 
rely on unicast protocols. This led to considerable overheads being incurred when 
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attempting to coordinate the activities of multiple distributed users of the 
platform. As a consequence, most distributed tuple space implementations 
effectively became centralised implementations with portions of the overall state 
cached on different hosts (e.g. [Pinakis,93], [Douglas,95]). 

(iii) Homogeneous Network and Processing Environment 

Platforms developed in the early 1990s tended to be designed to operate in 
relatively homogeneous environments. In particular, most were implemented in 
local area environments consisting of workstations and Ethernet networking. Such 
environments were also used to develop RPC based platforms and proved ideal for 
their requirements. In particular, the low round trip times and the lack of  
disconnections now associated with modern mobile environments failed to fully 
highlight the RPC paradigm's shortcomings. 

In our work to develop a tuple space based platform we have been motivated by a 
different set of goals and have operated in a different environment. This has, we believe, 
enabled us to avoid many of the pitfalls associated with previous distributed 
implementations. 

(i) Distributed Applications Focus 

We have designed our platform to support distributed applications with a 
particular emphasis on those which feature complex patterns of interaction (e.g. 
groupware applications) or require additional support services from their 
distributed systems platform (e.g. mobile applications). The suitability of the 
paradigm for this type of application was recently noted by members of the 
original Linda development team [Bjornson,97]. 

(ii) Extensive Use of  Multicast 

We have constructed our platform making extensive use of IP multicast. This 
enables us to provide a fully distributed implementation of our platform which, in 
environments supporting hardware multicast, provides performance comparable to 
RPC based platforms. 

(iii) Heterogeneous Network and Processing Environments 

We have assumed from the outset that the platform will be required to operate 
over a wide range of networks including high-speed fixed networks and low- 
bandwidth mobile networks. We have ported our platform to a wide range of end- 
systems including Linux, Solaris, SunOS, Windows 95 and Windows NT. 
Interworking between applications on these systems is supported. 

The reminder of the paper describes the design, implementation and evaluation of our 
distributed tuple space based platform called LZimbo. Section 2 provides the necessary 
background for the paper including a brief overview of the tuple space paradigm and a 
critique of other distributed implementations. Section 3 describes the design of the 
LZimbo computational model, API and engineering infrastructure. Section 4 discusses the 
implementation of LZimbo and presents the results of our evaluation work. Section 5 
contains our concluding remarks and outlines plans for future work in this area. 

2. The Tuple Space Paradigm and Distributed Systems 

2.1. Paradigm Overview 

Tuples are typed data structures, each of which consists of a collection of typed data 
fields. Each field is either termed an actual, if it contains a value, or a formal, if it is 
undefined. Collections of (possibly identical) tuples are placed in objects called tuple 
spaces which can be shared between processes. Any process using a tuple space has access 
to all the tuples it contains and can dynamically insert or remove tuples. Tuples are 
persistent and can not be altered while they reside inside a tuple space: they must be 
explicitly withdrawn then later re-inserted in order to effect changes [Gelernter,85b]. 

In tuple space systems, inter-process communications are conducted exclusively 
through the tuple space [Gelernter,85a]. By default, such communications are anonymous 
but directed communications (producing tuples for an identified consumer process) can 
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be achieved by encapsulating destination information in tuples. Since tuple spaces contain 
persistent tuple objects, rather than messages, communication is supported across both 
space and time [Bjornson,91]. This property of the paradigm is of particular interest in 
environments where communications QoS is highly variable and systems may have to 
survive frequent periods of disconnection (e.g. mobile environments). 

2.2. Existing Distributed Implementations 
A number of distributed tuple space implementations have been developed over 

recent years. Of particular interest is the work of Pinakis [Pinakis,93] on developing a 
distributed operating system microkernel based on Linda. Pinakis' system uses a client- 
server architecture for communication between Linda client processes and the system 
server processes which implement tuple spaces. In more detail, each node of a distributed 
system which is participating in a tuple space maintains two servers, the first for tuple 
types and the second for tuples. Each tuple server manages a distinct portion of the 
recognised tuple types (hence all tuples of a given type are stored on a single node). To 
deposit a tuple in, read or withdraw a tuple from the distributed tuple space clients must 
determine which node manages tuples of the appropriate type and forward their requests 
to the tuple server on that host. This architecture enables Linda semantics, such as the 
unique withdrawal of a tuple using in, to be easily enforced since the system maintains 
only a single copy of each tuple. However, the performance and scalability of such a 
system is clearly limited. For instance, centralising each type at a single node can, 
depending on the type configuration, have the effect of serialising access to the tuple 
space. Furthermore, the system is unable to survive network partitions and hence is 
unsuitable for mobile systems. Finally, since each 
individually there are no benefits to clients of carrying 
in operations despite the difference in their semantics. 
likely to perform poorly when supporting applications 
multiple hosts (e.g. groupware applications). 

client must contact the server 
o u t  r d  operations as compared to 
As a consequence, the system is 
in which the same tuple is r d  by 

A similar approach to tuple distribution is described by Douglas et al [Douglas,95]. In 
their model, tuple spaces are implemented by, and distributed across, a number of tuple 
space managers. In common with the design proposed by Pinakis, each tuple is stored 
only at a single manager location. However, rather than assigning each tuple space 
manager a number of tuple types, a pair of hashing algorithms are used to determine the 
destined manager for each tuple individually. The hash algorithms ensure a reasonably 
balanced distribution of tuples across tuple space managers, provided tuples of differing 
types and initial field values are present in the system. While network partitions and server 
crashes are marginally less disastrous in this architecture it suffers from the same basic 
problems as the solution proposed by Pinakis. 

Almost all other distributed Linda implementations have primarily concerned 
themselves with providing fault tolerance in the face of host or processor failures in 
networked or multi-processor environments respectively. For instance, a design for 
making the Linda tuple spaces stable by replicating tuples across the member nodes was 
proposed by researchers at MIT [Xu,89]. In this model, out, r d  and in operations cause 
messages to be broadcast to all tuple space replicas; out distributes tuples which are 
cached by each replica, while r d  and in transmit templates for which matches are sought. 
A rd  operation blocks the client until a reply containing all matches found at a particular 
replica is received and, thus, a suitable tuple is available, in operations are less trivial since 
the model requires locks on all matching tuples to be obtained from all replicas. If a 
matching tuple could not be found, or the acquisition of locks for all replicas of suitable 
tuples could not be secured, messages are transmitted to release all locks and the matching 
process restarted. Where suitable matches are available, the client's node selects one, 
informing all replicas of the choice; they in turn delete the tuple from their cache and 
release any locks on those not chosen. Considering tuple space matching is non- 
deterministic [Gelernter,85a] this causes undue serialisation of accesses to tuples of  
identical type signatures. A view change algorithm adjusts the model to tackle processor 
failures and network partitions by restricting further tuple space accesses to clients in the 
majority partition. Once again, this enforces unnecessary restrictions on the use of tuples 
by clients in the minority partition. 

In the following sections we present the design and implementation of our tuple-space 
based platform, L2imbo, which addresses the main shortcomings identified above. In 
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particular, L2imbo offers comprehensive support for mobile and groupware applications 
and uses IP multicast to provide a good level of performance. 

3. The LZimbo Platform 

3.1. Computat ional  Model and API 

Our distributed systems platform provides the same basic API and features as the 
original Linda model [Gelernter,85a] but includes a number of key extensions: 

(i) Extensions to the API to support asynchronous operations 

We have extended the LZimbo API using operations based on the Bonita 
primitives proposed in [Rowstron,97]. These enable clients on each host to access tuple 
spaces asynchronously by replacing the in and rd operations by two separate operations: 
one to initiate the operation and one to collect the results at a later point. A further 
operator allows clients to poll their tuple space interface asking whether the results for a 
previous request are available. 

(ii) Multiple local, distributed and centralised tuple spaces which may be specialised 
for application level requirements such as consistency or security 

LZimbo allows the creation of multiple tuple spaces to address issues of  
performance, partitioning and scale. LZimbo supports three basic classes of tuple space for 
different application requirements, local (private to that host), distributed (cached at one 
or more hosts) and centralised (maintained on a single host but accessible from 
elsewhere). Tuple spaces may be linked using bridging agents which copy tuples between 
tuple spaces based on factors such as tuple types and QoS parameters. 

*(iii) System agents which provide services such as tuple space creation, tuple type 
management, propagating tuples between tuple spaces and QoS monitoring. 

All system operations are provided by system agents which the clients interact with 
using standard tuple space operations. 

In addition, we have added support for deadline based operations and tuple typing to 
the model. Details of this work can be found in [Blair,97], [Davies,97a] and [Davies,97b]. 

3.2. Engineering Design and Implementation 

The current prototype L2imbo platform consists of a small stub library which is linked 
with each application process and a daemon process, an instance of which executes on 
each host. 

3.2.1. The L2imbo Daemon Process 

The L2imbo daemon process executes on each host and consists of four layers: the 
interface to the API, the tuple space protocols, the network scheduler and a number of  
network interface modules (see figure 1). The uppermost layer provides the interface to 
the API and is responsible for all communications between the L2imbo daemon and client 
applications on the same host. By centralising application accesses to all tuple spaces 
through a single process on each host local matching is simplified and the platform gains 
an overall picture of the demands on the available network (or networks). This enables the 
platform to manage congestion and load balancing more effectively, but incurs a 
performance penalty since each message involves additional local communications and a 
context switch. We return to this issue in section 4. Distributed tuple spaces are serviced by 
the DTS protocol layer which is described in the next sub-section. 

The daemon has been specially designed so that the transport services remain 
independent of both tuple spaces and network technology. The network scheduler accepts 
protocol messages from higher layers and, based on associated priority and deadline QoS 
parameters, determines the order in which they are transmitted. Within each priority, 
messages are scheduled in earliest deadline first order. Messages with the highest priority 
(smallest number) are considered most urgent and scheduled before those of successive 
priorities (even if a lower priority has an earlier deadline). This concept is based on 
previous work by Nieh on thread scheduling for continuous media [Nieh,95]. 
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Figure I: Structure of the Leimbo daemon process 

Each supported network has an interface module which presents a generic interface to 
the platform behind which details such as connection management  and signalling are 
hidden. Packets ready for transmission are delivered to an appropriate network interface 
module by the network scheduler. 

3.2.2. The DTS Protocol 

The development of the distributed tuple space protocol (DTS) component  of our  
platform has been motivated by the need to maximise the scalability and availability o f  
our tuple spaces. There are two key factors which affect the performance of such a 
protocol. Firstly, the protocol must not serialise operations through a single point or it will 
not scale. Secondly, traditional consistency mechanisms based on acknowledgements  or 
token passing must be avoided since these will degrade unacceptably through artefacts 
such as acknowledgement implosion or the protracted latency of contacting all of the 
group members. 

To tackle these problems we have taken advantage of the recent deployment  of IP 
multicast together with application level framing concepts borrowed from work on wb 
[Floyd,95] and Jetfile [Gr6nvall,96]. 

The DTS protocol consists of nine distinct protocol messages which are used in 
conjunction with a cache of tuples and anti-tuples held on each host. Collectively, these 
caches represent the state of the tuple space. The messages are used to ensure t imely 
propagation of tuples and anti-tuples between caches. An overview of the operation of the 
protocol is given in table 1 and more details can be found in [Davies,97b]. 

In order to ensure tuple uniqueness the protocol introduces the concept of tuple 
ownership. Tuples can only be removed from the tuple space by their owner. The initial 
owner of a tuple is normally the host which creates it, although if a host generates a tuple 
for which it knows a matching IN request has been received it can nominate the or iginator  
of that request as the owner. By observing sequences of interactions, a tuple which is 
likely to be consumed by the originator of the last tuple can have that host nominated as 
its owner. This allows R_PC-like semantics to be modelled efficiently. The protocol uses 
CHOWN_REQ and CHOWN ACK messages to explicitly change tuple ownership where 
hosts need to withdraw tuples they do not own. 

Since rd operations are used to copy tuples non-destructively, they need not be 
concerned with tuple ownership and hence can be satisfied more quickly and efficiently 
as they require less communication. In particular, groupware applications in which the 
same tuple is obtained using rd by a number of hosts are highly efficient. 

Hosts detect that tuples are missing from their local cache by observing the tuple 
identifiers in all messages received. REPAIR_REQ messages are automatically issued to 
request the retransmission of missing tuples and thus move closer to eventual global 
consistency. Members who have the required tuples mutticast REPAIR_ACK messages 
subject to a backoff proportional to their distance from the REPAIR_REQ originator.  
This ensures the closest cache capable of satisfying the request responds first. If a host 
snoops an identical REPAIR_ACK message from another host, it avoids transmitting a 
response itself thus preventing acknowledgement implosion. 

ACCESS and DELETE messages are of comparatively low priority since they are used 
only by other hosts to detect missing tuples or prevent the use of stale tuples by rd 
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requests,  The  earlier these messages are transmitted, the faster the independent  views o f  a 
tuple space converge .  However,  as their delay does not alter the semantics of  the tuple 
space, we can batch ACCESS's  and DELETE's  with other protocol  traffic to reduce  overall  
c o m m u n i c a t i o n  overhead.  

Message Format and Actions 

OUT 

IN 

RD 

CHOWN_REQ 

CHOWN_ACK 

[tuple id, owner_id, type, tuple] 

If we already have information about this tuple ensure that the ownership 
details are up-to-date. Otherwise add the tuple to our queue, satisfy any 
matching RD requests made on the local host (transmitting an ACCESS 
message for each one), then look for a matching IN request. If we find one, 
check whether we are the current owner, transmitting a DELETE or 
CHOWN_REQ as appropriate. 
[client_id, request_id, type, spec] 

Should we have a matching tuple, multicast an appropriate OUT message, 
otherwise add the ZN request to our queue. 
[type, spec] 

Check if we have a matching tuple and if so multicast an OUT message. 
[ tuple_id, client_id] 

First, check to see if we know about this tuple. If we don't, transmit a 
REPAIR_REQ. Should we know the tuple has been deleted, multicast a 
DELETE. If we own the tuple, we can transmit a CHOWN_ACK nominating the : 
originator of the CHOWN_REQ as the new owner, otherwise we send a 
CHOWN_ACK stating who we understand to be the current owner. 
[ tuple_id, owner_id] 

If we know about this tuple update its ownership. If we are the new owner 
and have a pending local IN which matches, service the request and 
multicast a DELETE message. 

DELETE [tuple id, request_id] 

Mark the unique tuple id as having been deleted and ensure both the tuple 
and the IN request it satisfied are removed from our cache. 

ACCESS [ tuple_id] 

If we don't know about this tuple, transmit a REPAIR_REQ, otherwise if we 
know it to have been deleted, multicast a DELETE message. 

REPAIR_REQ [ tuple_id] 

If we have this tuple mul[icast a REPAIR_ACK 

REPAIR_ACK [tuple_id, owner_id, type, tuple] 

Queue any unknown [uples. 

Table 1: Distributed Tuple Space (DTS) protocol messages 

Hosts  are free to connect  and disconnect  f rom the multicast group (and/or network)  at 
will. Mobi l e  hosts connec t  through a proxy (such as that p roposed  for  mobi le  IP and  
IPv6) which operates a cache on behalf  of  disconnected clients. 

4. Evaluation 
We have built  an initial version of  the pla t form (approximate ly  3,000 lines of  C fo r  

the d a e m o n  process and 500 lines for the API) which runs on SunOS 4 .1 .4  
( M U L T I C A S T  4.1.4), Sotaris 2.5, Linux 2.0.30 and Windows N T  4.0. We have used the 
p la t fo rm to build a number  of  applications including a text based confe renc ing  tool, a 
col labora t ive  geographical  information system (GIS) and a group coordinat ion service fo r  
a low bit rate video conferenc ing  tool. We believe that the inherent  t ime and space 
decoup l ing  offered  by the model  permits applications a far more  f lexible in teract ion 
mechan i sm than traditional RPC semantics. Applications can t ransparent ly  adop t  
synchronous  or asynchronous  styles of  interaction as applications or network condi t ions  
dictate, facil i tating operat ion in mobile  environments.  
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We have compared the performance of our platform against both the ANSAware 
distributed systems platform (version 4.1) and raw BSD sockets. Our test suite consisted of 
three separate pairs of client and server processes which carry out timed RPC interactions 
consisting of an n byte payload and null response. An RPC is modelled in the tuple space 
by the exchange of two tuples with types request and response respectively. The test 
software was compiled on SparcStation 1 workstations networked with a moderately 
loaded 10Mbps Ethernet. To isolate the additional overhead we incur for splitting the 
L2imbo platform into separate processes (daemon and client libraries), we have run tests 
for both an optimised form in which the two processes are linked into a single executable 
and unoptimised (separate processes) forms of the client and server. The results are 
summarised in table 1. 

Payload 
(bytes) 

256 
512 
1024 
2048 
4096 
8192 

Sockets 
(UDP) 

2.98 
3.45 
3.93 
5.85 
9.46 
15.83 

ANSAware 
4.1 (REX) 

7.10 
10.48 
11.17 
13.14 
21.14 
34.83 

Limbo 
DTS 

(linked) 
6.53 
7.20 
8.64 
11.97 
18.06 
29.93 

Limbo DTS 
(separate 
processes) 

12.58 
13.47 
15.10 
20.28 
28.26 
44,82 

Table 1: Comparison of relative performance on SunOS 

The figures show that in the optimised form Limbo outperforms ANSAware RPC in 
all cases. However, the overhead of the context switch and local communication required 
in the standard LZimbo prototype has a significant impact on the figures. Reducing to a 
minimum the overheads associated with exchanging messages between the application 
stubs and the daemon process is clearly an important factor in improving the performance 
of L2imbo. 

In addition, published figures for the Chores Syst~mes COOL ORB [Chorus,96] on 
the Linux platform suggest that the performance of L2imbo is comparable to other 
distributed systems platforms. The COOL benchmark report quotes 3.8 ms for a basic 
request exchange of 1000 bytes in each direction. On a similar specification Linux 
platform the linked version of L2imbo takes 4.4 ms to perform this same test (averaged 
over 1000 interactions). Furthermore, for interactions of 100 bytes in each direction, 
COOL is quoted as taking 2.6 ms, whereas the optimised form of Limbo takes just 1.9 ms. 

In considering these figures it is important to note that the test case demonstrates 
directed communication. In the conventional distributed systems platform the timing 
information is taken after an initial process of binding and thus represents the best 
possible case for these platforms. In the case of LZimbo however, the test case represents a 
worst case scenario; the tuples are being rapidly inserted and removed from the tupte 
space and the overhead associated with matching is not strictly necessary since only two 
well known processes are communicating. 

5. Concluding Remarks 

The tuple-space paradigm has a number of clear advantages over the RPC paradigm 
for writing complex distributed applications. In particular, the paradigm is ideally suited 
to applications which make use of multicast (e.g. collaborative applications) and 
applications which communicate over both time and space (e.g. mobile applications 
subject to periods of disconnection). We have described a new distributed systems 
platform called LZimbo which is based on the tuple-space paradigm. 

Existing distributed platforms based on the tuple-space paradigm have suffered f rom 
a number of drawbacks. Most critically, previous systems have been unable to provide 
performance comparable to RPC based platforms in typical operational environments. In 
contrast, LZimbo uses a combination of local tuple caches and a protocol based on IP 
multicast to achieve performance for directed communication in line with a number of 
RPC-based distributed systems platforms. For multicast and undirected communications 
L2imbo provides better performance than these platforms. The LZimbo platform will 
shortly be available to the research community from: 

wwwc°mp'lancs'ac'uk/c°mputing/research/mpg/m°st/limb°/ 
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The platform currently executes on Linux, Solaris, SunOS, Windows 95 and Windows 
NT platforms. Our future work in this area will focus on the provision of system agents to 
support the L2imbo platform and in particular on the development of proxies to support 
mobile operation. 
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