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Abstract 

 
 Part-of-speech (POS) tagging is the process of labelling tokens in a text with tags that indicate 

their morphosyntactic category, and has a wide range of applications in computational and corpus 

linguistics, such as the production of corpus-based dictionaries and grammars. This paper describes an 

experiment in extending POS tagging to a hitherto untagged language, Urdu. 

 The most challenging task in POS tagging is disambiguation, i.e. the resolution of the 

contextual ambiguity of a token for which more than one tag is possible. Three important approaches to 

disambiguation have been developed: approaches based on rules devised by a linguist; probabilistic 

approaches based on the application of corpus-derived statistics in a mathematical model such as a 

Markov model; and Brill (1995)’s approach where rules are learned automatically from a corpus. 

However, given that only a small amount of pre-tagged data was available for Urdu, only the rule-

based approach was appropriate for the Urdu tagger described here. A rule-based tagger for Urdu was 

created within the Unitag architecture, together with the requisite language-specific resources for Urdu 

(including a tagset, an analyser, a lexicon, and a rule list). 

 An evaluation of the tagger suggests that it performs at a level of accuracy notably below that 

commonly reported for languages such as English. However, this poor performance is primarily 

attributable to the small size of the lexicon, which is attributable to the small quantity of training data 

available. The rule-based disambiguation rules was more successful. 

 

1. Introduction 

 

 In this paper, an experiment in part-of-speech (POS) tagging for Urdu
1
 is 

described. After a brief discussion of the background of past work in POS tagging, 

then choice of tagging methodology for Urdu texts is justified, and the software and 

language-specific resources of which the tagging system is composed are outlined. 

Finally, the results of the experiment, in terms of the success rate of the tagger, are 

evaluated and, insofar as there are shortcomings, these are explained. 

 

2. Background 

 

 POS tagging
2
 may be defined as the process of assigning to each word in a 

running text a label which indicates the status of that word within some system of 

categorising the words of that language according to their morphological and/or 

syntactic properties (frequently known as a “tagset”)
3
. These “categories” are often 

similar to, or subdivisions of, the eight parts of speech recognised by grammarians in 

the Latin/Greek tradition (see Voutilainen 1999a: 3-4). 

 POS tagging has played an important part in the development of corpus 

linguistics. A variety of analyses and statistics can be obtained from a corpus – for 

                                                 
1
 The research reported in this paper is discussed in greater detail in Hardie (2004). 

2
 The process of  “part-of-speech (POS) tagging” is also frequently referred to as “morphosyntactic 

annotation” (e.g. by Leech and Wilson 1999), or “(syntactic) wordclass tagging” (e.g. by authors in van 

Halteren 1999). I use these terms interchangeably. 
3
 Similar definitions are given by Leech (1987: 8) and van Halteren (1999: xiii). 
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example word frequency counts, concordances, collocations and keywords/key 

categories. However, the value of a corpus is considerably greater when it is marked 

up with POS tags. For instance, with POS tags, it is possible for a concordancer to 

distinguish between cut_NOUN and cut_VERB, rather than treating these homonyms 

as the same word. 

 There are a wide variety of applications for POS tagging software and tagged 

text. These include information retrieval, spelling- and grammar-checking, speech 

processing, handwriting recognition, machine translation, production of corpus-based 

dictionaries and grammars, and applications in the teaching of foreign languages and 

knowledge of grammar (see Leech and Smith 1999). POS tagging is a key component 

of human language technology and corpus research. This paper describes an 

experiment in extending this tried and tested technique to a language it has not 

hitherto been applied to: Urdu. 

 

3. Tagging methodologies 

 

 This section provides a brief overview of how various different methods of 

POS tagging work, before going on to justify the choice of a tagging methodology for 

use with Urdu tests and corpora. 

 There are three main sub-tasks that a full automatic tagging system must 

accomplish, which van Halteren and Voutilainen (1999: 109) describe as follows: 

“segmentation of the text into tokens; assignment of potential tags to tokens, usually 

resulting in ambiguity; determination of the contextual appropriateness of each 

potential tag, usually in order to remove the less appropriate tags”. We may refer to 

these tasks as tokenisation, analysis and disambiguation respectively.  

 This conceptual division is often an actual division in terms of the software 

used: a separate program or module undertakes each task. This is, for example, true of 

the CLAWS tagger (Garside, Leech and Sampson 1987). Tokenisation and analysis 

are straightforward conceptually, if not always practically. However, various 

methodologies exist for the process of disambiguation. The three best known are rule-

based disambiguation, probabilistic disambiguation, and the transformation-based 

error-driven learning technique. 

 The basic principle of rule-based approaches is that the knowledge base 

consists of a set of linguistic generalisations, known most commonly as rules or 

constraints. Each rule contains instructions for an operation to be performed, and a 

context describing where that rule should be applied. The operation alters the list of 

tags associated with an ambiguously-tagged word in such a way that one or more 

potential tags are eliminated from consideration, reducing the ambiguity. For instance, 

going back to the example of the verb/noun can discussed above, a rule for an English 

tagger might state that the modal verb tag should be removed if the preceding word is 

an article, and the noun tag removed if the preceding word is a pronoun. This rule 

takes advantage of the likely local indicators of a noun as opposed to an operator verb 

in English.  

 Taking a “rule-based” approach to disambiguation in tagging does not imply 

using grammar rules as traditionally formulated by linguists. Disambiguation, rule-

based or otherwise, typically makes use of short-range, surface-level information: 

normally no more than the form of preceding or following words, or the tags that 

these words have. Rarely is much use made of more abstract syntactic concepts such 
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as the noun phrase, the verbal group, or the clause
4
. As Brill (1995: 544), among 

others, has pointed out, restricting disambiguation to this minimal information can be 

highly effective. But such “rules” are a far cry from the theoretical model proposed by 

many researchers into syntax (compare for instance the clause/phrase structures and 

processes described by Chomsky
5
). 

 The earliest approaches to tagging were rule-based (Klein and Simmons 1963; 

Greene and Rubin 1971). But the most prominent recent rule-based tagger is the 

Constraint Grammar (CG) system developed at the University of Helsinki (see 

Karlsson et al. 1995). This represents the state of the art in rule-based disambiguation. 

Within CG, disambiguation is performed by the application of constraints. These are 

characterised by Voutilainen (1999b) as rules that “perform operation X on target Y 

in context Z”. The operation may be SELECT (delete all analyses but one, which is 

taken to be correct) or REMOVE (an incorrect analysis). Contexts can refer to words 

or analyses on words preceding or following the target word by any distance, or to 

clause boundaries. The constraints in CG are manually written, via a combination of 

intuition and trial-and-error experimentation (Voutilainen 1999b: 226). While a 

majority of the published literature concerns the application of the CG methodology 

to the tagging of English, the approach has been applied to several other languages, 

for instance French (Chanod and Tapanainen 1995a, 1995b). 

 The basic principle of probabilistic approaches is that statistical information 

concerning the frequency with which sequences of tags occur is gathered from long 

stretches of running text. This data is used to deduce which of the optional analyses of 

an ambiguously tagged word is the more likely to be correct. Usually, a mathematical 

model known as a Markov model is used to take account of as many adjacent tags as 

possible in calculating the most likely tag. The mathematics of Markov models are 

discussed in some detail by Charniak et al. (1993). The most immediate advantage of 

a probabilistic system over rule-based systems is that the linguist does not have to 

write an effective set of rules to produce an effective system. The process of training 

a Markov model for POS tagging consists of estimating the parameters of the model. 

These parameters are the tag transition probabilities, which are based on counts of 

how frequently each tag in the tagset is followed by each other tag in the tagset. These 

counts are derived from a tagged corpus. Disambiguation using a Markov model 

consists of applying those probabilities to the task of choosing a single tag from a set 

of potential tags: the transition probabilities for different potential sequences are 

multiplied together to identify the most likely sequence of tags. Probabilistic taggers 

using Markov models have been very successful, for instance the CLAWS tagger (see 

Garside, Leech and Sampson 1997) and the Xerox tagger (Cutting et al. 1992). 

 The third common disambiguation technique was developed by Eric Brill in 

the 1990s and is referred to by him as transformation-based error-driven learning 

(Brill 1995). Transformations, like constraints, are a type of rule; but whereas 

constraints specify what analyses should be removed from a list of possibilities, 

transformations change one analysis into another to reduce the number of tagging 

errors in an unambiguously tagged text. For this reason, it is strictly speaking not a 

disambiguation technique, but what will be referred to here as an “improvement” 

technique. Rather than being manually written, in Brill’s approach transformations are 

automatically learnt by an algorithm running on a tagged corpus. Brill argues that this 

is preferable to training a Markov model on tagged data because whereas the 

                                                 
4
 An exception here is Constraint Grammar (Karlsson et al. 1995), discussed below, which makes use 

of clause boundaries. 
5
 See for example Chomsky (1957). 
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transition probabilities that probabilistic systems store are nothing like linguistic 

knowledge as linguists formulate it, the transformations learned in Brill’s system 

benefit from “the perspicuity of a small set of meaningful rules” (Brill 1992: 152). 

 It can be difficult to compare the success rates of these different tagging 

methodologies, as differences in the success rates of taggers based on each method 

may be due to other factors (e.g. the nature of the text, the tagset, the performance of 

the analyser that provides the candidate tags, and so on; see also Abney 1997). There 

have been claims that rule-based tagging can outperform probabilistic disambiguation 

(see, for instance, Chanod and Tapanainen 1995a). But the difference, if it exists, is 

small, so there are few absolute grounds for preferring one methodology over another 

for constructing the Urdu tagger described here. However, in practice the relative 

unavailability of tagged Urdu data effectively rules out both the disambiguation 

methodologies which require training on pre-tagged data. Only 50,000 words of 

manually tagged text was available for this study. The methods in question– those 

based on Markov models and on transformation-based error-driven learning – are 

usually trained on much larger quantities of data than this. Many studies on English 

have used the tagged Brown Corpus (1 million words) as training and test data
6
, and 

quantities of text on this scale may be considered typical. 

 It must be assumed that without the quantities of training data available to the 

researchers who have produced impressive results with Markov models, those results 

could not be replicated by an Urdu tagger. The same applies to a transformation-based 

tagger. Some Markov model taggers can be trained, albeit less effectively, on 

untagged data (see Merialdo 1994). However, a lexicon containing the possible tags 

for at least a significant proportion of the words is still necessary for the analysis 

stage. In the case of Urdu, no such lexicon exists. As lexicons are typically derived 

from tagged corpora, the need for tagged data is not obviated in this way.  

 By comparison, when disambiguation is performed using rules created by a 

linguist, this restriction does not apply. There is no need for a vast quantity of tagged 

data. Some tagged text is still required, as a benchmark is required against which to 

test the system, but a much smaller amount will suffice here. On this basis, it is 

possible to rule out the use of a Markov model or a transformation-based tagging 

system for the disambiguation module of an Urdu tagger. The only remaining option 

is disambiguation based on hand-crafted rules. 

 

4. Software design and implementation: Unitag 

 

 The tagger for Urdu was implemented within a new tagging system called 

Unitag, developed by the author for the purpose of processing two-byte Unicode text 

(whereas most earlier taggers can process only ASCII text). Unitag is an architecture 

in which different programs can be assembled to create a tagging system. It consists 

of a functional typology of disambiguation systems (for not all perform the same 

task), a structure into which the programs fit, a formalism for these programs to 

communicate with one another, and a system for declaring which programs are to be 

used at each stage. The rationale for this is that, as stated above, it is common to 

divide tagging into the stage of tokenisation, initial tag analysis, and tag 

disambiguation. This computational task is more tractable to the programmer if 

handled by several different programs, each called in turn by Unitag. However, 

                                                 
6
 For example, Charniak et al. (1993), Kupiec (1992), Church (1988), Brill and Pop (1999), and Cutting 

et al. (1992) all utilise the Brown Corpus, or a large percentage of it, as their training data. 
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handling each of these tasks by means of a separate program also allows them to be 

used independently where this is of benefit. It should be noted that, although it was 

written to form the basis of the Urdu tagging system, Unitag itself is entirely 

language-independent. 

 The typology of disambiguation systems devised for Unitag is based on the 

type of input and output a given system has. A disambiguator receives ambiguous 

input and removes some of the ambiguity, without necessarily selecting a single tag 

(e.g. the CG tagging system). A decider receives ambiguous input and selects a single 

tag per token (e.g. most Markov model taggers). An improver receives 

unambiguously tagged input and alters the tagging in some way to reduce the number 

of errors (e.g. the basic form of Brill’s system). These three types are not 

incompatible. As Chanod and Tapanainen (1995a) demonstrate, different types of 

disambiguation system can be linked in serial; hybrid taggers such as CLAWS 

typically do this (Garside, Leech and Sampson 1987). Unitag can therefore optionally 

call all three types, as shown below: 

 

 
 

 Whilst the tokeniser and analyser are compulsory, all the other units are 

optional. In the Urdu tagger, only a disambiguator is used, because, as has been 

explained, a rule-based procedure is to be used. However, it is the facility of future 

work on tagging Urdu and related languages will be greatly enhanced by creating the 

Urdu tagger in a framework which is ultimately very open to having new components 

added to it. A parameter file is used to specify the modules to be used, and any special 

options for their configuration, in an instantiation of Unitag. 

 The Unitag file format is the formalism used within Unitag for the various 

programs to communicate with one another. Information about each token is stored in 

a particular layout, which each program can then interpret. The layout is vertical, i.e. 

each token is put on a separate line, as in the example lines below: 

 
s00004 w001 <body> *VE NULL 

s00010 w001  *VE VVSV2 VC2 

s00010 w001  *LE VVSV2/50 VC2/50 

 

 At the start of the line are two serial numbers which identify the token for an 

analyst (though they need not be unique), followed by a space. Then, there is a single 
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horizontal tab character. There follows a three-character code for “last modified by”: 

this allows errors to be tracked to the actions of specific modules. 

 After the responsibility marker is another space, and then the tag or tags which 

are currently assigned to that token. If the “token” is actually an SGML tag, it 

receives the special NULL tag. The tags must consist of characters other than control 

characters, white space, the underscore character or the forward slash character. 

Otherwise any Unicode characters may be used. Between each tag is a space. Tags 

may be followed by a forward slash and a two-digit number indicating how likely that 

token is to have that tag (a probability expressed as a percentage). Probabilities are 

optional: a tagged file need not contain any, and if it does then not every line nor 

every tag on a given line need have them. Where no probability is given for a tag, it is 

assumed to have an equal share of the probability remaining on that line. So for 

example, if two tags are given on the line and neither has a stated probability, then 

both are assumed to have a probability of 50%. 

 Unitag modules must comply to certain rules to ensure they fit within the 

system: i.e. they must handle text in the Unitag file format, they must accept 

command-line arguments in a certain format, they must handle one text file at a time. 

Several different modules, including tokenisers, analysers, disambiguators and a 

probabilistic decider, have been developed for Unitag, based on various algorithms 

described in the literature. However, only the key module in the Urdu tagger, namely 

the rule-base disambiguator, will be discussed here. This program is called Unirule. 

 Any rule-based disambiguator requires some kind of formalism in which its 

rules can be expressed. This formalism will necessarily restrict the type of rules that 

the system can implement. The formalism devised for Unirule was based on a brief 

survey of best practice as exemplified by the rule formalisms of Constraint Grammar 

and Brill’s transformation-based tagger (both discussed in the previous section). A 

number of features are shared by the formalisms of these two taggers, which are 

otherwise quite distinct in their methodology. Both constraints and transformations 

consist of some operation to be carried out on the analyses given to a token if a given 

set of conditions is fulfilled. One of these conditions refers to the analysis to be 

changed. The other conditions may refer to analyses on nearby tokens (ambiguously 

or unambiguously), or to the wordforms of nearby tokens, or (in the case of Constraint 

Grammar) to the lemma of a nearby token. There is provision for multiple conditions 

linked by logical OR and logical AND. The operations that may be performed include 

imposing a specified analysis, selecting a specified analysis from those currently 

given to the token in question, or deleting a specified analysis from those currently 

given to the token in question. Although to actually use either the Constraint 

Grammar formalism or Brill’s formalism for Unirule would have been 

computationally unfeasible, these shared features were used as the guiding principles 

of the Unirule formalism. 

 In Unirule, a rule consists of conditions and an action. The action is the 

operation which is performed on the “current” token
7
 if the conditions are fulfilled. 

There are four possible actions, assign, select, delete and deletenot. An action is 

specified as follows in the Unirule formalism: 

 
a select NNMM1N 

 

                                                 
7
 That is, the token that Unirule is currently analysing in the course of sequentially examining every 

token in the file. 
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 The initial “a” indicates that this is an action, the following word specifies the 

type of action that is required, and the tag given at the end is the argument of the 

action. The possible actions are: 

 

assign The token is assigned the tag as given. All other tags are deleted. 

select If one of the tags listed for that token matches the tag as given, then all 

other tags are deleted. If more than one tag listed for that token 

matches the tag as given, then the first such tag in the list is selected, 

and all other tags deleted. If no tags match the tag as given, then no 

action is taken. 

delete Any tag matching the tag as given is deleted, unless it is the only tag 

remaining on the list. 

deletenot Any tag not matching the tag as given is deleted, unless it is the only 

tag remaining on the list. 

 

 Unirule recognises two wildcard characters. The asterisk (*) can represent any 

single character. For instance, NNM*1N can be used to represent either NNMM1N or 

NNMF1N, (M and F being the only two characters that can appear in this context in 

the Urdu tagset). The second wildcard character is #. This may only appear at the end 

of a string and represents any zero or more characters up to the next white-space 

character. This feature has been particularly designed to take advantage of 

hierarchical tagsets
8
, so N# can refer to all nouns, NN*M# to all masculine nouns, J# 

to all adjectives, JD# to all determiner-like adjectives, and so on. 

 The conditions state what features the context must have for the action to be 

performed on the current token. A condition consists of an instruction on what type of 

comparison to carry out, the range of the comparison, and what is being looked for. 

For example: 

 
c ifnextwordis 1 be 

 

 The “c” specifies that this is a condition. The following word specifies the 

comparison type; it is followed by an integer indicating the range (up to 25 in the 

current version of Unirule), and then by the string which is the basis for comparison. 

This example condition will be fulfilled if the first word after the current token is the 

same as the defined string (in this case, the English word “be”). 

 There are 9 basic comparison types, as follows: 

 

ifthiswordis Fulfilled if the word-form of this token
9
 matches 

ifthistagis Fulfilled if all the tags on this token match 

ifthistaginc Fulfilled if at least one of the tags on this token matches 

ifprevwordis x Fulfilled if the word-form of the x
th

 token before this token 

matches 

ifprevtagis x Fulfilled if all the tags on the x
th

 token before this token match 

ifprevtaginc x Fulfilled if at least one of the tags on the x
th

 token before this 

token matches 

ifnextwordis x Fulfilled if the word-form of the x
th

 token after this token 

matches 

ifnexttagis x Fulfilled if all the tags on the x
th

 token after this token match 

                                                 
8
 Note, however, that Unirule is still entirely compatible with non-hierarchical tagsets. 

9
 That is, the token that Unirule is currently disambiguating. 
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ifnexttaginc x Fulfilled if at least one of the tags on the x
th

 token after this 

token matches 

 

 There is also a logical negative for each of these condition types, i.e. 

ifthiswordisnot, ifprevtagisnot, ifnexttagincnot, and so on. The terms “previous” and 

“next” have been used rather than “left” and “right”, to avoid terminology rooted in 

any particular writing system which is not universally applicable. The conditions in 

Unirule are rather wordier than the conditions in – say – Constraint Grammar. 

However, this makes them more perspicuous to the untrained reader. 

 A single rule consists of an action, and all its accompanying conditions, which 

are listed directly before the action (and after the immediately preceding action). If an 

action has no conditions, it will be triggered on every token. If the action has more 

than one condition, then all the conditions must be fulfilled for the action to take 

effect (logical AND). In the interests of simplicity there is no logical OR, though this 

effect could easily be achieved by adding another rule with the same action and a 

different condition. 

 A Unirule rule file is a single Unicode text file consisting of a string of 

conditions and actions. Comment lines may be included (beginning in / ) and empty 

lines are passed over. There follows an example of a very short set of rules (for Urdu): 

 
/ postpositions follow (pro)nouns, therefore delete verb, adjective 

/ and adverb tags 

c ifnexttagis 1 II# 

a delete V# 

c ifnexttagis 1 II# 

a delete J# 

c ifnexttagis 1 II# 

a delete R# 

 

 When Unirule runs, it loads in the rules from file at time of running. The entire 

set of rules is applied, in the order they appear in the rule file, to each token in the text 

file in turn. Unirule can be instructed to make a multiple passes of a single file, to 

allow rules to take advantage of the unambiguous context that the application of other 

rules has provided. 

 

5. Urdu language resources 

 

 The Urdu tagger described in this paper uses Unirule as its disambiguator. 

However, a language-specific resource, namely a rule-list, is needed for Unirule to 

work. Other language-specific resources are required for the Urdu tagger, namely a 

tagset, a lexicon and an analyser for Urdu text. The creation of these resources is 

discussed below. 

 

5.1. Tagset 

 

 A scheme for categorising the wordforms of a language into approporiate 

morphosyntactic categories is a sine qua non of automated POS tagging; developing a 

tagset is usually the first step in creating a tagger for a previously untagged language. 

The creation of a tagset for Urdu has been discussed extensively elsewhere (Hardie 

2003, 2004) and will not be discussed here
10

 except to note that it was based on the 

                                                 
10

 All the tags mentioned in this article are listed in the Appendix. 
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Urdu grammar of Schmidt (1999) and the EAGLES international standard for POS 

tagsets (see Leech and Wilson 1999).  

 

5.2. Analyser 

 

 The program used to assign an initial set of contextually ambiguous tags to 

each token in an Urdu text is a language-specific tool called Urdutag. It uses several 

means of analysis, including lexical lookup, character type analysis, and 

morphological analysis.  

 Lexical lookup in Urdutag is fairly basic. A lexicon (discussed below) is 

loaded and held in memory by the analyser. The first step in the analysis of a given 

token is to look its wordform up on the lexicon list
11

. If it is found, all the tags given 

to that wordform in the lexicon are assigned to the token in the text. No attempt is 

made to lemmatise wordforms. 

 If no tags are assigned from the lexicon, Urdutag attempts to allocate a tag by 

analysing the characters that make up the token. This algorithm is currently very 

primitive, detecting only the JDNU and FX categories. If all the characters in the 

token are numerals (Arabic or Latin), the tag JDNU is assigned. If the token contains 

characters from outside the Arabic alphabet, the tag FX is assigned. If no tag has been 

assigned at this point, the word is morphologically analysed
12

. It is in this area that a 

great deal of specific linguistic knowledge has been built in to the Urdutag program. 

 The Urdu grammar of Schmidt (1999) was used as a model of the language to 

develop an algorithm for morphological analysis of Urdu tokens. Urdutag reads 

characters from the word, one by one, starting from the end, and matches the longest 

suffix it can. When it has matched a suffix, it assigns a set of tags associated with that 

suffix (or a default set of tags if no suffix is matched). These sets can be quite large, 

as there is a great deal of ambiguity among suffixes in use in Urdu. This means that 

inevitably, the ambiguity inherent in the wordform is reproduced in the output of the 

analyser. The suffixes that the program identifies, and the tags those suffixes indicate, 

are listed below. The suffixes are transliterated in a non-standard way to indicate more 

clearly the actual letters that occur in the Indo-Perso-Arabic text; the corresponding 

standard transliterations may be inferred from the examp[le words. Chōtī yē, , 

which represents variously y, ī, and ē and ai, is shown as Y; vāō, , pronounced v, ū, 

ō, or au, is shown as V; baRī yē, , is indicated by E, and chōTī yē with superscript 

hamza, , is shown as [hoy] (for “hamza over yē”). 

 

Suffix + example
13

 Tag indicated 

Noun suffixes 

ā, laRkā NNMM1N 

h, baccah NNMM1N 

Yh, rūpayah NNMM1N 

gāh, ibādatgāh NNUF1N NNUF1O NNUF1V 

stān, inglistān NNUM1N NNUM1O NNUM1V NNUM2N 

pn, bacpan NNUM1N NNUM1O NNUM1V NNUM2N 

                                                 
11

 Vowel diacritics are stripped from the word prior to the process of analysis, so a single lexicon can 

be used for both text without vowel marks and the much rarer vowelled texts. 
12

 The morphological analysis stage also splits off clitics as separate tokens. The clitics identified are 

al–, -gunā, and the various clitic forms of hī and kō. 
13

 Example words are from Schmidt (1999) and Bhatia and Koul (2000). 
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pā, buRhāpā NNMM1N 

Y, laRkī NNMF1N NNMF1O NNMF1V 

Yā, ciriyā NNMF1N NNMF1O NNMF1V 

āhT, ghabrāhaT NNUF1N NNUF1O NNUF1V 

āVT, rukāvaT NNUF1N NNUF1O NNUF1V 

Yt, insāniyat NNUF1N NNUF1O NNUF1V 

E, laRkē NNMM1O NNMM1V NNMM2N 

[hoy]E, rūpae NNMM1O NNMM1V NNMM2N 

Yā~, laRkiyā~ NNMF2N 

YV~, laRkiyō~ NNMF2O 

Y~, kitābe~ NNUF2N  

V~, laRkō~ NNMM2O NNUM2O NNUF2O 

V, laRkō NNMM2V NNMF2V NNUM2V NNUF2V 

Adjective suffixes 

ā, chōTā JJM1N 

Y, chōTī JJF1N JJF1O JJF2N JJF2O 

E, chōTē JJM1O JJM2N JJM2O RRJ 

Vā~ JDNM1N 

VY~ JDNM1O JDNM2N JDNM2O JDNF1N JDNF1O JDNF2N 

JDNF2O 

Adverb suffixes 

[Unicode 064B], 

faurān 

RR (Arabic loans ending in the “tanvīn” character) 

Verb suffixes 

nā, likhnā VVNM1N 

nE, likhnē VVNM1O VVNM2 

nY, likhnī VVNF1 VVNF2 

tā, likhtā VVTM1N 

tE, likhtē VVTM1O VVTM2N VVTM2O 

tY, likhtī VVTF1N VVTF1O VVTF2N VVTF2O 

tY~, likhtī~ VVTF2N 

ā, likhā VVYM1N 

Yā, likhā VVYM1N 

E, likhē VVYM1O VVYM2N VVYM2O 

Y, likhī VVYF1N VVYF1O VVYF2N VVYF2O 

Y~, likhī~ VVYF2N 

V~, likhū~ VVSM1 

E, likhē VVST1 VVSV1 

Y~, likhē~ VVSM2 VVSV2 

V, likhō VVST2 VVIT2 

[hoy]E, likhiē VVIA 

[hoy]YE, jāiyē VVIA 

 

 Some endings (especially Y, E, ā, Y~ and V) are highly polysemous. This 

means that the ambiguity in the analysis is quite high. For instance, the tags for Y are 

NNMF1N NNMF1O NNMF1V JJF1N JJF1O JJF2N JJF2O VVYF1N VVYF1O 

VVYF2N VVYF2O. Urdutag always matches the longest suffix it can; therefore, if a 

word ends in pā, Urdutag will assign the set of tags for pā, not the set of tags for ā. 
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Exceptions to the generalisations in the table above must be stored in the lexicon, so 

that they are not incorrectly tagged by the morphological analyser. 

 If no tag is assigned at this stage, a default set of tags, listed below, is assigned 

to the token: 

 
JJU, NNUM1N, NNUM1O, NNUM1V, NNUM2N, NNUF1N, NNUF1O, NNUF1V, RR, 

VVIT1, VV0 

 

5.3. Lexicon 

 

 Urdutag is designed to use lexicons in a format similar to the Unitag file 

format. A line of a lexicon file looks like this: 

 

i000365  VVNF1 VVNF2 

i000365  VVNF1/50 VVNF2/50 

 

 The serial number begins with “i” (for “item”) and is followed by 6 figures (to 

distinguish lexicons from tagged files). This is followed by a space, and then the 

wordform. There is then a horizontal tab character, followed by a list of all possible 

tags for that wordform separated by spaces, followed by a carriage return. As with the 

Unitag format, the lexicon format may contain probabilities. 

 The simplest way to create a lexicon is automatically, by acquiring a list of 

wordforms and possible tags from pre-tagged data. The Unilex program, an adjunct to 

Unitag, was created to do this. However, the lexicon actually used by Urdutag is a 

combination, compiled using Unilex, of two separate lexicons. The first is the lexicon 

acquired automatically. The other was written manually and contains words which are 

exceptions to the morphological principles used by Urdutag: for example, the 

adjective purānā, “old”, which has a formal resemblance to an infinitive verb, as well 

as all the wordforms that fall into closed categories. 

 A key parameter for the function of Unilex which acquires lexicons from text 

files is the frequency threshold. This is an integer, selected by the user, which sets a 

minimum number of occurrences below which a word will not be included in the 

lexicon. So if the threshold is set at 3, and the word kitāb occurs twice in the training 

data, it will not be included in the lexicon. 

 The advantage of a low threshold is clear: the lexicon will provide a tag for 

more wordforms. But a low threshold may not always give the best result. It may 

result in words that occur only once or twice in the training corpus being stored in the 

lexicon with only some of the tags they can conceivably have. For example, if the 

word sunī~/sunē~
14

, “hear (perfective participle/subjunctive)” occurs once in the 

training text, with the tag VVYF2N, every instance of sunī~/sunē~ will be given the 

tag VVYF2N. But sunī~/sunē~ may also be VVSV2 or VVSM2. In this case, Urdutag 

would have achieved better accuracy by letting the suffix analyser work on the form 

of the word, to produce the following list of tags: NNUF2N, VVSM2, VVSV2, 

VVYF2N. This list includes all the correct readings (plus an extraneous noun tag). A 

higher threshold can prevent low-frequency wordforms blocking the operation of the 

morphological analyser in this way.  

 To discover the effect of the lexicon threshold, Urdutag was run on the 

training data and two test texts using 11 different lexicons, created using automatic 

                                                 
14

 These two words (though not homophonous) are identical in Indo-Perso-Arabic script. 



 12

lexicons with thresholds of 1 to 10 and, in addition, the manual lexicon on its own. 

Fig. 1 shows the resulting accuracy rates. 

 
Fig. 1 

 

 Apart from the clear indication that a lexicon derived from the data being 

tagged is very useful (thus the much better performance achieved on the training 

data), several points arise from these results. The manual lexicon alone produces poor 

results. A threshold 1 lexicon produces excellent results for the training data from 

which it was derived, but on other data does not necessarily perform better than a 

lexicon with a higher threshold. The threshold 1 and threshold 4 lexicons do equally 

well on the spoken test data, and a threshold 2 lexicon does best on the written data. 

 It is clear from this that the “blocking” effect described above is real, and 

problematic for tagging, the experiment does not give sufficient evidence to select an 

optimum threshold, since the two test texts behaved somewhat differently. Therefore, 

another approach was used to get around the blocking problem. Instead of removing 

the offending entries from the lexicon by raising the threshold, it seemed logical to 

attempt to enrich the lexicon in an attempt to add to those entries the tags that they 

were missing. 

 A dedicated program, Growurdulex, has been used to enrich automatically 

acquired lexicons. It does this by adding tags to the entries in the lexicon on the basis 

of the tags that are already there. Groups of tags are designated that apply to forms 

which are morphologically identical. If an entry in the lexicon has any member of a 

group, then the other members are added if not already there. An example of a group 

is JJM1O~JJM2N~JJM2O, all of which apply to words with the suffix the suffix –ē. 

 When the experiment described above was redone with enriched lexicons, the 

results were as shown in Fig. 2. 
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Fig. 2 

 

 As can be seen, the blocking effect vanishes, so the threshold 1 lexicon 

performs best for all three datasets. There is also a noticeable gain in overall best 

accuracy: 1.9% for the spoken text, 0.6% for the written text. Moreover this comes at 

a relatively small cost in extra ambiguity. Therefore, the capacity to enrich a lexicon 

resolves the problem of finding an optimal threshold: it is 1. 

 There is evidence to suggest that the type of the text from which the lexicon is 

derived is critical. The spoken test text was at all points easier for Urdutag to handle 

than the written text, since the training data is also spoken Urdu. 

 

5.4. Rules 

 

 When writing disambiguation rules, the analyst may use their knowledge of 

the language in question to find generalisations about sequences of parts-of-speech 

which they anticipate will reduce ambiguity. Rules are then devised to encode these 

generalisations. Alternatively, they may come up with rules by examining the errors 

and ambiguity in the data. 

 The rules that underlie the Urdu tagger described here were initially based on 

the model of Urdu grammar presented by Schmidt (1999). This allowed work to be 

done on the rule list before the training data became available. However, these rules 

were all corrected, and further rules developed, by examining output from Unirule for 

errors and remaining ambiguity. 

 In developing a rule, it is necessary to move from a generalisation about the 

surface structure of the language to one, or in most cases more than one, rules in the 

Unirule formalism. The first 105 rules were based on the following generalisations 

extracted from Schmidt (1999):  
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• Postpositions follow nouns and verb infinitives (4)
15

 

• Nouns and pronouns take the oblique case before postpositions (6) 

• The particle hī is clitic after the oblique case of plural personal pronouns, but 

not the nominative (2) 

• In the phrase āp kā / kē / kī, āp is reflexive, not honorific (1) 

• In a compound postposition consisting of kē plus adverb, kē is IIM1O (1) 

• Words with adjective-like inflection (i.e. marked adjectives, the marked 

postposition kā, marked determiner-like adjectives such as ordinal numerals, 

the adjectival particle sā , and possessive pronouns) agree with a following 

noun for case, gender and number (78) 

• The auxiliary rahā is preceded by a verb in the root form (1) 

• General auxiliary verbs and the verbal postposition kē always follow a verb in 

the root form (3) 

• The future auxiliary follows a subjunctive verb (1) 

• An infinitive before cāhiē~ (VC2) is not singular (1) 

• kyā at the start of a clause is a question marker rather than an interrogative 

pronoun
16

 (2) 

• The principle that Unirule should always delete an F* tag, especially FU, if 

another analysis was available was also adopted (5) 

 

 As an example of how these principles translate into rules, let us take the 

principle that nouns and pronoun are oblique before postpositions. This rule could be 

stated as “if the next word is unambiguously tagged as a postposition, remove any 

tags indicating a nominative or vocative noun”. This translates into the Unirule 

formalism as: 

 
c ifnexttagis 1 II# 

a delete N****N 

c ifnexttagis 1 II# 

a delete N****V 

 

 This only covers nouns. Pronouns (whose tags begin with P) are more 

complicated. Personal pronouns are nominative, not oblique, before the postposition 

nē. Furthermore, pronoun tags vary in length, so the same wildcard template will not 

fit all pronoun tags, as is the case for nouns. The rules for pronouns are as follows: 

 
c ifnexttagis 1 II# 

c ifnextwordisnot 1  

a delete PP**N 

c ifnexttagis 1 II 

c ifnextwordis 1  

a delete PP**O 

c ifnexttagis 1 II# 

a delete P**N 

c ifnexttagis 1 II# 

a delete PNN 

 

 These 105 rules were applied to data analysed using Urdutag and the optimal 

lexicon (see above). Before the application of the rules, accuracy was 100% and 

ambiguity 2.89; afterwards, they were 97.8% and 2.55, respectively. This 

                                                 
15

 Numbers in brackets indicate the number of rules related to a given principle. 
16

 This principle turned out to be unreliable in practice and was removed at a later stage. 
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performance was then improved by developing additional rules using the training 

data, as described below, to reach 99.0% and 1.73. Ultimately a total of 274 rules 

were written. Some of these disambiguate only one or two tokens each; others 

disambiguate hundreds of tokens. 

 

6. Evaluation: the success rate of the Urdu tagger 

 

 When all components of the system described above are run on the training 

dataset, the result is 99.0% accuracy with an ambiguity of 1.73 tags per word. 

However, running on test texts which were not part of the data that the system was 

trained on, the same system achieves 90.6% / 2.20 (spoken text) and 88.1% / 2.97 

(written text). It seems clear that the Urdu tagger does not match up to the mainstream 

of taggers for languages such as English. Markov model taggers for English regularly 

score above 95% accuracy with ambiguity 1, for instance. 

 It may be asked why this should be. The primary cause of the tagger’s poor 

performance is an inadequate lexicon. Running on its training data, where it benefits 

from a lexicon containing all the words, it performs well. On the test data, where 

many tokens are not in the lexicon, accuracy drops by 9-10%, and ambiguity 

increases drastically. This suggests that the common core of Urdu vocabulary which 

needs to be in the lexicon for the tagger to cope with unseen text has not been 

captured by deriving a lexicon from the training data. This is also suggested by the 

size of the lexicon – circa 3,900 items. As a point of comparison, the English 

handcrafted tagging lexicons used by the CLAWS tagger (Smith 1997: 141-144) 

contains 15,000-23,000 items, and some automatically derived lexicons rise to 45,000 

items. So the small size of the lexicon, a result of the scarcity of training data, 

hamstrings the Urdu tagger from the outset. 

 However, it seems clear that given an appropriate lexicon, the disambiguation 

rules devised for Urdu do work well. On the training data, they reduce ambiguity from 

2.55 to 1.73 tags per word (removing over half the ambiguity in the initial analysis) at 

a cost of only 1.0% accuracy. It is on the test data, where due to the lexicon the 

analysis is poor to begin with, that the disambiguation rules cause an unfortunately 

large number of errors (decreasing accuracy from 89.9% to 88.1% on the written test 

data, and from 92.5% to 90.6% on the spoken test data). 

 It would therefore seem that of the resources created during this study, the 

Urdu lexicon is the weakest and least adequate. Unfortunately, this leads to a 

comparable inadequacy in the tagger as a whole. However, the software tools that 

created the lexicon would provide a means to acquire a far superior lexicon, if only 

adequate training data were available. But to create such data would be a time-

intensive and expensive procedure. 

 While the disambiguation rules were more successful, they left many tokens 

with two or more tags. This remaining ambiguity was very difficult to remove without 

causing large numbers of errors. Some of this was down to categories which have 

identical forms – such as the various tags for feminine adjectives. JJF1N, JJF1O, 

JJF2N and JJF2O are impossible to tell apart from their form. Another problem was 

disambiguating words that could be adjectives or adverbs (i.e. JJU/RR or 

JJM1O/RRJ), with little in the immediate context to indicate the difference. There 

were also individual problematic words. For instance  (sau, “seven”, or sō, a 

multiple homonym) was extremely difficult to disambiguate. Virtually all instances of 
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this word retain the tags JDNU
17

, CC and RR. It is possible that additional work on 

rule-writing might clear some of the remaining ambiguity. Alternatively, 

reformulating the tagset into a scheme that the computer is more likely to succeed in 

annotating, without losing the key features that would be required for analysis of Urdu 

texts, is another potential path to improvements. 

 

7. Conclusion: lessons for the future 

 

 The research reported here has successfully demonstrated that automated part-

of-speech tagging of Urdu text is possible using pre-existing knowledge, techniques 

and standards – in particular the rule-based disambiguation methodology. 

Nevertheless, as pointed out above, there are flaws and room for improvement in the 

resulting tagger. While comparison between different tagging systems is very 

difficult, it is nonetheless very clear that the Urdu tagger described here does not 

approach the levels of accuracy and ambiguity that have been achieved for languages 

like English. It is not to be expected that a single small-scale project such as this could 

match the result of at least two decades’ intensive research. But it has been possible to 

create a working system capable of producing a usable output. Furthermore, the 

experience gained with Urdu provides a good starting point for attempting automated 

morphosyntactic annotation in other Indo-Aryan languages, which have the same 

prior requirements as Urdu in terms of Unicode-compliant software frameworks and 

resource creation. 
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Appendix: tags mentioned in the text 

 
Tag Description 

CC Coordinating conjunction 

FX Non-Perso-Arabic string 

II Unmarked postposition 

JDNU Cardinal number 

JDNM1N Masculine singular nominative ordinal number 

JDNM1O Masculine singular oblique ordinal number 

JDNM2N Masculine plural nominative ordinal number 

JDNM2O Masculine plural oblique ordinal number 
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JDNF1N Feminine singular nominative ordinal number 

JDNF1O Feminine singular oblique ordinal number 

JDNF2N Feminine plural nominative ordinal number 

JDNF2O Feminine plural oblique ordinal number 

JJM1N Marked masculine singular nominative adjective 

JJM1O Marked masculine singular oblique adjective 

JJM2N Marked masculine plural nominative adjective 

JJM2O Marked masculine plural oblique adjective 

JJF1N Marked feminine singular nominative adjective 

JJF1O Marked feminine singular oblique adjective 

JJF2N Marked feminine plural nominative adjective 

JJF2O Marked feminine plural oblique adjective 

JJU Unmarked adjective 

NNMM1N Common marked masculine singular nominative noun 

NNMM1O Common marked masculine singular oblique noun 

NNMM1V Common marked masculine singular vocative noun 

NNMM2N Common marked masculine plural nominative noun 

NNMM2O Common marked masculine plural oblique noun 

NNMM2V Common marked masculine plural vocative noun 

NNMF1N Common marked feminine singular nominative noun 

NNMF1O Common marked feminine singular oblique noun 

NNMF1V Common marked feminine singular vocative noun 

NNMF2N Common marked feminine plural nominative noun 

NNMF2O Common marked feminine plural oblique noun 

NNMF2V Common marked feminine plural vocative noun 

NNUM1N Common unmarked masculine singular nominative noun 

NNUM1O Common unmarked masculine singular oblique noun 

NNUM1V Common unmarked masculine singular vocative noun 

NNUM2N Common unmarked masculine plural nominative noun 

NNUM2O Common unmarked masculine plural oblique noun 

NNUM2V Common unmarked masculine plural vocative noun 

NNUF1N Common unmarked feminine singular nominative noun 

NNUF1O Common unmarked feminine singular oblique noun 

NNUF1V Common unmarked feminine singular vocative noun 

NNUF2N Common unmarked feminine plural nominative noun 

NNUF2O Common unmarked feminine plural oblique noun 

NNUF2V Common unmarked feminine plural vocative noun 

PPM1N First person singular nominative personal pronoun (mai~) 

PPM1O First person singular oblique personal pronoun (mujh) 

PY1N Singular nominative proximal demonstrative pronoun (yah) 

PNN Nominative indefinite pronoun (kōī, kuch, sab) 

RR General adverb 

RRJ General adverb derived from adjective 

VV0 Root form lexical verb 

VVNM1N Infinitive lexical verb, masculine singular nominative 

VVNM1O Infinitive lexical verb, masculine singular oblique 

VVNM2 Infinitive lexical verb, masculine plural nominative 

VVNF1 Infinitive lexical verb, feminine singular nominative 

VVNF2 Infinitive lexical verb, feminine plural nominative 

VVTM1N Masculine singular (nominative) imperfective participle lexical verb 

VVTM1O Masculine singular oblique imperfective participle lexical verb 

VVTM2N Masculine plural (nominative) imperfective participle lexical verb 

VVTM2O Masculine plural oblique imperfective participle lexical verb 

VVTF1N Feminine singular (nominative) imperfective participle lexical verb 

VVTF1O Feminine singular oblique imperfective participle lexical verb 

VVTF2N Feminine plural (nominative) imperfective participle lexical verb 

VVTF2O Feminine plural oblique imperfective participle lexical verb 

VVYM1N Masculine singular (nominative) perfective participle lexical verb 
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VVYM1O Masculine singular oblique perfective participle lexical verb 

VVYM2N Masculine plural (nominative) perfective participle lexical verb 

VVYM2O Masculine plural oblique perfective participle lexical verb 

VVYF1N Feminine singular (nominative) perfective participle lexical verb 

VVYF1O Feminine singular oblique perfective participle lexical verb 

VVYF2N Feminine plural (nominative) perfective participle lexical verb 

VVYF2O Feminine plural oblique perfective participle lexical verb 

VVSM1 First person singular subjunctive lexical verb 

VVSM2 First person plural subjunctive lexical verb 

VVST1 Second person singular subjunctive lexical verb 

VVST2 Second person plural subjunctive lexical verb 

VVSV1 Third person singular subjunctive lexical verb 

VVSV2 Third person plural subjunctive lexical verb 

VVIT1 Second person singular imperative lexical verb 

VVIT2 Second person singular imperative lexical verb 

VVIA Second person honorific imperative lexical verb 

 


