
 1

Automated part-of-speech analysis of Urdu: conceptual and technical issues

Andrew Hardie

Department of Linguistics and English Language

Lancaster University, UK

a.hardie@lancaster.ac.uk

Abstract

 Part-of-speech (POS) tagging is the process of labelling tokens in a text with tags that indicate

their morphosyntactic category, and has a wide range of applications in computational and corpus

linguistics, such as the production of corpus-based dictionaries and grammars. This paper describes an

experiment in extending POS tagging to a hitherto untagged language, Urdu.

 The most challenging task in POS tagging is disambiguation, i.e. the resolution of the

contextual ambiguity of a token for which more than one tag is possible. Three important approaches to

disambiguation have been developed: approaches based on rules devised by a linguist; probabilistic

approaches based on the application of corpus-derived statistics in a mathematical model such as a

Markov model; and Brill (1995)’s approach where rules are learned automatically from a corpus.

However, given that only a small amount of pre-tagged data was available for Urdu, only the rule-

based approach was appropriate for the Urdu tagger described here. A rule-based tagger for Urdu was

created within the Unitag architecture, together with the requisite language-specific resources for Urdu

(including a tagset, an analyser, a lexicon, and a rule list).

 An evaluation of the tagger suggests that it performs at a level of accuracy notably below that

commonly reported for languages such as English. However, this poor performance is primarily

attributable to the small size of the lexicon, which is attributable to the small quantity of training data

available. The rule-based disambiguation rules was more successful.

1. Introduction

 In this paper, an experiment in part-of-speech (POS) tagging for Urdu
1
 is

described. After a brief discussion of the background of past work in POS tagging,

then choice of tagging methodology for Urdu texts is justified, and the software and

language-specific resources of which the tagging system is composed are outlined.

Finally, the results of the experiment, in terms of the success rate of the tagger, are

evaluated and, insofar as there are shortcomings, these are explained.

2. Background

 POS tagging
2
 may be defined as the process of assigning to each word in a

running text a label which indicates the status of that word within some system of

categorising the words of that language according to their morphological and/or

syntactic properties (frequently known as a “tagset”)
3
. These “categories” are often

similar to, or subdivisions of, the eight parts of speech recognised by grammarians in

the Latin/Greek tradition (see Voutilainen 1999a: 3-4).

 POS tagging has played an important part in the development of corpus

linguistics. A variety of analyses and statistics can be obtained from a corpus – for

1
 The research reported in this paper is discussed in greater detail in Hardie (2004).

2
 The process of “part-of-speech (POS) tagging” is also frequently referred to as “morphosyntactic

annotation” (e.g. by Leech and Wilson 1999), or “(syntactic) wordclass tagging” (e.g. by authors in van

Halteren 1999). I use these terms interchangeably.
3
 Similar definitions are given by Leech (1987: 8) and van Halteren (1999: xiii).

 2

example word frequency counts, concordances, collocations and keywords/key

categories. However, the value of a corpus is considerably greater when it is marked

up with POS tags. For instance, with POS tags, it is possible for a concordancer to

distinguish between cut_NOUN and cut_VERB, rather than treating these homonyms

as the same word.

 There are a wide variety of applications for POS tagging software and tagged

text. These include information retrieval, spelling- and grammar-checking, speech

processing, handwriting recognition, machine translation, production of corpus-based

dictionaries and grammars, and applications in the teaching of foreign languages and

knowledge of grammar (see Leech and Smith 1999). POS tagging is a key component

of human language technology and corpus research. This paper describes an

experiment in extending this tried and tested technique to a language it has not

hitherto been applied to: Urdu.

3. Tagging methodologies

 This section provides a brief overview of how various different methods of

POS tagging work, before going on to justify the choice of a tagging methodology for

use with Urdu tests and corpora.

 There are three main sub-tasks that a full automatic tagging system must

accomplish, which van Halteren and Voutilainen (1999: 109) describe as follows:

“segmentation of the text into tokens; assignment of potential tags to tokens, usually

resulting in ambiguity; determination of the contextual appropriateness of each

potential tag, usually in order to remove the less appropriate tags”. We may refer to

these tasks as tokenisation, analysis and disambiguation respectively.

 This conceptual division is often an actual division in terms of the software

used: a separate program or module undertakes each task. This is, for example, true of

the CLAWS tagger (Garside, Leech and Sampson 1987). Tokenisation and analysis

are straightforward conceptually, if not always practically. However, various

methodologies exist for the process of disambiguation. The three best known are rule-

based disambiguation, probabilistic disambiguation, and the transformation-based

error-driven learning technique.

 The basic principle of rule-based approaches is that the knowledge base

consists of a set of linguistic generalisations, known most commonly as rules or

constraints. Each rule contains instructions for an operation to be performed, and a

context describing where that rule should be applied. The operation alters the list of

tags associated with an ambiguously-tagged word in such a way that one or more

potential tags are eliminated from consideration, reducing the ambiguity. For instance,

going back to the example of the verb/noun can discussed above, a rule for an English

tagger might state that the modal verb tag should be removed if the preceding word is

an article, and the noun tag removed if the preceding word is a pronoun. This rule

takes advantage of the likely local indicators of a noun as opposed to an operator verb

in English.

 Taking a “rule-based” approach to disambiguation in tagging does not imply

using grammar rules as traditionally formulated by linguists. Disambiguation, rule-

based or otherwise, typically makes use of short-range, surface-level information:

normally no more than the form of preceding or following words, or the tags that

these words have. Rarely is much use made of more abstract syntactic concepts such

 3

as the noun phrase, the verbal group, or the clause
4
. As Brill (1995: 544), among

others, has pointed out, restricting disambiguation to this minimal information can be

highly effective. But such “rules” are a far cry from the theoretical model proposed by

many researchers into syntax (compare for instance the clause/phrase structures and

processes described by Chomsky
5
).

 The earliest approaches to tagging were rule-based (Klein and Simmons 1963;

Greene and Rubin 1971). But the most prominent recent rule-based tagger is the

Constraint Grammar (CG) system developed at the University of Helsinki (see

Karlsson et al. 1995). This represents the state of the art in rule-based disambiguation.

Within CG, disambiguation is performed by the application of constraints. These are

characterised by Voutilainen (1999b) as rules that “perform operation X on target Y

in context Z”. The operation may be SELECT (delete all analyses but one, which is

taken to be correct) or REMOVE (an incorrect analysis). Contexts can refer to words

or analyses on words preceding or following the target word by any distance, or to

clause boundaries. The constraints in CG are manually written, via a combination of

intuition and trial-and-error experimentation (Voutilainen 1999b: 226). While a

majority of the published literature concerns the application of the CG methodology

to the tagging of English, the approach has been applied to several other languages,

for instance French (Chanod and Tapanainen 1995a, 1995b).

 The basic principle of probabilistic approaches is that statistical information

concerning the frequency with which sequences of tags occur is gathered from long

stretches of running text. This data is used to deduce which of the optional analyses of

an ambiguously tagged word is the more likely to be correct. Usually, a mathematical

model known as a Markov model is used to take account of as many adjacent tags as

possible in calculating the most likely tag. The mathematics of Markov models are

discussed in some detail by Charniak et al. (1993). The most immediate advantage of

a probabilistic system over rule-based systems is that the linguist does not have to

write an effective set of rules to produce an effective system. The process of training

a Markov model for POS tagging consists of estimating the parameters of the model.

These parameters are the tag transition probabilities, which are based on counts of

how frequently each tag in the tagset is followed by each other tag in the tagset. These

counts are derived from a tagged corpus. Disambiguation using a Markov model

consists of applying those probabilities to the task of choosing a single tag from a set

of potential tags: the transition probabilities for different potential sequences are

multiplied together to identify the most likely sequence of tags. Probabilistic taggers

using Markov models have been very successful, for instance the CLAWS tagger (see

Garside, Leech and Sampson 1997) and the Xerox tagger (Cutting et al. 1992).

 The third common disambiguation technique was developed by Eric Brill in

the 1990s and is referred to by him as transformation-based error-driven learning

(Brill 1995). Transformations, like constraints, are a type of rule; but whereas

constraints specify what analyses should be removed from a list of possibilities,

transformations change one analysis into another to reduce the number of tagging

errors in an unambiguously tagged text. For this reason, it is strictly speaking not a

disambiguation technique, but what will be referred to here as an “improvement”

technique. Rather than being manually written, in Brill’s approach transformations are

automatically learnt by an algorithm running on a tagged corpus. Brill argues that this

is preferable to training a Markov model on tagged data because whereas the

4
 An exception here is Constraint Grammar (Karlsson et al. 1995), discussed below, which makes use

of clause boundaries.
5
 See for example Chomsky (1957).

 4

transition probabilities that probabilistic systems store are nothing like linguistic

knowledge as linguists formulate it, the transformations learned in Brill’s system

benefit from “the perspicuity of a small set of meaningful rules” (Brill 1992: 152).

 It can be difficult to compare the success rates of these different tagging

methodologies, as differences in the success rates of taggers based on each method

may be due to other factors (e.g. the nature of the text, the tagset, the performance of

the analyser that provides the candidate tags, and so on; see also Abney 1997). There

have been claims that rule-based tagging can outperform probabilistic disambiguation

(see, for instance, Chanod and Tapanainen 1995a). But the difference, if it exists, is

small, so there are few absolute grounds for preferring one methodology over another

for constructing the Urdu tagger described here. However, in practice the relative

unavailability of tagged Urdu data effectively rules out both the disambiguation

methodologies which require training on pre-tagged data. Only 50,000 words of

manually tagged text was available for this study. The methods in question– those

based on Markov models and on transformation-based error-driven learning – are

usually trained on much larger quantities of data than this. Many studies on English

have used the tagged Brown Corpus (1 million words) as training and test data
6
, and

quantities of text on this scale may be considered typical.

 It must be assumed that without the quantities of training data available to the

researchers who have produced impressive results with Markov models, those results

could not be replicated by an Urdu tagger. The same applies to a transformation-based

tagger. Some Markov model taggers can be trained, albeit less effectively, on

untagged data (see Merialdo 1994). However, a lexicon containing the possible tags

for at least a significant proportion of the words is still necessary for the analysis

stage. In the case of Urdu, no such lexicon exists. As lexicons are typically derived

from tagged corpora, the need for tagged data is not obviated in this way.

 By comparison, when disambiguation is performed using rules created by a

linguist, this restriction does not apply. There is no need for a vast quantity of tagged

data. Some tagged text is still required, as a benchmark is required against which to

test the system, but a much smaller amount will suffice here. On this basis, it is

possible to rule out the use of a Markov model or a transformation-based tagging

system for the disambiguation module of an Urdu tagger. The only remaining option

is disambiguation based on hand-crafted rules.

4. Software design and implementation: Unitag

 The tagger for Urdu was implemented within a new tagging system called

Unitag, developed by the author for the purpose of processing two-byte Unicode text

(whereas most earlier taggers can process only ASCII text). Unitag is an architecture

in which different programs can be assembled to create a tagging system. It consists

of a functional typology of disambiguation systems (for not all perform the same

task), a structure into which the programs fit, a formalism for these programs to

communicate with one another, and a system for declaring which programs are to be

used at each stage. The rationale for this is that, as stated above, it is common to

divide tagging into the stage of tokenisation, initial tag analysis, and tag

disambiguation. This computational task is more tractable to the programmer if

handled by several different programs, each called in turn by Unitag. However,

6
 For example, Charniak et al. (1993), Kupiec (1992), Church (1988), Brill and Pop (1999), and Cutting

et al. (1992) all utilise the Brown Corpus, or a large percentage of it, as their training data.

 5

handling each of these tasks by means of a separate program also allows them to be

used independently where this is of benefit. It should be noted that, although it was

written to form the basis of the Urdu tagging system, Unitag itself is entirely

language-independent.

 The typology of disambiguation systems devised for Unitag is based on the

type of input and output a given system has. A disambiguator receives ambiguous

input and removes some of the ambiguity, without necessarily selecting a single tag

(e.g. the CG tagging system). A decider receives ambiguous input and selects a single

tag per token (e.g. most Markov model taggers). An improver receives

unambiguously tagged input and alters the tagging in some way to reduce the number

of errors (e.g. the basic form of Brill’s system). These three types are not

incompatible. As Chanod and Tapanainen (1995a) demonstrate, different types of

disambiguation system can be linked in serial; hybrid taggers such as CLAWS

typically do this (Garside, Leech and Sampson 1987). Unitag can therefore optionally

call all three types, as shown below:

 Whilst the tokeniser and analyser are compulsory, all the other units are

optional. In the Urdu tagger, only a disambiguator is used, because, as has been

explained, a rule-based procedure is to be used. However, it is the facility of future

work on tagging Urdu and related languages will be greatly enhanced by creating the

Urdu tagger in a framework which is ultimately very open to having new components

added to it. A parameter file is used to specify the modules to be used, and any special

options for their configuration, in an instantiation of Unitag.

 The Unitag file format is the formalism used within Unitag for the various

programs to communicate with one another. Information about each token is stored in

a particular layout, which each program can then interpret. The layout is vertical, i.e.

each token is put on a separate line, as in the example lines below:

s00004 w001 <body> *VE NULL

s00010 w001 *VE VVSV2 VC2

s00010 w001 *LE VVSV2/50 VC2/50

 At the start of the line are two serial numbers which identify the token for an

analyst (though they need not be unique), followed by a space. Then, there is a single

 6

horizontal tab character. There follows a three-character code for “last modified by”:

this allows errors to be tracked to the actions of specific modules.

 After the responsibility marker is another space, and then the tag or tags which

are currently assigned to that token. If the “token” is actually an SGML tag, it

receives the special NULL tag. The tags must consist of characters other than control

characters, white space, the underscore character or the forward slash character.

Otherwise any Unicode characters may be used. Between each tag is a space. Tags

may be followed by a forward slash and a two-digit number indicating how likely that

token is to have that tag (a probability expressed as a percentage). Probabilities are

optional: a tagged file need not contain any, and if it does then not every line nor

every tag on a given line need have them. Where no probability is given for a tag, it is

assumed to have an equal share of the probability remaining on that line. So for

example, if two tags are given on the line and neither has a stated probability, then

both are assumed to have a probability of 50%.

 Unitag modules must comply to certain rules to ensure they fit within the

system: i.e. they must handle text in the Unitag file format, they must accept

command-line arguments in a certain format, they must handle one text file at a time.

Several different modules, including tokenisers, analysers, disambiguators and a

probabilistic decider, have been developed for Unitag, based on various algorithms

described in the literature. However, only the key module in the Urdu tagger, namely

the rule-base disambiguator, will be discussed here. This program is called Unirule.

 Any rule-based disambiguator requires some kind of formalism in which its

rules can be expressed. This formalism will necessarily restrict the type of rules that

the system can implement. The formalism devised for Unirule was based on a brief

survey of best practice as exemplified by the rule formalisms of Constraint Grammar

and Brill’s transformation-based tagger (both discussed in the previous section). A

number of features are shared by the formalisms of these two taggers, which are

otherwise quite distinct in their methodology. Both constraints and transformations

consist of some operation to be carried out on the analyses given to a token if a given

set of conditions is fulfilled. One of these conditions refers to the analysis to be

changed. The other conditions may refer to analyses on nearby tokens (ambiguously

or unambiguously), or to the wordforms of nearby tokens, or (in the case of Constraint

Grammar) to the lemma of a nearby token. There is provision for multiple conditions

linked by logical OR and logical AND. The operations that may be performed include

imposing a specified analysis, selecting a specified analysis from those currently

given to the token in question, or deleting a specified analysis from those currently

given to the token in question. Although to actually use either the Constraint

Grammar formalism or Brill’s formalism for Unirule would have been

computationally unfeasible, these shared features were used as the guiding principles

of the Unirule formalism.

 In Unirule, a rule consists of conditions and an action. The action is the

operation which is performed on the “current” token
7
 if the conditions are fulfilled.

There are four possible actions, assign, select, delete and deletenot. An action is

specified as follows in the Unirule formalism:

a select NNMM1N

7
 That is, the token that Unirule is currently analysing in the course of sequentially examining every

token in the file.

 7

 The initial “a” indicates that this is an action, the following word specifies the

type of action that is required, and the tag given at the end is the argument of the

action. The possible actions are:

assign The token is assigned the tag as given. All other tags are deleted.

select If one of the tags listed for that token matches the tag as given, then all

other tags are deleted. If more than one tag listed for that token

matches the tag as given, then the first such tag in the list is selected,

and all other tags deleted. If no tags match the tag as given, then no

action is taken.

delete Any tag matching the tag as given is deleted, unless it is the only tag

remaining on the list.

deletenot Any tag not matching the tag as given is deleted, unless it is the only

tag remaining on the list.

 Unirule recognises two wildcard characters. The asterisk (*) can represent any

single character. For instance, NNM*1N can be used to represent either NNMM1N or

NNMF1N, (M and F being the only two characters that can appear in this context in

the Urdu tagset). The second wildcard character is #. This may only appear at the end

of a string and represents any zero or more characters up to the next white-space

character. This feature has been particularly designed to take advantage of

hierarchical tagsets
8
, so N# can refer to all nouns, NN*M# to all masculine nouns, J#

to all adjectives, JD# to all determiner-like adjectives, and so on.

 The conditions state what features the context must have for the action to be

performed on the current token. A condition consists of an instruction on what type of

comparison to carry out, the range of the comparison, and what is being looked for.

For example:

c ifnextwordis 1 be

 The “c” specifies that this is a condition. The following word specifies the

comparison type; it is followed by an integer indicating the range (up to 25 in the

current version of Unirule), and then by the string which is the basis for comparison.

This example condition will be fulfilled if the first word after the current token is the

same as the defined string (in this case, the English word “be”).

 There are 9 basic comparison types, as follows:

ifthiswordis Fulfilled if the word-form of this token
9
 matches

ifthistagis Fulfilled if all the tags on this token match

ifthistaginc Fulfilled if at least one of the tags on this token matches

ifprevwordis x Fulfilled if the word-form of the x
th

 token before this token

matches

ifprevtagis x Fulfilled if all the tags on the x
th

 token before this token match

ifprevtaginc x Fulfilled if at least one of the tags on the x
th

 token before this

token matches

ifnextwordis x Fulfilled if the word-form of the x
th

 token after this token

matches

ifnexttagis x Fulfilled if all the tags on the x
th

 token after this token match

8
 Note, however, that Unirule is still entirely compatible with non-hierarchical tagsets.

9
 That is, the token that Unirule is currently disambiguating.

 8

ifnexttaginc x Fulfilled if at least one of the tags on the x
th

 token after this

token matches

 There is also a logical negative for each of these condition types, i.e.

ifthiswordisnot, ifprevtagisnot, ifnexttagincnot, and so on. The terms “previous” and

“next” have been used rather than “left” and “right”, to avoid terminology rooted in

any particular writing system which is not universally applicable. The conditions in

Unirule are rather wordier than the conditions in – say – Constraint Grammar.

However, this makes them more perspicuous to the untrained reader.

 A single rule consists of an action, and all its accompanying conditions, which

are listed directly before the action (and after the immediately preceding action). If an

action has no conditions, it will be triggered on every token. If the action has more

than one condition, then all the conditions must be fulfilled for the action to take

effect (logical AND). In the interests of simplicity there is no logical OR, though this

effect could easily be achieved by adding another rule with the same action and a

different condition.

 A Unirule rule file is a single Unicode text file consisting of a string of

conditions and actions. Comment lines may be included (beginning in /) and empty

lines are passed over. There follows an example of a very short set of rules (for Urdu):

/ postpositions follow (pro)nouns, therefore delete verb, adjective

/ and adverb tags

c ifnexttagis 1 II#

a delete V#

c ifnexttagis 1 II#

a delete J#

c ifnexttagis 1 II#

a delete R#

 When Unirule runs, it loads in the rules from file at time of running. The entire

set of rules is applied, in the order they appear in the rule file, to each token in the text

file in turn. Unirule can be instructed to make a multiple passes of a single file, to

allow rules to take advantage of the unambiguous context that the application of other

rules has provided.

5. Urdu language resources

 The Urdu tagger described in this paper uses Unirule as its disambiguator.

However, a language-specific resource, namely a rule-list, is needed for Unirule to

work. Other language-specific resources are required for the Urdu tagger, namely a

tagset, a lexicon and an analyser for Urdu text. The creation of these resources is

discussed below.

5.1. Tagset

 A scheme for categorising the wordforms of a language into approporiate

morphosyntactic categories is a sine qua non of automated POS tagging; developing a

tagset is usually the first step in creating a tagger for a previously untagged language.

The creation of a tagset for Urdu has been discussed extensively elsewhere (Hardie

2003, 2004) and will not be discussed here
10

 except to note that it was based on the

10

 All the tags mentioned in this article are listed in the Appendix.

 9

Urdu grammar of Schmidt (1999) and the EAGLES international standard for POS

tagsets (see Leech and Wilson 1999).

5.2. Analyser

 The program used to assign an initial set of contextually ambiguous tags to

each token in an Urdu text is a language-specific tool called Urdutag. It uses several

means of analysis, including lexical lookup, character type analysis, and

morphological analysis.

 Lexical lookup in Urdutag is fairly basic. A lexicon (discussed below) is

loaded and held in memory by the analyser. The first step in the analysis of a given

token is to look its wordform up on the lexicon list
11

. If it is found, all the tags given

to that wordform in the lexicon are assigned to the token in the text. No attempt is

made to lemmatise wordforms.

 If no tags are assigned from the lexicon, Urdutag attempts to allocate a tag by

analysing the characters that make up the token. This algorithm is currently very

primitive, detecting only the JDNU and FX categories. If all the characters in the

token are numerals (Arabic or Latin), the tag JDNU is assigned. If the token contains

characters from outside the Arabic alphabet, the tag FX is assigned. If no tag has been

assigned at this point, the word is morphologically analysed
12

. It is in this area that a

great deal of specific linguistic knowledge has been built in to the Urdutag program.

 The Urdu grammar of Schmidt (1999) was used as a model of the language to

develop an algorithm for morphological analysis of Urdu tokens. Urdutag reads

characters from the word, one by one, starting from the end, and matches the longest

suffix it can. When it has matched a suffix, it assigns a set of tags associated with that

suffix (or a default set of tags if no suffix is matched). These sets can be quite large,

as there is a great deal of ambiguity among suffixes in use in Urdu. This means that

inevitably, the ambiguity inherent in the wordform is reproduced in the output of the

analyser. The suffixes that the program identifies, and the tags those suffixes indicate,

are listed below. The suffixes are transliterated in a non-standard way to indicate more

clearly the actual letters that occur in the Indo-Perso-Arabic text; the corresponding

standard transliterations may be inferred from the examp[le words. Chōtī yē, ,

which represents variously y, ī, and ē and ai, is shown as Y; vāō, , pronounced v, ū,

ō, or au, is shown as V; baRī yē, , is indicated by E, and chōTī yē with superscript

hamza, , is shown as [hoy] (for “hamza over yē”).

Suffix + example
13

 Tag indicated

Noun suffixes

ā, laRkā NNMM1N

h, baccah NNMM1N

Yh, rūpayah NNMM1N

gāh, ibādatgāh NNUF1N NNUF1O NNUF1V

stān, inglistān NNUM1N NNUM1O NNUM1V NNUM2N

pn, bacpan NNUM1N NNUM1O NNUM1V NNUM2N

11

 Vowel diacritics are stripped from the word prior to the process of analysis, so a single lexicon can

be used for both text without vowel marks and the much rarer vowelled texts.
12

 The morphological analysis stage also splits off clitics as separate tokens. The clitics identified are

al–, -gunā, and the various clitic forms of hī and kō.
13

 Example words are from Schmidt (1999) and Bhatia and Koul (2000).

 10

pā, buRhāpā NNMM1N

Y, laRkī NNMF1N NNMF1O NNMF1V

Yā, ciriyā NNMF1N NNMF1O NNMF1V

āhT, ghabrāhaT NNUF1N NNUF1O NNUF1V

āVT, rukāvaT NNUF1N NNUF1O NNUF1V

Yt, insāniyat NNUF1N NNUF1O NNUF1V

E, laRkē NNMM1O NNMM1V NNMM2N

[hoy]E, rūpae NNMM1O NNMM1V NNMM2N

Yā~, laRkiyā~ NNMF2N

YV~, laRkiyō~ NNMF2O

Y~, kitābe~ NNUF2N

V~, laRkō~ NNMM2O NNUM2O NNUF2O

V, laRkō NNMM2V NNMF2V NNUM2V NNUF2V

Adjective suffixes

ā, chōTā JJM1N

Y, chōTī JJF1N JJF1O JJF2N JJF2O

E, chōTē JJM1O JJM2N JJM2O RRJ

Vā~ JDNM1N

VY~ JDNM1O JDNM2N JDNM2O JDNF1N JDNF1O JDNF2N

JDNF2O

Adverb suffixes

[Unicode 064B],

faurān

RR (Arabic loans ending in the “tanvīn” character)

Verb suffixes

nā, likhnā VVNM1N

nE, likhnē VVNM1O VVNM2

nY, likhnī VVNF1 VVNF2

tā, likhtā VVTM1N

tE, likhtē VVTM1O VVTM2N VVTM2O

tY, likhtī VVTF1N VVTF1O VVTF2N VVTF2O

tY~, likhtī~ VVTF2N

ā, likhā VVYM1N

Yā, likhā VVYM1N

E, likhē VVYM1O VVYM2N VVYM2O

Y, likhī VVYF1N VVYF1O VVYF2N VVYF2O

Y~, likhī~ VVYF2N

V~, likhū~ VVSM1

E, likhē VVST1 VVSV1

Y~, likhē~ VVSM2 VVSV2

V, likhō VVST2 VVIT2

[hoy]E, likhiē VVIA

[hoy]YE, jāiyē VVIA

 Some endings (especially Y, E, ā, Y~ and V) are highly polysemous. This

means that the ambiguity in the analysis is quite high. For instance, the tags for Y are

NNMF1N NNMF1O NNMF1V JJF1N JJF1O JJF2N JJF2O VVYF1N VVYF1O

VVYF2N VVYF2O. Urdutag always matches the longest suffix it can; therefore, if a

word ends in pā, Urdutag will assign the set of tags for pā, not the set of tags for ā.

 11

Exceptions to the generalisations in the table above must be stored in the lexicon, so

that they are not incorrectly tagged by the morphological analyser.

 If no tag is assigned at this stage, a default set of tags, listed below, is assigned

to the token:

JJU, NNUM1N, NNUM1O, NNUM1V, NNUM2N, NNUF1N, NNUF1O, NNUF1V, RR,

VVIT1, VV0

5.3. Lexicon

 Urdutag is designed to use lexicons in a format similar to the Unitag file

format. A line of a lexicon file looks like this:

i000365 VVNF1 VVNF2

i000365 VVNF1/50 VVNF2/50

 The serial number begins with “i” (for “item”) and is followed by 6 figures (to

distinguish lexicons from tagged files). This is followed by a space, and then the

wordform. There is then a horizontal tab character, followed by a list of all possible

tags for that wordform separated by spaces, followed by a carriage return. As with the

Unitag format, the lexicon format may contain probabilities.

 The simplest way to create a lexicon is automatically, by acquiring a list of

wordforms and possible tags from pre-tagged data. The Unilex program, an adjunct to

Unitag, was created to do this. However, the lexicon actually used by Urdutag is a

combination, compiled using Unilex, of two separate lexicons. The first is the lexicon

acquired automatically. The other was written manually and contains words which are

exceptions to the morphological principles used by Urdutag: for example, the

adjective purānā, “old”, which has a formal resemblance to an infinitive verb, as well

as all the wordforms that fall into closed categories.

 A key parameter for the function of Unilex which acquires lexicons from text

files is the frequency threshold. This is an integer, selected by the user, which sets a

minimum number of occurrences below which a word will not be included in the

lexicon. So if the threshold is set at 3, and the word kitāb occurs twice in the training

data, it will not be included in the lexicon.

 The advantage of a low threshold is clear: the lexicon will provide a tag for

more wordforms. But a low threshold may not always give the best result. It may

result in words that occur only once or twice in the training corpus being stored in the

lexicon with only some of the tags they can conceivably have. For example, if the

word sunī~/sunē~
14

, “hear (perfective participle/subjunctive)” occurs once in the

training text, with the tag VVYF2N, every instance of sunī~/sunē~ will be given the

tag VVYF2N. But sunī~/sunē~ may also be VVSV2 or VVSM2. In this case, Urdutag

would have achieved better accuracy by letting the suffix analyser work on the form

of the word, to produce the following list of tags: NNUF2N, VVSM2, VVSV2,

VVYF2N. This list includes all the correct readings (plus an extraneous noun tag). A

higher threshold can prevent low-frequency wordforms blocking the operation of the

morphological analyser in this way.

 To discover the effect of the lexicon threshold, Urdutag was run on the

training data and two test texts using 11 different lexicons, created using automatic

14

 These two words (though not homophonous) are identical in Indo-Perso-Arabic script.

 12

lexicons with thresholds of 1 to 10 and, in addition, the manual lexicon on its own.

Fig. 1 shows the resulting accuracy rates.

Fig. 1

 Apart from the clear indication that a lexicon derived from the data being

tagged is very useful (thus the much better performance achieved on the training

data), several points arise from these results. The manual lexicon alone produces poor

results. A threshold 1 lexicon produces excellent results for the training data from

which it was derived, but on other data does not necessarily perform better than a

lexicon with a higher threshold. The threshold 1 and threshold 4 lexicons do equally

well on the spoken test data, and a threshold 2 lexicon does best on the written data.

 It is clear from this that the “blocking” effect described above is real, and

problematic for tagging, the experiment does not give sufficient evidence to select an

optimum threshold, since the two test texts behaved somewhat differently. Therefore,

another approach was used to get around the blocking problem. Instead of removing

the offending entries from the lexicon by raising the threshold, it seemed logical to

attempt to enrich the lexicon in an attempt to add to those entries the tags that they

were missing.

 A dedicated program, Growurdulex, has been used to enrich automatically

acquired lexicons. It does this by adding tags to the entries in the lexicon on the basis

of the tags that are already there. Groups of tags are designated that apply to forms

which are morphologically identical. If an entry in the lexicon has any member of a

group, then the other members are added if not already there. An example of a group

is JJM1O~JJM2N~JJM2O, all of which apply to words with the suffix the suffix –ē.

 When the experiment described above was redone with enriched lexicons, the

results were as shown in Fig. 2.

 13

Fig. 2

 As can be seen, the blocking effect vanishes, so the threshold 1 lexicon

performs best for all three datasets. There is also a noticeable gain in overall best

accuracy: 1.9% for the spoken text, 0.6% for the written text. Moreover this comes at

a relatively small cost in extra ambiguity. Therefore, the capacity to enrich a lexicon

resolves the problem of finding an optimal threshold: it is 1.

 There is evidence to suggest that the type of the text from which the lexicon is

derived is critical. The spoken test text was at all points easier for Urdutag to handle

than the written text, since the training data is also spoken Urdu.

5.4. Rules

 When writing disambiguation rules, the analyst may use their knowledge of

the language in question to find generalisations about sequences of parts-of-speech

which they anticipate will reduce ambiguity. Rules are then devised to encode these

generalisations. Alternatively, they may come up with rules by examining the errors

and ambiguity in the data.

 The rules that underlie the Urdu tagger described here were initially based on

the model of Urdu grammar presented by Schmidt (1999). This allowed work to be

done on the rule list before the training data became available. However, these rules

were all corrected, and further rules developed, by examining output from Unirule for

errors and remaining ambiguity.

 In developing a rule, it is necessary to move from a generalisation about the

surface structure of the language to one, or in most cases more than one, rules in the

Unirule formalism. The first 105 rules were based on the following generalisations

extracted from Schmidt (1999):

 14

• Postpositions follow nouns and verb infinitives (4)
15

• Nouns and pronouns take the oblique case before postpositions (6)

• The particle hī is clitic after the oblique case of plural personal pronouns, but

not the nominative (2)

• In the phrase āp kā / kē / kī, āp is reflexive, not honorific (1)

• In a compound postposition consisting of kē plus adverb, kē is IIM1O (1)

• Words with adjective-like inflection (i.e. marked adjectives, the marked

postposition kā, marked determiner-like adjectives such as ordinal numerals,

the adjectival particle sā , and possessive pronouns) agree with a following

noun for case, gender and number (78)

• The auxiliary rahā is preceded by a verb in the root form (1)

• General auxiliary verbs and the verbal postposition kē always follow a verb in

the root form (3)

• The future auxiliary follows a subjunctive verb (1)

• An infinitive before cāhiē~ (VC2) is not singular (1)

• kyā at the start of a clause is a question marker rather than an interrogative

pronoun
16

 (2)

• The principle that Unirule should always delete an F* tag, especially FU, if

another analysis was available was also adopted (5)

 As an example of how these principles translate into rules, let us take the

principle that nouns and pronoun are oblique before postpositions. This rule could be

stated as “if the next word is unambiguously tagged as a postposition, remove any

tags indicating a nominative or vocative noun”. This translates into the Unirule

formalism as:

c ifnexttagis 1 II#

a delete N****N

c ifnexttagis 1 II#

a delete N****V

 This only covers nouns. Pronouns (whose tags begin with P) are more

complicated. Personal pronouns are nominative, not oblique, before the postposition

nē. Furthermore, pronoun tags vary in length, so the same wildcard template will not

fit all pronoun tags, as is the case for nouns. The rules for pronouns are as follows:

c ifnexttagis 1 II#

c ifnextwordisnot 1

a delete PP**N

c ifnexttagis 1 II

c ifnextwordis 1

a delete PP**O

c ifnexttagis 1 II#

a delete P**N

c ifnexttagis 1 II#

a delete PNN

 These 105 rules were applied to data analysed using Urdutag and the optimal

lexicon (see above). Before the application of the rules, accuracy was 100% and

ambiguity 2.89; afterwards, they were 97.8% and 2.55, respectively. This

15

 Numbers in brackets indicate the number of rules related to a given principle.
16

 This principle turned out to be unreliable in practice and was removed at a later stage.

 15

performance was then improved by developing additional rules using the training

data, as described below, to reach 99.0% and 1.73. Ultimately a total of 274 rules

were written. Some of these disambiguate only one or two tokens each; others

disambiguate hundreds of tokens.

6. Evaluation: the success rate of the Urdu tagger

 When all components of the system described above are run on the training

dataset, the result is 99.0% accuracy with an ambiguity of 1.73 tags per word.

However, running on test texts which were not part of the data that the system was

trained on, the same system achieves 90.6% / 2.20 (spoken text) and 88.1% / 2.97

(written text). It seems clear that the Urdu tagger does not match up to the mainstream

of taggers for languages such as English. Markov model taggers for English regularly

score above 95% accuracy with ambiguity 1, for instance.

 It may be asked why this should be. The primary cause of the tagger’s poor

performance is an inadequate lexicon. Running on its training data, where it benefits

from a lexicon containing all the words, it performs well. On the test data, where

many tokens are not in the lexicon, accuracy drops by 9-10%, and ambiguity

increases drastically. This suggests that the common core of Urdu vocabulary which

needs to be in the lexicon for the tagger to cope with unseen text has not been

captured by deriving a lexicon from the training data. This is also suggested by the

size of the lexicon – circa 3,900 items. As a point of comparison, the English

handcrafted tagging lexicons used by the CLAWS tagger (Smith 1997: 141-144)

contains 15,000-23,000 items, and some automatically derived lexicons rise to 45,000

items. So the small size of the lexicon, a result of the scarcity of training data,

hamstrings the Urdu tagger from the outset.

 However, it seems clear that given an appropriate lexicon, the disambiguation

rules devised for Urdu do work well. On the training data, they reduce ambiguity from

2.55 to 1.73 tags per word (removing over half the ambiguity in the initial analysis) at

a cost of only 1.0% accuracy. It is on the test data, where due to the lexicon the

analysis is poor to begin with, that the disambiguation rules cause an unfortunately

large number of errors (decreasing accuracy from 89.9% to 88.1% on the written test

data, and from 92.5% to 90.6% on the spoken test data).

 It would therefore seem that of the resources created during this study, the

Urdu lexicon is the weakest and least adequate. Unfortunately, this leads to a

comparable inadequacy in the tagger as a whole. However, the software tools that

created the lexicon would provide a means to acquire a far superior lexicon, if only

adequate training data were available. But to create such data would be a time-

intensive and expensive procedure.

 While the disambiguation rules were more successful, they left many tokens

with two or more tags. This remaining ambiguity was very difficult to remove without

causing large numbers of errors. Some of this was down to categories which have

identical forms – such as the various tags for feminine adjectives. JJF1N, JJF1O,

JJF2N and JJF2O are impossible to tell apart from their form. Another problem was

disambiguating words that could be adjectives or adverbs (i.e. JJU/RR or

JJM1O/RRJ), with little in the immediate context to indicate the difference. There

were also individual problematic words. For instance (sau, “seven”, or sō, a

multiple homonym) was extremely difficult to disambiguate. Virtually all instances of

 16

this word retain the tags JDNU
17

, CC and RR. It is possible that additional work on

rule-writing might clear some of the remaining ambiguity. Alternatively,

reformulating the tagset into a scheme that the computer is more likely to succeed in

annotating, without losing the key features that would be required for analysis of Urdu

texts, is another potential path to improvements.

7. Conclusion: lessons for the future

 The research reported here has successfully demonstrated that automated part-

of-speech tagging of Urdu text is possible using pre-existing knowledge, techniques

and standards – in particular the rule-based disambiguation methodology.

Nevertheless, as pointed out above, there are flaws and room for improvement in the

resulting tagger. While comparison between different tagging systems is very

difficult, it is nonetheless very clear that the Urdu tagger described here does not

approach the levels of accuracy and ambiguity that have been achieved for languages

like English. It is not to be expected that a single small-scale project such as this could

match the result of at least two decades’ intensive research. But it has been possible to

create a working system capable of producing a usable output. Furthermore, the

experience gained with Urdu provides a good starting point for attempting automated

morphosyntactic annotation in other Indo-Aryan languages, which have the same

prior requirements as Urdu in terms of Unicode-compliant software frameworks and

resource creation.

8. References

Abney, S (1997) Part-of-speech tagging and partial parsing. In: Young, S and

Bloothooft, G (eds.) (1997) Corpus-based methods in language and speech

processing. Dordrecht: Kluwer Academic Publishers.

Bhatia, TK and Koul, A (2000) Colloquial Urdu. London: Routledge.

Brill, E (1992) A simple rule-based part of speech tagger. In: Proceedings of the Third

Conference on Applied Natural Language Processing (ANLP’92). Trento.

Brill, E (1995) Transformation-based error-driven learning and Natural Language

Processing: a case study in part-of-speech tagging. In: Computational

Linguistics, 21 (4): 543-565.

Brill, E and Pop, M (1999) Unsupervised learning of disambiguation rules for part of

speech tagging. In: Armstrong et al. (1999).

Chanod, J-P and Tapanainen, P (1995a) Tagging French – comparing a statistical and

a constraint-based method. In: Proceedings of the Seventh Conference of the

European Chapter of the ACL. Dublin: Association for Computational

Linguistics.

Chanod, J-P and Tapanainen, P (1995b) Creating a tagset, lexicon and guesser for a

French tagger. In: Proceedings of the European Chapter of the Association for

Computational Linguistics EACL-SIGDAT Workshop. Dublin.

Charniak, E, Hendrickson, C, Jacobson, N and Perkowitz, M (1993) Equations for

part of speech tagging. In: Proceedings of the Eleventh National Conference

on Artificial Intelligence. Menlo Park: AAAI Press/MIT Press.

Chomsky, N (1957) Syntactic structures. Mouton.

17

 Any word homonymous with a numeral is difficult to fully disambiguate since Urdu numerals may

occur in a great variety of syntactic settings.

 17

Church, K (1988) A stochastic parts program and noun phrase parser for unrestricted

text. In: Proceedings of the second conference on Applied Natural Language

Processing, ACL.

Cutting, D, Kupiec, J, Pederson, J, and Sibun, P (1992) A practical part-of-speech

tagger. In: Proceedings of the third conference on Applied Natural Language

Processing, ACL.

Garside, R, Leech, G and Sampson, G (eds.) (1987) The computational analysis of

English. London: Longman.

Greene, BB and Rubin, GM (1971) Automatic grammatical tagging of English.

Providence, Rhode Island: Brown University Department of Linguistics.

van Halteren, H (ed.) (1999) Syntactic wordclass tagging. Dordrecht: Kluwer

Academic Publishers.

van Halteren, H and Voutilainen, A (1999) Automatic taggers: an introduction. In:

van Halteren (1999).

Hardie, A (2004) The computational analysis of morphosyntactic categories in Urdu.

PhD thesis, University of Lancaster.

Hardie, A (2003) Developing a tagset for automated part-of-speech tagging in Urdu.

In: Archer, D, Rayson, P, Wilson, A, and McEnery, T (eds.) (2003)

Proceedings of the Corpus Linguistics 2003 conference. UCREL Technical

Papers Volume 16. Department of Linguistics, Lancaster University.

Karlsson, F, Voutilainen, A, Heikkilä, J and Anttila, A (eds.) (1995) Constraint

Grammar: a language-independent system for parsing unrestricted text.

Berlin: Mouton de Gruyter.

Klein, S and Simmons, RF (1963) A computational approach to grammatical coding

of English words. In: Journal of the Association for Computing Machinery,

10: 334-347.

Kupiec, J 1992 Robust part of speech tagging using a hidden Markov model. Journal

of Computer Speech and Language, 6 (3): 225-242.

Leech, G (1987) General introduction. In: Garside, Leech and Sampson (1987).

Leech, G and Smith, N (1999) The use of tagging. In: van Halteren (1999a).

Leech, G and Wilson, A (1999) Standards for tagsets. In: van Halteren (1999a).

(Edited version of EAGLES Recommendations for the Morphosyntactic

Annotation of Corpora (1996): available on the internet at

http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html .)

Merialdo, B (1994) Tagging English text with a probabilistic model. In:

Computational Linguistics, 20 (2): 155-171.

Schmidt, RL (1999) Urdu: an essential grammar. London: Routledge.

Voutilainen, A (1999a) Orientation. In: van Halteren (1999a).

Voutilainen, A (1999b) Hand-crafted rules. In: van Halteren (1999a).

Appendix: tags mentioned in the text

Tag Description

CC Coordinating conjunction

FX Non-Perso-Arabic string

II Unmarked postposition

JDNU Cardinal number

JDNM1N Masculine singular nominative ordinal number

JDNM1O Masculine singular oblique ordinal number

JDNM2N Masculine plural nominative ordinal number

JDNM2O Masculine plural oblique ordinal number

 18

JDNF1N Feminine singular nominative ordinal number

JDNF1O Feminine singular oblique ordinal number

JDNF2N Feminine plural nominative ordinal number

JDNF2O Feminine plural oblique ordinal number

JJM1N Marked masculine singular nominative adjective

JJM1O Marked masculine singular oblique adjective

JJM2N Marked masculine plural nominative adjective

JJM2O Marked masculine plural oblique adjective

JJF1N Marked feminine singular nominative adjective

JJF1O Marked feminine singular oblique adjective

JJF2N Marked feminine plural nominative adjective

JJF2O Marked feminine plural oblique adjective

JJU Unmarked adjective

NNMM1N Common marked masculine singular nominative noun

NNMM1O Common marked masculine singular oblique noun

NNMM1V Common marked masculine singular vocative noun

NNMM2N Common marked masculine plural nominative noun

NNMM2O Common marked masculine plural oblique noun

NNMM2V Common marked masculine plural vocative noun

NNMF1N Common marked feminine singular nominative noun

NNMF1O Common marked feminine singular oblique noun

NNMF1V Common marked feminine singular vocative noun

NNMF2N Common marked feminine plural nominative noun

NNMF2O Common marked feminine plural oblique noun

NNMF2V Common marked feminine plural vocative noun

NNUM1N Common unmarked masculine singular nominative noun

NNUM1O Common unmarked masculine singular oblique noun

NNUM1V Common unmarked masculine singular vocative noun

NNUM2N Common unmarked masculine plural nominative noun

NNUM2O Common unmarked masculine plural oblique noun

NNUM2V Common unmarked masculine plural vocative noun

NNUF1N Common unmarked feminine singular nominative noun

NNUF1O Common unmarked feminine singular oblique noun

NNUF1V Common unmarked feminine singular vocative noun

NNUF2N Common unmarked feminine plural nominative noun

NNUF2O Common unmarked feminine plural oblique noun

NNUF2V Common unmarked feminine plural vocative noun

PPM1N First person singular nominative personal pronoun (mai~)

PPM1O First person singular oblique personal pronoun (mujh)

PY1N Singular nominative proximal demonstrative pronoun (yah)

PNN Nominative indefinite pronoun (kōī, kuch, sab)

RR General adverb

RRJ General adverb derived from adjective

VV0 Root form lexical verb

VVNM1N Infinitive lexical verb, masculine singular nominative

VVNM1O Infinitive lexical verb, masculine singular oblique

VVNM2 Infinitive lexical verb, masculine plural nominative

VVNF1 Infinitive lexical verb, feminine singular nominative

VVNF2 Infinitive lexical verb, feminine plural nominative

VVTM1N Masculine singular (nominative) imperfective participle lexical verb

VVTM1O Masculine singular oblique imperfective participle lexical verb

VVTM2N Masculine plural (nominative) imperfective participle lexical verb

VVTM2O Masculine plural oblique imperfective participle lexical verb

VVTF1N Feminine singular (nominative) imperfective participle lexical verb

VVTF1O Feminine singular oblique imperfective participle lexical verb

VVTF2N Feminine plural (nominative) imperfective participle lexical verb

VVTF2O Feminine plural oblique imperfective participle lexical verb

VVYM1N Masculine singular (nominative) perfective participle lexical verb

 19

VVYM1O Masculine singular oblique perfective participle lexical verb

VVYM2N Masculine plural (nominative) perfective participle lexical verb

VVYM2O Masculine plural oblique perfective participle lexical verb

VVYF1N Feminine singular (nominative) perfective participle lexical verb

VVYF1O Feminine singular oblique perfective participle lexical verb

VVYF2N Feminine plural (nominative) perfective participle lexical verb

VVYF2O Feminine plural oblique perfective participle lexical verb

VVSM1 First person singular subjunctive lexical verb

VVSM2 First person plural subjunctive lexical verb

VVST1 Second person singular subjunctive lexical verb

VVST2 Second person plural subjunctive lexical verb

VVSV1 Third person singular subjunctive lexical verb

VVSV2 Third person plural subjunctive lexical verb

VVIT1 Second person singular imperative lexical verb

VVIT2 Second person singular imperative lexical verb

VVIA Second person honorific imperative lexical verb

