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Summary 14 

Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide 15 
ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading 16 
to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in 17 
combination with other local human disturbances, is leading to unprecedented negative ecological 18 
consequences for tropical forests and coral reefs. Here, we provide an overview of how and where 19 
climate extremes are affecting the most biodiverse ecosystems on Earth, and summarize how 20 
interactions between global, regional and local stressors are affecting tropical forest and coral reef 21 
systems through impacts on biodiversity and ecosystem resilience. We also discuss some key 22 
challenges and opportunities to promote mitigation and adaptation to a changing climate at local and 23 
global scales. 24 
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1. Introduction 27 

The tropics contain the overwhelming majority of Earth’s biological diversity [1] disproportionately 28 
distributed in two key ecosystems: tropical forests and coral reefs. Tropical forests cover less than 12% 29 
of the planet’s ice-free surface but host more than two-thirds of all terrestrial species [1]. They provide 30 
the largest contribution to Earth’s productivity from any biome [2], and play a critical role in overall 31 
climate regulation by storing 25% of the carbon in the terrestrial biosphere [3]. Equally important are 32 
tropical coral reefs (hereafter ‘coral reefs’), covering just 0.1% of the ocean surface yet holding the 33 
highest species diversity of any marine ecosystem [4]. They also sustain crucial ecosystem processes 34 
for more than 500 million people who use coral reefs and reef products for food provisioning, fisheries, 35 
and ecotourism [5,6], and through providing coastal protection against natural hazards [7]. 36 

Despite their global importance, tropical forests and coral reefs are subject to a complex mixture 37 
of more localized pressures such as overexploitation, habitat loss, pollution and global climate change 38 
[1,8]. Growing evidence also suggests that anthropogenic climate change is increasing the periodicity 39 
and intensity of some climate extremes (e.g. [9–11]), which can be defined as abrupt climatic events 40 
such as abnormally intense storms, hurricanes, floods, heatwaves, droughts and associated large-scale 41 
wildfires [12]. The ecological impacts of these extreme climate events can be exacerbated by ongoing 42 
gradual changes in temperature and precipitation, as well as local anthropogenic pressures, such as 43 
land-use change [13,14]. Understanding how tropical rainforests and coral reefs respond to climate 44 
extremes – and their interactions with other stressors – is therefore essential to achieve global 45 
conservation targets [15] and sustainable development goals [16]. 46 

Evidence of the influence of gradual climate changes and extreme climatic events is growing, and 47 
many studies explore their interactions with other more localized human pressures that threaten 48 
tropical forests and reefs (e.g. [1,13]). Yet, the existing literature is patchy and our ability to protect 49 
and manage these ecosystems is limited by two important knowledge gaps. First, no study to our 50 
knowledge has summarized where climate extremes are known to already affect both tropical forests 51 
and coral reefs worldwide, or which extreme events drive ecological changes in these two ecosystems. 52 
Second, despite a growing literature on the subject, it is not clear how interactions between gradual 53 
climate change, extreme climatic events, and local disturbance are influencing tropical forests and 54 
reefs. These two knowledge gaps motivate the first and second part of our review. The final part 55 



explores how our understanding of ecosystem responses to multiple pervasive pressures could be 56 
applied to inform management and conservation strategies. Although we primarily focus on tropical 57 
forests and coral reefs, the synergies among climate-related and local human-driven stressors are also 58 
major threats to other global ecosystems both in tropical and extratropical regions [17–19]. 59 

2. Where and how are climate extremes affecting tropical forests and reefs? 60 

(a) Storms and floods 61 

Climate change is causing more intense and frequent cyclonic storm systems (i.e. hurricanes, cyclones, 62 
and typhoons) [10], with more extreme events expected in regions already affected by tropical 63 
cyclones, including Central America and the Caribbean, East Africa, most of Asia, as well as in Australia 64 
and the Pacific islands [20]. Although their impacts on coral reefs are primarily physical, for example 65 
through reef structural damage [21], storms and hurricanes can strongly influence marine ecosystems 66 
[22,23]. On the Great Barrier Reef (GBR), for example, heavy rainfall was associated with negative 67 
trends in live coral cover, and storms emerged as the major driver of changes in inshore reef dynamics 68 
[24]. Not surprisingly, cyclonic storms have been shown to trigger regime transitions, from coral to 69 
macroalgal dominance, through interactions with local stressors (e.g. overfishing and diseases) that 70 
drive coral cover declines [25]. 71 

Tropical forests are also being affected – hurricanes frequently affect tropical forests in the 72 
Caribbean and Central America [26–28], and heavy storms have caused severe landslides in Venezuela 73 
[29] and floods in the Amazon basin (e.g. in Brazil and Peru [30–32]; figure 1). Some of the most 74 
extreme hydrological events have been associated with La Niña-induced changes in precipitation and 75 
river flow (e.g. 1989, 1999, 2009 and 2012) [32–34]. The 1998/99 La Niña, in particular, brought one 76 
of the strongest hurricane seasons ever recorded in the North Atlantic, while in the Indian Ocean over 77 
50% of Bangladesh was flooded [35]. Consequently, a range of post-hurricane ecological 78 
consequences has been recorded in tropical forests, such as reductions in non-tree resources for 79 
nectarivorous and frugivorous fauna [36]; changes in plant-herbivore networks (e.g. negative effects 80 
on network size and specificity, but increased connectance and robustness) [37]; and >50% declines 81 
in rates of occupancy, and even local and global extinctions of forest birds on Caribbean Islands 82 
[26,38]. 83 

[Figure 1 here] 84 

 (b) Heatwaves and droughts 85 

Extreme temperatures and droughts have been recently recorded across much of southern Africa, 86 
Southeast Asia and South America [39]. In recent  decades, marine heatwaves have provoked 87 
widespread coral bleaching [40] (figure 1), leading to fundamental changes in coral reef ecosystems 88 
(e.g. [41–43]). In particular, the extremely high sea surface temperatures across most of the tropical 89 
and extratropical oceans during the 2015/16 record-breaking anomaly [44] caused one of the 90 
strongest mass bleaching events on a worldwide scale [45]; and resulted in unprecedented levels of 91 
coral mortality [46] and altered community composition of both corals and fish on the GBR [47]. Other 92 
heatwave-induced ecological impacts include flattening of reef structure [48] and loss of carbonate 93 
production [49], formation of persistent novel fish communities [41], shifts to macroalgal regimes [42], 94 
and synchronous multi-trophic ecological disruptions in terrestrial and marine ecosystems (e.g. tree 95 
die-off and coral bleaching) [50]. 96 



The combination of extreme high temperatures with longer and more severe dry seasons has also 97 
led to the spread of unprecedented and large-scale wildfires in tropical forests [51,52] (figure 1). For 98 
example, forests in the Amazon basin and Indonesia have witnessed at least four ‘mega-droughts’ in 99 
the last three decades [53,54]. Some of these heat and drought events were aggravated by the El Niño 100 
Southern Oscillations (ENSO), such as in 2015/16 when fires devastated around 1 Mha of Amazonian 101 
forests [55,56] and >4.6 Mha across Sumatra, Kalimantan and West Papua [52]. As a result of more 102 
frequent, extensive and intense drought and fire events, tropical forests have been affected through 103 
elevated tree mortality [57–59], impoverishment of biological communities [57,60–62] and loss of 104 
specific functional groups (e.g. evergreens and softwoods [63]). For instance, in Amazonia, thermally-105 
enhanced dry seasons impose additional water-stress for trees even in the wetter environments [64], 106 
and tree recruitment has shifted towards more dry-affiliated individuals, accompanied by increased 107 
mortality of wet-affiliated species [65]. These drought-related impacts can go beyond taxonomic and 108 
functional changes to effects on ecosystem resilience and stability (Box 1), and in combination with 109 
wildfires, have led to reduced plant growth (e.g. [66] but see [67]) and ecosystem primary production 110 
[66,68] – all of which negatively affects the forest carbon cycling [69,70]. 111 

Box 1. Empirical examples of how climate extremes impact taxonomic and functional diversity, 112 
affecting the resilience and stability of tropical forests and coral reefs 113 

Securing functionally stable and resilient ecosystems is a pressing issue under ongoing global change. 114 
It is assumed that biodiversity increases ecosystem functioning and climate-resistance [71], and that 115 
functional trait-based approaches can better quantify disturbance consequences on ecological 116 
function and ecosystem stability [72]. However, the literature lacks evidence from the tropics [73,74]. 117 
To explore how an El Niño-related extreme drought and marine heatwave can affect the functional 118 
stability and ecosystem functioning of tropical forests and coral reefs, we used empirical data from 119 
dung beetles – which are important insects for secondary seed dispersal and seedling establishment 120 
processes in tropical forests [75,76] – within primary Amazonian forests and herbivore parrotfish 121 
within reefs throughout the inner Seychelles. We measured functional traits of dung beetles and 122 
parrotfish, along with two key ecosystem functions: secondary seed dispersal rates by dung beetles in 123 
forests and grazing rates by herbivorous parrotfishes on reefs. All datasets were sampled before and 124 
after the onset of the 2015-16 El Niño (forest: 2010 and 2016; reef: 2014 and 2017; for further details 125 
see supplementary material and Refs. [42,77]). We, hence, compared post-El Niño functional diversity 126 
metrics and biodiversity-ecosystem function (BEF) relationships with those from pre-El Niño surveys.  127 

Our findings suggest that climate extremes could reveal the importance of tropical biodiversity for 128 
ecosystem functioning, increasing the range of ecological niches occupied by functional groups 129 
(functional richness), and reducing the trait dissimilarity among communities (functional dispersion) 130 
– but these impacts are ecosystem-dependent [78] (figure 2). Lower seed dispersal rates occurred in 131 
forests with reduced beetle richness after the 2015-16 El Niño drought (figure 2a-b), while positive 132 
BEF relationships were found in both pre- and post-El Niño surveys on Seychelles reefs (figure 2e-f). 133 
Although focusing only on the short-term responses, these findings provide empirical evidence 134 
suggesting that disturbances may emphasize the value of higher biodiversity in maintaining ecosystem 135 
functioning [79], at least in tropical forests; while demonstrating that not only climate change, but 136 
also climatic extremes, may have filtering effects for terrestrial biological communities [17]. In 137 
addition, the maintenance of high post-disturbance grazing rates – under some specific ecological 138 
contexts [80] – may promote long-term coral recovery and stability by controlling competitive algae 139 
and reducing the likelihood of ecosystem transitions to algal-dominated states [42]. 140 



After the El Niño event in the Amazon, dung beetle functional richness was higher (figure 2c) and 141 
functional dispersion was lower (figure 2d). Similar results were found for flood disturbance effects 142 
on ground beetle functional responses in German grasslands [81], which could be explained by the 143 
loss of species with unique traits and increased dominance of functionally similar species such as 144 
generalists (often found in more disturbed environments [37,82,83]). It is therefore likely that the El 145 
Niño drought-induced compositional changes in dung beetle communities resulted in lower seed 146 
dispersal rates within forests with lower species richness – which may affected functioning insurance 147 
through lowering functional redundancy [84,85]. In contrast, the lack of changes in functional richness 148 
and dispersion in the marine example (figure 2g-h) indicates no overall variation in the number of 149 
different functional traits and groups in parrotfish communities. Thus, the high taxonomic richness on 150 
coral reefs may support high functional redundancy, enabling functional groups to persist despite the 151 
El Niño event. Previous studies have similarly found no change in functional indices, including richness 152 
and dispersion, of coral-reef fishes following habitat degradation due to storms or bleaching [47,86]. 153 
However, functional originality of coral-reef fishes often decreases following climate extremes [47,86], 154 
which could make them more susceptible to future disturbances and to the interacting effects of 155 
climate change, climate extremes, and local stressors (figure 3).  156 

[Figure 2 here] 157 

3. How do interactions among climate change, extreme climatic events and 158 

multiple human-driven stressors affect the resilience of studied ecosystems? 159 

Following the framework proposed by Didham et al. [18], the interactions between climate-related 160 
stressors and local disturbances can result in ‘chain’ and ‘modification’ effects (figure 3). The 161 
interaction chain effects occur when multiple stressors have direct ecological impacts, with one driver 162 
amplifying the magnitude of another (a direct and synergistic interaction; e.g. land-use change 163 
increases climate warming via albedo effects or carbon release [87]). In contrast, interaction 164 
modification effects occur when the per-unit or per-capita influence of one stressor is modified by 165 
another (an indirect interaction), such as when habitat fragmentation prevents species from migrating 166 
to track their preferred climate niche [88]. These modification effects can occur through additive, 167 
antagonistic, or synergistic interactions between stressors (reviewed by Côté et al. [89]). Regardless 168 
of how they interact and the scale on which they operate (figure 3), climate change, extreme climate 169 
events and local stressors are likely to act as strong and interacting environmental filters [72,90]. As 170 
only a small subset of the original species pool is likely to respond positively to multiple stressors 171 
[1,91], this potential filtering of biological communities can result in subsequent effects on ecosystem 172 
functioning and functional stability of tropical coral reef and forest systems. These impacts, however, 173 
are likely to be ecosystem-dependent, as demonstrated by the empirical evidence from Brazilian 174 
Amazon forests and Seychelles coral reefs (Box 1). 175 

[Figure 3 here] 176 

 (a) Climate and deforestation interactions threaten tropical forests and coral reefs 177 

Climate stressors and land use change, principally for food production and human settlement 178 
provision, have been exerting multi-taxa and -trophic effects on terrestrial and marine systems [1,92–179 
95], and causing disproportionate biodiversity loss – particularly in the tropics [13]. Although climate 180 
change is considered the most important threat to coral reefs [80], deforestation impacts are also 181 
projected to outweigh future climate change-driven declines in river flow and sediment load to reef 182 



systems in some regions [95]. However, the complex interactions between these stressors can make 183 
it challenging to tease apart their independent effects [89,96].  184 

Forest clearance constitutes a chain interaction when it favours climate change through effects on 185 
greenhouse gas emissions and surface fluxes of radiation, moisture and heat [87]; and it increases the 186 
likelihood, intensity and extent of regional climatic extremes [97,98]. On the other hand, many 187 
ecological responses to deforestation and fragmentation likely result from interaction modifications 188 
with climate. For instance, a global terrestrial analysis of 1319 papers found that habitat loss impacts 189 
on biodiversity were greatest in regions experiencing higher temperatures and lower rainfall [99]. 190 
Interaction modifications would also imply that climate extremes occur under conditions of altered 191 
resilience generated by previous forest conversion. For example, deforestation can indirectly reduce 192 
the ability of tropical forest and reef biota to resist further climate disturbances by creating hostile 193 
landscapes and ocean conditions that hinder species capacity to track and achieve climate envelopes 194 
with more suitable conditions [88,100,101]. Moreover, habitat area, quality, heterogeneity, and 195 
configuration can also affect the biota sensitivity and recovery after climatic disturbances 196 
[96,102,103].  197 

 (b) Enhanced heat- and drought-vulnerability within human-modified tropical forests 198 

Most remaining tropical forests are currently subject to some form of anthropogenic disturbance 199 
[104]. Many of these alter forest microclimates – selective logging and wildfires, for example, increase 200 
tree mortality, which result in greater canopy openness [105,106] and drier understoreys [107]. These 201 
processes, combined with increasingly hotter and longer dry seasons, enhance forest flammability 202 
[108] and the likelihood of escaped fires ignited on agricultural lands [109] to burn neighbouring 203 
forests [110,111]. Although many tree species have molecular and physiological mechanisms that help 204 
them resist short-lived heat and drought [68], tropical rainforests are fire-sensitive and have few fire-205 
resistant species [112]. Post-disturbance changes in carbon cycles [104] and evapotranspiration rates 206 
– a key source of aerial moisture – are also likely to affect atmospheric circulation patterns through 207 
biogeochemical feedbacks mediated by pollution through the release of CO2 and other aerosols 208 
[113,114], which have been shown to suppress cloud formation and regional precipitation [115,116]. 209 
Another example of an interaction modification effect occurs when climate change exacerbates the 210 
many negative impacts of ongoing forest degradation through declines in rainfall [57,117] that can 211 
enhance tree mortality through physiological mechanisms related to carbon starvation and hydraulic 212 
failure [68,118]. As rising global temperatures promote the occurrence and severity of extreme 213 
droughts [119] and wildfires [120], their interaction chain effects are also likely to be common in 214 
tropical forests (figure 3). Climate changes can also indirectly modify the susceptibility of tropical 215 
forests to climate extremes. For example, if cloud cover is declining over mid-latitudes [121] and 216 
elevated CO2 levels are enhancing liana biomass [122], then this could increase the mortality rates of 217 
drought-stressed trees even in otherwise undisturbed tropical forests [123].  218 

(c) Climate-induced disturbances exacerbate impacts of local stressors on coral reefs 219 

The current coral crisis is the result of a combination of large-scale climatic stressors and localized 220 
non-climatic disturbances [124]. Coral reef ecosystems are already widely threatened by local 221 
stressors such as overharvesting, land-based pollution, diseases, sedimentation and nutrient loading 222 
[124]. At a global scale, climate change is increasing the frequency, duration and intensity of marine 223 
heatwaves [44], resulting in interaction chain effects (figure 3) that are pushing coral communities 224 
towards their physiological stress limits [125] and causing widespread coral bleaching (figure 1). For 225 
example, the 1997/98 and 2015/16 bleaching events affected ~75% of well-studied coral reefs globally 226 



[45] and, in some regions, led to >90% declines in live coral cover [126]. The individual effects of local 227 
and global stressors on coral reefs are relatively well-understood, but recent insights suggest that the 228 
impacts of climate extremes can also be exacerbated by local stressors. Corals on the GBR, for 229 
example, contend with multiple disturbances including sedimentation, nutrient run-off, and crown-230 
of-thorns starfish outbreaks [22] – and interactions between these disturbances determine coral 231 
resilience to bleaching (figure 3). For instance, coral declines are greatest and coral recovery is slowest 232 
on reefs where overfishing has compromised ecosystem processes such as predation and herbivory 233 
[127]. Furthermore, reefs adjacent to turbid river outflows have a lower probability of bleaching 234 
mortality due to lower light stress – an antagonistic interaction modification effect; while elevated 235 
nutrient levels have reduced coral recovery rates by 12-27% [23], which signals an additive or 236 
synergistic interaction.  237 

Although the magnitude of impacts of climate extremes will depend on the direct and indirect 238 
interactions with local and global pressures (figure 3), even isolated and relatively-pristine reefs are 239 
vulnerable to both climate change and extremes [45,128]. Thus, local management alone is not 240 
expected to promote coral reef resilience in the face of climate stressors [129,130], although limited 241 
evidence shows that local stressor alleviation favoured post-bleaching recruitment and coral recovery 242 
in the GBR [127], Caribbean [131], Mesoamerican [132] and Kenyan reef systems [133]. In other 243 
regions, ecosystem protection of coral reefs can fail to mitigate bleaching impacts when compliance 244 
is weak and protected areas are small [134,135].  245 

4. The way forward  246 

We have herein outlined various examples of how climate extremes pose a broad range of challenges 247 
to tropical forests and coral reefs (figure 1; Box1), particularly when combined with or overlain 248 
ongoing climate change and more localized human pressures (figure 3). Guarding against negative 249 
impacts to the world’s most biodiverse ecosystems will be challenging and dependent on local and 250 
global actions for climate adaptation and impact mitigation, while more traditional conservation 251 
strategies will need to be renewed to ameliorate the impacts of multiple interacting threats. 252 

(a) Climate-smart protected areas 253 

Networks of connected protected areas have been the cornerstone of efforts to conserve biodiversity, 254 
however interactions between local and climatic stressors (figure 3) require a new focus on functional 255 
and climate connectivity, with the particular aim of allowing species range shifts along climate 256 
gradients [88]. The global extent of marine protected areas protects just 7.66% of the ocean, and the 257 
size of the tropical network is far smaller than in the rest of the world [136]. Although the largest 258 
percentage of forest area under protected status (>26%) is found in the tropics [137], most tropical 259 
reserves are smaller than 100 km2 [138]. The coverage of tropical forest and marine protected areas 260 
is therefore too small to permit species long-distance range shifts, and over 62% of the tropical forests 261 
have been shown to be likely to fail in facilitating species movements to analogous future climates 262 
[88].  263 

To enhance climate connectivity and hence resilience, decision-makers should also focus on viable 264 
patch-linkages and habitat corridors among protected areas preferably distributed along climate 265 
gradients and where species vulnerability to climate and connectivity loss are high [88]. Achieving 266 
successful reserves will also require the protection of habitat in the wider landscape – such as private 267 
lands – to ensure reserves remain functionally connected if climate changes and extreme events result 268 
in enhanced environmental stochasticity [139], and species need to travel longer to find suitable 269 



bioclimatic conditions [88,140]. In addition, protected areas may also play a key role for both climatic 270 
mitigation and adaptation through reducing emissions from tropical deforestation [141], alleviating 271 
regional flood (drought) occurrence during extremely rainy (dry) seasons [142–144], and avoiding 272 
overexploitation and loss of organisms and processes important for post-disturbance ecosystem 273 
recovery (e.g.[127,145]). However, to fulfil their role as an insurance policy for biodiversity and 274 
climate-mitigation, current protected area networks need to be well enforced and funded [146], while 275 
new marine and forest reserves should be strategically placed where they increase climate 276 
connectivity [88] and/or are predicted to escape the burden of climate-associated stressors [129]. This 277 
is important because even regions under low direct anthropogenic stress may be subject to impacts 278 
from regional and global stressors [80] (figure 3). 279 

(b) We are all in the same boat: multi-level actions to tackle different stressors 280 

As human populations continue to grow, the fate and future benefits provided by tropical forest and 281 
reef systems will also depend greatly on how well these ecosystems are managed. Their long-term 282 
resilience to climate change and extremes will require the collective effort of a broad range of 283 
stakeholders at distinct levels. Acting locally is important, and there are different approaches to avoid 284 
further on-the-ground disturbance. For instance, the post-disturbance resilience of tropical 285 
ecosystems and biota may be enhanced through approaches for climatic adaptation such as the 286 
implementation of well-planned landscapes, reinstatement of connectivity and energy flows among 287 
ecosystems [147], and improvements in habitat quality through ecological restoration (e.g. green 288 
firebreaks in China [148]). Addressing the many distal drivers of degradation in tropical ecosystems is 289 
essential to foster the effectiveness of these approaches [1,124]. Research and climate-mitigation 290 
strategies are also more likely to have an effect if engaging with local actors such as tropical scientists, 291 
managers, and institutions [149–151], and encouraging land- and marine-use practices that respect 292 
local needs and diverse socio-ecological conditions (e.g. fire-safe agriculture in tropical forests [152] 293 
and community-based management programs for coastal populations that depend on corals and 294 
small-scale fisheries [153]). 295 

Managing locally may not be enough if we do not tackle global climate change issues [80]. 296 
Redoubling efforts to limit anthropogenic climate changes remains critical and is the most important 297 
mitigation option we have where climate stressors cause widespread damage independent of other 298 
local non-climatic disturbances. This issue needs to be addressed by local, national and international 299 
stakeholders, while balancing the needs for economic growth and environmental sustainability, a 300 
particular challenge for tropical nations [154]. For this, both tropical and extratropical decision-makers 301 
will need to develop strategies such as low-carbon technologies to reduce the emissions of 302 
greenhouse gases while avoiding forest destruction to increase carbon intake [104]. If it is not already 303 
too late, controlling climate change may also reduce the risks of more severe and frequent weather 304 
extremes [44,155], and, consequently, the need for a considerable amount of investments to prepare 305 
regions that are more vulnerable to them. 306 

6. Conclusions 307 

Our review shows that climate extremes are impacting forests and reefs throughout the tropics (figure 308 
1), but their ecological consequences for ecosystem resilience and stability are likely to differ across 309 
realms (Box 1). The fate of these ecosystems will be determined by a complex interplay between the 310 
impacts of local and climate-associated stressors [1,17] (figure 3). Ecological studies on species-311 
specific physiological tolerance [156], changing species composition [58,157] and ecosystem recovery 312 



trajectories [27,46] may help us to inform management decisions where climatic stressors are the 313 
main drivers of disturbance. However, where local and climate-related stressors are jeopardising 314 
ecosystems services, we need to develop better predictive models to understand how chain and 315 
modification interactions with local stressors can mediate the ecological consequences of climate 316 
change and climate extremes. Such integrated approaches can better inform policy and climate-317 
adjusted management solutions to ameliorate further disturbance impacts, helping to promote 318 
ecosystem adaptation and resilience. We urge the creation of conservation initiatives to develop 319 
interventions that effectively curb local disturbances, but these will be of limited success if they are 320 
not accompanied by international actions to decrease CO2 emissions and therefore slow global climate 321 
changes. Only through multinational cooperation between a broad range of stakeholders and levels 322 
will we ensure that tropical forests and coral reefs are adequately protected and maintained for future 323 
generations. 324 
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Figure captions 753 

 754 

Figure 1. Locations where extreme climate events have ecologically affected tropical forests and 755 
coral reefs. Tropical forest biome (green) was defined following the ecoregions "Tropical & Subtropical 756 
Dry Broadleaf Forests" and "Tropical & Subtropical Moist Broadleaf Forests" [158]. The tropical marine 757 
biome (darker blue polygons) was defined as the extent of shallow-water coral-forming ecoregions 758 
[159] on the basis of sea surface temperature (mean minimum monthly 18° C sea-surface isotherm 759 
between 1988-2018; [1]). Color-coding of the dots on the map indicates different extreme climatic 760 
events: Drought/fires (red), floods (blue), heatwaves (yellow) and hurricane/cyclones (orange). 761 
Purple-coloured dots show high-intensity bleaching reports from ReefBase (www.reefbase.org) 762 
between 1990 and 2010. Data sources and references for each number are presented in 763 
Supplementary Tables 1 and 2, respectively. 764 

 765 

Figure 2. Drought and bleaching impacts on tropical biodiversity-ecosystem functioning links, 766 
functional richness, and functional dispersion in tropical forests and coral reefs, respectively. Dung 767 
beetle (a-d) and herbivore parrotfish communities (e-h) were surveyed before (purple) and after (blue) 768 
the 2015/16 El Niño drought within Brazilian Amazonian forests and heatwave in Seychelles reefs, 769 
respectively. The x-axis shows dung beetle (a-b) and parrotfish (e-f) richness, and pre- and post-770 
drought/heatwave surveys (c-d/ g-h). The y-axis represents rates of dung beetle-mediated secondary 771 
seed dispersal (a-b), grazing rates (e-f), functional richness (c, g), and functional dispersion (d, h). 772 
Further details on functional traits, analyses and results are described in the supplementary material. 773 

http://www.reefbase.org/


 774 

Figure 3. Framework of interactive effects between climatic and anthropogenic stressors on tropical 775 
forests and reefs. Interactions may occur through modification effects, whereby the impacts per 776 
capita/per unit of one stressor is influenced by another pressure (dashed arrows), or through chain 777 
effects that may occur when both stressors have a direct influence, with one amplifying the severity 778 
of the other (adapted from the framework proposed by Didham et al.[18]). Photos represent a coral 779 
bleaching event in Moorea and landslides after massive thunderstorms in Peruvian cloud forests, by 780 
K. Chong-Seng and M. Dehling, respectively. 781 


