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Key points:

1.  Accumulation and release of magnetic flux in the middle Jovian magnetosphere
modulate auroral intensifications.

2. Magnetic reconnection process occurs independently of Jupiter's global loading
and unloading of magnetic flux.

3. We provide direct evidence that unloading of magnetic flux causes
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enhancements of auroral kilometric emissions.

Abstract

We present simultaneous observations of aurorae at Jupiter from the Hubble Space
Telescope and Hisaki, in combination with the in-situ measurements of magnetic field,
particles and radio waves from the Juno Spacecraft in the outer magnetosphere, from
~ 60 Ry to 80 R; during March 17 to 22, 2017. Two cycles of accumulation and
release of magnetic flux, named magnetic loading/unloading, were identified during
this period, which correlate well with electron energization and auroral
intensifications. Magnetic reconnection events are identified during both the loading
and unloading periods, indicating that reconnection and unloading are independent
processes. These results show that the dynamics in the middle magnetosphere are

coupled with auroral variability.

Introduction

Jupiter produces the most powerful auroral emissions among the solar system’s
planets. Jovian ultraviolet aurora is comprised of at least four distinctive components,
e.g., Galilean satellite magnetic footprints, main auroral emission [Clarke et al., 2002],
emissions equatorward and poleward of the main auroral emission (Grodent [2015],
and references therein). These auroral components do not behave fully independently.
Grodent et al. [2018] suggested six families of auroral morphologies with diverse
combinations of different auroral components by examining 118 observing sequences
with the Hubble Space Telescope (HST) between Juno orbits 3 to 7, demonstrating

that different auroral components are systematically connected.

The Jovian auroral components are highly variable, and traditionally thought to be
driven by rapid planetary rotation and the lo plasma torus [Clarke et al., 2004;

Delamere et al., 2015a; Khurana et al., 2004]. Observations of the solar wind
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upstream of Jupiter by the Juno and Jovian polar FUV emission by HST (or
simultaneous measurements by Cassini and Galileo during the Cassini flyby)
confirmed that solar wind conditions significantly modulate polar auroral emissions
[Clarke et al., 2009; Gurnett et al., 2002; Nichols et al., 2017; Nichols et al., 2007]. In
addition to UV emission, solar wind influences on Jovian aurorae at other wavebands,
e.g., infrared emissions [Baron et al., 1996; Connerney and Satoh, 2000; Moore et al.,

2017] and X-ray emissions [Dunn et al., 2016].

Unlike the terrestrial magnetospheric processes that are mainly driven by Dungey
cycle [Dungey, 1961], Jupiter’s magnetospheric processes are driven by both Dungey
cycle and Vasyliunas cycle [Vasyliunas, 1983]. Although energy and plasma sources
are fundamentally different at the two planets, previous studies have revealed that
many terrestrial-like dynamics could also exist in Jovian magnetosphere [Cowley et
al., 2003]. Episodes of magnetic loading processes, corresponding to the substorm
growth phase at Earth, have been identified in the near Jovian magnetotail by Galileo
[Ge et al., 2007]. Furthermore, magnetic reconnection has also been reported in the
middle to outer Jovian magnetosphere [Ge et al., 2010; Russell et al., 1998], and
suggested to be a mechanism releasing the magnetotail energy [Kasahara et al., 2013;
Kronberg et al., 2008; Kronberg et al., 2005; Vogt et al., 2014; Vogt et al., 2010].
Previous studies also revealed strong connection between bursts of auroral radio flux
and energetic magnetospheric events, which are suggested to relate to plasma
instabilities or plasma injections from the more distant magnetodisc [Louarn et al.,
2000], or between auroral radio flux and ultraviolet (UV) auroral emissions [Kurth et
al., 2005], suggesting that radio emissions are concurrent phenomena during magnetic
unloading processes [Louarn et al., 2001]. Unlike imaging of the UV aurorae that
provides an almost global view, auroral radio flux heavily depends on the viewing
geometry, which makes it difficult to distinguish between spatial and temporal

variations. Therefore, the analysis of measurements combining datasets from radio
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waves, energetic particles, magnetic field and aurorae is pivotal in understanding how

the Jovian magnetospheric dynamics drive the polar auroral emissions.

Using simultaneous remote sensing of aurorae from HST and Hisaki, in combination
with measurements from Juno in the outer magnetosphere at ~ 60 — 80 R;, we report
direct evidence of the connection between auroral enhancements and unloading of
magnetic flux. We also discuss the relation between magnetic reconnection and the

loading/unloading process.

Observations

Figure 1(top panel) shows polar projections of five auroral images averaged over ~40
minutes. These images were taken by HST/STIS during March 17 to 21 2017 (details
described in Grodent et al. [2018]). The power of the total visible area from HST
from March 17 to 21 are 2068 GW, 1778 GW, 2258 GW, 1672 GW and 1281 GW,
respectively. Note that the viewing geometry for these HST sequences is very similar,
so that the geometric influence in the comparison would not likely seriously affect the
trend of auroral power variation. As illustrated by the auroral power and also visually
identifiable by eyes, the aurorac on March 17 and 19 were more brightened than on
other days, particularly on the dawn side auroral arc. On March 21, the auroral
emission was significantly weaker than the other images, suggesting a relative quiet
magnetospheric condition. Figure I(bottom panel) shows the solar wind dynamic
pressure at Jupiter using a one-dimensional magnetohydrodynamic (MHD) model to
propagate solar wind measurements made at the Earth orbit [7ao et al., 2005]. The
Earth-Sun-Jupiter angle was about 40 degrees (not shown), smaller than the threshold
in Tao et al. 2005 (i.e., 50 degrees), suggesting that the prediction is relatively reliable
with a maximum error of 2 days. As shown in the Tao model prediction, a rapid
dynamic pressure enhancement was observed at the beginning of March 18, followed

with a peak value of ~ 0.3 nPa. Although we could not determine the exact arrival



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
139

140

time of solar wind compression using a propagation model, it is likely that the
enhanced auroral sequences from March 17 to March 20 were associated with this

strong solar wind dynamic pressure estimated from Tao model.

During the same period, the Juno spacecraft was approaching Jupiter from 84.3 R; on
March 17 to 59.5 R; on March 22 on the dawnside (local time at ~ 4.8), near the
equatorial plane. Figure 2(a-c) shows I-minute averaged measurements of the
magnetic field components in system III coordinate system, obtained from the Juno’s
Magnetometer Investigation (MAG) [Connerney et al., 2017]. Figure 2d shows the
10-hour averaged total magnetic strength, which eliminates short time scale
fluctuations, e.g., at time scales of minutes to a few hours. During Juno’s pass through
Jupiter’s outer to middle magnetosphere, the 10-hour flapping of the current sheet
caused by planetary rotation leads to regular current sheet crossings that can be
identified by the oscillation of the Br and B, components (Figure 2a and 2c) and
electron flux (Figure 2h). Indeed, when Juno travels from outside to inside the
plasmadisc, the dominant components (Br and B,) decrease, and the normal
component (Bp) increases. Therefore, the magnetic inclination angle (defined as

tan™! | |) increases accordingly. In a thick current sheet structure, Juno

would stay within the central plasmadisc for a relatively long time, and the
one-rotation averaged magnetic inclination angle would consequently be larger than
in a thin current sheet. We thus suggest using the one-Jovian-rotation average of
magnetic inclination angle as an indicator of the current sheet thickness, as shown in
Figure 2e. For Earth, the magnetic inclination is often directly used as an indicator of
the current sheet thickness (or magnetic dipolarization), however this is not applicable
for Jupiter or Saturn because current sheet flapping is modulated by planetary rotation
(e.g., Henderson et al. [2006]). Figure 2f shows a frequency-time spectrogram of

electric field spectral density from the kilometric wave frequencies measured with the

Juno-Waves instrument [Kurth et al., 2017b]. Figure 2g shows the wave power
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intensity of ~60 kHz emissions as a function of time and System III longitude. We
select ~60 kHz only for demonstrating the longitude information for the wave activity,
while not from a physical consideration. Figure 2h shows an energy-time spectrogram
for energetic electrons with an energy range between 30 keV and 1000 keV observed
with Juno’s Jupiter Energetic-particle Detector Instrument (JEDI) [Mauk et al., 2017].
The most prominent variation in Figure 2e is the strong enhancement after March 19
(indicated by the arrow), which indicates a strong current sheet expansion. This is also
associated with a strong enhancement of kilometric emission as shown in Figure 2f,
and electron energization appearing in Figure 2h. The enhancement of energetic
electrons lasted for about two planetary rotations, indicating that this is a global
process, rather than a localized energization. A localized energization in a rotating
magnetosphere would likely result in short duration enhancement with clear

boundaries, e.g., Yao et al. [2018].

As indicated by the dashed red and orange lines in Figure 2d, the 10-hour averaged |B|
has experienced two increases and two decreases during the five days, suggesting that
the magnetosphere was experiencing loading and unloading of magnetic energy. Note
here that we do not focus on the sub-scale variations caused by current sheet
distortion, for example during the second unloading period, when the magnetic field
and electron flux are highly perturbed. When mirroring the dashed lines on Figure 2d
to the Figure 2h, it is obvious that the unloading and loading processes are generally
consistent with electron energization and cooling, respectively. We point out that the
transitions between the loading and unloading processes (marked by the orange and
red dashed lines) cannot be temporally resolved finer than one planetary rotation,
therefore we cannot conclude whether or not there exists a small time delay between
the magnetic variation and the electron energization. We mark the times of the five
auroral images in Figure 1 on the top of Figure 2a (purple arrows), and coincidently

the images sampled all the four periods of the unloading and loading processes. The
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two enhanced auroral emissions (March 17 and 19) were observed at the beginning of
the unloading processes (indicated in Figure 2d), while the three relatively faint

auroral emissions (March 18, 20 and 21) occurred during the loading processes.

During this current sheet expansion, the auroral kilometric wave power (Figure 2f)
significantly increased and showed strong planetary rotation modulation. Ladreiter et
al. [1994] show that both hectometric (HOM) and broadband kilometric (bKOM)
emissions are associated with auroral activities, and further suggest that bKOM is
likely associated with outer magnetosphere while HOM is likely to be connected with
inner Jovian plasma sheet and/or outer plasma torus. Furthermore, Louarn et al. [2014]
reveal the correlation between narrow-band kilometric emission (nKOM) and
magnetospheric reconfiguration event. In the present study, we do not find either clear
nKOM, or strong auroral injection. The HOM is not discussed in the present study
because of instrument noise interferences at its frequency range [Kurth et al., 2017a].
Figure 2g shows that the kilometric wave emissions were mostly constrained from
~320-340 to ~100 degrees in System III. The modulation might be due to the
magnetic dipole tilt, which causes the radio emission cone to rock in latitude as the
planet rotates [Green and Boardsen, 1999; Kurth et al., 2005; Morgan and Gurnett,
1991]. Juno only observes radio emission when it intersects the emission cone. So the
power modulation might be due to the periodic changes of visibility of kilometric
radio emission from Juno. The wave power enhancement in a fixed longitude range in
System III coordinates was revealed by measurements from Voyager 1 and 2 [Kurth et
al., 1980], and suggested to be associated with terrestrial substorm-like activities at
Jupiter (i.e., the magnetic unloading process used in the present study) in Jovian
magnetosphere. Therefore, the present study provides direct evidence of their

hypothesis.

Figure 2i shows the auroral power index from the count rate at 1115 Angstrom
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measured by Hisaki EXCEED (blue) [Yoshioka et al., 2013] and the total auroral
power from HST (pink). The Hisaki power variations are reduced from the imaging
spectral data produced by the pipeline system described in Kimura et al. [2019], by
integrating over one day, which filters out rapid variations associated with disturbance
in the satellite attitudinal system with time scale smaller than one day. The HST
auroral power includes HST’s total visible area. Both HST and Hisaki show consistent
variations, supporting the magnetic loading/unloading modulation of Jovian aurorae
and auroral kilometric radiations. We notice that auroral kilometric radiation
enhancement last for a little bit longer than the auroral indicators from HST and
Hisaki observations. Since HST and Hisaki observations are at ~ one-day resolution,
so that the slight time delay might not be due to physical reason. The inferred dashed

black curve could be a potential solution to this slight time delay.

As indicated by the red dots on the bottom of Figure 2b, there are at least 7 strong
spikes (< -3 nT) of negative By, which is usually taken as an indicator of magnetic
reconnection in the Jovian magnetosphere [Kronberg et al., 2005; Russell et al., 1998,
Vogt et al., 2010]. Moreover, positive By spikes, marked by blue dots are found close
to these negative By spikes. The pairs of positive and negative spikes imply that the
Juno spacecraft traveled into both reconnection outflow sides, meaning that the
reconnection sites were likely formed at the spacecraft’s location or travelled through
the spacecraft [Kasahara et al., 2013; Kronberg et al., 2012], or plasmoid ejected
from the reconnection site passed over the spacecraft [Vogt et al., 2014; Vogt et al.,
2010]. When comparing these reconnection signatures with the loading/unloading
processes, we found that episodes of reconnection were encountered not only during
the magnetic unloading periods, but also during the loading periods. These results
indicate that magnetic reconnection can behave independently of the magnetic

loading/unloading processes in Jupiter’s magnetosphere.
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Discussion and summary

It is a major challenge to distinguish between spatial and temporal variations from
single-probe measurements. Since Juno continuously travels along its 53-days orbit
[Bolton et al., 2017], we have an ideal opportunity to compare the active and quiet-time
measurements along similar trajectories between the nearby orbits to distinguish
between spatial and temporal variations. Figure 3(a and b) show Juno’s trajectory
(distance to Jupiter’s center versus distance above the magnetic equator) the periods
during March 17-22, 2017 (orbit 5) and during July 1-6, 2017 (orbit 7). Figure 3(c and d)
are two representative auroral images (the same color scale) for the two periods,
showing that the measurements in orbit 5 were made during active aurora period while
the measurements in orbit 7 were performed during quiet aurora period. Figure 3(e and
f) shows the magnetic strength during the two periods. As we explained in the
observations section, the oscillation of magnetic strength is due to planetary rotation
induced plasmadisc flapping. When the spacecraft move out of the plasma disk during
the plasmadisc flapping, the change of |[B| become much more gentle. Therefore, we
subtract the envelope of |B| using the criterion of |[dB/dt| < 1 nT/s. This envelope (blue
dots) shall generally represent the lobe magnetic field. Figure 3g shows a direct
comparison of the lobe magnetic field variations during orbit 5 (the active aurora period)
and orbit 7 (the quiet aurora period). Note that the label of distance to Jupiter may
involve an inaccuracy of ~1 Ry, as the two orbits were not precisely the same. The lobe
magnetic field during orbit 7 gradually increased, representing a trajectory variation.
While the lobe magnetic field during orbit 5 shows clear variations along the trajectory
variation. It is surprising that during the active auroral period, the lobe magnetic field
could drop to the quiet auroral period level. Since we do not have a continual monitor of
the polar aurorae, we could not examine whether or not aurora during orbit 5 could
transiently reach to the quiet time level. We point out that: 1) the magnetic
loading/unloading process is in a time scale of one to several planetary rotations, which

is much longer than the Alfven travelling time from the equator to the ionosphere. 2)
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The correlation of lobe magnetic energy release would result in an inner
magnetospheric energy release and auroral brightening, so that the correlation between
lobe magnetic variation and aurora would be obtained even when the spacecraft is not

magnetically connected to the auroral region (e.g., Angelopoulos et al. [2013]).

The relation between magnetic reconnection and loading/unloading processes is an
intriguing mystery widely existing in many planetary magnetospheres in the solar
system. Although magnetic dipolarization and magnetic unloading are the same
physical process, the magnetic unloading signatures (decreases of lobe field strength)
are measurable at a large range of distances while dipolarization signatures (i.e.,
increases of magnetic inclination angle or By) are less significant at larger distances
from the planet [Angelopoulos et al., 2013; Shukhtina et al., 2014]. This is why only
the second magnetic unloading was accompanied by a strong increase in the magnetic
inclination angle. It is usually suggested that the unloading process is driven by
magnetic reconnection at Earth [Angelopoulos et al., 2008], Saturn [Yao, 2017] and
Jupiter [Ge et al., 2007; Russell et al., 1998]. On the other hand, there are also
extensive studies revealing that the terrestrial unloading process is not driven by
magnetic reconnection from the examination of their timing history (e.g.,
reconnection occurs after the unloading process) [Lui, 2009], and energy budget
[Akasofu, 2017; Lui, 2015; 2018]. One of the major difficulties in understanding their
relation is due to the similar time scales (i.e., several minutes) of terrestrial transient
phenomena, such as reconnection, plasma bursty bulk flow, substorm expansion and
field-aligned current formations. As shown in Figure 2, the loading and unloading
processes at Jupiter have time scales of one to a few planetary rotations, which is
much longer than the reconnection signatures (the By spikes). Here we show that
magnetic reconnection processes could occur during both loading and unloading
periods in Jupiter’s magnetosphere, although the occurrence rate might be higher

during unloading (5/7) than the loading phase (2/7). The potentially different
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reconnection occurrence rate may be related to the two to three days quasi-periodical
polar dawn spots revealed by Radioti et al. [2008]. The successive reconnection
signatures during several planetary rotations might suggest a drizzle-like reconnection
process at Jupiter, which is an analogy to Saturn’s drizzle-like reconnection picture
proposed by Delamere et al. [2015b] and supported by direct reconnection evidence
[Guo et al., 2018a; Guo et al., 2018b]. Sporadic reconnections separated by much
shorter time scales were also reported by Kronberg et al. [2009]. These reconnection
signatures measured between 60 to 84 R; in this study are also consistent with the
inferred X-line in Vogt et al. [2010] and Woch et al. [2002], where they suggest X-line
to be located between 60 to 90 R; in the postmidnight to the dawn sectors. The
appearances of magnetic reconnection at both magnetic loading and unloading phases

is also consistent with the statistical conclusion by Vogt et al. [2010].

The loading/unloading of magnetic flux specifically focuses on energy circulation,
which is a counterpart of planetary mass circulation [Bagenal and Delamere, 2011;
Delamere and Bagenal, 2010; Delamere et al., 2015a]. In our point of view, the
magnetic loading/unloading process is similar to the process of plasmoid ejection
[Cowley et al., 2015; Kronberg et al., 2008; Vogt et al., 2014] and recurrent auroral
enhancements in Kimura et al. [2018]. Mass loading/unloading is more on the view of
global mass circulation; while magnetic loading/unloading process describes a
fundamental process of magnetic energy circulation that involves direct particle
energization. The relation between mass loading and magnetic dipolarization is
analogous to the relation between terrestrial substorm and solar wind input energy in
the magnetosphere, i.e., substorm expansion has higher occurrence rate during high
solar wind energy input [Newell et al., 2013; Newell et al., 2007]. Another relevant
analogy is to the process that terrestrial ionospheric outflow in driving periodic

magnetic dipolarizations in the terrestrial magnetosphere [Brambles et al., 2010].
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The swap between loading and unloading shown in Figure 2 could also fit into
quasi-periodic dynamics of the Jovian magnetosphere revealed by Kronberg et al.
[2007] and Louarn et al. [2007]. Two complete cycles of the loading and unloading
processes were recorded in five days, which is highly consistent with the 2.6 days
periodic energetic particle bursts in the predawn Jovian magnetotail revealed in Krupp
et al. [1998], although Kronberg et al. [2009] summarized that these periodicities
could vary from 1 to 7 days. The auroral brightening in this study is likely different
from the transient auroral brightening described mainly based on Hisaki dataset
[Kimura et al., 2018; Kimura et al., 2017; Kita et al., 2016]. The transient auroral
brightenings in their studies are initiated from predawn to dawn local times and
rapidly expand in both latitude and longitude over a few hours, which decay in 1-2
planetary rotations. In contrast, the enhanced auroral morphology remains relatively
steady for about 4 days. We note that Ge er al. [2007] suggested the magnetic
loading/unloading process to occur at quiet solar wind condition, while it is likely that
a similar process occurred during the solar wind compression in this study. We
suggest that this event was likely during a solar wind compression based on the
auroral morphology suggested by Grodent et al. [2018] and Nichols et al. [2017]
owing to enhancements in the main emission and duskside polar region. This is also
consistent with the modeled solar wind propagation [7ao et al., 2005]. We consider
the magnetic loading/unloading process as a fundamental driver of energy conversion
between magnetic energy and auroral energy, and suggest that this process occurred
during a solar wind compression condition (note that we do not suggest a causality
between solar wind compression and magnetic loading/unloading), in addition to the
previous suggestion that magnetic loading/unloading could occur during quiet solar

wind condition [Ge et al., 2007].

The origin of the magnetosphere-ionosphere coupling currents for the main auroral

“oval” in the Jovian system is usually explained as a consequence of the departure of
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the plasma from rigid corotation in the middle magnetosphere [Cowley and Bunce,
2001; Hill, 1979; 2001]. Using measurements from the Galileo magnetometer and
plasma wave instrument, Louarn et al. [2016] revealed that the Jovian auroral radio
emissions is correlated with the azimuthal component of the magnetic field measured
in the plasma disk, which is considered as a supporting evidence for the Hill’s model
[Hill, 1979]. The magnetic loading/unloading process described in this study is an
independent driver to the corotation enforcement currents. The magnetic
loading/unloading process strongly depends on the trends of magnetic variation
instead of the absolute value of magnetic field, i.e., growing and decaying of
azimuthal and radial components correspond to accumulation (dynamo) and release of
magnetic energy (dissipation). We shall also note that the magnetic loading/unloading
at 60 — 80 R; is more distant than the expected magnetospheric origin of the main
auroral emission, at 20 — 30 R; [Cowley and Bunce, 2001; Hill, 2001]. We suggest
two potential explanations: (1) although the majority of auroral precipitation is at 20 —
30 R;, comparable trends may also exist at 60 — 80 R;. This is also similar to
terrestrial auroral intensifications caused by the magnetic unloading process. At Earth,
the majority of auroral precipitation comes from ~10 Earth radii, while magnetic
unloading events are observed at much larger distances [4Angelopoulos et al., 2013;
Shukhtina et al., 2014], even beyond the reconnection site. (2) There is a current loop
between 20 — 30 R; and 60 — 80 Ry, i.e., upward currents at 20 — 30 Rj, while the
downward current branch is formed at 60 — 80 R;. The unloading of magnetic flux at
60 — 80 R; may correspond to enhancement of downward currents, which should

correspond to an enhanced upward field-aligned currents from 20 — 30 R;.

Our main results, obtained by combining the five days of quasi-continuous remote
sensing observations from HST and Hisaki, and in-situ measurements from the Juno
mission, are summarized as follows,

(1) The two periods of enhanced auroral emissions were observed when Juno
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recorded the beginning of the unloading processes, while the three relative
diminishing auroral emissions were during the loading processes in the
magnetosphere.

(2) Kilometric radiation was enhanced during the large magnetic dipolarization
process associated with the second unloading phase.

(3) Magnetic reconnection appears during both the loading and unloading periods.
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Figure Captions

Figure 1. Top: Polar projections of five auroral images from 17 March to 21 March
2017. Each auroral image was averaged over ~40 minutes. Bottom: The solar wind
dynamic pressure was obtained using the 1D magnetohydrodynamic model available
through CDPP/AMDA tool via http://amda.irap.omp.eu, which was initially
developed by Tao et al. [2005].

Figure 2. a-c) 1-min averaged magnetic field components in System III measured by
the Juno-MAG instrument; d) 10-hour averaged magnetic strength; e) 10-h averaged
'

magnetic inclination angle, defined as tan~ f) Frequency-time

\/%B@ZI ;
spectrograms of electric field spectral density; g) the wave power intensity of ~60kHz
emissions as a function of time and System III longitude; h) energetic electrons
measured by the Juno-JEDI instrument. i) Index of total auroral power from Hisaki
(blue), total auroral power from HST (pink). The Hisaki auroral index was derived
from 1-day averaged measurements as indicated by the horizontal bars centered at
each data point. The red dots on the top of panel (b) indicate negative spikes of Ba.
The blue dots in panel (b) mark positive By spikes that might be closely related to the
negative By spikes. The purple arrows on the top of panel (a) indicate the times of the

five HST images in Figure la. The dashed curve in panel (i) is a potential variation

inferred from HST, Hisaki and kilometric emissions.

Figure 3. (a and b): Juno’s trajectory (distance to Jupiter’s center versus distance above

the magnetic equator) the periods during March 17-22, 2017 (orbit 5) and during July
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652

1-6, 2017 (orbit 7); (c and d): Two representative auroral images for the two periods; (e
and f): Magnetic strength during the two periods, and the envelope of |B| (marked by
the blue dots) were obtained using the criterion of |[dB/dt| < 1 nT/s. (g) The comparison
of the lobe magnetic field variations during orbit 5 (the active aurora period, black) and

orbit 7 (the quiet aurora period, pink).
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