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Abstract 13 

The increasing demand for cost-efficient biodiversity data at large spatiotemporal scales has led to 14 
an increase in the collection of large ecoacoustic datasets. Whilst the ease of collection and storage 15 
of audio data has rapidly increased and costs fallen, methods for robust analysis of the data have not 16 
developed so quickly. Identification and classification of audio signals to species level is extremely 17 
desirable, but reliability can be highly affected by non-target noise, especially rainfall. Despite this 18 
demand, there are few easily applicable pre-processing methods available for rainfall detection for 19 
conservation practitioners and ecologists. Here, we use threshold values of two simple measures, 20 
Power Spectrum Density (amplitude) and Signal-to-Noise Ratio at two frequency bands, to 21 
differentiate between the presence and absence of heavy rainfall. We assess the effect of using 22 
different threshold values on Accuracy and Specificity. We apply the method to four datasets from 23 
both tropical and temperate regions, and find that it has up to 99% accuracy on tropical datasets 24 
(e.g. from the Brazilian Amazon), but performs less well in temperate environments. This is likely due 25 
to the intensity of rainfall in tropical forests and its falling on dense, broadleaf vegetation amplifying 26 
the sound. We show that by choosing between different threshold values, informed trade-offs can 27 
be made between Accuracy and Specificity, thus allowing the exclusion of large amounts of audio 28 
data containing rainfall in all locations without the loss of data not containing rain. We assess the 29 
impact of using different sample sizes of audio data to set threshold values, and find that 200 15s 30 
audio files represents an optimal trade-off between effort, accuracy and specificity in most 31 
scenarios. This methodology and accompanying R package ‘hardRain’ is the first automated rainfall 32 
detection tool for pre-processing large acoustic datasets without the need for any additional rain 33 
gauge data. 34 

Keywords: Ecoacoustics, Environmental monitoring, Bioacoustics, Soundscape ecology, Rain 35 
detection, Acoustic pre-processing 36 
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1.Introduction 38 

Ecological questions are increasingly being answered using large datasets (Hampton et al., 2013; 39 
McCallen et al., 2019; Villanueva-Rosales et al., 2014), and faced with an ongoing biodiversity crisis, 40 
cost-effective collection of ecological data to address conservation challenges is vital (Gardner et al., 41 
2008). The recent rapid development of cost-effective ecoacoustic sampling methods has facilitated 42 
collection of acoustic big data (Burivalova et al., 2019; Deichmann et al., 2018) and catalysed an 43 
increase in ecoacoustic monitoring. Despite the cost-effective nature of this sampling method 44 
(Deichmann et al., 2018; Hill et al., 2018), there are still significant challenges associated with the 45 
analysis of large acoustic datasets,. Automated detection and classification using machine or deep-46 
learning techniques has been widely touted as one answer to this challenge (Priyadarshani et al., 47 
2018). However, large datasets often require initial data cleaning to remove ‘noise’ (sounds which 48 
are not of interest, such as engines, wind and even electrical noises produced by the recorder 49 
(Stowell et al., 2016). The presence of hard rainfall (HR) is a significant contributor to noise as it can 50 
entirely mask all signals of interest or hinder their identification, and it can be especially problematic 51 
in both biodiverse and pluviose ecosystems such as tropical forests where our knowledge of 52 
biodiversity is most limited and acoustic data may be most useful. The use of acoustic indices, a 53 
common technique for quantifying biodiversity in large datasets without recourse to species level 54 
identification (Sueur et al., 2014; Towsey et al., 2014), have also been shown to be biased by the 55 
presence of heavy rainfall (Depraetere et al., 2012; Fairbrass et al., 2017; Towsey et al., 2014). 56 
Automated detection and excision of audio data at times of high rainfall is therefore often desirable 57 
before further analyses are undertaken, especially when using automated classifiers for detection of 58 
ecological sounds, as it reduces the potential for false identifications and increases processing time.  59 

Despite the need for effective tools to identify and remove audio segments containing heavy rain, 60 
little research currently exists on the topic. Other published methods have different objectives; 61 
focussing on detection of rainfall as an objective in its own right (Brown et al., 2019), finding a proxy 62 
variable for quantification of total rainfall, or being designed to function in specific geographic areas 63 
to study the effect of rainfall within a wider soundscape (Bedoya et al., 2017). This has resulted in 64 
prioritising optimisation of accuracy of detection over ease of use and specificity. Other methods, 65 
such as the ecoacoustic event detection approach (Farina et al., 2018) allow a holistic approach to 66 
identification of all acoustic events, in which rainfall identification becomes a secondary benefit. We 67 
argue that many ecologists and conservation practitioners will primarily be interested in quickly 68 
identifying the majority of rain files rather than ascertaining the presence or absence of rain, to 69 
allow for better classification of ecological sounds and unbiased indices. For these users, the priority 70 
will be minimizing effort and maximising specificity –e.g. ensuring that false positive rates are very 71 
low so that ecological data are not removed from a dataset to achieve a higher overall accuracy of 72 
rainfall detection. Therefore, the most successful reported method of automated rainfall 73 
classification Brown et al. (2019), which involves a complex machine-learning approach and an 74 
extensive feature set, could be prohibitive for non-specialists. Many users may be willing to trade-off 75 
a small amount of accuracy in return for much lower analytical effort and greater ease of 76 
comprehension.  77 

A simpler, quicker approach to classification has been proposed by Bedoya et al. (2017). This utilizes 78 
two acoustic measures indicative of rainfall taken at a single frequency band to set a decision 79 
threshold above which rainfall is determined to be present. However, this method uses minimum 80 
values over a period of acoustic data with rain of known intensity (using a rain gauge) to set the 81 
decision threshold. Obtaining verified rainfall data may not be possible in many cases, and requires 82 
additional cost and effort – especially in closed canopy ecosystems. Additionally the use of minimum 83 
values to set thresholds prioritizes accuracy over specificity, potentially leading to avoidably high 84 
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false positive rates for relatively small gains in accuracy and the exclusion of potentially informative 85 
audio files. Setting threshold values from the second quartile of the interquartile range (Q2) may 86 
give more conservative predictions for the presence of HR, enabling a trade-off between higher 87 
specificity scores at the expense of accuracy. Furthermore, the amplitude of rainfall increases most 88 
noticeably at two frequency bands, 0.6-1.2 kHz and 4.4-5.6 kHz where the impact of raindrops 89 
hitting vegetation is most noticeable. Bedoya measures the indices at 0.6-1.2 kHz as light intensity 90 
rainfall is more noticeable, and it contains less biophony than the higher frequencies. However, it is 91 
unclear if the use of both of the frequency bands would produce better results when classifying only 92 
heavy rain, or in locations with higher levels of anthropophony (man-made noise). 93 

 94 

Here we present a user-friendly methodology and associated R package (R Studio Team, 2015) 95 
‘hardRain’, for automated rainfall detection that maintains high specificity and accuracy for use with 96 
new datasets. We build on the thresholding approach of Bedoya, developing a method to remove 97 
the need for any additional data from rain gauges to set threshold values. We investigate, at 98 
multiple tropical and temperate sites, whether using both 0.6-1.2 kHz and 4.4-5.6 kHz frequency 99 
bands provide greater accuracy and specificity than using only the lower frequency band, and assess 100 
the optimal number of files containing rainfall to use as training data from which to obtain threshold 101 
values. We also explore how differences in location affect classification results, and the trade-offs in 102 
accuracy and specificity when using minimum or Q2 values for setting decision thresholds.  103 

 104 

2. Methods 105 

2.1. Definition of rainfall 106 

Identifying audio files containing rain without rain gauge data is not straightforward, as light rainfall 107 
can be indistinguishable from background noise (Bedoya et al., 2017). However, in these cases, 108 
rainfall is less likely to be less disruptive for the automated classification of ecological sounds. Here, 109 
we focus on the detection of heavy rainfall, here defined as rainfall that visually masks or 110 
significantly degrades other sound events (see Figure 1 for examples). Audio files were manually 111 
assigned as either ‘Hard Rain (HR)’ or ‘Clear’ through visual inspection of spectrograms in Raven Pro 112 
(Cornell Bioacoustics Research Program, 2010). For consistency, a single observer (OM) undertook all 113 
manual classifications in this paper. 114 

https://doi.org/10.1016/j.ecolind.2019.105793


https://doi.org/10.1016/j.ecolind.2019.105793 
 

4 
 

 115 

Figure 1. Examples of spectrograms assigned to rainfall present and absent taken from the combined 116 
training and test dataset of each country, ranked by power spectral density (PSD).  117 

2.2 Data  118 

This paper uses four primary datasets; two were collected in tropical rain forest; Santarém, Pará 119 
state, Brazil (-3.046, -54.947) and West Java, Indonesia (-6.181, 106.827), and two from temperate 120 
climates; one from temperate forests in Taranaki, New Zealand (-39.448, 174.414) and one from an 121 
urban balcony in Manchester, United Kingdom (53.485, -2.228). All include periods of time when 122 
both rainfall and clear weather were prevalent. The Brazil dataset comprises more than 10,000 hrs 123 
of data from 29 sites, the Java data set consists of more than 10,000 hours of data from 11 sites in 124 
montane forests in West Java with 12 recorders per site, Manchester over 600 hrs from one site and 125 
New Zealand over 3,900 hrs from 31 recorders at one site. For further information on data collection 126 
locations and durations at each of the sites see supplementary online material (SOM Table 1). Data 127 
were collected using Frontier Labs Bioacoustic Audio recorders (Frontier Labs, 2015), with the 128 
exception of the New Zealand dataset which used NZ Department of Conservation recorders (see 129 
Metcalf et al., 2019 for more information). All audio data were recorded at a sampling rate of 44.1 130 
kHz except the New Zealand data set recorded at 32 kHz. All audio data were subdivided into 15 s 131 
sound files. 132 

 133 

2.3 Threshold Setting and Optimisation 134 

From each primary dataset, a training and test dataset were selected. The test and training datasets 135 
comprised 1000 files each.  We manually selected 1,500 files that were then randomly split into 136 
1,000 training files and 500 test files. A further 500 files that had been manually selected as being 137 
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Clear (of Heavy Rainfall) were included in the test dataset, so that both the training and test dataset 138 
are composed of 1000 files. The Brazilian training dataset comprised 13 sites including both 139 
undisturbed primary and heavily degraded primary forests. The test dataset comprised eight sites 140 
and three sites for HR and Clear files respectively. Java training data came from 11 sites, whilst the 141 
test dataset used data from eights sites for HR and one site for Clear data. Manchester HR data were 142 
collected between 25th-28th April 2019, whilst Clear data was from 4th November 2018.  The New 143 
Zealand training data were from 18 sites, whilst HR test data came from 16 sites and Clear from 18 144 
sites.  145 

We followed Bedoya et al., (2017) in using power spectral density (PSD) and signal-to-noise ratio 146 
(StN) as acoustic indices. The PSD of an acoustic file increases with rainfall intensity, while StN is 147 
useful to differentiate files that have high PSD because of continuous rainfall versus those that have 148 
high PSD because of non-continuous loud sound sources, such as biophony (e.g. animal 149 
vocalisations) or anthropophony. The PSD values in both 0.6-1.2 kHz and 4.4-5.6 kHz frequency 150 
bands were calculated for every file with the ‘spectro’ function from the seewave package in R 151 
(Sueur et al., 2008). The window length used to calculate PSD values was set to equal the duration of 152 
the audio file (typically 15 s segments – see package documentation; Figure 2 shows these values 153 
from the test datasets). We used mean divided by standard deviation of the PSD for the Signal-to-154 
Noise ratio, following Bedoya et al., (2017), although we note a typographical error in point 3 of 155 
Algorithm 2.1 as the deviation of the mean is not squared in the standard deviation formula. See 156 
SOM Table 2 for all PSD and StN values for all training and test datasets. 157 

 158 

Figure 2 Power Spectral Density and Signal-to-Noise Ratio values for audio files containing heavy rain 159 
and clear files from the test datasets. The y-axes are presented on a log scale. 160 

In predicting the presence of heavy rain, we followed Bedoya et al., (2017) in using thresholds for 161 
PSD and StN, so that if any of the measured values from an audio file exceed the threshold, they 162 
were predicted to contain heavy rain. We used mean balanced accuracy (Accuracy) and specificity 163 

https://doi.org/10.1016/j.ecolind.2019.105793


https://doi.org/10.1016/j.ecolind.2019.105793 
 

6 
 

(Specificity) (Velez et al., 2007) to assess the performance of classifier models. Although accuracy is 164 
the primary objective of classification, in some uses the penalty for the rejection of useable data 165 
(false-positives) may be far higher than the consequences of keeping files containing rain in the 166 
dataset (false-negatives), and specificity is the best measure for that circumstance (Fielding and Bell, 167 
1997). 168 

We tested classification performance using thresholds of PSD and StN from frequency band 1 (e.g. 169 
values had to exceed two thresholds to be classified as HR) against classification using PSD and StN 170 
from frequency bands 1 and 2 (e.g. values have to exceed four thresholds to be classified as HR) 171 
using a paired Wilcoxon rank test. To assess the effect, we took 100 subsamples of n=500 from each 172 
of the four countries’ training datasets. Minimum and Q2 threshold values were then obtained and 173 
used to classify the applicable test dataset. Accuracy and specificity values were calculated by 174 
country, threshold choice and the mean of all countries combined. 175 

To optimise the number of training samples required, we assessed the relationship between the 176 
number of training samples and accuracy/specificity with the aim of balancing the effort of manually 177 
selecting training data and the susceptibility of threshold values to outliers and variation in data sets. 178 
For each training dataset, 100 subsamples of size n= 10, 20, 30, 40, 50, 75, 100, then increasing 179 
increments of 50 to 1000, were taken and threshold values obtained using both frequency band 1 180 
and 2 and these used to classify the applicable test dataset. Mean accuracy, specificity and their 181 
standard deviations were then calculated for each sample size by country and threshold choice.  The 182 
sample size of n=500 was tested for significant differences in classification Accuracy and Specificity 183 
between the countries using Kruskal-Wallis and pairwise Wilcoxon tests, significant at <0.05. 184 

In order to assess if there was overtraining between the test and training datasets, we conducted a 185 
case study using the Brazilian primary data. A random sample set of 6,960 files (1 hour from each 186 
transect), independent from the test and training data, was taken from the Brazilian primary dataset 187 
and manually labelled. A further subsample of 500 files was taken from the Brazilian training dataset 188 
to obtain threshold values, and these were used to predict the presence and absence of rainfall in 189 
the Brazilian random sample. 190 

 191 

3.Results 192 

The results produced by using both frequency bands were on average significantly better than those 193 
using just the 0.6-1.2 kHz band across both Specificity and Accuracy, with the exception of Accuracy 194 
when using the Q2 threshold, although results varied somewhat by country (Table 1). As Accuracy is 195 
not likely to be as important a consideration as Specificity for those choosing to use a Q2 threshold, 196 
using two frequency bands was deemed the better choice, and all further results discussed here are 197 
for classification with measurements taken from both frequency bands.  198 
 199 
Table 1:  Accuracy and Specificity scores by country, threshold choice, and number of frequency bands measured. 500 200 
samples were used to set the thresholds.  201 

Country 

Mean Accuracy (%) Mean Specificity (%) 
Minimum 
threshold Q2 Threshold Minimum 

threshold Q2 Threshold 

1 band 2 bands 1 band 2 bands 1 band 2 bands 1 band 2 bands 

Brazil 99.69±0.
00 99.67±0.00 83.10±0.

01 69.36±0.01 100±0.00 100±0.00 100±0.00 100±0.00 

Java 99.76±0.
00 99.75±0.00 87.13±0.

01 71.31±0.01 99.80±0.
00 100±0.00 100±0.00 100±0.00 
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Manchester 54.81±0.
01 55.73±0.01 79.39±0.

01 67.77±0.00 10.15±0.
01 12.60±0.01 91.05±0.

01 
97.39±0.0

0 

New Zealand 51.75±0.
03 60.14±0.03 82.65±0.

01 72.61±0.01 3.66±0.0
5 20.49±0.06 98.00±0.

00 100±0.00 

Mean 76.50±0.
01 78.83±0.01 83.07±0.

01 70.26±0.01 53.40±0.
02 58.27±0.02 97.27±0.

00 
99.35±0.0

0 
Results with significant differences (corrected p-value <0.05) between one and two bands are in bold. All differences in 202 
which two bands performed better than one band are shaded. A table of the p-values can be found in supplementary online 203 
material (SOM Table 3). 204 

Detection responses to sample size varied both by country and by the choice of threshold value, but 205 
were consistent across Specificity and Accuracy metrics. When using minimum threshold values, 206 
Accuracy showed rapid increases until an asymptote at 200 samples for Brazil and Java, but declines 207 
for Manchester and New Zealand (Figure 3a). Specificity reaches 100% for all samples sizes in the 208 
Brazil and Java datasets, but follows a similar, but steeper trend to Accuracy for Manchester and 209 
New Zealand (not shown in Fig 3). Using the Q2 threshold, Specificity is at 100% for all sample sizes 210 
for Brazil and Java and New Zealand and around 97% for Manchester (Fig 3b), whilst Accuracy 211 
reaches stable scores for all countries between 100 and 200 samples (Fig 3c). Full tables of results 212 
are available in SOM Tables 4 and 5.  213 

 214 

 215 

Figure 3 Selected Accuracy and Specificity scores by sample size (n), country and threshold selection 216 
method. Specificity scores for minimum threshold method not shown as Specificity=1 for all sample 217 
sizes in Brazil and Java data, and below 0.5 for almost all sample sizes in Manchester and New 218 
Zealand datasets. The shading represents standard deviation of 100 repetitions. NZ= New Zealand, 219 
MCR=Manchester. 220 

Comparison between country scores showed that there were significant pairwise differences 221 
between all countries for both threshold choices in Accuracy and Specificity, except where Specificity 222 
was at 100% (Table 1; also see SOM Table 3). As expected, there was no clear threshold value choice 223 
to maximise both Specificity and Accuracy across all countries. The best Accuracy scores were 224 
achieved using Minimum threshold values, >99% for all training sample sizes over 200 for both Brazil 225 
and Java but this performed poorly for Manchester and New Zealand (Table 1, Fig 3). This suggests 226 
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that in some countries, the differentiation is not enough to achieve high levels of Accuracy even 227 
when excellent Accuracy scores are achieved with the same method in other locations.  Using the Q2 228 
threshold, Accuracy was low for all countries (between 65% and 73%). Despite this, high Specificity 229 
scores can be achieved for all countries using the Q2 threshold (Table 1, Fig 3). This highlights that 230 
even in datasets where there may be poor distinction between Clear and HR data using PSD and StN 231 
indices, 35-50% of all HR files can be identified with loss of less than 5% of data containing no rain. 232 
Confusion matrices are provided in Table 2 for the mean scores of a sample size of 500 training files 233 
applied to the Manchester and New Zealand test datasets using second quartile thresholds.  234 

 235 

Table 2. Confusion matrices with 500 samples of training data using second quartile threshold values. 236 

 

Manchester - testing dataset New Zealand – testing dataset 
Second Quartile Threshold Second Quartile Threshold 

Actual Class 

Pr
ed

ic
te

d 
Cl

as
s   TRUE FALSE TRUE FALSE 

TRUE 185 15 230 0 
FALSE 315 485 270 500 

Sensitivity=38.15%, Specificity=97.39%,  
Accuracy=67.77% 

Sensitivity=45.22%, Specificity=100%, 
Accuracy=72.61% 

 237 

The results for classification of the case study using 6,960 files of the Brazilian dataset remained 238 
good, although lower than the test scores suggesting a small amount of overtraining between the 239 
test and training datasets (Table 3). To read in, measure and classify all 6960 files took 15 min 16 s 240 
using a Dell EliteBook laptop with a 4-core Intel Core i7-7600U CPU and 16 GB RAM running 241 
Windows 10.  242 

Table 3. Matrix of the Brazilian case study 243 

  

Brazil - 6960 randomly selected audio files 
Minimum Threshold Second Quartile Threshold 

Actual Class 

Pr
ed

ic
te

d 
Cl

as
s   TRUE FALSE TRUE FALSE 

TRUE 88 14 33 0 
FALSE 22 6836 69 6858 

Sensitivity=86.27%, Specificity=99.68%, 
Accuracy=92.98% 

Sensitivity=32.35%, Specificity=100%, 
Accuracy=66.18% 

Data are a random sample of the entire audio dataset (n=6960, HR n=102) with threshold values 244 
taken from 500 randomly selected audio files from the Brazilian training dataset. 245 

4.Conclusions 246 

We have shown that it is possible to fully automate rainfall identification within audio data from 247 
tropical environments using only two simple measurements at two frequency bands, and requiring 248 
only a relatively small set of files containing known rainfall to extract threshold values. We also 249 
demonstrate that by using different thresholds, minimum and second quartile, the technique can be 250 
adjusted for use even in cases where there is poor differentiation between rain presence and 251 
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absence with a reasonably high level of success. This means that users of hardRain can make 252 
informed trade-offs between effort, accuracy and specificity.  253 

The effectiveness of the method is clearly dependent on sample sizes, with standard deviations 254 
declining with increasing samples, but divergent impact on Accuracy by site and threshold selection 255 
method. Whilst it is possible to devise various stopping rules to optimise the sample number, the 256 
optimal solution will vary with the ease of obtaining training files containing rain and the objectives 257 
of individual research projects. The standard deviation of Accuracy and Specificity is relatively low 258 
for almost all measures at 200 samples (Fig.3, SOM Table 5), with corresponding accuracy and 259 
specificity scores close to their maximum for the tropical datasets when using minimum threshold 260 
values, and for all datasets when using second quartile values.  261 

Using only PSD and StN as measurements to differentiate between rain presence and absence has 262 
clear advantages in minimising effort and ease of understanding. Along with Brown et al., (2019), we 263 
did not find StN to be a useful index for classification when we initially analysed our data using the 264 
printed formula in Bedoya et al., (2017). However, when we used the standard formula for standard 265 
deviation, the use of both PSD and StN was better than just PSD. In some circumstances, even the 266 
use of both indices resulted in poor differentiation. This is especially the case for datasets from 267 
temperate climates, with Manchester and New Zealand performing worse, presumably due to 268 
poorer distinction between PSD scores (Fig 2). This is possibly because rainfall is less intense at these 269 
locations, or because rain falling on to predominately concrete (Manchester) and more open 270 
temperate forest canopies (New Zealand), results in less amplification than in tropical forests (Java 271 
and Brazil). Despite this shortcoming, by using second quartile thresholds between 40-50% of rain 272 
data was identified even in Manchester and New Zealand, with no or only a very small percentages 273 
of rain-free data misidentified (Table 2).  274 

Although not herein directly compared, our methodology is unlikely to match the AUC scores of the 275 
method proposed by Brown et al., (2019) or the accuracy and quantification of Bedoya et al., (2017). 276 
For those scholars studying rain through audio data, or requiring extremely precise cleaning, these 277 
would be better methods to use. However, our methodology provides a quick and effective 278 
classification method that can be applied to audio data, and is especially suited to tropical forests 279 
where the need for reliable acoustic data on biodiversity is greatest and rainfall is frequent. For 280 
researchers wishing to quickly remove rain files from large datasets prior to classification, this 281 
method will often represent the most time-effective way to do so. Additionally for research in which 282 
the penalty of false-negatives is far lower than that of false positives, this method of rain detection 283 
allows for informed trade-offs between Accuracy and Specificity which previous methods of rain 284 
detection do not. 285 

 286 

Package description  287 
To facilitate the use of this rain detection method, we have developed the R package ‘hardRain’. The 288 
package will i) set thresholds (based on training data consisting of short segments of known rain 289 
audio recordings), ii) apply the thresholds to audio data and identify presence of rain in each input 290 
file, or subdivisions therein, iii) cut audio segments with rain and save the remaining segments, and 291 
optionally, create a label file view in Audacity or Raven software. It can also be used to test the 292 
accuracy of the classification using known testing and training data. The package consists of 293 
four main functions (Table 4).  294 
 295 
 296 
  297 
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Table 4. Functions in the R package ‘hardRain’. 298 
Function  Description  Main inputs  

getThreshold  This function measures PSD and 
Signal-to-Noise Ratio on all input 
training files at two frequency 
bands (defaults to 0.6-1.2 kHz 
and 4.4-5.6 kHz) and calculates 
minimum and 2nd quartile 
thresholds over these.  

wav filenames (and locations 
where these are stored) of 
audio segments of known rain, 
i.e. training data (see above for 
discussion on how many files 
are needed), but typically 200 
wav files of about 15 s duration  

classifyRain  This function takes the testing 
data, calculates the PSD and 
Signal-to-Noise Ratio and applies 
the thresholds produced 
by getThreshold function and 
classifies each input file (or 
subdivision thereof) for the 
presence / absence of rain.  
  
Optionally, if the function is used 
for accuracy testing, a label can 
be included denoting which files 
have presence of rain or not.  

wav filenames (and locations) 
of testing data  
files may be of short duration 
already (typically, 15-30 s 
segments) or may be provided 
as much longer files (e.g. 2-3 
hours) and split into segments 
within the function, using 
the t.step argument (division 
size, in seconds);  
thresholds from getThreshold()  
  

cutRain  This function takes the output 
from classifyRain() and cuts out 
the segments identified as rain in 
the input wav files and saves the 
remaining contiguous audio in a 
new folder and writes a label file 
for the original length audio 
file, marking segments with no 
rain (either or both of these 
options are available). 
Optionally, the new start time of 
each file can be recorded in the 
filename. 

output from classifyRain() -only 
when longer files are classified 
in subdivisions;  
output location for new wav 
files.  

getMetrics  This function does not generally 
need to be called directly. It is 
the workhorse function that 
reads wav files, extracts PSD and 
Signal-to-Noise for specified 
frequency bands 
using seewave function spectro(). 
This function is called 
by getThreshold() 
and classifyRain() which will 
generally be used directly.  

wav filenames (and locations); 
time division (in seconds) to 
subdivide wav input files for 
analysis (optional)  

 The package can be downloaded from: https://github.com/Cdevenish/hardRain 299 

 300 
Before using the classify function it is necessary to decide which threshold values to use. If it is 301 
reasonable to make assumptions about the distinction between rain presence and absence, for 302 
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instance if the data is collected in tropical rain forest, then the threshold can be selected and the 303 
results checked after. However, if it is unclear whether there will be a good distinction, accuracy can 304 
be tested using the classifyRain function with known testing and training data (i.e. labelled audio 305 
segments of heavy rain or clear) and confusion matrices and accuracy metrics produced (see 306 
example in vignette).   307 
 308 
See vignettes included in the package for further details on functionality.  309 
  310 
  311 
 312 
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