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Abstract

An experimental study of task design expertise is reported wherein a set of 12 mathematics tasks were sorted by
specialist designers of mathematics tasks and by experienced mathematics teachers without specialist design experience.
Contrary to the frequent finding of increasing conceptual depth with increasing expertise, conceptual depth did not differ
between groups.  Teachers sorted on the basis of mathematical content earlier than designers, and were more specific in
their content-based categories.  Designers produced more sorts than teachers and were more individualistic in their
sorting.  These findings suggest that domain expertise does not necessarily impair creative problem solving, as has been
suggested in other studies.  Instead, expertise includes the ability to shift perspectives with respect to the domain.

One of the basic phenomena of skilled performance is an
increasing conceptual depth at which domain knowledge is
mentally represented. Experts are able to call upon abstract
and generalizable representations, such as schemata, which
they subsequently adapt to meet current task demands.
Typically, these representations embody fundamental
principles that capture significant and useful commonalities
among domain problems. In contrast, novices rely upon
shallow representations that focus upon superficial features
of the domain or task. For example, McKeithen, Reitman,
Rueter & Hirtle (1981) investigated recall by intermediate
and novice programmers. Intermediates recalled
programming terms in an order that suggested organisation
by algorithm or function, whereas novices' recall orders
reflected superficial relations, nicely illustrated by the recall
chunk of the terms "bits", "of" and "string". Similar
expert/novice differences have been found in many domains,
such as computing systems (Doane, Pellegrino & Klatzky,
1990), physics (Chi, Feltovitch & Glaser, 1981), geometry
(Koedinger & Anderson, 1990) and experimental design
(Schraagen, 1993). Where expert performance is based on
deep representations, it is characterised by the rapid
recognition of problem states and the structured development
of solutions following a predetermined pattern.

While a deep conceptual representation confers many
advantages, there may be situations where the re-use of
established domain knowledge is insufficient or
inappropriate. For example, Adelson (1984) presented expert
and novice programmers with abstract (output-oriented) or
concrete (step-by-step) program flowcharts prior to
participants answering abstract or concrete questions about
program code. She found that experts made fewer errors than
novices when the level of abstraction of flowchart and
question matched. However, where an abstract flowchart
primed a concrete question, novices outperformed experts.
The source of this effect appears to be the misapplication by
experts of conceptual knowledge primed by the abstract
flowcharts. More recently, Wiley (1998) has shown that
priming of domain knowledge can impair performance in a
remote associates task, in which participants are presented
with three words, such as plate, broken  and shot , and are
required to generate a fourth word, such as glass, that forms

a familiar phrase with each of the three presented words.
Baseball primes impaired performance on trials where only
the first word fits a baseball theme (e.g., home plate).

These studies, combined with other demonstrations of
impaired expert performance, encourage a view that experts
are unable to 'turn off' their deep domain knowledge when it
is inappropriate for task performance. However, it might be
argued that these demonstrations are artefactual. In these
studies, experts' skills are systematically undermined, either
by domain priming, as in Wiley's (1998) study, or by having
them perform a task that typifies novice problem-solving
behaviour, as in Adelson's (1984) study. One might argue
that the message of these studies is simply that experts make
poor novices. Whether there are cases of realistic domain
activities where the presence of deep conceptual knowledge
impairs expert performance remains to be demonstrated.

Of particular interest to the current research is Wiley's
(1998) suggestion that domain knowledge can sometimes act
to inhibit creative problem-solving. Design is a creative
problem-solving activity where a case might be made for
expertise involving more than re-use of conceptual
knowledge. Design has been studied extensively (e.g., Goel
& Pirrolli, 1989), and evidence has accumulated showing the
same kinds of conceptual representation underlying expert
design that are found in other domains of expertise (e.g.,
Visser, 1991). However, the application domains of these
studies (architecture, engineering and software design) are
constrained, either by technology or by the design brief or
context, such that highly original solutions are the exception
rather than the rule (see Goel, 1994, for a useful exposition
on the nature of design constraints). When originality is the
primary concern, prior knowledge may be less efficacious,
perhaps leading to design fixation (Jansson & Smith, 1991).

The development of instructional tasks presents an
interesting test case of creative design, and is the focus of the
current study, conducted as part of a wider investigation into
the nature of task design expertise funded by the UK
Economic and Social Research Council. Changes in
educational practice, such as increasing use of problem-based
teaching, place an emphasis on creativity in task design. This
is magnified by the need for tasks that are motivating for
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students, and that address curriculum and assessment goals
without disenfranchising minority groups.

We have recently carried out a study (Ormerod and Fritz,
1999) in which we analysed verbal protocols of designers
developing novel tasks to appear in English as a Foreign
Language (EFL) textbooks  The protocols of specialist
designers, experienced authors of EFL textbooks, were
typified by the early depth-first development of multiple task
ideas, prior to a phase in which a single idea was developed
in breadth. In contrast, the protocols of non-specialists,
experienced EFL teachers without specialist task design
experience, reveal an initial phase in which a single generic
task was developed in breadth and subsequently instantiated
in depth. The early depth-first work of specialists allowed
them to generate and test alternative task ideas to a point
where task feasibility could be evaluated before choosing one
to develop more completely. The task generation of non-
specialists appears constrained by their application of a pre-
determined 'schema' embodying a generic  task structure.
Although it is difficult to assess objectively, the specialists'
tasks appear more original than those of the non-specialists,
whose tasks were strongly based on popular ESL textbooks.
This is supported by protocols in which non-specialists refer
to common ESL task types (e.g., 'information-gap').

What is the source of creativity in task design shown by
specialists? The non-specialists' behavior appears consistent
with Wiley's (1998) suggestion that conceptual knowledge
can impair creative problem-solving. So, why does it not
impair that of specialist task designers? It is possible, though
unlikely, that specialists do not have the deep conceptual
representations of tasks that ESL teachers develop.
Alternatively, it may be that specialists acquire strategic
knowledge that enables them to bypass the application of
conceptual domain knowledge where necessary, or that they
acquire alternative conceptual structures that take precedence
over principles-based conceptual knowledge in design
contexts. The study reported in the remainder of this paper
set out to explore these hypotheses.

The study
One approach to exploring expertise  is the sort method

(e.g., Hoffman, Shadbolt, Burton & Klein, 1995).  In this
method, participants are given sets of  domain item
descriptions, and are required to sort these into categories
according to one or more dimensions that are significant to
them. By examining the nature of the sorts produced (e.g.,
the dimensions used to define categories, assignment to
categories and the order in which dimensions are produced),
one can infer something about participants’ mental
representations of conceptual knowledge. Chi et al (1981)
used the sort method to explore expert/novice differences in
conceptual representation of physics knowledge. They found
that sorts produced reflected a deep/superficial distinction,
with experts sorting according to underlying principles and
novices sorting according to surface features of physics
problems. Similarly, Schoenfield & Herman (1982) used the
sort method to investigate mathematics expertise, again
replicating the deep/superficial distinction. The sort method
has been used to explore other forms of expertise such as

programming (Davies, Gilmore and Green, 1995),
Archeology (Burton, Shadbolt,  Rugg & Hedgecock, 1990).
and engineering design (Ormerod, Rummer & Ball, in press).

The present study used the sort method to investigate
expertise in the design of mathematics tasks.  Because we
were not interested in studying mathematical expertise per
se, which generally occurs alongside expertise in the design
of mathematical tasks, it was important that our expert and
non-expert groups be well matched with respect to their
education and experience with mathematics.  We selected
specialist designers of assessment items for English exam
boards as our expert group.  Mathematics teachers, with
equivalent educational and teaching backgrounds, served as
our non-expert group.  Because domain content varies
considerably depending upon school year, we targeted
GCSE-level mathematics (equivalent to the middle of high
school).  Both the designers and the teachers worked
primarily at the GCSE level.  The cards to be sorted each
contained a task from the prior year’s GCSE exams (e.g.,
Figure 1), so as to be realistic and familiar to both groups.

We were interested to see whether teachers and designers,
being well matched on most dimensions other than actual
design expertise, would perform the card sorts differently.  If
designers, more than teachers, are fixed in their concepts
regarding tasks, then we would expect to find designers
producing fewer sorts than teachers.  Unless task design is
idiosyncratic, designers might also be expected to be more
similar to one another than teachers.  On the other hand, if
designers benefit from greater flexibility in their approach to
tasks, then they should produce more sorts and be less fixed
in their assignment of tasks to conceptual categories. Unlike
other sort studies (e.g., Chi et al, 1981; Schoenfeld &
Herrmann, 1982) we did not specify the sort dimensions or
the pre-classify tasks according to conceptual level. Our
interest lies in the sorts that  participants produce
spontaneously to reflect their own choice of dimensions.

Method

Participants
Participants included 20 GCSE-level math teachers from

Northwest England and 14 GCSE task designers from 4
different exam boards.  The designers were also experienced
in teaching mathematics with 4-10 years experience in
designing tasks for GCSE examinations.

Materials
Twelve GCSE tasks were selected from the MEG and

NEAB 1996 exams, and were reduced to fit on A5 card (as in
Figure 1). The tasks were selected to be representative of the
exams as a whole, while still being reasonably related to
other tasks in the set.  Tasks were selected from all three
exam levels (lower, intermediate, and higher).

Design and Procedure
Expertise was a between-participants factor with two

levels, designers and teachers. The study was conducted in
the form of an interview between experimenter and
participant. Each participant  was interviewed individually
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for approximately one hour. All participants received the
tasks approximately one week prior to their interviews so
that they could look them over at their leisure. The
interviews began with participants giving an account of their
teaching or design training and experience. The sort and
another related activity were counter-balanced with respect
to order between participants. For the sort, the experimenter
then demonstrated the sort activity, sorting a set of mammal
names twice under example dimensions such as ferocity and
attractiveness, while giving a verbal account of her reasons
for choosing each dimension, category and assignment.

Participants were instructed "I'd like for you to organise
these tasks into groups, more or less as I've just done with the
animals.  You can make as many or as few groups as you
choose.  Sort in ways that are useful and meaningful to you
as a professional. All of the tasks are different, but sort them
based upon the commonalities that you identify, that is, how
they fall into different categories for a particular dimension
of your choice. " Participants' verbalizations were recorded,
along with  a record of the task groupings derived from each
sort. Where the participant's verbal report had not already
revealed sufficient information concerning the dimensions
and categories of a sort, the experimenter indicated each of
the groups in turn, asking "What makes these form a
group?". When all categories were described by the
participant, the experimenter asked "Is there some overall
theme or explanation to the way these have been grouped?"

After each sort the tasks were shuffled, and the participant
was asked to produce another sort under a different
dimension. Participants were encouraged to continue with
further sorts for as many dimensions as they could
reasonably form.

Results
Designers produced reliably more sorts than teachers.
(Designers mean = 4.2 , sd=0.77, teachers = 3.5, sd=1.05),
t(33)=2.17, p=.037. A hierarchical cluster analysis of the
participants was run using Euclidean distances and a
complete linkage procedure.  For each participant, each task
pair was assigned a score calculated as the percentage of
times that the pair was assigned to the same group by that
participant.  Thus, if two tasks were always grouped together
by one participant, then the score for that pair for that
participant would be 100%.  If two tasks were never grouped
together, the score would be zero.  If the participant produced
four sorts and the two tasks were grouped together in one
sort but were not together in any of the others, the score
would be 25%.  The clusters that emerged from the analysis,
using a reasonable cutoff, included six pairs of designers, 1
pair of teachers, and 4 larger groups (Ns=5,4,3,3) containing
teachers with a single designer.  There were no instances of
designers forming clusters larger than a pair.

MEG Paper 5, 1996
10.Two photographs of a yacht are pictured 

       to the right.

       Photograph B is an enlargement of 
       photograph A.
       Photograph A has width 5.5 cm and 
       photograph B has width 8.8 cm.

(2)

(3)

(1)

(3)

For
examiner's
use only

(a) (i)  Find the scale factor of the enlargement.  Give your answer in form      , where p 
          and q are whole numbers. Answer (a) (i) ______________________

  In photograph A the sail of the yacht is a triangle with one side 4 cm and one angle 42 °.
  (ii)  Find the length of the corresponding side of the sail on photograph B.

Answer (a) (ii) __________________ cm

 (iii)  Write down the size of the corresponding angle on photograph B.
Answer (a) (iii) ____________________

(b) calculate the height, h, of the mast of the yacht in photograph A.
Answer (b) _____________________ cm

p
q

Figure 1. An example of a GCSE Mathematics task used in the study („MEG examination board, UK).

Designers and teachers used many of the same dimensions,
but one interesting difference was that many teachers
identified ‘thinking’ tasks as a category whereas designers
identified ‘open’ tasks as a category.  (See Table 1.)  In
addition, designers were more likely to sort on the basis of

the level of the tasks than were teachers, and produced 'open',
'thinking' and 'level' sorts earlier than the teachers.

All participants except one teacher included at least one
sort based on the mathematical content of the tasks.  All 19
teachers who produced a content-based sort, produced it as
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their first sort.  Nine of the 15 designers led with a content-
based sort, but many designers began by sorting on the basis
of level and referred to math content in the later sorts.  This
difference is reliable, U=85.5, p=.048.  The number of math
content sorts did not differ reliably. Designers produced an
average of 4.8 groups (sd=1.01) and teachers produced 5.3
groups on average (sd=1.06), t(32)=1.43, p>.05.

Nevertheless, it was apparent from cluster analysis that
there were differences in the ways that designers and
teachers sorted the tasks.  (See Figure 2.)  This cluster
analysis, again using hierarchical clustering, Euclidean
distances, and a complete linkage procedure, was run using
only the participants’ math content-based sort.  (Four
teachers provided more than one content-based sort; we used
only the first content-based sort from each of these
participants.)  The linkage distances do not show a marked
increase, used to suggest a cutoff for accepting clusters, until
near the end of the run, at approximately 4.8.  Whether using
that cutoff, or no cutoff at all, it is evident that there are two
main clusters forming, and that those clusters are specialist

designers on the one hand, and teachers on the other.
Designers and teachers were sorting the tasks differently.

 Detailed examination of the categories and category
members assigned by the two groups provides some
explanation.  Teachers often produced more specific
categories, such as ‘linear inequalities’, ‘fractions’, and
‘number patterns’ as compared to the more general category
of ‘Algebra and number’ which was more often adopted by
designers.  When more specific categories were collapsed to
form the four Attainment Targets defined for the English
mathematics curriculum (Applying & using math; Algebra &
number; Shape & space; and Data handling), designers’ and
teachers’ sorts were very similar with the only notable
difference being in the use of the Data handling category,
which designers used far more than did teachers.  Otherwise,
it was clear that teachers' and designers' perceptions of the
tasks in terms of gross mathematical content were not
distinguishable; differences were primarily due to the greater
specificity on the part of the teachers.

Table 1. % of designers (D) and teachers (T) producing dimensions and mean position in which the dimension. Other
dimensions produced by  < 10% participants were Complexity, Exam board, Wordiness, Response type, and Mark.

Participant Math
topic

Level Openness Thinking
vs rote

Difficulty Context Prefs /
turn-offs

Graphics Ramping

%  D 100 60 50 14 14 33 29 14 21
% T 95 20 10 37 35 15 20 25 0

Position D  1.6 1.6 2.7 2.0 2.5 3.2 3.5 3.0 3.7
Position T 1.0 2.5 3.5 3.3 2.8 2.7 2.8 2.4 0

 Discussion
Although designers produced reliably more sorts than
teachers, it is possible that the difference was due to the
different structures of their work days.  Most teachers were
scheduled to teach shortly after the interview whereas
designers were less rigidly scheduled. However, teachers did
not appear distracted and seemed to be as fully occupied by
the task at hand as the designers.  Furthermore, a related
activity (not reported in this paper) was also scheduled
during the hour; for half of the participants the sort occurred
first and for the other half, the sort occurred last.  If teachers
limited their responses, then a difference between those who
sorted first and second would be predicted. No difference
was found (Teachers = 3.6 and 3.4 sorts, designers = 4.1 and
4.3 sorts first and second, respectively.)

The results suggest that different kinds of domain role
invoke different kinds of conceptual representation. Teachers
appear primarily to use the kinds of conceptual
representations found in other studies of expert knowledge

(e.g., Chi et al, 1981).  This knowledge is precisely what is
needed for the task of selecting appropriate Mathematics
exercises for a particular stage of the curriculum. Designers,
on the other hand, appear to use a wider range of conceptual
representations, of which principles-based deep conceptual
representations are not always primary. There are two
potential explanations for this. The first is that designers
have lost or under-rehearsed their principles-based
representations. This seems unlikely given that all the
designers used Math content for one of their sorts.  The
second is that design requires different kinds of knowledge to
teaching. 'Superficial' dimensions may reflect the very things
that make tasks interesting, original and practicable. A
similar finding of distinct types of conceptual representation
underlying different forms of expertise in the same domain
was made by Weiser & Shertz (1983), again using a sort
paradigm to explore conceptual representation. They found
that expert computer programmers sorted problems by
algorithm type while novices sorted by application area.
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Figure 2. Cluster analysis of designer and teacher groupings based upon sorts under a Mathematics Topic dimension
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In contrast, programming managers, all formerly experienced
programmers, sorted by 'kinds of programmer' needed to
solve each problem.

 In much of the expertise research reported in the literature,
there is an assumption that what is elicited through methods
such as recall and sorting is relatively static. This assumption
uynderlies reports of impaired performance resulting from
inappropriate application of expert domain knowledge. We
argue that to characterise experts' conceptual knowledge in
this way is to miss an essential aspect: Experts have many
layers of domain knowledge, and, when they are given
realistic domain roles and contexts in which to perform, they
know when and how to use it and when not to use it.

The notion of static conceptual representations is further
challenged by Barsalou’s (1985) distinction between
taxonomic and goal-directed categories. In this view, goal-
directed categories and their members are not fixed, but are
determined by the task faced by the individual at any one
time. The distinction between goal-directed and taxonomic
categories has important methodological implications for the
use of the sort method in studies of expertise. It has been
suggested by some authors (e.g., Burton et al, 1991) that the
sort method provides an equally informative but more cost-
effective method for knowledge elicitation than traditional
methods such as the analysis of verbal protocols. However,
studies that restrict participants to a single sort or that impose
pre-specified dimensions may limit elicitation to the kinds of
taxonomic knowledge that underlie routine expertise, and fail
to capture the sorts of goal-directed categories that may
underlie highly skilled performance in non-routine activities.
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