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5 A review of part-of-speech tagging technology 

 

 In this chapter, I will examine a variety of work to date in the field of part-of-

speech (POS) tagging technology, looking in particular at a range of different POS tag 

disambiguation techniques. As I will outline in the following chapter, my part-of-

speech tagger for Urdu is based on the use of disambiguation rules devised by a 

linguist, which I claim to be the optimum technique for the purpose; the goal of this 

chapter is to justify that claim. To this end, I will go into depth on previous research 

into a wide range of disambiguation techniques, since a full understanding of those 

techniques is a necessary prerequisite for justifying my choice. Having reviewed the 

field, I will discuss the factors that influence the choice of a technique, demonstrating 

that the rule-based approach to tag disambiguation is the most appropriate to the 

problem at hand. In particular I will demonstrate that comparisons between the 

performance of different taggers is highly problematic, and thus that performance is 

not a criterion which can be used to justify the choice of a disambiguation technique. 

 There are three main sub-tasks that a full automatic tagging system must 

accomplish: 

“segmentation of the text into tokens; 

assignment of potential tags to tokens, usually resulting in ambiguity; 

determination of the contextual appropriateness of each potential tag, 

usually in order to remove the less appropriate tags and thus resolve the 

ambiguity.” 

van Halteren and Voutilainen (1999: 109) 

 A further conceptual division which is frequently encountered is the splitting 
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of the second subtask into a lexical phase, where words are looked up in a lexicon and 

given the tags listed in their lexicon entry, and an analysis phase, where potential tags 

are assigned based on morphological “hints” given by the spelling of the token (this is 

sometimes referred to as “suffix analysis”). 

 This conceptual division is frequently an actual division in terms of the 

software used. This is, for example, apparent in the CLAWS part-of-speech tagging 

system (Garside, Leech and Sampson 1987). It is also is apparent from the fact that 

many individual studies in the literature discuss techniques or software that address 

only one of these subtasks. 

 This chapter is principally concerned with justifying the choice of the 

technique used for the subtask of determining contextual appropriateness  – otherwise 

referred to as disambiguation. Each technique depends on a model of language use 

which differs in some way and “[i]t is in these models, and hence within this subtask, 

that the highest variation exists” (van Halteren and Voutilainen 1999: 110). 

 Accordingly, I postpone discussion of work done previously in the areas of 

segmentation of text into tokens and assignment of potential tags, and will consider 

now the range of disambiguation techniques1, as a preparatory step towards the 

selection of a rule-based methodology (see section 5.7). 

 

5.1 A proposed typology of disambiguation methodologies 

 

 It is notable that despite the considerable range of techniques employed in 

part-of-speech disambiguation, the contextual information analysed by a 

                                                 
1 This review inevitably revisits a number of studies discussed in chapter 2. However, the focus there 

was on their categorisation schemes (tagsets), whereas here it is on their disambiguation methods. 
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disambiguation algorithm is typically minimal. As will be demonstrated by the 

discussion in the remainder of this chapter, preceding or following words, or the tags 

that these words have, are the only information utilised to any great degree in 

disambiguation. No use is made of more abstract syntactic concepts such as the noun 

phrase, the verbal group, or the clause2. This is true almost by definition: an approach 

to morphosyntactic categories that made use of higher-level structures would probably 

considered a form of parsing rather than part-of-speech disambiguation per se. But as 

Brill, among others, has pointed out, restricting disambiguation to use of this minimal 

information can be highly effective: 

Corpus-based methods are often able to succeed while ignoring the true 

complexities of language, banking on the fact that complex linguistic 

phenomena can often be indirectly observed through simple epiphenomena. 

For example, one could accurately assign a part-of-speech tag to a the word 

race in (1-3) without any reference to phrase structure or constituent 

movement: one would only have to realize that, usually, a word one or two 

words to the right of a modal is a verb and not a noun. An exception to this 

generalisation arises when the word is also one word to the right of a 

determiner. 

(1) He will race/VERB the car. 

(2) He will not race/VERB the car. 

(3) When will the race/NOUN end? 

 Brill (1995: 544) 

 It is worth pointing out, of course, that non-corpus-based approaches to 

disambiguation utilise exactly the same information in the input data as the corpus-

based method suggested by Brill. Before proceeding to an examination of assorted 

                                                 
2 An exception here is Constraint Grammar (see 5.2.2), which makes use of clause boundaries. 
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Linguist’s knowledge 

Corpus of texts 

Rules 

Probabilities 

A

B

C

D

 Source of knowledge  Expressed as 

disambiguation techniques, corpus-based and non-corpus-based, it is worth 

establishing exactly what types of techniques have been developed and on what basis 

they differ from one another. 

 It is possible to group models of language used in disambiguation in two ways. 

Firstly, do the linguistic generalisations in the model derive from the grammatical 

knowledge of a linguist or from a corpus of texts? Secondly, are these linguistic 

generalisations expressed as rules or as probabilities? Combining these two 

classifications, four logically possible disambiguation methodologies exist, as shown 

in the diagram below. 

Fig. 5.1 

 
 This is, however, an idealisation in terms of what actual tagging systems have 

been developed. While any given methodology can be captured in this typology, a 

system could easily be based on a combination of methodologies, allowing for more 

types of system than the basic four. For example, the CLAWS system contains 

modules that utilise different methodologies. Its CHAINPROBS module, for instance, 

is type B, and its IDIOMTAG module is type A. See 5.3.2.2 and 5.6.3 for full 

discussion of this system. 

 In type A methods, the linguist’s knowledge is expressed as “rules”. Typically 

these rules are used by the tagging program to alter the tags associated with the text in 
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such a way as to reduce the ambiguity. Systems of this sort were the earliest to be 

developed, in the 1960s and 1970s, although major advances were made in the 1990s. 

They are discussed in section 5.2 below. Type B methods, by contrast, typically 

gather corpus-derived data on the frequencies in which different sequences of tags 

occur. They then use this data to decide which of the possible tags given to a word is 

most likely given the surrounding tags, employing some statistical model such as a 

Markov model. Chronologically, these probabilistic or stochastic methods (described 

in section 5.3) were the second to develop, principally in the late 1970s and 1980s. 

 The most recent approach to part-of-speech disambiguation techniques to be 

developed is that involving generally applicable machine-learning techniques such as 

neural networks. These are strictly speaking type B methods, since the linguistic 

information in the model derives from a corpus and is stored as a large number of 

numerical parameters. However, the parameters are not tag sequence frequencies, and 

the variety of models used differ greatly from Markov models. Thus I discuss such 

approaches separately in section 5.5. 

 The methodology identified in the diagram as type C, where corpus-based 

rules are utilised, is identified principally with the work of Eric Brill3 through the 

1990s, who calls this approach “transformation-based error-driven learning”. While, 

as the diagram above illustrates, this methodology bears a strong resemblance to 

elements of the rule-based method and the stochastic method, the way in which these 

two approaches are hybridised effectively make this an entirely separate method, and 

I shall consider it as such; it is discussed in section 5.4. 

 There are to my knowledge no methodologies of type D (thus the dashed line 

indicating what would be its mode of operation in the diagram above). It is not hard to 

                                                 
3 See Brill (1992, 1994, 1995, 1999) and Brill and Pop (1999). 
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hypothesise how this asymmetry in the range of methodologies comes to be. As 

McEnery and Wilson (1996: 12) point out, human beings are typically extremely 

unskilled in estimating frequencies of words, phrase structures and other linguistic 

phenomena. It would be a perverse disambiguation methodology indeed which, using 

the knowledge of the human linguist as its source of data, elected to express this 

knowledge in the form of probabilities – which humans usually get wrong – instead of 

rules – which they are much more likely to get right. This is not to say that human 

impressions of linguistic probability have no place in computational linguistics. Early 

versions of the CLAWS system (Atwell 1987) utilised very approximate human-

estimated probabilities within the lexicon. Likewise, McEnery (1995: 201-219) uses a 

human perception of probability in the context of initial rule-ordering within a 

computer system to model pragmatic reasoning. However, no full probabilistic model 

of linguistic knowledge in general or part-of-speech disambiguation in particular has 

been based upon human-estimated probabilities. 

 I now proceed to consider in turn rule-based approaches, probabilistic 

approaches, approaches utilising corpus-derived rules, and approaches based on 

machine-learning techniques. I will then in section 5.6 review some efforts that have 

been made firstly to compare, and secondly to synthesise the different methods 

discussed. 

 

5.2 Rule-based approaches to disambiguation 

 

 The basic principle of rule-based approaches is that the knowledge base 

consists of a set of linguistic generalisations, known most commonly as rules or 

constraints. Each rule contains instructions for an operation to be performed, and a 
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context describing where that rule should be applied. The operation to be performed 

alters the list of tags associated with an ambiguously-tagged word in such a way that 

one or more potential tags are eliminated from consideration, reducing the ambiguity. 

For instance, a rule for an English tagger might state that where one of the potential 

tags for a word is infinitive verb, that reading should be removed if the preceding 

word is not tagged as 1) a modal verb, 2) the primary verb “do”, or 3) the infinitive 

marker “to” (example from Voutilainen 1999c: 230). This rule takes advantage of the 

known restriction of the infinitive form of the verb in English to these contexts. 

Different systems have used different computational implementations, which in turn 

allow different types of rules to be incorporated into the systems. 

 As can be inferred from the foregoing brief description, taking a “rule-based” 

approach to disambiguation in tagging does not imply using grammar rules as 

traditionally formulated by linguists. Disambiguation, rule-based or otherwise, 

typically makes use of short-range information4, as mentioned above and as the 

examples below will make clear. This is a far cry from the theoretical model proposed 

by many researchers into syntax (compare for instance the clause/phrase structures 

and processes described by Chomsky5). 

 Rule based approaches are often associated with parsing. For example, Harris’ 

(1962) program was a parser, and Klein and Simmons (1963) depict their rule-based 

tagging as a preliminary stage to an eventual parsing process. More recently, Hindle 

utilised a parser in part-of-speech disambiguation (see section 5.4.1). However, there 

is no necessary link between rule-based approaches and parsing, as demonstrated by 

                                                 
4 The Constraint Grammar system (see 5.2.2) is an exception here; it does make use of longer-range 

information. 

5 See for example Chomsky (1957). 
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Greene and Rubin (1971), whose tagging was not associated particularly with a 

parser. 

 Historically, there have been two distinct phases of work on rule-based 

disambiguation. The earliest work, hinging on the studies of Klein and Simmons 

(1963) and Greene and Rubin (1971),  was begun before any other methodology had 

been developed, and marked the first attempt to solve the problem of automated POS 

disambiguation. By contrast, the more recent rule-based approach known as 

Constraint Grammar, and centring on the work of Karlsson et al. (1995), was 

undertaken in the light of an intervening decade of research into probabilistic 

disambiguation, which at that time seemed to provide better results than the early 

rule-based methods. I discuss the earlier phase in section 5.2.1 below, and move on to 

a discussion of Constraint Grammar in 5.2.2.  

 

5.2.1 Early work with rule-based disambiguation approaches 

 

 Although not the earliest work in the field (see Harris 19626, Joshi and Hopely 

1997), the study of Klein and Simmons (1963) is frequently cited as such, since their 

program, called CGC,  was the inspiration for later taggers, including that of Greene 

and Rubin (1971). It should be noted that both Klein and Simmons and Greene and 

Rubin worked exclusively on English. 

 Like later taggers, CGC utilises a lexical lookup stage7 followed by a suffix 

                                                 
6 Harris’ work is not discussed further here, since his system was primarily a parser. 

7 In this case, the lexicon consisted of 2000 items, split for computational purposes into several smaller 

units. At this time, due to hardware limitations, the working memory available to a program was very 

much smaller than it is today. 
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lookup stage to assign an initial set of one or more tags to each word in a sentence. 

Ambiguity is thus introduced into the analysis. It is removed by the application of 

rules in the form of what Klein and Simmons refer to as a “context frame test”. 

 This test is worthy of some brief discussion, since its means of operation is 

somewhat different to that of the typical “rule” described above. The CGC program 

includes a “context triad frame table”, which lists the possible tag sequences which 

may occur between two unambiguously tagged words. Each such ambiguous 

sequence encountered is looked up in this table, and the allowable tag sequences 

compared to the potential tags previously given to the ambiguous words. So if one of 

the tag sequences suggested for a two-word stretch of ambiguity was NOUN – VERB, 

but VERB was not among the  potential tags for the second word, this sequence 

would be eliminated from consideration. 

 Despite what can be seen in retrospect as a unique algorithm, the basic 

principle of CGC was the same as that of later rule-based systems: “the basis for 

computing grammar codes [i.e. tags] for the words in a sentence is one of successively 

reducing the number of combinatorial choices of word-class codes” (Klein and 

Simmons 1973: 342) – that is, one of reducing ambiguity. 

 Klein and Simmons report that the CGC system was capable of handling 

sequences of up to three ambiguously-tagged words using 500 entries in the context 

triad frame table (out of 2700 that could conceivably be programmed using their 

formalism). They report a 90% accuracy rate using a set of 30 tags. 

 The TAGGIT program described by Greene and Rubin (1971) uses an initial 

stage of lexical lookup and suffix analysis, like CGC. However, TAGGIT is able to 

handle many more complex exceptions than CGC for such typographic phenomena as 

amounts of money, words containing apostrophes, formulae, capitalised words, 
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hyphenised words, numbers, etc. TAGGIT’s lexicon is also larger. 

 Yet the disambiguation method, referred to by Greene and Rubin as the 

“Context Frame Test”, differed somewhat from CGC’s. Firstly, the scope of the 

“context frame rules” was greater. They could refer to up to three consecutive 

ambiguous words with one or two non-ambiguous words before and/or afterwards, 

although Greene and Rubin decided that the rules should examine only one ambiguity 

at a time. The rules could also either select a tag from the list of possible options or 

remove a tag from that list. 

 Greene and Rubin’s first rules were based on intuition. To take two random 

examples, they wrote rules based on the principles that a verb following a modal 

auxiliary is an infinitive rather than present tense, and that nominative pronouns do 

not follow prepositions. They then added rules suggested by a program that had 

analysed some manually disambiguated data. These latter rules, it should be noted, 

were capable of introducing errors, i.e. one can conceive of sentences which would 

theoretically be incorrectly tagged by these rules. Thus, the reduction of ambiguity 

had to be “paid for” in potential reduction in accuracy of the analysis – a trade-off 

which is found in many later systems. 

 It should also be noted that the rules in TAGGIT are applied in order, from the 

most specific to the least specific. “Specific” here refers to the amount of context, in 

terms of surrounding tags, the rule contains. The more context the rule contains, the 

more specific that rule is. 

 Greene and Rubin (1971: 40) report that TAGGIT disambiguated 77% of the 
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words it processed. The remaining ambiguity was later removed by hand8; this 

contrasts with the CGC system, in which all ambiguities were, in principle, capable of 

being removed. This distinction, between disambiguation processes which give each 

word only a single tag, and processes which allow some ambiguity to remain to 

prevent the system rejecting a correct tag, persists to this day. The latter approach is 

sometimes referred to as “n-best” or “k-best” tagging (e.g. by Voutilainen 1999b), 

because the n tags are returned which seem best to the disambiguation process on the 

basis of the information it has. N-best tagging has been commonly associated with 

rule-based approaches, whereas the full disambiguation approach has been found 

more commonly in probabilistic approaches9. This is perhaps because rules tend to 

operate by rejecting unwanted potential tags one by one, so it is entirely plausible that 

when all rules have been applied, some words might still have two or more tags (Brill 

1999: 257). But probabilistic methods, as we will see, actively choose a single tag 

from among the candidates. However, as Brill (1999) also points out, it is 

computationally equally possible for probabilistic methods to give a word more than 

one tag, so this correlation should by no means be regarded as a logical necessity. 

 

5.2.2 Work in the Constraint Grammar framework 

 

 Part-of-speech tagging in the Constraint Grammar (CG) framework has been 

                                                 
8 Both Greene and Rubin’s work, and the subsequent manual disambiguation, were done in the context 

of work on the Brown Corpus (see Francis and Kučera 1982). The task of tagging the Brown Corpus 

was indeed the primary motivation for the creation of TAGGIT. 

9 A few further examples of this include Constraint Grammar (rule-based, does not fully disambiguate), 

as discussed in the following section, and systems such as CLAWS or the Xerox tagger (probabilistic, 

disambiguate fully), discussed in 5.3.2. 
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undertaken principally by Fred Karlsson and colleagues at the University of Helsinki. 

It is fair to say that CG represents the state of the art in rule-based disambiguation at 

the time of writing. CG is both a “language-independent formalism” (Karlsson 1995a: 

1) and a specific algorithm and system for text analysis. However, it should be 

pointed out that work has been done which, while similar to CG in being based on 

rules written by human analysts, are not strictly within the CG paradigm’s system. For 

example, Koskenniemi (1990) describes a system which uses rules in a very similar 

way, but the system is implemented computationally as a finite state machine. 

 It should also be noted that the CG framework is not just a POS 

disambiguation methodology. It is a more general approach which also includes 

parsing10 (see Anttila 1995). As discussed above, it is characteristic of many rule-

based approaches that they link part-of-speech disambiguation to parsing, and CG is 

no exception in this. In fact, tagging and parsing may said to be inseparable in the CG 

framework (see for instance Karlsson 1995a: 11-14, Karlsson 1995b: 41-42). 

 The CG approach, which constituted a return to earlier rule-based methods, 

was to some extent inspired by perceived inadequacies of the probabilistic approach 

which had been developed in the meantime (see 5.3 below): 

First, it is not obvious that stochastic algorithms could qualify as genuine 

language-independent formalisms … Second, the error rates of the 

probabilistic approaches seem to remain fairly high […] if substantial 

precision lowering is not allowed … there seem to be no easily accessible 

ways of diagnosing errors and trying to improve the performance of a large 

completed probabilistic system. Finally, it has not yet been conclusively 

                                                 
10 Note that Karlsson et al. (1995) frequently use the term parsing to refer to what I call “part-of-speech 

tagging”, as well as to the less superficial syntactic analysis that the word more customarily refers to.  
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shown how successfully a primarily probabilistic approach would carry over 

into full-scale analysis of unedited text, including grammatical labelling. 

Karlsson (1995a: 7) 

 However, Karlsson is also at pains to point out that the CG approach does not 

totally reject any role at all for aspects of a more probabilistic approach (1995a: 5, 9), 

as the “heuristic constraints” within CG may be seen as probabilistic. These heuristic 

constraints (a constraint is essentially a rule) are to be applied when “linguistic 

constraints” fail to disambiguate fully (see also below). This is in contrast to a number 

of other rule-based analysis systems (cited by Karlsson 1995a: 5) which do wholly 

exclude probabilistic elements11. However, heuristic constraints as described by 

Karlsson may in practice be better described as “unreliable rules” than “probabilistic” 

in the usual sense. 

 Since the CG formalism embraces parsing as well as word-class analysis, it 

follows that a full CG system is not only a tagger but also a parser. The closest thing 

to a “tagger” per se in the CG model may be the “morphological disambiguation 

module” described by Voutilainen (1995) and specified by Karlsson (1995b: 42, 44) 

as a single component within the overall CG system. As with the rule-based 

disambiguation systems described in the previous section, this module applies after 

one or more analyses have been given to each word by a lexicon and a morphological 

analyser12. These analyses are not necessarily “tags” in the same sense as the word 

has been used elsewhere. Some analyses consist of multiple tags, e.g. PRON NOM 

SG3 SUBJ for a third-person subjective pronoun. Other analyses exclude distinctions 
                                                 
11 The systems that Karlsson lists are parsers rather than taggers; therefore, no further discussion is 

devoted to them here. 

12 In the CG system, these two processes are realised as a single computational unit – for example, for 

English, the ENGTWOL program (Heikkilä 1995). 
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many other taggers would try to make. For example, there is just one tag, PCP1, for 

words ending in “-ing”, whether nouns, adjectives or verbs. However, it is not the 

case that this distinction is ignored in the CG system altogether (which would be 

simply a matter of tagset composition). Rather, making the distinction between 

nominal, adjectival and verbal usages “is entirely left to the syntactic part of the [CG] 

system” (Voutilainen 1995: 167). In other words, part of the tagging task is put off to 

a parsing stage. While this is a reasonable approach if all data put through the system 

is to be both tagged and parsed, it is not a possible solution if tagging is required 

without parsing. For this reason, it may not be entirely appropriate to consider the CG 

morphological disambiguation module, in isolation from the syntactic parsing 

module, to be the direct analogue of other disambiguation systems. Nonetheless, for 

now I will proceed under the assumption that they are comparable. 

 Within CG, all linguistic analysis, including part-of-speech disambiguation, is 

performed by the application of rules, or, as they are typically called, constraints. 

Constraints are characterised by Voutilainen (1999c) as rules that “perform operation 

X on target Y in context Z”. The operation may be SELECT (delete all analyses but 

one, which is taken to be correct) or REMOVE (an incorrect analysis)13. Contexts can 

refer to words or analyses on words (which may be required to be non-ambiguous if 

the linguist wishes) preceding or following the target word by any distance. They may 

also refer to clause boundaries, which are marked up by another module of the overall 

CG system (Karlsson 1995b: 42-43, 64). This is a key difference from earlier systems: 

the CGC system looked only at words immediately adjacent to ambiguous items, and 

TAGGIT likewise used a very restricted local context. It is not however clear to what 

degree the superior performance of CG systems is due to this extended context scope. 

                                                 
13 See below for an example of the actual CG rule formalism. 
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Note also that a single CG constraint may specify multiple contexts where its 

operation may be applied. 

 How are the rules in a CG disambiguation system derived? Voutilainen 

(1999c: 226) asserts that “writing a grammar can be a straightforward and, contrary to 

common belief, fast process.” He suggests an approach to rule-writing which is based 

on a combination of intuition and trial-and-error. The grammarian devises a new rule 

by examining ambiguities in the output of the system as it stands, applies the rule, and 

then observes whether or not the overall result is an improvement in the output14. 

 The 1,100 constraints used in the CG system for part-of-speech 

disambiguation in English are described by Voutilainen (1995: 219) as partially 

expressing “no more than 23 grammatical generalisations, given as prose statements.” 

These generalisations include15: 

 

• To the right of an infinitive marker, there is an infinitive. 

• A sentence contains at least one (potentially coordinated) main clause. 

• Determiners agree in number with their heads. 

 

 The third of these statements, for example, would be represented in the 

formalism by constraints such as these: 

 
                                                 
14 There is more similarity here than might be supposed between the CG approach and Eric Brill’s 

approach, discussed in section 5.4 below. In fact, the only noteworthy difference is that the process of 

data examination, rule creation, and rule testing is performed by a computer program in Brill’s 

approach, and by a human being in the CG approach. 

15 The full set of generalisations, and the constraints deriving from them, including those given here as 

examples, are described in detail by Voutilainen (1995: 219-268). 
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(@w=0 DET-SG (1C PL-HEAD)) 

(@w=0 DET-PL (*1C NON-MOD-HEAD *L) 

   (NOT *L PL-HEAD)) 

 

 These constraints could be expressed in prose as, respectively, “a singular-

only determiner in the following sentence is to be discarded if the next word is a 

nominative plural” and “A plural determiner reading is to be discarded unless it is 

followed by a nominal head in the plural”. Note that the second of these constraints 

exemplifies the use of multiple contexts in a single rule. It should also be noted that 

none of these constraints add any analysis that is not there in the output from the 

previous stage of the tagging process. They simply remove superfluous analyses 

provided by the lexicon/morphological analyser unit. 

 A distinction is made between constraints which are entirely reliable and 

constraints, referred to as “heuristic”, which do not necessarily work all the time; 

these are stored separately in the list of constraints and applied after the reliable 

constraints in a separate cycle (Karlsson 1995b: 68). 

 Disambiguation programs using the CG formalism typically do not perform 

full disambiguation, so their performance is evaluated in terms of precision and recall 

rather than accuracy16. Voutilainen (1999c: 219) reports that for a CG-based 

disambiguation system, “[r]eaching a recall of well above 99% is not particularly 

difficult, but reaching a precision of well above 95% at the same time may require a 

considerable effort.” That is to say, it is easy to prevent the correct tag or set of tags 

being rejected by the constraints, but difficult to simultaneously ensure the rejection 

                                                 
16 For a discussion of the many incompatible measures of tagger performance that have been used in 

the literature, see section 5.6.1. 
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of all incorrect tags. However, full disambiguation of 95% of rules represents a 

substantial advance over the 77% disambiguation rate achieved by the earlier 

TAGGIT system (Greene and Rubin 1971). To put precise figures on this 

improvement, the version of the EngCG tagger using 1,100 constraints17 achieved a 

recall of at least 99.7% with 93-97% of words fully disambiguated (reported in 

Voutilainen 1995: 186). 

 While a majority of the published literature concerns the application of the CG 

methodology to the tagging of English, the approach has been applied to several other 

languages, for instance French (Chanod and Tapanainen 1995a, 1995b); Voutilainen 

(1999c: 242) refers to work done on two other unspecified European languages. 

 

5.3 Probabilistic approaches to disambiguation 

 

 The basic principle of probabilistic approaches18 is that statistical information 

concerning the frequency with which sequences of tags occur is gathered from long 

stretches of running text. This data is used to deduce which of the optional analyses of 

an ambiguously tagged word is the more likely to be correct. For instance, acquiring 

frequency statistics (or “training”) on a tagged corpus of English, a system might 

discover that the tag for a subject pronoun is followed by the tag for a verb 70% of the 

time, the tag for an adverb 29% of the time, and the tag for a noun 1% of the time. If 

                                                 
17 Voutilainen (1999c: 225) reports a later version of the EngCG tagger, EngCG-2, which has 3,744 

disambiguation constraints, and performs better than the results cited here. However, it is not entirely 

specified how much better this more recent performance is.  

18 These approaches are commonly called “probabilistic” or “stochastic”. I will use both terms 

interchangeably. 
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that system, during the course of tagging, then encounters a word following a subject 

pronoun that was ambiguously tagged as either noun or verb, it can use its statistical 

knowledge to deduce that the verb tag is most likely to be correct. 

 In practice, a model as primitive as my example here would be incapable of 

handling long sequences of ambiguous tokens and would be unlikely to perform 

particularly well. Thus, modern stochastic taggers utilise a mathematically more 

sophisticated approach known as a Markov model. Markov models allow the 

calculation of the probabilities of different tag sequences by combining different tag 

transition probabilities. The mathematics of Markov models are discussed in some 

detail by Charniak et al. (1993). 

 The most immediate advantage of a stochastic system over rule-based systems 

is that the linguist does not have to write an effective set of rules to produce an 

effective system. As Brill (1992) puts it, “[t]he appeal of stochastic techniques over 

traditional rule-based techniques comes from the ease with which the necessary 

statistics can be automatically acquired and the fact that very little handcrafted 

knowledge need be built into the system”. Probabilistic systems also represented a 

step forward in accuracy over early rule-based taggers. A further advantage is that 

they were in general more widely applicable (although later rule-based methodologies 

such as Constraint Grammar redressed the balance in these latter respects): 

The strength of the corpus-based approach is that, through probabilistic 

predictions, it is able to deal with any kind of English language text which is 

presented to it: it is eminently robust. Its weakness is that the very reliance 

on probability admits the possibility of error. 

Leech (1987: 3) 

 As mentioned at the outset of this chapter, probabilistic approaches were not, 
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ultimately, employed in the Urdu tagger described in the following chapter. However, 

this decision was made in the light of a full understanding of the probabilistic 

approach to disambiguation, and cannot be justified without a preliminary discussion 

of this approach. Therefore, in this section, I will consider at length some examples of 

Markov model taggers, some which require tagged training data and some which do 

not. However, before discussing modern stochastic disambiguation techniques 

(section 5.3.2), I will briefly summarise the earliest attempts to use probabilities in 

morphosyntactic disambiguation. 

 

5.3.1 Early work with probabilistic approaches 

 

 Probabilistic approaches to part-of-speech tagging increased greatly in 

popularity during the 1980s. However, some work in the area was done prior to 1980. 

An example is Bahl and Mercer (1976), whose program was trained using 40,000 

words of hand-tagged text and a technique based on the Viterbi algorithm19.  

 Of much greater importance historically, however, is the work of Stolz et al. 

(1965), whose often-overlooked work is contemporary with the earliest rule-based 

approach (Klein and Simmons 1963) and precedes by some years the work of Greene 

and Rubin (1971). It should therefore be noted that probabilistic and rule-based 

approaches are of equally venerable provenance.  

 Stolz et al. describe a system called WISSYN, which tags words with one of a 
                                                 
19 While Bahl and Mercer provide rather few details of their methodology, references made to their 

work in the later literature (for example, Abney 1997) suggest that their research was along similar 

lines to that of later Markov model-based stochastic taggers. Therefore, I will postpone discussion of 

exactly how such taggers operate until the following section, which deals with more recent 

implementations of the Markov model approach. 
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set of 18 grammatical classes (for the most part defined distributionally). After 

performing lexical lookup and morphological analysis20, a probability phase utilised 

“empirically derived sets of conditional probabilities to predict the grammatical form 

class of words from given syntactic environments”21. The probability tables “were 

generated separately by a set of computer programs operating on text which had 

previously been grammatically coded by a number of human experts”. This 28,000-

word corpus22 was made up of  samples of undergraduate creative writing. 

 During training, all strings of tags up to 5 items in length (within the bounds of 

a single sentence) were tabulated. Then, probabilities for the different parts of speech 

were calculated using 1,2,3 and 4 items as predictors before, after and bridging the 

predicted unit. During tagging, WISSYN looked up the longest pre-string (i.e. tags 

before the target word) it could find in its table, the longest bridging string it could 

find, and the longest post-string. Then it would multiply the probabilities given by 

each of these predicting strings for each possible part-of-speech. Compared to a 

Markov model, this means in essence that the probabilities of chains of tags were 

learned in training rather than being calculated from bigram probabilities at runtime. 

When more than one “blank” (word lacking a tag – effectively, noun-verb-adjective-

adverb ambiguities) occurred sequentially, the system examined the blanks at both 

ends of the sequence. Having solved the easier of the two, it then treated that 

annotation as 100% certain (which was clearly not the case) and used it as context to 

                                                 
20 Prior to the stochastic disambiguation, there is also what Stolz et al. refer to as an “ad hoc” phase in 

which eight types of ambiguities are eliminated by the application of structural rules. 

21 Although Stolz et al. call their process a “prediction” process, their description makes clear that their 

algorithm performs what would today be called disambiguation. 

22 “Corpus” is indeed the word used by Stolz et al., somewhat unusually in a time when corpus 

linguistics was generally out of favour (see McEnery and Wilson 1996). 
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resolve non-peripheral blanks. 

 Stolz et al. were unable to perform large-scale tests, as they lacked a hand-

tagged corpus as a standard for comparison. However they did run tests on a few 

thousand words of text, both of student writing (from within and without the set of 

training data) and of newspaper text. The accuracy rates that they report from this 

experiment range from 91.4 to 92.8%. 

 Stolz et al. note that instances where the probabilistic portion of their program 

had to deal with sequences of “blanks” were a source of many errors. This was 

because, if the first blank were resolved incorrectly, it would reduce the accuracy of 

the probabilities generated for remaining blanks in the sequence. They suggest as an 

improvement expanding the model to estimate pairs of words at a time. Indeed, 

estimating probabilities for multiple ambiguously-tagged words is effectively what 

later stochastic taggers using Markov models would achieve. 

 

5.3.2 Later work on probabilistic taggers using Markov models 

 

 Subsequent work on probabilistic disambiguation has focussed on the use of a 

single statistical method, the Markov model, which has been used in many statistical 

disambiguation modules or systems with few variations. After giving an overview of 

the theoretical basis underlying Markov models (section 5.3.2.1), I will go on to 

consider two methods by which a tag may be selected for an ambiguous token using a 

Markov model (sections 5.3.2.2 and 5.3.2.3); in each case, I will illustrate the 

discussion by reference to an influential early tagger using a Markov model. 

Subsequently, I will consider the role of lexical probabilities in Markov models 

(section 5.3.2.4), the processes by which the parameters of a Markov model can be 
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acquired and smoothed (section 5.3.2.5), and some variations on the Markov model 

approach which have been implemented in various stochastic taggers (section 

5.3.2.6). Finally, in 5.2.3.7 I will briefly consider the success rates that have been 

reported by researchers working with probabilistic taggers of this sort. 

 

5.3.2.1 Markov models: an overview 

 

 In probabilistic POS tagging, a Markov model estimates the probability of a 

chain of tags, given empirically-derived tag transition probabilities. By comparing the 

likelihoods of possible tag sequences for a sequence of ambiguous tokens, the 

likeliest, and hopefully correct, sequence can be identified. Such a model represents a 

more minimal use of contextual information than the rule-based approach discussed 

above (or, for that matter, the more context-rich probabilistic approach of Stolz et al.). 

Marshall (1987) rationalises the limited context by analogy to the TAGGIT system, in 

which rules that used only one tag to specify their context (although up to four are 

allowed) account for 25% of the rules on the list but for about 80% of the rule 

applications: 

This disproportionate usage of minimally specified contexts suggested that a 

more effective method of tag disambiguation might be produced by a system 

which exploited only the relationship between adjacent tags… 

Marshall (1987: 44) 

 Early work on Markov models was undertaken by Bahl and Mercer (1976). 

However, my discussion in this section will focus on a small set of stochastic taggers 

developed since 1980 whose operation has been described in some depth in the 

published literature and which have, in consequence, been influential in the field. 
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 A Markov model is made up of the following parameters: 

a set of states; a set of transitions, each going from an initial state to a final 

state; for each state, a probability distribution for all transitions leaving that 

state; a set of output symbols, that can be emitted when in a state (or 

transition); for each state (or transition), a probability distribution for all 

symbols that can be emitted. 

El-Beze and Merialdo (1999: 264) 

 In terms of POS tagging, the states are the tags, the symbols that they output 

are their associated words, and the transitions from one state to another make up the 

sequence of tags allocated to a sentence (see diagram below). 

 

The  cat  sat  on  the  mat 
 
 
Art  Noun  Verb  Prep  Art  Noun 

 

Fig. 5.2 

 
 When tagging, a Markov model system knows what output symbols (words) 

were produced, but not what states (tags) produced them. For this reason, it is 

common for this type of Markov model to be called a “hidden Markov model”, since 

the transitions are “hidden” from view23. The problem is to determine which sequence 

of tags is most likely to have produced the observed words. The parameters required 

to fully define the model are thus a) for each state (tag), the probability of a transition 
                                                 
23 The expression “hidden Markov model” is not used entirely consistently in the literature. Cutting et 

al. (1992: 133) suggest that taggers trained on tagged data use a Markov model, whereas taggers 

trained on untagged data use a hidden Markov model (see also 5.3.2.5). By contrast, El-Beze and 

Merialdo (1999) and Charniak et al. (1993) use the term “hidden Markov model” – or the common 

abbreviation HMM – for both varieties. To prevent confusion, I will henceforth avoid the expression 

altogether. 
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occurring to each state; and b) for each state (tag), the probability of it producing each 

of its possible outputs (words). 

 The latter set of parameters is often expressed as the probability of the word 

(w) given the tag (t), P(w|t)24. Essentially this involves the (obviously false) 

assumption that the only factor influencing the probabilities of one word or another 

occurring is the tag. The former set of parameters is in principle infinite, since the 

transition probabilities from any one tag may depend on the entire chain of tags that 

the model has moved through since the start of the sequence. For example, the 

probability that the final tag of the sentence above is “Noun” might in principle be 

different depending on whether the first tag of the sequence is “Art” or “Pron”. Since 

this makes the parameters effectively impossible to estimate, a further assumption is 

made: that the probability of a tag occurring is determined only by the previous n-1 

tags25, where n is a small value, typically 2 or 3. This means that the other set of 

parameters for the model is typically either P(ti|ti-1, ti-2) or just P(ti|ti-1) – the 

probability of tag A given the preceding tag B or the two preceding tags B and C (El-

Beze and Merialdo 1999: 271-272; see also Charniak et al. 1993). Although this 

assumption too is unjustified, in practice its effect is to restrict Markov model taggers 

                                                 
24 Throughout I use standard probability notation. P(x) denotes the probability (expressed as a fraction 

of 1 or a percentage) of event x occurring. P(x) = 1 is a certain event, P(x) = 0 an impossible event. xi is 

the ith in a series of events of type x.  P(x|a) denotes the probability of x occurring if we know that 

some other event a has already occurred. P(x|a,b) denotes the probability of x occurring if we know that 

two other events a and b have already occurred.  

25 Thus, taggers using Markov models are often called “N-gram taggers” because they look at transition 

probabilities over n words only. Systems where n = 2 are often called “bigram taggers”, or, more 

rarely, “digram taggers”; when n = 3, the result is a “trigram tagger”. Bigram taggers seem to be the 

more common; an example of a trigram tagger is that described by Merialdo (1994). 
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to use only local context in disambiguation – which is the case for all taggers (see the 

quotation from Brill at the start of this chapter). 

 The process of training a Markov model for POS tagging consists of 

estimating the parameters of the model, based on an examination of corpus data. 

Disambiguation using a Markov model consists of applying those probabilities to the 

task of choosing a single tag from a set of potential tags. Rather than continue to 

discuss this process in the abstract, I will now illustrate this discussion of Markov 

models with reference to two particular tagging algorithms and the approaches they 

take to selecting a tag for an ambiguous token. 

 

5.3.2.2 Selecting an appropriate tag: additive probabilities in 

CHAINPROBS 

 

 The CLAWS126 tagging system, developed at the University of Lancaster in 

the 1980s, utilises a Markov model in its disambiguation module. This module 

consists of a program called CHAINPROBS, described by Marshall (1987). In this 

section, I will discuss the procedure by which CHAINPROBS selects a tag from the 

set presented to it by the word-analysis module of CLAWS27. This process is 

                                                 
26 The system in general is referred to as CLAWS (Constituent Likelihood Automatic Word-Tagging 

System). CLAWS1 is the earliest version of this software (see Garside 1987), implemented as a set of 

programs. The current version, CLAWS4, will be considered below (5.6.3) as an example of a hybrid 

tagger. 

27 This program is called WORDTAG and performs analysis of lexical lookup followed by the 

application of an algorithm performing morphological analysis based on a 720-item “suffix list” 

(Garside 1987: 35-38). A rule-based module called IDIOMTAG is also applied prior to the file being 

passed to CHAINPROBS (Blackwell 1987). 
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illustrative in general of how this problem is dealt with by a Markov model.  

 A Markov model disambiguator such as CHAINPROBS resolves ambiguity in 

chains of ambiguously tagged words. This contrasts with rule-based methods and the 

early probabilistic methods of Stolz et al. (1965), where only one word at a time is 

dealt with. In the case of CHAINPROBS, these “chains” were usually 10 words or 

less in length, since using the CLAWS tagset28 punctuation is tagged unambiguously. 

 There are a number of possible sequences of tags for any chain of 

ambiguously tagged words. These sequences are often referred to as “paths” through 

the Markov model. For instance, the phrase “the substance dissolves quickly” might 

receive the tags “the_A substance_N_V dissolves_N_V quickly_R” from a process of 

lexical lookup and morphological analysis29. Given these potential tags, there are four 

possible paths: A–N–N–R, A–N–V–R, A–V–N–R, and A–V–V–R.  Obviously, the 

number of possible paths becomes exponentially greater as the length of the chain and 

the number of tags per word increase. Essentially, CHAINPROBS utilises the Markov 

model parameters acquired during training to calculate the probability of each 

possible path and then choose the most probable path. 

 The Markov model probability of a path, in isolation, is the product of the 

probabilities of all the transitions that make it up, including the transitions from and to 

the unambiguous words that begin and end the path. If we assume that P(N|A) = 0.6, 

P(N|N) = 0.3, and P(R|N) = 0.2, then the probability of the first of the four possible 

paths given above is 0.036. However, this only represents the probability of the path 

                                                 
28 See 2.1.2.1 for details of this tagset. 

29 I assume a very basic tagset here: N = noun, V = verb, A = article, R = adverb. While the method 

described here is that of Marshall (1987), this particular example, including the transition probabilities 

that follow, has been invented purposefully for this description. 
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A–N–N–R occurring as opposed to any four-tag path beginning in A. We have more 

information than this: we know that the actual path must be one of the four sequences 

allowed by the sets of potential tags. Therefore, the next stage undertaken by 

CHAINPROBS (Marshall 1987: 46-47) is to allocate to each potential path a 

probability which is equal to its probability in isolation expressed as a proportion of 

the sum of the probabilities in isolation of all the potential paths. To put it another 

way: 

         P(path in isolation) 
P(path given the potential tags)   = 

       sum of P(path in isolation) 
        for all possible sequences 

 

 It might be assumed that for each word in the ambiguous sequence, the correct 

tag is the tag for that word which occurs on the most probable path. However, this is 

not what CHAINPROBS does. Instead, the program does what Marshall (1987: 47-

48) describes as assigning each tag an “additive probability” as a “cross-check 

intended to estimate the likelihood that a given tag selection for a word is correct 

independently of the correctness of tags selected for surrounding words”. The additive 

probability is equal to the sum of the probabilities in isolation of paths on which that 

tag appears divided by the sum of the probabilities in isolation of all paths, or: 

      sum of P(path in isolation) 
         for all sequences with tag A on word B 

Additive P(Tag A on Word B)   = 
       sum of P(path in isolation) 
            for all possible paths 

 

 The tag actually selected by CHAINPROBS is the one with the highest 
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additive probability30, although as Marshall (1987: 48) explains, this is usually the 

same as the tag on the most probable path, for obvious reasons. This approach to tag 

selection using a Markov model is characterised by El-Beze and Merialdo (1999: 282) 

and Merialdo (1994: 157) as Maximum Likelihood tagging. El-Beze and Merialdo 

suggest, however, that this approach is inferior to a contrasting approach using the 

Viterbi algorithm, which will be discussed in the following section. 

 

5.3.2.3 Selecting an appropriate tag: the Viterbi algorithm in 

VOLSUNGA 

 

 The Viterbi algorithm (see Jelinek 1985: 576-577) is a technique for choosing 

the most probable path without actually calculating the probability of each path 

through the ambiguously tagged sequences of words. Merialdo (1994: 157) suggests 

that the Viterbi algorithm has frequently been used in preference to Maximum 

Likelihood tagging for three reasons. Firstly, it is easier to implement; secondly it 

cannot produce in its output sequences of tags which are not possible in the model, 

which is theoretically possible in Maximum Likelihood tagging; thirdly the Viterbi 

algorithm gives the best analysis of the sentence as a whole, which Merialdo describes 

as “linguistically appealing”. An example of a system which uses a Viterbi-type 

technique is the VOLSUNGA system of DeRose (1988)31; the taggers described by 

Jelinek (1985), Merialdo (1994), and Cutting et al. (1992) are other examples. 
                                                 
30 While the effect of CHAINPROBS disambiguation is to choose a preferred tag, its actual action is to 

put the tag options for each ambiguous word in order of descending additive probability. This has the 

advantage that the probabilities of the non-selected tags can be preserved in the output. 

31 De Marcken (1990) discusses some possibly more successful variants on DeRose’s algorithm which 

will not be considered further here. 
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DeRose’s motivation for using a different technique to CLAWS was the inefficiency 

of CHAINPROBS in terms of computer memory and processing speed (see DeRose 

1988: 34). 

 Unlike CHAINPROBS, VOLSUNGA defines the correct tag as the one 

appearing on the most probable or “optimal” path, defined simply as the path “whose 

component collocations multiply out to the highest probability”. The technique used 

by DeRose to identify this path without evaluating the probability of every path is 

essentially the same as the Viterbi algorithm as described by El-Beze and Merialdo 

(1999: 280-281) and others, although DeRose does not specify that he is using a 

Viterbi technique. I shall use DeRose’s work to exemplify this algorithm, as his 

system is early and relatively simple. 

 VOLSUNGA avoids calculating the probability of every path by discarding at 

each stage those paths which can be seen to be non-optimal. This is best explained by 

example32. Consider the following sentence: 

Words:  V W X Y Z 

Tags:  V1 W1  X1 Y1 Z1 

   W2  X2 Y2  

   W3  X3 Y3  

 The number of possible paths through this system is 27, each of which would 

have a probability made up of the product of four transitions. VOLSUNGA does not 

calculate each of these. Instead, non-optimal paths are dropped as processing 

progresses through the sentence. The first stage of processing calculates three paths: 

V1 to W1, V1 to W2, V1 to W3 (these are simply the transition probabilities for those 

tags). At this stage no path can be discounted. At the next stage, the number of 

                                                 
32 This example is adapted slightly from DeRose (1988: 35). 
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possible paths rises to nine. For example, P(V1–W1–X1) = P(V1–W1) × P(W1–X1). 

However, there is only one optimal path from V1 to each of the three potential tags on 

X. That is, of the paths V1–W1–X1, V1–W2–X1, V1–W3–X1, one will have the 

greatest probability, and likewise for the paths leading to X2 and X3. This means that 

six of the possible paths can be discounted. At the next stage, nine paths are generated 

again (one from each of the X tags to each of the Y tags), and again six can be 

discarded leaving only the optimal paths from V1 to Y1, Y2 and Y3. These three 

paths alone are extended to Z1, which, being unambiguous, allows a single path to be 

chosen as optimal. 

 A calculation akin to this is performed by all taggers that utilise the Viterbi 

algorithm. A key feature of both the Viterbi algorithm and Maximum Likelihood 

tagging is that the final disambiguation is done across an entire sentence. Thus, even 

though the initial parameters are based on N-grams with very low n, the multiplication 

of transition probabilities within the Markov model means that, in effect, a great deal 

of context may be taken into account in disambiguation. 

 

5.3.2.4 The use of lexical probabilities in Markov models 

 

 The transition probabilities discussed in the calculations of the optimal path in 

the two preceding sections constitute one set of parameters of the Markov model, 

which for each tag state (ti | ti-n+1, … ,  ti-1) where n is most often 2 or 3. The other set of 

parameters discussed above, lexical probabilities, state P(w|t), that is, the probability 

of a given tag generating a particular word. The implementation of these probabilities 

is in theory simple: at each stage, the transition probability is multiplied by the lexical 
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probability33 (Charniak et al. 1993: 3). However, this is not necessarily exactly what 

happens in actual tagging systems. Neither Marshall (1987) nor DeRose (1988) uses 

lexical probabilities in this straightforward way. 

 CHAINPROBS uses very approximate human-estimated lexical probabilities 

to reduce the likelihood of potential sequences that would result in a word being given 

a tag deemed improbable for that word. This was achieved by the use of “rarity 

markers” which, if they appear on a potential sequence, reduce the likelihood of that 

sequence to one half, for rare analyses, and one eighth, for very rare analyses (see 

Marshall 1987: 46-47 and Atwell 1987: 59). VOLSUNGA by contrast utilises 

empirically-derived numerical lexical probabilities: DeRose reports that implementing 

this part of the procedure improved performance from 92-93% to 95-97%. However, 

DeRose also found that using lexical probabilities34 “as-is” caused performance to 

degrade, so VOLSUNGA does not allow them to exceed a given ceiling. Furthermore, 

Charniak et al. (1993) point out that many Markov model taggers, including 

VOLSUNGA, actually use P(t|w) rather than P(w|t). The latter is correct in view of 

the Markov model assumption that words are generated by their tags, although the 

former appears more intuitive given that, during tagging, we know what the word is 

but not what its tag is. But based on a comparison of P(w|t) and P(t|w) in otherwise 

identical disambiguation systems, Charniak et al. (1993) report that using P(w|t) 

improves results. 

 

                                                 
33 It is typical for the lexical probability parameters to be stored in the lexicon in the form of a 

probability associated with each tag in a word’s entry: they are transferred onto the text along with the 

tags and later utilised by the Markov model disambiguator. 

34 Lexical probabilities are referred to by DeRose as “relative tag probabilities”. 
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5.3.2.5 Acquiring Markov model parameters 

 

 The previous sections have discussed the application of the Markov model 

parameters, which capture the probabilities of a word being associated with a given 

tag and of one tag following another tag. However, until now little has been said of 

the training of such models – i.e. the process by which these parameters are estimated 

in the first place. 

 Since the parameters represent probabilities, the only realistic way35 to 

estimate them is by automated statistical analysis of a large body of data – to wit, a 

corpus. The majority of recent probabilistic taggers have been able to utilise a corpus 

already marked up with accurate POS tags. In many cases, the Brown Corpus, 

originally tagged by a combination of Greene and Rubin’s (1971) TAGGIT program 

and human analysts, has been used for this purpose. Both CLAWS and VOLSUNGA 

initially based their parameters on the Brown Corpus, as did Church (1988), Charniak 

et al. (1993), and others. Lexical probabilities can be estimated by creating a list of 

(some of) the words in the corpus and for each one, listing the tags that occur with 

that word in the corpus and the frequencies with which they go occur. Transition 

probabilities can be estimated from the frequencies with which the various sequences 

of two tags (for a bigram model ) or three tags (for a trigram model) occur in the 

corpus. 

 However, these basic empirically-derived parameters are frequently 

insufficient to produce a highly accurate disambiguator. If some linguistically 

possible (albeit rare) sequence of tags or word-tag combination happens not to occur 

in the training corpus, the probability parameter for its occurrence would be zero – in 

                                                 
35 The human-estimated lexical probabilities in CLAWS are an exception here. 
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the model, it could never occur, although in the language it could. It is often necessary 

to smooth the parameters, i.e. to apply some formula to the parameters which alters 

them in such a way as to reduce this difficulty. A basic smoothing technique is to add 

the same small positive value to any entry in a table of tag transition probabilities 

which contains a zero. Marshall (1987: 54) reports using this technique. More 

complicated approaches to smoothing are discussed by Church (1988: 141-142), El-

Beze and Merialdo (1999: 276-278) and Charniak et al. (1993: 3-4). 

 A greater difficulty in estimating the parameters arises when the training data 

is not tagged. This makes it impossible to directly acquire the transition probabilities 

based on sequences of tags in the training corpus. However, it is possible to use a 

procedure called the Baum-Welch algorithm (or the Forward-Backward) algorithm, 

which takes initial estimates of the parameters, which need not necessarily be 

particularly good, and by applying these probabilities in conjunction with an untagged 

corpus, computes improved estimates for the parameters it has used. This process then 

iterates many times (El-Beze and Merialdo 1999: 268-269). This contrasts with 

training on tagged data, which can be accomplished in a single pass of the corpus. 

One study which applied the Baum-Welch to tag disambiguation at an early date was 

that of Jelinek (1985). However, a more recent example of such a tagger is that of 

Cutting et al. (1992). This tagger is known as the Xerox Tagger after its creators’ 

affiliation and although developed for English, it has been used with other languages 

(for instance, with Spanish by Sánchez León and Nieto Serrano 1997). 

 Cutting et al. (1992) use iterations of the Baum-Welch algorithm to acquire 

estimates for the requisite parameters. However, they also use the idea of ambiguity 

classes36. These are classes of words which receive the same set of possible tags 

                                                 
36 The same notion is referred to as equivalence classes by Kupiec (1992). 
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during the phase of lexical lookup and/or morphological analysis. Within an 

ambiguity class, words are assumed to have the same behaviour. This allows lexical 

probabilities to be estimated even for words which occur very infrequently in the 

training data, although this assumption is clearly invalid given that an ambiguity class 

such as noun-verb must contain such diverse items as dog and see (Kupiec 1992: 

228). 

 Training with untagged data has been evaluated by Merialdo (1994), who 

concludes that a model so trained is not as effective as one trained on tagged data, 

even if the amount of tagged data is relatively small. However, he also concludes that 

untagged data can be usefully applied to improving the estimates of a Markov 

model’s parameters acquired from an small amount of tagged data. 

 

5.3.2.6 Some variations within Markov model disambiguation 

 

 There are a large number of minor variations between different 

implementations of the Markov model disambiguation technique37. In this section, I 

will discuss a few of the most significant, including the contrast between bigram and 

trigram taggers, and the use of Markov models in N-best tagging. 

 The essential difference between using bigrams and trigrams is that the latter 

has S times as many parameters to be estimated, where S is the size of the tagset. This 

requires more training data, since the average frequency of each trigram is so much 
                                                 
37 There are also some more significant variations involving models further away from  the mainstream 

of stochastic taggers discussed here. An example is Schütze and Singer (1994), who discuss a variant 

which they call a variable memory Markov model. They report an accuracy of 95.81%, claiming 

however that “[w]hile the learning algorithm of a VMM is efficient and the resulting tagging algorithm 

is very simple, the accuracy achieved is rather moderate.” 
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lower than the average frequency of the equivalent bigram; Weischedel et al. (1993: 

363) suggest that as a rule of thumb, “the training set needs to be large enough to 

contain on average ten instances of each type of tag sequence that occurs”. However, 

there does not appear to be any general agreement about whether calculating Markov 

model path probabilities using trigrams produces a notable improvement over 

bigrams, or on whether the improvement is worth the necessary extra data. 

 On the one hand, several studies into part-of-speech disambiguation 

algorithms have made use of trigrams. Merialdo’s (1994) tagger, which he uses to 

compare training on tagged and untagged text, is a trigram tagger, as is Church’s 

(1988) system. El-Beze and Merialdo (1999: 272) suggest that “trigram models are 

usually superior to bigram ones” with the proviso that sufficient training data must be 

available. On the other hand, other studies have questioned the use of trigrams. 

Weischedel et al. (1993) test a bigram and trigram version of their Markov model 

tagger called POST, and report that the trigram model has a lower error rate but is 

slower at processing time. Charniak et al. (1993)suggest that “[e]xperimentation has 

shown that [the trigram model] offers a slight improvement, but not a great deal.” De 

Marcken (1990) goes so far as to suggest that the trigram approach taken by Church is 

wasteful of data. 

 Some systems have actually used both bigrams and trigrams. The 

CHAINPROBS module of CLAWS is based primarily on bigrams, but utilises some 

three-tag sequences (Marshall 1987: 54-55; Atwell 1987: 59-60) De Marcken (1990: 

245) likewise comes to the conclusion that “it is more efficient to use digrams in 

general and only mark special cases for trigrams, which would reduce space and 

learning requirements substantially”, in comparison to a full trigram model. 

 Another variation in the Markov model, implemented by Church (1988), is 
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that the form of the Viterbi algorithm he uses works backwards from the end of the 

sentence, rather than forwards from the beginning as is more common38. However, 

according to Charniak et al. (1993), “it is easy to show that this has no effect on 

results”. 

 The final variant that I will consider is an alteration to the normal Markov 

model approach which allows more than one tag to be retained or selected by the 

disambiguator, making the Markov model tagger into an n-best tagger (see page 237 

above). De Marcken (1990) describes an implementation which performs n-best 

tagging, based on a modification of DeRose’s (1988) algorithm. Weischedel et al. 

(1993: 366-368) also implement n-best tagging, using a different method. In both 

cases, this involves allowing the tagger to return not just the most probable tag but 

any tag which is probable enough. “Probable enough” is defined by some kind of 

probability threshold; tags which are more likely than the threshold are retained, all 

others are removed. This additional parameter, the threshold39, can be set higher or 

lower depending on what trade-off between accuracy and recall is required (see de 

Marcken 1990: 245). As with all n-best taggers, the longer the list of tags returned for 

each token, the greater the chance that the correct tag is on that list. 

 

                                                 
38 That the “forwards” version is more common may possibly be for reasons of psychological 

plausibility. 

39 CHAINPROBS is another example of a system which utilises a probability threshold (actually a set 

of thresholds), but it is used in rather a different way. If the probability of the most likely tag is greater 

than the threshold set for CHAINPROBS, then the other tags are deleted; otherwise, they are retained 

and the selected tag is indicated by its position at the beginning of the list of tags. See Marshall (1987: 

51). 
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5.3.2.7 The performance of Markov model taggers 

 

 It can be difficult to evaluate with any degree of certainty the comparability of 

success rates in the literature (see also section 5.6). For example, Garside (1987) 

reports a success rate of 96-97% for CLAWS1, but since CHAINPROBS is not the 

only disambiguation module in the CLAWS system, the result is not immediately 

comparable with results cited for other modules discussed in the foregoing section 

which used a Markov model as their sole disambiguator. In short, the performance of 

CLAWS is not wholly due to CHAINPROBS (see also 5.6.3 below). 

 However, in general, the performances reported for the taggers discussed in 

this section ranges between 95% and 97%. Charniak et al. (1993) summarise the 

performance of the field. Having pointed out that “[o]ne can get 90% of the tags 

correct just by picking the most likely tag for each word”, i.e. without even using a 

Markov model, they conclude that “[i]mproving the model to include bigrams of tags 

increases the accuracy to the 95% level… Improvement beyond this level is possible 

but it gets much harder.” They suggest ultimately that raising accuracy to 97% or 

beyond may require more lexical information than most taggers use. Reports of 

Markov model taggers achieving any better accuracy than 97% are unquestionably 

very rare. 

 

5.4 Approaches utilising corpus-derived rules 

 

 It is convenient to characterise the approaches discussed in this section as 

utilising rules “based on corpus data”. But it would not be accurate to assume that 

researchers working on the rule-based approaches discussed earlier did not use 
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empirical data to inform their opinions about the grammatical rules they wrote. Klein 

and Simmons (1963) report that some of the rules used in the CGC system were based 

on hand analysis of samples of empirical data, and others were derived automatically. 

Likewise, Greene and Rubin used an automatic process to derive some of the rules 

used in TAGGIT: 

… a 900-sentence subset of the Brown University Corpus was tagged 

[ambiguously by lexical lookup], and its ambiguities were resolved 

manually; then a program was run which produced and sorted all possible 

context frame rules which would have been necessary to perform this 

disambiguation automatically. 

Greene and Rubin (1971: 32-36) 

 Similarly, Voutlainen (1999c: 226) specifically points out that using a 

benchmark corpus to analyse the success of rules under design is of use when 

compiling rules in the Constraint Grammar framework. However, what distinguishes 

the approaches discussed below is that they extend the role of the computer in 

formulating and evaluating the rules so far that the human analyst, and their intuitions 

about grammar, are excluded from the process. While Eric Brill’s transformation-

based approach is perhaps today the most widely recognised example of a system 

using automatically derived rules, it followed an earlier approach based on a parser. I 

will now discuss the early work of Hindle in this parser-based approach before 

moving on to consider, in section 5.4.2, Brill’s work. 

 

5.4.1 The parser-based approach 

 

 Working at a time when the superiority of probabilistic models over rule-
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based methods in disambiguation was assumed to have been demonstrated (i.e. before 

Constraint Grammar), Hindle (1989: 119) opined that “[n]o algorithm, symbolic [i.e. 

rule-based] or otherwise, will succeed in large scale processing of natural text unless 

it can acquire some of the needed knowledge from samples of naturally occurring 

text”. Thus, Hindle sought to acquire rules automatically from a corpus of pre-tagged 

text, in a program that was part of a parser. Again, we see the tendency for taggers 

based on rules to be associated with parsers40. 

 Hindle’s program works by going through the tagged training corpus and 

assigning a tag to every word in turn according to its bank of rules. If the tag thus 

assigned is incorrect, the algorithm adds a new rule to the bank, such that the new set 

of rules would have produced the correct tag as given in the training corpus. The 

performance of the new rule is then monitored by the algorithm. If its general effect is 

to cause errors rather than prevent them, it would be deactivated. 

 It should be noted that this is not a disambiguation method, but rather a tag 

generation method: the tags are produced by the application of the rules. 

 Hindle reports that this relatively simple algorithm produced 35,000 rules41 by 

means of 5 iterations through the training corpus. Applying these rules to test texts 

then achieved a score of 97% accuracy, which was a noticeable improvement on what 

was then attainable using a rule-based approach. 

 The embedding of this tagger in a parser may be a disadvantage if one merely 

                                                 
40 In fact, it should be noted that the system described by Hindle is not a tagger, but a parser which 

performs some tagging as part of the parsing process. The fact that the tagset used was relatively small, 

with only 46 tags, is perhaps related to its use within a parser. 

41 This may seem a large number compared to the quantities of rules produced by human analysts 

(typically a few thousand). However, the conceptually possible set of rules is reported by Hindle as 

being “on the order of 109”; thus, 35,000 rules stored represents an immense narrowing of the field. 
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wanted to tag text without parsing it. It is also a problem in that the feasibility of 

applying Hindle’s approach depended not only on the existence of a training corpus 

(which many empirical methodologies require) but also on the existence of a suitable 

parser. However, Hindle makes use of the parser and its analyses to improve the 

accuracy of the tagging. For example, the rules generated could use in their context 

statements grammatical relations, rather than just the tag(s) on the previous and 

following words. For instance, a rule that depended on the co-occurrence in English 

of the verb have and the past participle form of a lexical verb might normally have 

trouble dealing with phrases such as “has immediately left”, where an adverb 

separates the auxiliary and main verbs. However, since the parser “knew” the 

underlying structure, Hindle’s rules could use the sequence have / past participle in its 

tagging rules regardless of intervening adverbs. Another way in which Hindle 

capitalised on the intertwining of tagger and parser was by using the parser to restrict 

the rule-acquisition software from devising rules about contexts that were not 

syntactically linked. The result of this restriction was the creation of fewer rules 

(about 12,000). However, accuracy with this smaller set of syntactically restricted 

rules was actually greater. 

 Thus we see that using the syntactic knowledge in a parser, it was possible for 

Hindle to perform rule-based tagging with automatically acquired rules to a high 

degree of accuracy. As described in the next section, Brill’s transformation-based 

approach dispenses with the need to use a parser to acquire rules automatically, and 

ultimately allows untagged training data to be used, as in the training of a hidden 

Markov model. 
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5.4.2 The transformation-based approach 

 

5.4.2.1 Tagging by transformation-based error-driven learning 

 

 Brill (1995) calls his approach “transformation-based error-driven learning”. 

Transformations, like constraints, are a type of rule; but whereas constraints specify 

what analyses should be removed from a list of possibilities (see section 5.2.2 above), 

transformations change one analysis into another. These transformations are 

automatically learnt by an algorithm which devises the rules one by one in such a way 

that at each stage the number of errors left by the system is minimised. 

 The transformation-based error-driven learning approach can apply to 

problems other than tagging. Brill (1995) reports applying it to prepositional phrase 

attachment disambiguation, syntactic parsing, and speech sound generation and 

recognition. Most notably, he applies it to the separate subtask within tagging of 

assigning an initial tag or tags to words not recognised by the tagger’s lexicon (Brill 

1994, 1995: 558-561). However, its earliest application was in the use of contextual 

information to perform part-of-speech tagging (see Brill 1992). Thus, in the 

discussion that follows, I will refer exclusively to the method as applied to tagging, 

although it should be understood that the same approach is applicable in an analogous 

way to other aspects of automated text annotation. 

 A key fact about Brill’s approach is that it is not a disambiguation technique 

per se. Rather, it is what I shall refer to as an “improvement” technique. It takes text 

which is unambiguously tagged, but with many errors, as its input, and reduces the 

number of errors. By contrast, disambiguation techniques proper take ambiguously 

tagged input and reduce the ambiguity. However, the two techniques perform parallel 
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functions within their respective tagging systems. 

 

5.4.2.2 The advantages of the transformation-based approach  

 

 Brill (1992, 1995) argues for the superiority of the corpus-derived 

transformation approach over both the approaches to which it is close kin – those 

using hand-written rules and corpus-derived probabilities. For example, he makes the 

following comment on rule-based taggers42: 

…the rules in rule-based systems are usually difficult to construct and are 

typically not very robust… [the transformation-based tagger] overcomes the 

limitations common in rule-based approaches to language processing: it is 

robust, and the rules are automatically acquired. 

Brill (1992: 152) 

 More developed is Brill’s argument for the advantages of his approach over 

stochastic taggers. Firstly, he suggests (1992: 152) that the rules acquired by his 

system require less storage space than the tables of statistics learned by taggers using 

a Markov model43. He also suggests that finding and implementing improvements to 

the system is easier in the case of a rule-based tagger than a stochastic tagger; and that 

his tagger is more amenable to being used with a different tagset, a different genre of 

texts, or a different language. For example, he points out (1992: 154) that the idiom-

list used in CLAWS44, which is key to the system’s high success rate, would have to 
                                                 
42 It should be noted that these comments are early and may not take into account the advances made in 

the 1990s by work in the Constraint Grammar framework (see section 5.2.2 above). 

43 The amount of disk space required by a system was clearly more of an issue in the early 1990s than it 

is today. 

44 See 5.3.2.3 above and also 5.6.3 below. 
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be rewritten to use the system with a different tagset or language. 

 However, the major advantage of corpus-derived rules identified by Brill is 

that the information acquired by his system is qualitatively different from that 

acquired by a stochastic tagger: 

Although corpus-based approaches have been successful in many different 

areas of natural language processing, it is often the case that these methods 

capture the linguistic information they are modelling indirectly in large 

opaque tables of statistics. This can make it difficult to analyse, understand 

and improve the ability of these approaches to model underlying linguistic 

behaviour. 

Brill (1995: 543) 

 In other words, it is impossible to tell what information about language a 

stochastic system is getting right and what it is getting wrong. This is because the n-

gram probabilities that stochastic systems store are nothing like linguistic knowledge 

as linguists formulate it. By contrast, the transformations learned in Brill’s system 

benefit from what Brill (1992: 152) refers to as “the perspicuity of a small set of 

meaningful rules” which the linguist can easily recognise and analyse. 

 Brill has also (1995: 548-551) compared tagging using lists of transformations 

favourably to the use of decision trees, a machine-learning technique which, Brill 

reports, can in some cases provide the same sets of classifications as transformations 

derived by Brill’s method (see also section 5.5 below). 

 

5.4.2.3 A summary of Brill’s algorithm 

 

 I will now proceed to explain briefly the operation of Brill’s learning system 
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(shown in the diagram below)45. Like Markov model taggers, Brill’s tagger requires 

pre-tagged text to learn from, but this pre-tagged corpus is used as a reference point 

for evaluating the performance of the rules rather than as a source for statistics. The 

system starts with an untagged version of the corpus, which is run through an initial 

state annotator. This is any program which assigns a single tag, accurate or not, to 

each word. Brill reports success using an initial state annotator which simply assigns 

the tag which is most frequent for a given word, as stored in a lexicon. However, the 

“initial state” can also be the output from another system (such as a stochastic tagger 

– this allows different taggers to be chained together). The tagged corpus (the “truth”) 

is compared by the learner program to this initially-tagged corpus, and “[a]n ordered 

list of transformations is learned that can be applied to the output of the initial-state 

annotator to make it better resemble the truth” (Brill 1995: 545). 

 

                                                 
45 For a full description, see Brill (1995). Brill (1992) describes a slightly earlier version of the same 

technology, with particular attention to its application to part-of-speech tagging. Brill (1992) uses 

slightly different terminology to Brill (1995), calling the rules used in the system “patches” rather than 

“transformations”. In this summary I follow the usage of Brill (1995). 
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Fig. 5.3: Brill’s learning system (taken from Brill 1995: 545) 

 One transformation is learned each time the algorithm cycles through the 

learner. As Brill (1995: 553) puts it,  “[t]o learn a transformation, the learner, in 

essence, tries out every transformation, and counts the number of tagging errors after 

each one is applied.” The measure of success of a transformation is the reduction of 

errors in the annotated corpus as compared to the truth. On each cycle, the 

transformation with the best score is retained, applied to the training corpus, and 

added to the bottom of the list of transformations which have been learnt so far. Thus, 

the list of transformations is ordered from the most effective (at the top) to the least 

effective (at the bottom). Learning ends when no transformation can be found which 

improves the tagging of the corpus (i.e. corrects more errors than it creates). 

 Brill makes the point that “transformations towards the end of the list 

contribute very little to accuracy” (1995: 557). In one experiment he reports, 447 

transformations were learned, giving an accuracy of 97.2%. However, the first 200 

transformations on the list applied separately gave an accuracy of 97%, and the first 
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100 rules gave 96.8%. 

 The transformations learnt can be very similar to the linguistic information 

inserted into rule-based taggers or modules of taggers. For instance, Brill (1992: 154) 

notes that his tagger automatically acquired a rule to tag the phrases like as old as 

(qualifier – adjective – subordinating conjunction). This rule was very similar to an 

entry in the CLAWS idiom-list (effectively a rule-based module). 

 The implementation of the tagger itself, as opposed to the learner, is very 

simple: first, untagged text is passed through the initial-state annotator, and then the 

learned transformations are applied to the text in the same order that they were 

learned. Tagging is thus effectively the same as learning46, except that there is no need 

to evaluate the transformations since during learning they have established their 

effectiveness.  

 

5.4.2.4 The form of transformations 

 

 Brill’s transformations are made up of a rewrite rule and a triggering 

environment. In the case of part-of-speech tagging, this means that transformations 

can be paraphrased as change tag A to tag B if tag A occurs in context C. An example 

given by Brill (1995: 545) of this is Change MODAL to NOUN if the preceding word 

is DETERMINER. This would, for instance, correct the tagging of a phrase such as 

“The can rusted” where the initial state annotator has tagged “can” as a modal verb. 

                                                 
46 Roche and Schabes (1995) suggest that Brill’s algorithm is computationally slower than is desirable 

for a tagger. However, they report a method to convert a set of rules acquired by Brill’s method into a 

finite state transducer which can apply all the rules at once. This implementation is much faster than 

Brill’s tagger, although it uses more memory, but is functionally identical to it. 
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 In the learning process, the transformation learner has available templates for 

possible contexts with which to create transformations. At the point in the learning 

algorithm described above where the learner must try out every transformation, the set 

of possible transformations is equal to the set of “all possible instantiations of 

transformation templates” (Brill 1995: 553). 

 In the form of the tagger which Brill (1995) refers to as “nonlexicalised” – 

basically identical to the tagger presented in Brill (1992) – transformation context 

templates refer only to the tags on the three words preceding and the three words 

following the target word. Extensions described in Brill (1994) add further rule 

templates, which may now refer to the actual words as well as their tags. Brill (1995) 

refers to this as the “lexicalised” form of the tagger47. 

 Some examples of the context templates, rendered as prose, are as follows: 

 

The preceding (following) word is tagged z. 

One of the three preceding (following) words is tagged z. 

The preceding (following) word is tagged z and the word two before (after) is tagged w. 

The preceding (following) word is w. 

The word two before (after)is w. 

The current word is w and the preceding (following) word is tagged z. 

The current word is w, the preceding (following) word is w2 and the preceding (following) tag is t. 

(all examples from Brill 1995: 553, 556) 

 Obviously, in other applications of transformation-based error-driven learning, 

the templates are different: for instance, the unknown-word initial-state tagger48 uses 

templates referring to the characters that make up the target word. 

                                                 
47 It should be noted that Brill (1995: 557) finds that “the addition of lexicalised transformations [to the 

tagger] did not result in a much greater improvement in performance” – in his experiment, the error 

rate only fell slightly, improving accuracy from 97% to 97.2%. 

48 See 5.4.2.1. 
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 Within the tagging system, the transformations are expressed in a linear format 

which lists sequentially the tag to be changed, what it is to be changed to, the context 

template to apply and the parameter of that the context takes. So the transformation 

mapping the tag TO (infinitive marker to) to IN49 (preposition) when the word 

preceded an article is realised as TO IN NEXT-TAG AT, and the transformation 

changing a verb tag to a noun one or two words after an article is realised as VB NN 

PREV-1-OR-2-TAG AT (Brill 1992: 153). The relation of these transformations to 

the generalisations that a linguist might make on the basis of their own knowledge is 

clear. 

 The nature of the templates is not necessarily crucial to the performance of the 

tagger. Brill (1992: 154) points out that the presence of bad templates will have no 

impact as long as effective templates – such as the very broad ones cited above – are 

retained as well: “If a template is bad, then no rules which are instantiations of that 

template will appear in the final list of [transformations] learned by the tagger.” In 

effect, the templates are suggestions by the programmer as to what type of rules the 

learner might like to come up with; the algorithm is free to ignore these hints if they 

are unhelpful. 

 

5.4.2.5 Extensions to Brill’s basic method 

 

 Brill’s tagger as initially designed invariably returns a single tag for each 

word, and requires a tagged corpus to use as training data. However, later 

developments in the transformation-based approach mean that both these features can 

be avoided if so desired. 

                                                 
49 Brill’s tagger uses the Brown Corpus tagset (see 2.1.1). 
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5.4.2.5.1 N-best tagging in the transformation-based approach 

 

 As explained above (page 237), n-best or k-best taggers return more than one 

tag for each word, trading off improved recall for lower precision. At first sight, this 

would appear incompatible with the transformation-based approach, which takes fully 

disambiguated text as its input. However, Brill (1995: 561-562) discusses a method to 

make a transformation-based tagger return n-best tags, which in effect re-inserts 

ambiguity after the non-ambiguous stage of improvement using transformations. 

 This is achieved by using the tagger described above as the initial-state 

annotator for a second system. This latter system learns transformations based on a 

different set of templates: the same contexts are used but the operation triggered adds 

an alternative tag to a word rather than changing a single tag. Transformations are 

rated on the value obtained by dividing the number of errors they correct (the 

improvement in recall) by the number of tags added altogether (the fall in precision). 

That is, at any point in training, the best rule is the one that corrects the most errors 

for the smallest cost in terms of extra ambiguity. Brill reports that when 250 rules 

were learned,  recall rose to 99.1%, with a mean 1.5 tags per word (with fewer rules, 

recall was lower but precision was higher). 

 

5.4.2.5.2 Unsupervised training of a transformation-based model 

 

 Brill and Pop (1999) describe a method to acquire a set of transformations for 
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tagging without the use of any tagged training data50. This approach is referred to as 

unsupervised learning, as opposed to the supervised learning discussed above51.  The 

only linguistic input required is a lexicon listing the allowable tags for each word. 

This lexicon need not be generated from a corpus (which generation would itself 

necessitate a tagged corpus) but “could be extracted from an on-line dictionary or 

through morphological and distributional analysis.” Every word in the text is given all 

these tags as their initial state annotation, and a set of transformations is learned as 

before. 

 However, because the initial annotation is ambiguous, the transformations 

reduce the number of possible tags rather than changing one tag to another. This 

means that the unsupervised tagger uses a disambiguation process, like the rule-based 

approaches discussed in section 5.2, rather than an improvement process like Brill’s 

earlier tagger. These transformations change the tag from X to Y in context C, where 

X is a set of tags rather than single tags and Y is a single tag which is one of the tags 

in X (Brill and Pop 1999: 32). The context templates in this version of the tagger are 

more restricted than in the supervised tagger, referring only to the previous word, the 

following word, or the tag on either. 

 It is clearly trivial to generate transformations according to these templates. 

But evaluating the transformations in the absence of a tagged reference corpus is more 

challenging. Brill and Pop’s approach is to use as a reference of correctness those 

                                                 
50 Since rules based on a linguist’s knowledge do not require a tagged corpus, and hidden Markov 

models can be trained on untagged data, this extension to Brill’s model means that all three approaches 

discussed so far can be undertaken with or without pre-tagged data. Contrast neural networks and other 

machine-learning approaches as discussed in section 5.5 below, which do require tagged data. 

51 The “supervision” by the human user of the system consists of making the initial markup of the 

training data: the tagger’s use of this data constitutes operating under human supervision. 
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words in the untagged training corpus that were unambiguously tagged by the initial 

state annotation or have been disambiguated by previously learned transformations. A 

transformation which selects a tag in a given context is evaluated on the basis of how 

often that tag appears on unambiguously tagged words in that context. The function 

that measures this compares the frequency on unambiguous words of the selected tags 

to that of the tags in the ambiguity set that are not selected: 

A good transformation for removing the part of speech ambiguity of a word 

is one for which one of the possible tags appears much more frequently as 

measured by unambiguously tagged words than all others in the context, 

after adjusting for differences in relative frequency between the different 

tags. 

Brill and Pop (1999: 33) 

 Where the lexicon used contained all the words in the test texts52, the 

unsupervised-learning tagger achieved 95 to 96% accuracy based on 120-350 

thousand words of data. A strength of this model is that the learner did not over-train 

itself. This is a danger with the training of stochastic models on untagged text using 

the Baum-Welch algorithm (Brill and Pop 1999: 34). 

 As well as the unsupervised model, Brill and Pop discuss a “weakly-

supervised” model, using a small amount of tagged text and a large amount of 

untagged text as training data. Two sets of transformations are learnt. When tagging, 

those based on unsupervised learning are applied after the initial state annotator but 

before the supervised transformations. This combined approach achieved 96.8% 

accuracy with 88,200 words of tagged data – an improvement on what could be 

                                                 
52 Unknown words would be dealt with in this version of the model by assigning them all open-class 

tags. 
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attained if this amount of tagged data were used without any untagged data. 

 

5.5 General machine learning approaches to disambiguation 

 

 The previous section discussed Brill’s transformation-based error-driven 

learning. This is a machine-learning algorithm designed with part-of-speech tagging 

and similar applications in mind. However, other, more generally applicable methods 

of machine learning, not necessarily originally designed for linguistic applications, 

have also been utilised in performing part-of-speech disambiguation. 

 The information which is learned from the training data is stored in the form 

of numerical parameters: thus in terms of the typology outlined in 5.1 above, machine 

learning approaches fall into the same category as Markov model disambiguation 

algorithms. However, the model which is constructed is typically very different from 

the matrices of transition probabilities that form the basis of Markov modelling 

(Daelemans 1999: 303). 

 There exists a wide variety of machine-learning techniques. Those which have 

been utilised in part-of-speech tagging include case-based learning, decision tree 

induction and neural networks (an overview of all of these is given by Daelemans 

1999). Given the diversity of these models, I will not attempt to discuss them all in 

depth. Rather, I will briefly discuss the overall principles of machine learning, and 

then exemplify work in this field by looking in detail at work on part-of-speech 

tagging using neural networks. 
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5.5.1 Overview 

 

 The underlying rationale of all machine learning is that the system’s capacity 

to perform a given task is derived from examination of a set of examples of inputs to 

the system and the corresponding outputs that the system would optimally produce. 

As Daelemans explains: 

Conceptually, a learning system consists of a performance component which 

achieves a specific task (given an input, it produces an output) and a 

learning component which modifies the performance component on the 

basis of its experience in such a way that performance of the system… 

improves… To achieve its task, the performance component uses an internal 

representation. The task of the learning component may therefore be 

construed as a search in the space of possible representations for a 

representation that is optimal for performing the mapping. 

Daelemans (1999: 287) 

 In case-based learning, cases encountered in the training data are stored in 

memory and new situations in the input are handled on the basis of the most similar 

remembered situation. In part-of-speech tagging, the case base might consist of 

words, with associated context and the correct tags. Much depends on the weightings 

given to different features. An example of case-based learning applied to part-of-

speech assignation is the Kenmore system of Cardie (1996), which performs both 

part-of-speech53 and semantic tagging; another example is the MBT system described 

by Daelemans et al. (1996). Decision tree induction, by contrast, does not retain any 

of the training data. Rather, a tree is derived automatically from the data, with output 

                                                 
53 Cardie’s system only distinguishes eighteen parts of speech; thus it may not be wholly comparable to 

other modern taggers which handle dozens or hundreds of morphosyntactic categories. 
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tags on its leaves and nodes containing tests that choose the tag. For example, a node 

might ask “is the word the?”, leading either to a leaf with an article tag or to further 

nodes, depending on the answer (example from Magerman 199554). An example of a 

system using decision trees is that of Black et al. (1992), who report modest 

improvements on the accuracy achieved by Markov model taggers. A problem in both 

case-based learning and decision tree induction is feature relevance (Daelemans 1999: 

293-298): how does the system measure the similarity of one situation to another, or 

decide what features of the word to ask questions about? 

 I will now proceed to discuss in greater detail part-of-speech disambiguation 

using neural networks. 

 

5.5.2 The application of neural networks in disambiguation 

 

 A neural network55 is a learning system whose architecture consists of two or 

more interconnected layers of processing units, as shown in the diagram below. Each 

unit may be activated or not activated. The activations of the bottom layer correspond 

to the input to the system, and the activations of the top layer indicate the output. The 

optional intermediate layers are called “hidden” because while they contribute to the 

processing, they do not connect to the world outside the system at all. The activation 

of each unit propagates to other units via that links connecting them. The parameters 

of the system are the weights given to the links, and the activation values of the units. 

                                                 
54 Reported in Daelemans (1999). 

55 The type of neural network that has been used in disambiguation is the multilayer perceptron 

network (Schmid 1994: 2, Daelemans 1999: ). Therefore, I will not discuss other types of network and 

references to neural networks in this section refer solely to multilayer perceptron networks. 
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Thus, the activation of non-input units depends upon the activations of the units to 

which they are connected and the weightings of the links connecting them. 

 

Fig. 5.4: A 3-layer neural network (figure from Schmid 1994) 

 The training of a neural network consists of iteratively adjusting the weights of 

the connections and the activation values to produce a system which produces the 

correct output for the training data: 

During learning, the set of examples is repeatedly examined to find an 

optimal set of connection weights between layers of simple units. The 

training material is thus abstracted into a set of numeric weights which is 

then used to predict the output of new input patterns. 

Daelemans (1999: 300) 

 Prior to their application to part-of-speech disambiguation, neural networks 

had been successfully used in speech recognition (reported by Schmid 1994). Their 

use in tagging dates mainly from the late 1980s and the work of Benello, Mackie and 

Anderson (1989)56; subsequent systems using neural networks include Nakamura et 

                                                 
56 Benello, Mackie and Anderson (1989) report that earlier linguistic neural network systems dealt with 

made-up data and handled unrestricted data poorly. 
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al.’s (1990) NETgram system57 and the Net-Tagger system of Schmid (1994). 

 The input to a neural network disambiguation system is the ambiguously 

tagged word, and some amount of context. For each word examined by the network, 

there is a set of units in the input layer equal in number to the number of tags in the 

tagset. The input units corresponding to the tag or tags marked up on the word 

examined are activated. The output layer then indicates the tag the system has chosen. 

The amount of context used varies greatly between different systems. Benello, 

Mackie and Anderson (1989) used as their input the four unambiguously tagged 

words preceding the target word and one ambiguously tagged word following it. 

Nakamura et al.’s (1990) system allows the scope of the system to be varied, taking 

one, two or three words before the target word as the context, but no words after it. 

Schmid (1994) also experimented with different context scopes, reporting that three 

words before the target word and two words afterwards were optimal (to wit, using 

more context did not improve the system, using less only worsened it slightly). 

 It can thus be seen that in general, neural networks use a wider context than a 

Markov model can, based on bigram or trigram transition probabilities. This is 

because the number of parameters that must be estimated for a Markov model is equal 

to the size of the tagset raised to the power of the length of the sequences examined. 

Thus, the amount of training data needed to accurately estimate (say) six-gram58 

probabilities for a tagset of (say) 100 – giving one trillion transition probabilities – 

                                                 
57 As Daelemans (1999) points out, the NETgram system generates or predicts the part-of-speech of the 

target word based on the preceding parts-of-speech, and is therefore not a disambiguator per se: it does 

not take a set of potential analyses of the target word as part of its input, as the other two systems 

described in this section. 

58 Six words is the size of the window taken into account by Benello, Mackie and Anderson’s (1989) 

neural network system. 
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would be astronomical. For a neural network, the number of parameters is much 

smaller, since they are what Benello, Mackie and Anderson refer to as “complex 

conditional probabilities” rather than “simple first-order transition statistics”. 

Therefore wider contexts can realistically be taken into account. However, neural 

network taggers still use surface-level linguistic information only. They do not use 

any knowledge of syntactic structure. In this they resemble nearly all the 

disambiguation methodologies discussed in this chapter. 

 There is also a great deal of diversity among different systems concerning the 

structure of the network used. Benello, Mackie and Anderson’s (1989) network has 

236 input nodes, 236 hidden nodes in a single hidden layer, and 88 output units to 

represent the output. Nakamura et al.’s NETgram has a variable structure to match its 

variable context scope, but the basic bigram model has 89 input units, 89 output units, 

and 16 on each of its two hidden layers. By contrast, Schmid (1994) does not use a 

hidden layer at all, on the grounds that while these make networks more powerful 

they can also make them prone to over-training. He reports that the Net-Tagger does 

not, in any case, benefit from having a hidden layer. Thus, his system consists solely 

of a number of output units equal to the size of the tagset, and an equal number of 

input units for each word in the context scope. A key feature of these systems is that 

the parts-of-speech marked on preceding words in the input to the net are themselves 

the output of an application of the network. 

 The performance of neural network taggers59 appears comparable to that 

achieved by rule-based and stochastic approaches60. Benello, Mackie and Anderson 

                                                 
59 In the context of neural networks, “performance” is sometimes referred to as generalisation ability – 

i.e. how well the network can “generalise” to handle data that was not in the training set. 

60 A exception may be Nakamura et al., who report only 86.9% accuracy. 
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report an accuracy of 94.7%. Schmid’s Net-Tagger achieves 96.22%, which, Schmid 

reports, is better than a comparable Markov model tagger that he tested61. It should be 

noted however that the amount of training data required to achieve these results 

varies. Benello, Mackie and Anderson used a maximum of about 15,500 words; by 

contrast Schmid trained his model on some 2 million words. It is therefore not certain 

that these results are entirely comparable. 

 A question on which there is so far no consensus is the extent to which neural 

networks and the knowledge within them can be described as “linguistic”. Benello, 

Mackie and Anderson (1989) suggest that neural networks are probabilistic models 

just like Markov models, and not linguistic in the same sense as rule-based models 

like Constraint Grammar or transformation-based learning: “if pressed, one could 

perhaps say the network uses ‘fuzzy’ reasoning, but it is unlikely that such a thing as a 

specific linguistic rule could be said to exist in the network.” By contrast, Nakamura 

et al. (1990) report that “[t]he results of analysing the hidden layer after training 

showed that the word categories were classified into some linguistically significant 

groups, that is to say, the NETgram learns a linguistic structure.” 

 

5.6 Combining and comparing disambiguation methods 

 

 In order to choose a disambiguation method to apply to the problem at hand – 

the tagging of Urdu – it would be helpful to have a reliable means of comparing the 

different approaches discussed in the four previous sections. However, this is far from 

                                                 
61 Schmid (1994: 7) does report that Net-Tagger runs much more slowly than the stochastic taggers to 

which he compared it; however, in this age of continually faster computer hardware this is unlikely to 

mitigate strongly against the use of neural networks in tagging. 
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a trivial task; Abney (1997) offers the caveat that “[a]s concerns accuracy figures… it 

is good to remember the maxim, ‘there are lies, damned lies, and statistics’.” In this 

section, I will firstly look at some of the factors that make the comparison of 

disambiguation algorithms difficult in the first place (5.6.1), and continue by 

reviewing a study that has attempted to get past these difficulties (5.6.2). Finally, I 

will review some studies that have taken the further step of attempting to combine 

different approaches to disambiguation into a single tagging system (5.6.3). 

 

5.6.1 The difficulty of comparing different taggers 

 

 There are two fundamental difficulties in comparing the success rates of 

different disambiguation methods. Firstly, there is no universally agreed system for 

rating the performance of a tagger. Secondly, it is impossible to be certain that any 

differences found between two taggers that use different disambiguation methods are 

actually due to the difference in disambiguation method. 

 Probably the most widely used system of assessing the performance of a 

tagger is to look at the percentage of tokens which are tagged correctly. This system is 

used by Charniak et al. (1993) as the basis for their comparison of different Markov 

model equations, for instance. This measure of performance is often called “accuracy” 

or sometimes “correctness” (e.g. by van Halteren 1999b) in contrast to another 

common system which uses the two measures of “recall” and “precision”, as defined 

by Voutilainen (1995: 172). The precision is the number of tags correctly assigned, 

expressed as a percentage of all the tags assigned. The recall is the percentage of 
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tokens which are given the correct tag62. Clearly, accuracy is a measure geared to 

taggers that produce non-ambiguous output, whereas precision/recall is geared to n-

best taggers. However, van Halteren (1999b: 82) suggests that accuracy can be used 

to measure the performance of an n-best tagger if accompanied by the additional 

measure of ambiguity (equal to the number of tags divided by the number of tokens, 

and thus, ideally, 1)63. 

 It should not be supposed that accuracy/ambiguity are in practice the same as 

precision/recall. For example, the definition of precision is such that it can never be 

higher than recall – in fact, the two are the same, and identical to accuracy, if applied 

to a tagger which assigns one tag only to each token (Voutilainen 1995: 172). In 

contrast, the ambiguity of such a tagger would be 1 – the optimal score. Therefore, 

one problem in comparing the published success rates of different taggers is that the 

figures describing those success rates are in many cases not directly comparable. 

 The second, greater difficulty in comparison is that factors other than the use 

of a different disambiguation method might account for differences in performance 

between two taggers. Taggers frequently use tagsets of different sizes. One tagset may 

contain distinctions that are difficult to make64 (thus degrading the tagger’s 

                                                 
62 A slightly different definition, which however amounts to the same thing mathematically, is given by 

van Halteren (1999b: 82). 

63 It should be noted that despite the prevalence of performance measures based on counts of tags or 

tokens, it has been suggested (e.g. by van Haltern 1999b: 85 and Abney 1997: 121; see also Merialdo 

1994: 156) that the sentence may in fact be a more relevant unit of error. In many applications that 

might use tagged text – for instance, parsing, or machine translation – a single wrongly tagged word 

could disrupt the analysis of an entire sentence. 

64 An example of such a distinction given by Abney (1997: 121) is the distinction between gerunds and 

present participles in English. 
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performance) which another does not. Even tagsets of the same size may very 

frequently encode different sets of distinctions. A notion of the impact of the tagset 

may be gleaned from the results of the AMALGAM project (Atwell et al. 2000), 

which made a comparative evaluation of different tagsets for English. Towards this 

end a single tagger (Brill’s) was retrained to tag each of six tagsets. The accuracy 

rates achieved varied from 97.43% to 90.59%. Clearly the tagset is a very significant 

factor in determining tagger accuracy. 

 Taggers also use different lexicons and different morphological analysers to 

provide the initial set of tags to be disambiguated. Taggers are also trained on 

different datasets65 (if training is required) and tested and utilised on different data. 

Together with the variations between tagsets, these factors means that the 

disambiguation systems in different taggers are dealing with differing amounts of 

ambiguity in input texts of differing types – so to treat the tagger score (whether 

accuracy or precision/recall) as an assessment of the efficacy of the disambiguation 

methodology that it uses is, at the very least, suspect66. 

 In summary, as Abney (1997: 121) points out, “a fair comparison of [tagging] 

techniques is only possible if they are applied to the same task. In this respect, 

virtually none of the reported tagger error rates are comparable.” 

 To this it might be added that a fair comparison of two disambiguation 

methodologies would necessarily require that the taggers began with the same 

                                                 
65 McEnery et al. (1997: 221) give some experimental evidence that the size and, possibly, composition 

(in terms of text-type) of the training data has an effect on tagger performance. Merialdo (1994: 161) 

also reports results indicating that size of the training dataset has an impact. 

66 Another factor is that many contemporary taggers are constantly being improved over time. If this is 

the case, the reported performance of a system at the time of its development may be inferior to the 

performance it is in practice capable of achieving at the current moment. 
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investment into the inputting of linguistic information by a human being (e.g. in the 

form of rules or manually tagged text). This factor may be critical, because the time of 

an analyst is liable to be the most expensive requirement of a tagging system. A 

tagger which can perform 95% accurate tagging based on analyses that took a 

researcher one week might well be considered superior, for practical purposes, to one 

which performs 99% accurate tagging based on a year’s worth of analyst time. This is 

particularly applicable when considering the suitability of a disambiguation 

methodology for a language which has not yet been tagged67. 

 For these reasons, it is highly problematic, if not impossible, to make a 

meaningful comparison of the performance of different disambiguation 

methodologies based solely on their success rates as reported in the literature, as any 

difference in these rates cannot be attributed with certainty to the difference in 

disambiguation method alone. 

 

5.6.2 Enabling a meaningful comparison of disambiguation methodologies 

 

 In spite of the difficulties outlined in the previous section, efforts have been 

made to make meaningful the comparison of taggers using significantly different 

disambiguation methods. A good example of such a study is that of Chanod and 

Tapanainen (1995a), who compared the performance on French text of a Constraint 

Grammar tagger (see section 5.2.2 above) with that of the Xerox tagger of Cutting et 

al. (1992) (see section 5.3.2.5 above). Rather than being a straight “try-out” of pre-

                                                 
67 Analyst time is not so precious a commodity in the case of languages like English, where vast 

quantities of text analysed either by hand or by previously developed taggers are available freely or at 

minimal expense.  
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existing tagger programs, this study took each tagger in its untrained state – i.e., with 

no established lists of constraints or tag transition probabilities. 

 Because a new implementation of the taggers was being developed, the same 

tagset, tokeniser, lexicon and morphological analyser68 could be used in both taggers 

– thus the comparison is of the disambiguation method alone. Furthermore, Chanod 

and Tapanainen allocated one month of research time to the development of each of 

the two taggers. Thus, they evade a number of the difficulties discussed above with 

regards to making a fair comparison. 

 Since the Xerox tagger does not utilise tagged training data, the research time 

on this tagger was used to fine-tune the tagger by writing “biases” – initial values for 

the transition probabilities before training occurs. By contrast, for the CG system the 

time was spent writing and testing constraints, of which there were ultimately 75. 

 Chanod and Tapanainen found that the constraint-based system performed 

better. In the more successful of two tests of these systems, the CG system was 98.7% 

accurate (in this case, no ambiguity remained in the analysis) and the probabilistic 

system was 96.8% accurate. A combination of the systems performed less well than 

the constraint-based system alone (see also 5.6.3 below on combination tagging 

systems). Furthermore, Chanod and Tapanainen point out that to write good biases for 

the probabilistic tagger is very difficult as “it is hard to predict the effect of tuning the 

parameters of the system, whereas the constraint-based tagger is very straightforward 

to correct.” Thus Chanod and Tapanainen conclude that the constraint-based rules 

perform better than the Markov model disambiguation system, contain more linguistic 

information, and are more easily written. 

 

                                                 
68 See Chanod and Tapanainen (1995b). 
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5.6.3 Combining different tagging methodologies: hybrid taggers 

 

 With respect to the typology outlined at the start of this chapter, a “hybrid 

tagger”69 may be defined as a system which incorporates two or more disambiguation 

modules based on two or more of the methodologies outlined in the preceding 

sections. Each disambiguation module may itself be classified as a single type, but the 

system as a whole cannot. 

 The creation of a hybrid tagger may be a matter of expediency to improve the 

functioning of what would otherwise be a single-type system. This is the case, for 

example, in Stolz et al.’s (1965) system, which employs an “ad hoc” phase 

(essentially, a rule-based module) to improve the accuracy of a basically probabilistic 

system. A tagger which might be classified as a hybrid in another sense is that of Brill 

(1992, 1995), since Brill’s methodology requires the use of an initial state annotator 

which is frequently a probabilistic disambiguation module70. 

 However, a more prototypical example of a hybrid system would be the 

CLAWS system. As explained in 5.3.2.2 above, the core of the CLAWS system is a 

Markov model disambiguation module. However, even CLAWS1, the earliest version 

of the system, incorporated elements which in terms of my typology are 

unquestionably rule-based. So although CLAWS has usually been described in the 

                                                 
69 I have adopted the term “hybrid tagger” from Garside, Leech and McEnery (1997); however, I will 

use it throughout this chapter in accordance with the definition given here. 

70 Brill (1995: 552) reports a version of his tagger whose initial state annotator allots to each token the 

tag that occurs with it most frequently. This initial state annotator can be viewed as a probabilistic 

disambiguator which utilises lexical probabilities only and not transition probabilities (see section 

5.3.2.4). However, Brill has also (1995: 545) implemented a version where the initial state annotator 

was a full Markov model tagger; this implementation of Brill’s algorithm is an even clearer hybrid. 
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literature as a stochastic tagger (e.g. by Voutilainen 1995: 269), in the terms of the 

typology used in this chapter, it was from its inception a hybrid tagger. 

 The rule-based component of CLAWS1 is implemented as a program called 

IDIOMTAG, which alters the tagging after the WORDTAG lexical analysis 

component has initially assigned potential tags, but before the text is passed to the 

stochastic disambiguator (Garside 1987: 39-40). The initial motivation for this 

program was the inability of the Markov model in CHAINPROBS to deal with multi-

token words and fixed idioms: 

IDIOMTAG, as its name suggests, searches the text for specific sequences 

of words, or words and tags (but not tags alone), whose syntactic role in 

combination differs from the syntactic role played by the same words in 

other contexts… In some cases the correct (i.e. “idiomatic”) tag is among 

the choices offered by WORDTAG, and the role of IDIOMTAG  is merely 

to facilitate the process of disambiguation and to forestall possible errors by 

CHAINPROBS… In other cases, IDIOMTAG inserts tags which were never 

considered by WORDTAG, because they apply exclusively in the context of 

one or more idioms. 

Blackwell (1987: 111-112) 

 Blackwell gives the tagging of “first” as an ordinal number in the phrase “at 

first sight” as an example of the former type of action by IDIOMTAG, and the 

tagging of “to” as an adverb in the phrase “to and fro” as an example of the latter 

type. These idioms are stored in a list. It is possible to conceive of the entries in this 

list as the equivalent of rules with a very particular context. Certainly, it would be 

possible in the majority of rule-based disambiguation methodologies (including the 

formalism I describe in the following chapter) to write a rule that would have the 

same effect on the text as any given CLAWS idiom. In the case of “to and fro”, a rule 
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would have to state that all tags on a word should be removed and replaced with an 

adverb tag if that word was “to”, the subsequent word was “and”, and the word after 

that was “fro”. Since the application of these rules results in reduced ambiguity, 

IDIOMTAG can be classified as a rule-based disambiguation module which is linked 

in serial to a stochastic disambiguation module (CHAINPROBS). 

 It should also be noted that the current version of CLAWS, CLAWS4, uses 

additional rule-based elements as well as the idiom-tagger, and the idiom-tagger itself 

has grown in scope (see Garside and Smith 1997). In CLAWS4, the idiom-tagger and 

other non-stochastic modules can correct the output from probabilistic processing as 

well as altering its input. Thus CLAWS4 is a hybrid to an even greater extent than 

CLAWS1. 

 The rule-based and stochastic elements of CLAWS developed together, within 

the context of the CLAWS system. By contrast, Tapanainen and Voutilainen (1994) 

describe an experiment which sought to combine rule-based and stochastic 

disambiguation modules which were developed completely separately, by different 

researchers, and which were originally intended to function as the sole disambiguation 

routine within their respective systems. The two systems were the EngCG rule-based 

tagger and the Xerox Markov model tagger (see sections 5.2.2 and 5.3.2.5 above 

respectively). These two taggers have complementary strengths: EngCG is rarely 

wrong but does not disambiguate fully, whereas the Xerox tagger always 

disambiguates fully but is less reliable in terms of accuracy. Since these are 

independent systems, combining them poses some problems. For example, the 

EngCG tagger uses a tagset effectively twice as large as the one used by the Xerox 

tagger. Rather than attempt to link the two systems in serial as elements of a single 
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system71, Tapanainen and Voutilainen run them in parallel on the same text and then 

align the outputs by constructing a mapping between the tagsets and allowing the 

Xerox tagger to resolve the ambiguities left by the EngCG system. They report an 

accuracy rate of 98.5%, a result that they describe as “better than other state-of-the-art 

part-of-speech disambiguators”.  

 

5.7 Selecting an approach for disambiguation in Urdu texts 

 

 The choice of disambiguation methodologies available for the Urdu tagger 

can, in the light of what has thus far been discussed in this chapter, be summarised as 

follows: 

 

• Rule-based disambiguation; 

• Probabilistic disambiguation using a Markov model trained on tagged data; 

• Probabilistic disambiguation using a Markov model trained on untagged data; 

• Tagging using transformation-based error-driven learning72; 

• Disambiguation using some machine-learning technique, e.g. neural networks; 

• Disambiguation using some hybrid of the above approaches. 

 

 I will now outline and justify my decision to use a rule-based methodology for 

tag disambiguation in the Urdu tagger on two types of desiderata. In 5.7.2 I will 

                                                 
71 Note that this is the approach taken by the CLAWS modules, and also (unsuccessfully) by the 

combination system of Chanod and Tapanainen (1995a) – see also section 5.6.2 above. 

72 As discussed earlier (page 267), Brill’s transformation-based technique does not, strictly speaking, 

perform disambiguation. However, it fulfils the same function. 
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discuss factors influencing the decision that are specific to this application. Prior to 

that, in the following section, I will discuss more general factors which mitigate in 

favour of or against one or more of the methodologies listed above. 

 

5.7.1 General factors 

 

 It is first of all possible from general considerations to exclude from 

consideration a disambiguation methodology based on general machine learning 

techniques. Daelemans (1999: 303-304) suggests that these methods have several 

advantages over statistical methods – including their requiring less training data, 

having fewer parameters, taking more context into account, and often training faster. 

However, these potential advantages are outweighed by another factor highlighted by 

Daelemans: they are a very new technology whose effectiveness has yet to be fully 

evaluated. 

With the availability of only a relatively small body of empirical data and 

theoretical analysis on the applicability of inductive machine learning 

techniques to tagging, it is too early for strong conclusions… Compared to 

the well-developed theoretical and empirical foundations of statistical 

approaches to tagging, the machine learning approach to this problem has 

only just started. 

Daelemans (1999: 303-304) 

 It would lie beyond the scope of this thesis to attempt to evaluate and compare 

the efficacy of the great variety of machine learning techniques73. For this reason, and 
                                                 
73 Not only are there a number of different techniques, for instance decision trees versus neural 

networks, but there are also variations within individual approaches. For instance even within the 

neural network technique, several different types of network have been employed (see 5.5.2). 
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since the study of this type of tag disambiguation is not as well developed as other 

approaches, it would seem unwise to utilise machine learning techniques in the 

tagging of Urdu. 

 It is not possible to exclude any of the other methodologies on the general 

grounds of their own strength or weakness. As outlined in section 5.6.1 above, 

comparison of different tagging methodologies is an inherently difficult task, as 

differences in performance reported for different taggers cannot be reliably attributed 

to the different disambiguation methodologies used by those taggers. 

 In any case, the performance rates that are reported are frequently very close 

to one another. Markov model taggers generally achieve an accuracy of up to 97% 

(see section 5.3.2.7); Brill (1995) reports a very similar performance using a 

transformation-based approach; and Voutilainen (1995: 186-187) reports a 

performance using the rule-based Constraint Grammar methodology of 99.7-100% / 

93-97% in terms of recall/precision. Even assuming comparability of results, this 

would not be a vast difference. As it is, it is doubtful that much can be concluded 

from these figures regarding the inherent superiority of any of these methods to one 

another. 

 Voutilainen’s (1995) argument that the Constraint Grammar system 

outperforms stochastic taggers is supported to some degree by the results of Chanod 

and Tapanainen’s (1995a) exercise in comparing tagger methodologies (see section 

5.6.2). However the difference is still not a great one (a 1.9% difference in accuracy 

rates). It would not be supportable to rule out using a probabilistic methodology on 

the basis of such a difference. 

 This being the case, I will move on to discuss the remaining methodologies in 

the light of factors pertaining specifically to this project and the tagging of Urdu. 
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5.7.2 Factors specific to this application in the tagging of Urdu 

 

 Three factors specific to the task undertaken will be considered here: the 

nature of the Urdu language, the nature of the tagset which I am using, and practical 

restrictions on what can conceivably be accomplished by this study. 

 

5.7.2.1 The Urdu language 

 

 Perhaps surprisingly, it is not possible to eliminate any of the candidate 

tagging methodologies on the basis of typological features of Urdu. It is possible to 

rule out simply retraining some existing tagger (e.g. that of Brill 1995 or Cutting et al. 

1992) on these grounds. Because Urdu is written in Perso-Arabic, the texts in question 

are coded in Unicode. The taggers discussed in the review above require ASCII text. 

 However, beyond this fairly superficial feature of the language, no further 

decisions can be made on the basis of, for example, Urdu’s status as a fairly highly 

inflected language or its SOV word order. Sánchez León and Nieto Serrano (1997: 

163-164) suggest that the potentially freer word order of morphologically rich 

languages could lead to such language having greater contextual ambiguity – i.e., 

making it harder to “guess” the tag of a word based the adjacent tags. Sánchez León 

and Nieto Serrano discuss this in the context of a Markov model tagger, and argue 

that, on the basis of this, morphologically rich languages would require a higher-order 

model than languages like English. This might suggest that for a language like Urdu a 

probabilistic model would be unsuitable, since it would require a high-order model 

which in turn would necessitate a much greater quantity of training data than is 
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available74. However, the problems associated with a freer word order cannot be 

assumed to apply only to Markov model taggers. There is no reason why a freer word 

order should not bedevil a rule-based approach just as much. As Brill (1995: 544) 

points out, all disambiguation techniques utilise the same kind of superficial 

information (see the quotation from Brill on page 229). Therefore the probabilistic 

approach cannot be ruled out solely on linguistic grounds. 

 

5.7.2.2 The nature of the tagset 

 

 The tagset outlined in Chapter 3 contains approximately 380 tags. This is by 

most standards quite large, more than twice as large as most English tagsets. It has 

been suggested by Tapanainen and Voutilainen (1994) that Markov model taggers 

operate better with small tagsets, whereas rule-based approaches operate better with 

tagsets which are as large as possible. However, this is far from a universal 

conclusion. 

 It had previously been assumed that all taggers would perform better with a 

smaller tagset. For instance, Eklund (1993) states that “the fewer the tags, the more 

‘accurate’ the output will be, due to the lack of more subtle subcategories.” 

Subsequently, work by Sánchez León and Nieto Serrano (1997), using Spanish tagsets 

ranging from 40 to 475 tags, has demonstrated that with a Markov model tagger, a 

larger tagset improves performance if the model has the appropriate biases. The same 

result is reported by Smith (1997) in a comparison of the CLAWS system’s 

performance with two English tagsets. 

                                                 
74 See section 5.3.2.6 for a discussion of why higher-order models require more training data, and 4.5 

for a discussion of the limitations on the amount of training data available. 
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 Therefore, although there is still no firm agreement on the matter, it would 

seem that a fine-grained tagset is beneficial to both rule-based and probabilistic 

approaches, and the size of the tagset being used in this study is thus of no great use in 

deciding which methodology to employ. 

 

5.7.2.3 Practical restrictions 

 

 The Urdu tagger described in this thesis was created by a single researcher, 

working in limited time and with limited resources. Although ideally one would select 

the optimal methodology without regard to these limitations, in practice if a working 

system is to be built practical restrictions on time and resources must be taken into 

account. 

 On practical grounds such as these, it is possible to exclude from consideration 

a hybrid of two methodologies. A priori, a hybrid tagger might be supposed to 

combine the best features of several methodologies. However, on grounds of time 

constraints a hybrid tagger can be ruled out. It is beyond the scope of this study to 

undertake, in effect, the creation of two completely different disambiguation 

systems75. Tapanainen and Voutilainen (1994) avoid this problem by creating their 

hybrid tagger from two pre-existing taggers. In the case of Urdu, there are no pre-

existing taggers, and so the hybrid tagger remains an impracticability. Of course, my 

                                                 
75 It may also be noted that there is no consensus on the best way to create a hybrid tagger. The work 

on CLAWS (see section 5.6.3) suggests that different types of disambiguation systems working in 

serial can be highly effective. However, the experiment performed by Chanod and Tapanainen (1995a) 

suggest exactly the opposite, that linking disambiguators together in serial is actually detrimental (see 

also section 5.6.2). On the other hand, Tapanainen and Voutilanen (1994) report good results running 

two taggers in parallel (see 5.6.3). 
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work in this study in creating one tagger opens the possibility of a hybrid approach 

being taken subsequently in the course of future research. 

 However, a much greater practical restriction is the amount of manually 

tagged data that is available. As outlined in the previous chapter, the total amount of 

manually tagged text available in this study was 90,000 words. This total was the 

result of limitations of time and money. However, it is typical for disambiguation 

methodologies which require training on pre-tagged data – those based on Markov 

models and on transformation-based error-driven learning – to be trained on much 

larger quantities of data than this. Many studies have used the tagged Brown Corpus 

(1 million words) as training and test data76, and quantities of text on this scale may 

be considered typical. But the amount of data available in this study is less than one 

tenth of that amount. As discussed in section 4.5, less than 50,000 words are 

available. Nor is there sufficient data to treat the spoken and written languages 

separately, as would seem prudent. This was done, for example, in the case of 

CLAWS4, which was trained separately on spoken and written data to produce two 

separate probability matrices (Garside and Smith 1997: 115). 

 It must be assumed that without the quantities of training data available to the 

researchers who have produced impressive results with Markov models, those results 

could not be replicated by the Urdu tagger. The same applies to a transformation-

based tagger. This is a factor which mitigates strongly against the use of either of 

these methodologies. This conclusion may also be justified in terms of the tagset size. 

As a general rule, the larger the tagset, the more data is needed to train a Markov 

                                                 
76 For example, Charniak et al. (1993), Kupiec (1992), Church (1988), Brill and Pop (1999), and 

Cutting et al. (1992) all utilise the Brown Corpus, or a significant percentage of it, as their training 

data. 
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model since individual tags occur less frequently (see 5.3.2.6). The Urdu tagset used 

here is very large, making the lack of a large quantity of training data more 

problematic. 

 Some Markov model taggers can train on untagged data (see 5.3.2.5). 

However, a lexicon containing the possible tags for at least a significant proportion of 

the words is still necessary. In the case of Urdu, no such lexicon exists. As lexicons 

are typically derived from tagged corpora, the need for tagged data is not obviated in 

this way. Admittedly it would be possible, if difficult, to prepare one by hand. 

However it is not clear that this would be a more productive use of time and resources 

than additional manual tagging, given that such an effort could only be undertaken by 

a native speaker with full knowledge of the tagset. 

 By comparison, when disambiguation is performed using rules created by a 

linguist, this restriction does not apply. There is no need for a vast quantity of tagged 

data. Some tagged text is still required, as a benchmark is required against which to 

test the system, but a much smaller amount will suffice here than is required to train a 

Markov model. 

 On this basis, it is possible to rule out the use of a Markov model or a 

transformation-based tagging system for the disambiguation module of the Urdu 

tagger discussed in this thesis. The only remaining option, which has therefore been 

selected, is disambiguation based on hand-crafted rules. 

 

5.8 Concluding remarks 

 

 At the outset of this chapter, I aimed to examine work conducted in the field of 

part-of-speech tag disambiguation techniques. To this end I have reviewed rule-based 
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approaches to disambiguation (particularly the Constraint Grammar framework), 

probabilistic approaches (particularly using Markov models), approaches using 

corpus-derived rules (particularly Brill’s methodology of transformation-based error-

driven learning) and machine learning approaches (particularly those using neural 

networks). I then reviewed the comparison of different methodologies, concluding 

that such a comparison is highly problematic. Therefore, one cannot justifiably select 

a disambiguation methodology based on its performance relative to other 

methodologies, because we have no reliable means of establishing what the difference 

may be. 

 I therefore moved on to discuss factors which influence the choice of an 

approach to disambiguation. Linguistic factors, such as the nature of Urdu grammar, 

or the size of the tagset being used, have been shown to give little help in selecting 

one methodology as more likely to succeed than another. However, the choice of 

methodology is very easily made on the grounds of practical restrictions on what may 

be done within the context of this project. As has been explained, the only approach 

which does not encounter some great practical difficulty is that utilising hand-crafted 

rules77. The justification for my choice of this approach is thus largely pragmatic, as 

has been outlined. 

 At this point, then, the preliminaries for the tagger – the tagset, the tagging 

manual, manually tagged text, and the choice of a methodology for disambiguation – 

are all in place. Therefore, in the next chapter, I move on to discuss the tagger 

experiment itself. 

                                                 
77 It may be noted in passing that this method has an additional advantage: hand-crafted rules can be 

linguistically meaningful, and so some things about the structure of Urdu may be learnt in the process 

of creating and testing the rules. 


