Self-Generated Intent-Based System

Mehdi Bezahaf*, Marco Perez Hernandez T, Lawrence Bardwell*, Eleanor Davies*,
Matthew Broadbent®, Daniel King* and David Hutchison*
*School of Computing and Communications
Lancaster University
Email: [mehdi.bezahaf, eleanor.davies, m.broadbent,d.king,d.hutchison] @lancaster.ac.uk
TDepartment of Engineering
University of Cambridge

Email: mep53@cam.ac.uk

fMathematics and Statistics
Lancaster University

Email: 1.bardwell @lancaster.ac.uk

Abstract—We propose an intent-based system where, on top of
the user intentions, the system itself generates suitable Quality
of Service and resilience parameters and may augment the
intent characteristics if it detects any room for improvement.
We demonstrate the feasibility and challenges of such a system
using mininet and the ONOS controller.

Index Terms—Intent, Self-generated, networking

I. INTRODUCTION

Recently, intent and Intent-Based Networking (IBN) con-
cepts have created enormous interest in academia and industry,
despite the fact that the idea is not original at all. In fact, in
2015, the concept of IBN has been presented in RFC 7575 [1]
and proposed as a new network management framework in
OpenDaylight Network Intent Composition [2].

The idea behind these concepts is to give the opportunity
to the user and the operator to express their intentions (i.e.,
a desired state or behavior) without the need to specify every
technical detail of the process and operations to achieve it [3].
The IETF Network Management Research Group (NMRG)
has already submitted three “work in progress” Internet-Drafts
about the topic. In their active work, they define the concept
and they give an overview of Intent-based networking [3],
a classification of different intents [4], and they propose a
framework of intents [5].

In this paper, we present a new approach where the intent
is not only generated by the end-user, the application, or the
operator but also by the system itself. In fact, for Quality of
Service (QoS) purposes, the system can itself detect network
improvements and expresses them through intents.

This paper demonstrates the feasibility of such an approach
under a flexible testbed based on mininet!, OVS switches2,
and the ONOS OpenFlow controller’.

!An Instant Virtual Network on your Laptop - www.mininet.org

20pen Virtual Switch - www.openvswitch.org

3A new carrier-grade SDN network operating system designed for high
availability, performance, scale-out - https://onosproject.org

User Intent

Self-injection r

Ki ge Plane]

e

Ty

E ﬁ[Management Plane

tr A

=

S

E l

o] 0[Control/Data Planes]
—

Multi-sources .
data Collection S penriow

HEERCN

Fig. 1. Architecture Planes.

II. SELF-INTENT FRAMEWORK

In this section we introduce briefly our framework and how
the system itself generates intents. Due to space constraints,
we are not going to define each plane in detail. As shown in
Figure 1, intents from the user (application or operator) go to
the intent plane, where the request is translated, normalized,
decomposed and validated before it gets transferred to the
management plane.

The management plane makes sure that there are enough
resources available to answer the intent. It actively collects
data from the data plane and uses techniques like continuous
integration, continuous deployment (CI/CD) to ensure that the
new intent will not impact the existing intents in the system.
Once the verification is done, the new configuration will be
delivered to the control plane to be applied.

In parallel to the user’s intent, the system collects data from
different sources (e.g. weather, political or social networking
information) and serves them to the knowledge plane as
an input. The knowledge plane filters, adapts and classifies
the data in the first place, then using big data algorithms,
machine learning, and deep learning, analyses and does some

Online Change
Detection

ﬁSelf—lntent formulation] [
Service Manager Agent

Report to the Service
Manager Agent

Digital Asset
Agent

Digital Asset
Agent

Collect data for
each device

Inject new
Intent

SDN Controller

Collect and inject
new config

[Topclogy [Netwcrk Device] [Network Device] 0oo]

Fig. 2. System description.

reasoning to finally generates a self-intent that can improve
the performance of the system.

III. IMPLEMENTATION

In this paper, we do not propose how to express intent and
how to handle it. Instead, we use the ONOS intent framework
to express intent . Our aim is to focus on how we collect
the data and how to use it in order to self-generate a new
intent. For the purpose of the demo, we use ONOS as the SDN
controller but it can be any other controller. Moreover, we have
implemented online change detection to trigger the self-intent,
but we can use any other technique or algorithm to do that.
The change detection is only an example. Another point to
clarify is that we use only data collected from OpenFlow, but
of course, we can use data collected from multiple sources.

Figure 2 depicts a description of our implementation, which
is composed of three main blocks:

A. SDN Controller

The Software-Defined Networking (SDN) architecture
brings the ability to separate physically the network control
plane form the forwarding plane. The SDN controller or
network controller is capable to interact directly with the
networks node through different APIs [6]. It defines exactly
which actions to take when certain conditions are valid. For
example, creating flow rules or getting the list of meter entries
applied to the specified infrastructure device.

B. Agents

The agents are in charge of monitoring the state of the
network periodically and aggregate measurements taken ac-
cording to configured time windows in order to trigger control
actions via SDN Controller. The agents can cross data coming
directly from the network (via SDN Controller) with other
sources of data not available at the SDN Controller (e.g.
environmental sensors linked to the network). There are two
key control agents:

4Intent Framework - wiki.onosproject.org/display/ONOS/Intent+Framework

Online estimates of typical parameters

T
0 500 1000 1500 2000 [} 500 1000 1500 2000

Time Time

Fig. 3. Online data with collective and point anomalies (LHS). Online
estimates of the typical parameters (RHS).

1) Digital Asset: A digital asset can be in charge of one or
multiple nodes (or switch) of the network at the same time.
It queries the SDN Controller (on real-time and periodically)
for the set of relevant metrics (e.g. the throughput) related
to the controlled nodes. It aggregates temporarily the data
collected and reports aggregated data to the Service Manager
agent. A digital asset agent can also collect data from devices
that are not representing nodes on the network (e.g. a set of
environmental sensors).

2) Service Manager: 1t collects aggregated data from each
digital asset agent and run in real-time the online change
detection algorithms (defined just below). In the case of an
anomaly, this agent checks the actions required given the
current state of the network and triggers a new intent that
will be handled by the network controller.

C. Online Change Detection

As highlighted above, the Service Manager agent is capable
to run in real-time the online change detection algorithm
against the received data coming from a monitored node. Our
model for the data is that at time ¢, the received data process
is in one of three states:

1) Typical behavior: Observations are drawn independently
from a Normal distribution with (known) mean p and stan-
dard deviation oy.

2) Collective anomaly: For an interval [s,t], all observa-
tions within that interval are drawn independently from a
Normal distribution with (unknown) mean g and standard
deviation o, where u # g, and o # .

3) Point anomaly: A single point isolated in time modeled
as an observation drawn from a Normal distribution with a
different standard deviation.

The plot on the left hand side of Figure 3 shows the online
data set of length of two thousand time points. The typical
parameters are pg = 0 and o9 = 1. This time series has
two point anomalies (at times 750 and 1800) highlighted by
the blue diamonds. There are also two collective anomalies
present: the first a change in mean on the interval [1000, 1050]
and the second a change in variance on the second interval
[1500, 1600].

Our online change detection algorithm is made up of
two parts. One part of the algorithm estimates the typical

w== === UDP traffic from H1 to H3
== == UDP traffic from H2 to H4

Fig. 4. Scenario Topology.

parameters jig, 00 in an online fashion as they are assumed
to be unknown when monitoring begins. A small burn in
period is typically used to initialise these estimates. In the
plot on the right hand side of Figure 3 a burn in period
of five hundred time points was taken. Due to the fact that
anomalies are present in the data we estimate these parameters
robustly by using the median and inter-quartile range. The
online quantile estimator developed in [7] is used as this
algorithm requires only a minimal amount of storage unlike
other quantile estimation procedures.

The second part of the algorithm infers the position of
collective and point anomalies using a penalised likelihood
approach based on the offline approach described in [8]. In
essence every time a new datum is observed it is standardised
using the most recent estimates for the mean and standard
deviation and then allocated to one of the three states described
above that maximises the log-likelihood of the data up-to that
point.

IV. DEMONSTRATION

We use the ONOS OpenFlow controller as an SDN con-
troller and OVS switches. Each agent (both the digital asset
and Service manager) is running in separate Docker containers.
For each individual switch, we initiate a digital asset agent
that will be responsible for collecting data of that switch. All
agents code is written in Scala’. The anomaly detection code
is written in R°.

A. Scenario

In order to evaluate our implementation, we use a simple
scenario with four hosts and three network nodes (Figure 4).
Please note that all links have a capacity of 1GB/s.

Users connect through “Host-to-Host” intent (user-intent),
where H; wants connectivity to Hs and Hs wants connectivity
to H,. We modify iPerf’ code to be able to generate traffic
from different sources with varying throughput between hosts
to exercise the anomaly detection.

We generate UDP traffic between the different end hosts
(H; to Hs and H to Hy, both through N; and Ny), and vary
traffic to saturate the link N7 — No.

5The Scala Programming Language - https://www.scala-lang.org
5The R Project for Statistical Computing - https://www.r-project.org
7iPerf - The ultimate speed test tool for TCP and UDP - https://iperf.fr

It is true that even if the link N; — N5 is saturated, the
user-intent is still valid (i.e., some packets are lost but the
connectivity intent is still valid).

By injecting QoS and resilience to the initial user intent, the
system detects, using our online change detection algorithm,
that the link N; — N» is saturated and expresses a self-intent
asking the SDN controller to re-forward, for example, the
traffic between H; and Hj through Ns. The self-intent can
also be expressed to the human board to take further decisions.

V. CONCLUSION

We have demonstrated the viability of implementing a self-
generated intent-based system.

In this paper, we use the ONOS intent framework to express
intent and we focus on the process of how to trigger self-
generated intent.

We have used throughput as the main feature to observe and
to react to. However, we can use other features such as device
temperature, changing costs, or even multiple features. The
initial choice of using change detection is purely practical, and
of course, other algorithms and events can be used to trigger
the self-generation intent.

For future work, we can focus on how to predict failure or
possible improvements in advance and apply them through
self-intent. We also want to explore multiple sources data
collection and how we can predict actions by using them.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
Next Generation Converged Digital Infrastructure (NG-CDI)
Prosperity Partnership project funded by UK’s EPSRC and
British Telecom plc. This work has benefited from an early
discussion with Laurent Ciavaglia from Nokia.

REFERENCES

[1] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter,
S. Jiang, and L. Ciavaglia, ”Autonomic Networking: Definitions and
Design Goals”, RFC 7575, June 2015.

[2] OpenDaylight, Network Intent Composition:Main, Jan 2015.

[3]1 A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-Based
Networking - Concepts and Overview,” Internet Engineering Task Force,
Internet-Draft. July 2019.

[4] C. Li, Y. Cheng, , J. Strassner, O. Havel, W. Liu, P. Martinez-Julia, J.
Nobre, and D. Lopez, “Intent Classification,” Internet Engineering Task
Force, Internet-Draft. July 2019.

[51 Q. Sun, W. Liu, and K. Xie, “An Intent-driven Management Framework,”
Internet Engineering Task Force, Internet-Draft. July 2019.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.
Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar. "ONOS:
towards an open, distributed SDN OS”. In Proceedings of the third
workshop on Hot topics in software defined networking (HotSDN ’14).
ACM, New York, NY, USA, 1-6. August 2014.

[7] L. Tierney. A space-efficient recursive procedure for estimating a
quantile of an unknown distribution”. SIAM Journal on Scientific and
Statistical Computing, 4(4):706711. 1983.

[8] A.T. M. Fisch, I. A. Eckley, and P. Fearnhead. A linear time method for
the detection of point and collective anomalies”. ArXiv e-prints. 2018.

