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Abstract  20 

Trait-based ecology strives to better understand how species, through their bio-ecological traits, 21 

respond to environmental changes and influence ecosystem functioning. Identifying which traits 22 

are most responsive to environmental changes can provide insight for understanding community 23 

structuring and developing sustainable management practices. However, misinterpretations are 24 

possible because standard statistical methods (e.g., principal component analysis, linear 25 

regression) for identifying and ranking the responses of different traits to environmental changes 26 

ignore interspecific differences. Here, using both artificial data and real-world examples from 27 

marine fish communities, we show how considering species-specific responses can lead to 28 

drastically different results than standard community-level methods. By demonstrating the 29 

potential impacts of interspecific differences on trait dynamics, we illuminate a major, yet rarely 30 

discussed issue, highlighting how analytical misinterpretations can confound our basic 31 

understanding of trait responses, which could have important consequences for biodiversity 32 

conservation.  33 

 34 

Introduction 35 

Using species’ traits, defined as any bio-ecological feature influencing individual performance in 36 

a given environment (Violle et al. 2007), is widely advocated for understanding how biological 37 

communities respond to environmental change. This requires identifying which traits exhibit the 38 

greatest environmental responses and best characterize community dynamics (Lavorel and 39 

Garnier 2002; Mcgill et al. 2006; Suding et al. 2008; Dehling et al. 2016; Gross et al. 2017). 40 

Ranking the respective contribution of different traits to community responses can help identify 41 
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the ecological mechanisms structuring communities (Weiher and Keddy 1995; Pollock et al. 42 

2012; Fort et al. 2014; Sakschewski et al. 2016). For example, in a marine fish community, if all 43 

species increasing in abundance are related by high temperature preferences, we could likely 44 

conclude that changes in community structure are primarily driven by ocean warming, and that 45 

future increases in warm-adapted species are likely (Cheung et al. 2013). While this response-46 

trait approach is recognized for providing clearer information for planning conservation and 47 

management efforts that are applicable across ecosystems and taxa (Dı́az and Cabido 2001; 48 

Winemiller et al. 2015; Pecuchet et al. 2017), proper interpretations of trait responses are critical. 49 

Currently, descriptive statistics like ordination analyses are used to rank the respective 50 

contributions of different traits to temporal and spatial community responses, i.e. which traits are 51 

most responsive to environmental changes in time and space (Peres-Neto et al. 2003; Pla et al. 52 

2011; Legendre and Legendre 2012). In temporal dynamics, principal component analysis (PCA) 53 

is used to examine changes in a given community over time by examining the movement of the 54 

community along the main principal component axes, while the most responsive traits are 55 

inferred by ranking PCA loadings (Peres-Neto et al. 2003; Pla et al. 2011; Legendre and 56 

Legendre 2012). Additionally, trait responsiveness can be inferred as the slope of the regression 57 

between trait abundance and time or an environmental gradient (Noordijk et al. 2010; Jamil et al. 58 

2014). From a purely descriptive standpoint, these methods provide accurate assessments of the 59 

traits that explain the highest amount of variation in a dataset, and thus accurately identify the 60 

traits with the greatest contributions to community variation in a statistical context. However, 61 

using only such descriptive statistics can lead to misinterpretations of how traits respond to 62 

environmental changes. 63 

While ordination or regression-based methods might accurately indicate which trait 64 

increased or decreased the most over time or space, this finding does not necessarily mean that 65 
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this trait was the most responsive to environmental changes. For example, if a certain trait 66 

emerged as the most responsive because it had the greatest regression slope, this result could be 67 

due to a single dominant species while all other species with this trait were unaffected, thus 68 

questioning the unequivocal responsiveness of this group. For instance, ‘piscivore’ could be 69 

identified as the trait most impacted by an environmental disturbance, yet if only one dominant 70 

piscivore species decreased in abundance, while all remaining piscivores were unaffected we 71 

have little confidence that piscivores are actually affected by this disturbance. Even though, under 72 

the mass-ratio hypothesis, changes in the traits of the most abundant species should have the 73 

highest impact on ecosystem processes owning to their dominance, it does not imply that they are 74 

the most representative of how traits in general respond to changing environments (Grime 1998; 75 

Díaz et al. 2007; Mokany et al. 2008). Rather, other traits could be far more responsive to 76 

environmental changes, but simply less dominant in the community. Another problematic case 77 

arises when a particular trait is shared by only a few species. If these species increase or decrease 78 

synchronously in abundance just by chance, standard methods might indicate that the trait is 79 

highly responsive while actually being a random signal (Peres-Neto et al. 2017). Instead, when a 80 

trait is shared by many similarly affected species, we have greater confidence that this trait 81 

contributes strongly to community responses, and is highly responsive to environmental change. 82 

In this note we aim to point out that using standard statistical methods to identify which 83 

traits are most responsive to environmental changes can lead to misinterpretations with important 84 

consequences for anticipating changes in biodiversity. Such methods do not account for the 85 

potential impacts of individual species, particularly dominant species and species with 86 

inconsistent responses. Here, we illustrate the issues outlined above with a simulated case study 87 

and two real-world examples using a basic index to rank the contribution of different trait groups 88 

to community responses to environmental change. 89 
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 90 

Materials and Methods 91 

Trait group contributions to community responses 92 

Here ‘trait’ refers to any morphological, physiological or phenological feature related to 93 

organismal fitness (Violle et al. 2007). In this study, for simplicity, we considered trait groups, 94 

which are defined as groups of species with shared trait attributes (e.g., pelagic, demersal, 95 

piscivore, planktivore, schooling, diurnal, oviparous, etc.). Thus, GROUPS were not chosen in 96 

order to combine species with similar responses, but rather were defined according to shared bio-97 

ecological characteristics. This trait-based approach is commonly used to identify whether certain 98 

shared characteristics explain how species respond to environmental perturbations (Engelhard et 99 

al. 2011; McLean M et al. 2018). While considering GROUPS is most relevant for categorical 100 

traits, it can be easily extended by grouping continuous traits, which is common in trait-based 101 

studies (Mouillot et al. 2014; D’agata et al. 2016). However, it should be noted that the issues 102 

outlined above apply equally to community-weighted mean approaches, particularly because 103 

dominant species can drive changes in average trait values, masking the responses of other 104 

species with similar trait values. 105 

Here, we developed a simple index to demonstrate the potential misinterpretations of using 106 

standard statistical methods that do not account for interspecific variation in environmental 107 

responses. However, it should be noted that this index is used purely for demonstrative purposes 108 

and is not proposed a solution for integrating interspecific differences into trait dynamics. This 109 

simple index, hereafter called the trait response (TR) index, ranks trait group contributions to 110 
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temporal community dynamics. This index thus considers changes in community structure over 111 

time and identifies the most responsive trait groups. This index has three complementary criteria:  112 

i. The slope of the change in trait groups over time (i.e., ∆ abundance or biomass time-1).  113 

ii. Kendall’s coefficient of concordance, a measure of consistency among changes in 114 

 trait group member’s abundances (i.e., whether species within a given trait group display115 

 similar dynamics), ranging from 0 to 1 (Legendre 2005). When the  coefficient is 1, all116 

 species display the same type of change; when the coefficient is 0, there is no117 

 consistency among species, and the dynamics of the corresponding trait group are118 

 essentially random. Kendall’s coefficient is calculated by rank-ordering the119 

 abundances of each species across years, and consistency among species’ abundance120 

 rankings within each group is computed via the mean and sum of squared deviations of121 

 the rankings (see Legendre 2005). 122 

iii. The number of species whose temporal trends (increase vs. decrease in abundance) are the 123 

same as the overall GROUP to which they belong, i.e., if the overall GROUP decreased in 124 

abundance, the number of species in this group that decreased in abundance.   This 125 

component first adds a probabilistic aspect, reinforcing that higher numbers of 126 

species with consistent responses reduce the likelihood that trait group dynamics are 127 

due to chance alone. Secondly, it complements Kendall’s concordance, which can be 128 

equal for groups with different numbers of species. For example, GROUPS 129 

consisting of singletons or doubletons could show very high slopes and have 100% 130 

response consistency, however, having only 1 to 2 species limits our confidence that this 131 

group is truly responsive, whereas a higher number of species showing consistent 132 

responses increases our confidence. 133 
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The TR index is then calculated as the absolute value of the product of these three criteria 134 

according to the following formula: 135 

𝑇𝑇𝑇𝑇𝑖𝑖 = |𝑚𝑚𝑖𝑖  ×  𝑊𝑊𝑖𝑖 × 𝑛𝑛𝑖𝑖| 136 

where i is a given trait group, m is the regression slope of the change in the trait group (i.e., 137 

abundance or biomass; Fig. 1e) through time, W is Kendall’s coefficient for the trait group, and n 138 

is the number of species in the group that have the same temporal trend as the overall group itself 139 

(i.e., increase or decrease). This index produces a unit-less value (that ranges between 0 and ∞) 140 

that is used to rank the overall contributions of each trait group to changes in community 141 

structure over time, i.e., to identify the most responsive trait groups. The absolute value is used in 142 

order to rank trait group responses regardless of whether groups increase or decrease. Higher 143 

values of the index correspond to groups with strong responsiveness, while lower values 144 

correspond to groups with weak responsiveness due to either low abundance changes, low 145 

consistency among species, or low species count. 146 

 147 

Simulated case study 148 

To qualitatively demonstrate the problems outlined in the introduction, we first created artificial 149 

datasets of species’ abundances and traits, where we considered changes in the abundance of ten 150 

species comprising four trait groups over four years (note that some species belonged to more 151 

than one group) (Fig. 1a-d). For this theoretical example, species abundances were specifically 152 

(i.e., non-randomly) chosen to highlight the case of a right-skewed community distribution due to 153 

many rare and one dominant species, and the potential impact this can have on analytical 154 

interpretations. Thus we allocated large decreasing abundances to a single species, and assigned 155 
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lower abundances to all other species. We furthermore adjusted species’ abundances so that three 156 

of the trait groups had low response consistency among species (groups 1, 3, and 4), while one 157 

trait group had high consistency (group 2). Temporal dynamics of the trait groups (Fig. 1e) were 158 

first calculated using the two standard methods – the slope of the abundance of each trait group 159 

over time and the PCA loadings of each group. The TR index was then calculated and trait group 160 

contribution rankings were compared across the three methods. 161 

 162 
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 163 

Fig. 1 Temporal dynamics of ten artificial species belonging to four different trait groups a-d, 164 
and the resulting dynamics of the trait groups themselves e. Artificial data were created to 165 
highlight the case where a single dominant species drives trait group dynamics (species #5), and 166 
where response consistency is low among trait group members a, c, d. 167 

 168 

Real-world example 1: reef fish responses to coral bleaching 169 
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We next examined coral-reef fish dynamics following a mass coral bleaching event, specifically 170 

examining which trait groups were most impacted by coral mortality. The Seychelles Islands 171 

experienced wide-spread coral mortality following severe bleaching during the 1998 El Nino 172 

event, which led to substantial changes in benthic structure and reef fish community composition 173 

(Graham et al. 2015). Fish abundance data were collected at 21 sites around the Seychelles 174 

Islands using underwater visual census (UVC) in both 1994 (pre-bleaching) and 2005 (post-175 

bleaching). Abundance data were collected for 129 species, which were assigned to six trait 176 

groups according to species’ main diets: predators, invertivores, planktivores, grazing herbivores 177 

(grazers), scraping herbivores (scrapers), and corallivores (Graham et al. 2015). Because 178 

dominant species can bias GROUP dynamics, all species abundances were log10(x+1) 179 

transformed before analyses. Standard data transformations such as log and Hellinger can 180 

strongly alleviate the influence of dominant species; however, data transformations cannot 181 

entirely resolve the issues outlined in the introduction, as species’ abundances often vary by 182 

several orders of magnitude. The TR index was then calculated and trait group rankings were 183 

compared with the rankings from the absolute value of slope and PCA loadings. 184 

 185 

Real-world example 2: long-term changes in North Sea fish communities 186 

We next applied the TR index to long-term fish community data in the southern North Sea, again 187 

examining which diet groups were most responsive to environmental changes through time. The 188 

southern North Sea has experienced significant community change in the last thirty years due to 189 

sea surface warming, with marked increases in warm-adapted species (Dulvy et al. 2008; 190 

Engelhard et al. 2011; Cheung et al. 2013). Fish abundance data have been collected annually 191 

since 1983 across the entire North Sea during the fisheries monitoring campaign the International 192 

Bottom Trawl Survey (Verin 1992). Here we included data for the southern North Sea (area 193 
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approximately south of the 50-m depth contour; Pecuchet et al. 2017; McLean et al. 2018) 194 

ranging from 1983 to 2015 for 110 species. Species were assigned to five trait groups according 195 

to their main diets: piscivores, benthopiscivores, carcinophages (crab-eating), benthivores, and 196 

planktivores. All species abundances were log10(x+1) transformed before analyses. We then 197 

calculated and compared the TR trait group rankings against rankings of the absolute value of 198 

slope and PCA loadings. 199 

 200 

Results 201 

Simulated case study 202 

Trait group #4 was ranked as the group with the greatest contribution to temporal community 203 

dynamics, i.e. the most responsive trait, by both the slope of trait group abundance and by PCA 204 

loadings (Fig. 2). However, further examination revealed that this pattern was driven by the 205 

abundance of the single dominant species (#5) (Fig. 1d). Using the TR index, however, group #4 206 

dropped from most responsive to second, while group #2 rose from third to first (Fig. 2). While 207 

group #2 did not have the greatest change in overall abundance, this group included nearly half 208 

the species, all of which decreased in abundance (Fig. 1b). These results highlight the potential 209 

discrepancy between standard community-level methods and methods that consider interspecific 210 

differences. Here, by considering the response of each species within a trait group rather than the 211 

total abundance of the group itself, we found that group #2 was much more representative of 212 

community responses as all species within this group had the same dynamics (i.e., decreased in 213 

abundance).  214 

 215 
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 216 

Fig. 2 Comparison of slope, PCA loadings, and the TR index for assessing the contributions of 217 
individual trait groups to the temporal responses of an artificial community of ten species 218 
comprising four trait groups.  219 

 220 

Reef fish responses to coral bleaching 221 

All six trait groups decreased in abundance between 1994 and 2005 following the wide-spread 222 

coral bleaching event. The absolute value of slope ranked corallivores as the trait group with the 223 

greatest contribution to community responses (i.e., the most responsive trait), followed closely by 224 

invertivores, planktivores, and grazers, while scrapers and predators had weak responses. PCA 225 

loadings, on the other hand, ranked invertivores and grazers as the most responsive groups, while 226 

corallivores and planktivores had lesser and nearly equal rankings, and predators and scrapers 227 

again had weak responses (Fig. 3). Using the TR index, corallivores were ranked as the most 228 
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responsive group, substantially above all other groups in relative importance, while invertivores, 229 

grazers, and planktivores all dropped markedly and had similar responses (Fig. 3). While both 230 

slope and the TR index ranked corallivores as the most responsive trait group, the relative 231 

importance of corallivores in comparison to invertivores and planktivores was much higher for 232 

the TR index. In contrast, PCA loadings originally ranked invertivores and grazers as the most 233 

responsive groups based on their prevalence and dominant abundances; however, following 234 

massive loss of live corals, corallivores were clearly most impacted, as all species were similarly 235 

impacted despite their lesser abundances. 236 

 237 

 238 

 239 
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Fig. 3 Comparison of slope, PCA loadings, and the TR index for assessing the contributions of 240 
reef-fish trait groups to community responses following mass coral mortality due to coral-241 
bleaching. 242 
 243 

Long-term changes in North Sea fish communities  244 

All five trait groups increased in abundance over time. Using slope and PCA loadings, 245 

planktivores were ranked as the trait group contributing most to community responses in the 246 

southern North Sea, followed closely by benthivores, with piscivores, benthopiscivores, and 247 

lastly carcinophages having lower contributions (Fig. 4). Using the TR index, planktivores 248 

remained the most responsive group; however benthivores dropped substantially, from second to 249 

fourth, while benthopiscivores rose from fourth to second (Fig. 4). Carcinophages also rose from 250 

fifth to third, while piscivores dropped to last. Thus, when considering species-specific responses, 251 

benthopiscivores were much more responsive to long-term environmental changes in the southern 252 

North Sea than benthivores, and carcinophages were more responsive than piscivores.  253 

 254 
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 255 

Fig. 4 Comparison of slope, PCA loadings, and the TR index for assessing the contributions of 256 
trait groups to long-term community responses in the outhern North Sea. 257 
 258 

Discussion 259 

Our results draw attention to the danger of statistically examining trait dynamics without 260 

considering interspecific differences, especially when communities are composed of few 261 

dominant and many rare species. Here, we show that using different methods to examine the 262 

same trends can lead to markedly different rankings of the trait groups that are most responsive to 263 

environmental changes. Incorporating basic concepts like species dominance and response 264 

consistency among trait group members lead to different results than standard community-level 265 

methods and highlighted the importance of considering species-specific responses when 266 

analyzing trait dynamics. 267 
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While rarely discussed in current literature, ignoring the potential impacts of individual 268 

species responses, notably dominant species and species with inconsistent dynamics, can greatly 269 

bias statistical results and remains a prevalent issue in trait-based studies. Numerous studies 270 

examining temporal changes in communities’ trait structures use methods such as PCA, 271 

redundancy analysis (RDA), or RLQ analysis, which are all heavily influenced by dominant 272 

species. Additionally, while we examined trait groups according to categorical traits, applying 273 

such methods to community-weighted mean trait values rather than trait groups does not relive 274 

the issue, as major changes in trait dominance can be entirely driven by single species (Bello et 275 

al. 2007, 2012; Nickerson et al. 2018). While recent approaches have been developed to identify 276 

the contribution of different species to changes in a single community-weighted mean trait (e.g., 277 

temperature preference) (Princé and Zuckerberg 2015; Gaüzère et al. 2019), this issue remains 278 

unresolved for multi-trait approaches. Here, for simplicity, we examined changes in multiple trait 279 

groups within the single trait ‘diet,’ however, integrating multiple traits is necessary to fully 280 

characterize community responses to environmental change (Lefcheck et al. 2015). Studies 281 

examining fish community dynamics generally integrate several traits such as habitat use, diet, 282 

body size, and reproductive mode (Frainer et al. 2017; Pecuchet et al. 2018; McLean et al. 2019). 283 

Identifying the traits that are most responsive to environmental changes (rather than identifying 284 

the species that contribute most to changes in a single trait) in such multi-trait studies is 285 

substantially more difficult, as multi-trait dynamics are clearly blurred by interspecific 286 

differences.  287 

Furthermore, choosing and assigning traits to different species can have a major impact on 288 

results depending on the dominance and dynamics of the species. For example, when a dominant 289 

species is both a planktivore and a piscivore depending on ontogeny and resource availability, if 290 

the species is classified as a piscivore and has major changes in abundance, the overall 291 
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conclusion will be that piscivores are heavily impacted by disturbance, even though this result 292 

was driven by a single opportunistic species. While seemingly intuitive, such issues remain 293 

widespread in trait-based studies and their potential consequences are rarely considered.   294 

A central goal of trait-based ecology is to understand how organisms respond to 295 

environmental gradients, notably to anticipate future biodiversity changes (Keddy 1992; Weiher 296 

and Keddy 1995; Mcgill et al. 2006; Winemiller et al. 2015). As the global environment 297 

continues to change due to both human-induced and natural environmental pressures, 298 

understanding how different trait groups will respond is critical to planning how we will adapt 299 

conservation and management efforts to maintain ecosystem services (Vitousek et al. 1997; 300 

Hulme et al. 1999; Edwards and Richardson 2004; Thuiller et al. 2006; Poloczanska et al. 2013). 301 

As the power of trait-based ecology lies in understanding fundamental trait-environment 302 

relationships, we must consider ecological implications, like species-specific responses, to a 303 

greater extent in statistical methods. The greatest potential danger lies in misidentifying traits that 304 

are most responsive to environmental changes, especially for resource management. For instance, 305 

in the artificial example, standard methods identified trait group #4 as the most responsive, which 306 

could lead to the conclusion that group #4 is the most characteristic of the community response. 307 

Thus, resource managers might mistakenly believe that environmental changes most prominently 308 

impact communities through decreases in species in group #4, when in fact decreases in species 309 

in group #2 are much more representative. By misidentifying trait-environment relationships 310 

driven by dominant species, resource managers could be ill-prepared for sudden changes in 311 

community structure driven by rare species.  312 

In our reef fish example, an ecosystem at the forefront of climatic disturbance (Graham et 313 

al. 2015; Hughes et al. 2018), standard statistical methods (i.e., PCA) could support the 314 

conclusion that invertivores are the most responsive trophic group to coral bleaching, leading to 315 
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potential misallocation of resources, when in reality corallivores are much more responsive and 316 

present a more critical management target. In the southern North Sea, an ecosystem highly 317 

impacted by climate warming (Dulvy et al. 2008; Engelhard et al. 2011; McLean et al. 2018), 318 

standard methods would conclude that benthopiscivorous species have been relatively 319 

unimportant to community dynamics through time and are thus unresponsive to sea surface 320 

warming, when in reality this group has shown consistent, positive responses. These examples 321 

highlight how our basic understanding of community responses to climate change can be 322 

compromised if we fail to consider the interspecific differences behind trait dynamics. 323 

As our primary objective in this concept paper was not to develop a new method for 324 

examining trait dynamics, but to highlight potential issues arising from standard methods, we 325 

acknowledge that the index used here is both basic and imperfect, and alternatives with other 326 

ecological criteria and different mathematical structures are feasible. For example, while our 327 

index was based on consistency among GROUP members using Kendall’s coefficient of 328 

concordance, this approach cannot account for competition among species within groups, or 329 

functional replacement by unaffected species within the same group (i.e., via functional 330 

redundancy). However, we reconcile that groups containing species that show inconsistent 331 

environmental responses (i.e., some decrease while others increase) due to competitive release or 332 

functional replacement are likely not the most environmentally-responsive groups given that 333 

some species suffer while others benefit. Rather, other traits may better explain why species 334 

increased or decreased in abundance, and GROUPS where nearly all species are similarly 335 

affected are likely more responsive. Kendall’s concordance may also not be well adapted for 336 

hyper-diverse regions because too many species packed within few GROUPS could mask the 337 

responses of highly impacted GROUP members. We therefore encourage others to propose 338 

additional ecological criteria relevant to examining trait dynamics and to develop alternative 339 
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methods that build on the concepts presented here. Furthermore, with the goal of accurately 340 

identifying trait group responses to environmental change, additional approaches focusing on the 341 

underlying mechanisms of trait responses will greatly increase our understanding of trait-342 

environment relationships. Laboratory studies examining how different trait groups, and their 343 

constituent species, respond to environmental variation like sea-surface warming can more 344 

concretely determine which traits are truly most sensitive to environmental changes, and identify 345 

the physiological characteristics linking these traits (Ospina and Mora 2004; Sandblom et al. 346 

2014; Verberk et al. 2016; Messmer et al. 2017). Such understanding will be critical for 347 

anticipating the ecological impacts of global environmental change. 348 

The examples in this concept paper bring to light a specific case in prioritizing trait group 349 

contributions, but also draw attention to the larger issue of framing data analyses and 350 

interpretations in ecological contexts. While many powerful tools are readily available to 351 

contemporary ecologists, the corresponding results are only as good as the interpretations they 352 

permit. As trait-based ecology continues to expand, it is important that we consider the ecological 353 

contexts of methods and results in order to generate trait-environmental relationships that 354 

accurately reflect community dynamics, a critical step for better understanding ecosystem 355 

functioning. 356 
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