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ABSTRACT

Traditionally, people in modern business environments have been focusing
on planning: creating detailed and complete schemes for actions that will lead
to gains of the highest value. There is no doubt that constructing a thorough
plan before taking actions is extremely important and usually a prerequisite
element of success. However, no matter how perfect or optimal a plan is,
during the execution phase, several unanticipated events may disrupt the
system and force the plan to deviate from its intended course, or even make
it infeasible. How should we cope with disruptions in a timely manner? How
can we reach the original goals and at the same time minimize the negative
impact which was caused by the disruptions? These are amongst the essential
topics examined by the field of Disruption Management.

Disruption Management has been applied by researchers to optimization
problems arising in a wide range of applications, including airline schedul-
ing and production management. In our research we focus on disruption
management in vehicle routing and scheduling for road freight distribution,
after having recognized several gaps in research in this specific domain. In
this thesis we present the following three problems: (1) the disrupted Vehicle
Routing Problem with customer-specific orders and Vehicle Breakdown, (2)
the Delayed Traveling Salesman Problem with Time Windows, and (3) the
Single-Commodity Delayed Vehicle Routing Problem with Time Windows.
The second and third problems have never been studied before, to the best
of our knowledge. The first one has been studied before under different
assumptions (i.e. with non customer-specific orders), which differentiates
substantially the problem from the one proposed here. For each problem
we present at least one exact mixed-integer linear programming formula-
tion (single-objective or multi-objective), which can be implemented in an
optimization solver (e.g. Cplex or AIMMS) and solve small instances to
optimality. Due to the fact that the problems under study are computation-
ally hard, for each problem we also propose at least one heuristic algorithm,
which is capable of solving larger instances in short time. The heuristics
described in this thesis are all based on Tabu Search. We present several
variants of problems 2 and 3, which are solved using both single-objective
and multi-objective optimization approaches: the Weighting Method, the
Lexicographic Approach, and the Epsilon Constraint Method. For each one
of the three problems under study, we have constructed a dataset of test
instances, which we solved using different approaches. Comparisons of the
results of the exact and heuristic methods are provided for each problem.
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Chapter 1

INTRODUCTION

Traditionally, people in modern businesses have been paying special attention
to creating detailed and sound plans before taking actions. Evidently, plan-
ning is of great significance. However, no matter how perfect a plan might be,
during the execution stage it is possible that an unanticipated event occurs,
disrupting the normal execution of the plan. In such a case, the operational
plan needs to be modified accordingly, so that the original goals are met,
while at the same time the negative consequences of the disruption are re-
duced to the least possible degree. How can we handle disruptions promptly
and effectively? This is one of the central topics investigated by the field of
Disruption Management.

Disruption management has been used by researchers in a variety of ap-
plications. Yu & Qi (2004) present a general framework and a detailed study
of disruption management, including applications in airline operations, ma-
chine scheduling, flight and crew scheduling, supply chain management etc.
Visentini et al. (2013) review real-time vehicle schedule recovery problems in
transportation services, where they classify these problems into three cate-
gories: vehicle rescheduling for road-based services, train-based rescheduling
and airline schedule recovery problems.

There has been some research interest in disruption management in gen-
eral in the past two decades. However, research in the application of the
discipline in road-based services is somewhat scarce. In our research we
focus on the application of disruption management in vehicle routing and
scheduling, concentrating on road freight distribution, after having recog-
nized several gaps in research in this specific domain. In fact, during our
studies we published an article (Eglese & Zambirinis (2018a)) which reviews
literature precisely in the area of disruption management in vehicle routing
and scheduling for road freight transport. Before we introduce the three
problems that we have been studying, we shall give a short introduction to
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vehicle routing, as well as an introduction to disruption management.

1.1 Introduction to Vehicle Routing Problems

The Vehicle Routing Problem (VRP) is a well-known combinatorial opti-
mization and integer programming problem, which asks for the optimal set
of routes to be traversed by a fleet of vehicles, in order to serve a given set of
customers. It was first introduced in Dantzig & Ramser (1959) as the Truck
Dispatching Problem, where the authors described a real-world application
regarding the optimum routing of a fleet of trucks delivering gasoline between
a bulk terminal and service stations.

Since then, hundreds of models and algorithms have been proposed for the
optimal or approximate solution of the VRP and its numerous variants. A
large number of packages for the solution of real-world VRPs are available on
the market. The ongoing interest of researchers in the models and algorithms
for the different versions of the VRP can be attributed to both its practical
applications in logistics and distribution systems, as well as to its considerable
difficulty. Examples of real-world applications of VRPs in transportation
systems include the delivery or collection of goods, school bus routing, dial-
a-ride systems etc. The considerable difficulty of VRPs originates from the
fact that the basic variant of the VRP is a generalization of the well-known
Traveling Salesman Problem (TSP) and therefore falls into the class of NP
Hard problems. This means that the computational effort required for solving
an instance of this problem increases exponentially with the instance size. In
the following chapter we provide a more detailed discussion about the VRP
and some of its basic variants that are relevant to our research, and provide a
review of the main heuristics, metaheuristics and hybrid algorithms applied
for the solution of such problems. For an extensive review and discussion of
the various formulations and algorithms for the different VRP variants, one
can refer to the book by Toth & Vigo (2014).

The Vehicle Routing Problem with Time Windows (VRPTW) is a VRP
variant that asks for the determination of the optimal set of routes to be
traversed by a fleet of identical vehicles of fixed capacity, starting from and
finishing at a single central depot, in order to distribute goods to a set of
geographically dispersed customers, while minimizing the total travel cost.
Additionally, the service of each customer must start within an associated
time interval, called a time window, and the vehicle must stop at the cus-
tomer location for the duration of the service time of that customer. All the
customers require deliveries and the customer demands are fixed, known in
advance and cannot be split. All customers have to be served.
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The Traveling Salesman Problem with Time Windows (TSPTW) is the
problem of determining a minimum cost tour in which a set of nodes are
visited exactly once within their requested time windows. Essentially, the
TSPTW is a special case of the VRPTW where we have a single vehicle with
infinite capacity.

1.2 Disruptions in vehicle routing and sche-

duling

No matter how perfect an operational plan may be, unexpected events orig-
inating from a variety of sources may occur from time to time, preventing
the smooth execution of the plan. Specifically, during the execution of a
VRP plan, disruptions of various forms may cause the current plan to be
sub-optimal or even infeasible, under the new conditions of the evolved en-
vironment. Below we list some of the possible types of disruption that may
occur during the execution of a VRP plan:

• Changes in the availability of resources: mechanical failure of a vehicle,
driver sickness etc.

• Changes in customer requirements: cancellation of orders, new orders,
demand change, delivery time change, delivery address change etc.

• Delays at various stages: delay in the arrival of supplied goods at the de-
pot, delay due to longer service time than expected, delay due to longer
travel times than expected (which may be caused by severe weather,
traffic congestion, accidents, other uncertain factors, etc.).

• Change in the network travel times, e.g. due to traffic congestion.

• Change in the network structure: a single link blocked or a larger part
of the network blocked. Again, this may have been caused by severe
weather, by an accident, by the collapse of a bridge, etc.

• Disruption in the supply of goods. For example, the situation where
the supply of the commodity does not arrive at the depot on time,
so that not enough of the commodity is available to be loaded on all
vehicles at the start of the delivery period.

• Combinations of the above.
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1.2.1 Statistics about disruptions

McKinnon et al. (2008) report some statistics concerning deviations from
schedule, that were derived from the UK Transport key performance mea-
surement (KPI) surveys. Among others, they summarize and discuss data
concerning road freight operations since 2002 across the following 7 sectors:
drink, food, automotive, express parcels, non-food retailing, builder mer-
chants and pallet-load networks. One of the key criteria of the surveys is the
’deviations from schedule’. Possible causes of delay that were listed include:
Traffic congestion, problem at collection point, problem at delivery point,
own company actions (internal problems), lack of driver, vehicle breakdown,
and problems at the sortation hub (for the case of pallet-load networks).

By analyzing a sample of 55820 truck movements in these 7 sectors, it was
found that in 26% of these journey legs there was a delay in delivery, whereas
only 35% of the delays (i.e. 9% of the total legs) were mainly attributed to
traffic congestion. McKinnon et al. (2008) also report an average duration of
24 minutes for delays that were due to traffic congestion, which is relatively
low, compared to the average duration for all delays, which was 41 minutes.
The longest delays are due to problems at sortation hubs for pallet-load
distribution, or due to vehicle breakdowns, averaging 58 and 52 minutes of
delay, respectively.

11B (without Caption).png

Figure 1.1: Percentage of total delay time attributable to different causes (all
sectors) (McKinnon et al. (2008))
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In figure 1.1 we can see the percentage of total delay time attributed to
different causes, combined for all sectors. When the duration and frequency
of delays are combined and the results are weighted by the number of journey
legs that were surveyed in each sector, the following factors emerge as the
main sources of delays, in descending order of importance:
(i) own company action
(ii) problem at delivery point
(iii) traffic congestion
(iv) problem at collection point
(v) lack of driver
(vi) vehicle breakdown
(vii) hub operation

Figure 1.2: Sectoral Variation in the Frequency of Total and Congestion-
related Delays (McKinnon et al. (2008))

10 (without Caption).png
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There seems to be a wide variation in the frequency of delays among
different sectors. In figure 1.2 we can see the percentage of journey legs
delayed according to each sector, with additional references to the relevant
percentages associated with congestion-related delays.

Furthermore, the time-series analysis of KPI data concerning the food
sector, indicate that the relative importance of the various sources of delay is
not constant over time. In figure 1.3 we can see the percentage of total delay
time in the food supply chain that was attributed to the different causes, and
how this evolved in time between 1998 and 2007.

Figure 1.3: Percentage of total delay time in the food supply chain at-
tributable to different causes (McKinnon et al. (2008))

12 (without Caption).png

Note that all the statistics and figures included in this subsection up to
this point, were taken from McKinnon et al. (2008).

McKinnon (2015) points out that the impact of congestion on logistics
performance may be more a function of the variability around the average
delay, instead of a function of the average delay itself. Where congestion
is stable, regular and reasonably predictable, companies can prepare their
delivery schedules accordingly, allowing extra slack in order to maintain high
service standards - at a significant resource cost. However, when a highway
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network reaches close to full capacity, the vehicle flow becomes unstable and
more vulnerable to accidents, breakdowns, bad weather and roadworks.

McKinnon (2015) also notes that there is usually a complex relationship
between congestion and other causes of disruption that may occur either on
the road or at points of origin or destination. Sankaran et al. (2005) mentions
that congestion often amplifies delays and costs that are caused by such other
factors. Finally, McKinnon (2015) mentions that the delays recorded in the
UK road freight system may actually be very low, compared with the many
days of delay experienced by, for example, trucks in India.

1.3 Disruption Management in VRPs

Suppose that, for a specific instance of a VRP variant, an optimal or near-
optimal operational plan has been constructed. Assume that during the
execution of this original plan, an unexpected disruption of any of the above
types occurs, preventing the normal execution of the plan. Once a disruption
occurs, the original plan may no longer be optimal; in fact, it might not even
be feasible. Therefore, the original plan needs to be quickly modified, so
that the remaining customers are served under the new conditions and the
original objective is optimized, while at the same time the negative effect
of the disruption is minimized. For instance, in the original problem the
objective may be to minimize the total travel cost. This can be as simple
as the total distance traveled by all the vehicles combined, the total travel
time, or a more complex function that includes the costs incurred by the
distance traveled, the number of vehicles and drivers involved, total travel
time, extra costs occurring when a driver has to be paid overtime etc. After
the disruption, the objective might be the same as in the original plan, i.e.
minimizing the total travel cost function (a pure rescheduling approach),
or it might be a more complex function which seeks to balance between
optimizing the original objective(s), while at the same time minimize the
negative effect of the disruption, or the deviation from the original plan (a
disruption management approach).

In general, the problem of handling disruptions efficiently and in real time,
is investigated by the field of Disruption Management. According to Yu &
Qi (2004), disruption management is the process of dynamically revising an
operational plan in real time, when various disruptions prevent the original
plan from being executed smoothly, in order to obtain a new plan that reflects
the constraints and objectives of the evolved environment while minimizing
the negative impact of the disruption.
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1.4 Introduction to the three main problems

addressed in this thesis, Research Sum-

mary & Contributions

Throughout this research, we identified and have been studying three inter-
esting problems that fall within the research area of disruption management
in vehicle routing and scheduling for road freight transport: (1) the disrupted
Vehicle Routing Problem with customer-specific orders and Vehicle Break-
down, (2) the Delayed Traveling Salesman Problem with Time Windows, and
(3) the Single-Commodity Delayed Vehicle Routing Problem with Time Win-
dows. These problems are introduced below.

Problem 1: The Disrupted VRP with customer-specific orders and
Vehicle Breakdown

Assume that we have a VRP with vehicles of different capacities, in general,
for which we have constructed a feasible and optimal or near-optimal solution
plan. Suppose that during its execution, one of the vehicles breaks down and
the damage is severe enough so that the driver alone is unable to restore it
within a few minutes. If no further action is taken, the remaining customers
of the disabled vehicle’s route will remain unserved. The original plan is now
infeasible under the new conditions of the evolved environment. Therefore,
the plan needs to be quickly revised so that all customers are served by the
remaining vehicles.

We assume that vehicles had departed from a single depot, where they
should also return after the delivery of all their orders. We assume that
there are no extra vehicles available at the depot, that there are no split de-
liveries, that all customers have to be served, that vehicles deliver customer-
specific orders and that the parcels or packages may easily be transferred
from one vehicle to another, if necessary, along with any accompanying doc-
uments. Therefore, each one of the unserved customers originally assigned to
the broken-down vehicle, has to be served by one of the remaining vehicles.
However, in order for this to happen, any such active vehicle must first visit
the location of the disabled vehicle and transfer the corresponding packages
to the active vehicle. We assume that in the original problem the objective
was to minimize the total travel time.

The Disrupted VRP with customer-specific orders and Vehicle Breakdown
asks for the determination of the optimal set of routes, sequences and times
of visits of the active vehicles to customer nodes and to the location of the
broken-down vehicle, so that all customers are served, including the ones
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assigned to the disabled vehicle, while all necessary constraints are satisfied.
In this new problem that surfaces after the disruption, the main objective is
the same as in the original VRP, i.e. minimize the total travel time. However,
we include a secondary objective to minimize the sum of arrival times of
the vehicles at the depot, which only comes into effect as a tie breaker, in
cases where there are multiple solutions with the same optimal value for the
primary objective.

We should mention that other researchers in the past have also studied
the case of a VRP with vehicle breakdown, such as Mu et al. (2011). How-
ever, in other studies the problem was either studied under very different
assumptions, which substantially distinguish their problem from ours, or the
approaches that were proposed differ significantly from ours.

Problem 2: The Delayed Traveling Salesman Problem with Time
Windows

Suppose that we have constructed a feasible and optimal or near-optimal
solution plan for a given TSPTW instance. Assume that during the execution
of this operational plan at some point there is a delay, and the vehicle or
’traveling salesman’ has fallen behind schedule. Specifically, we assume that
the delay is severe enough, so that if the original route is followed as planned,
there will be a violation of the time window constraint for at least one of the
remaining customers. The unfulfilled part of the original plan is no longer
feasible with respect to time windows; the delay has caused a disruption to
the original plan.

If we reschedule in an appropriate way, it is possible that fewer customers
are served outside their time windows and that the total amount of time
deviation outside the time windows is lower, compared to the case where
no rescheduling takes place and the driver keeps following the original plan.
Therefore, it is necessary to revise the original plan in such a way that the
negative effect of the disruption on the enterprise is minimized; something
that translates into minimizing both the number of customers served outside
their time windows and the total amount of violation of their time windows.

Essentially, once this disruption occurs we are facing a new problem which
is significantly different from the original TSPTW problem, with a different
set of objectives, constraints and structure. We will be referring to this new
problem as the Delayed Traveling Salesman Problem with Time Windows
(Delayed TSPTW), or simply as Problem 2. We define this problem as a
multi-objective optimization problem with 5 objectives, where the first four
component objectives seek to minimize the total amount of deviation from
the original time windows, and the fifth objective to minimize the time of
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arrival at the endpoint node.

Problem 3: The Single-Commodity Delayed VRPTW

Suppose that we have created a feasible and optimal or near-optimal solution
plan for a given instance of the single-commodity VRPTW with vehicles of
different capacities, in general. Assume that, during the execution of this
plan, there is a severe delay in one or more of the routes and the respective
vehicles have fallen behind schedule, so that if the original routes are followed
as planned, at least one customer in each one of the affected routes will
be served with a delay (i.e. outside their promised time windows). This
constitutes a disruption to the original plan, which is no longer feasible with
respect to the time windows.

By rescheduling in an appropriate way, it is possible that fewer customers
are served outside their time windows and that the total amount of violation
of the time windows is lower, compared to the case where no rescheduling
takes place and the drivers simply keep following the original plan. Clearly,
we need to revise the current plan in order to minimize the negative effect of
the disruption.

This gives rise to a new problem, which is substantially different from the
original VRPTW, with different constraints, objectives and structure. We
will name this problem as the Single-Commodity Delayed VRPTW (SCD-
VRPTW), or the disrupted VRPTW with non-customer-specific orders and
vehicle delay, and we will be referring to it as problem 3. We define this
problem as a multi-objective optimization problem with 5 objectives, where
the first two component objectives seek to minimize the number of customers
served outside their time windows, the following two objectives to minimize
the total amount of violation of the time windows, and the final objective to
minimize the sum of arrival times of the vehicles at the endpoint node.

An important characteristic of the SCD-VRPTW is the assumption that
vehicles deliver a single-commodity, such as oil or gas, which means that the
orders are non-customer-specific, or equivalently that the goods are ’trans-
ferable between customers’. Therefore, any vehicle can serve any customer,
provided that it carries enough quantity of the commodity to fully serve
him or her. This means that it is possible that in the revised plan, vehicles
serve partially different or completely different sets of customers, compared
to the original plan, and not just changing the order of visiting the customers
within the same routes. It also means that vehicles not experiencing a delay
may have to change their routes and schedules as well, if this would lead to
a solution with a more desired set of objective values. We further assume
that there are no extra vehicles available, and that all customers have to be

10



served.
Problem 3 can be viewed as a generalization of problem 2 where we have

multiple vehicles of fixed capacity carrying a single commodity, and having
to reschedule after one or more vehicles experience a delay.

Note that there is another important generalization of problem 2, where
we have multiple vehicles of fixed capacity carrying customer-specific orders
(multi-commodity VRPTW), and having to reschedule after one or more
vehicles experience a delay. This problem, which we will refer to as the
disrupted VRPTW with customer-specific orders and vehicle delay, may seem
quite similar but is substantially different from the SCD-VRPTW, and can
be trivially solved as a direct application of the Delayed TSPTW. This is
further discussed in chapter 5.

To the best of our knowledge, problems 2 and 3, along with any proposed
generalizations, have never been studied before under similar assumptions
and with the specific sets of objectives and constraints that we use. Therefore,
from this point of view, they can be regarded as completely new problems.

Research Summary & Contributions

For each one of the three problems mentioned above, we present an exact
mixed-integer linear programming (MILP) formulation which can be used to
solve small instances to optimality. Due to the fact that the problems under
study are computationally hard, heuristic algorithms are proposed capable
of solving larger instances in real-time. Therefore, for each problem we also
propose at least one appropriate heuristic. Furthermore, for each problem
we have constructed a dataset and we have solved the respective instances
with at least two of the different approaches proposed. Comparisons of the
exact and heuristic approaches are provided for each problem, along with
respective conclusions.

The first contribution of this dissertation is the introduction of two new
problems, namely problems 2 and 3, that have never been studied before
under the specific assumptions and from a similar point of view. We believe
that it is very common to have delays during the delivery process, and thus
these problems should occur frequently in the logistics sector, but we are not
aware of an efficient way to deal with such delays in real time in a better way
or in a comparable way to the approaches that we present. Therefore, we
believe that the solution methods that we propose for problems 2 and 3 can be
directly applied in practice in the case of a delay during the delivery process.
The second contribution is a MILP formulation for each one of the three
problems. Regarding problem 1, acknowledging that it may be beneficial to
allow multiple visits to the broken-down vehicle and capturing this feature
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in the proposed formulation, is a significant point. The third contribution
is the construction of at least one heuristic for each problem. A fourth
contribution is the construction of one new dataset of test instances for each
problem. Also, a very important contribution stems from the fact that we
have conducted tests on these problem instances using at least an exact and
a heuristic method for each problem. Important conclusions can be drawn
from the results of these experiments. We give some idea about the problem
sizes that can be solved to optimality using the exact approaches. For smaller
instances, this provides a way to measure the quality of the heuristics. For
larger instances, we use lower bounds provided by AIMMS from the use
of the exact formulations (whose calculation involves, among others, the
use of the LP relaxation and is provided automatically by the solver), or
appropriate lower bounds that we found which are sometimes stronger than
those provided by AIMMS and can be calculated by other procedures, in
order to get proven optimality gaps and thus measure the quality of the
heuristics. Furthermore, through the tests that we have conducted we can
draw some conclusions about how the computational times relate to the size
of the problems.

1.5 System specifications

The computational results reported in this thesis were derived from experi-
ments that were performed on a personal computer with the following system
specifications: Intel Core i5-3230M CPU running at 2.60 GHz, with 8 GB
RAM, running on Windows 8, 64-bit Operating System.

1.6 Thesis Outline

The remainder of this thesis is organized as follows:
Chapter 2 provides an overview of disruption management and its ap-

plication to vehicle routing problems, reviewing the existing literature. The
chapter starts with an introduction to the family of VRPs, discussing some
of the basic VRP variants that are particularly related to our research. A
discussion of heuristics, metaheuristics and hybrid algorithms applied for the
solution of VRPs is then presented, followed by a review of exact and heuris-
tic approaches for the TSPTW. An overview of the five main approaches used
by researchers to handle disruptions is then presented, with an emphasis on
disruption management. This is followed by an extensive review of the liter-
ature that is concerned specifically with research on disruption management
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in the context of vehicle routing and scheduling for road freight distribution.
At the end of the chapter we present a short introduction to multi-objective
optimization and applications in vehicle routing and scheduling.

The main part of this thesis consists of chapters 3 to 8, where we devote
two chapters to each one of the three problems under study: one chapter
for MILP formulations and exact approaches, and one chapter for heuristic
methods and experimental results.

Specifically, in chapter 3 we describe the disrupted VRP with customer-
specific orders and Vehicle Breakdown (d-VRP-cso-VB), to which we also
refer as problem 1. After the problem definition, we present a mixed-integer
linear programming (MILP) formulation, which can be used directly in stan-
dard commercial optimization software (e.g. Cplex or AIMMS) to find the
exact optimal solution. This constitutes the exact approach for problem 1.
The experimental results from using this approach to solve 101 instances
that were created specifically for this problem are then presented. Then an
extension of problem 1 is discussed, concerning the disrupted VRPTW with
Vehicle Breakdown, under the assumptions of customer-specific orders and a
heterogeneous fleet.

Chapter 4 describes a heuristic algorithm based on Tabu Search, as a
second approach for solving problem 1. Experimental results of the heuristic
approach are presented at the end of the chapter and compared with the
results of the exact approach.

Then, in chapter 5 we describe the Delayed Traveling Salesman Problem
with Time Windows (Delayed TSPTW), to which we also refer as problem
2. This is defined as a multi-objective optimization (MOO) problem with
5 component objectives. After the problem definition, we establish nota-
tion and present a general multi-objective mixed-integer linear programming
(MOMILP) formulation. We then present exact approach 1 for addressing
this problem, which involves aggregating the 5 component objectives into
a single objective, defined as the weighted sum of the 5 components, and
using appropriate weights in order to enforce a lexicographic preference of
the objectives. Therefore, under the additional assumptions regarding the
lexicographic preference of the objectives, the more general MOMILP for-
mulation is transformed into a single-objective MILP formulation. This can
be used directly in a commercial solver (e.g. AIMMS) to find the exact
optimal solution. After this, exact approach 2 for addressing the Delayed
TSPTW is described. This is similar to exact approach 1, but instead of
using a single set of weights, it involves systematically varying the weights
of the 5 component objectives and solving a MILP for each set of weights;
thus getting several non-dominated solutions to the MOO problem with 5
objectives. We then present an extension of problem 2 that involves cus-
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tomer priorities. Then we make some additional assumptions and reduce
the number of objectives from 5 down to 3; thus differentiating between two
variants of the problem, namely the Delayed-TSPTW with 5 objectives and
the Delayed-TSPTW with 3 objectives. We then discuss a direct application
of problem 2 to solve a more general problem: the disrupted VRPTW with
customer-specific orders and vehicle delay. We also discuss other applications
of problem 2 to handle other types of disruption, other variants, additional
constraints that can be included etc.

In chapter 6, we describe three heuristic approaches for solving variants
of problem 2, all of which employ Tabu Search. Heuristic approach 1 solves
the Lexicographic Delayed TSPTW with 5 objectives. Heuristic approach
2 solves the Lexicographic variant with 3 objectives. Heuristic approach 3
uses the framework of the Epsilon Constraint Method to solve heuristically
the Delayed TSPTW with 3 objectives, and finds a representative subset of
the set of non-dominated solutions. A dataset of 27 instances was created
specifically for testing the different solution methods proposed for the De-
layed TSPTW. The chapter includes experimental results of exact approach
1, heuristic approach 1 and comparisons. The experimental results of heuris-
tic approach 3 can be found in Appendix A.

In chapter 7 we describe the Single-Commodity Delayed VRPTW (SCD-
VRPTW), to which we also refer as problem 3. This is defined as a multi-
objective optimization problem with 5 component objectives. It can be
viewed as a generalization of the Delayed TSPTW with 5 objectives. After
the problem definition, we establish notation and present a general multi-
objective mixed-integer linear programming (MOMILP) formulation. We
then present exact approaches 1 and 2, equivalent to those described for
problem 2. Also, as in problem 2, we present an extension of problem 3 that
involves customer priorities. Then we make some additional assumptions
and reduce the number of objectives from 5 down to 3; thus differentiat-
ing between two variants of the problem; namely the SCD-VRPTW with 5
objectives and the SCD-VRPTW with 3 objectives. We also discuss other
applications of problem 3 to handle other types of disruption, other variants,
additional constraints that can be included etc.

In chapter 8 we describe three heuristic approaches based on Tabu Search
for solving variants of problem 3, equivalent to the three heuristic approaches
described in chapter 6 for problem 2. Heuristic approach 1 solves the Lexi-
cographic SCD-VRPTW with 5 objectives. Heuristic approach 2 solves the
Lexicographic SCD-VRPTW with 3 objectives. Heuristic approach 3 uses
the framework of the Epsilon Constraint Method to solve heuristically the
SCD-VRPTW with 3 objectives, and finds a representative subset of the set
of non-dominated solutions. The different methods are tested on a dataset of
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37 instances that were created for the SCD-VRPTW. The chapter includes
the experimental results of exact approach 1, heuristic approach 1, heuristic
approach 2 and comparisons. The experimental results of heuristic approach
3 are presented in Appendix B.

Finally, chapter 9 summarizes the research contained in this thesis, pre-
sents the main findings and conclusions, and discusses potential lines of fur-
ther research in the area of disruption management in vehicle routing and
scheduling.

1.7 Publications

The following articles were published based on material from chapter 2:

1. Eglese, R. W. & Zambirinis, S. (2018). Disruption management in
vehicle routing and scheduling for road freight transport: a review.
TOP, vol. 26, no. 1, pp. 1-17. DOI: 10.1007/s11750-018-0469-4

2. Eglese, R. W. & Zambirinis, S. (2018). Rejoinder on: Disruption man-
agement in vehicle routing and scheduling for road freight transport: a
review. TOP, vol. 26, no.1, pp. 27-29. https://doi.org/10.1007/s11750-
018-0470-y

We intend to submit three more articles for publication based on material
from this thesis:

1. The disrupted Vehicle Routing Problem with customer-specific orders
and Vehicle Breakdown. This concerns problem 1 and will be generated
from chapters 3 and 4.

2. The Delayed Traveling Salesman Problem with Time Windows. This
concerns problem 2 and will be based on the material contained in
chapters 5 and 6.

3. The Single-Commodity Delayed Vehicle Routing Problem with Time
Windows. This concerns problem 3 and will be generated from chapters
7 and 8.

A paper based on material from chapter 3 has been presented on the
following occasion:

• Zambirinis, S. & Eglese, R. W. (2014). The Disrupted Vehicle Rout-
ing Problem with Vehicle Breakdown. VEROLOG conference. Oslo,
Norway, 2014.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

The aim of this chapter is to provide a review of the existing literature
relevant to disruption management in vehicle routing problems, as well as
an overview of tools and solution methods that are relevant to our research,
and in particular to the three problems studied in this thesis.

The chapter begins with a general overview of the family of Vehicle Rout-
ing Problems (VRPs). This is followed by a description of different heuristics,
metaheuristics and hybrid algorithms that researchers have been applying for
solving variants of the VRP over the past six decades. A survey of exact and
heuristic approaches for the Traveling Salesman Problem with Time Win-
dows (TSPTW) is then presented.

The focus is then shifted to methods of dealing with uncertainties or dis-
ruptions in business operations, and especially on Disruption Management.
An introduction to the general field of Disruption Management is presented,
along with a short review of applications of the discipline in business oper-
ations. This is followed by a detailed review of applications of Disruption
Management in vehicle routing and scheduling, with an emphasis on the
freight distribution scenario.

At the end of the chapter we present a brief introduction to the field
of Multi-Objective Optimization. We establish some basic terminology and
notation, and describe two basic methods for solving multi-objective opti-
mization problems that we use widely in this thesis: the Weighting Method
and the Epsilon-Constraint Method. We then briefly discuss a more recent
state-of-the-art algorithm, and give some references about performance in-
dicators that are used in multi-objective optimization, in order to measure
the quality of approximation of the Pareto front. Finally, we present a short
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survey of applications of multi-objective optimization methods for modeling
and solving vehicle routing and scheduling problems.

2.2 Vehicle Routing Problems

In this thesis we focus on disruption management in vehicle routing and
scheduling for road freight transport. This means that the models used are
closely related to the models that are used to address the Vehicle Routing
Problem and its related variants.

The Vehicle Routing Problem (VRP) is the problem of determining the
optimal set of routes to be traversed by a fleet of vehicles, in order to serve a
given set of customers. It is considered to be one of the most studied and im-
portant combinatorial optimization problems. The problem was introduced
in Dantzig & Ramser (1959). Since then, numerous papers and books have
been published describing different models and algorithms for the optimal or
approximate solution of the many different variants of the VRP. Toth & Vigo
(2014) discuss and review formulations and algorithms used for the VRP and
related problems. The models and algorithms proposed for the solution of
the VRP and its variants are used for the solution of different real-world
applications arising in transportation systems. Typical applications include
the delivery or collection of goods, school bus routing, dial-a-ride systems,
routing of salespeople, routing of maintenance units etc. The VRP and its
variants are known to be NP-hard.

The basic version of the VRP is the Capacitated Vehicle Routing Problem
(CVRP), which involves the determination of the optimal set of routes to
be traversed by a fleet of vehicles based at a single central depot, in order
to distribute goods to a set of geographically dispersed customers, while
minimizing the total travel cost. Capacity constraints are imposed. All
vehicles are identical, with a fixed capacity and must start and finish at the
depot. All the customers require deliveries and the customer demands are
fixed, known in advance and cannot be split. All customers have to be served.

The Vehicle Routing Problem with Time Windows (VRPTW) is an ex-
tension of the CVRP in which the service of each customer must start within
an associated time interval, called a time window, and the vehicle must stop
at the customer location for the duration of the service time of that customer.
This may be particularly relevant to disruption management as the original
plan may have created customer expectations about the time when service
will be delivered. The special case of the VRPTW where we have a single
vehicle with infinite capacity is called the Traveling Salesman Problem with
Time Windows (TSPTW).
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The Open Vehicle Routing Problem (OVRP) is another variant of the
VRP, where the routes must end at a customer instead of the depot. More
specifically, given a single depot, a homogeneous fleet of vehicles with given
capacity, a set of customers with known demands and a (symmetric) matrix
of the traveling cost between customers and depot, the OVRP seeks to find
the set of routes, each starting at the depot and ending at a customer, so that
all the customers are served and the total cost is minimized. One particular
type of the disrupted VRP with vehicle breakdown that was studied by Mu et
al. (2011), which assumes the delivery of a single commodity, has a network
structure which shares many similarities with the OVRP.

There are many other variants of the VRP, such as the VRP with Back-
hauls (VRPB), the VRP with Pickup and Delivery (VRPPD) etc. Addition-
ally, one can expand such models by incorporating more constraints, such as
adding a maximum length or maximum completion time to each route.

There is also a significant literature on dynamic or real-time vehicle rout-
ing and scheduling. These articles particularly deal with situations where
customer demand may arise, or be canceled, during the operation and so
plans must be constantly updated to react to the changing demand patterns.
Other sources of dynamism may arise from changing travel times and vehi-
cle availability. Some of the modeling and algorithmic approaches used to
address a dynamic vehicle routing problem may provide useful insights for
disruption management in vehicle routing and scheduling.

Pillac et al. (2013) present a review of the Dynamic Vehicle Routing
Problems (DVRPs) with more than 150 references. That study classifies
routing problems from the perspective of information quality (deterministic
versus stochastic input) and evolution of information (whether or not the
information available to the planner may change during the execution of the
routes).

Psaraftis et al. (2016) also present a survey paper on Dynamic Vehicle
Routing Problems and provide a taxonomy of DVRP papers according to 11
criteria: type of problem, logistical context, transportation mode, objective
function, fleet size, time constraints, vehicle capacity constraints, the ability
to reject customers, the nature of the dynamic element, the nature of the
stochasticity (if any) and the solution method.

In Chapter 11 of the recent book edited by Toth & Vigo (2014), Bektaş
et al. (2014) also present a survey of DVRPs. In this chapter, apart from
providing an overview of the relevant literature, the authors present the state
of the art in frameworks and strategies, providing a detailed analysis of the
DVRP.

18



2.3 Heuristics, Metaheuristics and hybrid me-

thods for the Vehicle Routing Problem

In the last six decades, hundreds of different heuristics have been proposed for
the VRP and its variants. These can be broadly classified into the following
classes: classical heuristics, which were mostly developed between 1960 and
1990, metaheuristics, whose growth mostly took place after 1990, and hybrid
methods, mainly developed after 2000.

Classical heuristics are typically fast and often flexible enough in a sense
that they can be easily extended to incorporate additional constraints en-
countered in practice, but they usually involve a relatively limited exploration
of the search space. Metaheuristics on the other hand involve more advanced
memory structures, sophisticated neighborhood search rules and recombina-
tions of solutions; therefore they typically perform a deeper exploration of
the most promising regions of the search space and produce higher quality
solutions, but at the expense of increased computing time. Finally, hybrid
methods try to combine several concepts borrowed from different metaheuris-
tics, as well as from exact approaches.

2.3.1 Classical Heuristics for the VRP

In this subsection we provide a quick overview of the Classical Heuristics for
the VRP, by following the description and categorization of Laporte & Semet
(2002), who classify these into the following three categories:

1. Constructive heuristics, which gradually build a feasible solution, tak-
ing into account the solution cost, but without employing an improve-
ment phase. Examples of constructive heuristics include, but not lim-
ited to:

(a) the Savings Algorithm by Clarke & Wright (1964). Several en-
hancements of this algorithm have been proposed, such as by
Gaskell (1967), Yellow (1970), Nelson et al. (1985) and Golden
et al. (1977).

(b) Matching-Based Savings Algorithms, such as in Desrochers & Ver-
hoog (1989), Altinkemer & Gavish (1991) and Wark & Holt (1994).

(c) Sequential Insertion Heuristics, such as the ones by Mole & Jame-
son (1976), and by Christofides et al. (1979).

2. Two-phase heuristics, where the problem is decomposed into two com-
ponents: clustering of the vertices into feasible routes, and actually con-
structing the routes. Possible feedback loops between the two phases
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are allowed. Two-phase heuristics can be further classified into two
classes:

(a) cluster-first, route-second methods, where vertices are initially or-
ganized into feasible clusters, and for each cluster a route is then
constructed. Algorithms of this class can be further categorized
into:

• Elementary Clustering Methods which perform a single clus-
tering of the vertex set first and then determine one route
for each cluster, such as the Sweep Algorithm (see Gillett
& Miller (1974), Wren & Carr (1971) and Wren & Holliday
(1972)), the general-assignment-based algorithm of Fisher &
Jaikumar (1981), and the two-phase location-based heuristic
by Bramel & Simchi-Levi (1995).

• Truncated Branch-and-Bound approach, which was first pro-
posed by Christofides et al. (1979).

• Petal Algorithms, which create a large family of overlapping
clusters and associated routes, and then select a feasible set
of routes among them (e.g. see Foster & Ryan (1976), Ryan
et al. (1993), Renaud et al. (1996)).

(b) route-first, cluster-second methods, where initially a giant TSP
tour containing all the vertices is built, disregarding side con-
straints, and then this tour is decomposed into feasible vehicle
routes. This approach was first proposed by Beasley (1983).

3. Improvement methods, which attempt to upgrade feasible solutions
found by performing a sequence of edge or vertex exchanges between
or within routes. Improvement heuristics for the VRP may operate
separately on each route, or on multiple routes each time:

• Single-Route Improvements: For example, the λ-opt mechanism
(e.g. 2-opt, 3-opt etc.) for the TSP, introduced by Lin (1965),
where λ edges are first removed from the tour, and then the re-
maining λ segments are reconnected in all possible ways. If a prof-
itable reconnection is identified (first or best), it is implemented.
This procedure stops at a local minimum, i.e. once no further im-
provement can be made. Of course, several modifications to the
previous basic scheme have been proposed since then, such as by
Lin & Kernighan (1973), Or (1976), and Renaud et al. (1996).

• Multiroute Improvements: Description of various multiroute edge
exchanges for the VRP can be found, for example, in Van Breedam
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(1994), Thompson & Psaraftis (1993), and Kindervater & Savels-
bergh (1997). These cover a large number of edge exchange moves
and schemes used by several authors.

Specifically, Van Breedam (1994) considers the following four im-
provement operations:

(a) String Cross, where two strings of vertices are exchanged by
crossing two edges of two different routes,

(b) String Exchange, where two strings of at most k vertices are
exchanged between two different routes,

(c) String Relocation (or String Insertion), where a string of at
most k vertices is removed from one route and inserted in
another, and

(d) String Mix, which selects the best move between String Ex-
change and String Relocation.

Van Breedam considers two local improvement strategies to eval-
uate these moves, namely First Improvement and Best Improve-
ment.

Also, Thompson & Psaraftis (1993) present a general b-cyclic, k-
transfer scheme, where a circular permutation of b routes is con-
sidered, in which k customers from each one of those routes are
shifted to the following route of the cyclic permutation. Therefore,
each one of the four Van Breedam’s operations described above,
can be viewed as a special case of a 2-cyclic exchange.

Of course, the distinction between improvement and constructive meth-
ods may sometimes be obscure, since most constructive algorithms include
improvement steps at various stages.

In general, classical heuristics involving only simple construction and local
descent improvement methods, do not compete with more advanced meta-
heuristic or math-heuristic algorithms, in terms of solution quality. However,
many of the ingredients of the classical heuristics are used as components
within the more sophisticated schemes of metaheuristics and math-heuristics.

2.3.2 Metaheuristics for the VRP

In this subsection we present a very brief overview of several Metaheuristics
for the VRP. Most of the material in this subsection is borrowed or adapted
from Gendreau et al. (2002) and Laporte et al. (2014).

In the past decades, several metaheuristics were proposed for the VRP
and its variants. These are general solution procedures which explore the
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solution space in order to identify good solutions, usually employing com-
ponents of classical heuristics described in the previous subsection, for route
construction and solution improvement. In general, the best known meta-
heuristics for the VRP are usually able to find better quality solutions than
the earlier classical heuristics, but are typically more time consuming.

Metaheuristics for the VRP may be broadly classified into two major
categories: local search algorithms and population-based heuristics. Below
we briefly discuss each category and their most representative algorithms.

1. Local Search Algorithms:
Local Search Algorithms start from an initial solution x1 and at each
iteration t, move from the current solution xt to another solution xt+1

in the neighborhood N(xt) of solution xt, until a stopping criterion is
met. Suppose that the objective is to minimize f(x), subject to x ∈ S.
The value of the objective function (cost) f(xt+1) of the newer solution
xt+1 is not necessarily better (less) than the value of the objective
function f(xt) of the current solution xt. In general, metaheuristics may
allow deteriorating and even infeasible intermediate solutions during
the search process. Care must be taken to avoid cycling.

Some of the most basic Local Search Methods applied to VRPs include:

• Simulated Annealing (SA): In Simulated Annealing, at each it-
eration t, a solution x is randomly selected in the neighborhood
N(xt) of xt. If f(x) ≤ f(xt), then xt+1 is set to x; otherwise,

xt+1 :=

{
x with probability pt
xt with probability 1− pt

(2.3.1)

where pt is usually a decreasing function of both t and f(x) −
f(xt). A common choice is pt = e

− f(x)−f(xt)
θt , where θt represents

the temperature at iteration t and is typically a decreasing step
function of t: initially θt is set to a given positive value θ1, and
after every T iterations it is multiplied by a factor α (0 ≤ α ≤ 1),
so that the probability of accepting a worse solution gradually
decreases over time. The search is continued until the stopping
criterion is met. Commonly used stopping criteria are: (i) the
value f ∗ of the incumbent x∗ has not decreased by at least π1%
for at least k1 consecutive cycles of T iterations, (ii) the number
of accepted moves has been less than π2% of T for k2 consecutive
cycles of T iterations, or (iii) k3 cycles of T iterations have been
executed. Several researchers have applied SA for the solution of
VRPs, such as Osman (1993).

22



• Deterministic Annealing (DA): This method is similar to Simu-
lated Annealing, with the difference that the rule used for the
acceptance of a move is deterministic. Two standard implemen-
tations of DA are the threshold accepting algorithm (Dueck &
Scheuer (1990)) and the record-to-record travel algorithm (Dueck
(1993), F. Li et al. (2005)). In the threshold accepting algo-
rithm, at each iteration t, a solution xt+1 is accepted if f(xt+1) <
f(xt) + θ1, where θ1 is a user-controlled parameter. In record-to-
record travel, at each iteration t, a solution x ∈ N(xt) is selected
and is accepted by setting xt+1 := x if f(x) ≤ θ2f(x∗); otherwise,
xt+1 := xt. Here, x∗ is the best known solution so far, and θ2 is a
parameter usually slightly larger than 1 (e.g. θ2 = 1.05).

• Tabu Search (TS): In this method the search moves from a solution
xt to the best solution xt+1 ∈ N(xt) which is not declared tabu.
That is, in order to prevent cycling, solutions sharing some at-
tributes with the current solution xt are declared forbidden or tabu
for a number of iterations. The tabu status of a candidate solution
is revoked in case this solution improves the best known solution.
Many implementations of TS have been proposed by researchers in
the past decades. Several features of TS include rules to intensify
the search in promising areas, or to diversify it. Various TS imple-
mentations for the VRP, such as in Gendreau et al. (1994), allow
intermediate infeasible solutions during the search and penalize
the objective function accordingly. This can be achieved by mini-
mizing a penalized objective function f ′(x) := f(x)+

∑
k αkVk(x),

where Vk(x) is the total violation of the constraints of type k in
solution x, and αk is either a constant parameter or a dynamically-
adjusted parameter. For instance, in Cordeau et al. (2001), the
parameters ak are initially set equal to 1, and are self-adjusted
throughout the search, so that at every iteration, if the current
solution violates the constraint of type k, then ak is multiplied by
1 + δ (for some constant δ > 0); otherwise, ak is divided by 1 + δ.

Tabu Search was first proposed by Glover (1986) as a general
framework or metaheuristic that can be superimposed on another
heuristic in order to solve difficult combinatorial optimization prob-
lems. The method was formalized in Glover (1989, 1990). Addi-
tionally, in these papers several applications of the method are
reported, ranging from graph theory and matroid settings to gen-
eral pure and mixed integer programming problems. Traveling
salesman, graph coloring, integrated circuit design, job shop flow
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sequencing, time tabling and maximum satisfiability problems are
only some of the problems where TS was applied with success.
In the next decades, TS became one of the most widespread and
most successful metaheuristics.

Cordeau & Laporte (2002) describe some of the basic features of
Tabu Search for solving VRPs, including the following: neighbor-
hood structures, short-term and long-term term memory struc-
tures, intensification and diversification mechanisms. They com-
pare TS to simulated annealing, deterministic annealing, genetic
algorithms, ant systems and neural networks, and conclude that
TS outperforms other metaheuristics. They review ten of the top
performing implementations of TS applied to solve the VRP, and
conclude that the Adaptive Memory Procedure of Rochat & Tail-
lard (1995) (a probabilistic technique to diversify, intensify and
parallelize TS adapted for solving VRPs), outperforms the other
implementations.

Basu (2012) presents a literature survey of 76 papers on the Tabu
Search implementation on the TSP, the VRP and their variants.
This paper compares and points out trends after classifying the
literature based on problem size, initial solution generation, choice
of moves, choice of short, medium and long-term memory struc-
tures, and aspiration criteria.

• Iterated Local Search (ILS): This is a simple algorithm which can
be applied on top of any local search method, introduced by Bax-
ter (1984). The idea is to apply an embedded local search mech-
anism (e.g. steepest descent, TS etc.) until it meets a stopping
criterion which corresponds to a solution x; then perturb x to
yield a new starting solution x′, and then reapply the embedded
local search. Repeat this procedure until a stopping criterion is
reached (such as a predefined number of outer iterations, a num-
ber of consecutive solutions without an improvement, or a time
limit). Applications of ILS for VRPs can be found in Chen et al.
(2010), and in Subramanian et al. (2013).

• Variable Neighborhood Search (VNS): This method works with
several neighborhoods N1, N2,..., Np, which are usually of increas-
ing complexity or even embedded (for example, 2-opt, 3-opt etc.).
It starts with an initial solution and then iteratively applies these
neighborhoods in a descent style, until no further improvement
can be made. Once the last neighborhood is applied, a new cycle
restarts. This procedure terminates when no further improvement
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is possible, or after a preset number of cycles. Hansen et al. (2010)
provides a survey for VNS, describing the basic schemes and ex-
tensions of VNS as a metaheuristic for solving optimization prob-
lems in general, and discusses several applications. Kytöjoki et al.
(2007) presents an efficient VNS heuristic applied to the CVRP,
which was able to provide high-quality solutions on instances with
up to 20,000 customers within reasonable CPU times.

2. Population-Based Algorithms:
Population-based heuristics keep track of a population of solutions
that is continuously evolving, e.g. by combining good solutions in
the current population, hoping to generate better ones. Examples of
population-based algorithms include:

• Ant Colony Optimization (ACO) (e.g. see Reimann et al. (2004)).

• Genetic Algorithms (GA), which typically examine a population
of solutions at each step. Each population is derived from its pre-
vious generation, by combining its best elements while eliminating
the worst. Description and applications of GAs to the VRP can
be found in: Prins (2004), Nagata & Bräysy (2009), Vidal et al.
(2012).

• Scatter Search and Path Relinking (e.g. see Glover (1977) and
Resende & Ribeiro (2010)).

• Learning Mechanisms : These include, for example, the Neural
Networks approach, which is a learning mechanism that involves
a set of weights that are gradually adjusted until an acceptable
solution is reached (e.g. see Gendreau et al. (2002)).

For an overview of metaheuristic principles and other search methodolo-
gies in optimization, from a general point of view, one can refer to the books
by Burke et al. (2005) and Gendreau & Potvin (2010).

2.3.3 Hybridizations

As research for the family of VRPs progresses, a wider variety of hybrid
methods emerge; methods which borrow concepts from various algorithms,
including exact, heuristics and metaheuristics. Some important families of
hybridizations include:

• Population-Based Search and Local Search.
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• Meta-Meta Hybridizations.

• Hybridizations with Large Neighborhoods.

• Hybridizations with Mathematical Programming Solvers or other exact
solutions (matheuristics).

• Hybrid heuristics that use parallel and cooperative search mechanisms.

• Metaheuristics complemented by decompositions or coarsening phases.

References and more details for the above hybridizations applied in VRPs
can be found in Laporte et al. (2014).

2.4 Exact Approaches for the VRP

Extensive reviews of exact methods used for solving the Capacitated Vehicle
Routing Problem (CVRP), can be found in Semet et al. (2014) and in Poggi &
Uchoa (2014). More generally, mathematical formulations and exact solution
methods for other variants of the VRP, including the VRPTW, can be found
in the book by Toth & Vigo (2014).

2.5 Literature Review on the TSPTW

One of the problems that we study extensively in this thesis is the Delayed
TSPTW. This is particularly relevant to the classical Traveling Salesman
Problem with Time Windows (TSPTW). For this, in this section we present
a non-exhaustive review of papers that describe exact and heuristic solution
methods for the TSPTW.

The TSPTW asks for the determination of a minimum-cost tour which
starts from and returns to the same single depot, before it visits a predefined
set of customer nodes exactly once, each of whom have to be visited within
a specific time window. There are numerous applications of the TSPTW in
business, including package delivery, bank couriers etc. The TSPTW is also
mathematically equivalent to certain time-sensitive production scheduling
problems. It can be viewed as a special case of the VRPTW with only one
vehicle of infinite capacity.
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2.5.1 Exact approaches for the TSPTW

There are many papers describing solution approaches for the TSPTW, rang-
ing from exact mathematical programming techniques, to heuristic and so-
phisticated metaheuristic approaches. The earliest papers on the TSPTW
involve exact approaches for the problem variant with makespan optimiza-
tion. These include Christofides et al. (1981) and Baker (1983), that present
branch-and-bound algorithms which solve instances with up to 50 nodes,
but whose algorithms cannot effectively handle overlapping or wide time
windows.

Langevin et al. (1993) present a two-commodity flow formulation within
a branch-and-bound scheme for the TSPTW, capable of handling various ob-
jectives, and address both variants of the TSPTW with travel-time optimiza-
tion (TSPTW-TT) and with makespan optimization (TSPTW-M). The lat-
ter is also referred to as the makespan problem with time windows (MPTW).
They were able to handle instances of up to 40 nodes.

Dumas et al. (1995) present a very effective optimal dynamic program-
ming algorithm for the TSPTW with total travel cost minimization. Its
effectiveness comes from the post-feasibility tests that exploit time window
constraints in order to substantially reduce the state space and the number
of state transitions. They report that their algorithm was successful in solv-
ing problems with up to 200 nodes and fairly wide time windows, as well as
problems with up to 800 nodes within 650 seconds, provided that the density
of the nodes in the geographical region was kept constant as the problem size
was increased.

Pesant et al. (1998) propose a Constraint Logic Programming model for
the TSPTW, which yields an exact branch and bound optimization algo-
rithm. Ascheuer et al. (2001) solve the asymmetric TSPTW by branch-and-
cut. Balas & Simonetti (2001) present an implementation of a linear-time dy-
namic programming algorithm for some variants of the TSP with precedence
constraints, including the TSPTW. Focacci et al. (2002) describe a hybrid
approach for solving the TSPTW which combines Constraint-Programming
propagation algorithms with other optimization techniques.

Baldacci et al. (2012) introduce a new tour relaxation, the ngL-tour,
to compute a valid lower bound on the TSPTW and solve the problem by
column generation. They perform an extensive computational analysis on
all the TSPTW instances of the literature (with up to 233 nodes), and their
algorithm solves all but one instance, while outperforming all exact methods
that were published in the literature up to that time.

Kara & Derya (2015) propose polynomial size integer linear programming
formulations for the TSPTW with tour duration minimization, considering

27



the symmetric and asymmetric cases separately. For the symmetric TSPTW,
their proposed formulation succeeds in finding optimal solutions for all in-
stances considered in a very short time with CPLEX 12.4, including some
instances with up to 400 customers. For the asymmetric TSPTW, optimal
solutions of most of the instances with up to 232 nodes are obtained within
seconds.

Tilk & Irnich (2016) present a new effective approach based on dynamic
programming, for the Minimum Tour Duration Problem (MTDP) (which is
simply another term for the TSPTW with makespan optimization). Their
approach generalizes the approach presented by Baldacci et al. (2012).

2.5.2 Heuristic approaches for the TSPTW

More than three decades ago, Savelsbergh (1985) showed that even finding
a feasible solution to the TSPTW is an NP-complete problem. Therefore,
a large number of researchers have focused on developing fast heuristics for
the approximate solution of the TSPTW.

Carlton & Barnes (1996) solve the TSPTW using Tabu Search, consid-
ering infeasible solutions during the search and using a static penalty func-
tion. Gendreau et al. (1998) describe a generalized insertion heuristic for the
TSPTW-TT. Calvo (2000) presents a heuristic for the TSPTW, which first
solves an auxiliary assignment problem with an ad hoc objective function, in
order to construct a solution which is close enough to a feasible solution of
the original problem; then uses a greedy insertion procedure to insert all the
subtours into the main tour and get a complete initial solution, and finally
applies local search to further improve the current solution.

Cheng & Mao (2007) develop a modified ant algorithm, named ACS-
TSPTW, which is based on Ant Colony Optimization (ACO) to solve the
TSPTW. They test their algorithm on the 31 TSPTW benchmark problems
proposed by Potvin & Bengio (1996) and conclude that its performance is
comparable to that of ACS-Time, an existing ACO algorithm for solving the
TSPTW that is used as a module of the multiple ant colony system (MACS),
which was designed by Gambardella et al. (1999) for solving the VRPTW.

Ohlmann & Thomas (2007) solve the TSPTW using a Compressed An-
nealing heuristic, which is an extension of Simulated Annealing. Specifi-
cally, the Compressed Annealing method relaxes the time-window constraints
and performs a stochastic search using a variable penalty function, generally
outperforming Simulated Annealing with a suitable static penalty function.
Computational results show that near-optimal solutions can be obtained at
reasonable computational cost in most cases. Feasible solutions are found in
every instance and best known results are obtained for numerous instances.
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Da Silva & Urrutia (2010) propose a General Variable Neighborhood
Search (GVNS) heuristic for the TSPTW, that is comprised of both con-
structive and optimization stages which take advantage of elimination tests,
partial neighbor evaluation and neighborhood partitioning techniques. Com-
putational results show that this approach is efficient, reducing the computa-
tional time by 80% on average, compared with the previously state-of-the-art
heuristic by Ohlmann & Thomas (2007), and improving some best known re-
sults from the literature. A new set of instances with up to 400 customers is
proposed and the algorithm is able to obtain feasible solutions for each one
of these instances in a reasonable amount of time.

Mladenović et al. (2012) present another implementation of the GVNS
for the TSPTW, which is faster than the GVNS implementation by Da Silva
& Urrutia (2010), able to improve 14 large test instances from the literature.

Also, López-Ibáñez et al. (2013) adapt state-of-the-art algorithms for the
TSPTW with travel-time minimization (TSPTW-TT), namely the Beam-
ACO and compressed annealing algorithms, and apply them to solve the
TSPTW with makespan minimization (TSPTW-M); thus improving on the
existing state-of-the-art approaches for makespan minimization.

The list of papers for the TSPTW presented here is in no way exhaustive.
More references can be found e.g. in Kona et al. (2015), that present a survey
of the research on the TSPTW (and also include references for the TSP and
the VRPTW).

2.6 Methods of dealing with uncertainties or

disruptions in business operations

In the past years, researchers have been trying to deal with uncertainties
occurring during business operations, using many different approaches. Fol-
lowing the description and categorization of Yu & Qi (2004), those approaches
can be divided into two stages: the in-advance planning and the real-time
re-planning. In the first stage the goal is to create a ’perfect’ operational
plan, based on estimates of the possible future uncertainties. In the second
stage, the goal is to revise the original plan during its execution, if necessary.

The five main approaches used by researchers in order to cope with dis-
ruptions that may occur during the execution of an operational plan, are
explained below:

1. Contingency Planning. This is a scenario-based approach. During the
planning stage, the critical scenarios are identified, according to the
severity of potential impact, the probability of occurrence or both. For
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each scenario, all available options are identified, along with associated
effectiveness and costs. Then, for each scenario, the best option is
selected, based on available resources. In the final stage, extra resources
that might be needed are identified, collected and placed in reserves.
The formula and plan for dealing with each scenario are identified;
these will be closely followed in the case of a disruption.

Obviously, contingency planning can only deal with a limited set of dis-
ruptions, where the exact characteristics of each disruption are known
in advance and the associated costs and impacts can be calculated.
However, in a large system, there is a huge number of possible future
scenarios; so it is very difficult and often impossible to make a contin-
gency plan for each scenario. If a disruption which was not included in
the list of possible scenarios occurs, it may create havoc to the system.
Some disruptions are unpredictable; some cannot even be identified
ahead of time. So the limitations of this approach are obvious.

2. Use of Stochastic models. In a typical operational plan or policy that
uses stochastic models, the first step is to build stochastic models, in
order to describe future uncertainty. Then the models are analysed and
the optimal policy is found so that the future output is optimized, with
respect to the average output. When a disruption happens, the plan is
closely followed.

For the use of stochastic models, a complete list of all future uncertain-
ties must be known, along with the associated probability of occurrence.
Then, a contingency plan or policy is constructed which is optimal with
respect to the average outcome. However, the in-advance knowledge
of the precise probability distribution of future uncertainties is usually
impossible. Therefore, stochastic models are usually not appropriate
tools to deal with disruptions that might occur during the execution of
an operational plan.

3. Robust Optimization is another approach that deals with uncertainty
in the planning stage. Following this approach, a set of scenarios is
used to model future uncertainties. An operational plan is generated,
which is good for most scenarios and at the same time acceptable for
the worst-case scenario. All possible disruptive scenarios must be spec-
ified, although the precise probability distribution associated is not
required. Then, a robustness criterion appropriate is selected. A com-
mon criterion of this type is to minimize the maximum deviation from
optimality under all possible scenarios. The advantage of such an ap-
proach is that it can guarantee the system’s performance in any case
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- even if the worst scenario happens. However, the solution might be
too conservative, especially if the worst scenario has a very small prob-
ability of occurrence. A robust plan will sacrifice average performance
to gain robustness against disruptions, especially if those disruptions
are very unlikely to occur. Moreover, it is usually impossible to list all
possible future disruptions in advance.

4. Pure rescheduling. People have been working for many years on the
research of on-line scheduling problems, dynamic scheduling problems
and rescheduling problems. Despite the sophisticated techniques used
in most cases, many current rescheduling problems do not take into
account the deviation costs involved. When the revision of a current
schedule is costly, not considering the deviation costs doesn’t provide
a satisfactory solution in practice. Instead, we might end up with a
sub-optimal solution.

5. Disruption Management. This approach is explained in detail in the
following section.

2.7 Disruption Management

Disruption Management refers to dynamically revising an operational plan
in real time, once a disruption occurs. It is very important in situations
where the operational plan has been published in advance, and especially
when its execution is subject to major disruptions. When the published
operational plan is revised, some costs will occur that are associated with the
transition from the original to the modified plan. The deviation cost might
be a financial cost, caused, for example, by paying overtime to employees,
or might be something not so easy to quantify, such as the dissatisfaction or
loss of customers. It is essential to take those deviation costs into account
when generating a new plan. A key feature of disruption management is the
ability to deal with a disruption without knowing in advance that it is going
happen and to provide good solutions in time for them to be implemented.
Disruption Management is clearly the most promising approach among the
five methods of dealing with disruptions that were described in the previous
section.

A formal definition of disruption management can be found in Yu & Qi
(2004): “At the beginning of a business cycle, an optimal or near-optimal
operational plan is obtained by using certain optimization models and solu-
tion schemes. When such an operational plan is executed, disruptions may
occur from time to time caused by internal and external uncertain factors.
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As a result, the original operational plan may not remain optimal, or even
feasible. Consequently, we need to dynamically revise the original plan and
obtain a new one that reflects the constraints and objectives of the evolved
environment while minimizing the negative impact of the disruption. This
process is referred to as disruption management.”

Disruptions may occur in many settings. In their book Yu & Qi (2004)
provide a general framework for disruption management and a detailed study
of the domain. They present an in-depth analysis of frameworks, models and
applications of disruption management in each one of the following areas:
airline operations, flight and crew scheduling, machine scheduling, logistics
scheduling, discrete and continuous-time production and inventory manage-
ment, supply chain management, project scheduling.

Clausen et al. (2010) provide a thorough review of models and methods
used in disruption management in the airline industry, including aircraft,
crew, passenger and integrated recovery. They also provide an overview of
model formulations of the aircraft and crew scheduling problems, as well as
an overview of research within schedule robustness in airline scheduling. In
this article, a disruption is defined as “a state during the execution of the
current operation, where the deviation from plan is sufficiently large that the
plan has to be changed substantially”. Disruption management then refers to
the replanning after a disruption has occurred.

Visentini et al. (2013) provide a review concerning the methods used
for real-time vehicle schedule recovery in transportation services. They do
not use the term “disruption management” in their title or abstract, pre-
ferring to refer to “real-time vehicle schedule recovery methods”, but their
review clearly covers disruption management methods as used in transporta-
tion services. They classify Real-Time Vehicle Schedule Recovery Problems
(RTVSRP) into 3 categories: vehicle rescheduling for road-based services,
train-based rescheduling and airline schedule recovery problems. They clas-
sify the models of each category according to the problem formulation and the
solution strategy. The RTVSRP is usually modeled and solved using similar
but not identical models as the respective off-line planning counterpart. A
network structure is designed representing the new problem after disruption,
which can describe how vehicles can be rescheduled. When designing such a
network structure, one must take into account the current planned schedule,
the current situation when the disruption occurred (for instance, the position
of each vehicle at the time of the disruption), as well as other technical and
timing constraints. Exact and heuristic optimization methods are designed
based on this network representation. They report some interesting statis-
tics which indicate the importance of the research on vehicle rescheduling for
road-based services, including: (i) a delay in 29% of bus trips from 2007 to
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2010, reported by the San Francisco Municipal Transportation Agency, and
(ii) 82 road calls in a single month (July 2011) reported by SunTran transit
agency in Tucson, Arizona.

Cacchiani et al. (2014) present an overview of recovery models and algo-
rithms for real-time railway disturbance and disruption management. They
consider algorithms for timetable, rolling stock and crew rescheduling, as well
as algorithms that consider the integration of different rescheduling phases.
They describe various approaches to solve these rescheduling problems in
terms of the type and scale of the disturbances or disruptions, the network in-
frastructure and topology, the considered objective functions and constraints,
and the utilized optimization methods.

The key factors that are involved in disruption management are as follows:

(i) The time for replanning may be limited. This will normally be the case
and so limits the computation time available for any algorithm used to pro-
duce a revised plan for recovery. The time needed to receive information
concerning the disruption and to communicate the revised plan to those who
implement it must also be taken into consideration.

(ii) The original undisrupted plan may be a useful starting point for the new
plan. When constructing the revised plan, there is no need to determine a
complete plan from scratch. In disruption management, there will always be
an original plan to consult.

(iii) It may be appropriate to include new costs relating to deviations from the
original plan. Whereas the original plan may have been created with a single
objective of minimizing relevant costs, the disruption management model
may need to include other considerations, particularly the costs of deviating
from the original plan. The disruption management model is therefore often
a multi-objective model and the relevant objectives will be discussed later.

(iv) There may be constraints in the new plan that were not in the original.
These constraints may be as a result of the disruption that has occurred,
such as a blocked road due to an accident or the unavailability of a failed
vehicle. Sometimes there will be additional constraints due to commitments
that have been agreed after the original plan was published.
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2.8 Disruption Management in Vehicle Rout-

ing and Scheduling for freight distribu-

tion

2.8.1 Relevant objectives

When determining the original plan for vehicle routing and scheduling in
the context of road freight transport, it is usual to focus on an objective
of minimizing the relevant costs subject to constraints on the operation.
Sometimes fixed costs of using vehicles and their drivers are included in the
objective to be minimized, while in other cases, the number of available
vehicles may be regarded as a constraint and the objective to be minimized
depends only on distance-related costs.

After a disruption has occurred, there will still normally be a focus on
minimizing the costs of the revised plan that deals with the disruption, but
the following additional objectives may also need to be taken into consider-
ation that may not have been included in the original plans:

(i) The deviation from the original plan for customers. Customers may
have made arrangements to receive deliveries at particular times according
to the original schedule. For some sorts of deliveries, customers may be quite
flexible about the timing of deliveries, but in other cases where members
of staff need to be available to receive goods or when deliveries have been
scheduled to avoid overlaps with other delivery operations, then the customer
will experience a degree of dissatisfaction with a significant change in delivery
time. The change may lead to increased costs for the customer, such as
when additional overtime payments are incurred for members of staff who
are waiting to help unload the delivery. Some estimate of this cost can be
incorporated as an additional objective to be minimized in the disruption
management model. An operator may also wish to give a higher priority
to more important customers in terms of the size of the deviation from the
original plan and this too may be incorporated in this objective. There may
also be trade-offs to be considered in terms of the number of customers who
will have a late delivery against the total deviation from the planned delivery
schedule.

(ii) The deviation from the original plan for drivers. There may be direct
extra costs involved for drivers if the revised plan involves the use of overtime
or special payments. Additionally, there may be problems in requiring a
driver to deliver to an unfamiliar customer. This could increase the service
time if the driver assigned is unfamiliar with access arrangements at the
customer. Also the customer may prefer to deal with a familiar driver. These
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are all factors which may be important in assessing the revised plan.
When the objectives for a particular application have been decided, it

may be possible to convert them all to monetary values and so have a dis-
ruption management problem with a single objective of minimizing the sum
of these relevant costs. Where there are more subjective issues to consider,
then it may be preferable to adopt a multi-objective approach with a disrup-
tion management model that will present a set of Pareto optimal alternative
solutions to the decision maker. However this approach generally requires
more time to compute and select the revised plan and so may be more diffi-
cult to achieve in the limited time available before the revised plan is needed.

2.8.2 Formulation and Solution Approaches

There are various ways to formulate a disruption management problem,
which depend on the details of the application and the amount of flexibility
that is to be allowed in revising the original plan.

One important consideration is the type of commodity which is being dis-
tributed to customers and whether the goods loaded into vehicles at the start
of each trip are only for the specific customers to be visited by that vehicle or
whether the commodity is a general one where any customer can be served by
any vehicle. In the case of delivering packages or parcels addressed to specific
recipients, then the goods loaded must be regarded as customer-specific. If a
commodity such as gas canisters or bottled water is to be distributed, then
any customer can receive a delivery from any vehicle and the commodity
can be regarded as non customer-specific. This distinction is important in
terms of the feasibility of the revised plans. For example, following a vehicle
breakdown, if the vehicle is carrying customer-specific commodities, then it
must be visited by other vehicles to pick up the remaining goods it was car-
rying before taking them to other customers. But if the failed vehicle was
carrying non customer-specific commodities, then there is no need for it to
be visited by any of the other vehicles delivering to the remaining customers
on its route.

Another issue is the degree of flexibility that is to be allowed in the
revised plan. For example, some formulations assume that following a vehicle
breakdown, the remaining customers on its route will be served by one of the
other vehicles in the same order after completing one of their original trips.
This simplifies the formulation of the disruption management problem. Such
a formulation can be easily modified for situations involving non customer-
specific and customer-specific commodities. However there are cases where
less costly revised plans can be built if the remaining customers that were
to have been visited by the failed vehicle are allowed to be served by two or
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more different vehicles.
For example, suppose that there are two customers remaining to be served

on a trip affected by a vehicle breakdown and non customer-specific commodi-
ties are being distributed. If two of the other vehicles have enough capacity
to add a delivery to one of those remaining customers, but not both, then
revising the routes of these two vehicles to serve one of the remaining cus-
tomers each is likely to be cheaper than a revised plan where a vehicle needs
to reload at the depot, or another vehicle needs to be employed, in order to
serve both the remaining customers on the affected trip.

A further detail of the formulation that should be specified is when vehi-
cles can be re-routed after starting a trip in the original plan. Some formu-
lations require that an existing trip must be completed by a vehicle before it
can be used to respond to the disruption. In other cases, the formulation may
allow a vehicle to divert from its original route during a trip. The change in
route might only be allowed after the vehicle has finished serving the next
customer on its route, which could aid implementation if the driver can only
receive new instructions from the transport manager while at a customer
location. If there are good communication facilities between the transport
manager and the drivers, then it may be feasible to divert a vehicle during
its journey between customers, but in this case, it is particularly important
to allow for the time needed between the disruption being reported and the
production of the revised plan when implementing the changes.

Particularly in the case of vehicle breakdown, an important consideration
is whether another vehicle and driver are available at the depot or not. If
one is available or can be hired, then any additional costs incurred should be
taken into account in the formulation.

There are also differences in disruption management formulations regard-
ing the service to customers included for service in the original plan. Some
formulations assume that all original customers must receive their service,
even if it is at a different time to the original plan, while other formulations
allow for the possibility of canceling some customer orders. In this case, the
loss in profit or a customer dissatisfaction cost is normally included in the
objective.

The disruption management problem is normally some sort of optimiza-
tion problem, subject to constraints. It may be expressed as an integer linear
program. If this is done, there is then the question of whether to solve it
exactly or whether it is more appropriate to devise a heuristic algorithm to
obtain a good answer quickly. This will depend on how the problem has
been formulated, the size of the problem instances and the computational
time that is available to produce and communicate the revised plan. The
vehicle routing problem itself is well known to be NP-Hard and so it might
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be expected that an associated disruption management problem may also be
NP-Hard. This may not necessarily be the case, though some papers con-
tain proofs that their formulation of the disruption management problem is
NP-Hard. Even if the disruption management problem is NP-Hard, it may
still be viable to make use of an exact approach in practice and an example
is provided by J.-Q. Li et al. (2008a).

As has already been mentioned, in disruption management there are po-
tentially several objectives that are relevant. It is therefore important to
consider whether one of these objectives (e.g. the operational costs) is so
important that only this objective needs to be taken into consideration in a
single objective formulation. Alternatively, some form of multiple-objective
approach could be employed. This could be a simple weighting system where
a single objective to be optimized is formed by summing the values of the
relevant objectives weighted by parameters that reflect their importance. A
lexicographic approach could be employed where the relevant objectives are
ordered in terms of importance and the revised disruption plan is made taking
these priorities into account. As in other multi-criteria problems, methods
are available to determine a set of non-dominated solutions forming a Pareto
front from which the decision maker can select a preferred solution. How-
ever there may not be enough time available before the revised plan needs
to be implemented for all these potential solutions to be calculated and one
selected.

2.8.3 Discussion of relevant papers

In this subsection, a set of papers have been selected describing an approach
to disruption management in the context of vehicle routing and scheduling
for freight distribution. Some of the papers employ a methodology that can
be applied more widely, but the focus in this subsection is on the freight
distribution scenario. Papers by the same author or group of authors are
presented consecutively, while the rest of the papers are listed according to
the year of publication.

Table 2.1 provides a summary of the papers covered in this subsection.
The first column references the paper. The second column indicates the
main type or types of disruptions addressed in the paper where V denotes
vehicle breakdown, L denotes a disrupted link in the road network, S denotes
a disruption in the supply of goods and C denotes a disruption in customer
demand. The third column lists the main objectives considered in the paper
and the final column indicates the solution approach.

J.-Q. Li et al. (2007a) introduce the Vehicle Rescheduling Problem (VRSP),
which arises in cases when a severe disruption such as an accident, a me-
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Table 2.1: Summary of papers on Disruption Management in Vehicle Routing and Scheduling for freight distribution

Reference Type of
disruption

Objective Solution approach

J.-Q. Li et al. (2007a) V Op. cost, delay Auction-based alg.
J.-Q. Li et al. (2007b) V Op. cost, delay Auction-based alg.
J.-Q. Li et al. (2008a) V Op. cost, delay Exact alg. using CPLEX
J.-Q. Li et al. (2009a) V Op., fixed vehicle, service cancellation, route dis-

ruption costs
Lagrangian heuristic

J.-Q. Li et al. (2009b) V Schedule disruption, trip cancellation costs Lagrangian heuristic
Ernst et al. (2007) V, S, C Lost sales, relocation, substitution and delay costs Heuristic
Zhang & Tang (2007) V, L Min. distance, deviations from plan ACO with Scatter Search
X. Wang & Cao (2008) C Op. cost, deviations Local search
X. Wang et al. (2009a) V Customers serviced, deviations, op. cost Genetic algorithm
X. Wang et al. (2009b) C Op. cost, deviations Genetic algorithm
Z. Wang & Shi (2009) L Customers serviced, deviations, op. cost Genetic algorithm
X. Wang et al. (2010) V Service times, deviation of routes, op. cost Lagrangian relaxation
X. Wang et al. (2012) V, S, C Service times, deviation of routes, op. cost Nested Partitions Method
Mu et al. (2011) V Op. cost Tabu search
Mu & Eglese (2013) S Op. cost Tabu search
Hu & Sun (2012) V, L, C Travel distance, time violations Knowledge based approach, local search
Hu et al. (2013) V, L, C Op. cost, affected customers, time window viola-

tions, rejected demand
Knowledge based approach, local search

Minis et al. (2012) V Max. profit Genetic algorithm
Mamasis et al. (2013) V Routing costs, customer priorities Heuristic
Ngai et al. (2012) V, L, C Operating cost Model management subsystem
Dhahri et al. (2013) V Distance and time window deviation VNS
Jiang et al. (2013) V, L Min. delay, distribution cost, deviation of routes,

customer priorities
Genetic Algorithm

Spliet et al. (2014) C Cost of deviation Heuristic and MIP
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chanical failure of a vehicle or traffic congestion, prevents the execution of
the scheduled trips as planned. For instance, in the event of a vehicle break-
down, one or more vehicles must be rescheduled in order to serve the pas-
sengers/cargo of that trip. The VRSP seeks to serve the passengers/cargo
on the affected trip and complete all remaining trips, while minimizing the
operation and delay costs. The authors present a prototype decision support
system which recommends solutions for the single-depot vehicle reschedul-
ing problem (SDVRSP) and for the single-depot vehicle scheduling problem
(SDVSP). They use a quasi-assignment formulation and a combined forward-
backward auction algorithm, developed by Freling et al. (2001) to solve both
the SDVSP and the SDVRSP, where the latter is treated as a sequence of
SDVSP problems. The rescheduling decision support system is used in a real
world problem involving the operational planning of solid waste collection
for a city in Brazil.

J.-Q. Li et al. (2007b) also study the single-depot VRSP with focus on its
modeling, algorithmic and computation aspects. A model formulation and
several fast algorithms are presented, including parallel synchronous auction
algorithms. They introduce the concept of the common feasible network
(CFN). Among the algorithms they consider, parallel CFN-based auction
algorithms have the best performance.

J.-Q. Li et al. (2008a) provide a further investigation of the case study
involving waste collection in Porto Alegre, Brazil that was included in J.-
Q. Li et al. (2007a). This study concentrates on the rescheduling problem
where a trip that has been scheduled is cut due to the breakdown of one
of the vehicles. The objective is taken to be minimizing the sum of the
operational and delay costs. The formulation is presented as a non-linear
program which is converted using a standard technique into an integer linear
program. Additional constraints had to be taken into consideration, such
as the need to obtain approximately balanced assignments of truck loads to
different recycling facilities. Computational results are reported based on
real-world data. The instances used were relatively small, consisting of 23
vehicles and 31 trips, which meant that the integer linear programs could
be solved optimally using CPLEX in a short CPU time. The results showed
reductions in the distances traveled and the time delays compared to the
manual strategy that was employed.

J.-Q. Li et al. (2009a) introduce and study Real-Time Vehicle Rerouting
Problems with Time Windows, applied in the case of a disruption to delivery
and/or pickup services due to vehicle breakdowns. They define the Real-Time
Vehicle Rerouting Problem with Time Windows as follows: “Given a depot, a
number of vehicles with the limited capacities, and a set of customer services
having demands with time windows, given the travel time between all pairs of
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locations, given the vehicle routes originally planned, and given a breakdown
vehicle with the breakdown time and position, find feasible route reassign-
ments with the minimum weighted sum of operating, fixed vehicle, service
cancellation and route disruption costs, in which (i) each vehicle performs
a feasible sequence of services, satisfying constraints related to the service
time windows and vehicle capacities; and (ii) a service is either satisfied, or
cancelled with a large service cancellation cost when some constraints cannot
be satisfied.” The authors present a path-based formulation of the problem
and a heuristic incorporating Lagrangian relaxation and an insertion based
primal heuristic. They also use a dynamic programming based heuristic to
solve the Lagrangian relaxation problem quickly, but not necessarily to opti-
mality. Computational experiments are performed on benchmark problems
taken from Solomon (1987) to show the effectiveness of the proposed algo-
rithm. Additionally, the authors show that the Real-Time Vehicle Rerouting
Problems with Time Windows, both in the case of a pickup and in the case
of a delivery service, are NP-hard by association with the VRPTW and the
TSPTW, respectively.

J.-Q. Li et al. (2009b) addresses a similar disruption management problem
to the one studied in J.-Q. Li et al. (2009a). The approach is characterised by
a formulation that seeks to minimize the total weighted sum of costs relating
to operating costs, disruption costs and trip cancellation costs. In this paper,
computational experiments are carried out using a range of randomly gener-
ated problems. The results are compared with a simple intuitive approach
and it is found that the proposed algorithm is more beneficial compared to
the intuitive approach when there is no back-up vehicle available at the depot
or when breakdowns occur later rather than earlier in a trip.

Ernst et al. (2007) describe a case study where software has been devel-
oped to assist a recreational vehicle rental company based in New Zealand
in its operations. The dynamic version of the software is referred to as the
Dynamic Vehicle Assignment and Scheduling System (D-VASS). It is used to
respond to availability queries from reservation staff, but can also be used to
modify the schedule when there are disruptions such as vehicle breakdowns
or delays in returning vehicles. The heuristic developed aims to minimize
the sum of costs due to foregone profit if potential rentals are not included,
relocation costs, substitution costs and costs due to delayed starts beyond
requested commencement times, subject to a set of constraints. The heuristic
is based on the successive shortest path method for solving the assignment
problem.

Zhang & Tang (2007) present a rescheduling model for a Vehicle Routing
Problem with Time Windows. The paper concentrates on vehicle disrup-
tions, where a vehicle becomes unavailable due to a breakdown or a traf-
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fic incident. The objective is to find a new schedule that minimizes total
distance and deviations from the original plan. A hybrid algorithm which
combines ant colony optimization (ACO) with scatter search is proposed to
solve the disruption problem. Computational results are reported to show
the effectiveness of the hybrid algorithm.

X. Wang & Cao (2008) address the case where, during the execution
of a solution plan for a vehicle routing problem with backhaul and time
windows (VRPBTW), a disruption occurs in the form of a change in demand
concerning the demand for backhaul services. A recovery model is proposed
considering the disruption to customers from deviations to planned service
times and the operating costs to the logistics service provider. Two strategies
and a local search algorithm are designed to find an optimal or near-optimal
solution in real time.

X. Wang et al. (2009a) present a disruption management model to solve
the vehicle routing problem with vehicle breakdown. The problem under
study and the proposed model are similar to the ones presented in X. Wang
et al. (2010), which is discussed in more detail later. This paper uses a genetic
algorithm for its solution approach.

In X. Wang et al. (2009b) the emphasis is on applying a disruption man-
agement approach when there are changes to the customers and their demand
requests. A model is constructed which is compatible with the VRPTW. The
solution approach is based on a genetic algorithm and computational results
are presented to illustrate the method used.

Z. Wang & Shi (2009) address the case of a travel time delay of a route
in a single-depot VRPTW. The delay could be caused by traffic congestion
due to an accident or another unexpected event during a vehicle’s route.
A disruption measurement method is presented which takes into account
the customer unsatisfied index, the deviation from the original transport
network and the transport cost. A disruption recovery mathematical model
and a genetic algorithm are constructed. The model and solution method are
similar to those discussed in X. Wang et al. (2009a). Experimental results
are provided for a small set of problems and show that the model’s multiple
objectives can be met simultaneously, according to the disruption evaluation
criteria.

X. Wang et al. (2010) study the “Urgency Vehicle Routing Disruption
Management Problem” where a disruption caused by a vehicle breakdown
occurs in a logistics distribution system. They propose a mathematical model
which is based on the theory of disruption management. A Lagrangian re-
laxation is used to simplify the model, decomposing it into two parts. An
insertion algorithm is then used to obtain a feasible solution for the primal
problem. When a disruption occurs, the authors assume that there are extra
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vehicles available at the depot. They also allow the cancellation of servicing
of some customers. In order to quantify the magnitude of the disruption, the
authors focus on three aspects of a solution: the service time of customers,
the routes of service vehicles and the costs of the logistics provider. The
model involves three objective functions. The first objective is the sum of
the differences of the service time between the new plan and the original
plan, for each customer. This is the total time deviation for the whole set
of customers, which seeks to be minimized, and reflects the need that the
service times in the new plan should be as close to the ones in the original
plan as possible. The second objective seeks to minimize the deviation of
routes between the original plan and the recovery plan. The third objective
seeks to minimize other costs incurred by the deviation from the original
plan, including the costs from deviation of routes, the cost of sending addi-
tional vehicles and the cost of canceling some customers. The Lexicographic
approach is used to deal with the multiple objectives.

X. Wang et al. (2012) propose a recovery model for disruptions for the
VRPTW, capable of handling a combination of disruptions. They try to
follow closely the principles of Disruption Management and aim to reduce
any deviations from the original plan. The authors report that, according
to interviews with delivery drivers, drivers usually prefer routings they are
familiar with, because they know the customers, the exact locations and the
delivery processes. Customers also prefer familiar delivery staff. Therefore,
they propose a mathematical model with the following three objectives. The
first objective, which is a measurement of the disruption on customers, seeks
to minimize the deviation of the time of start of service of customers be-
tween the original plan and the recovery plan. The second objective, which
is a measurement of the disruption on drivers, seeks to minimize the devia-
tion of routes between the original plan and the recovery plan. Apart from
penalizing the change in travel distance, this objective penalizes any change
which involves moving a customer from one route to another, or exchang-
ing customers between routes. The third objective, which is a measurement
of the disruption on providers, seeks to minimize the deviation of the to-
tal delivery costs between the original plan and the recovery plan (which is
equivalent to minimizing the total delivery costs of the recovery plan, since
the costs of the original plan are fixed). They define the delivery costs as
a linear combination of the total travel distance and the number of vehicles
used. In their study they consider the following types of disruption: vehi-
cle breakdown, blocked vehicle, damaged cargo (fully or partially), change
of customer’s time windows, change of customer’s delivery address, change
of customer’s demand amount, removal of customers. They also consider
combinations of those disruptions occurring successively or simultaneously.
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They apply the Nested Partitions Method (NPM) to solve the problem. The
authors conclude by acknowledging the need for a more effective and efficient
multi-objective optimization algorithm, which would aid in the development
of a decision support system for different disruption events that occur during
logistics deliveries.

Mu et al. (2011) study the disrupted VRP with vehicle breakdown during
the execution of a vehicle routing plan. It is assumed that vehicles deliver
a single commodity, which is transferable between customers (such as oil or
gas), so that any customer can be served by any vehicle, as long as the ve-
hicle carries enough quantity to serve him/her. The case of an extra vehicle
being available at the depot is considered. All customers must be served
and there is no upper bound on the total length or duration of the routes.
The paper shows the link between the formulation adopted for the disruption
management problem and an Open Vehicle Routing Problem (OVRP). Of
course, this particular type of the disrupted VRP is not exactly the same as
an OVRP, since in the disrupted VRP both ends of each route are fixed once
a disruption occurs. Two Tabu Search heuristic algorithms are developed
and tested over a set of test problems generated for the purpose. The com-
putational results of the heuristics are then compared to an exact algorithm
based on the method proposed by Letchford et al. (2007) for the OVRP.

Mu & Eglese (2013) study the situation when the supply of the commodity
does not arrive at the depot on time, so that not enough of the commodity
is available to be loaded on all vehicles at the start of the delivery period.
The Disrupted Capacitated VRP with Order Release Delay (DCVRP-ORD)
is introduced, which involves multiple trips and allows some vehicles to wait
at the depot. Two Tabu Search heuristic algorithms are proposed. The
authors assume that vehicles deliver a single commodity, which is transferable
between customers (such as oil or gas), so that any customer can be served
by any vehicle, as long as it carries enough quantity to serve him/her.

Hu & Sun (2012) present a knowledge-based modeling approach for dis-
ruption management in urban distribution. The knowledge of experienced
schedulers is combined with operations research models and algorithms to re-
vise the distribution plan and respond to a disruption in real-time. Policies,
algorithms and models are represented by appropriate knowledge represen-
tation schemes, in order to support automated or semi-automated modeling
by computers. The integration of the two kinds of knowledge combines the
advantages of both and the approach is developed in Hu et al. (2013) which
is described below.

Hu et al. (2013) develop a knowledge-based modeling approach, referred
to as PAM (disruption-handling Policies, local search Algorithms and object-
oriented Modeling), which can dynamically handle disruptions in Real-time
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Vehicle Routing Problems. Their study is similar to the one presented in Hu
& Sun (2012). This approach combines the scheduling knowledge of expe-
rienced schedulers with the optimization knowledge concerning OR models
and algorithms, to obtain an effective solution in real time. Types of dis-
ruptions examined in this paper include: postponed delivery time, advanced
delivery time, repairable vehicle breakdown, road construction, demand in-
creasing, order canceling, disabled road, disabled vehicle. The first four types
of disruption are handled using the same ‘time violation’ policy, whereas a
separate policy is used for each of the remaining four types of disruption.

Minis et al. (2012) also study the case where, during the execution of the
original VRP plan, a vehicle breakdown occurs. The problem is modeled as a
variation of the Team Orienteering Problem (TOP), with a fixed upper bound
on the length in time or distance of each route, and fixed vehicle capacity. A
heuristic is proposed, which compares favorably to a computationally more
expensive Genetic Algorithm. Specifically, for a computational time of 10
minutes, the heuristic results are only 3% away from those of the GA for
the most complex problem set used (98 clients). The GA was used to set
benchmark solutions for the heuristic, which is justified by the fact that the
GA was used to solve TOP benchmark problems and gave results very close to
the best published results. The authors assume that the orders are customer-
specific, so each vehicle can only serve its own customers and the customers
of the failed vehicle. There is no extra vehicle available at the depot. The
problem is modeled as a profit maximization problem, in which a set of
vehicles are routed to maximize the total reward accumulated by serving
clients, within a predefined time horizon, where some of the customers might
not be served. Priority is given to the most important customers, where the
importance is considered equivalent to the reward of the TOP. In order to
serve clients of the failed vehicle, an active vehicle must first visit the location
of the failed vehicle and load the relevant orders from the failed vehicle to
the active one. An active vehicle is allowed to visit the failed vehicle more
than once. The proposed heuristic has been incorporated in a real-time fleet
management system of a food company operating in the region of Attica,
Greece, and tested in practical breakdown cases with success.

Mamasis et al. (2013) also address the case where, during the distribution
of a single product to a set of customers by a fleet of vehicles, a single vehicle
is immobilized (vehicle breakdown). Some active vehicles are then rerouted
to serve selected clients of the immobilized vehicle. This re-planning prob-
lem is modeled as a variation of the Team Orienteering Problem. All vehicle
routes are constrained to an upper time or distance limit. A vehicle capacity
constraint is also present. There are no extra or back-up vehicles available at
the depot. Active vehicles are allowed to visit the depot and/or the immobi-
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lized vehicle (more than once, if needed), for replenishment purposes. Clients
are served based on their importance, which is a rating assigned a priori to
each client. Some clients may remain unserved. Reallocation of clients among
vehicles is feasible, given that the respective vehicles carry enough quantity
of the product to satisfy clients’ demand, since the product to be delivered
is common to all clients. The rerouting decisions in the modified plan are
based on client importance, routing costs (times) and capacity restrictions.
A heuristic is proposed which can provide solutions in almost real-time. The
effectiveness of the heuristic is tested by comparing its solutions with those
obtained by an appropriate Genetic Algorithm, which yields high quality re-
sults but is computationally expensive. Some applications of the problem
mentioned in this paper include: Distribution systems dealing with critical
commodities, such as vital supplies in relief logistics, cash in money trans-
fer operations, transfer of staff or ammunition from incapacitated military
vehicles (in battlefield operations), or in general distribution of any single
product (e.g. bottled water).

Ngai et al. (2012) is an example of a paper where the emphasis is on the
design of a complete decision support system that can help to reschedule a
distribution plan following an accident or other incident which disrupts the
original plan. The system includes a model management subsystem which
aims to minimize the total operating costs of the rescheduled plan. A proto-
type system was built and evaluated for a case study concerning a supplier
of portable toilets based in Hong Kong.

Dhahri et al. (2013) present a rescheduling model based on Variable
Neighborhood Search (VNS), for the VRPTW when one or more vehicles
require maintenance activities after the supply of a set of customers. In this
paper only one type of disruption is considered, namely vehicle breakdown.

Jiang et al. (2013) study two variants of the disrupted VRP: A single-
vehicle delivery disruption management recovery model with service priority,
and a more generalized multi-vehicle version of it. The customers are divided
into high-priority and low-priority customers. When a delay happens, prior-
ity is given to serving all the key customers in their original time windows;
this is imposed as a hard constraint. A genetic algorithm is proposed to solve
the problems.

Spliet et al. (2014) study the Vehicle Rescheduling Problem (VRSP). In
the classical CVRP the demand is deterministic and known before planning.
This paper considers the situation where the demand becomes known at a
late moment. For example, in the retail industry a common situation occurs
when individual stores place their orders a few days, or sometimes just one
day, before delivery. In such a case, it is beneficial for operational processes to
prepare the delivery plan before the orders are placed. A common practice in
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this case is to have a long term schedule or master schedule prepared, serving
as a guiding plan over a certain period of time during which multiple deliv-
eries are made. For example, a master schedule could describe the weekly or
daily deliveries for the next 6 months. Such a master plan is usually created
by solving deterministic CVRP instances based on the average customer de-
mands and demand predictions for the upcoming period. Since the master
schedule is prepared before demand realizations become apparent, when the
demand becomes known, this schedule may no longer be optimal, or even fea-
sible. In these cases, which occur frequently in practice, the master schedule
has to be revisited. A new schedule has to be constructed, once demand re-
alizations become known, which will typically deviate from the master plan.
Given the master schedule and a demand realization, the VRSP seeks to
find a new schedule which minimizes the total travel cost and the cost of
deviating from the master plan, while respecting the capacity constraints.
The authors present a MIP formulation for the rescheduling problem, based
on a CVRP formulation by Baldacci et al. (2004), along with a two-phase
heuristic solution method.

2.9 Additional Literature on Disruption Man-

agement in Vehicle Routing and Schedul-

ing

In this section we review a number of additional papers relevant to disruption
management in vehicle routing and scheduling, which do not necessarily refer
to freight transportation.

J.-Q. Li et al. (2008b) consider the case when a bus on a scheduled trip
breaks down and in response, one or more buses need to be rescheduled in
real-time, in order to serve the customers on the affected trip with min-
imum operating and delay costs. This problem is referred to as the bus
rescheduling problem (BRP). Modeling, algorithmic and computational as-
pects of the single-depot BRP are considered in the paper. Sequential and
parallel auction algorithms are developed and experimental results show that
the proposed approaches are able to produce solutions quickly.

Mirchandani et al. (2010) describe a macroscopic model for integrating
Bus Signal Priority with Vehicle Rescheduling. In case of a bus breakdown on
a scheduled trip, one or more vehicles need to be rescheduled to serve that
trip and other scheduled trips. The vehicle rescheduling problem (VRSP)
seeks to reassign and reschedule the bus fleet in order to minimize the sum of
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operating costs, delay costs, schedule disruption costs and trip cancellation
costs. Bus signal priority (BSP) is an effective strategy to facilitate bus
movement through signalized intersections. If BSP is integrated with the
vehicle rescheduling operations, the travel time of the backup bus to the
stranded passengers can be reduced. Therefore, the combination of BSP and
VRSP effectively reduces the delay and the associated costs, which can be
verified from the experimental results.

Carosi et al. (2015) propose a decision support tool for the real-time delay
management in the context of public transportation. A simulation based
optimization system is proposed, which takes into account both vehicle and
driver shifts. They describe a tabu-search procedure for the online vehicle
scheduling, optimizing the regularity of the service, and a column generation
approach for the consequential crew rescheduling to minimize the drivers’
extra time. As a case study, the authors analyze the management of urban
surface lines of a public transportation company operating in Milan.

Sun et al. (2016) propose an ontology-based model for typical context
awareness in the oil products distribution system. The model consists of the
disruption ontology, the distribution-state ontology and the SWRL rules.
During the distribution process of oil products, a range of different types
of disruptions can occur at different distribution states. Examples of such
disruptions include gas stations changing their demands, vehicle breakdowns,
blocked links induced by accidents and traffic jams. Vehicle routes must be
readjusted in real time in order to respond to the disruptions; otherwise the
oil products distribution process will be interrupted, which can negatively
affect the social production and citizens’ living.

Uçar et al. (2017) present a recovery method to handle two types of dis-
ruptions arising in the multi-depot vehicle scheduling problem: delays and
extra trips. During the execution of a vehicle (or bus) scheduling problem
(VSP), a delay may be caused by adverse weather conditions or by traffic
congestion. The second type of disruption may be caused by the excess de-
mand for a particular origin-destination pair that mandates the planners to
insert an extra trip into the schedule at the operation phase. Both types
of disruption are quite common in countries with a large bus transportation
network (e.g. Turkey). A trivial recovery option for both types of disrup-
tion is to use an extra vehicle to cover the trips succeeding the delayed trip,
or to cover the extra trip itself. However, this option would involve addi-
tional costs and may cause issues in crew scheduling. Hence, a much more
preferable option would be to recover the delay or cover the extra trips by
rescheduling the routes of the active vehicles. The disruptions are indirectly
incorporated into the planned schedule by anticipating their likely occurrence
times. The proposed disruption recovery method is based on partially swap-
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ping two planned routes, so that if these disruptions actually occur, the effect
on the planned schedule would be minimal. A mathematical programming
model incorporating these robustness considerations is proposed. An exact
simultaneous column-and-row generation algorithm is designed, which can
be used to find a valid lower bound. Finally, a heuristic is designed, capable
of yielding small optimality gaps in a short computation time and present
recovery solutions that can actually be operated when the disruptions are
realized.

Ng et al. (2017) present a multiple colonies artificial bee colony algorithm
for a Capacitated VRP and re-routing strategies under time-dependent traffic
congestion. A flexible delivery rerouting strategy is proposed, which aims at
reducing the risk of late delivery.

2.10 Multi-objective Optimization

We will now present some basic concepts, notation and a general formula-
tion of multi-objective optimization problems, following closely the book by
Branke et al. (2008), which constitutes a comprehensive guide to this field.
A multi-objective optimization problem is typically a problem of the form

minimize {f1(x), f2(x), ...., fk(x)}
subject to x ∈ S

(2.10.1)

that involves k (k ≥ 2) conflicting objective functions fi : IRn → IR which we
wish to minimize simultaneously. The decision vectors x = (x1, x2, ..., xn)T

belong to the feasible region S ⊂ IRn, where S 6= ∅. The images of the deci-
sion vectors are called objective vectors, z = f(x) = (f1(x), f2(x), ...., fk(x))T ,
and consist of objective values f1(x), f2(x), ...., fk(x). The image of the
feasible region in the objective space is called the feasible objective region
Z = f(S).

In multi-objective optimization, objective vectors are considered to be
optimal if it is impossible to improve any one of their components, with-
out deteriorating at least one of the remaining components. Specifically, a
decision vector x′ ∈ S is termed Pareto optimal if there does not exist an-
other decision vector x ∈ S such that fi(x) ≤ fi(x

′) for all i = 1, ..., k and
fj(x) < fj(x

′) for at least one index j. The set of Pareto optimal decision
vectors is usually denoted by P (S). An objective vector is Pareto optimal
if the corresponding decision vector is Pareto optimal. The set of Pareto
optimal objective vectors is usually denoted by P (Z).
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The set of Pareto optimal solutions is a subset of the set of weakly Pareto
optimal solutions. A decision vector x′ ∈ S is called weakly Pareto optimal
if there does not exist another decision vector x ∈ S such that fi(x) < fi(x

′)
for all i = 1, ..., k.

Because vectors cannot be ordered completely, all the Pareto optimal so-
lutions (or non-dominated solutions) can be regarded as equally desirable in
the mathematical sense, and we need a decision maker to identify the most
preferred one among them. This is because, despite the fact that typically
multiple non-dominated solutions exist, in practice, usually only one of them
is eventually chosen. Therefore, there are at least two important tasks in-
volved in multi-objective optimization: (i) an optimization task for finding
the set of Pareto optimal solutions, and (ii) a decision-making task for choos-
ing the single most preferred solution (which requires preference information
from a decision maker).

Multi-objective optimization methods are often classified into the four
following classes, according to the role of the decision maker in the solution
process: (i) no-preference methods, where there is no preference information
available from the decision maker, (ii) a priori methods, where the decision
maker first provides preference information and aspirations and then the
solution process tries to find a Pareto optimal solution satisfying those as
well as possible, (iii) a posteriori methods, where a representation of the set
of Pareto optimal solutions is generated first, and then the decision maker
is asked to select the most preferred one among them, and (iv) interactive
methods, where an iterative solution algorithm is formed and repeated sev-
eral times, and after each iteration, some information is given to the decision
maker and he/she is asked to specify preference information. Some of the
basic methods of non-interactive multi-objective optimization are: weighting
method, ε-constraint method, method of global criterion, neutral compro-
mise solution, method of weighted metrics, achievement scalarizing function
approach, value function method, lexicographic ordering, and goal program-
ming.

Marler & Arora (2004) present a survey of continuous non-linear multi-
objective optimization (MOO) concepts and methods. Also, Alves & Climaco
(2007) provide a review of interactive methods devoted to multi-objective
integer and mixed-integer (MOIP/MOMIP) programming problems.

Below we describe two important methods for solving multi-objective
optimization problems, which we use extensively in our research (following
Branke et al. (2008)): the Weighting Method and the Epsilon-Constraint
Method. We also mention the more recent Quadrant Shrinking Method, be-
fore we present a short discussion on performance metrics in multi-objective
optimization.
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2.10.1 Weighting Method

One of the most well-known and widely used multi-objective optimization
methods is the weighting method. This method refers to solving the following
problem:

minimize
k∑
i=1

wifi(x)

subject to x ∈ S
(2.10.2)

where wi ≥ 0 ∀ i = 1, ..., k and, typically,
k∑
i=1

wi = 1.

The solution of this problem can be shown to be Pareto optimal if wi >
0 ∀ i = 1, ..., k or if the solution is unique (e.g. see Miettinen (1999)).

The weighting method can be used both as an a posteriori method, and
as an a priori method. In the first case, different weights are used to generate
several different Pareto optimal solutions, and afterwards the decision maker
is asked to choose the single, most satisfactory solution among these. In
the second case, the decision maker is initially asked to specify the weights,
according to his or her relevant preference of the objectives, and then the
problem is solved.

In general, in multi-objective optimization it is important that the solu-
tions generated are Pareto optimal, and that any solution that belongs to
the set of Pareto optimal solutions can be found. From this point of view,
the weighting method has some serious limitations. It can be shown that any
Pareto optimal solution can be reached by varying the weights only if the
problem is convex. So, it is possible that some non-dominated solutions of
non-convex problems cannot be detected using this method, no matter how
the weights are selected. Therefore, the weighting method does not work
correctly for non-convex problems.

Suppose that we are interested in using the weighting method as an a
posteriori method, so that we vary systematically the weights wi, i = 1, ..., k,
and for each choice of weights we solve a mathematical program of the form
(2.10.2). It is generally advisable that the weights are normalized with some
scaling. Systematic ways of perturbing the weights in order to reach differ-
ent Pareto optimal solutions can be found in Chankong & Haimes (1983).
However, as was shown by Das & Dennis (1997), an evenly distributed set
of weights may not necessarily produce an evenly distributed representative
subset of the Pareto optimal set, even in the cases where the problem is con-
vex. In other words, even by normalizing the objectives with some scaling
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and then systematically varying the weights, there is no guarantee that the
subset of non-dominated solutions found will be a good representation of the
Pareto front. Instead, for a good representation of the Pareto front, other
multi-objective optimization methods may be more appropriate, such as the
Epsilon-Constraint Method.

2.10.2 The ε-Constraint Method

In the ε-Constraint Method (or Epsilon-Constraint Method (ECM)), we se-
lect one of the objective functions as the main function to be optimized,
while the others are converted into constraints. The problem therefore gets
the following form:

minimize fi(x)

subject to fj(x) ≤ εj ∀ j = 1, ..., k, j 6= i

x ∈ S
(2.10.3)

Here i ∈ {1, ..., k}, whereas εj is an upper bound for the objective fj, for all
j = 1, ..., k with j 6= i. This method was introduced in Haimes et al. (1971)
and discussed extensively in Chankong & Haimes (1983).

It can be proven that the solution of the above problem is always weakly
Pareto optimal. Moreover, x∗ ∈ S can be shown to be Pareto optimal if
and only if this decision vector solves (2.10.3) for every i = 1, ..., k, where
εj = fj(x

∗) for j = 1, ..., k, j 6= i. Additionally, a unique solution of (2.10.3)
can be shown to be Pareto optimal for any choice of upper bounds.

Therefore, to ensure Pareto optimality, one must either solve k different
problems (which increases computational cost), or obtain a unique solution
(something which is not necessarily trivial to verify). However, an advantage
of the ECM over the weighting method, is that finding any Pareto optimal
solution does not require convexity. Therefore, the ECM works for both
convex and non-convex problems.

Chankong & Haimes (1983) suggests systematic ways of perturbing the
upper bounds for obtaining different Pareto optimal solutions. This way,
the ECM can be used as an a posteriori method. Alternatively, the ECM
can also be used as an a priori method, by asking the decision maker to
specify the function to be optimized and the upper bounds, before solving
the mathematical program.
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2.10.3 A recent algorithm: The Quadrant Shrinking
Method

A recent method that has been developed for solving tri-objective integer
programs (TOIPs) is the Quadrant Shrinking Method (QSM), introduced by
Boland et al. (2017). This is a very efficient exact algorithm for generating
the complete non-dominated frontier of a multi-objective integer program
with 3 objectives. It is a variant of the full 2 split method for TOIPs. The
QSM solves at most 3|yN |+ 1 single-objective integer programs, where yN is
the set of all non-dominated points. Computational results verify that QSM
outperforms existing algorithms for TOIPs.

2.10.4 Performance indicators in Multi-Objective Op-
timization

Generally speaking, in single-objective optimization it is trivial to quantify
the quality of a solution: for minimization problems, the smaller the objec-
tive value, the better. However, in multi-objective optimization the task of
evaluating the quality of a Pareto front approximation is more complicated.
For this, a large number of performance indicators have been developed in
the past decades. These indicators have been introduced in order to measure
the quality of approximation of the Pareto front by different algorithms.

Audet et al. (2018) review a total of 57 such performance indicators, which
are categorized into four groups according to the following properties: car-
dinality, convergence, distribution and spread. The main purposes of using
performance metrics are: (i) to allow the comparison of different algorithms,
(ii) to be used as stopping criteria at various stages of multi-objective opti-
mization algorithms, and (iii) to identify promising performance indicators
for evaluating and improving the distribution of points for a given solution.
For the purpose of comparing algorithms, Audet et al. (2018) consider the
hyper-volume indicator to be the most relevant metric, and report that its
efficiency compared to other performance metrics is the main reason why it
is widely used in the evolutionary community.

Further discussion and review of methods for comparing and assessing
Pareto set approximations can be found e.g. in Zitzler et al. (2008).
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2.11 Multi-objective Optimization for Vehi-

cle Routing and Scheduling

Multi-objective optimization methods have been applied extensively to model
and solve problems in the area of vehicle routing and scheduling.

Rancourt & Paquette (2014) introduce and solve the US MOVRTDSP,
a multi-objective vehicle routing and truck driver scheduling problem which
satisfies the legislative requirements on work and rest hours in the US. They
present a Tabu Search algorithm which solves the problem and provides a
heuristic non-dominated solution set, from which trade-offs between oper-
ating costs and driver inconvenience are evaluated. Trade-offs between the
number of vehicles used and the operating costs are also investigated.

Ombuki et al. (2006) represent the VRPTW as a multi-objective problem
with two objectives to be minimized, namely the number of vehicles used
and the total cost, and present a genetic algorithm solution using the Pareto
ranking technique.

Jozefowiez et al. (2008) provide a survey of multi-objective optimiza-
tion in routing problems. They examine routing problems in terms of their
definitions, their objectives and the multi-objective algorithms proposed for
solving them. They report that the two main strategies most widely used
for solving multi-objective routing problems are weighted aggregation and
multi-objective evolutionary algorithms.

Lust & Teghem (2010) present a survey on the multi-objective traveling
salesman problem, along with a new approach for the problem, which they
call two-phase Pareto local search.

2.12 Conclusions

Having looked at the types of problems that have already been studied in the
area of disruption management in vehicle routing and scheduling, we have
decided to focus our research on a set of three new problems related to the
literature. These problems were introduced in chapter 1 and are examined
thoroughly in the following chapters. To the best of our knowledge, these
problems have never been studied before under the same assumptions.

The editor of TOP invited the contribution of a survey paper on disrup-
tion management in vehicle routing, Eglese & Zambirinis (2018a), which was
based on part of this literature review. As is the custom in TOP, the paper
was reviewed by other researchers and their comments have been published
in Gendreau (2018), Doerner & Hartl (2018), and Vigo (2018). The reviewers
have agreed that our survey paper is a useful summary, with the potential to
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encourage further research in this area, and also shows how these problems
relate to other dynamic or real-time problems in the transport area. We had
a chance to publish our response to the reviewers’ comments in our rejoinder,
Eglese & Zambirinis (2018b).
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Chapter 3

Problem 1 - The disrupted
VRP with Vehicle Breakdown:
Formulation & Exact Approach

3.1 Introduction

In this chapter we present the disrupted Vehicle Routing Problem with custo-
mer-specific orders and Vehicle Breakdown (d-VRP-cso-VB). In short, we will
also be referring to this problem as the disrupted VRP with Vehicle Break-
down (d-VRP-VB), or simply as Problem 1. We provide the problem defini-
tion and a mixed-integer linear programming (MILP) formulation, which can
be used directly in standard commercial optimization software (e.g. Cplex
or AIMMS) to find the exact optimal solution. We refer to this approach as
the exact approach for Problem 1. We then present the experimental results
from using this approach to solve 101 different instances which we created
specifically for this problem. Most of the instances of this dataset were cre-
ated by modifying some standard benchmark VRP instances taken from the
literature, and specifically from the Augerat et al. (1995) dataset.

The exact approach succeeds in providing optimal or very good quality
solutions in many cases within a short time frame. However, due to the fact
that the problem is NP-hard, for larger instances this approach may not be
suitable for finding a good-quality solution within a few minutes. Therefore,
a heuristic may be more suitable in these cases. Such a heuristic is presented
in the following chapter, along with comparisons between the two methods.

Of course, even in the cases where the exact approach provides an inferior
solution within a short time frame, when compared to the heuristic, the exact
approach may still contribute by providing a useful lower bound. This lower
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bound can be compared to the solution derived by the heuristic to calculate
a bound on the optimality gap; thus providing a guarantee on the quality of
the heuristic solution.

3.2 Problem overview

Assume that we have a Capacitated Vehicle Routing Problem (CVRP) with
a heterogeneous fleet in general (i.e. where vehicles may have different ca-
pacities) for which we have constructed a feasible solution plan, which would
typically be optimal or near-optimal. We will refer to this heterogeneous-fleet
CVRP as the original problem or underlying problem, and to the already de-
rived solution plan as the original or undisrupted plan.

Suppose that during the execution stage of this original plan, one of the
vehicles breaks down. Assume that the damage is severe enough so that it
cannot be restored within a few minutes by the driver alone. This causes
a disruption to the original plan, which in effect becomes infeasible. If no
further action is taken, the remaining customers of the disabled vehicle’s
route will never be served. Clearly the plan needs to be revised, so that all
the customers - including those that were to be served by the disabled vehicle
- are served by the remaining active vehicles.

We assume that in the original plan, d + 1 vehicles had departed from
a single depot (or, more generally, from a different position each), in order
to serve a given set of customers and return to the depot; but during the
execution of the plan one of the vehicles unexpectedly broke down. Therefore,
in the new or disrupted problem, we have a set of d active vehicles of different
capacities, in general, where each vehicle starts from a different position and
has to visit a preassigned set of customers before finishing at the depot. We
assume that this assignment of customers to vehicles had taken place during
the development of the original plan.

We also assume that the vehicles deliver customer-unique or customer-
specific orders and that there is a one-to-one match between orders and
customers. Each order may be unique (e.g. groceries), or may contain unique
packages or items, for which no copy or replacement exist. Therefore, goods
are non-transferable between customers. This is unlike some other vehicle
routing applications where vehicles may carry a single commodity (such as
oil or gas).

We further assume that there are no extra vehicles available, that there
are no split deliveries, that any parcel of the broken-down vehicle can easily
be transferred to any one of the active vehicles if necessary (along with the
accompanying documents), and that all customers have to be served. There-
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fore, each customer that was originally assigned to the broken-down vehicle
has to be served by one of the remaining d vehicles. In this case, any vehicle
that serves any subset of the disabled vehicle’s original customers, must visit
the location of the broken-down vehicle first, in order to load the correspond-
ing packages from the disabled vehicle to the active one. Note that, since
we assume that the packages being delivered are unique, the scenario of an
active vehicle returning to the depot to load a copy of the order of a customer
who was supposed to be served by the disabled vehicle, is not an option.

In the new problem we wish to construct a set of d routes, one for each
active vehicle, so that each customer is visited exactly once, while the relevant
capacity and precedence constraints are satisfied. We assume that in the
original problem the objective was to minimize the total travel time (which
can trivially be replaced by total distance or total travel cost). In the new
problem the main objective is also to minimize the total travel time; but for
practical reasons we also add a secondary objective, which is to minimize the
sum of arrival times of active vehicles at the depot. We assign an extremely
marginal weight to the second objective, so that it mainly serves as a tie-
breaker, in cases where multiple solutions with the exact same total travel
time exist.

At this point, it is worthwhile to mention that Mu et al. (2011) has studied
a similar problem, which was also called ’the disrupted VRP with vehicle
breakdown’. However, in their study they were assuming that vehicles were
delivering a single commodity such as oil or gas, so that in case of a vehicle
breakdown, any active vehicle could serve any customer without the need to
visit the disabled vehicle beforehand (provided that it carried the necessary
quantity to satisfy the demand, of course). Furthermore, they allowed the
use of extra vehicles.

In contrast, in our study we do not allow the use of any extra vehicles and,
more importantly, we assume that we have customer-specific and customer-
unique orders. These assumptions distinguish significantly the structure,
the solution space and the problem itself, compared to the one that was
previously studied.

In what follows in this chapter, we will present a MILP formulation for
this problem, which is based on the formulations of both the VRPTW and
the Pickup-and-Delivery VRPTW.

3.3 Problem definition

Assume that we have a feasible and optimal or near-optimal plan for a multi-
commodity Capacitated VRP with a heterogeneous fleet of d + 1 vehicles.
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Suppose that the vehicles have departed, either from a single depot, or more
generally each from a different position, in order to deliver goods to a num-
ber of customers. Note that the term multi-commodity here means that we
assume that the orders are customer-specific; i.e. each customer corresponds
to a unique set of items. So, once the orders are loaded to the vehicles and
the vehicles start their routes, only a single vehicle can serve any specific
customer, the one that carries his or her order. Now, suppose that after
the vehicles have departed from their starting points, one of the vehicles
breaks down. The original operational plan has to be quickly modified, in
such a way that all the customers whose items were loaded on the immobi-
lized vehicle, are now served by one of the remaining active vehicles of the
fleet. In order for this to happen, any active vehicle that visits a customer
of the immobilized vehicle, must visit the broken-down vehicle beforehand,
to transfer the relevant items from the disabled vehicle to the active one.
Essentially, revising the plan after such a disruption is a new problem. In
what follows, we describe the resulting problem, we establish the notation
and propose a mixed-integer linear programming formulation, which can be
used in a commercial solver to find the exact optimal solution.

Suppose that, once a disruption occurs, it takes τ time units for the
operations team to revise the plan and communicate this to the drivers, and
that the operations team can accurately estimate the position of the vehicles
τ time units later. Suppose that at time T0 the new plan is communicated
to the drivers. Thus, T0 denotes the time of start of the new plan, whereas
T0−τ denotes the time when rescheduling started. For the sake of simplicity
and without loss of generality, from now on we assume that T0 = 0. This
means that rescheduling started at time −τ , and at time 0 the new plan
starts.

This is the setting of the new problem, once the disruption occurs: Let d
be the number of active vehicles and n be the number of customers that are
or will still be unserved at time T0. From now on n will simply be referred
to as ’the number of customers’.

Let K = {1, 2, . . . , d} be the set of active vehicles and let K0 = K∪{d+1}
be the set of all vehicles of the fleet, including the broken-down vehicle, which
is represented by vehicle d + 1. This means that we assume that there are
no extra vehicles available at the depot, or anywhere else.

Let IC = {1, 2, . . . , n} be the set of customers and let ID = {n + 1, n +
2, . . . , n+ d} be the set containing the starting points of the active vehicles,
at the time instant T0. Node 0 represents the depot, which is the end-point
of each route.

Let Sk be the subset of customers originally assigned to vehicle k that are
still unserved at time T0, for all k ∈ K0. These sets are of course assumed to
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be known. The set {S1, S2, . . . , Sd, Sd+1} should form a partition of the set
of customers IC ; i.e. IC = S1 ∪ S2 ∪ . . . ∪ Sd ∪ Sd+1 and Si ∩ Sj = ∅ ∀ i, j ∈
{1, ..., d+ 1}, i 6= j.

In general, there are cases where the optimal solution may involve mul-
tiple visits to the broken-down vehicle by the same active vehicle, and/or
visits by more than one active vehicles. One of the novelties of the proposed
formulation is that it successfully models the feature of multiple visits to the
broken-down vehicle, either by the same vehicle or by different vehicles.

Let Sd+1 = {γ1, γ2, ..., γu} ⊆ IC be the set containing the customers
that were supposed to be served by the broken-down vehicle. The known
parameter u = |Sd+1| is the number of customers that were originally assigned
to the immobilized vehicle and were still unserved at time T0. Obviously, u
is a natural upper bound for the number of times that any specific vehicle
needs to visit the immobilized vehicle, as well as an upper bound for the
total number of times that the immobilized vehicle needs to be visited by all
the active vehicles combined. Assuming that the set Sd+1 is not empty1, we
have 1 ≤ u ≤ n. Note that we do not allow split deliveries.

At this point we should clarify that in general, the serial numbers of
vehicles and customers in the revised plan may differ from the ones in the
original plan. In fact, in order to simplify the notation used, we assume
that when the plan is revised, the vehicles and customer nodes are relabeled.
Specifically, we assume that when the plan is revised, the serial numbers of
the vehicles are changed so that vehicle with serial number d+1 represents the
broken-down vehicle. Additionally, the serial numbers of the active customers
in the revised plan are changed, so that the u customers that were originally
assigned to the broken-down vehicle and are still unserved at time T0, are
now relabeled as the first u active customers 1, 2, ..., u of the set IC , and
the remaining n − u active customers are relabeled as customers u + 1, u +
2, ..., n. Therefore, in the revised plan we have Sd+1 = {1, 2, ..., u} ⊆ IC =
{1, 2, ..., u, u+ 1, ..., n}.

In order for an active vehicle to serve some customers who were originally
assigned to the immobilized vehicle, we assume that the active vehicle must
visit the immobilized one first, load the unique orders of those customer, and
then depart to serve the customers whose orders it carries. If necessary, it
may visit the broken-down vehicle more than once. The capacity constraint
must be satisfied at all times. In order to capture the precedence constraint
described above, together with the feature of allowing multiple visits to the
broken-down vehicle, we create u copies of the node that corresponds to
the position of the broken-down vehicle at the moment of breakdown, which

1otherwise, in the trivial case when Sd+1 = ∅, rescheduling is unnecessary.
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are represented by nodes n + d + 1, n + d + 2, ..., n + d + u, or in short by
B1, B2, ..., Bu respectively.

Let B = {n + d + 1, n + d + 2, ..., n + d + u} = {B1, B2, ..., Bu}, be the
set containing the u copies of the node that represents the position of the
broken-down vehicle at the moment of breakdown. We assume that node
Br = n + d + r, which represents the rth copy of the broken-down vehicle,
’holds’ the goods of customer γr = r, for all r = 1, 2, ..., u. Therefore, before
visiting a customer node r ∈ Sd+1 (for r = 1, 2, ..., u), an active vehicle must
visit node Br to load the order of that particular customer.

Let I be the set of all nodes, defined as: I = {0} ∪ IC ∪ ID ∪ B =
{0, 1, . . . , n, n+ 1, . . . , n+ d, n+ d+ 1, ..., n+ d+ u}.

Define the set of arcs A as: A = A1 ∪ A2 ∪ A3, where A1 = {(n + k, i) :
k ∈ K, i ∈ Sk ∪B ∪ {0}}, A2 = {(i, 0) : i ∈ I \ {0}}, and A3 =

⋃
k∈K{(i, j) :

i, j ∈ B ∪ Sd+1 ∪ Sk, i 6= j}.
The disrupted VRP with customer-specific orders and Vehicle Breakdown

(d-VRP-cso-VB), or in short the disrupted VRP with Vehicle Breakdown
(d-VRP-VB) is formulated on the directed graph Γ = (I, A). Note that
A ⊆ I × I and that the set A will, in general, be substantially smaller than
the set of arcs I × I of a complete graph.

Each node i ∈ IC ∪B must have exactly 1 vehicle entering and the same
vehicle leaving that node. Each node i ∈ ID must have no vehicles entering
and exactly 1 vehicle leaving the node. The endpoint node 0 (depot) should
have exactly d vehicles entering and no vehicles leaving. No vehicle can visit
the same node in I more than once.

Each active vehicle k ∈ K will start from node n+k, which is the position
of vehicle k at time T0 when the revised plan starts. It will serve all the
customers of the set Sk, it might also serve some customers of the set Sd+1,
provided that it visits node Br to pick up the goods of customer r before it
visits any customer r ∈ Sd+1, and it will finish at the endpoint node 0 (the
depot).

Let xijk be a binary variable representing the number of times that vehicle
k traverses arc (i, j), for all (i, j) ∈ A, k ∈ K. Let Qik be the load of vehicle
k immediately after visiting node i, ∀ i ∈ I, k ∈ K. Let wik be the time of
start of service of node i by vehicle k, where wik ≥ 0, ∀ i ∈ I, k ∈ K. If
vehicle k does not visit node i, or if vehicle k starts servicing node i at time
0, then wik = 0.

Let tij be the travel time from node i to node j, ∀ (i, j) ∈ A. We assume
that tij ≥ 0, ∀ (i, j) ∈ A.

Define ∆+(i) = {j ∈ I : (i, j) ∈ A} to be the set of nodes that are directly
reachable from node i, ∀ i ∈ I. Also define ∆−(i) = {j ∈ I : (j, i) ∈ A} to
be the set of nodes from which node i is directly reachable, ∀ i ∈ I.
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Let Qk be the capacity of vehicle k, for all k ∈ K, where we assume that
Qk ≥ 0 ∀ k ∈ K. Let M be a large positive constant (say, M = 1010) and
let ε be a very small positive constant (say, ε = 10−7).

Let qi be the demand at node i, ∀ i ∈ I. We assume that qi is a known
parameter, with qi < 0 for nodes that require a pickup, and qi > 0 for nodes
that require a delivery. Therefore, we assume that qi > 0 for all i ∈ IC ,
qi < 0 for all i ∈ B, and qi = 0 for all i ∈ ID ∪ {0}. We further assume that
qn+i = −qi for all i ∈ Sd+1 = {1, 2, ..., u}, which means that the load which
is to be picked up at node n+ i matches the load to be delivered to customer
i ∈ Sd+1.

Let si be the service time at node i; i.e. how long it takes to serve node
i, ∀ i ∈ I. For nodes i ∈ B, si represents the time needed to load goods from
the broken-down vehicle to another vehicle. We assume that si are known
parameters, with si ≥ 0 for all i ∈ I.

We use time windows to model the disrupted problem, even if time win-
dows did not actually appear in the original problem. For this, let [ai, bi]
be the time window associated with node i, where ai ≥ 0 and bi ≥ 0 are
assumed to be known parameters, ∀ i ∈ I. To be more specific, we assume
that [ai, bi] are the time windows associated with node i which may have
been updated accordingly after the disruption happened (which means that
for a certain node i, these may be the same as the original time windows
before disruption, or they may have been extended or changed after the dis-
ruption and just before rescheduling, for instance, after communicating with
the customer and informing them of a potential delay due to the unexpected
vehicle breakdown). We also assume that bi ≤ b0 ∀ i ∈ I. The time of start
of service si of each node i in the disrupted problem, must lie within the
associated time window [ai, bi], ∀ i ∈ I. This means that the time when the
service finishes can lie inside or outside the time window.

Since the notation and formulation presented here involve time windows,
they can also be used to solve a more generalized variant of the problem
under study, namely the disrupted VRPTW with Vehicle Breakdown (with
heterogeneous fleet and customer-specific orders). We will refer to this more
generalized problem as the VRPTW extension of problem 1, which is dis-
cussed in section 3.6.

Now, returning to our main problem, where time windows were not actu-
ally involved in the original problem, we can simply set [ai, bi] = [0, b0] ∀ i ∈
I, and use the same model as a special case of the VRPTW extension, where
b0 > 0 here represents the maximum allowed time for a vehicle to return to
the depot. For instance, for simplicity we can set b0 equal to a large enough
positive number (e.g. b0 = 105).

Therefore, our formulation can be used to solve both the disrupted VRP
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with vehicle breakdown, and the disrupted VRPTW with vehicle breakdown
(with heterogeneous fleet and customer-specific orders).

Note that xijk’s, wik’s and Qik’s are the decision variables, whereas d, n,
u, M , ε, Qk’s, tij’s, Sk’s, ai’s, bi’s, si’s and qi’s are parameters, which are
assumed to be known.

3.4 A MILP formulation for the disrupted

VRP with vehicle breakdown

The disrupted VRP with Vehicle Breakdown, as well as its VRPTW extension
(in the first two out of three cases, as described later in section 3.6), can
both be formulated as a Mixed Integer Linear Program (MILP), composed
of equations (3.4.1) - (3.4.25) as follows:

minimize f :=
∑
k∈K

∑
(i,j)∈A

tijxijk + ε
∑
k∈K

w0k (3.4.1)

subject to: ∑
k∈K

∑
j∈∆+(i)

xijk = 1 ∀ i ∈ I \ {0} (3.4.2)

∑
j∈∆+(i)

xijk −
∑

j∈∆−(i)

xjik = 0 ∀ i ∈ IC ∪B, k ∈ K (3.4.3)

∑
k∈K

∑
i∈∆−(j)

xijk = 0 ∀ j ∈ ID (3.4.4)

∑
i∈∆−(0)

xi0k = 1 ∀ k ∈ K (3.4.5)

∑
k∈K

∑
i∈∆+(0)

x0ik = 0 (3.4.6)

∑
j∈∆+(i)

xijk −
∑

j∈∆+(Bi)

xBi,j,k = 0 ∀ i ∈ Sd+1, k ∈ K (3.4.7)

∑
j∈∆+(i)

xijk = 1 ∀ i ∈ Sk, k ∈ K (3.4.8)
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∑
j∈∆+(i)

xijk = 0 ∀ k ∈ K, i ∈ IC \ (Sk ∪ Sd+1) (3.4.9)

∑
j∈∆+(n+k)

xn+k,j,k = 1 ∀ k ∈ K (3.4.10)

wik + si + tij − wjk ≤ (1− xijk)M ∀ k ∈ K, (i, j) ∈ A (3.4.11)

Qik − qj −Qjk ≤ (1− xijk)M ∀ k ∈ K, (i, j) ∈ A (3.4.12)

wBi,k + sBi + tBi,i − wi,k ≤M ·
(

1−
∑

j∈∆+(i)

xi,j,k

)
∀ i ∈ Sd+1, k ∈ K

(3.4.13)

max{0,−qi}−Qik ≤M ·
(

1−
∑

j∈∆+(i)

xi,j,k

)
∀ i ∈ I \{0}, k ∈ K (3.4.14)

max{0,−qi} −Qik ≤M ·
(

1−
∑

j∈∆−(i)

xj,i,k

)
∀ i ∈ {0}, k ∈ K (3.4.15)

Qik −min{Qk, Qk − qi} ≤M ·
(

1−
∑

j∈∆+(i)

xi,j,k

)
∀ i ∈ I \ {0}, k ∈ K

(3.4.16)

Qik −min{Qk, Qk − qi} ≤M ·
(

1−
∑

j∈∆−(i)

xj,i,k

)
∀ i ∈ {0}, k ∈ K

(3.4.17)

Qn+k,k =
∑
j∈Sk

qj ∀ k ∈ K (3.4.18)

ai
∑

j∈∆+(i)

xijk ≤ wik ≤ bi
∑

j∈∆+(i)

xijk ∀ i ∈ I \ {0}, k ∈ K (3.4.19)
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ai
∑

j∈∆−(i)

xjik ≤ wik ≤ bi
∑

j∈∆−(i)

xjik ∀ i ∈ {0}, k ∈ K (3.4.20)

wn+k,k = 0 ∀ k ∈ K (3.4.21)

Q0k = 0 ∀ k ∈ K (3.4.22)

xijk ∈ {0, 1} ∀ (i, j) ∈ A, k ∈ K (3.4.23)

wik ≥ 0 ∀ i ∈ I, k ∈ K (3.4.24)

Qik ≥ 0 ∀ i ∈ I, k ∈ K (3.4.25)

The objective is to minimize the total travel time combined for the whole
fleet; but among those solutions with the same minimum total travel time,
we choose the solution which also minimizes the sum of arrival times at the
depot. This is reflected by the two components of equation (3.4.1), which
transforms this multi-criteria optimization problem with two objectives into
a MILP with a single objective, in a lexicographic manner, by the use of ε, a
very small positive constant.

Equation (3.4.2) ensures that exactly 1 vehicle exits each node i ∈ I \{0}.
Equation (3.4.3) ensures that any vehicle k enters and exits each node i ∈
IC ∪ B the same number of times. More specifically, when combined with
equation (3.4.2), equation (3.4.3) guarantees that any vehicle k enters and
exits each node i ∈ IC ∪ B the same number of times, which is either 0
or 1 times. Equation (3.4.4) ensures that no vehicles enter any node j ∈
ID. Equation (3.4.5) ensures that each vehicle enters the endpoint node 0
exactly once. This also implies that exactly d vehicles enter node 0 (i.e.
that

∑
k∈K

∑
i∈∆−(0) xi0k = d). Equation (3.4.6) ensures that no vehicles exit

node 0. Equation (3.4.7) guarantees that the same vehicle that visits node i
for i ∈ Sd+1 = {1, 2, ..., u}, also visits node Bi. Equation (3.4.8) guarantees
that vehicle k visits all customers in the set Sk, for all k ∈ K. Equation
(3.4.9) ensures that for all k ∈ K, vehicle k does not visit any customer
nodes that do not belong to one of the sets Sk or Sd+1. Equation (3.4.10)
forces vehicle k to be the one that departs from node n + k, for all k ∈ K.
Consistency of the time and load variables is ensured by constraints (3.4.11)
and (3.4.12), respectively. Constraint (3.4.13) makes sure that, if vehicle
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k ∈ K visits node i ∈ Sd+1, it must have visited the i-th copy of the broken-
down vehicle (i.e. node Bi = n + d + i) beforehand. Constraints (3.4.14) -
(3.4.17) ensure that, if vehicle k ∈ K visits node i ∈ I, then the inequality
max{0,−qi} ≤ Qik ≤ min{Qk, Qk − qi} must hold. Constraint (3.4.18)
guarantees that the load of vehicle k ∈ K after departing from node n + k,
which is the starting point of vehicle k, is equal to the sum of demands of all
the customers in the set Sk. Constraints (3.4.19) and (3.4.20) ensure that,
if a vehicle k ∈ K visits node i ∈ I, then the time of start of service wik
at node i should lie within the respective time window [ai, bi]; otherwise, if
vehicle k does not visit node i, then wik is set to zero. Constraint (3.4.21)
forces the time of departure of vehicle k ∈ K from node n + k to be zero.
Constraint (3.4.22) guarantees that vehicles arrive empty at the endpoint
node 0; in other words, it ensures that they have delivered everything before
they finish their routes. Finally, constraints (3.4.23)-(3.4.25) give the ranges
of the decision variables.

The formulation described in this section is based on the formulations
of both the regular VRPTW and the Pickup-and-Delivery VRPTW, as de-
scribed in chapters 5 and 6 respectively of Toth & Vigo (2014). Using this
formulation, theoretically we can solve any instance to optimality (i.e. ex-
actly). In practice, due to the fact that the VRP and its variants are NP-hard
problems, we can use a solver such as Cplex to implement the formulation and
solve small-sized instances only. For larger instances a heuristic is needed.
Such a heuristic is described in the following chapter.

3.5 Experimental results of the Exact Ap-

proach

The MILP formulation that was presented in section 3.4 was implemented in
AIMMS to solve several instances of the VRP with Vehicle Breakdown. We
refer to this approach as the exact approach for Problem 1. The experimental
results and relevant conclusions that can be drawn from these results are
presented in this section.

In order to test the exact approach for problem 1, which is presented in
this chapter, we have created a dataset of 101 instances for the VRP with
Vehicle Breakdown. These are divided into 6 classes. The first class with
label ’class T’ contains 8 very small instances that we created specifically to
test some aspects of the formulation and the problem itself, such as the effect
of changing the demands and capacities on the number of rescue vehicles
needed and on the number of visits of each rescue vehicle to the immobilized
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Table 3.1: Experimental Results for Problem 1 solved using the
Exact Approach (MILP, AIMMS)

Serial no. & n d u NE = n+ f1 f2 fE := f1 + εf2 fL = LB % of fE O/F/I runtime RV NVBV
Instance name +d + u + 1 (AIMMS) from LB (sec)

Class T
1 - T1 6 2 4 13 110.64 120.64 110.640012064 110.640012064 0.00% O 0.1 2 4
2 - T2 6 2 4 13 70.1 80.1 70.10000801 70.10000801 0.00% O 8 1 1
3 - T3 6 2 4 13 75.92 85.92 75.920008592 75.920008592 0.00% O 1 1 4
4 - T4 6 2 4 13 72.32 82.32 72.320008232 72.320008232 0.00% O 4 1 2
5 - T5 6 2 4 13 71.89 81.89 71.890008189 71.890008189 0.00% O 4 1 2
6 - T6 6 2 4 13 107.04 117.04 107.040011704 107.040011704 0.00% O 0.6 2 2
7 - T7 6 2 4 13 104.82 114.82 104.820011482 104.820011482 0.00% O 1.6 2 1
8 - T8 6 2 4 13 106.61 116.61 106.610011661 106.610011661 0.00% O 1.8 2 2

Class A-n32-k5
9 - A-n32-k5(1,20) 27 4 7 39 569.29 569.29 569.290056929 544.5300443 4.35% F 300 4 1
10 - A-n32-k5(2,20) 27 4 4 36 568.21 568.21 568.210056821 568.210056821 0.00% O 199.5 1 1
11 - A-n32-k5(3,20) 27 4 2 34 561.95 561.95 561.950056195 561.950056195 0.00% O 2.0 4 1
12 - A-n32-k5(4,20) 27 4 10 42 553.78 553.78 553.780055378 482.7600473 12.82% F 300.31 4 1
13 - A-n32-k5(5,20) 27 4 8 40 558.43 558.43 558.430055843 482.2137705 13.65% F 300.02 3 1
14 - A-n32-k5(1,30) 24 4 7 36 508.31 508.31 508.310050831 477.1510456 6.13% F 300.02 4 1
15 - A-n32-k5(2,30) 24 4 3 32 498.79 498.79 498.790049879 498.790049879 0.00% O 1.38 1 1
16 - A-n32-k5(3,30) 24 4 1 30 492.26 492.26 492.260049226 492.260049226 0.00% O 0.39 4 1
17 - A-n32-k5(4,30) 24 4 10 39 527.73 527.73 527.730052773 473.2800473 10.32% F 300.03 4 1
18 - A-n32-k5(5,30) 24 4 7 36 540.14 540.14 540.140054014 467.0921215 13.52% F 300.03 3 1

Class A-n45-k6
19 - A-n45-k6(1,20) 39 5 8 53 777.82 777.82 777.820077782 650.1828592 16.41% F 300.14 2,4 1,1
20 - A-n45-k6(2,20) 39 5 6 51 703.02 703.02 703.020070302 658.0842417 6.39% F 300.11 2 1
21 - A-n45-k6(3,20) 39 5 9 54 740.53 740.53 740.530074053 652.2401926 11.92% F 300.06 1 1
22 - A-n45-k6(4,20) 39 5 8 53 743.38 743.38 743.380074338 684.9760773 7.86% F 300.05 3 1
23 - A-n45-k6(5,20) 39 5 6 51 715.76 715.76 715.760071576 651.4502106 8.98% F 300.05 1 1

(Continued on the next page)
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Table 3.1 – Continued from the previous page
Serial no. & n d u NE = n+ f1 f2 fE := f1 + εf2 fL = LB % of fE O/F/I runtime RV NVBV
Instance name +d + u + 1 (AIMMS) from LB (sec)

24 - A-n45-k6(6,20) 39 5 7 52 711.09 711.09 711.090071109 711.090071109 0.00% O 93.03 3 1
25 - A-n45-k6(1,40) 35 5 8 49 744.42 744.42 744.420074442 576.5200815 22.55% F 300.14 1,3 1,2
26 - A-n45-k6(2,40) 35 5 5 46 627.89 627.89 627.890062789 627.890062789 0.00% O 54.30 2 1
27 - A-n45-k6(3,40) 35 5 8 49 645.21 645.21 645.210064521 607.6412513 5.82% F 300.08 2 1
28 - A-n45-k6(4,40) 35 5 8 49 660.80 660.80 660.800066080 612.9704023 7.24% F 300.05 3 1
29 - A-n45-k6(5,40) 35 5 5 46 616.74 616.74 616.740061674 616.740061674 0.00% O 132.88 1 2
30 - A-n45-k6(6,40) 35 5 6 47 654.25 654.25 654.250065425 654.250065425 0.00% O 25.38 3 1
31 - A-n45-k6(1,60) 26 5 6 38 502.77 502.77 502.770050277 502.770050277 0.00% O 216.38 2 1
32 - A-n45-k6(2,60) 26 5 4 36 470.47 470.47 470.470047047 470.470047047 0.00% O 0.80 2 1
33 - A-n45-k6(3,60) 26 5 7 39 524.77 524.77 524.770052477 463.0900373 11.75% F 300.03 3 1
34 - A-n45-k6(4,60) 26 5 7 39 509.51 509.51 509.510050951 460.6100429 9.60% F 300.03 3 1
35 - A-n45-k6(5,60) 26 5 3 35 455.29 455.29 455.290045529 455.290045529 0.00% O 0.42 1 1
36 - A-n45-k6(6,60) 26 5 4 36 524.28 524.28 524.280052428 524.280052428 0.00% O 8.09 3 1
37 - A-n45-k6(1,80) 21 5 6 33 462.86 462.86 462.860046286 413.3428062 10.70% F 300.01 4 1
38 - A-n45-k6(2,80) 21 5 3 30 403.29 403.29 403.290040329 403.290040329 0.00% O 0.31 2 1
39 - A-n45-k6(3,80) 21 5 7 34 437.38 437.38 437.380043738 374.6400306 14.34% F 300.02 3 1
40 - A-n45-k6(4,80) 21 5 5 32 440.1 440.1 440.10004401 440.10004401 0.00% O 16.59 3 1
41 - A-n45-k6(5,80) 21 5 1 28 411.33 411.33 411.330041133 411.330041133 0.00% O 0.00 1 1
42 - A-n45-k6(6,80) 21 5 4 31 442.93 442.93 442.930044293 442.930044293 0.00% O 12.47 4 1

Class A-n61-k9
43 - A-n61-k9(1,10) 51 8 4 64 815.13 815.13 815.130081513 815.130081513 0.00% O 258 8 1
44 - A-n61-k9(2,10) 51 8 8 68 839.94 839.94 839.940083994 792.1000792 5.70% F 300.14 8 1
45 - A-n61-k9(3,10) 51 8 7 67 845.51 845.51 845.510084551 754.6373367 10.75% F 300.13 3,8 1,1
46 - A-n61-k9(4,10) 51 8 6 66 842.56 842.56 842.560084256 730.2250487 13.33% F 300.13 3,4 2,1
47 - A-n61-k9(5,10) 51 8 10 70 1064.15 1064.15 1064.150106415 725.9932583 31.78% F 300.27 4,5,7 2,1,1
48 - A-n61-k9(6,10) 51 8 7 67 814.11 814.11 814.110081411 786.0073779 3.45% F 300.13 7 2
49 - A-n61-k9(7,10) 51 8 3 63 795.53 795.53 795.530079553 795.530079553 0.00% O 34.06 8 1
50 - A-n61-k9(8,10) 51 8 8 68 852.76 852.76 852.760085276 789.8864281 7.37% F 300.13 5 1

(Continued on the next page)
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Table 3.1 – Continued from the previous page
Serial no. & n d u NE = n+ f1 f2 fE := f1 + εf2 fL = LB % of fE O/F/I runtime RV NVBV
Instance name +d + u + 1 (AIMMS) from LB (sec)

51 - A-n61-k9(9,10) 51 8 6 66 791.81 791.81 791.810079181 770.7036443 2.67% F 300.11 7 2

52 - A-n61-k9(1,20) 46 8 2 57 727.76 727.76 727.760072776 727.760072776 0.00% O 1.13 1 1
53 - A-n61-k9(2,20) 46 8 8 63 745.20 745.20 745.200074520 705.2900703 5.36% F 300.19 8 1
54 - A-n61-k9(3,20) 46 8 7 62 709.59 709.59 709.590070959 678.7839041 4.34% F 300.11 8 2
55 - A-n61-k9(4,20) 46 8 5 60 749.11 749.11 749.110074911 695.2007494 7.20% F 300.09 3 1
56 - A-n61-k9(5,20) 46 8 9 64 824.99 824.99 824.990082499 675.646932 18.10% F 300.14 1,5 1,1
57 - A-n61-k9(6,20) 46 8 7 62 756.27 756.27 756.270075627 708.3504756 6.34% F 300.11 5 1
58 - A-n61-k9(7,20) 46 8 3 58 702.69 702.69 702.690070269 702.690070269 0.00% O 7.91 8 1
59 - A-n61-k9(8,20) 46 8 7 62 765.13 765.13 765.130076513 723.0012527 5.51% F 300.11 6 1
60 - A-n61-k9(9,20) 46 8 6 61 706.10 706.10 706.100070610 686.8448633 2.73% F 300.11 7 2
61 - A-n61-k9(1,35) 39 8 1 49 662.47 662.47 662.470066247 662.470066247 0.00% O 0.84 1 1
62 - A-n61-k9(2,35) 39 8 6 54 672.20 672.20 672.200067220 644.0030121 4.19% F 300.09 8 1
63 - A-n61-k9(3,35) 39 8 7 55 691.31 691.31 691.310069131 599.86812 13.23% F 300.09 3 2
64 - A-n61-k9(4,35) 39 8 5 53 647.84 647.84 647.840064784 620.6300609 4.20% F 300.24 3 1
65 - A-n61-k9(5,35) 39 8 9 57 718.38 718.38 718.380071838 606.076703 15.63% F 300.30 7 1
66 - A-n61-k9(6,35) 39 8 5 53 660.92 660.92 660.920066092 660.920066092 0.00% O 81.84 7 1
67 - A-n61-k9(7,35) 39 8 3 51 628.39 628.39 628.390062839 628.390062839 0.00% O 3.83 8 1
68 - A-n61-k9(8,35) 39 8 6 54 677.38 677.38 677.380067738 659.3900771 2.66% F 300.08 6 1
69 - A-n61-k9(9,35) 39 8 5 53 638.66 638.66 638.660063866 638.660063866 0.00% O 68.78 7 1

Class A-n65-k9
70 - A-n65-k9(1,20) 54 8 6 69 832.24 832.24 832.240083224 823.0649518 1.10% F 300.09 7 1
71 - A-n65-k9(2,20) 54 8 9 72 880.61 880.61 880.610088061 799.176345 9.25% F 300.13 3,6 1,1
72 - A-n65-k9(3,20) 54 8 8 71 833.65 833.65 833.650083365 795.8900747 4.53% F 300.13 7 2
73 - A-n65-k9(4,20) 54 8 6 69 857.84 857.84 857.840085784 815.3364065 4.95% F 300.13 2 1
74 - A-n65-k9(5,20) 54 8 7 70 847.62 847.62 847.620084762 828.9910426 2.20% F 300.13 8 1
75 - A-n65-k9(6,20) 54 8 8 71 830.42 830.42 830.420083042 824.8500818 0.67% F 300.30 3 1
76 - A-n65-k9(7,20) 54 8 6 69 939.69 939.69 939.690093969 803.1003917 14.54% F 300.23 2 1
77 - A-n65-k9(8,20) 54 8 7 70 898.18 898.18 898.180089818 765.39721 14.78% F 300.25 3 2

(Continued on the next page)
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Table 3.1 – Continued from the previous page
Serial no. & n d u NE = n+ f1 f2 fE := f1 + εf2 fL = LB % of fE O/F/I runtime RV NVBV
Instance name +d + u + 1 (AIMMS) from LB (sec)

78 - A-n65-k9(9,20) 54 8 5 68 856.99 856.99 856.990085699 856.990085699 0.00% O 287.11 4 1
79 - A-n65-k9(1,40) 42 8 4 55 689.75 689.75 689.750068975 689.750068975 0.00% O 17.34 7 1
80 - A-n65-k9(2,40) 42 8 8 59 696.17 696.17 696.170069617 665.9100666 4.35% F 300.36 6 1
81 - A-n65-k9(3,40) 42 8 7 58 678.85 678.85 678.850067885 640.896293 5.59% F 300.08 7 1
82 - A-n65-k9(4,40) 42 8 5 56 682.62 682.62 682.620068262 682.620068262 0.00% O 111.16 2 1
83 - A-n65-k9(5,40) 42 8 4 55 691.41 691.41 691.410069141 691.410069141 0.00% O 17.13 8 1
84 - A-n65-k9(6,40) 42 8 6 57 680.98 680.98 680.980068098 680.980068098 0.00% O 23.75 3 1
85 - A-n65-k9(7,40) 42 8 6 57 718.54 718.54 718.540071854 651.2143404 9.37% F 300.25 7 1
86 - A-n65-k9(8,40) 42 8 6 57 717.46 717.46 717.460071746 646.0845104 9.95% F 300.13 3 1
87 - A-n65-k9(9,40) 42 8 4 55 693.70 693.70 693.700069370 693.700069370 0.00% O 30.25 4 1

Class E-n76-k7
88 - E-n76-k7(1,10) 64 6 1 72 591.81 591.81 591.810059181 591.810059181 0.00% O 1.88 6 1
89 - E-n76-k7(2,10) 64 6 13 84 NA NA NA 560.8306415 NA I 300.20 NA NA
90 - E-n76-k7(3,10) 64 6 9 80 646.10 646.10 646.100064610 567.2700505 12.20% F 300.16 1,3 1,1
91 - E-n76-k7(4,10) 64 6 13 84 811.03 811.03 811.030081103 569.1675307 29.82% F 300.16 1,3,5,6 1,1,1,1
92 - E-n76-k7(5,10) 64 6 10 81 633.48 633.48 633.480063348 564.2100564 10.93% F 300.14 2,3 1,1
93 - E-n76-k7(6,10) 64 6 11 82 691.11 691.11 691.110069111 571.220338 17.35% F 300.14 2,3,4 1,1,1
94 - E-n76-k7(7,10) 64 6 13 84 NA NA NA 555.1100425 NA I 300.23 NA NA
95 - E-n76-k7(1,15) 58 6 1 66 544.00 544.00 544.000054400 544.000054400 0.00% O 0.73 6 1
96 - E-n76-k7(2,15) 58 6 12 77 629.69 629.69 629.690062969 531.1205454 15.65% F 300.14 4,5 1,2
97 - E-n76-k7(3,15) 58 6 8 73 555.50 555.50 555.500055550 533.3533242 3.99% F 300.13 6 1
98 - E-n76-k7(4,15) 58 6 12 77 589.66 589.66 589.660058966 527.8897469 10.48% F 300.14 5,6 1,1
99 - E-n76-k7(5,15) 58 6 9 74 557.17 557.17 557.170055717 532.1500491 4.49% F 300.17 3 1
100 - E-n76-k7(6,15) 58 6 11 76 552.69 552.69 552.690055269 529.2900533 4.23% F 300.13 4 1
101 - E-n76-k7(7,15) 58 6 11 76 562.00 562.00 562.000056200 531.9104956 5.35% F 300.11 3 1
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Table 3.2: Additional Experimental Results for Problem 1 - Exact
Approach (AIMMS)

Serial no. & n d u NE = n+ f1 f2 fE := f1 + εf2 fL = LB % of fE O/F/I runtime RV NVBV
Instance name +d + u + 1 (AIMMS) from LB (sec)

29b - A-n45-k6(5,40) 35 5 5 46 616.74 616.74 616.740061674 616.740061674 0.00% O 81.27 1 2 (ε=0.001,
translated)

51b - A-n61-k9(9,10) 51 8 6 66 791.81 791.81 791.810079181 778.8200779 1.64% F 900 (15 min) 7 2
51c - A-n61-k9(9,10) 51 8 6 66 791.81 791.81 791.810079181 791.810079181 0.00% O 3809.61 (63.5 min) 7 2
89b - E-n76-k7(2,10) 64 6 13 84 609.53 609.53 609.530060953 560.8306415 7.99% F 1800.22 (30 min) 1 1
94b - E-n76-k7(7,10) 64 6 13 84 NA NA NA 555.1100425 NA I 1800.16 NA NA
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one.
The other five classes have the following code-names: A-n32-k5, A-n45-

k6, A-n61-k9, A-n65-k9, and E-n76-k7. They contain 10, 24, 27, 18 and
14 instances respectively. Each one of those five classes contains different
instances that were created based on the five Augerat’s benchmark VRP
instances with the corresponding names. In each ’disrupted’ instance of our
dataset we assume that the best solution reported in the literature for the
original Augerat’s VRP instance was followed, and that a vehicle breaks down
at some time after the vehicles have departed from the depot. Starting from
one standard VRP instance, by choosing different vehicles to be immobilized
at different times, we have created several different instances for the disrupted
problem. The two numbers in the brackets that follow the instance code-
name, indicate the serial number of the vehicle that broke down and the time
when the disruption occurred, respectively. Note that the serial number of
the broken-down vehicle refers to the label used in the original VRP, and is
in general different than its serial number in the disrupted one, since vehicles
are relabeled in the disrupted problem. Also, the time when the disruption
occurs refers to the time as measured in the original VRP. In the new problem
after disruption, when the rescheduled plan starts, time is reset to zero.

Let us explain, for example, how the 17-th instance with code-name A-
n32-k5(4,30) was created: We assume that the underlying VRP problem was
Augerat’s VRP instance A-n32-k5, with 31 customers and 5 vehicles, and
that the best solution reported in the literature was followed, with all the
vehicles leaving the depot at zero time. We assume that the travel time is
equal to the Euclidean distance (which is a very common assumption in such
problems), and that the service time and waiting times are all zero in the
underlying problem. Then, at time 30, vehicle 4 breaks down, at the exact
location that this vehicle should be by that time if following the original
plan and assuming that it moves with a constant speed in a straight line
between two points on the xy-plane; therefore it is trivial to calculate its
xy-coordinates mathematically, using the formula that is explained below:

Given two points A(x1, y1) and B(x2, y2) on the xy-plane, we can calculate
the coordinates of the point P that lies on the (interior of the) straight
segment AB and divides it internally in the ratio m : n (i.e. so that AP :
PB = m : n), as: P (nx1+mx2

m+n
, ny1+my2

m+n
).

Continuing the explanation of how instance A-n32-k5(4,30) was derived,
we use the above formula to calculate the coordinates of the broken-down
vehicle. We assume that at the moment of the breakdown all other vehicles
are also at the exact location that they should be by that time, if following
the original plan and assuming that they move with a constant speed in a
straight line between two points on the xy-plane. Therefore, their coordinates
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can also calculated with the formula described above. Then, by removing all
served customers, relabeling the vehicles and the remaining customers, we
get the new instance, with fewer customers, with 4 active vehicles and 1
disabled vehicle. This concludes the discussion about the construction of
instance A-n32-k5(4,30).

In general, the following parameters are given as an input separately for
each instance: n, d, u, Qk (for k = 1, ..., d), sets S1, S2, ..., Sd+1, as well as
ai, bi, si, and qi (for i = 0, 1, ..., n + d + u). The set Sd+1 = {1, 2, ..., u}
is assumed to contain exactly the first u customers of the set IC . The
Cartesian coordinates (Xi, Yi) of each node i ∈ I are also given as an
input, which are used to calculate the travel time ti,j between each pair
of nodes i and j as the Euclidean distance between the nodes, i.e. as
ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2, rounded to 2 decimal places.

Recall that the objective is to minimize the function f , which is defined by
equation (3.4.1) as: f :=

∑
k∈K

∑
(i,j)∈A

tijxijk + ε
∑
k∈K

w0k. We can also write this

as f := f1 + ε · f2, where f1 :=
∑
k∈K

∑
(i,j)∈A

tijxijk and f2 :=
∑
k∈K

w0k are the two

component objectives. Note that, in the tables with the experimental results
for problem 1 following the exact approach (tables 3.1 and 3.2), instead of
f , the objective is indicated by fE to denote that this is the value of the
objective found by the exact approach (i.e. in fE, the letter E stands for the
exact approach). In the following chapter, in the respective tables with the
heuristic results, we will use fH to denote the value of the objective found
by the heuristic approach (i.e. in fH , the letter H stands for the heuristic
approach).

Table 3.1 summarizes the experimental results of the exact approach for
Problem 1. The first 10 columns of this table show the following information
for each instance: the serial number and code-name of the instance, the
number of customer nodes n, the number of active vehicles d, the number of
unserved customers u that were originally assigned to broken-down vehicle,
the total number of nodes (NE := n + d + u + 1), the values of the two
component objectives f1 and f2, the value of the actual objective fE (defined
as fE := f1 + ε · f2), the lower bound that was found by AIMMS (referred
to as fL or as LB), and the optimality gap between the best solution found
and the lower bound provided by AIMMS (calculated as: optimality gap :=
fE−fL
fE

· 100%). The 11-th column with label O/F/I indicates whether the

solution was optimal (O), feasible (F) or infeasible (I). The last 3 columns
show, respectively, the runtime in seconds, the serial number of the rescue
vehicle(s) (RV) involved in the best solution found, and the number of visits
to the broken-down vehicle (NVBV) by each one of the rescue vehicles.
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Regarding the experiments of the exact approach for Problem 1, the MILP
formulation was implemented in AIMMS and a cutoff time of 5 minutes was
applied. In the instances considered, the number of active customers (n)
varies from 6 to 64, the number of active vehicles (d) varies from 2 to 8,
there is just 1 disabled vehicle, the number of nodes originally assigned to
the broken-down vehicle (u) varies from 1 to 13, and the total number of
nodes2 (NE := n+ d+ u+ 1) varies from 13 to 84.

From table 3.1 we can see that within the allowed time of 5 minutes
(300 seconds), AIMMS was able to find the optimal solution and prove its
optimality in 40 out of the 101 instances considered (i.e. in 39.6% of the
cases). In 59 other instances, AIMMS provided a feasible solution within
the time limit of 5 minutes, whereas in the remaining 2 instances no feasible
solution was reached within 5 minutes. AIMMS provided a lower bound in
each one of the 101 instances.

Among the 40 instances for which the optimal solution was found in less
than 300 seconds, in 22 cases the optimal was found within 10 seconds, in
12 other cases the optimal needed more than 10 but less than 100 seconds,
and in the remaining 6 instances the optimal needed between 100 and 300
seconds.

Among the 59 instances for which a feasible but not necessarily optimal
solution was reached within 300 seconds, the optimality gap varied between
0.5% and 32%. Specifically, in 35 out of those 59 instances the optimality
gap was less than 10%, in 21 other cases the optimality gap was between
10% and 20%, whereas in the remaining 3 instances the optimality gap was
between 20% and 32%.

In 72 out of the 101 instances, the best solution which was found by
AIMMS within the available time of 5 minutes, involved only 1 visit to the
broken-down vehicle, by a single active vehicle. In 12 other cases, the best
solution reported involved 2 visits to the broken-down vehicle, by a single
active vehicle. In 2 other instances, the reported solution involved 4 visits to
the broken-down vehicle, by a single active vehicle. Note that both of these
instances, namely instances T1 and T3, were intentionally created so that
the optimal solution involves 4 visits to the disabled vehicle, for testing our
formulation. In 7 other instances, the best solution reported involved 2 differ-
ent active vehicles, each visiting the disabled vehicle once. In 3 instances, 2
different active vehicles visit the disabled vehicle once and twice, respectively.
In 1 instance, 3 different active vehicles each visit the disabled vehicle once.

2Note that the number of nodes in the exact approach for problem 1 is denoted by
NE , to be distinguished from the number of nodes in the heuristic approach for problem
1, which is denoted by NH . Generally, NH differs from NE , because of the different
modeling that was employed in the heuristic approach.
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In 1 instance, 3 different active vehicles visit the disabled vehicle once, once
and twice, respectively. In 1 instance, 4 different active vehicles each visit
the disabled vehicle once. In the remaining 2 instances, no feasible solution
was reported.

Of course, in some of the instances where the best solution found by
AIMMS involves multiple visits to the broken-down vehicle, either by a single
or by more than one vehicle, it may be the case that a better feasible solution
exists with fewer visits to the broken-down vehicle and/or less active vehicles
being involved, but AIMMS couldn’t find it within the available time.

Finally, from table 3.1 we observe that the time needed to reach the
optimal solution highly depends on the value of u, which is the number of
customers originally assigned to the disabled vehicle.

For instances 1-28 and 43-69, we used the following parameter values in
our experiments: M = 200000, ε = 10−7. For the remaining instances, we
used M = 99999 and ε = 10−7.

We also present table 3.2 with some additional results of the exact ap-
proach for problem 1. In this table, instance 29b represents a second run of
instance 29, where a different value for the ε parameter was used, namely
ε = 0.001, instead of ε = 10−7 that was used in other instances. Using the
value of ε = 0.001, AIMMS was able to find the optimal solution within
81 seconds, compared to the runtime of 133 seconds needed when using the
default value of ε = 10−7. In the last column of instance 29b, we write
”ε = 0.001, translated” to denote that, although a different value was used
for the ε parameter, the value of the objective fE provided in the 8-th col-
umn was calculated using the default value of ε = 10−7 that was used in
all other examples and thus ’translated’, for comparison reasons (and so was
the value in the 9-th column, which is equal to fE in this case). This result
may suggest that, although the value of ε should be small enough so that the
optimal solution to f always uses the optimal solution to f1, making ε too
small means that the solver needs more time to confirm the optimal solution.
However, further experimentation is necessary to verify or disprove the above
statement. This is left open for further research.

In instance 51 we tried two more runs, marked as instances 51b and 51c,
with a cutoff time of 15 minutes for the first one, and without a cutoff time
for the second one. In these instances, AIMMS found the same solution as
the one reported with a 5-minute cutoff time; however the optimality gaps
differ, because the longer the available time AIMMS had, the better the lower
bound was. Therefore, although in all 3 runs (51, 51b, 51c) the same solution
was found, a different optimality gap was provided and only in the latter case
AIMMS was able to prove the optimality of the solution found, after 63.5
minutes.
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In instances 89 and 94 no feasible solution was found within 5 minutes;
therefore we performed one additional run for each instance with 30-minute
cutoff time (results shown as instances 89b and 94b, respectively). In instance
89b, AIMMS was able to find a feasible solution within the 30 minutes cutoff
time, whereas in instance 94b no feasible solution was found.

At this point we should clarify that, in instances 89 and 94 of table 3.1,
as well as in instance 94b of table 3.2 where the entry of the 11-th column
is ”I” (infeasible), no feasible solution was found within the available time,
which does not necessarily mean that the problem is infeasible.

3.5.1 Discussion about the instances of class T

We will now examine class T, which contains 8 instances (T1,...,T8) of very
small test problems that we created in order to test our formulation. In-
stances T2, T3, T4 and T5 of Class T, are variations of the same instance
with different capacities assigned to vehicles. These very small instances
were designed specifically to show the possibility of requiring an active ve-
hicle visiting the broken-down vehicle multiple times. To understand the
differences between these instances we must go into the details of the specific
input parameters of each instance.

Specifically, in instance T2 we have two active vehicles (vehicles 1 and
2) of capacities Q1 = Q2 = 40 and 6 customers (customers 1,2,...,6), each of
demand qi = 10 (for i = 1, 2, ..., 6). Customers 1, 2, 3 and 4 were supposed to
be served by the broken-down vehicle. The optimal solution in the disrupted
problem requires 1 visit to the disabled vehicle, by vehicle 1. In instance
T3, we have the same setting as in instance T2, but with Q1 = Q2 = 10; in
which case the optimal solution involves 4 visits to the disabled vehicle, by
vehicle 1. In instance T4, we have the same setting as in instance T2, but
with Q1 = Q2 = 20; in which case the optimal solution involves 2 visits to
the disabled vehicle, by vehicle 1. In instance T5, we have the same setting
as in instance T2, but with Q1 = 32 and Q2 = 26; in which case the optimal
solution involves 2 visits to the disabled vehicle, by vehicle 1.

In instance T1, we have the same setting as in instance T2, but with
Q1 = 14, Q2 = 23, qi = 20 for i = 1, 2, 3, 4, and qi = 10 for i = 5, 6; in which
case the optimal solution involves 4 visits to the disabled vehicle, by vehicle
2. In instance T6, we have the same setting as in instance T1, but with
Q2 = 42 (and bi = 200, instead of 5000, for all i ∈ I; although this specific
change of the bi’s doesn’t have any effect here); in which case the optimal
solution involves 2 visits to the disabled vehicle, by vehicle 2. In instance T7,
we have the same setting as in instance T6, but with Q2 = 83; in which case
the optimal solution involves only 1 visit to the disabled vehicle, by vehicle
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2. In instance T8, we have the same setting as in instance T6, but with
Q2 = 62; in which case the optimal solution involves 2 visits to the disabled
vehicle, by vehicle 2.

3.6 The disrupted VRPTW with Vehicle Bre-

akdown

As mentioned earlier in section 3.3, since the notation and formulation pre-
sented in this chapter involve time windows, they may also be used for solving
a more generalized variant of the problem under study, namely the disrupted
VRPTW with Vehicle Breakdown (d-VRPTW-VB), under the assumptions
of a heterogeneous fleet and customer-specific orders. In short, we also refer
to this problem as the VRPTW extension of problem 1.

This problem refers to the direct generalization of problem 1, where ad-
ditionally each customer i ∈ IC is associated with a time window [ai, bi] and
the time of start of service of this customer must lie within this time win-
dow, where now the ai’s and bi’s do not necessarily have to equal 0 and b0,
respectively (which was the case in problem 1). Note that the limits ai and
bi of the time windows [ai, bi] of any customer i ∈ IC refer to the problem
after the disruption has occurred, are measured in a different time scale and
may be completely different, compared to the time windows [a0

i , b
0
i ] of that

customer in the original problem.
To be more specific, in the VRPTW extension of problem 1 we further

assume that each customer i of the set IC = {1, 2, ..., n}, who was still un-
served at time instant T0, was associated with a time window [a0

i , b
0
i ] in the

original plan. Define T ∗ as the time when the original plan was supposed
to start (whether this was set originally to 0 or to the actual time), plus
the time between the start of the original plan and the time when the new
plan starts, after rescheduling. The time windows [a0

i , b
0
i ] of the underlying

problem can trivially be converted into the time windows for the disrupted
problem [ai, bi] by letting ai := a0

i −T ∗ and bi := b0
i −T ∗ (i.e. by shifting the

time windows by T ∗ time units) for all i ∈ IC .
There are three possible scenarios that may occur when solving an in-

stance of the disrupted VRPTW with Vehicle Breakdown. In the first case,
where the time windows are wide enough so that a feasible solution that
respects all time windows exists, then the approach described in this chapter
is perfectly capable of modeling and solving the VRPTW extension of the
problem to optimality.

The second case occurs if after the disruption the problem becomes in-

76



feasible because of the time windows, but it is possible to extend the time
windows [ai, bi] of some customers, in such a way that a feasible solution
exists. If we assume that the original plan was feasible and that there was no
time lost once the disruption occurred for any active vehicles, meaning that
they continued following their routes as scheduled, then after the disruption
it should be enough to extend the time windows of some, or at worst all of the
customers of the disabled vehicle, in order for the disrupted problem to be-
come feasible. For instance, the company’s department of customer support
may contact the affected customers, explain the situation and, upon agree-
ment of the customers, their time windows may be updated so that a feasible
solution now exists. Therefore, in this second scenario it should be enough
to update or widen the time windows [ai, bi] for each customer i = 1, ..., u of
the broken-down vehicle accordingly (for instance, one can simply set ai = 0
and bi = M for i = 1, ..., u, where M is a large positive constant). If indeed
the time windows of some customers are changed in such a way that a fea-
sible solution now exists, then again, we can use the approach described in
this chapter to model and solve to optimality the VRPTW extension of the
problem.

Finally, the third case occurs if after the disruption the problem becomes
infeasible because of the time windows, but it is not possible to extend all
necessary time windows of customers, in such a way that a feasible solution
exists. Therefore, in this scenario, even if we are allowed to change some
of the time windows, the problem is still infeasible with respect to the time
windows. In other words, it is now impossible to serve all of the remaining
customers within their requested time windows. In this case we cannot use
the approach described in this chapter; instead, this case should be further
investigated by researchers. More specifically, proper disruption management
techniques should be employed, in order to construct a plan that minimizes
the negative impact of the disruption, while also minimizing the original
objective of minimum total travel time (or minimum distance or travel cost,
accordingly). For instance, the new plan may seek to minimize the deviation
from the time windows, minimize the number of customers that are served
outside their time windows and minimize the total travel time. Other options
may include hiring other vehicles, canceling some customers etc. There may
be several different ways to define, model and solve the VRPTW extension
in this third case, depending on the assumptions, constraints and objectives
that one decides to employ. One possibility may be to modify and combine
the models used for problem 1 with those of problem 3 (the Single-Commodity
Delayed VRPTW), which is described in chapters 7 and 8. We leave the study
of this third case of the VRPTW extension to future researchers.
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3.7 Conclusions

To summarize, in this chapter we presented the disrupted Vehicle Routing
Problem with Vehicle Breakdown, under the assumptions of customer-specific
and customer-unique orders (multi-commodity VRP), heterogeneous fleet,
single-depot, no extra vehicles available, no split deliveries, and that no cus-
tomer remains unserved. We presented a precise definition of the problem,
established notation and presented a mixed-integer linear programming for-
mulation that can be directly embedded in a commercial solver, such as Cplex
or AIMMS, to solve instances to optimality in an exact way that provides
proven optimality.

We created a dataset of 101 instances for this problem and used the
above exact approach to solve these in AIMMS. For small instances and
some medium-sized instances with only a small number of customers origi-
nally assigned to the disabled vehicle, this approach succeeds in finding the
proven optimal solution within reasonable time. In some other cases, even
if it fails to provide the optimal solution or to prove its optimality, this ap-
proach may provide a feasible solution which sometimes is quite close to the
optimal. However, for larger instances a faster approach is needed; one that
can provide a good quality solution in real time, even if this is not always the
exact optimal solution. In the following chapter we present such a heuristic
approach. Of course, even in cases where the exact approach fails to provide
a good quality solution, the lower bound that it provides can always be used
to establish a guarantee on the optimality gap of any solution that is found
by a different method.
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Chapter 4

Problem 1 - The disrupted
VRP with Vehicle Breakdown:
Heuristic Approach

4.1 Introduction

In this chapter we present a heuristic algorithm based on the Tabu Search
metaheuristic, as a second approach for solving the disrupted VRP with Ve-
hicle Breakdown (problem 1), which was described in the previous chapter.
The heuristic is used to solve the 101 instances that were constructed for the
problem. The experimental results are presented at the end of the chapter,
along with comparisons with the results from the exact approach which were
presented in the previous chapter.

4.2 Heuristic overview

We employ Tabu Search with the standard aspiration criteria, multiple resta-
rts, short-term and long-term memory structures, best improvement feature
and 4 types of neighborhood moves: intra-route exchange, intra-route inser-
tion, double insertion, and double exchange. The last two types of moves
mentioned were created specifically for the problem under study.

At each restart, we begin from a different initial solution and apply several
local search iterations to improve the current solution. At each iteration, all
possible combinations of the 4 neighborhood moves are tried, and the one
that gives the best improvement in the objective function of the current
solution is selected (provided that, either the move strictly improves the best
solution found so far, or the move does not involve nodes that are in the tabu
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list or nodes that have been involved too frequently in the moves performed
so far). Each restart terminates when there is no improvement in the last J1

iterations.
After some experimentation, we decided not to consider moves that have

a zero change in the objective function, to avoid getting stuck in a plateau.

4.3 Notation

In general, throughout this chapter we use the notation described in chapter
3, unless it is explicitly stated otherwise. Therefore, as in the previous chap-
ter, K = {1, 2, ..., d} is the set containing the d active vehicles, whereas d+ 1
is the serial number of the broken-down vehicle (BV). Also, IC = {1, 2, ..., n}
is the set of customers and ID = {n+ 1, n+ 2, ..., n+ d} is the set containing
the starting positions of the active vehicles at the time of start of the new
plan T0 (where T0 = 0).

However, instead of denoting the endpoint node by node 0 (as in the
previous chapter), in the heuristic for technical reasons we use d copies of
the depot, one for each route. Therefore, let IE = {n + d + u + 1, n + d +
u+ 2, ..., n+ d+ u+ d} be the set containing the endpoint nodes of vehicles
1, 2, ..., d respectively. This notation is general enough to allow different
endpoint nodes for different vehicles. For the problem under study, however,
since the endpoint node of each route is the depot, all of those d endpoint
nodes correspond to the same geographic location.

For each k = 1, 2, ..., d, the route of the k-th active vehicle is denoted by
Rk and is a vector of variable size. Initially, the vector Rk starts with node
n+ k, followed by all nodes of the set Sk, and ends with node n+ d+ u+ k,
which in the heuristic denotes the endpoint node of vehicle k (for all k =
1, 2, ..., d).

We also make use of another vector Rd+1 of variable size, which is of
different structure compared to the vectors R1, R2, ..., Rd. Specifically, vector
Rd+1 initially contains the u copies of the broken-down vehicle, i.e. nodes
n + d + 1, n + d + 2, ..., n + d + u, followed by all nodes 1, 2, ..., u of the set
Sd+1 of customers that were originally assigned to the broken-down vehicle.

As the heuristic progresses, each customer of the set Sd+1 is moved from
route Rd+1 to one of the active routes Rk (k = 1, 2, ..., d), with the convention
that whenever you move such a customer i ∈ Sd+1 from one route Rk1 (k1 =
1, 2, ..., d + 1) to another route Rk2 (k2 = 1, 2, ..., d, k2 6= k1), you also move
node n + d + i from its current position and place it in the same route Rk2

in which customer i is placed, at the position which is just before the new
position of customer i in route Rk2 .
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By the time when the heuristic terminates, the vector Rd+1 should be an
empty vector, and each one of the customers originally assigned to the BV,
along with respective BV copies, should be included in one of the vectors
R1, R2, ..., Rd. So, eventually, for each k = 1, 2, ..., d, the vector Rk should
start with node n+ k, followed by all nodes of the set Sk and perhaps some
nodes of the set Sd+1, provided that it visits node n + d + r to pick up the
goods of customer r before it visits any customer r ∈ Sd+1, and ends with
node n+ d+ u+ k (which is the endpoint node of vehicle k).

Finally, let R = (R1, R2, ..., Rd+1) be the ordered collection of the d + 1
variable-sized vectors. From now on, R will be referred to as the collection of
routes R. Also, let Rk = (R1

k, R
2
k, ..., R

lk
k ) be the vector of variable length lk

which corresponds to the route of the k-th vehicle, for k = 1, 2, ..., d+1. Using
this notation, Rj

k denotes the j-th node of the k-th route, for k = 1, 2, ..., d+1
and j = 1, 2, ..., lk. For each k = 1, 2, ..., d, the first node R1

k of the k-th route
is fixed and denotes the starting position n + d + k of vehicle k. The last
node Rlk

k is also fixed and denotes the endpoint node n+ d+ u+ k of vehicle
k.

Note that, if vector Rk (k = 1, 2, ..., d) contains several consecutive copies
of the BV node, this corresponds to a single actual visit to the BV. After all,
all copies of the BV node correspond to the same geographical location and
both the distance and travel times between two such nodes is zero.

Finally, let us mention that in this section what was described as the
initial solution and initial setup of the vectors R1, R2, ..., Rd+1, are actually
the initial solution and setup of the (d+ 1)-th restart alone. In all the other
restarts, the initial setup and solutions are described in section 4.5.

4.4 The easy plans

In general, there is an obvious and very simple way to construct d different so-
lutions to the problem, following the so-called i-th easy plan, for i = 1, 2, ..., d.
These solutions are always feasible in the case of a homogeneous fleet, i.e. if
all d+ 1 vehicles have the same capacity. However, for the more general case
that we study where the fleet is heterogeneous, an additional capacity con-
straint needs to be satisfied in order for each one of these plans to be feasible.

The i-th easy plan (for i = 1, 2, ..., d):
Once the disruption occurs, all active vehicles apart from vehicle i will con-
tinue with their routes, as scheduled in the original plan, serve all their re-
maining customers and finish at the depot. Vehicle i will also continue with
its route, as scheduled in the original plan, and serve all remaining customers
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that were originally assigned to it, until it reaches its last customer. Then,
it will be diverted to visit the broken-down vehicle, pick up all the orders of
the BV’s unserved customers, and serve all those unserved customers of the
BV, in the order that they were originally supposed to be served by the BV.
Vehicle i will then return to the depot.

The i-th easy plan is feasible if and only if the capacity of vehicle i is
no less than the sum of demand of the BV’s unserved customers (i.e. iff
Qi ≥

∑
i∈Sd+1

qi). For instance, in case of a homogeneous fleet, or more
generally in case where vehicles i and d + 1 have the same capacity, then
the i-th easy plan is always feasible - assuming, of course, that the original
solution for the undisrupted problem was a feasible one.

Considering, however, the VRPTW extension of problem 1 (see section
3.6), i.e. in the presence of time windows, the above condition is still neces-
sary for the i-th easy plan to be feasible, but not necessarily sufficient.

4.5 Diversification mechanisms and initial so-

lutions

We use two diversification mechanisms. The first one involves the use of
multiple restarts. Specifically, we employ d + 1 restarts of the algorithm,
each time starting from a different initial solution, as described below.

For i = 1, 2, ..., d, the i-th restart of the algorithm uses the i-th easy plan
as the starting solution. In this initial solution, for all k = 1, 2, ..., d with
k 6= i, vector Rk starts with node n + k, contains all nodes of the set Sk in
the same sequence as in the solution of the original undisrupted problem, and
ends with node n+ d+u+ k. On the other hand, vector Ri starts with node
n+ i, contains all nodes of the set Si in the same sequence as in the original
solution plan of the underlying problem, then contains all the copies of the
BV node (i.e. nodes n+ d+ 1, n+ d+ 2, ..., n+ d+ u), then all nodes of the
set Sd+1 in the same sequence as in the solution of the original undisrupted
problem, and ends with node n + d + u + i. Also, in this initial solution,
vector Rd+1 is empty. In fact, in this case vector Rd+1 remains empty until
the end of this restart.

For the last restart, where i = d + 1, the algorithm uses an initial solu-
tion which resembles the unfulfilled part of the original solution plan of the
undisrupted problem, and was also discussed in section 4.3. In this initial
solution, for all k = 1, 2, ..., d, vector Rk starts with node n+ k, contains all
nodes of the set Sk in the same sequence as in the original solution plan of
the undisrupted problem, and ends with node n + d + u + k. Also, in this
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initial solution, vector Rd+1 contains all the copies of the BV node (i.e. nodes
n+ d+ 1, n+ d+ 2, ..., n+ d+ u), and then all nodes of the set Sd+1 in the
order 1, 2, ..., d (which is not necessarily the same order as in the undisrupted
plan). Then, as the algorithm progresses, the nodes of the last vector Rd+1

are sequentially inserted into the other vectors Rk for k = 1, 2, ..., d, which
represent the routes of the active vehicles. Eventually, all nodes that were
initially contained in the vector Rd+1 must be placed in the other routes, so
at the end of the restart the vector Rd+1 must be empty.

As a second diversification mechanism, we try to prevent the scenario
where some nodes are used much more frequently than others in neighbor-
hood moves. For this, we do not allow moves which involve a node that
has been used more than dθ1 + θ2 · x̄e times so far, unless these moves lead
to solutions that improve the best solution found so far. Note that x̄ here
denotes the average number of times an active node has been used in a
move so far, where by the term active nodes we refer to nodes 1, 2, ..., n and
n + d + 1, n + d + 2, ..., n + d + u, which are the nodes that can actually
be involved in a move (since the position of the remaining nodes remains
unchanged). Also, θ1 and θ2 are known, fixed parameters.1

4.6 Neighborhood structure

The following 4 types of neighborhood moves are considered:

• Exchange:
This move involves swapping two nodes with one another. Specifically,
exchange(Ri

k1
, Rj

k2
) swaps node i from route k1, with node j from route

k2. Here we only consider intra-route moves of this type, i.e. k1 = k2,
with k1 ∈ {1, 2, ..., d} and with i, j ∈ {2, 3, ..., lk1 − 1}. The initial and
final nodes of routes R1, R2, ..., Rd are not allowed to be moved by the
exchange operator, nor is any node of the vector Rd+1.

As mentioned before, if vector Rk (k = 1, 2, ..., d) contains several con-
secutive copies of the BV node, this corresponds to a single actual visit
to the BV. Specifically, suppose that vector Rk is of the form Rk =
(R1

k, R
2
k, ..., R

i1
k , R

i1+1
k , ..., Ri1+j

k , ..., Rlk
k ) where the nodes Ri1

k , R
i1+1
k , ...,

Ri1+j
k are all copies of the BV node (for instance, they may be equal to

n+d+1, n+d+2, ..., n+d+j+1), where j+1 ≤ u. Any permutation of
the sequence Ri1

k , R
i1+1
k , ..., Ri1+j

k of any number of consecutive copies
of the BV will have no actual effect on the route. Therefore, we do

1Throughout the experiments, we used θ1 = d+ 3 and θ2 = 1.7.
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not consider moves of the form exchange(Ri
k, R

j
k) in the case where all

nodes Ri
k, R

i+1
k , ..., Rj

k are copies of the BV.

• Insertion:
In general, this move involves removing a node from its current position
in a route and placing it into a different position, either in the same
route or in a different route.

Here we only consider intra-route insertion, which takes one node from
a single route and places it at a different position in the same route.
Specifically, insertion(Rk

i , R
k
j ) with i 6= j takes the i-th node of the k-

th route, removes it from there and inserts it at the position where the
j-th node of the same route was before the move. Additionally, if i > j
then the nodes that before the move were at positions j, j + 1, ..., i− 1
are shifted by one position to the right, whereas the remaining nodes
and the size of the route remain unchanged. Alternatively, if i < j then
the nodes that before the move were at positions i + 1, i + 2, ..., j are
shifted by one position to the left, whereas the remaining nodes and
the size of the route remain unchanged.

We only consider intra-route insertion(Rk
i , R

k
j ) moves with k ∈ {1, 2, ...,

d}, i, j ∈ {2, 3, ..., lk−1} and i 6= j. The initial and final nodes of routes
R1, R2, ..., Rd are not allowed to be moved by the insertion move, nor
is any node of the vector Rd+1.

Furthermore, we do not consider moves of the form insertion(Ri
k, R

j
k)

with i > j, in the case where all nodes Rj
k, R

j+1
k , ..., Ri−1

k are copies of
the BV, because such a move will have no actual effect on the route.
Similarly, we do not consider the move insertion(Ri

k, R
j
k) with i < j,

in the case where all nodes Ri+1
k , Ri+2

k , ..., Rj
k are copies of the BV.

• Double Insertion:
This is a special type of move that was designed specifically for this
problem and for the specific notation and approach. Double insertion
(Rk1 , p1, l1, Rk2 , p2, l2) takes a BV copy n+d+i from position p2 of route
Rk2 and the corresponding customer i (i = 1, 2, ..., u) from position l2
of route Rk2 , removes both from there, and inserts them at positions
p1 and l1, respectively, of route Rk1 .

• Double Exchange:
This is also a special type of move designed for this problem and for the
specific notation and approach. Double exchange(Rk1 , p1, l1, Rk2 , p2, l2)
takes a BV copy n+ d+ i from position p1 of route Rk1 and the corre-
sponding customer i (i = 1, 2, ..., u) from position l1 of route Rk1 , and
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exchanges them both with another BV copy n + d + j at position p2

of route Rk2 and the corresponding customer j (j = 1, 2, ..., u, j 6= i)
from position l2 of route Rk2 , respectively.

4.7 Objective function

The objective function of the heuristic is:

minimize G : =
∑
k∈K

∑
(i,j)∈A

tijxijk + ε
d∑

k=1

wn+d+u+k +

+
d∑

k=1

(P1ξk + P2φk) +
u∑
i=1

P3ψi + P4|Rd+1|

(4.7.1)

where for all k = 1, 2, ...d, the variables ξk and φk are defined as:

ξk :=

{
1, if Qik > Qk

0, otherwise
(4.7.2)

φk :=

{
Qik −Qk, if Qik > Qk

0, otherwise
(4.7.3)

Also, for all i = 1, 2, ...u the variable ψi is set to 1 if nodes i and n+ d+ i
are not in the same route, or if they are in the same route and node i comes
before node n+ d+ i. Otherwise, ψi is set to zero.

Note that |Rd+1| is the cardinality of the vector Rd+1, if seen as a set; i.e.
it denotes the number of nodes contained in the vector Rd+1.

The objective function G defined by equation (4.7.1) is composed of
five components. The first summation term is the total travel time f1 :=∑
k∈K

∑
(i,j)∈A

tijxijk, as in the previous chapter. The second summation term

represents the sum of arrival times of the active vehicles at the endpoint

nodes, which in the heuristic is defined as fH2 :=
d∑

k=1

wn+d+u+k. Note that, us-

ing the notation of the exact approach, this is equivalent to the term
∑
k∈K

w0k

that was used in the previous chapter as f2. The third summation term is
the penalty term for capacity violation, where ξk is equal to 1 if the capac-
ity constraint is violated in the k-th route, or 0 otherwise. Also, φk is the
amount of capacity violation in the k-th route, if any (φk is zero if there
is no capacity violation in the k-th route). The fourth summation term is
the penalty function for violating the precedence constraints. Finally, the
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fifth component of G, i.e. P4|Rd+1|, is a penalty function proportional to the
number of nodes that have not been allocated to an active vehicle so far.
The parameters P1, P2, P3 and P4 are fixed penalty coefficients.2

Essentially we use the function G defined above as the objective and
allow intermediate solutions which are infeasible. However, the heuristic will
always seek to minimize the penalties added, since this will decrease and
thus improve the value of the objective function. In general, we should end
up with a final solution with zero penalties and thus feasible with respect to
the capacity and precedence constraints, where all nodes are allocated to the
active vehicles. In such a case, the third, fourth and fifth components of G
will all be zero; therefore, G will be equal to fH := f1 + ε · fH2 , which is the
equivalent of the objective function (3.4.1) using the heuristic notation.

4.8 Search termination

Each one of the d+ 1 different restarts terminates when there is no improve-
ment in the last J1 iterations.3

4.9 Parameter values used in the heuristic

After some experimentation, we decided to use the following parameter val-
ues in our experiments with the heuristic:

P1 P2 P3 P4 θ1 θ2 J1 ε
1010 109 1015 1020 d+ 3 1.7 40 10−7

The tabu length (TL) is defined as a function of the number of active
nodes (n+ u), as shown below:

TL =



bn+u
3
c if n+ u ≤ 11

bn+u
4
c if 12 ≤ n+ u ≤ 19

bn+u
5
c if 20 ≤ n+ u ≤ 39

7 if 40 ≤ n+ u ≤ 69
bn+u

10
c if 70 ≤ n+ u ≤ 119

bn+u
12
c if n+ u ≥ 120

2After some experimentation, we decided to use the following parameter values in our
experiments: P1 = 1010, P2 = 109, P3 = 1015 and P4 = 1020.

3In our experiments, we used the parameter value J1 = 40.
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Additionally, the following parameters and sets should be given as an
input separately for each instance: n, d, Sk’s, xi’s, yi’s, ai’s, bi’s, si’s, qi’s,
Qk’s. Note that the value of u is implied from the set Sd+1, since u = |Sd+1|.

Finally, the travel times ti,j in the heuristic approach are calculated as the
Euclidean distances between each pair of nodes (i, j), rounded to 2 decimal
places; i.e. the same way as in the exact approach (described in section 3.5).

4.10 Experimental results of the heuristic ap-

proach

The heuristic described in this chapter was implemented in MATLAB and
tested on the 101 instances that were presented in the previous chapter. The
computational experiments were performed on a personal computer with the
following system specifications: Intel Core i5-3230M CPU running at 2.60
GHz, with 8 GB RAM, running on Windows 8, 64-bit Operating System.
The results from the heuristic approach are compared with the respective
results from the exact approach, which were presented in table 3.1 of section
3.5. Tables 4.1 and 4.2 that are presented in this section, summarize the
experimental results for problem 1 solved using the heuristic approach.

Specifically, the first 7 columns of tables 4.1 and 4.2, show the follow-
ing information for each instance: the serial number and code-name of the
instance, the number of customer nodes n, the number of active vehicles d,
the number of unserved customers u that were originally assigned to broken-
down vehicle, the total number of nodes in the heuristic (NH := n+ u+ 2d),
and the values of the two component objectives f1 (total travel time) and
fH2 (sum of arrival times at the endpoint nodes, which includes travel times,
service times any idle waiting times).

The 8th column (with label fH := f1 + ε · fH2 ) actually shows the value
of the objective G of the heuristic, as defined by equation (4.7.1). However,
in all 101 instances the heuristic solution found is feasible, and therefore
G simplifies to fH := f1 + ε · fH2 in every instance examined. Therefore,
regarding the experimental results of this section, from now on we will refer
to the objective of the heuristic as fH , without further distinction from G,
in order to make the comparison between the exact and heuristic approaches
more direct and easier to understand.

The 9th column of tables 4.1 and 4.2, shows the percentage gap be-
tween the objective value fH in the heuristic solution, and the objective
value fE found by AIMMS when following the exact approach, calculated

as: fH−fE
fH

· 100%. The 10th column shows the percentage gap between the
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Serial no. & n d u NH = f1 fH2 fH := f1 + εfH2 % of fH % of fH O/ run- RV NV
Instance name n+u (same as G) from best from F/ time BV

+2d exact fE LB, fL I (sec)

Class T
1 - T1 6 2 4 14 110.64 120.64 110.640012064 0.00% 0.00% O 4.9 2 4
2 - T2 6 2 4 14 70.1 80.1 70.10000801 0.00% 0.00% O 5.1 1 1
3 - T3 6 2 4 14 75.92 85.92 75.920008592 0.00% 0.00% O 4.9 1 4
4 - T4 6 2 4 14 72.32 82.32 72.320008232 0.00% 0.00% O 5 1 2
5 - T5 6 2 4 14 71.89 81.89 71.890008189 0.00% 0.00% O 5 1 2
6 - T6 6 2 4 14 107.04 117.04 107.040011704 0.00% 0.00% O 5.2 2 2
7 - T7 6 2 4 14 104.82 114.82 104.820011482 0.00% 0.00% O 5 2 1
8 - T8 6 2 4 14 106.61 116.61 106.610011661 0.00% 0.00% O 5 2 2

Class A-n32-k5
9 - A-n32-k5(1,20) 27 4 7 42 569.29 569.29 569.290056929 0.00% 4.35% F 36.9 4 1
10 - A-n32-k5(2,20) 27 4 4 39 568.21 568.21 568.210056821 0.00% 0.00% O 19.7 1 1
11 - A-n32-k5(3,20) 27 4 2 37 566.79 566.79 566.790056679 0.85% 0.85% F 12.1 4 1
12 - A-n32-k5(4,20) 27 4 10 45 596.22 596.22 596.220059622 7.12% 19.03% F 70.1 4 1
13 - A-n32-k5(5,20) 27 4 8 43 558.43 558.43 558.430055843 0.00% 13.65% F 46.4 3 1
14 - A-n32-k5(1,30) 24 4 7 39 508.31 508.31 508.310050831 0.00% 6.13% F 33.5 4 1
15 - A-n32-k5(2,30) 24 4 3 35 498.79 498.79 498.790049879 0.00% 0.00% O 14.4 1 1
16 - A-n32-k5(3,30) 24 4 1 33 492.26 492.26 492.260049226 0.00% 0.00% O 8.9 4 1
17 - A-n32-k5(4,30) 24 4 10 42 528.02 528.02 528.020052802 0.05% 10.37% F 61.7 4 1
18 - A-n32-k5(5,30) 24 4 7 39 540.14 540.14 540.140054014 0.00% 13.52% F 33.6 3 1

Class A-n45-k6
19 - A-n45-k6(1,20) 39 5 8 57 712.14 712.14 712.140071214 -9.22% 8.70% F 76.1 2 1
20 - A-n45-k6(2,20) 39 5 6 55 710.13 710.13 710.130071013 1.00% 7.33% F 48.6 2 1
21 - A-n45-k6(3,20) 39 5 9 58 724.48 724.48 724.480072448 -2.22% 9.97% F 82 2,3 1,1
22 - A-n45-k6(4,20) 39 5 8 57 743.38 743.38 743.380074338 0.00% 7.86% F 71.5 3 1
23 - A-n45-k6(5,20) 39 5 6 55 711.76 711.76 711.760071176 -0.56% 8.47% F 49.9 3 1
24 - A-n45-k6(6,20) 39 5 7 56 711.09 711.09 711.090071109 0.00% 0.00% O 61.9 3 1
25 - A-n45-k6(1,40) 35 5 8 53 636.26 636.26 636.260063626 -17.00% 9.39% F 65.3 2 1
26 - A-n45-k6(2,40) 35 5 5 50 637.55 637.55 637.550063755 1.52% 1.52% F 34 2 1
27 - A-n45-k6(3,40) 35 5 8 53 648.04 648.04 648.040064804 0.44% 6.23% F 67.8 2 1
28 - A-n45-k6(4,40) 35 5 8 53 660.8 660.8 660.80006608 0.00% 7.24% F 69.9 3 1
29 - A-n45-k6(5,40) 35 5 5 50 616.74 616.74 616.740061674 0.00% 0.00% O 38.2 1 2
30 - A-n45-k6(6,40) 35 5 6 51 654.25 654.25 654.250065425 0.00% 0.00% O 42.1 3 1
31 - A-n45-k6(1,60) 26 5 6 42 502.77 502.77 502.770050277 0.00% 0.00% O 30.6 2 1
32 - A-n45-k6(2,60) 26 5 4 40 470.47 470.47 470.470047047 0.00% 0.00% O 19.9 2 1
33 - A-n45-k6(3,60) 26 5 7 43 545.95 545.95 545.950054595 3.88% 15.18% F 38.1 3 1
34 - A-n45-k6(4,60) 26 5 7 43 509.51 509.51 509.510050951 0.00% 9.60% F 44.1 3 1
35 - A-n45-k6(5,60) 26 5 3 39 455.29 455.29 455.290045529 0.00% 0.00% O 20.8 1 1
36 - A-n45-k6(6,60) 26 5 4 40 524.28 524.28 524.280052428 0.00% 0.00% O 20.9 3 1
37 - A-n45-k6(1,80) 21 5 6 37 435.16 435.16 435.160043516 -6.37% 5.01% F 26 2 1
38 - A-n45-k6(2,80) 21 5 3 34 403.29 403.29 403.290040329 0.00% 0.00% O 13.2 2 1
39 - A-n45-k6(3,80) 21 5 7 38 478.59 478.59 478.590047859 8.61% 21.72% F 33 3 1
40 - A-n45-k6(4,80) 21 5 5 36 440.1 440.1 440.10004401 0.00% 0.00% O 20.8 3 1
41 - A-n45-k6(5,80) 21 5 1 32 411.33 411.33 411.330041133 0.00% 0.00% O 9 1 1
42 - A-n45-k6(6,80) 21 5 4 35 442.93 442.93 442.930044293 0.00% 0.00% O 17.6 4 1

Class A-n61-k9
43 - A-n61-k9(1,10) 51 8 4 71 815.13 815.13 815.130081513 0.00% 0.00% O 61.4 8 1
44 - A-n61-k9(2,10) 51 8 8 75 822.7 822.7 822.70008227 -2.10% 3.72% F 144.2 1 1
45 - A-n61-k9(3,10) 51 8 7 74 805.13 805.13 805.130080513 -5.02% 6.27% F 120.6 8 1
46 - A-n61-k9(4,10) 51 8 6 73 804.81 804.81 804.810080481 -4.69% 9.27% F 97.1 6 1
47 - A-n61-k9(5,10) 51 8 10 77 810.51 810.51 810.510081051 -31.29% 10.43% F 218.1 5 2
48 - A-n61-k9(6,10) 51 8 7 74 814.11 814.11 814.110081411 0.00% 3.45% F 130.5 7 2
49 - A-n61-k9(7,10) 51 8 3 70 795.53 795.53 795.530079553 0.00% 0.00% O 48.4 8 1

Table 4.1: Experimental Results for Problem 1 solved using the Heuristic
Approach (in MATLAB) - Part 1 of 2
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Serial no. & n d u NH = f1 fH2 fH := f1 + εfH2 % of fH % of fH O/ run- RV NV
Instance name n+u (same as G) from best from F/ time BV

+2d exact fE LB, fL I (sec)

50 - A-n61-k9(8,10) 51 8 8 75 810.85 810.85 810.850081085 -5.17% 2.59% F 147.5 1 1
51 - A-n61-k9(9,10) 51 8 6 73 799.42 799.42 799.420079942 0.95% 3.59% F 97.3 7 1
52 - A-n61-k9(1,20) 46 8 2 64 727.76 727.76 727.760072776 0.00% 0.00% O 30.9 1 1
53 - A-n61-k9(2,20) 46 8 8 70 731.46 731.46 731.460073146 -1.88% 3.58% F 130.6 1 1
54 - A-n61-k9(3,20) 46 8 7 69 709.59 709.59 709.590070959 0.00% 4.34% F 106.3 8 2
55 - A-n61-k9(4,20) 46 8 5 67 749.11 749.11 749.110074911 0.00% 7.20% F 67.4 3 1
56 - A-n61-k9(5,20) 46 8 9 71 740.98 740.98 740.980074098 -11.34% 8.82% F 152 4 1
57 - A-n61-k9(6,20) 46 8 7 69 723.97 723.97 723.970072397 -4.46% 2.16% F 106.9 7 2
58 - A-n61-k9(7,20) 46 8 3 65 702.69 702.69 702.690070269 0.00% 0.00% O 42.1 8 1
59 - A-n61-k9(8,20) 46 8 7 69 735.63 735.63 735.630073563 -4.01% 1.72% F 105.2 1 1
60 - A-n61-k9(9,20) 46 8 6 68 710.82 710.82 710.820071082 0.66% 3.37% F 88 7 1
61 - A-n61-k9(1,35) 39 8 1 56 662.47 662.47 662.470066247 0.00% 0.00% O 20.2 1 1
62 - A-n61-k9(2,35) 39 8 6 61 669.42 669.42 669.420066942 -0.42% 3.80% F 78.2 1 1
63 - A-n61-k9(3,35) 39 8 7 62 632.93 632.93 632.930063293 -9.22% 5.22% F 94.1 6 1
64 - A-n61-k9(4,35) 39 8 5 60 647.84 647.84 647.840064784 0.00% 4.20% F 58.8 3 1
65 - A-n61-k9(5,35) 39 8 9 64 655.89 655.89 655.890065589 -9.53% 7.59% F 156.6 4 1
66 - A-n61-k9(6,35) 39 8 5 60 660.92 660.92 660.920066092 0.00% 0.00% O 60.2 7 1
67 - A-n61-k9(7,35) 39 8 3 58 628.39 628.39 628.390062839 0.00% 0.00% O 36.1 8 1
68 - A-n61-k9(8,35) 39 8 6 61 670.4 670.4 670.40006704 -1.04% 1.64% F 76 1 1
69 - A-n61-k9(9,35) 39 8 5 60 644.79 644.79 644.790064479 0.95% 0.95% F 58.6 7 1

Class A-n65-k9
70 - A-n65-k9(1,20) 54 8 6 76 832.24 832.24 832.240083224 0.00% 1.10% F 105.9 7 1
71 - A-n65-k9(2,20) 54 8 9 79 830.59 830.59 830.590083059 -6.02% 3.78% F 177.6 6 1
72 - A-n65-k9(3,20) 54 8 8 78 833.63 833.63 833.630083363 0.00% 4.53% F 158.6 7 2
73 - A-n65-k9(4,20) 54 8 6 76 857.84 857.84 857.840085784 0.00% 4.95% F 99.2 2 1
74 - A-n65-k9(5,20) 54 8 7 77 846.07 846.07 846.070084607 -0.18% 2.02% F 125.9 8 1
75 - A-n65-k9(6,20) 54 8 8 78 830.42 830.42 830.420083042 0.00% 0.67% F 149.4 3 1
76 - A-n65-k9(7,20) 54 8 6 76 908.97 908.97 908.970090897 -3.38% 11.65% F 104.3 2 1
77 - A-n65-k9(8,20) 54 8 7 77 833.19 833.19 833.190083319 -7.80% 8.14% F 122.7 7 1
78 - A-n65-k9(9,20) 54 8 5 75 857.91 857.91 857.910085791 0.11% 0.11% F 82.2 4 1
79 - A-n65-k9(1,40) 42 8 4 62 689.75 689.75 689.750068975 0.00% 0.00% O 45.9 7 1
80 - A-n65-k9(2,40) 42 8 8 66 696.17 696.17 696.170069617 0.00% 4.35% F 110.4 6 1
81 - A-n65-k9(3,40) 42 8 7 65 676.57 676.57 676.570067657 -0.34% 5.27% F 89.3 7 1
82 - A-n65-k9(4,40) 42 8 5 63 682.62 682.62 682.620068262 0.00% 0.00% O 57.4 2 1
83 - A-n65-k9(5,40) 42 8 4 62 691.41 691.41 691.410069141 0.00% 0.00% O 45.4 8 1
84 - A-n65-k9(6,40) 42 8 6 64 680.98 680.98 680.980068098 0.00% 0.00% O 72.2 3 1
85 - A-n65-k9(7,40) 42 8 6 64 718.54 718.54 718.540071854 0.00% 9.37% F 73.8 7 1
86 - A-n65-k9(8,40) 42 8 6 64 685.41 685.41 685.410068541 -4.68% 5.74% F 73.1 7 1
87 - A-n65-k9(9,40) 42 8 4 62 693.7 693.7 693.70006937 0.00% 0.00% O 45.2 4 1

Class E-n76-k7
88 - E-n76-k7(1,10) 64 6 1 77 592.59 592.59 592.590059259 0.13% 0.13% F 34 3 1
89 - E-n76-k7(2,10) 64 6 13 89 586.17 586.17 586.170058617 NA 4.32% F 339.5 5 1
90 - E-n76-k7(3,10) 64 6 9 85 584.97 584.97 584.970058497 -10.45% 3.03% F 289 6 2
91 - E-n76-k7(4,10) 64 6 13 89 585.57 585.57 585.570058557 -38.50% 2.80% F 476.6 5 1
92 - E-n76-k7(5,10) 64 6 10 86 593.28 593.28 593.280059328 -6.78% 4.90% F 333.5 2 1
93 - E-n76-k7(6,10) 64 6 11 87 597.27 597.27 597.270059727 -15.71% 4.36% F 289.6 4 1
94 - E-n76-k7(7,10) 64 6 13 89 583.87 583.87 583.870058387 NA 4.93% F 396.7 3 1
95 - E-n76-k7(1,15) 58 6 1 71 544 544 544.0000544 0.00% 0.00% O 31 6 1
96 - E-n76-k7(2,15) 58 6 12 82 547.3 547.3 547.30005473 -15.05% 2.96% F 253.5 5 1
97 - E-n76-k7(3,15) 58 6 8 78 554.05 554.05 554.050055405 -0.26% 3.74% F 142.2 6 1
98 - E-n76-k7(4,15) 58 6 12 82 541.59 541.59 541.590054159 -8.88% 2.53% F 257.3 5 1
99 - E-n76-k7(5,15) 58 6 9 79 556.96 556.96 556.960055696 -0.04% 4.45% F 185.9 2 1
100 - E-n76-k7(6,15) 58 6 11 81 552.69 552.69 552.690055269 0.00% 4.23% F 231.1 4 1
101 - E-n76-k7(7,15) 58 6 11 81 546.89 546.89 546.890054689 -2.76% 2.74% F 250.8 3 1

Table 4.2: Experimental Results for Problem 1 solved using the Heuristic
Approach (in MATLAB) - Part 2 of 2
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objective value fH in the heuristic solution, and the lower bound fL that
was found by AIMMS when following the exact approach, calculated as:
fH−fL
fH
· 100%. The 11-th column with label O/F/I indicates whether the so-

lution found is optimal (O), feasible (F) or infeasible (I). The last 3 columns
show, respectively, the runtime in seconds, the serial number of the rescue
vehicle(s) (RV) involved in the best solution found, and the number of visits
to the broken-down vehicle (NVBV) by each one of the rescue vehicles. Note
that the values of fE and fL that are used to calculate the percentage gaps in
columns 9 and 10, were taken from table 3.1 of section 3.5 that summarizes
the experimental results of the exact approach for Problem 1.

As discussed earlier in this chapter, the stopping criterion for the heuristic
algorithm was to reach a fixed number of iterations without an improvement
(in each one of the d + 1 different restarts). Therefore, no cutoff time was
applied (in contrast to the exact approach where a 5 minutes cutoff time was
applied). However, from the results tables we can see that the heuristic ter-
minated within 300 seconds (5 minutes) in 97 out of 101 instances, whereas
in the remaining 4 instances it needed between 300 and 480 seconds (5-8
minutes) to terminate. Therefore, valid comparisons between the two meth-
ods can still be made, since in 97 out of the 101 instances (i.e. in 96% of the
cases) the heuristic results would have been the same even if a cutoff time of
5 minutes was applied in the heuristic method, as was the case in the exact
approach. Furthermore, 2 out of the 4 remaining instances where we allowed
more than 5 minutes in the heuristic, namely instances 89 and 94 (with run-
times 340 and 397 seconds, respectively), are the two instances where the
exact approach didn’t provide any feasible solution within 5 minutes.4 5

From tables 4.1 and 4.2, we can see that in all 101 instances (i.e. in 100%
of the cases), the solution provided by the heuristic was feasible. Among
those, in 35 instances (i.e. in 34.7% of the cases) the solution found by the
heuristic method matches precisely the lower bound fL that was found by
AIMMS in the exact approach, and is therefore definitely optimal. Of course,
this does not necessarily imply that the solution provided by the heuristic in
the remaining 66 instances was not optimal, since we had found the proven
optimal in just 40 out of the 101 instances by following the exact approach.

4In fact, in instance 94, AIMMS wasn’t able to provide a feasible solution even when
we used a cutoff time of 30 minutes, as shown in table 3.2.

5Note that, considering the 4 instances 89, 91, 92 and 94 for which the runtime reported
by the heuristic was more than 5 minutes, we tried solving them again after adding a cutoff
time of 5 minutes and with the same set of parameters. In 3 out of those 4 instances (apart
from instance 91), we ended up with the same solution as the one reported in tables 4.1
and 4.2. Therefore, if we actually had a cutoff time of 5 minutes, the results would have
been the same in 100 out of the 101 instances.
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Therefore, since we do not know the optimal solutions in 61 instances, we
can make comparisons with the objective value fE of the solution found by
the exact approach, as well as with the lower bound fL found by AIMMS.

Considering the remaining 66 instances for which the heuristic solution
may not necessarily be optimal, the percentage gap between the objective
value fH in the heuristic solution and the lower bound fL found by AIMMS,
varied between 0% and 22%, with an average of 5.86%. More specifically,
this percentage gap varied between 0% and 5% in 37 cases, between 5% and
10% in 21 other cases, between 10% and 15.2% in 6 other cases, and between
19% and 22% in the remaining 2 cases.

A direct comparison between the heuristic and the exact approaches can
be made by examining the 9th column of tables 4.1 and 4.2, which shows
the percentage gap between the objective values fH and fE of the solutions
found by the heuristic and exact approaches, respectively. In this column, a
negative percentage value indicates that the solution found by the heuristic
outperforms the one found by the exact approach. Therefore, we can see
that out of the 101 instances considered, the heuristic solution was better
than the one found by the exact approach in 35 instances (including the
two instances where the exact approach didn’t provide a feasible solution),
was exactly the same in 53 instances, and was worse in 13 other instances.
In the cases where the heuristic approach outperformed the exact approach,
the percentage gap varied between −38.5% and −0.04%, with an average
of −7.47% (considering only the 33 out of 35 such cases for which an exact
solution was available). On the other hand, in the 13 cases where the heuristic
approach was outperformed by the exact approach, the percentage gap varied
between 0.05% and 8.61%, with an average of 2.02%.

In 87 out of the 101 instances, the best solution found by the heuristic
involved only 1 visit to the broken-down vehicle, by a single active vehicle. In
11 other cases, the heuristic solution reported involved 2 visits to the broken-
down vehicle, by a single active vehicle. In 1 other instance, the heuristic
solution involved 2 different active vehicles, each visiting the disabled vehicle
once. In the remaining 2 instances, the heuristic solution involved 4 visits to
the broken-down vehicle, by a single active vehicle.

Considering the runtime, the heuristic terminated in less than 100 seconds
in 70 out of the 101 instances, between 100 and 200 seconds in 20 other
instances, between 200 and 300 seconds in 7 other cases, and finally between
300 and 480 seconds in the remaining 4 instances. The average runtime for
the whole dataset of the 101 instances, was 90.7 seconds.

At this point, we should mention that it may be possible to significantly
reduce the runtime of the heuristic down to around, say, 1

d+1
or 2

d+1
of the

time provided in these tables, by not exhaustively considering all d+ 1 pos-
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sible restarts. Instead, we can have some preprocessing to decide on the
most promising rescue vehicles for the initial solution, based for example on
the proximity of rescue vehicles to the broken-down vehicle, and then actu-
ally employing the heuristic with just 1 or 2 different restarts. Furthermore,
the runtime highly depends on the parameter J1 of the number of iterations
without an improvement before termination in each restart. By proper cal-
ibration of this parameter, the runtime may be further reduced. Improving
the runtime and, perhaps, other aspects of the heuristic, is left open for
future research.

4.11 Conclusions

To summarize, in this chapter we presented a heuristic algorithm based on
Tabu Search, as a second approach for solving the disrupted VRP with Vehicle
Breakdown. The heuristic was used to solve the 101 instances that were
constructed for the purpose, and the experimental results presented were
compared to the results produced by the exact approach which were presented
in the previous chapter.

In general, the results show that the heuristic is capable of finding opti-
mal or near-optimal solutions within a few minutes. In many occasions the
heuristic solution matched exactly the optimal solution found by AIMMS
within the 5 minutes cutoff time, and in many other cases the heuristic solu-
tion outperformed the one found by AIMMS. Of course, whenever AIMMS
was able to terminate before the 5 minutes cutoff time, it produced a proven
optimal solution which no other method can improve. Hence, in some cases
the heuristic found a worse solution than the one found by the exact ap-
proach.

In general, both methods are important and useful. In practice, we rec-
ommend to have both approaches run simultaneously, and take the best
solution found within the available time by either one of the two methods
(which will differ from case to case). We expect that for small instances and
some medium-sized instances with only a few customers originally assigned
to the disabled vehicle, the exact approach should be able to provide the
proven optimal solution within a few minutes. In some other cases, even if
it does not provide the optimal solution or prove its optimality, the exact
approach may still provide a feasible solution which sometimes outperforms
the heuristic one. However, for larger instances we expect that the heuristic
should provide a good quality solution within a few minutes, whereas the
exact approach may either provide a much worse solution, or it may not be
able to provide a feasible solution at all. Of course, even in cases where
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the exact approach fails to provide a good quality solution, it may still be
very useful, since the lower bound that it provides can be used to establish
a guarantee on the optimality gap of the heuristic solution.
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Chapter 5

Problem 2 - The Delayed
TSPTW: Formulations & Exact
Approaches

5.1 Introduction

This chapter introduces a new problem, the Delayed Traveling Salesman
Problem with Time Windows (Delayed TSPTW) and presents detailed de-
scription, notation, formulations and exact approaches for the problem.

Suppose that we have created a feasible and optimal or near-optimal
solution plan for a given instance of the Traveling Salesman Problem with
Time Windows (TSPTW). Assume that during the execution of this plan,
for some reason there is a major delay and the vehicle (i.e. the ’traveling
salesman’) has fallen behind schedule, so that if the original route is followed
as planned, one or more customers will be served with a delay. This causes a
disruption to the original plan, which is no longer feasible, since the proposed
solution leads to the violation of some time windows.

Obviously, one option is to keep following the original plan and visit the
remaining customers in the order defined by the original schedule. However,
this could cause a delay in serving too many of the remaining customers. In
fact, if no rescheduling takes place, then under certain conditions we may
experience an extreme ’domino’ effect where, once a customer is served with
a delay, then all of the following customers will also be served with a delay.
Is it possible to revise the plan and have fewer customers served outside their
promised time windows, or perhaps have shorter amounts of deviation from
their time windows?

In general, servicing customers outside their promised time windows, may
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cause substantial direct or indirect costs for the enterprise. Such costs may be
incurred, for example, by losing some current customers, or by having some
of the dissatisfied customers negatively influencing the company’s reputation.
It is clear that the original schedule has to be revised in such a way so that
the negative effect of the disruption on the enterprise is minimized. In fact,
our experiments verify that in many cases we can find a better plan where
fewer customers are served with a delay and/or the total amount of violation
of their time windows is lower, compared to following the original plan.

Essentially, once such a disruption occurs we are facing a new problem
which we will call the Delayed TSPTW, that is substantially different from the
original TSPTW, with different structure, constraints and objectives. In this
chapter we will define this problem and propose mathematical formulations
and exact approaches which theoretically can be used to solve the problem to
optimality. Heuristic approaches and experimental results will be presented
in the following chapter.

5.2 The easy plan

There is a trivial way to construct a solution to the disrupted problem,
following the so-called easy plan that is described below.

Once a delay occurs, the operational plan may be rescheduled as follows:
The vehicle will skip the first few customers and be diverted to visit next
that specific customer which, if visited first after rescheduling, then all of the
following customers in the order of the original plan will be served within their
requested time windows. Then the vehicle will visit the first few customers
that were skipped in their original order, and finish at the endpoint node.
This way, only the customers that were at the first part of the original route
and were skipped, may be served with delay.

In more detail, suppose that the traveling salesman has fallen behind
schedule, and assume that R = (R1, R2, ..., Rl) is the remaining part of the
route at the time of rescheduling. Here, R1 denotes the starting node (or
current position) of the vehicle at the time of rescheduling, and Rl denotes
the endpoint node, whereas nodes R2, R3, ..., Rl−1 represent customer nodes.
With trivial calculations we can find the smallest index j such that, if the
vehicle skips the first j customers and goes directly from its starting node
R1 to its (j + 1)-th customer Rj+2, then all of the following customers will
be served within their promised time windows. In this case, the vehicle can
follow the revised route R′ = (R1, Rj+2, Rj+3, ..., Rl−1, R2, R3, ..., Rj+1, Rl).
In other words, it will be redirected from its starting position R1 to serve
the (j + 1)-th customer Rj+2 and all of its following customers Rj+3, ..., Rl−1
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within their time windows, in the same order as scheduled in the original
plan. Then it will go back to serve the first customer R2 and all of its
following customers R3, ..., Rj+1, possibly with some delay, in the same order
as scheduled in the original plan, before finishing its route at the endpoint
node Rl. This way, at most j customers will be served outside their requested
time windows.

In general, following the easy plan should be better than not rescheduling
and staying with the original plan. However, rescheduling in a more sophis-
ticated way, may often lead to a new plan where fewer customers are served
outside their time windows, and where the total amount of violation of the
time windows is lower, compared to following either the original plan or the
easy plan. Therefore, in the remaining part of this chapter, as well as in
the following chapter, we describe more appropriate methods to solve this
rescheduling problem.

5.3 The Delayed TSPTW: Problem descrip-

tion and notation

In this section we will present a detailed description and establish notation for
the problem under study, namely the Delayed Traveling Salesman Problem
with Time Windows (Delayed TSPTW), or in short problem 2.

Assume that we have created a feasible and optimal or near-optimal solu-
tion plan for a given TSPTW instance. Suppose that, during the execution
stage of this plan, at some time instant T the operations team is informed
that there has been a severe delay and that the vehicle has fallen behind
schedule. Note that by the term severe delay we refer to a delay which causes
a violation of the time-window constraint for at least one of the remaining
customers of the original route, if this is followed as planned.1 Therefore, the
remaining part of the original plan is no longer feasible with respect to the
time windows. Consequently, the plan has to be revised in such a way that
the negative effect of the disruption is minimized. The new problem that
arises is the Delayed TSPTW. The operations team can use the methods
proposed in the current chapter and those of the following chapter, in order
to construct a sufficiently good revised schedule in real time.

1In contrast, it is possible that the vehicle experiences just a minor delay. This refers
to the case where the vehicle falls slightly behind schedule, but if it continues to follow the
original plan, then it can still serve all of the remaining customers within their requested
time windows and without any delays. In this case, the driver can simply continue following
the route as originally planned, without the need for rescheduling.
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The original problem is assumed to be either a regular TSPTW or an
open-TSPTW, in which a single vehicle departs from a fixed starting location
and is required to serve a given set of customers within their requested time
windows, before it returns to a fixed endpoint location. In the first case where
the original problem is assumed to be a regular TSPTW, the starting point
and endpoint coincide and are referred to as the depot. In the second case
where the original problem is assumed to be an open-TSPTW, the starting
point and endpoint may differ. Since the second case generalizes the first
one, we define the Delayed TSPTW in the slightly more general context of
the second case; i.e. assuming that in the original problem the starting point
and endpoint are both fixed but may differ. Note that the vehicle may be
delivering either a single commodity, such as oil or gas, or unique parcels for
each customer (customer-specific orders). We also assume that there is no
extra vehicle available and that all customers have to be served.

As mentioned above, we assume that during the execution stage of the
original plan, at time instant T the operations team is informed that a severe
delay has occurred during delivery. Suppose that T0 is the estimated time
needed for the operations team to construct a new plan and communicate this
to the driver. The position of the vehicle at time T + T0 can then trivially
be estimated. Let N1 denote the node which represents the expected or
estimated position of the vehicle at time T +T0. We wish to define T1 as the
time when the vehicle will be ready to depart from node N1. There are two
possible cases to consider.

In the first case, at time T+T0 the vehicle is expected to be at a customer
node. In this case, by time T + T0 the vehicle may be expected to have just
arrived at the customer, to have just finished servicing the customer, or to
have already started but not finished servicing the customer. In all three
possible scenarios of the first case, we define T1 to be the expected time by
which the vehicle will have finished servicing the particular customer (where
T1 ≥ T + T0). We also define N1 to be the node corresponding to the
geographic location of that customer.

In the second case, at time T + T0 the vehicle is projected to be on the
road, traveling from one node to another. In this case, we can define node
N1 to be a new node that corresponds to the expected geographic location
of the vehicle at time T +T0 (if following the route of the original plan), and
we also define T1 := T + T0.

Thus, in any case, the vehicle is expected to be ready to depart from node
N1 at time T1, where T1 ≥ T + T0. Note that node N1 and time T1 can be
uniquely defined. In the case where node N1 represents a customer location,
since by time T1 the particular customer will have already been served, he or
she is removed from the set containing the customers that are still unserved
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by time T + T0 when the revised plan starts. Note that in all cases node
N1 will have zero service time. Also, we assume that T ≥ 0 and T0 ≥ 0;
therefore T1 ≥ 0 (since T1 ≥ T + T0).

Once the starting nodeN1 and the corresponding time T1 when the vehicle
is ready to depart from nodeN1 are defined, we can define the set of customers
IC for the revised plan. Specifically, this set contains exclusively all customers
that are still unserved by time T1. Suppose that there are n such customers.
We relabel the nodes corresponding to these customers as nodes 1, 2, ..., n.
From now on, we will refer to the set IC = {1, 2, ..., n} as ’the set of customers
that are unserved at time T1’, or simply as ’the set of customers’ (in the
revised plan). Furthermore, from now on, the starting node N1 will also be
denoted as node n + 1. Note that in the case where the starting node N1

corresponds to a customer location in the original plan, then this customer
is not included in IC .

Let node 0 denote the endpoint of the route (depot). Let I = IC∪{0, n+1}
be the set of all nodes, which can be written explicitly as I = {0, 1, . . . , n, n+
1}. Let A = {(i, j) : i, j ∈ I, i 6= 0, j 6= n+1, i 6= j} be the set of arcs. Clearly
A ⊆ I × I. Let ∆+(i) = {j ∈ I : (i, j) ∈ A} be the set of nodes that are
directly reachable from node i, for all i ∈ I. Let ∆−(i) = {j ∈ I : (j, i) ∈ A}
be the set of nodes from which node i is directly reachable, for all i ∈ I. The
Delayed TSPTW is formulated on the directed graph Γ = (I, A).

A feasible route for the Delayed TSPTW is any route which starts from
node n + 1 at time T1 or later, visits all customers of the set IC in the
appropriate order, and then finishes at the endpoint node 0. The time of
start of service of each customer i ∈ IC may or may not lie within the
associated time window; but in the latter case, the objective is penalized.
Therefore, all time windows are treated as soft constraints.

Each node in IC must have exactly 1 vehicle entering and the same vehicle
leaving the node. The starting node n+1 must have no vehicles entering and
exactly 1 vehicle leaving the node. The endpoint node 0 should have exactly
1 vehicle entering and no vehicles leaving.

Let xij be a binary variable representing the number of times that the
vehicle traverses the arc (i, j), for all (i, j) ∈ A. Let wi be a nonnegative
variable representing the time of start of service of node i, for all i ∈ I.
Specifically, wn+1 represents the time of departure of the vehicle from node
n+1, whereas w0 represents the time of arrival of the vehicle at the endpoint
node 0. Obviously, wi ≥ T1 for all i ∈ I.

Let tij be the travel time from node i to node j, for all (i, j) ∈ A. Assume
that tij ≥ 0 ∀ (i, j) ∈ A. Let [ai, bi] and si be the time window and service
time associated with node i, respectively, for all i ∈ I. We set si = 0 for
nodes i ∈ {0, n + 1}; i.e. the starting node and endpoint node have zero
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service time.
Let M be a large positive constant (e.g. M = 1010) and let ε be a small

positive constant (e.g. ε = 10−8). The quantities n, M , ε, T , T0, T1, tij’s,
si’s, ai’s and bi’s are assumed to be known parameters.

For all i ∈ IC , we introduce the variables µi, λi, ρi and σi as follows:
(i) The variable µi is a binary variable indicating whether or not customer i
is served with a delay. For this, µi is equal to 1 if and only if wi > bi (i.e. if
customer i is served with a delay, that is, later than bi); otherwise, µi = 0
(i.e. µi = 0 if and only if wi ≤ bi).
(ii) The variable λi is a binary variable indicating whether or not customer i
is served earlier than promised. For this, λi is equal to 1 if and only if wi < ai
(i.e. if customer i is served earlier than ai, that is, earlier than promised);
otherwise, λi = 0 (i.e. λi = 0 if and only if wi ≥ ai).
(iii) The variable ρi represents the amount of lateness of customer i, if this
customer is served with a delay (later than bi); otherwise, ρi = 0. For this,
ρi is equal to wi − bi if wi > bi; otherwise, ρi is equal to 0 if wi ≤ bi.
Mathematically, this can be expressed as:

ρi = (wi − bi)µi =

{
0 if wi ≤ bi (⇔ µi = 0)
wi − bi if wi > bi (⇔ µi = 1)

(iv) The variable σi represents the amount of earliness of customer i, if this
customer is served early (earlier than ai); otherwise, σi = 0. For this, σi is
equal to ai − wi if wi < ai; otherwise, σi is equal to 0 if wi ≥ ai. Mathemat-
ically, this can be expressed as:

σi = (ai − wi)λi =

{
0 if wi ≥ ai (⇔ λi = 0)
ai − wi if wi < ai (⇔ λi = 1)

5.4 Objectives

The Delayed TSPTW with 5 objectives (or in short, the Delayed TSPTW-
5 ) is the problem of determining the appropriate sequence in which the
customers of the set IC = {1, 2, ..., n} have to be visited by the vehicle,
after it departs from the starting position n + 1 and before it arrives at the
endpoint node 0 (depot), as well as the appropriate times of visit, so that
the following 5 goals are achieved: 1) have as few late customers as possible,
2) have as few early customers as possible, 3) have as low amount of total
lateness as possible, 4) have as low amount of total earliness as possible, and
5) finish the route as early as possible.

More specifically, we define the Delayed TSPTW-5 as a Multi-Objective
Optimization (MOO) problem with the following 5 objectives:
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1. Minimize F1 :=
∑
i∈IC

µi, i.e. minimize the number of customers served

with a delay (later than bi).

2. Minimize F2 :=
∑
i∈IC

λi, i.e. minimize the number of customers served

earlier than promised (earlier than ai).

3. Minimize F3 :=
∑
i∈IC

ρi, i.e. minimize the total amount of lateness

(combined for all customers being served with a delay).

4. Minimize F4 :=
∑
i∈IC

σi, i.e. minimize the total amount of earliness

(combined for all customers being served earlier than promised).

5. Minimize F5 := w0, i.e. minimize the time of arrival of the vehicle at
the endpoint node (the time when the route ends).

5.4.1 Alternatives to objective 5

Note that, when solving other variants of the Delayed TSPTW, as an al-
ternative to objective 5, one may use any one of the following objectives
accordingly:

• Minimize
∑

(i,j)∈A
tijxij, i.e. minimize the total travel time of the vehicle

(that is, not including waiting time).

• Minimize
∑

(i,j)∈A
cijxij, i.e. minimize the total travel cost of the route.

• Minimize (w0 − wn+1), i.e. minimize the makespan (the total journey
time, including waiting time).

In our study we consider F1, F2, ..., F5 as the component objectives. Ex-
perimentation with alternative component objectives is left open for future
research.

5.5 Preprocessing stage

Before solving the mathematical program proposed below, a preprocessing
stage takes place, which identifies some customers that will definitely be
served with a delay, as well as some other customers that will definitely not
be served earlier than promised.

100



For this, we define the set of definitely late customers, IDL =
{
i ∈ IC

∣∣ T1+
sn+1 + tn+1,i > bi

}
. Its cardinality |IDL| is the number of definitely late

customers, which serves as a lower bound for F1; that is, LBF1 = |IDL|.
Similarly, we define the set of definitely not early customers, IDNE =

{
i ∈

IC
∣∣ T1 +sn+1 +tn+1,i ≥ ai

}
. Its cardinality |IDNE| is the number of definitely

not early customers.
Additionally, the minimum amount of lateness, which serves as a lower

bound for F3, is defined as: LBF3 :=
∑

i∈IDL
(T1 + sn+1 + tn+1,i − bi).

5.6 General MOMILP Formulation for the

Delayed TSPTW with 5 objectives

The more general variant of problem 2, namely the Delayed TSPTW with
5 objectives (Delayed TSPTW-5), can be formulated as the Multi-Objective
Mixed Integer Linear Program (MOMILP 2A), composed of equations (5.6.1)-
(5.6.24), as follows:

min F1 :=
∑
i∈IC

µi (5.6.1)

min F2 :=
∑
i∈IC

λi (5.6.2)

min F3 :=
∑
i∈IC

ρi (5.6.3)

min F4 :=
∑
i∈IC

σi (5.6.4)

min F5 := w0 (5.6.5)

subject to:

∑
j∈∆+(i)

xij = 1 ∀ i ∈ I \ {0} (5.6.6)

∑
i∈∆−(j)

xij = 1 ∀ j ∈ I \ {n+ 1} (5.6.7)

wn+1 ≥ T1 (5.6.8)
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wi + si + tij − wj ≤ (1− xij)M ∀ (i, j) ∈ A (5.6.9)

wi − bi ≤Mµi ∀ i ∈ IC (5.6.10)

bi − wi + ε ≤M(1− µi) ∀ i ∈ IC (5.6.11)

ρi ≤Mµi ∀ i ∈ IC (5.6.12)

ρi ≤ (wi − bi)− (1− µi)(−M) ∀ i ∈ IC (5.6.13)

ρi ≥ (wi − bi)− (1− µi)M ∀ i ∈ IC (5.6.14)

ai − wi ≤Mλi ∀ i ∈ IC (5.6.15)

wi − ai + ε ≤M(1− λi) ∀ i ∈ IC (5.6.16)

σi ≤Mλi ∀ i ∈ IC (5.6.17)

σi ≤ (ai − wi)− (1− λi)(−M) ∀ i ∈ IC (5.6.18)

σi ≥ (ai − wi)− (1− λi)M ∀ i ∈ IC (5.6.19)

µi + λi ≤ 1 ∀ i ∈ IC (5.6.20)

xij ∈ {0, 1} ∀ (i, j) ∈ A (5.6.21)

wi ≥ T1 ∀ i ∈ I \ {n+ 1} (5.6.22)

ρi, σi ≥ 0 ∀ i ∈ IC (5.6.23)

λi, µi ∈ {0, 1} ∀ i ∈ IC (5.6.24)
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Equations (5.6.1)-(5.6.5) define the 5 component objectives, as described
in section 5.4. Equation (5.6.6) ensures that the vehicle exits each node ex-
actly once, apart from the endpoint node (node 0). Equation (5.6.7) ensures
that the vehicle enters each node exactly once, apart from the starting node
(node n + 1). Constraint (5.6.8) states that the time of departure of the
vehicle from the starting node n+ 1 is not before time T1. Constraint (5.6.9)
guarantees schedule feasibility with respect to time considerations. Con-
straints (5.6.10) - (5.6.14) relate any potential violation of the upper limits
of the time windows (due dates) with the variables µi and ρi. Constraints
(5.6.15) - (5.6.19) relate any potential violation of the lower limits of the
time windows (ready times) with the variables λi and σi. Constraint (5.6.20)
states that no customer can violate both the lower limit and the upper limit
of the time windows; i.e. no customer can be both an early and a late cus-
tomer. Note that constraint (5.6.20) is not necessary for the model; however,
it is a valid cut which reduces the feasible region and is therefore included.
Finally, constraints (5.6.21) - (5.6.24) give the ranges of the variables.

Note that we allow the vehicle to depart from its starting point at any
time on or after time T1. In practice, in the presence of a delay, it will
usually be the case that the vehicle will depart from its starting position
precisely at time T1, without any further delay. Therefore, an alternative
but slightly less general way to define the problem, is to make sure that the
vehicle departs from node n + 1 precisely at time T1, which can simply be
achieved by replacing constraint (5.6.8) with the following equation:

wn+1 = T1 (5.6.25)

After all, the vehicle can wait upon arrival at its first customer, before the
service actually begins. Therefore, these two constraints may produce similar
results.

We recognize that, since one of the objectives is to minimize
∑

i∈IC µi,
constraint (5.6.11) is not needed. Similarly, since one of the objectives is to
minimize

∑
i∈IC λi, constraint (5.6.16) is not needed. The same argument

applies when minimizing a weighted sum of the five component objectives,
with positive weights. However, even if these constraints may be considered
as redundant, they are valid cuts. Therefore, we decided to include them
as part of the main formulation. Also, they were included when performing
our experiments. The task of experimenting both with and without these
cuts and assessing the performance, in order to decide which version of the
formulation produces results faster, is left open for future researchers.
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5.7 A MILP formulation with a single aggre-

gated objective for the Delayed TSPTW-

5

One way to address the Delayed TSPTW with 5 objectives, is to aggregate
the component objectives into a single objective function, defined as the
weighted sum of the 5 component objectives.

More specifically, if in the formulation (MOMILP 2A) of section 5.6 we
replace the 5 component objectives (5.6.1)-(5.6.5) with the single objective
function defined by equation (5.7.1) shown below, and keep all other equa-
tions (5.6.6)-(5.6.24), then we get the Mixed Integer Linear Programming
formulation (MILP 2B) for the Delayed TSPTW-5, with the following ag-
gregated objective function:

minimize β1

∑
i∈IC

µi + β2

∑
i∈IC

λi + β3

∑
i∈IC

ρi + β4

∑
i∈IC

σi + β5w0 (5.7.1)

Of course, equation (5.7.1) can also be written more concisely, either as
equation (5.7.2) or as equation (5.7.3):

minimize
∑
i∈IC

(β1µi + β2λi + β3ρi + β4σi) + β5w0 (5.7.2)

minimize
5∑
i=1

βiFi (5.7.3)

The weights βi are assumed to be known parameters, not necessarily
normalized, tuned according to the decision maker’s guidelines, where βi ∈
[0,+∞) ∀ i = 1, 2, ..., 5.

By solving (MILP 2B) with βl = 1 and βr = 0 ∀ r = 1, ..., 5, r 6= l, we
can get a lower bound for Fl. By repeating this process for each l = 1, ..., 5,
we can get lower bounds for each one of the 5 component objectives F1, ..., F5.

More importantly, by varying the values of the weights βi’s, with βi >
0 for all i = 1, . . . , 5 and

∑5
i=1 βi = 1, and solving (MILP 2B) defined

before, we can get different non-dominated solutions to the Multi-Objective
Delayed TSPTW with 5 objectives (Delayed TSPTW-5). This will be further
discussed in section 5.10 when describing Exact Approach 2.

5.8 Notes

1. The Delayed TSPTW (problem 2) can be considered to be a general-
ization of the TSPTW. Indeed, if we let T = T0 = T1 = 0 and node
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n+ 1 to represent the same geographic location as node 0 (i.e. copy of
the depot), then problem 2 reduces to a TSPTW with the objective to
minimize the time of arrival at the depot. Although in problem 2 the
time windows are treated as soft constraints, in the presence of a solu-
tion that respects all time windows, the last reduction should make the
problem equivalent to a TSPTW with hard time windows. Therefore,
the Delayed TSPTW is NP-hard.

2. If we let T = T0 = T1 = 0, without requiring that nodes 0 and n +
1 represent the same geographic location, then the Delayed TSPTW
reduces to an Open-TSPTW with the objective to minimize the time
of arrival at the endpoint node.2

3. We are assuming that, in the original plan, the time of start of service
of customer i was supposed to lie within the time window [ai, bi]. This
time window was a hard constraint in the original problem, but in the
new problem after disruption it is treated as a soft constraint.

4. If in the original problem customer i was promised to be served at a
specific time instant τ ∗i , instead of a time window, we can define the
respective time window as [ai, bi] = [τ ∗i , τ

∗
i ]. In fact, if in the original

problem customer i was supposed to be served at a specific time instant
τi representing his or her estimated time of start of service, and if ξ1 and
ξ2 are non-negative numbers representing the amount of time allowed to
deviate below and above the estimated time of start of service without
being considered an early arrival or a delay, respectively, then this
can be converted into a time window in the new problem, by setting
[ai, bi] = [τi − ξ1, τi + ξ2].

5. Suppose that the operations team decides that customer i would not
mind having a delivery time outside their promised time window, either
earlier or later by some specific amount of time. For instance, this
decision may be taken after communicating and reaching an agreement
with the customer. Then the operations team can expand or update
their time window [ai, bi] accordingly, and use the updated time window
when constructing the revised plan.

6. In our experiments, for the sake of simplicity, we assume that the Carte-
sian coordinates (Xi, Yi) of each node i ∈ I are also given as an input,
which are used to calculate the travel time ti,j between each pair of

2Note that here, by the term Open-TSPTW we refer to the variant of the TSPTW
where the starting and endpoint nodes are both fixed but may differ.
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nodes i and j as the Euclidean distance between the nodes, i.e. as
ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2, rounded to 2 decimal places.

5.9 Exact Approach 1: Lexicographic Exact

Approach for the Delayed TSPTW-5

A relatively simple approach to solve the multi-objective optimization prob-
lem under study, is to use the Lexicographic Preference method. For this, if
we further assume that there is a lexicographic preference of the five compo-
nent objectives, so that objectives F1, F2, ..., F5 are in strict descending order
of importance, then the more complex multi-objective problem simplifies to
a multi-criteria problem. The objective vectors (F1, F2, ..., F5) are first com-
pared on the most important component, namely F1, and only in case of
equality the next most important component (F2) is considered, and so on.

Thus, we can solve the Delayed TSPTW with 5 objectives of Lexicographic
Preference3 (Delayed-TSPTW-Lex5) by using formulation (MILP 2B) of sec-
tion 5.7 with a single aggregated objective (equation (5.7.1)) and with a
single choice of weights (β1, β2, β3, β4, β5) so that β1 >> β2 >> β3 >>
β4 >> β5 > 0. For instance, one can use the following set of weights:
(β1, β2, β3, β4, β5) = (1010, 108, 104, 1, 10−4). This can be implemented in an
optimization solver (e.g. Cplex or AIMMS) to directly solve different problem
instances. We will call this method Exact Approach 1 for solving Problem 2.

We implemented formulation (MILP 2B) in AIMMS and used Exact Ap-
proach 1 to solve a number of instances which were created for the problem
under study. Specifically, we created a dataset of 27 instances for the De-
layed TSPTW, with a number of active customers ranging from 5 to 84.
The experimental results of Exact Approach 1 are presented in table 6.2 and
discussed in detail in subsection 6.5.1 of the following chapter.

In short, Exact Approach 1 was able to provide the optimal solution
within 10 minutes in just 6 out of 27 instances, where the number of active
customers was very small (up to 15 customers). Also, AIMMS was unable
to produce a solution with an optimality gap of less than 10% in any of the
instances that involved more than 40 active customers, within 10 minutes.
The results imply that this method cannot be used in practice for solving
instances of more than 40 customers within a few minutes. Instead, a heuris-
tic method may be more appropriate in such cases. More details on the
dataset, on the results of Exact Approach 1, as well as comparisons between
this approach and the heuristic approaches can be found in section 6.5 of the

3or the Lexicographic Delayed TSPTW with 5 objectives
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following chapter.

5.10 Exact Approach 2: Weighted Sum Ex-

act Approach for the 5-objective variant

A second and more general exact approach to solve the problem under study,
is to use the Weighted Sum Method, without making any assumption about
any preference regarding the 5 component objectives.

Thus, we can solve the Multi-Objective Delayed TSPTW with 5 objec-
tives (Delayed-TSPTW-MOO-5, or simply Delayed-TSPTW-5) by using the
weighted-sum method and formulation (MILP 2B) of section 5.7. As be-
fore, a single aggregated objective (equation (5.7.1)) is involved. However,
instead of simply using a single choice of weights (β1, β2, β3, β4, β5) as done
in Exact Approach 1, in this approach we consider many different sets of
weights. More specifically, we vary systematically the values of the weights
β1, β2, ..., β5 with βi > 0 for all i = 1, . . . , 5, and for each set of weights we
solve (MILP 2B); thus getting several different solutions to the MOO prob-
lem, all of which will belong to the Pareto front. This can be implemented
in an optimization solver to directly solve different instances. We will be
referring to this method as Exact Approach 2 for solving Problem 2. Note
that the weights may be normalized (i.e. to have

∑5
i=1 βi = 1), or not.

Note that, in order to solve a single instance using Exact Approach 2,
we must solve an adequate number of programs of the form (MILP 2B),
each time with a different combination of weights. This way, we can get a
subset of the set of non-dominated solutions. However, in practice we would
probably need to solve too many MILPs, choosing some of the too many
possible combinations, and even then there is no guarantee that we will get
a representative subset of the Pareto front.

Furthermore, since Exact Approach 1 was unable to provide an accept-
able solution for instances with more than 40 active customers in short time,
it is reasonable to expect similar or even worse results with the more com-
putationally expensive Exact Approach 2. For this reason we decided not to
perform any experiments with exact approach 2, nor with any other exact
methods. Instead, heuristic approaches seem more promising for solving in-
stances with more than 40 customers. We will explore the use of different
heuristic approaches for this problem in the chapter that follows.
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5.11 Problem extension with customer prior-

ities

The Delayed TSPTW can be extended to include different priorities for dif-
ferent customers. This additional feature may be used in cases where the
company has some customers who are considered to be more important than
others, and would prefer that they are affected the least in case of a disrup-
tion.

For this, we define pi > 0 to be a known parameter representing the
priority of customer i, for all i ∈ IC . The more important a customer is,
the larger the value of the associated parameter pi should be, and thus the
more a potential violation of his or her time window should be penalized in
the objective(s). For example, a simple priority assignment can be achieved
by dividing up the customers into high-priority customers with pi=2, and
low-priority customers with pi=1, as done in Jiang et al. (2013).

In order to incorporate customer priorities into our models, in the more
general formulation (MOMILP 2A) of section 5.6, we can replace the 5 com-
ponent objectives (5.6.1) - (5.6.5) with the following 5 equations:

min F p
1 :=

∑
i∈IC

piµi (5.11.1)

min F p
2 :=

∑
i∈IC

piλi (5.11.2)

min F p
3 :=

∑
i∈IC

piρi (5.11.3)

min F p
4 :=

∑
i∈IC

piσi (5.11.4)

min F p
5 := w0 (5.11.5)

Likewise, if we wish to incorporate customer priorities into formulation
(MILP 2B) of section 5.7, we can replace the single aggregated objective
function (5.7.1), with the following more general objective: 4

minimize β1

∑
i∈IC

piµi+β2

∑
i∈IC

piλi+β3

∑
i∈IC

piρi+β4

∑
i∈IC

piσi+β5w0 (5.11.8)

4Obviously, equation (5.11.8) can be written more concisely as either one of the follow-
ing two equations:

minimize
∑
i∈IC

pi(β1µi + β2λi + β3ρi + β4σi) + β5w0 (5.11.6)
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Note that, starting from the more general models presented above that
involve customer priorities, if we simply set pi = 1 for all i ∈ IC , then these
reduce down to models (MOMILP 2A) and (MILP 2B) without priorities.

No experiments were performed using these generalized formulations which
include customer priorities. This is left open for future research.

5.12 Reduction to 3 objectives

In general, for a multi-objective optimization (MOO) problem, the greater
the number of objectives, the more complex and time-consuming it is to
find the set of non-dominated solutions, to visualize the Pareto front and
to decide amongst the (possibly many) alternatives. For instance, finding
the set of non-dominated solutions of a MOO problem with 5 objectives, is
significantly more complex than for a MOO problem with 3 objectives.

For this, the 5 objectives of this MOO problem can be reduced down to
3 objectives, if we make the following two additional assumptions: (i) that
having one early customer is equally as bad as having one late customer, and
(ii) that having a delay in service of χ time units is equally as bad as having
an early start of service by χ time units.

Under the above additional assumptions, the Delayed TSPTW with 5
objectives (Delayed-TSPTW-5) reduces to the Delayed TSPTW with 3 ob-
jectives (Delayed-TSPTW-3). The latter is a MOO problem which is very
similar to the former one, but instead of having 5 objectives, it only involves
the following 3 objectives:

1. Minimize f1 := F1 + F2 =
∑
i∈IC

(µi + λi), i.e. minimize the number of

customers served outside their promised time windows.

2. Minimize f2 := F3 + F4 =
∑
i∈IC

(ρi + σi), i.e. minimize the total amount

of time by which the time windows are violated.

3. Minimize f3 := F5 = w0, i.e. minimize the time of arrival of the vehicle
at the endpoint node (i.e. minimize the time when the route finishes).

The Delayed-TSPTW-3 can therefore be formulated as the Multi-Obje-
ctive Mixed Integer Linear Program (MOMILP 2C), composed of all con-
straints (5.6.6)-(5.6.24) of (MOMILP 2A) presented in section 5.6, but with

minimize

5∑
i=1

βiF
p
i (5.11.7)
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the following three objectives:

min f1 :=
∑
i∈IC

(µi + λi) (5.12.1)

min f2 :=
∑
i∈IC

(ρi + σi) (5.12.2)

min f3 := w0 (5.12.3)

Furthermore, the Delayed-TSPTW-3 can also be solved using the weigh-
ted-sum method, the same way that Delayed-TSPTW-5 can be solved, if in
equation (5.7.1) we let β1 = β2, β3 = β4, and define (β′1, β

′
2, β

′
3) = (β1, β3, β5),

which will transform it into the following equation:

minimize β′1
∑
i∈IC

(µi + λi) + β′2
∑
i∈IC

(ρi + σi) + β′3w0 (5.12.4)

or equivalently

minimize
3∑
i=1

β′ifi (5.12.5)

For this, starting from formulation (MOMILP 2C) presented above, if we
replace the three objectives (5.12.1) - (5.12.3) with equation (5.12.5) (or its
equivalent (5.12.4)) and keep all other equations (5.6.6)-(5.6.24), we get the
single-objective formulation (MILP 2D) for the Delayed-TSPTW-3.

Then, formulation (MILP 2D) can be used to solve the 3-objective variant
of the problem, i.e. the Delayed-TSPTW-3, either assuming a Lexicographic
Preference (i.e. as in Exact Approach 1 of section 5.9), or as a MOO prob-
lem using the Weighted Sum approach and varying systematically the set of
weights (i.e. as in Exact Approach 2 of section 5.10).

5.13 Application: The disrupted VRPTW

with customer-specific orders and vehi-

cle delay

A direct application of the Delayed TSPTW is to solve the disrupted VRPTW
with customer-specific orders and vehicle delay, which is described below.

Suppose that we have created a feasible and optimal or near-optimal
solution plan for a given instance of the multi-commodity VRPTW with
heterogeneous fleet (i.e. with vehicles of different capacities, in general).
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Assume that, during the execution of this original solution plan, a severe
delay occurs in one or more of the routes, and if the original plan is not
revised then there will be at least one customer served with a delay in each
one of the affected routes. This disruption causes the remaining part of the
original plan to be infeasible with respect to the time windows. Clearly the
operational plan has to be revised appropriately, so that the negative effect
of the disruption is minimized.

We assume that the goods delivered are non-transferable between cus-
tomers, that the orders are customer-specific, that there are no split deliv-
eries, that there are no extra vehicles available, that vehicles cannot meet
and exchange goods between each other and that vehicles cannot return to
the depot to reload goods and leave the depot again. In fact, we assume
that once the vehicles depart from the depot, even after a severe delay has
occurred in some of the routes, each customer can only be served by the
vehicle that was originally planned to serve him or her, which already carries
his or her order.

In this problem, if a severe delay occurs in ν routes, each one of these
routes can be revised independently from one another. Each one of those
routes will be a path that starts from the current position of the vehicle,
visits the remaining customers of the route (perhaps in a different order than
originally scheduled) and finishes at the depot. Specifically, assume that at
time τ1 the operations team is informed that there is a severe delay in route
r1, at time τ2 that there is a severe delay in route r2,..., and at time τν
that there is a severe delay in route rν . Solving the disrupted VRPTW with
customer-specific orders and vehicle delay is equivalent to solving ν different
Delayed-TSPTW problems, one for each route ri, where each time we set
T = τi, for all i = 1, . . . , ν. Obviously, any route which does not experience
a delay will not be affected.

Therefore, once we have completed the study of problem 2, i.e. the De-
layed TSPTW, this will imply that the study of the disrupted VRPTW with
customer-specific orders and vehicle delay has also been concluded.

5.14 Other applications: other types of dis-

ruption

Apart from delays, the models described in this chapter may be used to
handle other forms of disruption which may occur, either in a TSPTW, or
in a multi-commodity VRPTW with customer-specific orders. Examples
include the following types of disruption:
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• one or multiple roads/arcs blocked, or more generally parts of the net-
work blocked, affecting the routes of some delivery vehicles. For in-
stance, this may occur due to an accident which does not involve a
delivery vehicle, due to a landslide etc.

• traffic congestion in some parts of the network, which was not taken
into account or was not known when constructing the original plan.

In each one of the above cases, the formulations and models of this chapter
can be used, with the only difference that the operations team has to update
the travel times accordingly before rescheduling, as follows: If arc (i, j) is
blocked, then we should set ti,j = ∞. If there is traffic congestion and
the travel time ti,j has increased, then ti,j should be updated using a new
estimated travel time t′i,j, or an overestimate if it is impossible to predict the
travel jam effect on arc (i, j). Historical data of travel times under traffic
congestion may be used, if available and if this is the type of disruption
experienced.

5.15 Other problem variants and solution me-

thods, scope for further research and

conclusions

It is possible to extend the formulations described in this chapter to include
other constraints, such as certain customers being served by particular ve-
hicles, if this is relevant for a particular application. Additionally, other
variants of problem 2 can arise if we consider a different set of objectives.

For instance, there are no restrictions on the amounts of delay or earliness
in the models described in this chapter. However, if desired, such restrictions
can be easily incorporated to the current models as follows:
(a) If we want to have a maximum delay of ρmax per customer, we can add
the constraint ρi ≤ ρmax ∀ i ∈ IC (or for a specific subset of IC).
(b) Similarly, if we want to have a maximum earliness of σmax per customer,
we can include the constraint σi ≤ σmax ∀ i ∈ IC (or for a subset of IC).
(c) If we want to have a maximum delay of ρ′max combined for all customers,
we can add the constraint

∑
i∈IC ρi ≤ ρ′max.

(d) Likewise, if we want to have a maximum earliness of σ′max combined for
all customers, we can include the constraint

∑
i∈IC σi ≤ σ′max.

Obviously there are many different variants that can occur from the prob-
lem under study, by considering different combinations of constraints and ob-
jectives. Additionally, each one of these variants may be solved using different
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methods. In this chapter we only considered the lexicographic approach and
the weighted-sum approach as exact methods to address the 5-objective vari-
ant of problem. Apart from these methods, of course, one can apply other
multi-objective optimization methods to address each variant of the problem,
such as the Epsilon Constraint Method.

Since the experimental results of Exact Approach 1 indicate that exact ap-
proaches based on the formulations presented in this chapter are not promis-
ing for quickly solving instances with more than 40 customers, we decided
not to perform any experiments using other exact approaches. Therefore, we
leave open for further research the task of experimenting with other multi-
objective optimization methods to find the set of non-dominated solutions in
an exact approach. Instead, in the following chapter we focus on heuristic ap-
proaches that may be more appropriate for solving such problems in practice.
Note also that in the following chapter we do consider another MOO method,
namely the Epsilon Constraint Method, to solve the 3-objective variant of
problem 2; however, we use this method in a heuristic framework.
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Chapter 6

Problem 2 - The Delayed
TSPTW: Heuristic Approaches
& Experimental Results

6.1 Introduction

In chapter 5 we introduced the Delayed Traveling Salesman Problem with
Time Windows (Delayed TSPTW ), also referred to as Problem 2, and pre-
sented a detailed description, notation, formulations and exact approaches
for the problem.

In this chapter we describe three heuristic approaches for the Delayed
TSPTW. The first heuristic approach solves the Lexicographic variant of
the problem with 5 objectives (the Delayed-TSPTW-Lex5 ). The second one
solves the Lexicographic variant with 3 objectives, which is a slight simplifi-
cation of the first variant. Both approaches 1 and 2 assume a lexicographic
preference in the component objectives, transforming the problem into one
with a single aggregated objective, and eventually find a single optimal or
near-optimal solution. Finally, the third heuristic approach uses the frame-
work of the ε-Constraint Method to solve heuristically the 3-objective version
of the problem, and finds a representative subset of the set of non-dominated
solutions, as a more general multi-objective optimization (MOO) approach
and without assuming any preference between the component objectives. All
three approaches employ the Tabu Search metaheuristic.

Although the second heuristic approach can be thought of as a special
case of the first one, we mainly describe it separately for two reasons: Firstly,
it serves as a bridge so that valid comparisons between the first and third
heuristic approach can be made. Secondly, we need a separate statement of

114



the algorithm corresponding to the second heuristic approach, since this is
called several times by the algorithm of the third heuristic approach; oth-
erwise, it would be even more complicated to describe the already complex
algorithm of heuristic approach 3.

In the following three sections of this chapter we describe the three heuris-
tic approaches. Then, in section 6.5 we present the experimental results for
heuristic approaches 1 and 3, as well as the results derived from exact ap-
proach 1, which was described in the previous chapter. Discussion of the
results and comparisons between the different methods can be found in the
same section.

Throughout this chapter we use the notation established in the previous
chapter, unless it is explicitly stated otherwise.

6.2 Heuristic Approach 1: A Tabu Search

heuristic for the Lexicographic Delayed

TSPTW with 5 Objectives

In this section we describe a heuristic based on Tabu Search, to solve the
Lexicographic Delayed TSPTW with 5 objectives (Delayed-TSPTW-Lex5).
We will be referring to this approach as Heuristic Approach 1 for problem 2.

The Delayed-TSPTW-Lex5 was described in section 5.9. In this variant
of problem 2, the five component objectives F1, F2,..., F5 which were defined
in section 5.4, are transformed into a single aggregated objective, namely∑5

i=1 βiFi, which is to be minimized. Essentially we employ the weighted-sum
method to transform the MOO problem into a single-objective optimization
problem. Moreover, we choose a set of weights (β1, β2, ..., β5) with β1 >>
β2 >> ... >> β5 > 0. This way we enforce the lexicographic preference of
the five component objectives, where the most important component F1 is
minimized first, then among the solutions which involve the minimum value
of F1, the one(s) which also minimize F2 are chosen, and so on.

Recall that in the Delayed TSPTW, we have n unserved customers wait-
ing to be served by a single vehicle, the so-called ’traveling salesman’. The
vehicle must depart from node n + 1 (initial position) at a time not earlier
than T1, then visit all n customers, corresponding to nodes 1, 2, ..., n in the
appropriate order and at the appropriate times, and finish at the endpoint
node n + 2 (depot). Note that for technical reasons, the endpoint node in
this chapter is denoted by node n+ 2 (whereas in the previous chapter, this
was denoted by node 0). All nodes must be visited exactly once. Each node
i = 1, 2, ..., n + 2 is associated with its Cartesian coordinates (Xi, Yi), a ser-
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vice time si and a time window [ai, bi]. All customers must be served, but not
necessarily within their time windows. Instead, customers’ time windows are
treated as soft constraints, so any intermediate or final feasible solutions may
violate some time windows. Note that any violation of the original time win-
dows of the starting node n+1 or the endpoint node n+2 will not be reflected
in the component objectives F1, F2, F3 or F4. The starting position n+1 can
be the same as the depot, or a customer’s node (in which case the correspond-
ing customer should not be included in the customer set {1, 2, ..., n}), or any
other position specified by its Cartesian coordinates (Xn+1, Yn+1), with zero
service time and time windows equal to [0,+∞). Since each instance of the
Delayed TSPTW is based on a feasible solution for a TSPTW instance, this
implies that the capacity constraint is automatically satisfied at all times.

Note that some obvious bounds for the first two component objectives
are: 0 ≤ F1 ≤ n, 0 ≤ F2 ≤ n, and 0 ≤ F1 + F2 ≤ n.

6.2.1 Objective

The objective in the first heuristic approach is to minimize function G, de-
fined below:

minimize G =
5∑
i=1

βiFi (6.2.1)

6.2.2 Solution Notation

We define the following:

• R = (R1, R2, ..., Rn+2) is a vector of length n + 2 which represents the
vehicle’s route. Vector R starts with node n + 1 (i.e. R1 = n + 1),
followed by a permutation of the set of customers {1,2,...,n} and ends
with node n+ 2, which corresponds to the depot (i.e. Rn+2 = n+ 2).

• W̃ = (W̃1, W̃2, ..., W̃n+2) is a vector of length n+ 2 which contains the

time of start of service W̃i of each node i (i = 1, 2, ..., n + 2), when
the vehicle follows route R and while idle waiting time at nodes is not
allowed. Of course, specifically for the starting and endpoint nodes,
W̃n+1 represents the time of departure from node n + 1 and W̃n+2 the
time of arrival at node n+ 2 (since si = 0 for the nodes i = n+ 1, n+ 2
which do not represent customers).

• G̃ is a real number representing the value of the objective (6.2.1) with-
out allowing idle waiting times at nodes, when following route R and
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visiting the customers at times W̃ . Essentially, G̃ represents the value
of G over a subset Π1 of the feasible region Π, in which no waiting
times are allowed at any node. More formally, G̃ is the restriction of
the function G over the set Π1; i.e. G̃ = G|Π1

. So, G̃ is also calculated
by equation (6.2.1).

• W = (W1,W2, ...,Wn+2) is a vector of length n+ 2 which contains the
time of start of service Wi of each node i (i = 1, ..., n + 2), when the
vehicle follows route R and while idle waiting time at nodes is allowed.

• G is a real number representing the value of the objective (6.2.1) when
allowing idle waiting time at nodes, when visiting the customers in the
order described by the collection of routes R and at times W . So, G is
calculated over the whole feasible region Π.

A solution to the problem can be described by vector R representing the
route, along with the respective vector W containing the time of start of
service of each node while allowing idle waiting time at nodes, together with
the respective values for the 5 component objectives F1, F2, ..., F5. However,
in the context of the heuristic and throughout this chapter, whenever we
use the term solution S we will be referring to the quintuple S = (R, W̃ , G̃,
W,G).

In a similar way, we define the quintuples S1, S2, Sbest and S∗ as: S1 =
(R1, W̃ 1, G̃1,W 1, G1), S2 = (R2, W̃ 2, G̃2,W 2, G2), Sbest = (Rbest, W̃ best, G̃best,

W best, Gbest) and S∗ = (R∗, W̃ ∗, G̃∗,W ∗, G∗). From now on, whenever we say
that a solution S, S1, S2, Sbest or S∗ is created or updated, we will imply that
the respective quintuple is created or updated accordingly, unless otherwise
stated.

It is requested to find the Solution S∗ which minimizes the objective
function G defined by equation (6.2.1), over the whole feasible space Π, i.e.
when allowing idle waiting time at nodes, while respecting the necessary
constraints.

6.2.3 Description of the main algorithmic functions

Given a route R, we can calculate or update the complete solution S, com-
posed of the quintuple (R, W̃ , G̃,W,G), using the following algorithmic func-
tions:

(i) Given R, how to calculate vector W̃ using the algorithmic func-

tion time: W̃ = time(R):
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Given a route R, the algorithmic function time calculates the times of
start of service at each node when following route R, if there is no idle waiting
time at any node, and stores the result in the vector W̃ of length n+ 2 (i.e.

W̃ = time(R)).

For this, it sets W̃ (R1) = T1 for the starting node R1 of the route, and

then for all i = 2, 3, . . . , n+2, it sets W̃ (Ri) = W̃ (Ri−1)+t(Ri−1, Ri)+s(Ri−1).

Note that we use the notation W̃ (Ri) and W̃Ri interchangeably; i.e. W̃ (Ri) =

W̃Ri . Similarly, t(Ri, Rj) = tRi,Rj and s(Ri) = sRi .

(ii) Given R and W̃, how to calculate G̃ using the algorithmic

function cost : G̃ = cost(R,W̃):

Given R and W̃ , the algorithmic function cost uses equation (6.2.1) to

calculate the value G̃ of the objective function without allowing idle waiting
times at nodes, when following route R and visiting the nodes at times W̃ .

This function compares the time of start of service W̃i of each node i
with the respective time window [ai, bi] and thus calculates the value of each
component objective Fj (j = 1, . . . , 5). Initially each Fj is set to zero. Then,

for all nodes i = 1, 2, . . . n that represent customers, if W̃i > bi, then F1 is
increased by 1 and F3 is increased by W̃i − bi. Similarly, for all i = 1, . . . n,
if W̃i < ai, then F2 is increased by 1 and F4 is increased by ai− W̃i. Finally,
F5 is defined as W̃n+2. Therefore, the values of all five component objectives

Fj (j = 1, . . . , 5) are defined for the specific vector W̃ and route R.
Finally, the function calculates the corresponding value of the objective

function (6.2.1), i.e.
∑5

i=1 βiFi, and returns this as G̃, i.e. G̃ = cost(R, W̃ ).

Note that, more generally, given R and a vector Ŵ , which may or may
not involve some idle waiting times at nodes (for example, we may use W̃ or

W as Ŵ ), we can still use the same algorithmic function cost to calculate the

respective value of the objective function Ĝ, as Ĝ = cost(R, Ŵ ). Specifically,
given R and the times of start of service W while allowing idle waiting times
at nodes, we can use the same algorithmic function cost to calculate G, as
G = cost(R,W ).

Up to this point we have described how, given a route R, we can create
or update the triplet (R, G̃, W̃ ). We will now describe how, given the triplet

(R, G̃, W̃ ), we can use the algorithmic function optimal waiting times to

calculate G and W and thus get the complete solution S = (R, G̃, W̃ ,G,W ).
Note that the triplet (R,G,W ) is enough to represent a complete solu-

tion, since G̃ and W̃ serve as intermediate values. Therefore, once we have
the optimal values for the triplet (R,G,W ), there is no need to update G̃ or
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W̃ .

(iii) Given R and W̃, how to calculate W and G using the function

optimal waiting times: [W, G]=optimal waiting times(R,W̃):

Given R and W̃ , the function optimal waiting times calculates a heuristic
approximation of the optimal times of start of service W and the respective
value of the objective function G involved when following the route R and
while idle waiting time at nodes is allowed. The function works as described
below:
- First initialize W and G by letting W := W̃ and G := cost(R,W ). Then,
for all i = 2, 3, ..., n + 1, perform the procedure described in the following
paragraph:
- Check if by visiting the customers at times W , then the customer stored at
position Ri of the route R will be visited earlier than his or her ready time.
If the answer is yes, then define m1 as the amount of earliness of customer
Ri; that is m1 := aRi − WRi . Also, define m2 := min{bRk − WRk |k =
i+1, i+2, . . . , n+1}; that is, m2 is the minimum difference between the due
date and the time of start of service, amongst the customer nodes following
the node Ri in the route R. Note that m2 is not necessarily positive. In fact,
m2 is negative if there is at least one late customer among the customers
Ri+1, Ri+2, . . . , Rn+1. Then, define m := min{m1,m2}. If m > 0, then
set Wtemp := W . Add a waiting time of m time units to customer Ri in
the vector Wtemp. This is done by increasing the times of visit of all nodes
including and following node Ri (i.e. nodes Ri, Ri+1, ..., Rn+2) by m units,
in vector Wtemp. Then calculate Gtemp := cost(R,Wtemp). If Gtemp < G, this
means that adding a waiting time of m time units to customer Ri gives an
improvement to the current times of start of service (vector W ), with respect
to the objective function. Therefore, if Gtemp < G, then update W := Wtemp,
G := Gtemp and continue to the next iteration of the index i.
- Finally, return G and W .

Note that within the function optimal waiting times, vector W̃ may be
replaced by Ŵ , which may or may not involve some idle waiting times at
nodes.

6.2.4 Description of the Algorithm

1. Parameters input & Initialization:
- Input: n, T1, TL (Tabu Length), d=number of different restarts of
the algorithm, weights (β1, β2, ..., β5).
- Input: (Xi, Yi), [ai, bi], si, ∀ i = 1, 2, . . . , n+ 2.
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- Input: J1, J2, J3, d̂. Here J1 and J2 denote the number of Tabu Search
iterations without an improvement before Stages A and B terminate,
respectively. Also, J3 and d̂ are parameters controlling whether or not
in the current iteration the two-opt moves will be considered.
- For all i, j ∈ {1, 2, . . . , n + 2}, calculate the travel time ti,j as the
Euclidean distance ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2 between each pair

of nodes (i, j), which is first truncated into an integer using the floor
function (as done in Dumas et al. (1995)), and then modified by ap-
plying the Triangle Inequality Correction as follows:

for all i, j, k ∈ {1, 2, . . . , n+ 2}
if ti,j > ti,k + tk,j

ti,j := ti,k + tk,j
end if

end for

2. Calculate lower bounds for component objectives F1 and F3:

- Identify the set of Definitely Late customers, IDL =
{
i ∈ IC

∣∣∣ T1 +

sn+1 + tn+1,i > bi

}
, as described in chapter 5. Its cardinality |IDL| is

the number of definitely late customers, which serves as a lower bound
for F1; that is, LBF1 = |IDL|.
- Additionally, in some cases we can raise the lower bound LBF1 , by
identifying the set of Additional Late customers, IAL. This uses a simi-
lar reasoning as before, to identify pairs of customers (i, j) not belong-
ing to IDL, among which at least one will be served with a delay. This
is achieved by the following subroutine:

IAL := ∅
for i = 1, 2, . . . , n− 1

if (T1 + sn+1 + tn+1,i ≤ bi)
for j = i+ 1, i+ 2, . . . , n

if (T1 + sn+1 + tn+1,j ≤ bj)
if [(T1 + sn+1 + tn+1,i + si + ti,j > bj) &

& (T1 + sn+1 + tn+1,j + sj + tj,i > bi)]
⇒ IAL := IAL ∪ {(i, j)}

end if
end if

end for
end if

end for
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return IAL

In cases where the set IAL is not empty, we can increase the lower
bound LBF1 accordingly. For example, if IAL contains only one pair of
customers (i, j), then we set LBF1 = |IDL|+1. If IAL = {(i1, i2), (i3, i4)}
with i1, i2, i3, i4 all different, then we set LBF1 = |IDL|+ 2. However, if
IAL = {(i1, i2), (i1, i3)} with i1, i2, i3 different between each other, then
we can only set LBF1 = |IDL|+ 1.

From now on, we will assume that LBF1 is enhanced, whenever possi-
ble, by using the above subroutine and thus taking into account any
additionally late customers. Note that the above subroutine can be
further generalized.

- Evaluate the minimum amount of lateness, defined as: LBF3 :=∑
i∈IDL

(T1 + sn+1 + tn+1,i − bi), which serves as a lower bound for F3.

Objective:

The objective is to minimize function G defined by equation (6.2.1),
over the whole feasible region Π, as was already explained.

For diversification purposes, we perform d different restarts of the Tabu
Search, each time starting from a different initial solution.

Therefore, for all i = 1, 2, ..., d repeat steps 3 and 4 below to find the

best solution found in run i, Sbest(i):

3. Construct the Initial Route R0:

For run i = 1, the initial route is constructed as follows: We sort
all nodes representing customers (after removing served customers) in
increasing order of bi’s and store these in the row vector IS. The initial
route R0 is defined as: R0 = [n+ 1, IS, n+ 2].

For runs i = 2, 3 in the case where 2 ≤ d ≤ 3, or for runs i = 2, 3, ..., d−1
in the case where 4 ≤ d ≤ 6, or for runs i = 2, 3, ..., d − 3 in the case
where d ≥ 7, in order to construct the initial route R0 we start with
the best solution found in run i−1. We then perform k1 random moves
(exchange, insertion or two-opt), where k1 is chosen separately for each
run i as a random integer in the interval [k2, k3]. Here k2 and k3 are
input parameters defined by the user (throughout our experiments we
used k2 = 11 and k3 = 31).
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For run i = d in the case where 4 ≤ d ≤ 6, or for runs i = d−2, d−1, d in
the case where d ≥ 7, the initial route is defined as R0 = [n+1, I∗S, n+2],
where I∗S is a random permutation of the set of customers {1,2,...,n}.

For each run i = 1, 2, ..., d separately, once the initial route R0 =
(R0

1, R
0
2, ..., R

0
n+2) = (n+ 1, R0

2, R
0
3, ..., R

0
n+1, n+ 2) is defined, we calcu-

late the respective full initial solution S0 = (R0, W̃ 0, G̃0,W 0, G0). We
also let S := S0 and Sbest(i) := S0.

4. - Initialize the current solution S2, by letting S2 := S0.

- Apply Tabu Search with best improvement to find the best solution of
run i, Sbest(i), as described in Stages A and B which follow. Throughout
the search, three types of neighborhood operators are used: exchange,
insertion and two-opt. However, the computationally more expensive
two-opt moves are only considered while there was an improvement in
the last J3 iterations, or if the number of iterations performed so far is
a multiple of d̂ (we used d̂ = 19 in our experiments).

• Tabu Search - Stage A:
- Start with solution S2.
- Find the best solution S1 in a neighborhood N(S2) of S2, with
respect to the objective function. The neighborhood N(S2) of S2 is
constructed starting from S2 and performing any single possible
move, using one of the following three neighborhood operators:
exchange, insertion and two-opt (although the two-opt move is
only considered in some cases, as was previously explained).
- To avoid going around in circles, moves involving nodes that were
involved in any of the previous TL moves are declared tabu and
thus forbidden. A tabu move however is allowed as an exception
to this rule, if it leads to a solution that improves the best solution
found so far in run i, Sbest(i).

- We also include a diversification mechanism which prevents the
frequent use of moves which involve the same nodes. Specifically,
moves involving nodes that were involved in more than θ1 +dθ2 ·µe
iterations are also declared forbidden, where µ is the average num-
ber of times a node was involved in a move so far, and θ1, θ2 are
parameters that need to be tuned experimentally (after some ex-
perimentation, we decided to use θ1 = 3 and θ2 = 1.4). Again,
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such a move is allowed as an exception to this rule, if it leads to
a solution that improves the best solution found so far in run i,
Sbest(i).

- If S1 is better than Sbest(i), then set Sbest(i) := S1.
- Set S2 := S1.
- Repeat Stage A, until there is no improvement in solution Sbest(i)
in the last J1 iterations.

Note that, during this first stage of Tabu search, whenever a so-
lution S is calculated or updated, only the triplet (R, W̃ , G̃) is
updated; i.e. the function optimal waiting times is not employed,
nor are the corresponding W and G calculated or updated.

• Tabu Search - Stage B:
Repeat the same process described by Stage A, but this time re-
place J1 by J2 (where generally J2 is advised to be smaller than
J1) and replace ’Stage A’ by ’Stage B’. In this second stage, when-
ever a solution S is calculated or updated, the full quintuple
(R, W̃ , G̃,W,G) is updated, meaning that the function optimal
waiting times is now called to calculate or update W and G.

Stage B is repeated, until there is no improvement in solution
Sbest(i) in the last J2 iterations.

• Once the two stages are finished, we get the best solution found
in run i, Sbest(i).

• The reason why we split the Tabu Search in two stages, is because
this saves us computational time, something which was confirmed
through experiments. Stage A is a fast way to get close to a
very good solution. Once this is achieved, stage B repeats the
same process as in stage A, but this time the more computation-
ally expensive function optimal waiting times is employed, which
involves the exploration of the different solutions when allowing
different amounts of waiting times at different customers, and the
search for the optimal allocation of waiting times at customers for
the corresponding set of routes. In fact, one could ignore stage
A and go directly to stage B of Tabu Search, which should give
similar results (provided that J2 would be approximately the same
or greater than J1); however, this would be computationally more
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expensive and the whole algorithm would be substantially slower
than the proposed method.

5. Compare all d solutions Sbest(i), for i = 1, 2, ..., d and return the best
one, S∗, with respect to the objective. Return also the values of the
five component objectives F1, F2, ..., F5 that correspond to this best so-
lution, in the quintuple (F ∗1 , F

∗
2 , ..., F

∗
5 ).

6.2.5 Parameter values used in Heuristic Approach 1

After some experimentation, we decided to use the following values for the pa-
rameters, throughout our experiments of Heuristic Approach 1 for problem 2:

d θ1 θ2 β1 β2 β3 β4 β5 J1 J2 J3 d̂ k2 k3

6 3 1.4 108 107 103 1 10−3 148 49 12 19 11 31

The Tabu Length TL is defined as a function of n, as shown below:

TL =


bn

4
c if n ≤ 30

max{bn
6
c, 7} if 30 < n ≤ 100

15 if n > 100

Note that the following parameters are given as an input separately for
each instance: n,Xi, Yi, ai, bi, si, T1.

6.2.6 Heuristic Approach 1b: A Tabu Search heuristic
for the Multi-Objective Delayed TSPTW with 5
Objectives, using the Weighted-Sum method

The algorithm presented in subsection 6.2.4 solves the Delayed-TSPTW-5
heuristically, assuming a specific lexicographic preference of the 5 compo-
nent objectives. We can generalize this algorithm by following the procedure
described in the following paragraph, which we will call Heuristic Approach
1b. This approach solves heuristically the more general variant of problem
2, i.e. the Multi-Objective Delayed TSPTW with 5 objectives (without pref-
erence information), using the weighted-sum method and Tabu Search.

In Heuristic Approach 1b, we vary systematically the set of positive
weights (β1, β2, β3, β4, β5) (not necessarily normalized), and for each differ-
ent choice of weights we run the algorithm of Heuristic Approach 1, which
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was described in subsection 6.2.4. The solutions derived from all these runs
are compared with each other and any dominated or duplicated solutions
are discarded. The remaining set of solutions constitutes an approximate
representative set of the Pareto front.

6.3 Heuristic Approach 2: A Tabu Search

heuristic for the Lexicographic Delayed

TSPTW with 3 Objectives

In this section we describe a heuristic approach to solve the Lexicographic
Delayed TSPTW with 3 objectives (Delayed-TSPTW-Lex3). We will refer to
this approach as Heuristic Approach 2 for problem 2.

In this approach, we use the same notation and algorithm that were
used in heuristic approach 1 and described in section 6.2, but with fewer
component objectives. For this, we make the assumptions and employ the
technique described in section 5.12, in order to reduce the 5 component
objectives of the Delayed-TSPTW-5 down to 3 objectives. Specifically, recall
that in the first heuristic approach we had used 5 component objectives F1,
F2,..., F5 which were transformed into a single aggregated objective function
G :=

∑5
i=1 βiFi to be minimized. Instead, in heuristic approach 2 we use the 3

component objectives f1, f2 and f3, defined as f1 := F1+F2, f2 := F3+F4 and
f3 := F5, which are also combined into a single objective function. Therefore,
the objective in the second heuristic approach is:

minimize G3 :=
3∑
i=1

β′ifi (6.3.1)

Note that the lower bound LBF1 of F1 is also a lower bound for f1 (i.e.
LBf1 := LBF1). Similarly, the lower bound LBF3 of F3 is also a lower bound
for f2 (i.e. LBf2 := LBF3).

By systematically varying the triplet of positive weights (β′1, β
′
2, β

′
3) (not

necessarily normalized), and for each different choice of weights running the
algorithm of heuristic approach 1, but using G3 as the objective function and
f1, f2, f3 as the component objectives, instead of G and F1, F2,..., F5, we
can get an approximate representative set of the Pareto front for the Multi-
Objective Delayed-TSPTW-3 (after removing any duplicated or dominated
solutions). This approach constitutes Heuristic Approach 2b for problem 2,
which uses the weighted-sum method and Tabu Search to solve heuristically
the Multi-Objective Delayed TSPTW-3.
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As a special case of Heuristic Approach 2b, if we perform a single run
of the weighted-sum method described in the previous paragraph, using just
one triplet of weights (β′1, β

′
2, β

′
3) with β′1 >> β′2 >> β′3 > 0, we can solve

heuristically the Lexicographic Delayed TSPTW with 3 objectives (Delayed-
TSPTW-Lex3), which constitutes Heuristic Approach 2 for problem 2.

Note that heuristic approach 2b is equivalent to using heuristic approach
1b with different sets of positive weights (β1, β2, β3, β4, β5) such that β1 = β2

and β3 = β4. Also, heuristic approach 2 is equivalent to using heuristic
approach 1 with a single set of positive weights (β1, β2, β3, β4, β5) such that
β1 = β2 >> β3 = β4 >> β5 > 0.

Heuristic approaches 2 and 2b are slight simplifications of heuristic ap-
proaches 1 and 1b, respectively. However, it is generally easier to handle
fewer objectives, especially if we are interested in finding not just a single
solution but the whole set of non-dominated solutions (or even a representa-
tive subset of this). Therefore, there are some obvious advantages for using
the 3-objective variants over the 5-objective counterparts. There is also the
possibility that for the specific problem under study, the 3-objective variants
may sometimes produce similar solutions to the more general 5-objective
counterparts - although further experimentation is needed to investigate this
claim. Furthermore, heuristic approach 2 serves as a bridge for comparing
solutions between the first and third heuristic approaches: Since it is not
obvious how to directly compare the results of heuristic approaches 1 and 3,
we can do this indirectly by comparing the results from each one of those two
approaches separately with the results of heuristic approach 2. Finally, we
needed a separate and precise description of heuristic approach 2, because
the algorithm of the more complex heuristic approach 3 calls the algorithm
of heuristic approach 2 several times, as a subroutine.

6.3.1 Parameter values for Heuristic Approach 2

Throughout experiments with Heuristic Approach 2, we can use the same
algorithm used in Heuristic Approach 1 (described in section 6.2) and the
same parameter values that were reported in subsection 6.2.5, with the only
difference that in Heuristic Approach 2 we can choose the following set of
weights:

β1 β2 β3 β4 β5

108 108 103 103 10−3

We note that this is equivalent to using the algorithm described in section
6.3 with the following set of weights:
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β′1 β′2 β′3
108 103 10−3

6.4 Heuristic Approach 3: A Tabu Search

heuristic for the Delayed TSPTW with 3

objectives, using the ECM framework

In this section we describe a heuristic based on Tabu Search and the Epsilon
Constraint Method (ECM), which is designed to solve the Delayed TSPTW
with 3 objectives (Delayed-TSPTW-3). We will refer to this approach as
Heuristic Approach 3 for Problem 2.

As in section 6.3, there are three component objectives to be minimized,
namely f1, f2 and f3. In order to address the 3-objective variant of the
problem using the ECM, we treat f2 as the actual objective function to be
minimized (min f2) and convert the other two objectives into constraints
(f1 ≤ ε1 and f3 ≤ ε3). This way we arrive at the ECM formulation for
the Delayed-TSPTW-3, or in short (MILP 3E), which is composed of all
constraints (5.6.6)-(5.6.24) of (MOMILP 2A) that were presented in section
5.6, together with objective 6.4.1 and constraints 6.4.2 and 6.4.3 which follow:

minimize f2 :=
∑
i∈IC

ρi +
∑
i∈IC

σi (6.4.1)

f1 :=
∑
i∈IC

µi +
∑
i∈IC

λi ≤ ε1 (6.4.2)

f3 := w0 ≤ ε3 (6.4.3)

(where w0 is also denoted by wn+2 in this chapter). The above mathematical
program is a single-objective MILP, which depends, among others, on the
parameters ε1 and ε3. Therefore, in the remainder of this chapter we will
be referring to this formulation as MILP-2E-ECM(ε1, ε3). Note that this
program constitutes an exact formulation for the Delayed-TSPTW-3, using
the ECM method. In theory, this can be implemented in an optimization
solver and, by systematically varying the values of ε1 and ε3, one can get a
representative subset of the set of non-dominated solutions for the problem.
We will refer to this approach as Exact Approach 3 for Problem 2.

Note that the experimental results from Exact Approach 1, which will
be presented later in section 6.5, indicate that such exact approaches based
on formulations (MILP 2B) or (MOMILP 2A) are not promising for solving
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moderate-sized or large instances in real time. Since Exact Approach 3 in-
volves solving multiple such programs of the form (MILP 2E), it is even more
computationally expensive than Exact Approach 1. Therefore, we decided
not to perform any experiments with Exact Approach 3.

Instead, we will use the above framework of the ECM to construct a
heuristic algorithm, based on formulation (MILP 2E). Heuristic Approach
3 involves varying systematically the values of ε1 and ε3 within appropriate
ranges, and for each pair (ε1, ε3) of these parameter values, solving heuris-
tically MILP-2E-ECM(ε1, ε3). The solutions derived from solving all of the
above programs are compared with each other and any duplicated or dom-
inated ones are discarded. The resulting set of solutions constitutes an
approximate subset of the set of non-dominated solutions for the Delayed-
TSPTW-3.

6.4.1 ECM solutions table & ranges of the epsilons

Suppose that ε1 will take Φ different values in the range [E1
Φ, E

1
1 ] (perhaps

equidistant, but not necessarily). Likewise, suppose that ε3 will take Θ dif-
ferent values in the range [E3

Θ, E
3
1 ] (perhaps equidistant, but not necessarily).

Let E1 = (E1
1 , E

1
2 , ..., E

1
Φ) be a vector containing all Φ possible values that

ε1 may take, in descending order. Similarly, let E3 = (E3
1 , E

3
2 , ..., E

3
Θ) be a

vector containing all Θ possible values that ε3 may take, in descending order.
It is requested to solve heuristically Φ× Θ programs of the form MILP-

2E-ECM(ε1, ε3), one for each possible combination of (ε1, ε3). Assume that
f 2
i,j is the optimal value for f2 in the program MILP-2E-ECM(E1

i , E
3
j ), and

that for the specific solution, the corresponding values for f1 and f3 are f 1
i,j

and f 3
i,j respectively, for all i=1,2,...,Φ, j=1,2,...,Θ.

Essentially, by solving all Φ×Θ programs we will get a table of the same
form as table 6.1, where in each cell (i, j) we record f 2

i,j (f 1
i,j, f

3
i,j), i.e. the

value of the main objective f2 for the respective pair of values for ε1 and ε3,
followed by the values of the other two objectives f1 and f3 in parentheses.

Therefore, for each pair of indexes (i, j) we are trying to find the optimal
solution f 2

i,j (f 1
i,j, f

3
i,j) to the program MILP-2E-ECM(E1

i , E
3
j ). This solution

gives the minimum value f 2
i,j of f2, while satisfying the constraints f 1

i,j ≤ E1
i

and f 3
i,j ≤ E3

j .

6.4.2 Objectives

In the algorithm of heuristic approach 3, which is described step by step in
subsection 6.4.5, we use different objectives at different stages. Note that,
at any stage of the algorithm, the value of the objective is stored as G̃ when
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Table 6.1: ECM solutions table
ε3 E3

1 E3
2 ... E3

j ... E3
Θ

ε1
E1

1 f 2
1,1 (f 1

1,1, f 3
1,1) f 2

1,2 (f 1
1,2, f 3

1,2) ... ... ... ...
E1

2 ... ... ... ... ... ...
... ... ... ... ... ... ...
E1
i ... ... ... f 2

i,j (f 1
i,j, f

3
i,j) ... ...

... ... ... ... ... ... ...
E1

Φ ... ... ... ... ... ...

idle waiting times at nodes are not allowed, or as G when idle waiting times
are allowed.

• Objective throughout Step 4:

Throughout Step 4, for the calculation of the objective function we
use function G3 :=

∑3
i=1 β

′
ifi that was previously defined by equation

(6.3.1), which we seek to minimize.

Therefore, throughout Step 4, the value of the objective function with-
out allowing idle waiting times at nodes, and when following route
R and visiting the customers at times W̃ , is stored as G̃, and is cal-
culated using the function G3 defined by equation (6.3.1). Similarly,
throughout Step 4, the value of the objective function when allowing
idle waiting times at nodes, and when following route R and visiting
the customers at times W , is stored as G, and is also calculated using
the function G3 defined by equation (6.3.1).

• Objective throughout Step 6:

Throughout Step 6, for the calculation of the objective function we use
function Gε defined below, which we seek to minimize:

Gε := f2 +


0 if f1 ≤ ε1 and f3 ≤ ε3
(f1 − ε1) · P1 + P ∗1 if f1 > ε1 and f3 ≤ ε3
(f3 − ε3) · P3 + P ∗3 if f1 ≤ ε1 and f3 > ε3
(f1 − ε1) · P1 + P ∗1 + (f3 − ε3) · P3 + P ∗3 if f1 > ε1 and f3 > ε3

(6.4.4)

Essentially, Gε is defined as f2 if the epsilon constraints are respected;
otherwise it is penalized by a large penalty which is proportional to the
amount of violation, plus a large constant. Specifically, Gε is increased
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by (f1−ε1)·P1+P ∗1 if f1 > ε1, and/or it is increased by (f3−ε3)·P3+P ∗3 if
f3 > ε3, where P1, P ∗1 , P3 and P ∗3 are appropriate penalty coefficients.1

Therefore, throughout Step 6, the value of the objective function with-
out allowing idle waiting times at nodes, and when following route R
and visiting the customers at times W̃ , is stored as G̃, and is calculated
using the functionGε defined by equation (6.4.4). Similarly, throughout
Step 6, the value of the objective function when allowing idle waiting
times at nodes, and when following route R and visiting the customers
at times W , is stored as G, and is also calculated using the function Gε

defined by equation (6.4.4).

6.4.3 Solution Notation

Apart from the difference in the calculation of the objectives G̃ and G, which
was explained in the previous subsection, throughout heuristic approach 3
we will use the same notation used in heuristic approach 1 and described
in section 6.2 (e.g. for R, W̃ ,W, S etc.), unless otherwise stated or implied.
Furthermore, we will use the same algorithmic functions, time, cost and op-
timal waiting times that were used in heuristic approach 1 and described in
section 6.2, but adjusted accordingly, so that at different stages the appropri-
ate function G3 or Ge (defined by equations (6.3.1) and (6.4.4), respectively)
is involved in the calculation of the objective function. More details on the
main algorithmic functions involved can be found in the following subsection.

6.4.4 Descriptions of the main algorithmic functions

As in heuristic approach 1, given a route R, we can calculate or update the
complete solution S := (R, W̃ , G̃,W,G) using the following algorithmic func-
tions:

(i) Given R, we can calculate the vector W̃ using the algorithmic

function time: W̃ = time(R) (as described in subsection 6.2.3).

(ii) Given R and W̃, we can calculate G̃ using the algorithmic

function cost 2 : G̃ = cost 2(R,W̃):

Given R and W̃ , the algorithmic function cost 2 calculates the value of
the objective function without allowing idle waiting times at nodes, when
following the route R and visiting the nodes at times W̃ . This value is stored

1After some experimentation, we decided to use P1 = 400, P ∗1 = 50000000, P3 = 100
and P ∗3 = 20000000.
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as G̃ and for its calculation we use either function G3 and equation (6.3.1)
whenever cost 2 is called in step 4 of the algorithm, or function Ge and
equation (6.4.4) whenever cost 2 is called in step 6 of the algorithm.

In more detail, given a route R and a vector W̃ , the algorithmic function
cost 2 compares the time of start of service W̃i of each node with the respec-
tive time window [ai, bi] and thus calculates the values of each function Fj
(j = 1, . . . , 5). Initially each Fj is set to zero. Then, for all nodes i = 1, . . . n

that represent customers, if W̃i > bi, then F1 is increased by 1 and F3 is
increased by W̃i − bi. Similarly, for all i = 1, . . . n, if W̃i < ai, then F2 is
increased by 1 and F4 is increased by ai−W̃i. Finally, F5 is defined as W̃n+2.
Then the values of fj (j = 1, 2, 3) are defined as f1 := F1 +F2, f2 := F3 +F4

and f3 := F5. Hence G3 :=
∑3

i=1 β
′
ifi is defined. Also, given the values of fj

(j = 1, 2, 3), ε1 and ε3, the function Gε is straightforward to calculate using
equation (6.4.4). Note that at the different stages of the algorithm, only one
of the two functions G3 or Gε is calculated, and the corresponding objective
value is returned as the output G̃ of the algorithmic function cost 2 ; i.e.
G̃ = cost 2(R, W̃ ).

Note that, more generally, given R and a vector Ŵ , which may or may
not involve some idle waiting times at nodes (where for instance, we may use

W̃ or W as Ŵ ), we can still use the same algorithmic function cost 2 to cal-

culate the respective value of the objective function Ĝ, as Ĝ = cost 2(R, Ŵ ).
Specifically, given R and the times of start of service W while allowing idle
waiting times at nodes, we can use the same algorithmic function cost 2 to
calculate G, as G = cost 2(R,W ).

(iii) Given R and W̃ , we can calculate W and G using the algorith-
mic function optimal waiting times 2 : [W, G]=optimal waiting

times 2(R,W̃):
This algorithmic function is defined the same way that the algorithmic

function optimal waiting times was defined in section 6.2, but with the fol-
lowing difference: Instead of calling internally the algorithmic function cost,
the algorithmic function optimal waiting times 2 calls the function cost 2.

Therefore, given R and W̃ , the algorithmic function optimal waiting times
2 calculates and returns a heuristic approximation of the optimal times of
start of service W and the corresponding value of the objective function G
when allowing idle waiting times at nodes and when following the collection of
routes R and visiting the nodes at times W , where G is calculated either using
function G3 and equation (6.3.1) if it is called in step 4 of the algorithm, or
using function Gε and equation (6.4.4) if it is called in step 6 of the algorithm.

Note that we can still use the function optimal waiting times 2 if we
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replace vector W̃ in the input with vector Ŵ , which may or may not involve
some idle waiting times at nodes.

6.4.5 Algorithm description

In this subsection we present the algorithm involved in Heuristic Approach 3,
which uses the framework of the Epsilon Constraint Method and Tabu Search
with multiple restarts, to construct an approximate representative subset of
the set of non-dominated solutions for the Delayed-TSPTW-3. These are the
main steps of the algorithm:

1. Parameters input & Initialization:
- Input: n, d, T1, TL (Tabu Length), Θ, Φ, weights (β1, β2, ..., β5).
- Input: (Xi, Yi), [ai, bi], si ∀ i = 1, 2, . . . , n+ 2.
- Input: J1, J2, J3, d̂. The parameters J1 and J2 denote the number of
Tabu Search iterations without an improvement, before Stages A and
B terminate, respectively. Also, J3 and d̂ are parameters controlling
whether or not the two-opt moves will be considered in the current
iteration.

- For all i, j ∈ {1, 2, . . . , n + 2}, calculate the travel time ti,j as the
Euclidean distance ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2 between each pair

of nodes (i, j), which is first truncated into an integer value using the
floor function (as done in Dumas et al. (1995)), and then slightly ad-
justed by applying the Triangle Inequality Correction where necessary,
as follows:

for all i, j, k ∈ {1, 2, . . . , n+ 2}
if ti,j > ti,k + tk,j

ti,j := ti,k + tk,j
end if

end for

2. Calculate lower bounds for component objectives f1 and f2:

- Identify the set of Definitely Late customers, IDL =
{
i ∈ IC

∣∣∣ T1 +

sn+1 + tn+1,i > bi

}
, as described in chapter 5. Its cardinality |IDL| is

the number of definitely late customers, which serves as a lower bound
for f1; that is, LBf1 = |IDL|.
- We will assume that LBf1 is enhanced, whenever possible, by us-
ing the subroutine described at the second step of the algorithm that
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was described in subsection 6.2.4, which identifies any additionally late
customers to increase LBf1 .

- Evaluate the minimum amount of lateness, defined as: LBf2 :=∑
i∈IDL

(T1 + sn+1 + tn+1,i − bi), which serves as a lower bound for f2.

3. Construct the Initial Route R0:

The initial route R0 is constructed as follows: First we sort all nodes of
the customers’ set IC in increasing order of the bi’s and store these in
the row vector IS. Then, among all nodes of the vector IS, we identify
those that also belong to the set IDL of definitely late customers, and
move them at the end of IS, while preserving their order. The initial
route is defined as the vector R0 = [n+ 1, IS, n+ 2], where node n+ 1
represents the starting node (i.e. the position of the vehicle at time T1)
and node n+ 2 represents the end-point node (i.e. the depot).

Given the initial routeR0 = (R0
1, R

0
2, ..., R

0
n+2) = (n+1, R0

2, R
0
3, ..., R

0
n+1,

n + 2), we then calculate the respective W̃ 0. We also let R := R0 and

W̃ := W̃ 0.

4. Objective throughout Step 4:
Throughout Step 4, the objective is to minimize the function G3 de-
fined by equation (6.3.1), and the respective value found at any given

time is stored as G̃ when idle waiting time at nodes is not allowed, or
as G when idle waiting time at nodes is allowed.

Step 4:

- Using the initial route R0 found in the previous step, perform three
separate runs of the algorithm described by Heuristic Approach 2 (in
section 6.3), with G3 as the objective to be minimized, where each time
we use one of the following three sets of weights (β′1, β

′
2, β

′
3) respectively:

(1, 0, 0), (0, 1, 0) and (0, 0, 1).

Note that when calling the algorithm of heuristic approach 2, we as-
sume the following additional modifications: (i) we only employ a single
restart of the algorithm in each case (i.e. we use d = 1), and (ii) we
skip step 3 of that algorithm, and instead use R0 described above as
the initial solution.

Essentially, in each one of these three runs the algorithm solves heuris-
tically the mathematical program (MOMILP 2C) that was defined in

133



section 5.12, which is transformed into a single-objective program, with
only one of f1, f2 and f3 as the objective to be minimized, neglecting the
other two component objectives (but storing their values each time).

From each one of the three different runs, we get a triplet of the form
(f1, f2, f3) containing the values of the three component objectives.
Then, separately for each i = 1, 2, 3, the three values found for each
fi are compared with each other to find the smallest value fmi and the
largest value fMi among the three values of each component objective.
Also, let minfi and maxfi denote the true minimum and maximum
value of fi, respectively, for each i = 1, 2, 3. Note that fmi is not
necessarily the same as the true minimum value minfi of fi, but is an
overestimate of minfi that should be close to the true value. On the
other hand, not only is fMi generally different to the true maximum
value maxfi of fi, but it is an underestimate of maxfi that may be
substantially smaller than the true maximum value. However, since we
are minimizing, we do not really need the maximum value for any of
the three component objectives f1, f2 and f3. In fact, we only treat the
values fmi and fMi as reference values that specify a part of the range of
each component objective fi which is of interest. Some of those values
are used below to construct the set of different values that the epsilons
will take.

We use the number of definitely late customers |IDL| as the lower bound
LBf1 for f1, and the number of all active customers n as the upper
bound UBf1 for f1; i.e. we set LBf1 := |IDL| and UBf1 := n. Note
that these are both true bounds.

Regarding f1, the bounds LBf1 and UBf1 are used below to define the
range of values that ε1 may take. Also, regarding f3, the reference
values fm3 and fM3 are used to define the range of values that ε3 may
take. Note that we do not make use of and therefore we do not need
any bounds or reference values for f2.

Also, regarding the true maximum value of f3, this could be substan-
tially greater than the value fM3 that was calculated above. However,
the true maximum value of f3 corresponds to a solution with a maxi-
mum sum of arrival times at the endpoint node, which is comparable
to a solution involving routes of maximal total length, which is very
undesirable and irrelevant in problems like the one under study. Hence,
we believe that fM3 is in fact more meaningful and more appropriate to
use than the true maximum value maxf3 , for the purpose of defining
the largest value that ε3 is allowed to take.
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5. Calculate the different values that ε1 and ε3 will take:
We assume that ε1 takes Φ different values, where Φ is a user-input
parameter such that Φ ≥ 2. These values are calculated as follows:
The interval [LBf1 , UBf1 ] is divided into Φ−1 equal intervals of length
(UBf1−LBf1)/(Φ−1), and their lower end-points, together with UBf1 ,
are collected to create the set of Φ different values that ε1 will take. In
other words, ε1 takes the values LBf1 , LBf1 + (UBf1 − LBf1)/(Φ− 1),
LBf1 + 2(UBf1 − LBf1)/(Φ− 1), ..., UBf1 .

Since f1 takes only integer values, in the case where the fraction (UBf1−
LBf1)/(Φ− 1) is less than 1 (or equivalently, if Φ > UBf1 −LBf1 + 1),
we can speed up the algorithm by setting Φ := UBf1 − LBf1 + 1, i.e.
reducing Φ to a smaller and more meaningful value, which results in ε1
taking all the integer values from LBf1 to UBf1 inclusive.

Similarly, we assume that ε3 takes Θ different values, where Θ is a
positive integer user-input parameter. These values are calculated as
follows: The interval [fm3 , f

M
3 ] is divided into Θ − 1 equal intervals of

length (fM3 − fm3 )/(Θ − 1), and their lower end-points, together with
fM3 , are collected to create the set of Θ values that ε3 will take.

Let E1 = (E1
1 , E

1
2 , ..., E

1
Φ) and E3 = (E3

1 , E
3
2 , ..., E

3
Θ) be the vectors

containing all possible values in descending order, that ε1 and ε3 take,
respectively.

6. Objective throughout Step 6:

Throughout Step 6, the objective is to minimize the function Gε de-
fined by equation (6.4.4), and the respective value found at any given

time is stored as G̃ when idle waiting time at nodes is not allowed, or
as G when idle waiting time at nodes is allowed.

Step 6:

For all i = 1, 2, ...,Φ and for all j = 1, 2, ...,Θ do:

- Let ε1 := E1
i and ε3 := E3

j .
- Try to solve heuristically MILP-2E-ECM(ε1, ε3) using Tabu Search,
by following the procedure described below:

• Initialize the current route R2 by letting R2 := R0. Then create or
update the complete current solution S2 = (R2, W̃ 2, G̃2,W 2, G2)
accordingly.
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• Initialize the best solution found in iteration (i, j), denoted by
Sbest ECM(i, j), by letting Sbest ECM(i, j) := S2.

• Apply Tabu Search with the best improvement criterion, using the
neighborhood moves exchange, insertion and two-opt, to find the
best solution Sbest ECM(i, j) of iteration (i, j), with respect to the
objective function Gε (defined by equation (6.4.4)). More specifi-
cally, apply Tabu Search Stages A and B of Step 4 of the Heuristic
Approach 2, as described in section 6.3 (which refer to the respec-
tive parts of Heuristic Approach 1, described in subsection 6.2.4,
but while having the 3 component objectives f1, f2, f3 involved,
instead of the 5 component objectives F1, F2, ..., F5), with the fol-
lowing changes: (i) Replace Sbest(i) by Sbest ECM(i, j) as the best
solution found so far in the current iteration, (ii) replace the func-
tion optimal waiting times by the function optimal waiting times
2, and (iii) use Gε as the objective function to be minimized. As
in Heuristic Approach 1, the two-opt moves are only considered
while there was an improvement to the best solution found in the
last J3 iterations, or if the number of iterations performed so far
is a multiple of d̂ (we used d̂ = 19 in our experiments).

• Once the two stages A and B of Step 4 of the Tabu Search (in
Heuristic Approach 1) are finished, we have the best solution
Sbest ECM(i, j) found in iteration (i, j), corresponding to the ep-
silons (ε1, ε3) = (E1

i , E
3
j ), i.e. the best solution found for MILP-

2E-ECM(E1
i , E

3
j ). For each iteration (i, j), we record the values

of the functions f1, f2, f3 that correspond to this best solution, in
the triplet (f 1

i,j, f
2
i,j, f

3
i,j).

7. Return all non-dominated solutions:

- Compare all the best solutions found, Sbest ECM(i, j), between each
other, for all values of (i, j), by comparing the corresponding triplets
(f 1
i,j, f

2
i,j, f

3
i,j). Remove all dominated solutions from the solution set.

For instance, if (f 1
i1,j1

, f 2
i1,j1

, f 3
i1,j1

) and (f 1
i2,j2

, f 2
i2,j2

, f 3
i2,j2

) are two such
solutions found so that f 1

i1,j1
≤ f 1

i2,j2
, f 2

i1,j1
≤ f 2

i2,j2
, f 3

i1,j1
≤ f 3

i2,j2
and

at least one of the previous three inequalities is strict, then the second
solution is said to be dominated by the first solution and is therefore
removed from the set of solutions.2

2Actually, even if none of those three inequalities is strict, we can still remove one of
the two solutions, since they give exactly the same values to the three objectives f1, f2, f3
and are therefore equivalent.
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- Return the resulting set of all non-dominated solutions found, which
is an approximate subset of the true set of non-dominated solutions for
the Delayed-TSPTW-3.
- Then plot the respective Value Paths, showing the corresponding
triplets (f 1

i,j, f
2
i,j, f

3
i,j) of all the non-dominated solutions found.

6.4.6 Parameter values used in Heuristic Approach 3

After some experimentation, we decided to use the following parameter val-
ues in our experiments with Heuristic Approach 3:

P1 P ∗1 P3 P ∗3 θ1 θ2 Θ d̂
400 50000000 100 20000000 3 1.4 4 19

Throughout our experiments, the parameter Φ is calculated as a function of
n and LBf1 , by letting Φ := n − LBf1 + 1. Therefore, ε1 takes all values in
the set {LBf1 , LBf1 + 1, ..., n} (i.e. all consecutive integer values from LBf1

up to and including n).

β′1 β′2 β′3
First set of weights used in Step 4: 1 0 0
Second set of weights used in Step 4: 0 1 0
Third set of weights used in Step 4: 0 0 1

J1 J2 J3

In Step 4: 98 4 10
In Step 6: 98 9 15

The Tabu Length (TL) is defined as a function of n, as follows:

TL =


bn

4
c if n ≤ 30

max{bn
6
c, 7} if 30 < n ≤ 100

15 if n > 100

Note that the parameter values used in Step 4, where the algorithm calls
the algorithm of Heuristic Approach 2, are the same as the ones described
in subsection 6.3.1. Note also that the following parameters are given as an
input separately for each instance: n,Xi, Yi, ai, bi, si, T1.

6.5 Experimental Results

In this section we present the experimental results for different methods pro-
posed to solve the Delayed TSPTW, including exact and heuristic approaches.
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As an overview, the experimental results of Exact Approach 1 are summa-
rized in table 6.2 and discussed in subsection 6.5.1. Then in subsection 6.5.2
we discuss the results of Heuristic Approach 1, which are presented in table
6.3. Finally, the experimental results of Heuristic Approach 3 are presented
in Appendix A and discussed in subsection 6.5.3.

In order to test the solution methods proposed for the different vari-
ations of the Delayed TSPTW, we created a dataset of 27 new instances
for this problem. For this, 9 benchmark instances were selected from the
TSPTW dataset proposed by Dumas et al. (1995). Specifically, we selected
the following instances: n20w20.001, n40w40.001, n40w60.001, n20w60.001,
n80w60.001, n80w20.001, n100w20.001, n100w60.001 and n60w20.001. Based
on each one of these standard TSPTW instances, which will be referred to
as classes 1 through 9, three different instances for the Delayed TSPTW
were created (e.g. instances 1-A, 1-B and 1-C, which correspond to class
1). For any specific class, each one of the three instances assumes that there
is a different amount of delay while following the optimal solution plan for
the original TSPTW problem, with a different subset of customers having
already been served and with the vehicle starting from a different position
and at a different time in the revised plan.

We will now explain in more detail how the three instances A, B and C
of each class were created. We select a benchmark TSPTW instance from
Dumas et al. (1995) dataset, which is assumed to be the original TSPTW
problem (e.g. instance n20w20.001 for problems 1-A, 1-B, 1-C of class 1).
Then, while following the optimal solution reported in the literature for this
underlying problem, we assume that a delay occurs at some point. For each
instance A, B and C, we define T1 as the 25%, 50% and 75% of the opti-
mal route duration (makespan) in the original TSPTW plan, respectively,
truncated to an integer using the floor function. Then, we assume that all
customers in the original plan up to and including time bT1

2
c have already

been served, and that at time T1 the vehicle is ready to depart from the
new starting node SN , which is the last customer in the original plan who
was supposed to be visited on or before time bT1

2
c. Therefore, the vehicle

has fallen behind schedule, since by time T1 the vehicle has only served the
customers that it should have served during the first half (approximately)
of the time after departure from the starting node, wasting the other half
of the time. Obviously, in order to create a new instance for the Delayed
TSPTW, we must remove the original starting node and the customers that
have already been served from the set of nodes, and relabel the remaining
customers as nodes 1, 2, ..., n (where n is the number of customers that are
still unserved at time T1), and the starting node SN as node n+ 1.

Given a TSPTW instance, by following the above scheme and using the
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values of T1 and SN indicated in table 6.2 (where in SN we use the same
numbering of nodes as in the original TSPTW instance), as well as the op-
timal solution reported in the literature for the original TSPTW instance,
one can reconstruct the three respective instances A, B and C for the De-
layed TSPTW. Using the above reasoning and starting from the 9 different
TSPTW instances mentioned before, we created 3 new instances of the De-
layed TSPTW for each one TSPTW instance; thus creating a total of 27
new instances for the Delayed TSPTW. The number of active customers in
these 27 instances ranges from 5 to 84, with a mean of 36.5 customers and a
standard deviation of 4.2 customers.

6.5.1 Experimental Results of Exact Approach 1

Table 6.2 presents the experimental results of Exact Approach 1, which was
described in section 5.9 of the previous chapter, for solving the Lexicographic
Delayed TSPTW with 5 objectives. Specifically, formulation (MILP 2B) of
section 5.7 was implemented in AIMMS and was used to solve each one of the
27 instances of the dataset. The columns of this table provide the following
information for each instance: the instance name, the number of customers
n0 in the underlying TSPTW instance, the number of customers n in the
new/disrupted instance (i.e. number of unserved or active customers), the
time T1 when the vehicle is ready to depart after rescheduling, its new start-
ing node SN (where SN is indicated using the original numbering of nodes
in the underlying TSPTW problem), the values of the five component ob-
jectives F1, F2, ..., F5, the runtime in seconds, the value of the objective
(
∑5

i=1 βiFi), which is denoted by GEA1 in this approach, the lower bound
LBEA1

G of GEA1 found by AIMMS, the optimality gap provided by AIMMS,

which is calculated as:
GEA1−LBEA1

G

GEA1
· 100%, and finally whether the solution

is Optimal, Feasible or Infeasible (O/F/I). Note that the value of GEA1 de-
pends on the specific choice of weights β1, β2, ..., β5, which in our case was:
(β1, β2, β3, β4, β5) = (108, 107, 103, 1, 10−3). Note also that in our experiments
we used M = 5000 and ε = 0.00001.

For the experiments of Exact Approach 1, a maximum runtime of 10
minutes (600 seconds) was allowed. From table 6.2 we can see that the exact
approach was able to find the optimal solution within 10 minutes in only 6
instances out of 27. Specifically, this occurred in the three instances of Class
1 and in the three instances of Class 4, where the number of active customers
was very small (from 5 up to 15 customers). Additionally, a solution with
optimality gap less than 0.22% was found in 4 other instances (specifically,
in instances 2-C, 3-C, 6-C and 9-C, with 20, 19, 34 and 30 active customers,
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respectively). In 3 other instances the optimality gap was between 3% and
8%. In the remaining 14 instances the optimality gap was between 10% and
80%. The average optimality gap for all 27 instances was 24.24%, with a
standard deviation of 5.48%. In all 27 instances this exact approach gave a
feasible solution within the available time of 10 minutes; however, in many
cases the solution reported was of poor quality, not only compared to the
lower bound found by this approach, but also compared to the best solution
reported by Heuristic Approach 1. The largest instance for which AIMMS
provided an optimality gap of less than 10% was instance 8-C which involved
40 active customers, where AIMMS gave a solution with an optimality gap
of 3.07%. It seems that within 10 minutes, AIMMS was unable to produce a
solution with an optimality gap of less than 10% in any of the instances with
more than 40 active customers. Moreover, there were instances with fewer
than 40 active customers where AIMMS didn’t provide a solution with an
optimality gap of less than 10% within 10 minutes (instances 2-B, 9-B, 3-A
and 2-A, with 25, 39, 30 and 31 customers, respectively). These results justify
the need of a heuristic method that can reach a very good solution within
reasonable time in all cases (not just in instances with very few customers).

Finally, note that in this table we have included the results of two ad-
ditional runs of instances 9-A and 9-C, where we allowed longer runtime (8
hours 47 minutes in the first case, and 50.4 minutes in the second case). Of
course, in the analysis described above, we used only the 1st run for each
of the two instances mentioned here, so that all results refer to a maximum
runtime of 10 minutes. Note however that if we had used the 2nd run we
would get the exact same analysis described in the previous paragraph, with
the only difference that the average optimality gap for all 27 instances would
be 22.19%, with a standard deviation of 5.16%.

6.5.2 Experimental Results of Heuristic Approach 1

In section 6.2 we described Heuristic Approach 1, which solves the Lexico-
graphic variant of the Delayed TSPTW with 5 objectives (Delayed-TSPTW-
Lex5). We implemented the respective algorithm in MATLAB and used it
to solve the 27 instances that were created for problem 2. The results are
summarized in table 6.3.

The first 8 columns of this table provide the following information for each
instance: the instance name, the values of the five component objectives F1,
F2, ..., F5, the runtime in seconds, and the value of the objective function
(G :=

∑5
i=1 βiFi), which is denoted by GHA1 in heuristic approach 1. The

following two columns give the lower bounds LBF1 and LBF3 for the compo-
nent objectives F1 and F3 respectively. The 11th column indicates whether
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Table 6.2: Experimental Results of Exact Approach 1 for the
Lexicographic Delayed TSPTW with 5 objectives (in AIMMS)

Instance Name n0 n T1 SN F1 F2 F3 F4 F5 runtime GEA1 := LBEA1
G % of O/

(sec)
∑5

i=1 βiFi GEA1 F/
from I

LBEA1
G

Class 1 (n20w20.001)
Instance 1-A 20 14 96 17 5 0 966 0 404 6.14 500966000.404 500966000.404 0.00% O
Instance 1-B 20 9 193 12 5 0 747 0 453 1.95 500747000.453 500747000.453 0.00% O
Instance 1-C 20 5 290 2 4 0 344 0 458 0.05 400344000.458 400344000.458 0.00% O

Class 2 (n40w40.001)
Instance 2-A 40 31 127 21 8 0 1932 0 642 600.47 801932000.642 500207590.1 37.62% F
Instance 2-B 40 25 255 28 14 0 2807 0 621 600.31 1402807000.621 1200761662 14.40% F
Instance 2-C 40 20 382 16 15 0 3128 0 599 600.28 1503128000.599 1501795242 0.09% F

Class 3 (n40w60.001)
Instance 3-A 40 30 133 19 9 0 857 0 553 600.30 900857000.553 700131389.5 22.28% F
Instance 3-B 40 22 267 25 13 0 2909 0 593 600.39 1302909000.593 1200637750 7.85% F
Instance 3-C 40 19 401 31 15 0 4087 0 659 600.16 1504087000.659 1501955210 0.14% F

Class 4 (n20w60.001)
Instance 4-A 20 15 100 1 4 0 715 0 400 11.34 400715000.4 400715000.4 0.00% O
Instance 4-B 20 11 200 14 7 0 479 0 419 147.80 700479000.419 700479000.419 0.00% O
Instance 4-C 20 8 300 16 6 0 938 0 445 1.08 600938000.445 600938000.445 0.00% O

Class 5 (n80w60.001)
Instance 5-A 80 64 168 29 45 1 25713 450 1450 600.39 4535713451.450 1200239000 73.54% F
Instance 5-B 80 49 337 5 36 0 16364 0 1170 600.41 3616364001.170 2101438000 41.89% F
Instance 5-C 80 35 505 69 27 0 8045 0 857 600.02 2708045000.857 2603267838 3.87% F

(Continued on the next page)
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Table 6.2 – Continued from the previous page

Instance Name n0 n T1 SN F1 F2 F3 F4 F5 runtime GEA1 := LBEA1
G % of O/

(sec)
∑5

i=1 βiFi GEA1 F/
from I

LBEA1
G

Class 6 (n80w20.001)
Instance 6-A 80 63 182 33 51 7 34017 1176 1509 600.22 5204018177.509 1710665214 67.13% F
Instance 6-B 80 46 364 44 37 3 14535 299 1024 600.09 3744535300.024 2602160001 30.51% F
Instance 6-C 80 34 546 32 29 0 11509 0 961 600.02 2911509000.961 2904966249 0.22% F

Class 7 (n100w20.001)
Instance 7-A 100 84 206 50 72 4 60961 381 2050 600.16 7300961383.050 1700932221 76.70% F
Instance 7-B 100 65 413 34 58 0 27509 0 1449 600.02 5827509001.449 3603438000 38.17% F
Instance 7-C 100 47 620 27 43 0 21650 0 1423 600.02 4321650001.423 3806545221 11.92% F

Class 8 (n100w60.001)
Instance 8-A 100 78 206 80 69 6 54460 1572 1809 600.41 7014461573.809 1410598501 79.89% F
Instance 8-B 100 57 412 96 46 1 20136 111 1282 600.03 4630136112.282 2302411001 50.27% F
Instance 8-C 100 40 618 62 35 0 12675 0 1062 600.03 3512675001.062 3404891298 3.07% F

Class 9 (n60w20.001)
Instance 9-A 60 46 146 22 36 3 15057 395 1115 600.45 3345057396.115 910341097.1 72.79% F
Instance 9-A (2nd run) 60 46 146 22 11 0 3414 0 727 31646.06 1103414000.727 910351708.8 17.50% F
Instance 9-B 60 39 293 52 24 3 8323 36 782 600.13 2438323036.782 1901385288 22.02% F
Instance 9-C 60 30 439 16 25 0 7565 0 781 600.33 2507565000.781 2503096221 0.18% F
Instance 9-C (2nd run) 60 30 439 16 25 0 5861 0 693 3021.11 2505861000.693 2503100311 0.11% F
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the solution found is Optimal, Feasible or Infeasible (O/F/I). The next col-
umn gives the lower bound LBHA1

G of GHA1 that was found by MATLAB in
heuristic approach 1, which is calculated as: LBHA1

G = β1 ·LBF1 + β3 ·LBF3 ,
for the specific choice of weights β1 = 108 and β3 = 103. The 13th column
shows the percentage gap between the objective value GHA1 found in Heuris-
tic Approach 1, and the lower bound LBHA1

G also found in Heuristic Approach

1, calculated as:
GHA1−LBHA1

G

LB
HA1
G

· 100%. The 14th column shows the percentage

gap between the objective value GHA1 found in Heuristic Approach 1, and
the corresponding objective value GEA1 found in Exact Approach 1 (which

was reported in table 6.2), calculated as: GHA1−GEA1

GEA1
· 100%. Finally, the last

column shows the percentage gap between the objective value GHA1 found
in Heuristic Approach 1, and the lower bound LBEA1

G calculated by AIMMS
in Exact Approach 1 (which was also reported in table 6.2), calculated as:
GHA1−LBEA1

G

LB
EA1
G

· 100%. Note that the values of GHA1 , GEA1 and corresponding

lower bounds depend on the specific choice of weights β1, β2, ..., β5, which in
our case was: (β1, β2, β3, β4, β5) = (108, 107, 103, 1, 10−3).

Apart from the 27 instances of the Delayed TSPTW, table 6.3 includes
the results of 9 additional instances, labeled as instances 1-T, 2-T,..., 9-T.
These are regular TSPTW instances, where each one of them corresponds
to the original TSPTW instance before disruption that is the basis of the
disrupted problem of the respective class (i.e. an instance of the Delayed-
TSPTW with T1 = 0). We used the algorithm of Heuristic Approach 1 to
run these TSPTW instances, in order to test whether our algorithm performs
well.

In each one of these 9 TSPTW instances, the algorithm was able to find
a solution where all customers are served within their time windows (i.e.
with F1 = F2 = F3 = F4 = 0), and thus a feasible solution to the TSPTW
problem. In fact, in each one of these 9 TSPTW instances, the solution found
using Heuristic Approach 1 matches precisely the optimal solution reported
in the literature for the TSPTW-M; i,e, the TSPTW with the objective to
minimize the total tour duration or ’makespan’. To clarify this, from table
6.3 we can see that in each one of these 9 instances, the solution found by the
heuristic involves F1 = F2 = F3 = F4 = 0, whereas F5 matches the optimal
total tour duration reported in the literature for the corresponding TSPTW-
M. This is an indication that the proposed algorithm performs well - at least
under certain conditions. Also, this algorithm can be used to solve standard
TSPTW instances. Note that our algorithm does not use the solution of the
original plan of the underlying TSPTW as the starting solution.

We should mention that in the case where a solution to the Delayed
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TSPTW exists where F1 = F2 = F3 = F4 = 0, then this problem is equiv-
alent to the problem of the TSPTW where the objective is to minimize the
time of arrival at the endpoint node. Hence the Delayed TSPTW can be
considered to be a generalization of the TSPTW variant where the objective
is to minimize the time of arrival at the endpoint node.

Note that there is a small difference between minimizing the total tour
duration and minimizing the time of arrival at the endpoint node. This
difference is connected to whether or not the vehicle departs right-away from
the starting point, or if it waits before it starts its journey towards the first
customer. Therefore, it is possible that the optimal solution to the TSPTW-
M differs from the optimal solution to the TSPTW where the objective is
to minimize the time of arrival at the endpoint node (given that the vehicle
is free to depart at any time ≥ 0). However, in cases where the optimal
solution to the TSPTW-M involves a solution where the vehicle departs at
time 0 from the starting node, then this solution should match the optimal
solution of the TSPTW with the objective to minimize the time of arrival at
the endpoint node.

By looking at the percentage gaps in the 13th column of table 6.3 and
considering the 27 instances of the Delayed TSPTW (i.e. excluding the 9
instances of the TSPTW), we can make the following observations: The

percentage gap
GHA1−LBHA1

G

LB
HA1
G

· 100% between the objective value GHA1 found

in Heuristic Approach 1 (HA1) and the lower bound LBHA1
G also found in

HA1 for these 27 instances, had a mean of 3.79%, a median of 0.42%, a
standard deviation of 8.19%, and was ranging from 0.02% up to 40.29%.
Moreover, in 17 instances this percentage gap was below 0.82%, in 7 other
instances it ranged between 2% and 7%, in 2 more instances it was between
11% and 15%, whereas in one instance this figure was 40.29%.

Furthermore, by examining the 14th column of the table, we can see that
the percentage gap GHA1−GEA1

GEA1
·100% between the objective value GHA1 found

in HA1 and the corresponding objective value GEA1 found in Exact Approach
1 (EA1) for the 27 instances of the Delayed TSPTW, had a mean of −15.79%,
a median of −2.64%, a standard deviation of 23.31%, and was ranging from
−68.59% up to 1.94%. Moreover, in 20 out of 27 instances this percentage
gap was negative, in 4 other cases it was zero, whereas in the remaining 3
instances it was positive. This means that in 20 out of 27 instances (i.e. in
74.07% of the cases), HA1 produced a better solution than EA1. For those
20 instances where HA1 produced better results, this percentage gap had a
mean of −21.45% (as well as a median of −11.82% and a standard deviation
of 24.76%). Also, the four percentage values that equal to zero indicate that
the solution found by HA1 matches precisely the one from EA1 in 4 more
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instances (i.e. in 14.81% of the cases); these are instances where the optimal
solution was found by both methods. For the remaining 3 instances (i.e.
in 11.11% of the cases considered) where the percentages were positive, the
solution found by EA1 was optimal and outperformed the one found by HA1;
however, in each one of these 3 cases the solution found by HA1 lies within
2% of the proven optimal. In fact, the exact figures of the percentage gaps for
these three instances were 0.01%, 0.67% and 1.94%, with a mean of 0.87%.

Finally, by examining the last column of the table, we can see that the

percentage gap
GHA1−LBEA1

G

LB
EA1
G

· 100% between the objective value GHA1 found

in HA1 and the lower bound LBEA1
G found in EA1 for these 27 instances,

had a mean of 13.38%, a median of 8.45%, a standard deviation of 17.95%,
and was ranging from 0.00% up to 69.81%.

Comparing the lower bounds of the objective G that were found by the
two approaches, we can see that in 19 out of 27 instances of the Delayed
TSPTW (i.e. in 70.37% of the cases), the lower bound LBHA1

G found by HA1
was greater and thus better than the lower bound LBEA1

G found by EA1.
We should mention that the runtime of HA1 had a mean of 410.1 seconds

(6 minutes 50.1 seconds), ranging from 8 seconds to 1835.1 seconds (30.6
minutes). This was below 10 minutes in 20 out of 27 instances (i.e. in
74.07% of the cases), was equal to 10 minutes plus 4 seconds in 1 other
instance, and between 13 and 31 minutes in the remaining 6 instances.

Regarding table 6.3, note that whenever the value of LBF1 is marked with
an asterisk (*), i.e. in instances 3-B, 4-B, 5-C, 6-A and 7-A, the subroutine
additional late customers did have some effect, since it was able to increase
the lower bound |IDL| by at least 1 unit. Note also that the percentages
in the last two entries of the corresponding rows of instances 9-A and 9-C,
which are marked with two asterisks (**), indicate that these percentages
were calculated using the best values of GEA1 and LBEA1

G from table 6.2,
corresponding to the ’2nd runs’ of Exact Approach 1, where AIMMS was
allowed to work for longer than 10 minutes.

To summarize, the results justify that HA1 performs fairly well and gen-
erally better than EA1. In other words, HA1 generally outperforms EA1,
except perhaps when solving some very small instances where EA1 is able to
find the proven optimal in real time. This does not mean that EA1 is not
helpful though; since it provides lower bounds and it does find the proven
optimal fast in some cases. In practice, a possible strategy is to have both
approaches running in parallel and take the best solution out of the two
methods in the available time.

145



Table 6.3: Experimental Results of Heuristic Approach 1 for the
Lexicographic Delayed TSPTW with 5 objectives (in MATLAB)

Instance F1 F2 F3 F4 F5 run- GHA1 := LBF1 LBF3 O/ LBHA1

G := % of % of % of

name time
∑5

i=1 βiFi F/ β1 · LBF1+ GHA1 GHA1 GHA1

(sec) I +β3 · LBF3 from from from

LBHA1

G GEA1 LBEA1

G

Class 1
1-T (TSPTW) 0 0 0 0 387 33.1 0.387 – – O – – – –
1-A 5 1 695 89 387 39.9 510695089.387 5 167 F 500167000 2.10% 1.94% 1.94%
1-B 5 0 800 0 451 22 500800000.451 5 240 F 500240000 0.11% 0.0106% 0.0106%
1-C 4 0 344 0 458 9.3 400344000.458 4 180 O 400180000 0.04% 0.000% 0.000%
Class 2
2-T (TSPTW) 0 0 0 0 510 525.3 0.510 – – O – – – –
2-A 7 0 1724 0 583 287.2 701724000.583 5 193 F 500193000 40.29% -12.50% 40.29%
2-B 14 1 2134 5 564 141.1 1412134005.564 14 934 F 1400934000 0.80% 0.665% 17.60%
2-C 15 0 3100 0 595 64.5 1503100000.595 15 1904 F 1501904000 0.08% -0.00186% 0.0869%
Class 3
3-T (TSPTW) 0 0 0 0 535 220 0.535 – – O – – – –
3-A 8 0 634 0 570 100.3 800634000.570 7 162 F 700162000 14.35% -11.13% 14.35%
3-B 13 0 2102 0 596 43.5 1302102000.596 13* 617 F 1300617000 0.11% -0.0619% 8.45%
3-C 15 0 3956 0 682 30 1503956000.682 15 2165 F 1502165000 0.12% -0.00871% 0.133%
Class 4
4-T (TSPTW) 0 0 0 0 400 4 0.400 – – O – – – –
4-A 4 0 715 0 400 13.6 400715000.400 4 101 O 400101000 0.15% 0.000% 0.000%
4-B 7 0 479 0 419 7.8 700479000.419 7* 327 O 700327000 0.02% 0.000% 0.000%
4-C 6 0 938 0 445 15.7 600938000.445 6 514 O 600514000 0.07% 0.000% 0.000%
Class 5
5-T (TSPTW) 0 0 0 0 674 1529.3 0.674 – – O – – – –
5-A 16 0 2957 0 674 1043.6 1602957000.674 15 580 F 1500580000 6.82% -64.66% 33.55%
5-B 24 0 6237 0 716 551 2406237000.716 24 1878 F 2401878000 0.18% -33.46% 14.50%

(Continued on the next page)
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Table 6.3 – Continued from the previous page

Instance F1 F2 F3 F4 F5 run- GHA1 := LBF1 LBF3 O/ LBHA1

G := % of % of % of

name time
∑5

i=1 βiFi F/ β1 · LBF1+ GHA1 GHA1 GHA1

(sec) I +β3 · LBF3 from from from

LBHA1

G GEA1 LBEA1

G

5-C 27 0 6609 0 796 147.4 2706609000.796 27* 3678 F 2703678000 0.11% -0.0530% 3.97%
Class 6
6-T (TSPTW) 0 0 0 0 729 1924.4 0.729 – – O – – – –
6-A 19 6 5749 649 730 801 1965749649.730 19* 894 F 1900894000 3.41% -62.23% 14.91%
6-B 29 2 6331 66 809 331.2 2926331066.809 29 2606 F 2902606000 0.82% -21.85% 12.46%
6-C 29 0 11050 0 893 87.1 2911050000.893 29 5376 F 2905376000 0.20% -0.0158% 0.209%
Class 7
7-T (TSPTW) 0 0 0 0 827 3985.1 0.827 – – O – – – –
7-A 28 8 8292 981 782 1835.1 2888292981.782 27* 1340 F 2701340000 6.92% -60.44% 69.81%
7-B 40 2 11273 140 928 1209.7 4031273140.928 39 4170 F 3904170000 3.26% -30.82% 11.87%
7-C 41 1 12635 20 1025 347.6 4122635021.025 41 7160 F 4107160000 0.38% -4.61% 8.30%
Class 8
8-T (TSPTW) 0 0 0 0 824 3041.4 0.824 – – O – – – –
8-A 22 0 3176 0 824 1498.7 2203176000.824 21 864 F 2100864000 4.87% -68.59% 56.19%
8-B 29 0 8168 0 874 1154.5 2908168000.874 26 2884 F 2602884000 11.73% -37.19% 26.31%
8-C 34 1 10031 79 962 256.7 3420031079.962 34 5774 F 3405774000 0.42% -2.64% 0.445%
Class 9
9-T (TSPTW) 0 0 0 0 586 1462.1 0.586 – – O – – – –
9-A 10 4 2206 304 627 603.9 1042206304.627 10 339 F 1000339000 4.19% -5.55% ** 14.48% **
9-B 21 1 6397 170 704 320.7 2116397170.704 21 1643 F 2101643000 0.70% -13.20% 11.31%
9-C 25 0 5443 0 700 109.6 2505443000.700 25 3319 F 2503319000 0.08% -0.0167% ** 0.0936% **
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6.5.3 Experimental Results of Heuristic Approach 3

In this subsection we discuss the experimental results of Heuristic Approach
3 (HA3) for solving the Multi-Objective Delayed TSPTW with 3 objectives.
This approach, which was described in section 6.4, employs Tabu Search
within the framework of the Epsilon Constraint Method, to find an approx-
imate representative subset of the set of non-dominated solutions for the
3-objective variant of problem 2. The algorithm was implemented in MAT-
LAB and the respective results can be found in tables A.1 - A.27 of Appendix
A.

We present a separate table for each instance. Each table contains at its
top part, which is composed of the first two rows, the following information:
the runtime in seconds, the lower bounds LBf1 and LBf2 for the component
objectives f1 and f2 respectively, and a reference value for f3. In the main
part of the table, which spans from the third row until the last row of the
table, all the non-dominated solutions found for the instance are listed. Each
solution corresponds to one row, for which we record the solution’s serial
number and the corresponding values of the three objectives f1, f2 and f3.

Each entry of f1 is followed by a percentage, which is calculated as
f1−fmin1

fmax1 −fmin1
·

100%, where fmax1 and fmin1 stand, respectively, for the maximum (worst) and
minimum (best) values of f1, amongst all non-dominated solutions found.
The percentages which follow the entries of f2 and f3 are calculated in a
similar way. In each table, all non-dominated solutions found are sorted in
ascending order of f1 and, in the case where we have solutions with the same
value for f1, these are sorted in ascending order of f2, and so on.

Regarding these tables, note that whenever the value of LBf1 is marked
with an asterisk (*), i.e. in instances 3-B, 4-B, 5-C, 6-A and 7-A, the sub-
routine additional late customers did have some effect, since it was able to
increase the lower bound |IDL| by at least 1 unit. Also, the reference value
for f3 is the minimum value that the heuristic was able to find at the stage
when it was searching for the minimum of f3, while neglecting the other two
objectives.

By examining the tables of results we can make some observations regard-
ing the trade-offs between the three objectives f1, f2 and f3. Specifically, in
instances 1-A, 2-B, 2-C, 3-C, 5-B, 5-C, 6-B, 6-C, 7-B, 8-B, 8-C and 9-B, a
solution with the maximum value of f1 gives the minimum value of f2. Also,
in instances 2-B, 3-C, 5-B, 5-C, 6-A, 6-B, 6-C, 7-A, 7-C, 8-C, 9-A, 9-B and
9-C, a solution with the minimum value of f1 gives the maximum value of f2.
Furthermore, in instances 3-A, 4-A, 5-C, 6-C, 7-A and 9-A, a solution with
the maximum value of f1 gives the minimum value of f3 (although the exact
opposite occurs in instance 8-B, where the solution with the maximum value
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of f1 gives the maximum value of f3). Similarly, in instances 2-A, 2-B, 3-B,
3-C, 5-C, 6-A, 7-A, 8-C, 9-A, 9-B and 9-C, a solution with the minimum
value of f1 gives the maximum value of f3. Therefore, solutions where f1

takes its minimum value (or simply a low value), do not necessarily give the
minimum value (or even a low value) for f2 or f3; and vice versa. In fact, it
seems that there might be an indication of a negative correlation between f1

and f2 (which may be surprising to some extent). However, we will make no
attempt of drawing any general conclusions about correlations between pairs
of component objectives. This is something that can be further investigated,
by performing more experiments and appropriate statistical hypothesis tests,
and is left open for future research.

Note that in the observations reported in the previous paragraph, in-
stances 1-C, 4-B and 4-C were not included, because only 3 or fewer non-
dominated solutions were reported for these instances and can therefore be
considered degenerate cases. In other words, we cannot safely draw any con-
clusions regarding the trade-offs between the objectives by studying these
particular instances, so we decided that it would be better not to include
them in the relevant discussion of the previous paragraph.

Now, comparing HA3 with HA1 may not be very meaningful, because
these two approaches solve different variants of problem 2. However, we will
briefly compare their runtimes. For the 27 instances of the Delayed TSPTW,
the ratio runtime of HA3

runtime of HA1
ranges from 0.59 up to 26.2, with an average of 5.2

and a standard deviation of 5.3. Therefore, the average runtime of HA3 is 5.2
times as large as the runtime of HA1. In one instance (instance 1-C), where
the ratio equals to 0.59 and is therefore below 1, HA3 is actually faster than
HA1. In 10 other instances the above ratio ranges between 1.1 and 2.82. In
12 other instances, this figure lies between 3 and 7, whereas in the remaining
4 instances this ranges between 10 and 26.2.

These two heuristics are different and involve different sets of parameters
that control, e.g., the numbers of cycles of outer iterations (or restarts). The
values chosen for these parameters may have an actual impact on the runtime
of these two heuristics. First of all, in HA1 we use d different restarts of the
algorithm, whereas in HA3 we use Φ×Θ cycles of outer iterations. Second of
all, the values of the parameters J1 and J2 that control the number of Tabu
Search iterations without an improvement before the two main steps of the
search terminate, also greatly affect the runtime. This is especially true for
the parameter J2 which controls the slowest part of the Tabu Search. For
instance, in our experiments with HA1 we used J2 = 49, whereas in HA3
we used J2 = 4 and J2 = 9 at steps 4 and 6 of the algorithm, respectively.
Therefore, in our tests with HA1 we allowed a higher number of inner itera-
tions without an improvement before Tabu Search terminates, compared to
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HA3. If instead we had used the same value of J2 = 49 in HA3, it would
take much longer to terminate.

Moreover, running HA1 with just 1 restart, i.e. with d = 1 (instead
of d = 6 that we used in our experiments), is likely to give comparable
results to those reported for HA1 (maybe slightly worse in some cases), but
significantly faster, in approximately 1

6
th of the reported runtime. Further

experimentation with HA1 and HA3 with different choices of the parameter
values is left open for further research. Performing experiments with HA2
and comparing with HA3 is also left open for further research.

Lastly, HA3 aims to find a representative subset of the set of non-domina-
ted solutions for the Delayed TSPTW with 3 objectives, rather than a single
solution. Therefore, it takes longer to run than HA1, which only aims to
find a single non-dominated solution for a particular set of weights. In some
circumstances, the runtime for HA3 may be too long in practice, though it
could be stopped before a full set of non-dominated solutions has been found,
if one of those found is acceptable.

6.6 Conclusions

The Delayed Traveling Salesman Problem with Time Windows (in short, the
Delayed TSPTW ), also referred to as Problem 2, was introduced in chapter
5, along with notation, formulations and exact approaches. In this chapter
we described three heuristic approaches (HA1, HA2 and HA3) for different
variants of this problem. The first heuristic approach solves the Delayed-
TSPTW-Lex5 ; i.e. the Delayed TSPTW with 5 objectives of lexicographic
preference. The second one solves the Delayed-TSPTW-Lex3 ; i.e. the variant
of problem 2 with 3 objectives of lexicographic preference. Both HA1 and
HA2 involve aggregating the component objectives into a single objective
function defined as their weighted sum, and use Tabu Search to find a single
optimal or near-optimal solution, for a single choice of weights. Finally, HA3
solves the Delayed TSPTW with 3 objectives, without assuming or making
use of any preference information concerning the component objectives. This
approach uses Tabu Search with multiple restarts within the framework of
the ε-Constraint Method, in order to create an approximate representation of
the set of non-dominated solutions. The algorithm of HA3 calls the algorithm
of HA2 several times, as a subroutine.

In section 6.5 we presented the experimental results for heuristic ap-
proaches 1 and 3, as well as the results derived from exact approach 1 (EA1),
which was described in the previous chapter. The experimental results of
EA1 imply that exact approaches based on the formulations presented in
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the previous chapter, cannot be directly used in a commercial solver to solve
instances with more than 40 customers. Of course, the exact formulations
presented in the previous chapter can be used in more sophisticated exact
approaches or frameworks, e.g. in conjunction with branch-and-cut, to solve
larger instances. This is left open for further research.

HA1 and EA1 both solve the same variant, namely the Delayed-TSPTW-
Lex5. Comparison of the two methods showed that HA1 generally outper-
formed EA1. Also, in 70.37% of the instances considered, the lower bound
that was found by HA1 was better than the one provided by AIMMS while
using EA1. Furthermore, HA1 was tested on 9 standard TSPTW instances
with success, since it was capable of finding the optimal solution in every
single case. To sum up, HA1 generally performed well.

Finally, HA3 is a method that attempts to find, not just one solution,
but instead a representative subset of the set of non-dominated solutions
for the Delayed TSPTW with 3 objectives. It generally takes longer to run
than HA1 and in some cases it may be impractical to use. However, by
proper parameter calibration and perhaps some guidance from the decision
maker that can help reduce the ranges of acceptable values for the component
objectives, it is possible that HA3 can find a small number of different Pareto-
optimal solutions in a short time, thus aiding the decision maker by providing
several alternatives.
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Chapter 7

Problem 3 - The Single-Commodity
Delayed VRPTW: Formulations &
Exact Approaches

7.1 Introduction

Suppose that we have created a feasible and optimal or near-optimal solution
plan for a given instance of the single-commodity VRPTW with heteroge-
neous fleet. Assume that during the execution of this solution plan there is
a major delay in one or more routes, so that if we keep following the original
plan, at least one customer in each one of the affected routes will be served
with a delay. This causes a disruption to the original plan, which is no longer
feasible with respect to the time windows.

Obviously, one option is to keep following the original plan and visit
the remaining customers as it was originally scheduled. However, this could
cause a delay in serving some - or even all - of the remaining customers of the
delayed vehicles. Can we revise the plan and have fewer customers served
with a delay, or perhaps have shorter delays?

In general, servicing customers outside their promised time windows may
cause substantial direct or indirect costs for the enterprise. For instance,
the enterprise could suffer direct costs by having to reimburse potential dis-
satisfied customers because of the delay in delivery. In some extreme cases,
a dissatisfied customer may be able to take legal actions against the com-
pany. Indirect costs include the cost of losing some customers, along with the
long-term cost resulting from the potential criticisms from those dissatisfied
customers to other potential or current customers of the enterprise. Indirect
costs are hard to estimate and may be huge in some cases. Clearly the plan
has to be revised, if possible, so that the negative effect of the disruption on
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the enterprise is minimized.
Essentially, once the disruption takes place we are facing a new problem,

which is substantially different from the original VRPTW with heteroge-
neous fleet, with different constraints and objectives. In this chapter we will
define this new problem and propose mathematical formulations and exact
approaches which theoretically can be used to solve the problem to optimal-
ity.

7.2 The easy plan

In general, there is an obvious and very simple way to construct a solution
to the problem, following the so-called easy plan which is described below.

On the one hand, once the disruption occurs, all vehicles that have not
experienced a delay will continue following their routes as scheduled in the
original plan, i.e. serve all of their remaining customers and finish at the
depot. On the other hand, any vehicle k that has fallen behind schedule will
reschedule as follows: It will skip the first few customers and be diverted
to visit next that specific customer which, if visited first after rescheduling,
then all of the following customers in the order of the original plan will be
served within their requested time windows. Then the vehicle will visit the
first few customers that were skipped in their original order, and finish at
the endpoint node. This way, only the customers that were at the first part
of the original route and were skipped, may be served with delay.

In more detail, suppose that vehicle k has fallen behind schedule. Assume
that Rk = (Rk,1, Rk,2, ..., Rk,lRk

) is the remaining part of the route of vehicle
k at the time of rescheduling, with lRk denoting the length of route Rk.
Here, Rk,1 denotes the starting node (or current position) of vehicle k at the
time of rescheduling, and Rk,lRk

denotes the endpoint node, whereas nodes
Rk,2, Rk,3, ..., Rk,lRk−1 represent customer nodes. With trivial calculations,
we can find the smallest index j such that, if vehicle k skips the first j
customers and goes directly from its starting node Rk,1 to its (j + 1)-th
customer Rk,j+2, then all of the following customers will be served within
their promised time windows. In that case, vehicle k can follow the revised
route R′k = (Rk,1, Rk,j+2, Rk,j+3, ..., Rk,lRk−1, Rk,2, Rk,3, ..., Rk,j+1, Rk,lRk

). In
other words, the vehicle will be redirected from its starting position Rk,1

to serve the (j + 1)-th customer Rk,j+2 and all of its following customers
Rk,j+3, ..., Rk,lRk−1 within their time windows, in the same order as scheduled
in the original plan. Then it will go back to serve the first customer Rk,2

and all of its following customers Rk,3, ..., Rk,j+1, possibly with some delay,
in the same order as scheduled in the original plan, before finishing its route
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at the endpoint node Rk,lRk
. Finally, this process is repeated separately for

each vehicle that experiences a delay.
In general, the easy plan described here should be preferable to stay-

ing with the original plan. However, rescheduling in a more sophisticated
way, may lead to a new plan where fewer customers are served outside their
time windows and where the amount of violation of the time windows may
be lower, compared to following either the original plan or the easy plan.
Therefore, in the remaining part of this chapter, as well as in the following
chapter, we describe more appropriate methods to solve the problem.

7.3 Problem description and notation

We will now describe in detail the Single-Commodity Delayed Vehicle Routing
Problem with Time Windows (SCD-VRPTW), or in short problem 3, which
is the problem that we study in this chapter.

Suppose that we have created a feasible and optimal or near-optimal solu-
tion plan for a given instance of the VRPTW with heterogeneous fleet, where
vehicles carry a single commodity. Assume that, during the execution of this
solution plan, there is a major delay in one or more of the routes, causing
a disruption to the plan. Specifically, assume that at some time instant T ,
the operations team realizes that there has been a severe delay in at least
one of the routes, and the respective vehicles have fallen behind schedule.
In the context of this problem, by the term severe delay we refer to a delay
which causes a violation of the time-window constraint for at least one of the
remaining customers in each one of the affected routes, if the original routes
are followed as planned.1 This means that the remaining part of the original
plan is now infeasible, with respect to the time windows. Therefore, the plan
has to be revised in order to minimize the negative impact of the disruption.
The new problem that arises is the SCD-VRPTW, i.e. the Single-Commodity
Delayed VRPTW with heterogeneous fleet (or the disrupted VRPTW with
non-customer-specific orders and vehicle delay). The operations team can
use the methods proposed in this chapter and in the following one, to revise
the plan in an appropriate way.

1This distinguishes the case of a severe delay, from the case of a minor delay in a route.
In the latter case the vehicle has fallen slightly behind schedule, but by continuing to
follow the original plan, the vehicle can still serve all of the remaining customers within
their requested time windows. For example, in case of a flat tire in a medium-sized motor
vehicle (e.g. van), the driver may be able to replace it with a spare one within 15-30
minutes. If this small delay does not cause a violation of the time windows of any of
the remaining customers, then it does not account for a severe delay, and the driver can
continue on its route as originally planned.
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The original problem is assumed to be a VRPTW with a heterogeneous
fleet, in which vehicles depart from a single depot (or from different positions,
more generally), and are required to serve a set of customers within their
requested time windows and return to the depot. We assume that the vehicles
deliver a single commodity, such as oil or gas, so that any vehicle can serve any
customer. We also assume that there are no extra vehicles available and that
all customers have to be served. Furthermore, we assume that all vehicles
had departed fully loaded from the depot (or from their starting positions,
more generally). Having the vehicles departing from the depot fully loaded
is a strategy which provides flexibility in case of such a disruption. If, on the
other hand, the vehicles depart with only the total load they are supposed
to deliver, then generally it is less likely that the operations team will be
able to provide a good revised plan in case of a disruption (especially if the
demands of the customers differ from one another).

Assume that during the execution stage of the original plan, at some time
instant T the operations team realizes that a severe delay has occurred in at
least one of the routes and starts constructing the new plan. Suppose that
T0 is the estimated time needed for the operations team to construct a new
plan and communicate this to the drivers.2 Then the position of each vehicle
at time T + T0 can be estimated. Suppose that there are d active vehicles
and let K = {1, 2, . . . , d} be the set of all these vehicles. We denote by Nk

the node representing the expected or estimated position of vehicle k at time
T + T0, for each k ∈ K. We wish to define Tk as the time of departure of
vehicle k from node Nk. For this, we need to consider the two possible cases.

In the first case, at time T +T0 vehicle k is projected to be at a customer
node. In this case, it may happen that by time T+T0, vehicle k is expected to
have just arrived at the customer, to have just finished servicing the customer,
or to have already started but not finished servicing the customer. Therefore,
in the case where at time T + T0 vehicle k is projected to be at a customer
node, we define Tk to be the expected time by which servicing the customer
will have finished (where Tk ≥ T + T0). We also define Nk to be the node
corresponding to the geographic location of that customer.

In the second case, at time T +T0 vehicle k is projected to be on the road,
traveling from one node to another. In this case, we can define node Nk to
be a new node that corresponds to the expected or estimated geographic
location of the vehicle at time T + T0 (if following the route of the original
plan), and also define Tk := T + T0.

Thus, in any case, each vehicle k is expected to be ready to depart from

2Obviously, in the case where the expected time necessary to construct the new plan
and communicate it to the drivers is negligible, one can simply set T0 = 0.
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node Nk at time Tk, where Tk ≥ T + T0, for all k = 1, 2, ..., d. Note that
node Nk and time Tk can be uniquely defined, for each k = 1, 2, ..., d. In
the case where node Nk represents a customer location, since by time Tk the
particular customer will have already been served, he or she is removed from
the set containing the customers that are still unserved by time T +T0 when
the revised plan starts.3 Note that in all cases, node Nk will have zero service
time and zero demand. Also, we assume that T ≥ 0 and T0 ≥ 0; therefore
Tk ≥ 0 for all k ∈ K (since Tk ≥ T + T0).

Now, having chosen the starting node Nk and the corresponding time of
departure Tk of vehicle k from its starting node Nk, for all k = 1, 2, ..., d,
we can define the set of customers for the revised plan. Specifically, the
set of customers IC for the revised plan is defined as the union of the sets
containing the customers of vehicle k that are still unserved by time Tk,
excluding any customers whose nodes were marked as starting nodes Nk (if
any), for all k = 1, 2, ..., d. Suppose that there are n such customers. We
relabel the corresponding customer nodes as nodes 1, 2, ..., n. From now on,
we will refer to the set IC = {1, 2, ..., n} as ’the set of customers that are
unserved at time T + T0’, or simply as ’the set of customers’ (in the revised
plan). Furthermore, from now each starting node Nk will also be denoted as
node n+ k.

Let ID = {n + 1, n + 2, . . . , n + d} be the set containing the starting
positions of the vehicles. Let node 0 denote the depot, which marks the
endpoint of each route. Let I = IC ∪ ID ∪ {0} be the set of all nodes, which
can be written explicitly as I = {0, 1, . . . , n, n+ 1, . . . , n+ d}.

Let A = A1 ∪ A2 be the set of arcs, where A1 = {(i, j) : i ∈ ID, j ∈
IC ∪ {0}} and A2 = {(i, j) : i ∈ IC , j ∈ IC ∪ {0}, i 6= j}. Clearly A ⊆ I × I.
Let ∆+(i) = {j ∈ I : (i, j) ∈ A} be the set of nodes that are directly
reachable from node i, for all i ∈ I. Let ∆−(i) = {j ∈ I : (j, i) ∈ A} be
the set of nodes from which node i is directly reachable, for all i ∈ I. The
Single-Commodity Delayed VRPTW is formulated on the directed graph
Γ = (I, A).

Each active vehicle k ∈ K will depart from node n + k at time Tk, will
then visit some of the customers in the set IC and will finish at the endpoint
node 0 (depot). Each node in IC must have exactly 1 vehicle entering and
the same vehicle leaving the node. Each node in ID must have no vehicles
entering and exactly 1 vehicle leaving the node. The depot (node 0) should
have exactly d vehicles entering and no vehicles leaving.

3To be more precise, by saying ’the set containing the customers that are still unserved
by time T + T0 when the revised plan starts’, we actually refer to the union of the sets
containing the customers of vehicle k that are still unserved by time Tk, for all k =
1, 2, ..., d.
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Let xijk be a binary variable representing the number of times that vehicle
k traverses arc (i, j), for all (i, j) ∈ A, k ∈ K. Let wik be a nonnegative
variable representing the time of start of service of node i by vehicle k, in
the case where vehicle k actually visits node i, for all i ∈ I, k ∈ K. If
node i is not visited by vehicle k, then we set wik = 0. Note that wik = 0
means that either vehicle k does not visit node i, or that it visits node i at
time 0 (although the latter case can never happen if Tk > 0). Obviously, if
node i is visited by vehicle k, then we should have wik ≥ Tk. Also, let Wi

be a nonnegative variable representing the time of start of service of node
i, for i ∈ I \ {0}. Note that W0 is not defined. Obviously, we should have
Wi ≥ Tmin ∀ i ∈ IC , where Tmin := min{Tk|k ∈ K}.

Let tij be the travel time from node i to node j, for all (i, j) ∈ A. Assume
that tij ≥ 0 ∀ (i, j) ∈ A. Let [ai, bi], si and Di be the time window, service
time and demand associated with node i, respectively, for all i ∈ I. We set
si = 0 and Di = 0 for all nodes i ∈ ID ∪ {0}; i.e. the starting nodes and
endpoint node all have zero service time and zero demand. Let Ck be the
quantity of the commodity carried by vehicle k at time instant Tk, for k ∈ K.
Assume that Ck ≥ 0 ∀ k ∈ K.

Let M be a large positive constant (e.g. M = 1010) and let ε be a small
positive constant (e.g. ε = 10−8). The quantities d, n, M , ε, Ck’s, T , T0,
Tk’s, tij’s, Di’s, si’s, ai’s and bi’s are assumed to be known parameters.

For all i ∈ IC , we introduce the variables µi, λi, ρi and σi as follows:
(i) The variable µi is a binary variable indicating whether or not customer i
is served with a delay. For this, µi is equal to 1 if and only if Wi > bi (i.e.
if customer i is served with a delay, that is, later than bi); otherwise, µi = 0
(i.e. µi = 0 if and only if Wi ≤ bi).
(ii) The variable λi is a binary variable indicating whether or not customer i
is served earlier than promised. For this, λi is equal to 1 if and only if Wi < ai
(i.e. if customer i is served earlier than ai, that is, earlier than promised);
otherwise, λi = 0 (i.e. λi = 0 if and only if Wi ≥ ai).
(iii) The variable ρi represents the amount of lateness of customer i, if this
customer is served with a delay (later than bi); otherwise, ρi = 0. For this,
ρi is equal to Wi − bi if Wi > bi; otherwise, ρi is equal to 0 if Wi ≤ bi.
Mathematically, this can be expressed as:

ρi = (Wi − bi)µi =

{
0 if Wi ≤ bi (⇔ µi = 0)
Wi − bi if Wi > bi (⇔ µi = 1)

(iv) The variable σi represents the amount of earliness of customer i, if this
customer is served early (earlier than ai); otherwise, σi = 0. For this, σi
is equal to ai − Wi if Wi < ai; otherwise, σi is equal to 0 if Wi ≥ ai.
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Mathematically, this can be expressed as:

σi = (ai −Wi)λi =

{
0 if Wi ≥ ai (⇔ λi = 0)
ai −Wi if Wi < ai (⇔ λi = 1)

7.4 Objectives

The Single-Commodity Delayed VRPTW with 5 objectives (SCD-VRPTW-
5) is the problem of determining the appropriate allocation of customers
to vehicles and the appropriate sequence in which each vehicle k ∈ K has
to visit its corresponding customers, once leaving the starting position n +
k and before arriving at the endpoint node 0 (the depot), as well as the
appropriate times of start of service at each node, so that the following 5
goals are achieved: 1) have as few late customers as possible, 2) have as
few early customers as possible, 3) have as low amount of total lateness as
possible, 4) have as low amount of total earliness as possible, and 5) finish
the routes as early as possible.

Therefore, we define the SCD-VRPTW-5 as a Multi-Objective Optimiza-
tion (MOO) problem with the following 5 objectives:

1. Minimize F1 :=
∑
i∈IC

µi, i.e. minimize the number of customers served

with a delay (later than bi).

2. Minimize F2 :=
∑
i∈IC

λi, i.e. minimize the number of customers served

earlier than promised (earlier than ai).

3. Minimize F3 :=
∑
i∈IC

ρi, i.e. minimize the total amount of lateness

(combined for all customers being served with a delay).

4. Minimize F4 :=
∑
i∈IC

σi, i.e. minimize the total amount of earliness

(combined for all customers being served earlier than promised).

5. Minimize F5 :=
∑

k∈K w0,k, i.e. minimize the sum of arrival times of
vehicles at the endpoint node. 4

4The fifth objective is equivalent to minimizing the total travel time plus waiting time
(i.e. total journey time), combined for all vehicles. As an alternative to objective 5, one
can use the following objective:
Minimize

∑
(i,j)∈A,k∈K

tijxijk, i.e. minimize the total travel time combined for all vehicles,

without including waiting times.
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7.5 Preprocessing stage

Before solving the mathematical program which is presented in the following
section, a preprocessing stage takes place. During this stage, we identify some
customers that will be definitely served with a delay and some others that
will definitely not be served earlier than promised. For this, we define the set

of definitely late customers, IDL =
{
i ∈ IC

∣∣∣ min
k∈K

(Tk + sn+k + tn+k,i) > bi

}
and the set of definitely not early customers, IDNE =

{
i ∈ IC

∣∣∣ min
k∈K

(Tk +

sn+k + tn+k,i) ≥ ai

}
. Since ai ≤ bi for all i ∈ I, it is trivial to show that

IDL ⊆ IDNE.

7.6 General MOMILP Formulation for the

SCD-VRPTW with 5 objectives

The more general variant of problem 3, namely the Single-Commodity De-
layed VRPTW with 5 objectives (SCD-VRPTW-5) can be formulated as the
Multi-Objective Mixed Integer Linear Program (MOMILP 3A) composed of
equations (7.6.1) - (7.6.32), as follows:

min F1 :=
∑
i∈IC

µi (7.6.1)

min F2 :=
∑
i∈IC

λi (7.6.2)

min F3 :=
∑
i∈IC

ρi (7.6.3)

min F4 :=
∑
i∈IC

σi (7.6.4)

min F5 :=
∑
k∈K

w0,k (7.6.5)

subject to: ∑
j∈∆+(i)

xijk =
∑

j∈∆−(i)

xjik ∀ i ∈ IC , k ∈ K (7.6.6)

∑
k∈K

∑
j∈∆+(i)

xijk = 1 ∀ i ∈ I \ {0} (7.6.7)
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∑
j∈∆−(0)

xj0k = 1 ∀ k ∈ K (7.6.8)

∑
j∈∆+(n+k)

xn+k,j,k = 1 ∀ k ∈ K (7.6.9)

wik ≤M ·
∑

j∈∆+(i)

xijk ∀ i ∈ I \ {0}, k ∈ K (7.6.10)

Wi =
∑
k∈K

wik ∀ i ∈ I \ {0} (7.6.11)

wn+k,k = Tk ∀ k ∈ K (7.6.12)

wik + si + tij − wjk ≤ (1− xijk)M ∀ (i, j) ∈ A, k ∈ K (7.6.13)

∑
i∈IC∪{n+k}

Di

∑
j∈∆+(i)

xijk ≤ Ck ∀ k ∈ K (7.6.14)

Wi − bi ≤Mµi ∀ i ∈ IC \ IDL (7.6.15)

bi −Wi + ε ≤M(1− µi) ∀ i ∈ IC \ IDL (7.6.16)

ρi ≤Mµi ∀ i ∈ IC (7.6.17)

ρi ≤ (Wi − bi)− (1− µi)(−M) ∀ i ∈ IC (7.6.18)

ρi ≥ (Wi − bi)− (1− µi)M ∀ i ∈ IC (7.6.19)

ai −Wi ≤Mλi ∀ i ∈ IC \ IDNE (7.6.20)

Wi − ai + ε ≤M(1− λi) ∀ i ∈ IC \ IDNE (7.6.21)

σi ≤Mλi ∀ i ∈ IC (7.6.22)

σi ≤ (ai −Wi)− (1− λi)(−M) ∀ i ∈ IC (7.6.23)
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σi ≥ (ai −Wi)− (1− λi)M ∀ i ∈ IC (7.6.24)

µi + λi ≤ 1 ∀ i ∈ IC \ IDNE (7.6.25)

µi = 1 ∀ i ∈ IDL (7.6.26)

λi = 0 ∀ i ∈ IDNE (7.6.27)

xijk ∈ {0, 1} ∀ (i, j) ∈ A, k ∈ K (7.6.28)

wik ≥ 0 ∀ i ∈ I, k ∈ K (7.6.29)

λi, µi ∈ {0, 1} ∀ i ∈ IC (7.6.30)

ρi, σi ≥ 0 ∀ i ∈ IC (7.6.31)

Wi ≥ 0 ∀ i ∈ I \ {0} (7.6.32)

A part of the above formulation is based on the multi-commodity network
flow model for the VRPTW (e.g. see Toth & Vigo (2014)). Equations (7.6.1)-
(7.6.5) define the 5 objectives, as described previously. Equation (7.6.6)
ensures that the same vehicle enters and exits node i, ∀ i ∈ IC . Equation
(7.6.7) ensures that exactly 1 vehicle leaves node i, ∀ i ∈ I \ {0}. Therefore,
so far we have established that exactly 1 vehicle enters and the same 1 vehicle
exits node i, ∀ i ∈ IC . Also, we have established that exactly 1 vehicle exits
node i, ∀ i ∈ ID. Equation (7.6.8) states that each vehicle must arrive at the
endpoint node exactly once. This establishes that exactly d vehicles enter
node 0. Equation (7.6.9) states that each vehicle k departs from node n+ k,
for all k ∈ K. Constraint (7.6.10) states that if vehicle k does not visit node i,
then wik = 0, for all i ∈ I\{0}, k ∈ K. Constraint (7.6.11) gives the definition
of the variables Wi, for i ∈ I \ {0} (W0 is not defined). Constraint (7.6.12)
states that vehicle k will start servicing node n + k at time Tk. Constraint
(7.6.13) guarantees schedule feasibility with respect to time considerations.
Constraint (7.6.14) is the capacity constraint. Constraints (7.6.15) - (7.6.19)
relate any potential violation of the upper limits of the time windows (due
dates) with the variables µi and ρi. Constraints (7.6.20) - (7.6.24) relate
any potential violation of the lower limits of the time windows (ready times)
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with the variables λi and σi. Constraint (7.6.25) states that no customer can
violate both the lower limit and the upper limit of the time windows; i.e. no
customer can be both an early and a late customer. Note that constraint
(7.6.25) is not necessary for the model; however, it is a valid cut that reduces
the feasible region, and is therefore included. Constraint (7.6.26) fixes the
variables µi = 1 for those customers who are identified as ’definitely late
customers’ during the preprocessing stage. Similarly, constraint (7.6.27) fixes
the variables λi = 0 for those customers who are identified as ’definitely not
early customers’ during the preprocessing stage. Finally, constraints (7.6.28)
- (7.6.32) give the ranges of the variables.

Note that an additional constraint that should be satisfied but is not
really necessary for the model (i.e. another valid cut) is the following:

Wi ≥ Tmin ∀ i ∈ IC (7.6.33)

We recognize that, since one of the objectives is to minimize
∑

i∈IC µi,
constraint (7.6.16) is not needed. Similarly, since one of the objectives is to
minimize

∑
i∈IC λi, constraint (7.6.21) is not needed. The same argument

applies when minimizing a weighted sum of the five component objectives,
with positive weights. However, even if these constraints may be regarded
as redundant, they are valid cuts and are thus included as part of the main
formulation. Also, they were included when performing our experiments.
The task of experimenting both with and without these cuts and assessing
the performance, in order to decide which version of the formulation produces
results faster, is left open for future researchers.

7.7 A MILP formulation with a single aggre-

gated objective for the SCD-VRPTW-5

One way to address the Single-Commodity Delayed VRPTW with 5 objec-
tives, is to combine these 5 component objectives into a single aggregated
objective function, defined as their weighted sum.

Specifically, if in the formulation (MOMILP 3A) of section 7.6 we replace
the 5 component objectives (7.6.1)-(7.6.5) with the single objective func-
tion defined by equation (7.7.1) shown below, and keep all other constraints
(7.6.6)-(7.6.32), then we get the Mixed Integer Linear Programming formu-
lation (MILP 3B) for the SCD-VRPTW-5, with the following aggregated
objective function:

minimize β1

∑
i∈IC

µi + β2

∑
i∈IC

λi + β3

∑
i∈IC

ρi + β4

∑
i∈IC

σi + β5

∑
k∈K

w0,k (7.7.1)
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Note that equation (7.7.1) can equivalently be written, either as equation
(7.7.2), or in a more concise form as equation (7.7.3):

minimize
∑
i∈IC

(β1µi + β2λi + β3ρi + β4σi) + β5

∑
k∈K

w0,k (7.7.2)

minimize
5∑
i=1

βiFi (7.7.3)

The weights βi are assumed to be known parameters, tuned according
to the decision maker’s guidelines, where βi ∈ [0,+∞) ∀ i = 1, 2, ..., 5. In
general, the βi’s do not necessarily need to be normalized.

By varying the values of the weights βi’s, with βi > 0 for all i = 1, . . . , 5
and

∑5
i=1 βi = 1, and solving (MILP 3B), we can get different solutions to the

Multi-Objective Single-Commodity Delayed VRPTW with 5 objectives (SCD-
VRPTW-MOO-5, or simply SCD-VRPTW-5), all of which will belong to the
Pareto front. This will be further discussed in section 7.10 when describing
Exact Approach 2.

Note that by solving (MILP 3B) with βl = 1 and βr = 0 ∀ r = 1, ..., 5,
r 6= l, and repeating this for each l = 1, ..., 5, we can get lower bounds for
each one of the 5 component objectives F1, ..., F5.

7.8 Notes

1. Problem 3 can be considered to be a generalization of the VRPTW.
If we let T = 0, T0 = 0, Tk = 0, nodes n + k to represent the same
geographic location as node 0 (i.e. copies of the depot) for all k ∈ K,
and if we define Ck as the capacity of vehicle k, then the problem
reduces to a VRPTW with heterogeneous fleet, with the objective to
minimize the sum of arrival times at the depot. If additionally we let
Ck = C for all k ∈ K, then the problem reduces further to a regular
VRPTW. Although in problem 3 the time windows are treated as soft
constraints, in the presence of a solution that respects all time windows,
the last reduction should make the problem equivalent to a VRPTW
with hard time windows. Therefore, problem 3 is NP-hard.

2. If we let Tk = 0 and define Ck as the capacity of vehicle k, for all k ∈ K,
then the problem reduces to an Open-VRPTW with heterogeneous
fleet, with the objective to minimize the sum of arrival times at the
depot.5

5Note that here, by the term Open-VRPTW we refer to the variant of the VRPTW
where routes start from a fixed location and finish at the depot.
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3. We are assuming that, in the original plan, the time of start of service
of customer i was supposed to lie within the time window [ai, bi]. This
time window was a hard constraint in the original problem, but in the
new problem after disruption it is treated as a soft constraint.

4. If in the original problem customer i was promised to be served at a
specific time instant τ ∗i , instead of a time window, we can define the
respective time window as [ai, bi] = [τ ∗i , τ

∗
i ]. In fact, if in the original

problem customer i was supposed to be served at a specific time instant
τi representing his or her estimated time of start of service, and if ξ1 and
ξ2 are non-negative numbers representing the amount of time allowed to
deviate below and above the estimated time of start of service without
being considered an early arrival or a delay, respectively, then this
can be converted into a time window in the new problem, by setting
[ai, bi] = [τi − ξ1, τi + ξ2].

5. Suppose that the operations team decides that customer i would not
mind having a delivery time outside their promised time window, either
earlier or later by some specific amount of time. For instance, this
decision may be taken after communicating and reaching an agreement
with the customer. Then the operations team can expand or update
their time window [ai, bi] accordingly, and use the updated time window
when constructing the revised plan.

6. In our experiments, for the sake of simplicity, we assume that the Carte-
sian coordinates (Xi, Yi) of each node i ∈ I are also given as an input,
which are used to calculate the travel time ti,j between each pair of
nodes i and j as the Euclidean distance between the nodes, i.e. as
ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2, rounded to 2 decimal places.

7.9 Exact Approach 1: Lexicographic Exact

Approach for the 5-objective variant

A relatively simple approach to solve the multi-objective optimization prob-
lem described in this chapter, is to use the Lexicographic Preference method.
For this, if we further assume that there is a lexicographic preference of the
five component objectives, so that objectives F1, F2, ..., F5 are in strict descen-
ding order of importance, then the more complex multi-objective problem
simplifies to a multi-criteria problem. The objective vectors (F1, F2, ..., F5)
are first compared on the most important component, namely F1, and only
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in case of equality the next most important component (F2) is considered,
and so on.

Thus, we can solve the Single-Commodity Delayed VRPTW with 5 ob-
jectives of Lexicographic Preference (SCD-VRPTW-Lex5) by using formu-
lation (MILP 3B) of section 7.7 with a single aggregated objective (equa-
tion (7.7.1)) and with a single choice of weights (β1, β2, β3, β4, β5) so that
β1 >> β2 >> β3 >> β4 >> β5 > 0. For instance, in our experiments we
used the following set of weights: (β1, β2, β3, β4, β5) = (1010, 108, 104, 1, 10−4).
This can be implemented in an optimization solver (e.g. Cplex or AIMMS)
to directly solve different problem instances. We will be referring to this
method as Exact Approach 1 for solving Problem 3.

We implemented formulation (MILP 3B) in AIMMS and used Exact Ap-
proach 1 to solve a number of instances which were created for the Single-
Commodity Delayed VRPTW. These instances are divided into 5 classes A,
B, C, D and E, with 11, 100, 81, 54 and 77 customers respectively. In classes
A, C and D we have 3 vehicles, whereas in classes B and E we have 4 and
10 vehicles, respectively. More details about these instances can be found in
section 8.5.

The experimental results of Exact Approach 1 are presented in table 8.5
of the following chapter, along with results from the heuristic approaches,
comparisons and detailed discussion.

In short, the exact approach failed to provide an optimal, or even an
acceptable solution within 5 minutes in all classes apart from the instances
of class A (with 11 customers). The results imply that this method cannot
be used in practice for solving instances of more than 54 customers within a
few minutes. Instead, a heuristic method may be more appropriate for this
problem.

7.10 Exact Approach 2: Weighted Sum Ex-

act Approach for the 5-objective variant

A second and more general exact approach to solve the problem under study,
is to use the Weighted Sum Method, without making any assumption about
any preference regarding the 5 component objectives. Thus, we can solve the
Multi-Objective Single-Commodity Delayed VRPTW with 5 objectives (SCD-
VRPTW-MOO-5, or simply SCD-VRPTW-5 ) by using the weighted-sum
method and formulation (MILP 3B) of section 7.7. As before, a single ag-
gregated objective (equation (7.7.1)) is involved. However, instead of simply
using a single choice of weights (β1, β2, β3, β4, β5) as done in Exact Approach
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1, in this approach we consider many different sets of weights. More specifi-
cally, we vary systematically the values of the weights β1, β2, ..., β5 with βi > 0
for all i = 1, . . . , 5, and for each set of weights we solve (MILP 3B); thus get-
ting several different solutions to the MOO problem, all of which will belong
to the Pareto front. This can be implemented in an optimization solver to
directly solve different problem instances. We will be referring to this method
as Exact Approach 2 for solving Problem 3. Note that the weights may be
normalized (i.e. to have

∑5
i=1 βi = 1), or not.

The method implies that to solve a single instance using Exact Approach
2, we must solve an adequate number of programs of the form (MILP 3B),
each time with a different combination of weights. This way, we can get
a subset of the set of non-dominated solutions. However, we would proba-
bly have to solve too many MILPs, choosing some of the very many possible
combinations, and even then there is no guarantee that we will get a represen-
tative subset of the Pareto front. More importantly, since Exact Approach 1
which involves solving just one MILP failed to provide an acceptable solution
in a short time for instances with more than 54 nodes, it is only reasonable
to expect even worse results with exact approach 2. Therefore, we decided
not to perform any experiments with exact approach 2, nor with any other
exact approach. We believe that heuristic approaches are more appropriate
for this problem, and this is the focus of the following chapter.

7.11 Problem extension with customer prior-

ities

The Single-Commodity Delayed VRPTW can be extended to include differ-
ent priorities for different customers. This may be crucial in real applications,
where e.g. the company has some key customers that are more important
than others, and thus may prefer having these key customers affected the
least in case of a disruption - at the expense of having some customers of less
importance being affected more.

For this, let pi be the priority of customer i, where pi is a known parameter
with pi > 0 for all i ∈ IC . The more important a customer is, the bigger
the value of pi should be. Therefore, the more important a customer is,
the more a potential violation of his or her time window is penalized in the
objective(s).

In order to include different priorities to different customers, in the more
general formulation (MOMILP 3A) presented in section 7.6, we can replace
the 5 component objectives (7.6.1) - (7.6.5) with the following 5 equations:
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min F p
1 :=

∑
i∈IC

piµi (7.11.1)

min F p
2 :=

∑
i∈IC

piλi (7.11.2)

min F p
3 :=

∑
i∈IC

piρi (7.11.3)

min F p
4 :=

∑
i∈IC

piσi (7.11.4)

min F p
5 :=

∑
k∈K

w0,k (7.11.5)

Likewise, if we want to involve customer priorities in formulation (MILP
3B) presented in section 7.7, we can replace the single aggregated objective
function (7.7.1), with the following more general objective:6

min β1

∑
i∈IC

piµi+β2

∑
i∈IC

piλi+β3

∑
i∈IC

piρi+β4

∑
i∈IC

piσi+β5

∑
k∈K

w0,k (7.11.7)

Note that, starting from the more general models presented above that
involve customer priorities, if we simply set pi = 1 for all i ∈ IC , then these
reduce down to models (MOMILP 3A) and (MILP 3B) without priorities.

No experiments were performed using the generalized formulations which
involve customer priorities. This is left open for future research.

7.12 Reduction to 3 objectives

In general, for a multi-objective optimization (MOO) problem, the greater
the number of objectives, the more complex and time-consuming it is to
construct the set of non-dominated solutions (or a representative subset of
this set). For example, finding the set of non-dominated solutions of a MOO
problem with 5 objectives, is considered significantly more complex than
for a MOO problem with 3 objectives. Even trying to visualize the Pareto

6Obviously, equation (7.11.7) can be written in a more concise form as:

min
∑
i∈IC

pi(β1µi + β2λi + β3ρi + β4σi) + β5
∑
k∈K

w0,k (7.11.6)
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front and decide among the (possibly many) alternative solutions may be not
straightforward when handling 5 objectives.

For this, the 5 objectives of this MOO problem can be reduced down to
3 objectives, if one is willing to make the following two assumptions: (i) that
having one early customer is equally as bad as having one late customer, and
(ii) that having a delay in service of χ time units is equally as bad as having
an early start of service by χ time units.

Under the above additional assumptions, the Single-Commodity Delayed
VRPTW with 5 objectives (SCD-VRPTW-5) reduces to the Single-Commo-
dity Delayed VRPTW with 3 objectives (SCD-VRPTW-3). Specifically, the
latter is a MOO problem which is similar to the former one, but instead of
having 5 objectives, it only involves the following 3 objectives:

1. Minimize f1 := F1 + F2 =
∑
i∈IC

(µi + λi), i.e. minimize the number of

customers served outside their promised time windows.

2. Minimize f2 := F3 + F4 =
∑
i∈IC

(ρi + σi), i.e. minimize the total amount

of time by which the time windows are violated.

3. Minimize f3 := F5 =
∑
k∈K

w0,k, i.e. minimize the sum of arrival times of

the vehicles at the depot.

The SCD-VRPTW-3 can therefore be formulated as a Multiple Objective
Mixed Integer Linear Program (MOMILP 3C), composed of all constraints
(7.6.6)-(7.6.32) of (MOMILP 3A) presented in section 7.6, but with the fol-
lowing three objectives:

min f1 :=
∑
i∈IC

(µi + λi) (7.12.1)

min f2 :=
∑
i∈IC

(ρi + σi) (7.12.2)

min f3 :=
∑
k∈K

w0,k (7.12.3)

Furthermore, the SCD-VRPTW-3 can also be solved using the weighted-
sum method, the same way that SCD-VRPTW-5 can be solved, if in equation
(7.7.1) we let β1 = β2, β3 = β4, and define (β′1, β

′
2, β

′
3) = (β1, β3, β5), which

will transform it into the following equation:

minimize β′1
∑
i∈IC

(µi + λi) + β′2
∑
i∈IC

(ρi + σi) + β′3
∑
k∈K

w0,k (7.12.4)
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or equivalently

minimize
3∑
i=1

β′ifi (7.12.5)

For this, starting from formulation (MOMILP 3C) presented above, if we
replace the three objectives (7.12.1) - (7.12.3) with equation (7.12.5) (or its
equivalent (7.12.4)) and keep all other equations (7.6.6)-(7.6.32), we get the
single-objective formulation (MILP 3D) for the SCD-VRPTW-3.

Then, formulation (MILP 3D) can be used to solve the 3-objective vari-
ant of the problem, i.e. SCD-VRPTW-3, either assuming a Lexicographic
Preference (i.e. as in Exact Approach 1 of section 7.9), or as a MOO prob-
lem using the Weighted Sum approach and varying systematically the set of
weights (i.e. as in Exact Approach 2 of section 7.10).

7.13 Applications: other types of disruption

The models described in this chapter can be used to handle delays in a
single-commodity VRPTW. Additionally, the same models may be used to
handle other forms of disruption for a single-commodity VRPTW. Examples
include:

• one or multiple roads/arcs blocked, or more generally parts of the net-
work blocked, affecting the routes of some delivery vehicles. For in-
stance, this may occur due to an accident which does not involve a
delivery vehicle, due to a landslide etc.

• traffic congestion in some parts of the network, which was not taken
into account or was not known when constructing the original plan.

In each one of the above cases, the same formulation and models can be used,
with the only difference that we assume that the operations team updates
the travel times accordingly before rescheduling, as follows: If arc (i, j) is
blocked, then set ti,j = ∞. If there is traffic congestion and the travel time
ti,j has increased, then ti,j is updated using a new estimated travel time
t′i,j, or an overestimate if it is impossible to predict the travel jam effect on
arc (i, j). Historical data of travel times under traffic jams may be used, if
available and if this is the case.
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7.14 Other problem variants and solution me-

thods, scope for further research and

conclusions

It is possible to extend the formulations described in this chapter to include
other constraints (such as certain customers being served by particular ve-
hicles), if that is relevant for a particular application. Additionally, other
variants of the problem can arise if we consider a different set of objectives.

For instance, there are no restrictions on the amounts of delay or earliness
in the models described in this chapter. However, if desired, such restrictions
can be easily incorporated to the current models as follows:
(a) If we want to have a maximum delay of ρmax per customer, we can add
the constraint ρi ≤ ρmax ∀ i ∈ IC (or for a specific subset of IC).
(b) Similarly, if we want to have a maximum earliness of σmax per customer,
we can include the constraint σi ≤ σmax ∀ i ∈ IC (or for a subset of IC).
(c) If we want to have a maximum delay of ρ′max combined for all customers,
we can add the constraint

∑
i∈IC ρi ≤ ρ′max.

(d) Likewise, if we want to have a maximum earliness of σ′max combined for
all customers, we can include the constraint

∑
i∈IC σi ≤ σ′max.

Obviously there are many different variants that can occur from the prob-
lem under study, by considering different combinations of constraints and ob-
jectives. Additionally, each one of these variants may be solved using different
methods. In this chapter we only considered the lexicographic approach and
the weighted-sum approach as exact methods to address the 5-objective vari-
ant of problem. Apart from these methods, of course, one can apply other
multi-objective optimization methods to address each variant of the problem,
such as the Epsilon Constraint Method.

Since the results from Exact Approach 1 indicate that exact approaches
based on the formulations presented in this chapter are not promising for
quickly solving medium-sized or large instances, we decided not to perform
any experiments using other exact approaches. Therefore, we leave open
for further research the task of experimenting with other multi-objective
optimization methods to find the set of non-dominated solutions in an exact
approach. Instead, in the following chapter we focus on heuristic approaches
that may be more appropriate for solving such problems in practice. Note
also that in the following chapter we do consider another MOO method,
namely the Epsilon Constraint Method, to solve the 3-objective variant of
problem 3; however, we use this method in a heuristic framework.
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Chapter 8

Problem 3 - The Single-Commodity
Delayed VRPTW: Heuristic
Approaches & Experimental Results

8.1 Introduction

In this chapter we describe three heuristic approaches for the Single-Commo-
dity Delayed VRPTW (SCD-VRPTW), to which we will also be referring as
problem 3. The first heuristic approach solves the Lexicographic variant of the
problem with 5 objectives. The second one solves the Lexicographic variant
with 3 objectives, which is a simplification of the first variant and is mainly
included so that valid comparisons between the first and third approaches
can be made. Finally, the third heuristic approach uses the framework of
the ε-Constraint Method to solve heuristically the 3-objective version of the
problem, and finds a representative subset of the set of non-dominated solu-
tions, as a more general multi-objective optimization (MOO) approach. All
of the above approaches employ the Tabu Search metaheuristic.

In section 8.5 we present the experimental results of the three heuristic
approaches, as well as the results of exact approach 1 which was described in
the previous chapter. Comparisons of the different methods and conclusions
follow.

In general, throughout this chapter we use the notation described in the
previous chapter, unless it is explicitly stated otherwise.
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8.2 Heuristic Approach 1: A Tabu Search

heuristic for the Lexicographic SCD-

VRPTW with 5 Objectives

In this section we describe a heuristic based on Tabu Search, to solve the
Lexicographic Single-Commodity Delayed VRPTW with 5 objectives (SCD-
VRPTW-Lex5). We refer to this approach as Heuristic Approach 1 for prob-
lem 3.

In this variant of the problem, the 5 objective functions F1, F2,..., F5

which were defined in section 7.4, are aggregated into a single objective,
namely

∑5
i=1 βiFi, which is to be minimized. In other words, we employ

the weighted-sum method to transform the MOO problem into one with
a single objective. Furthermore, we choose weights (β1, β2, β3, β4, β5) with
β1 >> β2 >> β3 >> β4 >> β5, so that function F1 is minimized first,
then among the solutions which involve the minimum value of F1, the one(s)
which also minimize F2 are chosen, and so on. This way, we solve the so-
called Lexicographic variant of the problem with 5 objectives (i.e. assuming
Lexicographic preference of the 5 component objectives). Note that this vari-
ant was also described in section 7.9, where Exact Approach 1 was presented
for solving the same variant.

In the Single-Commodity Delayed VRPTW, we have n customers and
d vehicles. Each vehicle k (k = 1, ..., d) departs from node n + k (initial
position) at time Tk, then visits a subset of the set of customers (nodes
1, 2, . . . , n) in the appropriate order, and finishes at the depot. In the heuris-
tic, for technical reasons we use d copies of the depot, denoted by nodes
n+ d+ 1, n+ d+ 2,..., n+ 2d, so that vehicle k (k = 1, ..., d) finishes at node
n+ d+ k.1 All customers must be served. All nodes must be visited exactly
once. At any time, the capacity constraint must be satisfied. Each node i
(i = 1, 2, ..., n + 2d) is associated with its Cartesian coordinates (Xi, Yi), a
service time si, a demand Di and a time window [ai, bi]. All time windows
are treated as soft constraints, so any intermediate or final solutions may
violate some or even all of the time windows; this is not considered to be an
infeasibility. The starting positions n + k (k = 1, ..., d) can be copies of the
depot, or customer nodes (in which case the corresponding customers should
not be included in the customer set {1, 2, ..., n}), or any other position spec-
ified by its Cartesian coordinates (Xn+k, Yn+k), with zero service time, zero
demand and time windows [0,+∞).

1This is a difference between the notation of this chapter and the corresponding notation
used in the previous chapter, where the depot was represented by a single node, namely
node 0.
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Notes:

1. The lexicographic approach employed here can be viewed as a special
case of the weighted-sum method, with a choice of weights so that β1 >>
β2 >> β3 >> β4 >> β5.

2. Any violation of the time windows of the starting nodes n + k or the
endpoint nodes n + d + k, will not affect the values of the component
objectives F1, F2, F3 or F4.

3. Some obvious bounds for the first two component objectives are:
0 ≤ F1 ≤ n, 0 ≤ F2 ≤ n, and 0 ≤ F1 + F2 ≤ n.

8.2.1 Objective

The objective in the first heuristic approach is to minimize function G defined
below:

minimize G :=
5∑
i=1

βiFi +
d∑

k=1

(P0ξk + P ∗0 ξ
∗
k) (8.2.1)

where

ξk :=

{
1, if

∑
i∈Rk Di > Ck

0, otherwise
(8.2.2)

ξ∗k :=

{ ∑
i∈Rk Di − Ck, if

∑
i∈Rk Di > Ck

0, otherwise
(8.2.3)

The objective function G is equal to
∑5

i=1 βiFi if the capacity constraint
is respected; otherwise a penalty function is added, which increases as the
amount of capacity violation increases. The second summation term in G is
the penalty term for capacity violation, where ξk is equal to 1 if the capacity
constraint is violated in route Rk, or 0 otherwise. Also, ξ∗k is the amount of
capacity violation in route Rk (ξ∗k is zero if there is no capacity violation in
route Rk). Finally, P0 and P ∗0 are fixed penalty coefficients.

The idea is to allow intermediate solutions which may violate the capacity
constraint, but to have a final solution with zero penalty and thus feasible
with respect to the capacity constraint.

8.2.2 Solution Notation

We define the following:
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• R = (R1, R2, ..., Rd)
′ is an ordered collection of d vectors Rk of different

and variable sizes lk, for k = 1, ..., d. Each vector Rk starts with node
n + k, is then followed by a subset of the set of customers {1,2,...,n},
and ends with node n + d + k. Obviously, Rk represents the route of
the k-th vehicle.

• W̃ = (W̃1, W̃2, ..., W̃n+2d) is a vector of length n+2d which contains the

time of start of service W̃i of each node i (i = 1, ..., n+2d), when vehicles
follow the routes specified by the collection of routes R and while idle
waiting times at nodes are not allowed. Of course, si = 0 for nodes
i = n+ 1, n+ 2, ..., n+ 2d which do not represent customers; therefore,
W̃i coincides with the time of departure from node i for starting nodes
i = n + 1, n + 2, ..., n + d, and with the time of arrival at node i for
endpoint nodes i = n + d + 1, n + d + 2, ..., n + 2d. From now on,
whenever we mention the time of start of service at node i, without idle
waiting times, we will refer to W̃i as described above (i = 1, ..., n+ 2d).
Also, whenever we mention the times of start of service without idle
waiting times, we will refer to the vector W̃ .

• G̃ is a real number representing the value of the objective (8.2.1) with-
out allowing idle waiting times at nodes, when following the collection
of routes R and visiting the customers at times W̃ . Essentially, G̃ rep-
resents the value of G over a subset Π1 of the feasible region Π, where
by Π1 we denote the subset of the feasible space in which no waiting
times are allowed at any node. More formally, G̃ is the restriction of
the function G over the set Π1; i.e. G̃ = G|Π1

. So, G̃ is also calculated
by equation (8.2.1).

• W = (W1,W2, ...,Wn+2d) is a vector of length n + 2d which contains
the time of start of service Wi of each node i (i = 1, ..., n + 2d), when
vehicles follow the routes specified by the collection of routes R and
while idle waiting time at nodes is allowed. From now on, whenever we
mention the time of start of service at node i, with idle waiting times,
we will refer to Wi as described above (i = 1, ..., n+2d). Also, whenever
we mention the times of start of service with idle waiting times, we will
refer to the vector W .

• G is a real number representing the value of the objective (8.2.1) when
allowing idle waiting time at nodes, when visiting the customers in the
order described by the collection of routes R and at times W . So, G is
calculated over the whole feasible region Π.
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A solution to the problem can be described by a collection of routes R,
along with the respective vector W containing the time of start of service
of each node while allowing idle waiting time at nodes, together with the
respective values for the 5 objectives F1, F2, ..., F5. However, in the context
of the heuristic and throughout this chapter, when we talk about a solution S
of the heuristic we will refer to a quintuple of the form S = (R, W̃ , G̃,W,G).

In a similar way, we define the quintuples S1, S2, Sbest and S∗ as: S1 =
(R1, W̃ 1, G̃1,W 1, G1), S2 = (R2, W̃ 2, G̃2,W 2, G2), Sbest = (Rbest, W̃ best, G̃best,

W best, Gbest) and S∗ = (R∗, W̃ ∗, G̃∗,W ∗, G∗). From now on, whenever we say
that a solution S, S1, S2, Sbest or S∗ is created or updated, we will imply that
the respective quintuple is created or updated accordingly, unless otherwise
stated.

It is requested to find the Solution S∗ which minimizes the objective
function G over the feasible space Π, i.e. when allowing idle waiting time at
nodes, while respecting the necessary constraints.

8.2.3 Description of the basic algorithmic functions

Given a route R, we will now show how to calculate or update the complete
solution S, composed of the quintuple (R, W̃ , G̃,W,G).

(i) Given R, how to calculate vector W̃ using the algorithmic func-

tion time: W̃ = time(R):
Given a collection of routes R (or, in short, a route R), the algorithmic

function time calculates the times of start of service at each node when
following the route R, if there are no idle waiting times at nodes, and stores
the result in the vector W̃ of length n+ 2d (i.e. W̃ = time(R)).

Specifically, for all j = 1, ...d the function time sets W̃ (Rj,1) = Tj for the
starting node Rj,1 of route Rj, and then for each one of the following nodes

Rj,i of route Rj, it sets W̃ (Rj,i) = W̃ (Rj,i−1) + t(Rj,i−1, Rj,i) + s(Rj,i−1), for
all i = 2, 3, . . . , length(Rj).

Note that we use the notation W̃ (Rj,i) and W̃Rj,i interchangeably; i.e.

W̃ (Rj,i) = W̃Rj,i . Similarly, t(Rj1,i1 , Rj2,i2) = tRj1,i1 ,Rj2,i2 and s(Rj,i) = sRj,i .

(ii) Given R and W̃, how to calculate G̃ using the algorithmic

function cost : G̃ = cost(R,W̃):

Given R and W̃ , the algorithmic function cost uses equation (8.2.1) to

calculate the value G̃ of the objective function without allowing idle waiting
times at nodes, when following the collection of routes R and visiting the
nodes at times W̃ .
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In more detail, this function compares the time of start of service W̃i of
each node with the respective time window [ai, bi] and thus calculates the
values of each component objective Fj (j = 1, . . . , 5). Initially each Fj is set

to zero. Then, for all nodes i = 1, . . . n that represent customers, if W̃i > bi,
then F1 is increased by 1 and F3 is increased by W̃i − bi. Similarly, for all
i = 1, . . . n, if W̃i < ai, then F2 is increased by 1 and F4 is increased by
ai− W̃i. Finally, F5 is defined as

∑d
j=1 W̃n+d+j. Therefore, the values of all 5

objectives Fj (j = 1, . . . , 5) and hence the first summation term
∑5

j=1 βiFi of

equation (8.2.1) are defined for the specific vector W̃ and collection of routes
R.

The second summation term of equation (8.2.1), which is the penalty term
for capacity constraint violation, is straightforward to calculate, as explained
in subsection 8.2.1. Therefore, G̃ is calculated and returned as the output of
the function cost ; i.e. G̃ = cost(R, W̃ ).

Note that, more generally, given R and a vector Ŵ , which may or may
not involve some idle waiting times at nodes (for example, we may use W̃ or

W as Ŵ ), we can still use the same algorithmic function cost to calculate the

respective value of the objective function Ĝ, as Ĝ = cost(R, Ŵ ). Specifically,
given R and the times of start of service W while allowing idle waiting times
at nodes, we can use the same algorithmic function cost to calculate G, as
G = cost(R,W ).

Up to this point, we have described how, given R we can create or update
the triplet (R, G̃, W̃ ). We will now describe how, given the triplet (R, G̃, W̃ ),
we can use the algorithmic function optimal waiting times to calculate G and
W and thus get the full quintuple (R, G̃, W̃ ,G,W ), i.e. the full solution S.

Note that the triplet (R,G,W ) is enough to represent a complete solution,

since G̃ and W̃ serve as intermediate values. Therefore, once we have the
optimal values for the triplet (R,G,W ), there is no need to update G̃ and W̃ .

(iii) Given R and W̃ (or Ŵ), how to calculate W and G using the
algorithmic function optimal waiting times: [W,G]=optimal wai-

ting times(R,W̃):

Given R and W̃ , the function optimal waiting times calculates a heuristic
approximation of the optimal times of start of service, W and the respective
value of the objective function G involved when following the routes defined
by R and while idle waiting time at nodes is allowed. The function works as
described below.

First initialize W and G by letting W := W̃ and G := cost(R,W ). Then,
for all j = 1, 2, ...d, for all i = 2, 3, ..., length(Rj)− 1, perform the procedure
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described in the following paragraph:
Check if by visiting customers at times W , then the ith customer of the

jth route, denoted by Rj,i will be visited earlier than his or her ready time.
If the answer is yes, then define m1 as the amount of earliness of customer
Rj,i; that is m1 := aRj,i −WRj,i . Also, define m2 := min{bRj,k −WRj,k |k =
i+1, . . . , length(Rj)−1}; that is, m2 is the minimum difference between the
due date and the time of start of service, amongst the nodes following the
node Rj,i in the route Rj. Note that m2 is not necessarily positive. In fact,
m2 is negative if there is at least one late customer among the customers
Rj,i+1, Rj,i+2, . . . , Rj,length(Rj)−1. Then, define m := min{m1,m2}. If m > 0,
then set Wtemp := W . Add a waiting time of m time units to customer Rj,i

in the vector Wtemp. This is done by increasing the times of visit of all nodes
including and following node Rj,i by m, in vector Wtemp. Then calculate
Gtemp := cost(R,Wtemp). If Gtemp < G, this means that adding a waiting
time of m time units to customer Rj,i gives an improvement to the current
times of start of service (vector W ), with respect to the objective function.
Therefore, if Gtemp < G, then update W := Wtemp, G := Gtemp and continue
to the next iteration of the variables i and j.

Finally, the function returns G and W .
Note that within the function optimal waiting times, the vector W̃ may

be replaced by Ŵ , which may or may not involve some idle waiting times at
nodes.

8.2.4 Description of the Algorithm

1. Parameters input & Initialization:
- Input: n, d, Ck and Tk (for k = 1, ..., d), TL (Tabu Length).
- Define Tmin := min{Tk|k = 1, ..., d}.
- Input: (Xi, Yi), [ai, bi], si, Di ∀ i = 1, 2, . . . , n+ 2d.
- Input: J1, J2 (parameters controlling the number of Tabu Search it-
erations without an improvement before the algorithm terminates, in
Tabu Stages A and B, respectively).
- For all i, j ∈ {1, 2, . . . , n + 2d}, calculate the travel time ti,j as the
Euclidean distance ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2 between each pair

of nodes (i, j), rounded to 2 decimal points.

2. Calculate lower bounds for the component objectives F1 and F3:

- Identify the set of Definitely Late customers, IDL =
{
i ∈ IC

∣∣∣ min
k∈K

(Tk+

sn+k + tn+k,i) > bi

}
, as described in chapter 7. Its cardinality |IDL| is
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the number of definitely late customers, which serves as a lower bound
for F1; that is, LBF1 = |IDL|.
- Evaluate the minimum amount of lateness, defined as: LBF3 :=∑
i∈IDL

[min
k∈K

(Tk +sn+k + tn+k,i)− bi], which serves as a lower bound for F3.

Objective:

The objective is to minimize function G defined by equation (8.2.1)
over the whole feasible region Π, as was explained before.

3. Construct the Initial Route R0:

In order to construct the initial route R0, we use the set of routes
involved in the original plan (which is supposed to be the best possible
plan found for the original problem, optimal or near-optimal), after
removing the first part of each route containing the customers that
have already been served.

Then in route R0
k of vehicle k (for all k = 1, ..., d) we use the position

of vehicle k at time Tk as the starting position (represented by node
n + k) and include this as the first node of the route. The depot is
the end-point of each route R0

k, so we also include a copy of the depot
(represented by node n+ d+ k) as the last node of route R0

k.

The collection of routes R0 = (R0
1, R

0
2, ..., R

0
d)
′ is used as the initial

solution’s collection of routes and will be simply referred to as the
initial route.

4. - Given the initial route R0, calculate the full initial solution S0 =
(R0, G̃0, G0, W̃ 0,W 0).
- Initialize the current solution S2, by letting S2 := S0.
- Initialize the best solution found, Sbest, by letting Sbest := S2.

- Apply Tabu Search with best improvement and the exchange and in-
sertion neighborhood moves, to find the best solution Sbest, as described
in Stages A and B which follow:

• Tabu Search - Stage A:
- Start with solution S2.
- Find the best solution S1 in a neighborhood N(S2) of S2, with
respect to the objective function. The neighborhood N(S2) of S2

is constructed starting from S2 and performing any single possi-
ble move, using one of the two following neighborhood operators:
exchange and insertion.
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- To avoid going around in circles, moves involving nodes that were
involved in any of the previous TL moves are declared tabu and
thus forbidden. A tabu move however is allowed as an exception
to this rule, if it leads to a solution that improves the best solution
found so far, Sbest.
Once a local optimum is reached, we want the algorithm to be able
to escape that local optimum and move to another neighborhood.
However, sometimes when a local optimum is reached in this prob-
lem, there are several possible moves that lead to exactly the same
objective (ties). To avoid having the algorithm wandering around
a plateau containing a local optimum and prevent it from getting
trapped there, we disallow moves that lead to a solution which
gives the same objective value as the current solution. In fact,
when designing the algorithm, we tried allowing moves that lead
to the same objective value, but after some experimentation we
concluded that forbidding those moves gave a better performance.
Therefore, we do not allow moves that do not lead to a change in
the objective value (we obviously allow improving moves, as well
as worsening moves to escape a local optimum).

- We also include a diversification mechanism which prevents the
frequent use of moves involving the same nodes. Specifically,
moves involving nodes that were involved in more than θ1 + θ2 · µ
iterations so far are also declared forbidden, where µ is the aver-
age number of times a node was involved in a move so far, and θ1,
θ2 are parameters that need to be tuned experimentally.2 Again,
such a move is allowed as an exception to this rule, if it leads to
an improvement to the best solution found so far, Sbest.

- If S1 is better than Sbest, then set Sbest := S1.
- Set S2 := S1.
- Repeat Stage A, until there is no improvement in solution Sbest

in the last J1 iterations.

Note that, during this first stage of Tabu search, whenever a so-
lution S is calculated or updated, only the triplet (R, W̃ , G̃) is
updated; i.e. the function optimal waiting times is not employed,
nor are the corresponding W and G calculated or updated.

2After some experimentation, we decided to use θ1 = 3 and θ2 = 1.7
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• Tabu Search - Stage B:
Repeat the same process described in Stage A, but this time re-
place J1 by J2 (where generally J2 is advised to be smaller than
J1) and replace ’Stage A’ by ’Stage B’. In this second stage, when-
ever a solution S is calculated or updated, the full quintuple
(R, W̃ , G̃,W,G) is updated, meaning that the function optimal
waiting times is now called to calculate or update W and G.

Stage B is repeated, until there is no improvement in solution Sbest

in the last J2 iterations.

• Once the two stages are finished, we return the best solution found,
Sbest. We also return the values of the five component objective
functions F1, F2, ..., F5 that correspond to this best solution, in the
quintuple (F ∗1 , F

∗
2 , ..., F

∗
5 ).

• The reason why we split the Tabu Search in two stages, is because
this saves us computational time, something which was confirmed
through experiments. Stage A is a fast way to get close to a
very good solution. Once this is achieved, stage B repeats the
same process as in stage A, but this time the more computation-
ally expensive function optimal waiting times is employed, which
involves the exploration of the different solutions when allowing
different amounts of waiting times at different customers, and the
search for the optimal allocation of waiting times at customers for
the corresponding set of routes. In fact, one could ignore stage
A and go directly to stage B of Tabu Search, which should give
similar results (provided that J2 would be approximately the same
or greater than J1); however, this would be computationally more
expensive and the whole algorithm would be substantially slower
than the proposed method.

8.2.5 Heuristic Approach 1b: A Tabu Search heuris-
tic for the Multi-Objective SCD-VRPTW with
5 Objectives, using the Weighted-Sum method

The algorithm presented in the previous subsection solves the SCD-VRPTW-
5 heuristically, assuming Lexicographic Preference of the 5 component ob-
jectives. This algorithm can be generalized as follows:

We vary systematically the set of positive weights (β1, β2, β3, β4, β5) (per-
haps normalized but not necessarily), and for each different choice of weights
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we run the algorithm of heuristic approach 1, which was presented in sub-
section 8.2.4. The solutions derived from each run are then compared with
each other and any dominated solutions, or any duplicated solutions, are
removed from the solution set. The remaining set of solutions constitutes
an approximate representative set of the Pareto front. We will refer to this
approach as Heuristic Approach 1b, which essentially solves heuristically the
Multi-Objective SCD-VRPTW-5 using the weighted-sum method and Tabu
Search.

8.3 Heuristic Approach 2: A Tabu Search

heuristic for the Lexicographic SCD-

VRPTW with 3 Objectives

In this section we discuss a heuristic approach to solve the Lexicographic
Single-Commodity Delayed VRPTW with 3 objectives (SCD-VRPTW-Lex3).
We will be referring to this approach as Heuristic Approach 2 for problem 3.
In this approach we use the same notation and algorithm that were used in
the first heuristic approach, as described in section 8.2, but with a different
set of component objectives. Essentially, we make the assumptions and use
the technique described in section 7.12, to reduce the 5 objectives of the
SCD-VRPTW down to 3 objectives.

Specifically, in heuristic approach 1 we used the 5 component objec-
tives F1, F2,..., F5 that were transformed into a single aggregated objective∑5

i=1 βiFi, which composed the first summation term of the objective func-
tion G that was defined by equation (8.2.1). Instead, in heuristic approach
2 we use the 3 component objectives f1, f2 and f3, defined as f1 := F1 + F2,
f2 := F3 +F4 and f3 := F5, which are then aggregated into a single objective∑3

i=1 β
′
ifi that constitutes the first summation term of the objective function

G3, defined below. Therefore, the objective function of the second heuristic
approach is:

minimize G3 :=
3∑
i=1

β′ifi +
d∑

k=1

(P0ξk + P ∗0 ξ
∗
k) (8.3.1)

where ξk and ξ∗k were defined by equations (8.2.2) and (8.2.3) in subsection
8.2.1.

Obviously, the lower bound LBF1 of the component objective F1, dis-
cussed in the previous section, is also a lower bound for the component
objective f1 (since f1 := F1 + F2 and F2 ≥ 0). Similarly, the lower bound
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LBF3 of the component objective F3 is also a lower bound for the compo-
nent objective f2 (since f2 := F3 + F4 and F4 ≥ 0). Hence we can define
LBf1 := LBF1 and LBf2 := LBF3 .

By varying systematically the set of positive weights (β′1, β
′
2, β

′
3) (perhaps

normalized but not necessarily), and for each different choice of weights run-
ning the algorithm of heuristic approach 1, but with G3 as the objective
function, instead of G, and with f1, f2, f3 as the 3 component objectives
to replace F1, F2, ..., F5, we can get an approximate representative set of the
Pareto front for the SCD-VRPTW-3 (after removing any duplicates or dom-
inated solutions from the resulting set of solutions derived from all the runs).
This approach constitutes Heuristic Approach 2b, which solves heuristically
the Multi-Objective SCD-VRPTW-3 using the weighted-sum method and
Tabu Search.

As a special case of Heuristic Approach 2b, if we perform a single run
of the weighted-sum approach described in the previous paragraph, using a
single set of weights (β′1, β

′
2, β

′
3) such that β′1 >> β′2 >> β′3 > 0, we can

solve heuristically the 3-objective variant of the problem with Lexicographic
Preference. This constitutes Heuristic Approach 2, which solves heuristically
the Lexicographic SCD-VRPTW-3 using Tabu Search.

Essentially, heuristic approach 2b is equivalent to employing heuristic
approach 1b with different sets of positive weights (β1, β2, β3, β4, β5) such that
β1 = β2 and β3 = β4. Also, heuristic approach 2 is equivalent to employing
heuristic approach 1 with a single choice of positive weights (β1, β2, β3, β4, β5)
such that β1 = β2 >> β3 = β4 >> β5 > 0.

Heuristic approach 2, which is a slight simplification of heuristic approach
1, is presented mainly for two reasons. Firstly, we want to show that nar-
rowing the 5 objectives down to 3 objectives in the way that we chose to do
so, and in the context of the problem under study, may sometimes not affect
the solution very much. Secondly, heuristic approach 2 serves as a bridge
between the first and third heuristic approaches. Since it is not obvious how
to directly compare the results of heuristic approaches 1 and 3, we can do
this indirectly by comparing the results of heuristic approaches 1 and 2 be-
tween each other, as well as those of heuristic approaches 2 and 3 between
each other.
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8.4 Heuristic Approach 3: A Tabu Search

heuristic for the SCD-VRPTW with 3

objectives, using the ECM framework

In this section we describe a heuristic based on the Epsilon Constraint Method
(ECM) and Tabu Search, which is designed to solve the Single-Commodity
Delayed VRPTW with 3 objectives (SCD-VRPTW-3). This heuristic consti-
tutes the 3rd heuristic approach for problem 3.

As in section 8.3, there are three component objectives to be minimized,
namely f1, f2 and f3. In order to address the 3-objective variant of the prob-
lem using the ECM, we treat f2 as the actual objective function to be mini-
mized (min f2) and we convert the remaining two objectives into constraints
(f1 ≤ ε1 and f3 ≤ ε3). Therefore, we arrive at the first ECM formulation
for the SCD-VRPTW-3, which is composed of constraints (7.6.6)-(7.6.32) of
(MOMILP 3A) that were presented in section 7.6, together with objective
(8.4.1) and constraints (8.4.2) and (8.4.3) which follow:

minimize f2 :=
∑
i∈IC

ρi +
∑
i∈IC

σi (8.4.1)

f1 :=
∑
i∈IC

µi +
∑
i∈IC

λi ≤ ε1 (8.4.2)

f3 :=
∑
k∈K

w0,k ≤ ε3 (8.4.3)

The above mathematical program, to which we will be referring as (MILP
3E), constitutes an exact formulation for the SCD-VRPTW-3 using the ECM
method. In theory, this can be implemented in an optimization solver and,
by varying systematically the values of ε1 and ε3, one can get a representative
subset of the set of non-dominated solutions for the problem. We will refer
to this approach as Exact Approach 3 for problem 3.

However, the experimental results from Exact Approach 1, which are pre-
sented later in section 8.5, show that exact approaches based on formulations
(MILP 3B) or (MOMILP 3A) are not promising for solving medium-sized or
large instances within a few minutes. Exact Approach 3 presented above
involves solving multiple such programs, so it is even more computationally
expensive than Exact Approach 1 and is expected to take even longer time
to use. Therefore, we decided not to perform any experiments with exact
approach 3.

Instead, we will use the above framework of the epsilon constraint method
to construct a heuristic algorithm. In fact, we created such a heuristic that
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was based on the above formulation (MILP 3E). However, after some exper-
imentation we concluded that better results can be achieved by the heuristic
if we replace objective (8.4.1) with objective (8.4.4) which is shown below,
and with a choice of positive weights (β′1, β

′
2, β

′
3) such that β′2 = 1, β′1 << 1

and β′3 << 1:

minimize
3∑
i=1

β′ifi (8.4.4)

Objective (8.4.4), together with constraints (8.4.2), (8.4.3) and constraints
(7.6.6)-(7.6.32) of (MOMILP 3A), will constitute the second ECM formula-
tion for the SCD-VRPTW-3, which we will denote by (MILP 3F). Essentially,
(MILP 3F) is the same as (MILP 3E), after replacing its objective (8.4.1)
with objective (8.4.4). This program is a single-objective MILP which de-
pends - among others - on the parameters ε1 and ε3. Therefore, in the
remainder of this chapter we will refer to this second ECM formulation for
the SCD-VRPTW-3 as MILP-3F-ECM (ε1, ε3).

Heuristic Approach 3 involves varying the values of ε1 and ε3 within
appropriate ranges in a systematic way, and for each pair of parameter values
(ε1, ε3), solving heuristically MILP-3F-ECM(ε1, ε3). The solutions resulting
from solving all the above programs are then compared with each other and
any duplicates or dominated ones are removed from the solution set. The
resulting set of solutions is an approximate subset of the set of non-dominated
solutions for the SCD-VRPTW-3.

8.4.1 Objectives

In the algorithm of heuristic approach 3, which is described step by step in
subsection 8.4.4, we use different objectives at different stages. Note that,
at any stage of the algorithm, the value of the objective is stored as G̃ when
idle waiting times at nodes are not allowed, or as G when idle waiting times
are allowed.

• Objective throughout Step 4:

Throughout Step 4, for the calculation of the objective function we use
the following function, which we seek to minimize:

G3 =
3∑
i=1

β′ifi +
d∑

k=1

(P0ξk + P ∗0 ξ
∗
k) (8.4.5)

where

ξk :=

{
1, if

∑
i∈Rk Di > Ck

0, otherwise
(8.4.6)
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ξ∗k :=

{ ∑
i∈Rk Di − Ck, if

∑
i∈Rk Di > Ck

0, otherwise
(8.4.7)

Essentially, function G3 is equal to
∑3

i=1 β
′
ifi if the capacity constraints

are respected; otherwise a penalty function is added, which increases
as the amount of capacity violation increases. The second summation
term in G3 is the penalty term for capacity violation, where ξk is equal
to 1 if the capacity constraint is violated in route Rk, or 0 otherwise.
Also, ξ∗k is the amount of capacity violation in route Rk, if any (ξ∗k
is zero if there is no capacity violation in route Rk). Finally, P0 and
P ∗0 are fixed penalty coefficients. This allows intermediate solutions
which may violate the capacity constraints, but the aim is to have a
final solution with zero penalty and thus feasible with respect to the
capacity constraints.

Therefore, throughout Step 4, the value of the objective function with-
out allowing idle waiting times at nodes, and when following the col-
lection of routes R and visiting the customers at times W̃ , is stored as
G̃, and is calculated using the function G3 defined by equation (8.4.5).
Similarly, throughout Step 4, the value of the objective function when
allowing idle waiting times at nodes, and when following the collection
of routes R and visiting the customers at times W , is stored as G, and
is also calculated using the function G3 defined by equation (8.4.5).

• Objective throughout Step 6:

Throughout Step 6, for the calculation of the objective function we use
function Gε defined below, which we seek to minimize:

Gε : =
3∑
i=1

β′ifi +
d∑

k=1

(P0ξk + P ∗0 ξ
∗
k) +

+


0 if f1 ≤ ε1 and f3 ≤ ε3
(f1 − ε1) · P1 + P ∗1 if f1 > ε1 and f3 ≤ ε3
(f3 − ε3) · P3 + P ∗3 if f1 ≤ ε1 and f3 > ε3
(f1 − ε1) · P1 + P ∗1 + (f3 − ε3) · P3 + P ∗3 if f1 > ε1 and f3 > ε3

(8.4.8)

with a choice of weights (β′1, β
′
2, β

′
3) such that β′2 = 1, β′1 << 1 and

β′3 << 1, where ξk and ξ∗k were defined by equations (8.4.6) and (8.4.7).

Essentially, Gε is defined as
∑3

i=1 β
′
ifi if the epsilon constraints and

the capacity constraints are respected; otherwise Gε is penalized by a
large penalty which is proportional to the amount of violation, plus a
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large constant. Specifically, if f1 > ε1, then Gε is increased by (f1 −
ε1) · P1 + P ∗1 . If f3 > ε3, then Gε is increased by (f3 − ε3) · P3 + P ∗3 ,
where P1, P ∗1 , P3 and P ∗3 are appropriate penalty coefficients.3 Also,
the second summation term

∑d
k=1(P0ξk + P ∗0 ξ

∗
k) of Gε is the penalty

term for capacity constraint violation and was explained before, when
discussing equation (8.4.5).

Therefore, throughout Step 6, the value of the objective function with-
out allowing idle waiting times at nodes, and when following the col-
lection of routes R and visiting the customers at times W̃ , is stored as
G̃, and is calculated using the function Gε defined by equation (8.4.8).
Similarly, throughout Step 6, the value of the objective function when
allowing idle waiting times at nodes, and when following the collection
of routes R and visiting the customers at times W , is stored as G, and
is also calculated using the function Gε defined by equation (8.4.8).

8.4.2 Solution Notation

Apart from the difference in the calculation of the objectives G̃ and G, which
was explained in the previous subsection, throughout heuristic approach 3
we will use the same notation used in heuristic approach 1, as described in
section 8.2 (e.g. for R, W̃ ,W, S,Rk etc.), unless otherwise stated or implied.

Furthermore, we will use the algorithmic functions time, cost and opti-
mal waiting times that were used in heuristic approach 1 and described in
section 8.2, but modified accordingly, so that at different stages the appro-
priate function G3 or Ge (i.e. equation (8.4.5) or (8.4.8)) is involved in the
calculation of the objective value.

8.4.3 Description of the main algorithmic functions

As in heuristic approach 1, given a route R, we can calculate or update the
solution S := (R, W̃ , G̃,W,G) as follows:

(i) Given R, we can calculate the vector W̃ using the algorithmic

function time: W̃ = time(R) (as defined in subsection 8.2.3).

(ii) Given R and W̃, we can calculate G̃ using the algorithmic

function cost 2 : G̃ = cost 2(R,W̃):

3After some experimentation, we decided to use P1 = 400, P ∗1 = 50000000, P3 = 100
and P ∗3 = 20000000.
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Given R and W̃ , the algorithmic function cost 2 calculates the value of
the objective function without allowing idle waiting times at nodes, when
following the collection of routes R and visiting the nodes at times W̃ . This
value is stored as G̃ and for its calculation we use either function G3 and
equation (8.4.5) whenever cost 2 is called in step 4 of the algorithm, or
function Gε and equation (8.4.8) whenever cost 2 is called in step 6 of the
algorithm.

In more detail, given a collection of routes R and a vector W̃ , the al-
gorithmic function cost 2 compares the time of start of service W̃i of each
node with the respective time window [ai, bi] and thus calculates the values
of each function Fj (j = 1, . . . , 5). Initially each Fj is set to zero. Then,

for all nodes i = 1, . . . n that represent customers, if W̃i > bi, then F1 is
increased by 1 and F3 is increased by W̃i − bi. Similarly, for all i = 1, . . . n,
if W̃i < ai, then F2 is increased by 1 and F4 is increased by ai− W̃i. Finally,
F5 is defined as

∑d
j=1 W̃n+d+j. Then the values of fj (j = 1, 2, 3) are defined

as f1 := F1 + F2, f2 := F3 + F4 and f3 := F5. Hence the first summation
term

∑3
j=1 β

′
ifi of equations (8.4.5) and (8.4.8) is defined. The second sum-

mation term of equations (8.4.5) and (8.4.8), which is the penalty term for
capacity constraint violation, is straightforward to calculate, as explained in
subsection 8.2.1. The third part of equation (8.4.8) that involves penaliz-
ing Ge in case of a violation of an epsilon constraint, is also straightforward
to calculate, as explained in subsection 8.4.1. Note that at different stages
of the algorithm, only one of the two functions G3 and Ge (i.e. equations
(8.4.5) and (8.4.8)) is involved in the calculation of the objective value, as
was previously explained. Therefore, the value of the objective function is
calculated and returned as the output G̃ of the algorithmic function cost 2 ;
i.e. G̃ = cost 2(R, W̃ ).

Note that, more generally, given R and a vector Ŵ , which may or may
not involve some idle waiting times at nodes (for instance, we may use W̃

or W as Ŵ ), we can still use the same algorithmic function cost 2 to calcu-

late the respective value of the objective function Ĝ, as Ĝ = cost 2(R, Ŵ ).
Specifically, given R and the times of start of service W while allowing idle
waiting times at nodes, we can use the same algorithmic function cost 2 to
calculate G, as G = cost 2(R,W ).

(iii) Given R and W̃ , we can calculate W and G using the algorith-
mic function optimal waiting times 2 : [W, G]=optimal waiting

times 2(R,W̃):
This algorithmic function is defined the same way that the algorithmic

function optimal waiting times was defined in section 8.2, but with the fol-
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lowing difference: Instead of calling internally the algorithmic function cost,
the algorithmic function optimal waiting times 2 calls the function cost 2.

Therefore, given R and W̃ , the algorithmic function optimal waiting times
2 calculates and returns a heuristic approximation of the optimal times of
start of service W and the corresponding value of the objective function G
when allowing idle waiting times at nodes and when following the collection of
routes R and visiting the nodes at times W , where G is calculated either using
function G3 and equation (8.4.5) if it is called in step 4 of the algorithm, or
using function Gε and equation (8.4.8) if it is called in step 6 of the algorithm.

Note that we can still use the function optimal waiting times 2 if we
replace vector W̃ in the input with vector Ŵ , which may or may not involve
some idle waiting times at nodes.

8.4.4 Algorithm description

In this subsection we present the algorithm involved in Heuristic Approach
3. This algorithm uses the framework of the Epsilon Constraint Method and
Tabu Search with multiple restarts, to construct an approximate represen-
tative subset of the set of non-dominated solutions for the SCD-VRPTW-3.
These are the main steps of the algorithm:

1. Parameters input & Initialization:
- Input: n, d, Ck and Tk (for k = 1, ..., d), Θ, Φ, TL (Tabu Length).
- Define Tmin := min{Tk|k = 1, ..., d}.
- Input: (Xi, Yi), [ai, bi], si, Di ∀ i = 1, 2, . . . , n+ 2d.
- Input: J1, J2 (parameters controlling the number of Tabu Search it-
erations without an improvement before the algorithm terminates, in
Tabu Stages A and B, respectively).
- For all i, j ∈ {1, 2, . . . , n + 2d}, calculate the travel time ti,j as the
Euclidean distance ti,j :=

√
(Xi −Xj)2 + (Yi − Yj)2 between each pair

of nodes (i, j), rounded to 2 decimal points.

2. Calculate lower bounds for the component objectives f1 and f2:

- Identify the set of Definitely Late customers, IDL =
{
i ∈ IC

∣∣∣ min
k∈K

(Tk+

sn+k + tn+k,i) > bi

}
, as described in chapter 7. Its cardinality |IDL| is

the number of definitely late customers, which serves as a lower bound
for f1 (and also for F1), and is thus denoted by LBf1 := |IDL|.
- Evaluate the minimum amount of lateness :=

∑
i∈IDL

[min
k∈K

(Tk + sn+k +
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tn+k,i)− bi], which serves as a lower bound for f2 (and also for F3), and
is therefore denoted by LBf2 .

3. Construct the Initial Route R0:

In order to construct the initial route R0, we use the set of routes
involved in the original plan (which is supposed to be the best possible
plan found for the original problem, optimal or near-optimal), after
removing the first part of each route containing the customers that
have already been served.

Then in route R0
k of vehicle k (for all k = 1, ..., d) we use the position

of vehicle k at time Tk as the starting position (represented by node
n + k) and include this as the first node of the route. The depot is
the end-point of each route R0

k, so we also include a copy of the depot
(represented by node n+ d+ k) as the last node of route R0

k.
4

The collection of routes R0 = (R0
1, R

0
2, ..., R

0
d)
′ is used as the initial so-

lution’s collection of routes and will be simply referred to as the initial
route. Given the initial route R0, we then calculate the respective W̃ 0.
We also let R := R0 and W̃ := W̃ 0.

4. Objective throughout Step 4:

Throughout Step 4, the objective is to minimize the function G3 de-
fined by equation (8.4.5), and the respective value found at any time is

stored as G̃ when idle waiting times at nodes are not allowed, or as G
when idle waiting times at nodes are allowed.

Step 4a:

- Given the initial route R0 and the corresponding vector W̃ 0 found in
the previous step, calculate the full initial solution S0 = (R0, G̃0, G0,

W̃ 0,W 0).

- Initialize S by letting S := S0.

4Note that any violation of the time windows of the starting nodes n+k or the endpoint
nodes n+d+k will not be reflected in the objectives f1 or f2 (for k = 1, ..., d). For instance,
if a vehicle arrives late at the endpoint node n+d+k, this will not be considered a violation
of the respective time window, so it will not be counted in f1 (number of customers served
outside their time windows) and its amount of violation of the time window will not be
added to f2.
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- Using S0 as the initial solution, run the algorithm described by Heuris-
tic Approach 2 (in section 8.3), with G3 as the objective to be mini-
mized and with a choice of weights (β′1, β

′
2, β

′
3) such that β′1 >> β′2 >>

β′3 > 0, to find an optimal or near-optimal solution for the Lexico-
graphic SCD-VRPTW with 3 Objectives.5 Store this solution as SLex,
where SLex = (RLex, W̃Lex, G̃Lex,WLex, GLex). Throughout this sec-
tion, we will call this solution the lexicographic solution.

Step 4b:

- Using SLex as the initial solution, perform three different restarts of
the algorithm described by Heuristic Approach 2 (in section 8.3), with
G3 as the objective to be minimized, where each time we use one of the
following three sets of weights (β′1, β

′
2, β

′
3) respectively: (1, 0, 0), (0, 1, 0)

and (0, 0, 1).

Essentially, in each one of these three runs the algorithm solves heuris-
tically the mathematical program (MOMILP 3C) that was defined in
section 7.12, which is transformed into a single-objective program, with
only one of f1, f2 and f3 as the objective to be minimized, neglecting the
other two component objectives (but storing their values each time).

From each one of the three different runs, we get a triplet of the form
(f1, f2, f3) containing the values of the three component objectives.
Then, separately for each i = 1, 2, 3, the three values found for each
fi are compared with each other to find the smallest value fmi and the
largest value fMi among the three values of each component objective.
Also, let minfi and maxfi denote the true minimum and maximum
value of fi, respectively, for each i = 1, 2, 3. Note that fmi is not
necessarily the same as the true minimum value minfi of fi, but is an
overestimate of minfi that should be close to the true value. On the
other hand, not only is fMi generally different to the true maximum
value maxfi of fi, but it is an underestimate of maxfi that may be
substantially smaller than the true maximum value. However, since we
are minimizing, we do not really need the maximum value for any of
the three component objectives f1, f2 and f3. In fact, we only treat the
values fmi and fMi as reference values that specify a part of the range of
each component objective fi which is of interest. Some of those values
are used below to construct the set of different values that the epsilons
will take.

5In our experiments, we have used the values (108, 103, 10−3) for the parameters
(β′1, β

′
2, β
′
3) of Step 4a.
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We use the number of definitely late customers |IDL| as the lower bound
LBf1 for f1, and the number of all active customers n as the upper
bound UBf1 for f1; i.e. we set LBf1 := |IDL| and UBf1 := n. Note
that these are both true bounds.

Regarding f1, the bounds LBf1 and UBf1 are used below to define the
range of values that ε1 may take. Also, regarding f3, the reference
values fm3 and fM3 are used to define the range of values that ε3 may
take. Note that we do not make use of and therefore we do not need
any bounds or reference values for f2.

Also, regarding the true maximum value of f3, this could be substan-
tially greater than the value fM3 that was calculated above. However,
the true maximum value of f3 corresponds to a solution with a maxi-
mum sum of arrival times at the endpoint node, which is comparable
to a solution involving routes of maximal total length, which is very
undesirable and irrelevant in problems like the one under study. Hence,
we believe that fM3 is in fact more meaningful and more appropriate to
use than the true maximum value maxf3 , for the purpose of defining
the largest value that ε3 is allowed to take.

5. Calculate the different values that ε1 and ε3 will take:
We assume that ε1 takes Φ different values, where Φ is a user-input
parameter such that Φ ≥ 2. These values are calculated as follows:
The interval [LBf1 , UBf1 ] is divided into Φ−1 equal intervals of length
(UBf1−LBf1)/(Φ−1), and their lower end-points, together with UBf1 ,
are collected to create the set of Φ different values that ε1 will take. In
other words, ε1 takes the values LBf1 , LBf1 + (UBf1 − LBf1)/(Φ− 1),
LBf1 + 2(UBf1 − LBf1)/(Φ− 1), ..., UBf1 .

Since f1 takes only integer values, in the case where the fraction (UBf1−
LBf1)/(Φ− 1) is less than 1 (or equivalently, if Φ > UBf1 −LBf1 + 1),
we can speed up the algorithm by setting Φ := UBf1 − LBf1 + 1, i.e.
reducing Φ into a smaller and more meaningful value, which results in
ε1 taking all the integer values from LBf1 to UBf1 inclusive.

Similarly, we assume that ε3 takes Θ different values, where Θ is a
positive integer user-input parameter. These values are calculated as
follows: The interval [fm3 , f

M
3 ] is divided into Θ − 1 equal intervals of

length (fM3 − fm3 )/(Θ − 1), and their lower end-points, together with
fM3 , are collected to create the set of Θ values that ε3 will take.

Let E1 = (E1
1 , E

1
2 , ..., E

1
Φ) and E3 = (E3

1 , E
3
2 , ..., E

3
Θ) be the vectors

containing all possible values in descending order, that ε1 and ε3 take,
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respectively.

6. Objective throughout Step 6:

Throughout Step 6, the objective is to minimize the function Gε de-
fined by equation (8.4.8), and the respective value found at any time is

stored as G̃ when idle waiting times at nodes are not allowed, or as G
when idle waiting times at nodes are allowed.

Step 6:

For all i = 1, 2, ...,Φ and for all j = 1, 2, ...,Θ do:

- Let ε1 := E1
i and ε3 := E3

j .
- Check if iteration (i, j), which corresponds to solving MILP-3F-ECM
(ε1, ε3), can be skipped, according to the criteria and following the
procedures described in subsection 8.4.5. If not, then try to solve
heuristically MILP-3F-ECM(ε1, ε3) using Tabu Search, by following
the procedure described below:

• Initialize the current solution S2 as follows: If (ε1, ε3) is the first
element of table 8.1, then the current route R2 is set to be the
route RLex corresponding to the lexicographic solution SLex found
in Step 4. If (ε1, ε3) is an element of the first row of the table, but
not the one in the first row and first column, i.e. in cell (1, j) with
j > 1, then the starting route is set to be the route corresponding
to the best solution found in the previous iteration (1, j − 1), i.e.
the best route found corresponding to the cell of the same row
and the previous column of the table. Finally, if (ε1, ε3) is not
an element of the first row, i.e. in cell (i, j) with i > 1, then
the starting route is set to be the route corresponding to the best
solution found in iteration (i − 1, j), i.e. the best route found in
the previous row and same column.

• Once the current route R2 is defined, create or update the com-
plete current solution S2 accordingly.

• Initialize the best solution found in iteration (i, j), Sbest ECM(i, j),
by letting Sbest ECM(i, j) := S2.

• Apply Tabu Search with best improvement criterion, using the
exchange and insertion neighborhood moves, to find the best so-
lution of iteration (i, j), that is Sbest ECM(i, j). More specifically,
apply Tabu Search Stages A and B of Step 4 of the Heuristic
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Approach 2, as described in section 8.3 (which refers to the re-
spective part of Heuristic Approach 1, described in subsection
8.2.4, but while having the 3 component objectives f1, f2, f3 in-
volved, instead of the 5 component objectives F1, F2, ..., F5), with
the following changes: (i) Replace Sbest by Sbest ECM(i, j), where
Sbest ECM(i, j) is the best solution found so far in iteration (i, j)
and (ii) replace the function optimal waiting times by the function
optimal waiting times 2.

• Once the Stages A and B of Step 4 of the Tabu Search (in Heuristic
Approach 1) are finished, we have the best solution Sbest ECM(i, j)
found in iteration (i, j), corresponding to the epsilons (ε1, ε3) =
(E1

i , E
3
j ), i.e. the best solution found for MILP-3F-ECM(E1

i , E
3
j ).

For each iteration (i, j), we record the values of the three com-
ponent objective functions f1, f2, f3 that correspond to this best
solution, in the triplet (f 1

i,j, f
2
i,j, f

3
i,j).

7. - Compare all the best solutions found, Sbest ECM(i, j), between each
other, for all values of (i, j), by comparing the corresponding triplets
(f 1
i,j, f

2
i,j, f

3
i,j). Remove all dominated solutions from the solution set.

For instance, if (f 1
i1,j1

, f 2
i1,j1

, f 3
i1,j1

) and (f 1
i2,j2

, f 2
i2,j2

, f 3
i2,j2

) are two such
solutions found so that f 1

i1,j1
≤ f 1

i2,j2
, f 2

i1,j1
≤ f 2

i2,j2
, f 3

i1,j1
≤ f 3

i2,j2
and

at least one of the previous three inequalities is strict, then the second
solution is said to be dominated by the first solution and is therefore
removed from the set of solutions.6

- Return the resulting set of all non-dominated solutions found, which
is an approximate subset of the true set of non-dominated solutions for
the SCD-VRPTW-3.
- Then plot the respective Value Paths, showing the corresponding
triplets (f 1

i,j, f
2
i,j, f

3
i,j) for all the non-dominated solutions found.

8.4.5 Two procedures to speed up the ECM algorithm

Let E1 = (E1
1 , E

1
2 , ..., E

1
Φ) be the vector containing all Φ possible values that

ε1 may take, in descending order. Similarly, let E3 = (E3
1 , E

3
2 , ..., E

3
Θ) be the

vector containing all Θ possible values that ε3 may take, in descending order.
Suppose that we want to solve heuristically Φ×Θ programs of the form

(MILP 3E), denoted by MILP-3E-ECM(ε1, ε3), one for each possible com-

6Actually, even if none of those three inequalities is strict, we can still remove one of
the two solutions, since they give exactly the same values to the three objectives f1, f2, f3
and are therefore equivalent.
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bination of (ε1, ε3), where the objective (8.4.1) is to minimize f2. Assume
that f 2

i,j is the optimal solution of the program MILP-3E-ECM(E1
i , E

3
j ), and

that for this solution the corresponding values of f1 and f3 are f 1
i,j and f 3

i,j

respectively, for all i=1,2,...,Φ, j=1,2,...,Θ.
By solving all Φ × Θ programs we will get a table of the same form as

table 8.1, where in each cell (i, j) we record f 2
i,j (f 1

i,j, f
3
i,j), i.e. the value of

the main objective f2 for the respective pair of values for ε1 and ε3, followed
by the values of the other two objectives f1 and f3 in parentheses.

Table 8.1: ECM solutions table
ε3 E3

1 E3
2 ... E3

j ... E3
Θ

ε1
E1

1 f 2
1,1 (f 1

1,1, f 3
1,1) f 2

1,2 (f 1
1,2, f 3

1,2) ... ... ... ...
E1

2 ... ... ... ... ... ...
... ... ... ... ... ... ...
E1
i ... ... ... f 2

i,j (f 1
i,j, f

3
i,j) ... ...

... ... ... ... ... ... ...
E1

Φ ... ... ... ... ... ...

We will now describe the first procedure employed, in order to speed up
the ECM algorithm. Assume that for some indexes (i, j), we have found
the optimal solution f 2

i,j (f 1
i,j, f

3
i,j) to the program MILP-3E-ECM(E1

i , E
3
j ).

Therefore, this solution gives the minimum value f 2
i,j of f2, while satisfying

the constraints f 1
i,j ≤ E1

i and f 3
i,j ≤ E3

j . Then we can perform the following
check:

We take the next row-index i + 1 and we check if f 1
i,j ≤ E1

i+1. If yes,
then this obviously means that the solution found above is also the optimal
solution to the program MILP-3E-ECM(E1

i+1, E
3
j ). We continue increasing

the row-index by one and performing a similar check, as long as there is no
violation of the ε-constraint for f1. Assume that f 1

i,j ≤ E1
i+2, f 1

i,j ≤ E1
i+3, ...,

f 1
i,j ≤ E1

i+χ are all satisfied, while f 1
i,j ≤ E1

i+χ+1 is not satisfied.
We then take the next column-index j + 1 and we check if f 3

i,j ≤ E3
j+1.

If yes, then this means that the solution found above is also the optimal
solution to the program MILP-3E-ECM(E1

i , E
3
j+1). We continue increasing

the column-index by one and performing a similar check, as long as there is
no violation to the ε-constraint for f3. Assume that f 3

i,j ≤ E3
j+2, f 3

i,j ≤ E3
j+3,

..., f 3
i,j ≤ E3

j+ψ are all satisfied, while f 3
i,j ≤ E3

j+ψ+1 is not satisfied.
Therefore, the optimal solution to the program MILP-3E-ECM(E1

i , E
3
j+1)

found before, is also the optimal solution to the program MILP-3E-ECM(E1
ζ ,

E3
η), for all pairs of indexes (ζ, η) with ζ = i, i+1, ..., i+χ, η = j, j+1, ..., j+ψ

and (ζ, η) 6= (i, j).

194



The conclusion is that there is no need to solve any of the above (χ+1)×
(ψ+ 1)− 1 programs, which can considerably speed up the ECM algorithm.
This idea can be visualized in table 8.2, where the programs whose solution
can be skipped are marked with an ’X’.

Table 8.2: First procedure to speed up the ECM Algorithm
ε3 E3

1 ... E3
j E3

j+1 E3
j+2 ... E3

j+ψ E3
j+ψ+1 ... E3

Θ

ε1
E1

1 ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
E1
i ... ... f 2

i,j (f 1
i,j, f

3
i,j) with f 1

i,j ≤ E1
i+χ, f 3

i,j ≤ E3
j+ψ X X ... X ... ... ...

E1
i+1 ... ... X X X ... X ... ... ...

E1
i+2 ... ... X X X ... X ... ... ...

... ... ... ... ... ... ... ... ... ... ...
E1
i+χ ... ... X X X ... X ... ... ...

E1
i+χ+1 ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...
E1

Φ ... ... ... ... ... ... ... ... ... ...

Moving on, we will now describe the second procedure employed, in order
to speed up the ECM algorithm. Assume that for some indexes (i, j), the
program MILP-3E-ECM(E1

i , E
3
j ) is infeasible, violating either the constraint

f 1
i,j ≤ E1

i , or f 3
i,j ≤ E3

j or both.
If the constraint f1 ≤ E1

i is violated, then so will the constraints f1 ≤ E1
ζ ,

for all ζ = i + 1, i + 2, ...,Φ, since the values E1
1 , E

1
2 , ..., E

1
Φ were sorted in

decreasing order. Similarly, if the constraint f3 ≤ E3
j is violated, then so

will the constraints f3 ≤ E3
η , for all η = j + 1, j + 2, ...,Θ, since the values

E3
1 , E

3
2 , ..., E

3
Φ were also sorted in decreasing order.

Therefore, if for some indexes (i, j) the program MILP-3E-ECM(E1
i , E

3
j )

is infeasible, violating either the constraint f 1
i,j ≤ E1

i , or f 3
i,j ≤ E3

j or both,
then the programs MILP-3E-ECM(E1

ζ , E
3
η) will also be infeasible, for all pairs

of indexes (ζ, η) with ζ = i, i+ 1, ...,Φ, η = j, j + 1, ...,Θ and (ζ, η) 6= (i, j).
The conclusion is that there is no need to solve any of the above (Φ− i+

1) × (Θ − j + 1) − 1 programs, which can considerably speed up the ECM
algorithm. This idea can be visualized in table 8.3, where the programs
whose solution can be skipped are marked with an ’X’.

Note that the discussion in this subsection, up to this point, refers to
programs MILP-3E-ECM(E1

i , E
3
j ) which are based on formulation (MILP

3E), where the objective (8.4.1) is to minimize f2. Throughout Step 6 of the
algorithm of Heuristic Approach 3, described in subsection 8.4.4, we apply the
same reasoning when solving heuristically programs MILP-3F-ECM(E1

i , E
3
j )

which are based on formulation (MILP 3F), where the objective (8.4.8) is to
minimize Gε. If the heuristic can reach a feasible solution, then Gε reduces
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Table 8.3: Second procedure to speed up the ECM Algorithm
ε3 E3

1 ... E3
j E3

j+1 E3
j+2 ... E3

Θ

ε1
E1

1 ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...
E1
i ... ... if MILP-3E-ECM(E1

i , E
3
j ) is infeasible, wrt f1 ≤ E1

i and/or f3 ≤ E3
j X X ... X

E1
i+1 ... ... X X X ... X

E1
i+2 ... ... X X X ... X

... ... ... ... ... ... ...
E1

Φ ... ... X X X ... X

to
∑3

i=1 β
′
ifi. Since we use positive weights (β′1, β

′
2, β

′
3) such that β′2 = 1,

β′1 << 1 and β′3 << 1, i.e. β′1 and β′3 are marginal, this is almost equivalent
to minimizing f2. Therefore, we can apply the same ideas of this subsection
when solving heuristically programs of the form MILP-3F-ECM(E1

i , E
3
j ).

8.5 Experimental Results

This section presents the experimental results from the different solution
methods proposed for the Single-Commodity Delayed VRPTW (Problem 3),
including both exact and heuristic approaches.

Starting from 4 different VRPTW instances that were selected from the
classic Solomon (1987) dataset (namely, instances rc201, rc202, c203 and
c101), we created 36 instances for the SCD-VRPTW. Note that in our ta-
bles we include the results from one additional instance, namely instance 9
(rc201-B1), which is identical to the original VRPTW instance rc201 with-
out disruption. This instance was included in the tables of results to show
that, since SCD-VRPTW is a generalization of the VRPTW, we can use the
SCD-VRPTW to solve a standard VRPTW (but with the objective of min-
imizing the sum of arrival times at the endpoint node, instead of the total
travel distance). Therefore our dataset contains 37 instances in total.

In short, starting from each one of the four benchmark VRPTW instances
mentioned above, and taking into account the respective best solution re-
ported in the literature for each instance, table 8.4 provides the additional
information needed to construct the corresponding instances with disruption
for the SCD-VRPTW. Table 8.5 presents the experimental results of using
Exact Approach 1, which was described in section 7.9 of the previous chap-
ter and implemented in AIMMS, to solve the 37 instances of Problem 3.
Table 8.6 presents the respective experimental results of Heuristic Approach
1, which was described in section 8.2 and implemented in MATLAB. Table
8.7 presents the summary results of Heuristic Approach 2, described in sec-
tion 8.3, also implemented in MATLAB. Finally, the experimental results of
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Heuristic Approach 3, which was described in section 8.4 and implemented
in MATLAB, are discussed in subsection 8.5.8, whereas the corresponding
tables of results can be found in Appendix B.

8.5.1 Discussion about the SCD-VRPTW instances

The 37 instances for the SCD-VRPTW are divided into 5 classes: A, B,
C, D and E. Each class contains different instances for problem 3 that are
based on the same baseline VRPTW instance from Solomon (1987) dataset.
Specifically, problems in classes A and B were created based on the VRPTW
instance rc201, whereas problems in classes C, D and E were created based on
the VRPTW instances rc202, c203 and c101 respectively. Table 8.4 presents
some additional parameters that are necessary to construct the instances
for the SCD-VRPTW, given the parameters of the underlying undisrupted
VRPTW instance and the respective best solution reported in the literature.
Specifically, the columns of this table present the following information for
each instance of the SCD-VRPTW: the serial number and instance name,
the number of customers n, the number of vehicles d, the times of departure
T1, T2,..., Td of the vehicles from the starting nodes, the quantities C1, C2,...,
Cd of the commodity carried by the vehicles at their respective times of
departure, and finally the starting nodes of each vehicle (indicated by their
original numbering, as in the underlying VRPTW instance), which will be
relabeled as nodes n + 1, n + 2,..., n + d in the disrupted problem. Note
that, given T1, T2,..., Td as input parameters, the parameters T and T0 are
not actually required to define a SCD-VRPTW instance.

Each instance of the same class in the SCD-VRPTW among classes B,
C, D and E, corresponds to a variation of the underlying VRPTW, with
the same number of vehicles as in the original VRPTW, assuming different
amounts of delay in different routes, which is implied by having the same
starting nodes but different set of times of departure T1, T2, ..., Td.

For example, starting from instance rc202 of the standard VRPTW, we
can construct instance 17 (rc202-C1) by using the input parameters of the
original instance rc202, the optimal or best solution reported in the literature
for this instance, as well as the information provided in the respective row of
table 8.4, as follows: Given the starting nodes 28, 37, 69 of the three vehicles
in the disrupted problem, we can first go through the routes of the best
solution for the original VRPTW instance up to the point where we meet
the above nodes. Then, to create the new instance for the SCD-VRPTW, we
must remove the customers that have already been served up to that point
and the new starting nodes from the set of customer nodes, define the new
starting nodes and label them as n + 1, ..., n + d, and relabel the remaining
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Serial no. & n d T1, ...,Td C1, ...,Cd starting nodes
Instance (original
name numbering)

Class A
1 - rc201-A1 11 3 713, 703, 710.5 1000, 1000, 1000 89, 17, 35
2 - rc201-A2 11 3 800, 703, 710.5 210, 210, 210 89, 17, 35
3 - rc201-A3 11 3 830, 830, 830 100, 70, 70 89, 17, 35
4 - rc201-A4 11 3 870, 870, 870 100, 70, 70 89, 17, 35
5 - rc201-A5 11 3 900, 870, 840 150, 150, 150 89, 17, 35
6 - rc201-A6 11 3 900, 870, 840 100, 70, 70 89, 17, 35
7 - rc201-A7 11 3 900, 870, 840 82, 82, 82 89, 17, 35
8 - rc201-A8 11 3 900, 870, 840 210, 210, 210 89, 17, 35
Class B
9 - rc201-B1 100 4 0, 0, 0, 0 1000,1000,1000,1000 0,0,0,0
10 - rc201-B2 100 4 100, 100, 100, 100 1000,1000,1000,1000 0,0,0,0
11 - rc201-B3 100 4 100, 100, 0, 0 1000,1000,1000,1000 0,0,0,0
12 - rc201-B4 100 4 200, 100, 0, 0 1000,1000,1000,1000 0,0,0,0
13 - rc201-B5 100 4 200, 100, 200, 100 1000,1000,1000,1000 0,0,0,0
14 - rc201-B6 100 4 200, 200, 200, 200 1000,1000,1000,1000 0,0,0,0
15 - rc201-B7 100 4 300, 200, 100, 0 1000,1000,1000,1000 0,0,0,0
16 - rc201-B8 100 4 300, 0, 0, 0 1000,1000,1000,1000 0,0,0,0
Class C
17 - rc202-C1 81 3 200, 204, 230.94 962, 920, 866 28, 37, 69
18 - rc202-C2 81 3 250, 204, 230.94 962, 920, 866 28, 37, 69
19 - rc202-C3 81 3 250, 250, 230.94 962, 920, 866 28, 37, 69
20 - rc202-C4 81 3 300, 250, 230.94 962, 920, 866 28, 37, 69
21 - rc202-C5 81 3 300, 300, 300 962, 920, 866 28, 37, 69
22 - rc202-C6 81 3 400, 300, 300 962, 920, 866 28, 37, 69
23 - rc202-C7 81 3 400, 400, 230.94 962, 920, 866 28, 37, 69
Class D
24 - c203-D1 54 3 1500, 1527.76, 1531.15 500, 410, 400 49, 28, 91
25 - c203-D2 54 3 1500, 1650, 1531.15 500, 410, 400 49, 28, 91
26 - c203-D3 54 3 1500, 1650, 1650 500, 410, 400 49, 28, 91
27 - c203-D4 54 3 1650, 1650, 1650 500, 410, 400 49, 28, 91
28 - c203-D5 54 3 1500, 1800, 1531.15 500, 410, 400 49, 28, 91
29 - c203-D6 54 3 1900, 1900, 1900 500, 410, 400 49, 28, 91
30 - c203-D7 54 3 1500, 2000, 2000 500, 410, 400 49, 28, 91
31 - c203-D8 54 3 2000, 1527.76, 2300 500, 410, 400 49, 28, 91
Class E
32 - c101-E1 77 10 195, 195, 195, 195, 195, 206.62, 190, 190, 190, 170, 200, 24, 65, 42, 17, 0,

219.01, 218.19, 198.13, 232.43 170, 130, 170, 180, 150 86, 31, 95, 7, 76
33 - c101-E2 77 10 195, 195, 195, 195, 195, 300, 190, 190, 190, 170, 200, 24, 65, 42, 17, 0,

300, 218.19, 198.13, 232.43 170, 130, 170, 180, 150 86, 31, 95, 7, 76
34 - c101-E3 77 10 195, 195, 300, 300, 195, 206.62, 190, 190, 190, 170, 200, 24, 65, 42, 17, 0,

219.01, 218.19, 198.13, 232.43 170, 130, 170, 180, 150 86, 31, 95, 7, 76
35 - c101-E4 77 10 300, 300, 300, 300, 300, 300, 190, 190, 190, 170, 200, 24, 65, 42, 17, 0,

300, 300, 300, 300 170, 130, 170, 180, 150 86, 31, 95, 7, 76
36 - c101-E5 77 10 195, 250, 300, 350, 195, 206.62, 190, 190, 190, 170, 200, 24, 65, 42, 17, 0,

219.01, 218.19, 198.13, 400 170, 130, 170, 180, 150 86, 31, 95, 7, 76
37 - c101-E6 77 10 250, 350, 450, 400, 300, 500, 190, 190, 190, 170, 200, 24, 65, 42, 17, 0,

350, 400, 198.13, 232.43 170, 130, 170, 180, 150 86, 31, 95, 7, 76

Table 8.4: Additional information needed to construct the SCD-VRPTW
instances
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customers as nodes 1,2,...,n (where n is the number of customers that have
not already been served at the time of disruption, excluding customers that
become starting nodes, if any). Instead of having the vehicles departing from
nodes 28, 37, 69 at the times specified in or implied by the best solution of the
VRPTW, we assume that vehicles will depart from these nodes at different
times T1 = 200, T2 = 204, T3 = 230.94 (which must be greater than or
equal to the respective times in the original VRPTW). Also, note that in
the original problem, the capacity of each vehicle was equal to 1000 units.
We assume that each vehicle had departed fully loaded from the depot, thus
carrying 1000 units of the commodity. For vehicle 1, the total demand of the
customers already served up to time T1 is equal to 38. Therefore, C1 is defined
as 1000 − 38 = 962. This is the quantity of the commodity that vehicle 1
carries at time T1 (which can also be thought as the new ’capacity’ of vehicle
1 in the disrupted problem). We can calculate C2 = 920 and C3 = 866 using
the same reasoning. Therefore, the new instance for the SCD-VRPTW is
now fully characterized.

Instances of class A were created in a slightly different way. Specifically,
starting from instance rc201 of the standard VRPTW, which involved 4 ve-
hicles, we first remove the vehicle which was originally labeled as vehicle 2
and its corresponding customers. Then we use nodes 89, 17 and 35 as the
new starting nodes for the remaining 3 vehicles, and varied the corresponding
times of departure T1, T2,..., Td to create different variations. Additionally,
in order to test the formulations and algorithms that we proposed for Prob-
lem 3, we experimented by modifying the quantities carried by the three
vehicles that are used in the disrupted problem - even if these quantities
may not necessarily be in accordance to the quantities carried or to the ve-
hicles’ capacities, as reported in the underlying problem. Therefore, once
constructed, instances of class A should be seen as stand-alone problems for
the SCD-VRPTW, which are not necessarily based on the respective un-
derlying problem. These were the first instances created for this problem,
involving just 11 customers, and were mainly used to test several features of
the different formulations and approaches of the problem under study.

Finally, we should mention that all instances 9-16 of Class B involve the
same set of 100 customers as in the underlying VRPTW instance rc201, and
have the depot (node 0) as the starting point of each vehicle. As mentioned
before, instance 9 represents a regular VRPTW. All of the remaining in-
stances 10-16 of Class B correspond to a disruption in the form of one or
more vehicles departing from the depot with some amount of delay. This
case of a delay in the departure of some of the vehicles from the depot
has been studied before as a separate problem in the context of disruption
management in vehicle routing and scheduling (but not necessarily under
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the same assumptions and with the same constraints and objectives). One
variation of this problem is known as the Disrupted Capacitated VRP with
Order Release Delay and was studied by Mu & Eglese (2013). Note that
the formulations and proposed methods for SCD-VRPTW can also solve the
above problem, by treating it as a special case of the SCD-VRPTW (under
the same assumptions and with the same objectives and constraints as the
SCD-VRPTW).

8.5.2 Discussion about the Experimental Results of
Exact Approach 1

Table 8.5 presents the experimental results of using Exact Approach 1, which
was described in section 7.9 of the previous chapter, to solve the 37 instances
of Problem 3. In this approach, formulation (MILP 3B) of section 7.7 was
implemented in AIMMS, in an attempt to solve the Lexicographic SCD-
VRPTW with 5 objectives. The columns of table 8.5 provide the following
information for each instance: The serial number and code-name of the in-
stance, the values of the 5 component objectives F1, F2, ..., F5, the runtime
in seconds, the value of the objective (

∑5
i=1 βiFi), which is denoted by GEA1

(to denote the objective G in Exact Approach 1), the lower bound LBEA1
G

of GEA1 found by AIMMS, the optimality gap provided by AIMMS, which

is calculated as
GEA1−LBEA1

G

GEA1
· 100%, and finally whether the solution is Opti-

mal, Feasible or Infeasible (O/F/I). Note that in the experiments with Exact
Approach 1, we used the following parameter values: M = 5000, ε = 0.00001
and (β1, β2, β3, β4, β5) = (108, 107, 103, 1, 10−3).

We tried several different cutoff times when experimenting with Exact
Approach 1. Specifically, in instances 1-3 we applied a 15-minute cutoff
time, in instances 4-9 a 10-minute cutoff time, and in instances 10-31 a 5-
minute cutoff time. In instances 32-37 we did not apply any cutoff time,
but instead we interrupted these instances after allowing different amounts
of runtimes, varying from 14.5 minutes up to an hour. From table 8.5 we
can see that, apart from the instances of Class A, where only 11 customers
are involved, in all the remaining problems, Exact Approach 1 fails to find a
satisfactory solution within reasonable time. First of all, in all the problems
of Classes B, C, D and E, the optimality gap is between 80 and 100%. Second
of all, comparing either the full aggregated objective function G, or simply
the most important objective F1 (under lexicographic preference), we can
see that, even though AIMMS was able to find a feasible solution in every
occasion, these solutions are much worse than those provided by Heuristic
Approach 1, which are presented in table 8.6.
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Serial no. & F1 F2 F3 F4 F5 runtime GEA1 =
∑5

i=1 βiFi LBEA1
G % of O/

Instance (sec) GEA1 F/
name from I

LBEA1
G

Class A
1 - rc201-A1 0 0 0 0 2560.82 871.3 2.56082 2.56082 0.00% O
2 - rc201-A2 0 0 0 0 2674.47 413.3 2.67447 2.67447 0.00% O
3 - rc201-A3 5 0 409.23 0 2939.55 900.1 500409232.93955 500052542.4 0.07% F
3b - rc201-A3 5 0 409.23 0 2939.55 4026.61 500409232.93955 500409232.93955 0.00% O
4 - rc201-A4 8 0 605.52 0 2998.08 600.1 800605522.998080 600000169.5 25.06% F
5 - rc201-A5 8 0 676.35 0 3071.79 600.2 800676353.071790 700028664 12.57% F
6 - rc201-A6 8 0 651.27 0 3037.61 600.3 800651273.037610 700005476.8 12.57% F
7 - rc201-A7 8 0 651.27 0 3037.61 600.0 800651273.037610 700034660.1 12.57% F
8 - rc201-A8 8 0 651.27 0 3037.61 600.1 800651273.037610 700025493.6 12.57% F
Class B
9 - rc201-B1 62 27 23672.27 8894.92 4691.87 602.3 6493681169.61187 0 100% F
10 - rc201-B2 67 21 37182.55 5309.10 5367.32 301.1 6947187864.46732 0 100% F
11 - rc201-B3 64 22 35156.10 6121.90 5265.73 301.2 6655162227.165464 0 100% F
12 - rc201-B4 64 22 35322.06 6121.90 5279.30 301.3 6655328187.1793 0 100% F
13 - rc201-B5 69 20 37485.97 4885.80 5326.15 301.3 7137490861.125959 0 100% F
14 - rc201-B6 72 15 41454.93 3786.42 5591.51 301.1 7391458722.01151 1400000000 81.06% F
15 - rc201-B7 69 18 39728.59 4573.12 5484.68 301.1 7119733168.60468 0 100% F
16 - rc201-B8 64 22 36955.51 5178.24 5347.64 301.1 6656960693.58764 0 100% F
Class C
17 - rc202-C1 58 7 29878.96 1841.05 4645.32 304.88 5899880805.695319 100000000.1 98.31% F
18 - rc202-C2 62 8 45392.86 1744.96 5719.77 300.72 6325394610.67977 100000000.1 98.42% F
19 - rc202-C3 59 8 30828.73 2186.26 4584.80 300.45 6010830920.844799 100000000.1 98.34% F
20 - rc202-C4 59 8 31928.73 2036.26 4634.80 300.42 6011930770.8948 300000000.1 95.01% F
21 - rc202-C5 61 7 35650.05 1700.22 4855.54 300.41 6205651755.07554 800000000.1 87.11% F
22 - rc202-C6 63 7 36115.58 1400.22 4850.01 300.39 6406116985.069949 900000000.2 85.95% F
23 - rc202-C7 64 7 36988.42 1676.46 4867.45 300.44 6506990101.327372 300000000.1 95.39% F
Class D
24 - c203-D1 19 5 14394.48 3941.66 11108.33 300.22 1964398432.76833 400000000.3 79.64% F
25 - c203-D2 23 5 15166.99 3662.03 11096.35 300.92 2365170663.12635 400000000.3 83.09% F
26 - c203-D3 23 7 14353.64 3876.51 11158.92 300.22 2384357527.668881 400000000.3 83.22% F
27 - c203-D4 22 5 17466.02 3210.14 11328.77 300.23 2267469241.46876 500000000.4 77.95% F
28 - c203-D5 21 3 17810.55 2105.26 11657.82 300.22 2147812666.917777 400000000.3 81.38% F
29 - c203-D6 29 2 26696.77 809.78 12206.33 300.20 2946697591.98633 800000000.4 72.85% F
30 - c203-D7 23 2 24903.30 1050.12 12410.03 300.20 2344904362.52993 400000000.3 82.94% F
31 - c203-D8 31 3 23966.55 1912.81 12113.91 300.22 3153968474.923841 400000000.3 87.32% F
Class E
32 - c101-E1 44 5 23732.11 1314.85 14327.43 10801.89 4473733439.17743 200000000 95.53% F
33 - c101-E2 48 7 30337.53 1884.62 14754.07 3601.72 4900339429.374057 200000000 95.92% F
34 - c101-E3 50 8 28304.17 2385.64 14447.07 1801.92 5108306570.086989 200000000 96.08% F
35 - c101-E4 55 5 31345.73 1025.51 14883.86 873.50 5581346770.39386 1000000000 82.08% F
36 - c101-E5 50 8 29865.67 1921.34 14532.14 1202.22 5109867605.87214 200000000 96.09% F
37 - c101-E6 61 4 33448.08 827.77 15210.65 1202.08 6173448922.98065 800000000.1 87.04% F

Table 8.5: Experimental Results of Exact Approach 1 in AIMMS (for the
Lexicographic SCD-VRPTW with 5 objectives)
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For example, in instance 25, the solution provided by exact approach 1
within 5 minutes involves 23 late customers and 5 early customers, out of
54 customers in total, whereas the solution found by heuristic approach 1
(see table 8.6) involves 4 late customers and no early customer. Moreover,
the lower bounds found by either method verify that the latter values of 4
and 0 match the lower bounds and are thus the optimal values for objectives
F1 and F2, respectively. Comparable results are found e.g. in instance 25.
Even worse, in instance 9 the solution provided by AIMMS within 10 minutes
involves 62 late and 27 early customers, out of a total of 100 customers (i.e.
only 11 out of the 100 customers are served within their time windows). The
heuristic, on the other hand, finds a good enough solution within 3 minutes,
with zero late and zero early customers; i.e. a solution in which all 100
customers are served within their time windows. Note that this instance
is equivalent to regular VRPTW without delay, and was included both for
testing purposes and to show that Problem 3 generalizes the VRPTW.

Furthermore, both methods provide lower bounds for the objective G :=∑5
i=1 βiFi, which is denoted by GEA1 in Exact Approach 1, and by GHA1 in

Heuristic Approach 1. The lower bound LBEA1
G found by Exact Approach 1

is the one provided by AIMMS, whereas the lower bound LBHA1
G found by

Heuristic Approach 1 is calculated as LBHA1 := β1 ·LBF1 +β3 ·LBF3 (where
the calculation of LBF1 and LBF3 was explained in the second step of the
algorithm in subsection 8.2.4).

Comparing tables 8.5 and 8.6, we can see that the lower bound found by
heuristic approach 1 is strictly better than the one found by exact approach
1 in 28 out of 37 cases (without counting instance 3b, which is discussed
below). The two lower bounds are exactly the same in 7 other cases where
they are equal to zero. Finally, the lower bound found by the heuristic is
worse than the one found by the exact approach in just 2 cases, which are the
first 2 very small instances (as well as in instance 3b), where AIMMS is able
to prove the optimality and thus the final lower bound equals the objective
value. Therefore, when assessing the quality of the heuristic in table 8.6, we
decided to calculate the optimality gap based on the lower bound LBHA1

found in the heuristic approach, instead of using LBEA1 found by AIMMS.
Note that in table 8.5, apart from the results for the 37 instances of

our dataset, we include an additional row marked as ’instance 3b’. This is
because, after solving instance 3 with a cutoff time of 15 minutes and getting
a solution within 0.07% of the optimal, we tried solving the same instance
without a cutoff time and recorded the results in this table as ’instance 3b’.
It took AIMMS around 67 minutes to find the optimal solution, even for this
small problem with n = 11 customers. The solution found in instance 3b
was the same as the one found in instance 3 within 15 minutes, where the
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remaining runtime was necessary for AIMMS to prove that this solution is
in fact optimal.

Exact Approach 1 may be interesting from a theoretical point of view,
since in theory it can find the optimal solution, if it is given enough time.
Also, it may be possible to use the formulations of chapter 7 in more so-
phisticated exact frameworks, such as Branch-and-Bound, Branch-and-Cut,
Branch-and-Cut-and-Price etc. However, at this point we can conclude that
Exact Approach 1 cannot be used directly to solve instances of the SCD-
VRPTW-Lex5 in a short amount of time and without using a more sophis-
ticated framework (such as Branch-and-Cut-and-Price), unless the instances
are very small. Therefore, heuristic methods may be more appropriate to use
in practice.

8.5.3 Discussion about the Experimental Results of
Heuristic Approach 1

Table 8.6 presents the experimental results of Heuristic Approach 1 con-
cerning the SCD-VRPTW-Lex5, which was implemented in MATLAB. The
columns of this table provide the following information for each instance:
The serial number and code-name of the instance, the values of the 5 com-
ponent objectives F1, F2, ..., F5, the runtime in seconds, the value of the
objective function in Heuristic Approach 1, which is denoted by GHA1 and is
equal to

∑5
i=1 βiFi, provided that the corresponding solution is feasible, the

lower bounds LBF1 and LBF3 for the component objectives F1 and F3 respec-
tively, the number of definitely late customers (indicated by |IDNE|), the total
travel time, whether the solution is Optimal, Feasible or Infeasible (O/F/I),
the lower bound LBHA1

G of GHA1 , defined as LBHA1
G := β1 ·LBF1 +β3 ·LBF3 ,

the percentage gap between the heuristic’s objective value GHA1 and the

heuristic’s lower bound LBHA1
G , calculated as

GHA1−LBHA1
G

GHA1
· 100%, and finally

the percentage gap between the objective value GHA1 reported in Heuristic
Approach 1 and the corresponding objective value GEA1 reported in Exact
Approach 1, calculated as GHA1−GEA1

GEA1
· 100%.

We can recall that the objective function in Heuristic Approach 1 was
denoted by G and was defined by equation (8.2.1) of subsection 8.2.1, which
is more complex than

∑5
i=1 βiFi. However, in the case of a feasible solution

- and specifically in all 37 instances of our dataset - the objective value G
of Heuristic Approach 1, which is denoted by GHA1 in this table, is equal to∑5

i=1 βiFi. Note also that LBHA1
G is the lower bound found in Heuristic Ap-

proach 1, not to be confused with the lower bound LBEA1
G found by AIMMS

in Exact Approach 1.
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Table 8.6: Experimental Results of Heuristic Approach 1 in MAT-
LAB (for the Lexicographic SCD-VRPTW with 5 objectives)

Serial no. F1 F2 F3 F4 F5 run- GHA1 :=
∑5

i=1 βiFi LBF1 LBF3 |IDNE| total O/ LBHA1

G := % of % of
& Instance time travel F/ β1 · LBF1+ GHA1 GHA1

name (sec) time I +β3 · LBF3 from from

LBHA1

G GEA1

Class A
1 - rc201-A1 0 0 0 0 2565.82 2.0 2.56582 0 0 4 299.32 F 0 100.00% 0.20%
2 - rc201-A2 0 0 0 0 2675.6 1.9 2.6756 0 0 4 322.1 F 0 100.00% 0.04%
3 - rc201-A3 6 0 307.2 0 2896.97 1.8 600307202.89697 5 172.09 11 266.97 F 500172090 16.68% 19.96%
4 - rc201-A4 8 0 601.07 0 3032.77 1.8 800601073.03277 7 396.17 11 282.77 F 700396170 12.52% 0.00%
5 - rc201-A5 8 0 651.27 0 3037.61 2.0 800651273.03761 7 440.54 11 287.61 F 700440540 12.52% 0.00%
6 - rc201-A6 8 0 651.27 0 3037.61 1.9 800651273.03761 7 440.54 11 287.61 F 700440540 12.52% 0.00%
7 - rc201-A7 8 0 651.27 0 3037.61 1.7 800651273.03761 7 440.54 11 287.61 F 700440540 12.52% 0.00%
8 - rc201-A8 8 0 651.27 0 3037.61 1.8 800651273.03761 7 440.54 11 287.61 F 700440540 12.52% 0.00%
Class B
9 - rc201-B1 0 0 0 0 3276.4 184.2 3.2764 0 0 8 1983.92 F 0 100.00% -100.00%
10 - rc201-B2 5 0 392.7 0 3277.87 148.6 500392703.27787 0 0 17 1863.08 F 0 100.00% -92.80%
11 - rc201-B3 1 0 22.61 0 3263.11 233.1 100022613.26311 0 0 8 1956.62 F 0 100.00% -98.50%
12 - rc201-B4 4 0 385.07 0 3231.49 251.2 400385073.23149 0 0 8 1896.95 F 0 100.00% -93.98%
13 - rc201-B5 15 5 2665.25 370.08 3365.44 208.2 1552665623.44544 0 0 17 1740.35 F 0 100.00% -78.25%
14 - rc201-B6 21 3 5108.66 268.65 3438.1 307.9 2135108932.0881 14 855.33 34 1627.86 F 1400855330 34.39% -71.11%
15 - rc201-B7 13 1 2627.1 48.44 3291.35 211.3 1312627151.73135 0 0 8 1662.02 F 0 100.00% -81.56%
16 - rc201-B8 0 2 0 32.37 3261.25 422.9 20000035.63125 0 0 8 1915.12 F 0 100.00% -99.70%
Class C
17 - rc202-C1 2 2 751.32 306 2691.01 92.9 220751628.69101 1 54 29 1240.09 F 100054000 54.68% -96.26%
18 - rc202-C2 3 2 823.45 306 2719.04 63.0 320823758.71904 1 54 31 1215.4 F 100054000 68.81% -94.93%
19 - rc202-C3 4 5 1176.06 548.62 2795.11 153.1 451176611.41511 1 100 33 1253.53 F 100100000 77.81% -92.49%
20 - rc202-C4 10 3 1668.71 320.39 2833.08 58.8 1031669033.22308 3 177.95 33 1242.14 F 300177950 70.90% -82.84%
21 - rc202-C5 20 5 3309.44 541.68 2871.99 62.2 2053309984.55199 8 387.28 39 1161.99 F 800387280 61.02% -66.91%

(Continued on the next page)
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Table 8.6 – Continued from the previous page

Serial no. F1 F2 F3 F4 F5 run- GHA1 :=
∑5

i=1 βiFi LBF1 LBF3 |IDNE| total O/ LBHA1

G := % of % of
& Instance time travel F/ β1 · LBF1+ GHA1 GHA1

name (sec) time I +β3 · LBF3 from from

LBHA1

G GEA1

22 - rc202-C6 22 6 4208.96 419.38 2918.8 78.8 2264209382.2988 9 555.06 39 1108.8 F 900555060 60.23% -64.66%
23 - rc202-C7 25 3 5387.26 361.22 2955.53 72.9 2535387624.17553 3 203.27 34 1114.59 F 300203270 88.16% -61.04%
Class D
24 - c203-D1 4 0 2626.89 0 10186.48 33.5 402626900.18648 4 665.36 32 497.57 F 400665360 0.49% -79.50%
25 - c203-D2 4 0 4282.52 0 10398.13 31.2 404282530.39813 4 665.36 33 586.98 F 400665360 0.89% -82.91%
26 - c203-D3 5 0 7813.69 0 10561.84 24.8 507813700.56184 4 665.36 33 631.84 F 400665360 21.10% -78.70%
27 - c203-D4 6 0 9529.03 0 10658.95 24.6 609529040.65895 5 1304.36 34 578.95 F 501304360 17.76% -73.12%
28 - c203-D5 5 6 5930.53 419.15 10581.46 35.3 565930959.73146 4 665.36 33 620.31 F 400665360 29.20% -73.65%
29 - c203-D6 14 0 15153.94 0 11401.81 32.4 1415153951.40181 8 2978.6 36 571.81 F 802978600 43.26% -51.97%
30 - c203-D7 13 0 15373.34 0 11291.12 29.8 1315373351.29112 4 665.36 33 661.12 F 400665360 69.54% -43.91%
31 - c203-D8 15 0 18786.39 0 11554.8 28.0 1518786401.5548 4 959.31 33 597.04 F 400959310 73.60% -51.85%
Class E
32 - c101-E1 6 0 4061.46 0 10487.53 72.1 604061470.48753 2 215.06 7 698.15 F 200215060 66.86% -86.50%
33 - c101-E2 8 0 5209.53 0 10647.11 69.4 805209540.64711 2 215.06 7 683.36 F 200215060 75.14% -83.57%
34 - c101-E3 8 0 5377.42 0 10660.57 79.1 805377430.66057 2 215.06 7 661.19 F 200215060 75.14% -84.23%
35 - c101-E4 17 0 10868.73 0 11536.14 109.2 1710868741.53614 10 867.18 17 796.14 F 1000867180 41.50% -69.35%
36 - c101-E5 14 3 7735.89 55.53 11262.03 100.7 1437735956.79203 2 215.06 7 990.08 F 200215060 86.07% -71.86%
37 - c101-E6 23 0 14551.55 0 12166.47 121.6 2314551562.16647 8 834.31 17 995.91 F 800834310 65.40% -62.51%
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The stopping criterion in Heuristic Approach 1 was to reach a predefined
number of Tabu Search iterations without an improvement. Therefore, we
did not use a predefined cutoff time. The runtime of the 37 instances varied
from 1.7 to 422.9 seconds, with an average of 90.7 seconds. In 25 cases the
runtime was below 100 seconds, in 11 other instances between 100 and 308
seconds, and in one instance 423 seconds. In all 37 instances the final solution
reported was feasible.

The percentage gap between the heuristic’s objective value GHA1 and the
heuristic’s lower bound LBHA1

G varies between 0 and 100%, with an average
of 58.4%. The percentage gap between the objective value GHA1 reported in
Heuristic Approach 1 and the corresponding objective value GEA1 reported
in Exact Approach 1, varies between −100% and +20%, with an average
of −60.8%. These percentages show that the solution reported by heuristic
approach 1 is better than the one found by exact approach 1 in 29 out of 37
cases, is the same and equal to zero in 5 other cases, and is worse only in the
remaining 3 cases.

8.5.4 Parameter values used in Heuristic Approach 1

After some experimentation, we decided to use the following values for the
parameters, throughout our experiments of Heuristic Approach 1:

P0 P ∗0 θ1 θ2 β1 β2 β3 β4 β5 J1 J2

1012 1012 3 1.7 108 107 103 1 10−3 48 19

The Tabu Length (TL) that we used was defined as a function of n, as shown
below:

TL =



bn
3
c if n ≤ 11

bn
4
c if 12 ≤ n ≤ 19

bn
5
c if 20 ≤ n ≤ 39

7 if 40 ≤ n ≤ 69
b n

10
c if 70 ≤ n ≤ 119

b n
12
c if n ≥ 120

Note that the following parameters are given as an input separately for each
instance: n, d,Xi, Yi, ai, bi, si, Di, Ck and Tk.

8.5.5 Discussion about the Experimental Results of
Heuristic Approach 2

Table 8.7 presents the experimental results of Heuristic Approach 2 con-
cerning the SCD-VRPTW-Lex3, which was implemented in MATLAB. The
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Serial no. f1 f2 f3 run- GHA2 :=
∑3

i=1 β
′
ifi LBf1 LBf2 O/ LBHA2

G := % of
& Instance time F/ β′1 · LBf1+ GHA2

name (sec) I +β′2 · LBf2 from

LBHA2
G

Class A
1 - rc201-A1 0 0 2565.82 1.9 2.56582 0 0 F 0 100%
2 - rc201-A2 0 0 2675.6 1.9 2.6756 0 0 F 0 100%
3 - rc201-A3 6 307.2 2896.97 1.8 600307202.89697 5 172.09 F 500172090 16.68%
4 - rc201-A4 8 601.07 3032.77 1.7 800601073.03277 7 396.17 F 700396170 12.52%
5 - rc201-A5 8 651.27 3037.61 1.7 800651273.03761 7 440.54 F 700440540 12.52%
6 - rc201-A6 8 651.27 3037.61 1.7 800651273.03761 7 440.54 F 700440540 12.52%
7 - rc201-A7 8 651.27 3037.61 1.9 800651273.03761 7 440.54 F 700440540 12.52%
8 - rc201-A8 8 651.27 3037.61 1.8 800651273.03761 7 440.54 F 700440540 12.52%
Class B
9 - rc201-B1 0 0 3340.44 193.8 3.34044 0 0 F 0 100%
10 - rc201-B2 6 652.96 3290.46 175.9 600652963.29046 0 0 F 0 100%
11 - rc201-B3 4 156.72 3274.52 261 400156723.27452 0 0 F 0 100%
12 - rc201-B4 4 1025 3248.52 311.7 401025003.24852 0 0 F 0 100%
13 - rc201-B5 19 2567.05 3352.21 178.9 1902567053.35221 0 0 F 0 100%
13b - rc201-B5 17 2821.49 3380.23 328.9 1702821493.38023 0 0 F 0 100%
14 - rc201-B6 25 4180.33 3386.93 144.7 2504180333.38693 14 855.33 F 1400855330 44.06%
15 - rc201-B7 13 2595.75 3314.19 252.1 1302595753.31419 0 0 F 0 100%
16 - rc201-B8 6 754.9 3243.27 256.8 600754903.24327 0 0 F 0 100%
Class C
17 - rc202-C1 4 382.44 2685.58 56.5 400382442.68558 1 54 F 100054000 75.01%
18 - rc202-C2 6 771.29 2722.2 62.1 600771292.7222 1 54 F 100054000 83.35%
19 - rc202-C3 7 1017.41 2751.51 67.9 701017412.75151 1 100 F 100100000 85.72%
20 - rc202-C4 13 1393.46 2806.78 82.3 1301393462.80678 3 177.95 F 300177950 76.93%
21 - rc202-C5 25 3403.01 2947.89 68.2 2503403012.94789 8 387.28 F 800387280 68.03%
22 - rc202-C6 26 3787.1 2912.69 72.7 2603787102.91269 9 555.06 F 900555060 65.41%
23 - rc202-C7 27 5038.14 2922.35 101.2 2705038142.92235 3 203.27 F 300203270 88.90%
Class D
24 - c203-D1 4 2626.89 10186.48 31.9 402626900.18648 4 665.36 F 400665360 0.49%
25 - c203-D2 4 4282.22 10397.65 25.3 404282230.39765 4 665.36 F 400665360 0.89%
26 - c203-D3 5 7813.69 10561.84 23.4 507813700.56184 4 665.36 F 400665360 21.10%
27 - c203-D4 6 9529.03 10658.95 23.5 609529040.65895 5 1304.36 F 501304360 17.76%
28 - c203-D5 6 4619.62 10543.8 26.2 604619630.5438 4 665.36 F 400665360 33.73%
29 - c203-D6 14 15156.3 11398.3 30.2 1415156311.3983 8 2978.6 F 802978600 43.26%
30 - c203-D7 13 14749.79 11265.64 29 1314749801.26564 4 665.36 F 400665360 69.53%
31 - c203-D8 15 16514.86 11543.81 28.7 1516514871.54381 4 959.31 F 400959310 73.56%
Class E
32 - c101-E1 6 4061.46 10487.53 70.9 604061470.48753 2 215.06 F 200215060 66.86%
33 - c101-E2 8 5209.53 10647.11 66.8 805209540.64711 2 215.06 F 200215060 75.14%
34 - c101-E3 8 5377.42 10660.57 80.2 805377430.66057 2 215.06 F 200215060 75.14%
35 - c101-E4 17 10863.57 11485.55 133.5 1710863581.48555 10 867.18 F 1000867180 41.50%
36 - c101-E5 17 7517.24 11100.82 97.8 1707517251.10082 2 215.06 F 200215060 88.27%
37 - c101-E6 28 14036.46 12049.55 94.4 2814036472.04955 8 834.31 F 800834310 71.54%

Table 8.7: Experimental Results of Heuristic Approach 2 in MATLAB (for
the Lexicographic SCD-VRPTW with 3 objectives)
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columns of this table provide the following information for each instance: The
serial number and code-name of the instance, the values of the 3 component
objectives f1, f2 and f3, the runtime in seconds, the value of the objective
function in Heuristic Approach 2, which is denoted by GHA2 and is equal
to
∑3

i=1 β
′
ifi, provided that the corresponding solution is feasible, the lower

bounds LBf1 and LBf2 for the component objectives f1 and f2 respectively,
whether the solution is Optimal, Feasible or Infeasible (O/F/I), the lower
bound LBHA2

G of GHA2 , defined as LBHA2
G := β′1 ·LBf1 +β′2 ·LBf2 , and finally

the percentage gap between this heuristic’s objective value GHA2 and the

heuristic’s lower bound LBHA2
G , calculated as

GHA2−LBHA2
G

GHA2
· 100%.

We can recall that the objective function in Heuristic Approach 2 was
denoted by G3 and was defined by equation (8.3.1) of subsection 8.3, which
is more complex than

∑3
i=1 β

′
ifi. However, in the case of a feasible solution

- and specifically in all 37 instances of our dataset - the objective value G3

of Heuristic Approach 2 simplifies to
∑3

i=1 β
′
ifi, which is denoted by GHA2 in

this table.
The stopping criterion in Heuristic Approach 2 was to terminate the algo-

rithm once it reaches a predefined number of Tabu Search iterations without
an improvement. Therefore, we did not use a predefined fixed cutoff time.
The runtime of the 37 instances varied from 1.7 to 311.7 seconds, with an
average of 82.8 seconds. In 27 cases the runtime was below 100 seconds,
in 6 other instances between 100 and 200 seconds, and in the remaining 4
instances between 200 and 312 seconds. In all 37 instances the final solution
reported was feasible. The percentage gap between the heuristic’s objective
value GHA2 and the heuristic’s lower bound LBHA2

G varies between 0 and
100%, with an average of 60.7%. Note that in table 8.7, apart from the 37
instances, we include an additional entry which is marked as ’instance 13b’,
which corresponds to a second run of instance 13 with a different set of pa-
rameters, where the solution found was better than the respective solution
of instance 13 (at the expense of longer runtime).

Comparing the results from Heuristic Approaches 1 and 2, we can see that
in 14 out of 37 instances, (namely, in instances 1-8, 24, 26, 27 and 32-34),
the two methods provide exactly the same solution. Note that in all of the
above instances, the best solution reported by Heuristic Approach 1 involved
a zero value for F2 (which also implies that F4 = 0). Furthermore, in 5 other
instances (namely, instances 15, 25, 30, 31 and 35), the solution provided by
Heuristic Approach 2 outperforms the solution found by Heuristic Approach
1.

These results may be considered to give a partial justification for the
simplification that occurs through the reduction of the 5 objectives of the
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problem down to 3 objectives, which was discussed in section 7.12. This
reduction in the number of objectives is crucial so that Heuristic Approach
3 can be used, which involves using the Epsilon Constraint Method to find
an approximation of a representative subset of the set of non-dominated
solutions for the SCD-VRPTW with 3 objectives. It would be substantially
more complex and more time-consuming to apply a method like Heuristic
Approach 3 for the 5-objective variant of the problem.

8.5.6 Parameter values used in Heuristic Approach 2

Throughout our experiments with Heuristic Approach 2, we used the same
algorithm used in Heuristic Approach 1, described in section 8.2, and the
same parameter values reported in subsection 8.5.4, with the only difference
that in Heuristic Approach 2 we used the following set of weights:

β1 β2 β3 β4 β5

108 108 103 103 10−3

Note that this is equivalent to using the algorithm described in section 8.3
with the following set of weights:

β′1 β′2 β′3
108 103 10−3

8.5.7 Parameter values used in Heuristic Approach 3

After some experimentation, we decided to use the following parameter val-
ues in our experiments with Heuristic Approach 3:

P0 P ∗0 P1 P ∗1 P3 P ∗3 θ1 θ2 Φ Θ
1012 1012 1020 1020 1020 1020 3 1.7 15 5

β′1 β′2 β′3
Set of weights used in Step 4a: 108 103 10−3

First set of weights used in Step 4b: 1 0 0
Second set of weights used in Step 4b: 0 1 0
Third set of weights used in Step 4b: 0 0 1
Set of weights used in Step 6: 10−3 1 10−8
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J1 J2

In Step 4a: 48 19
In Step 4b: 28 9
In Step 6: 8 2

The tabu length (TL) was defined as a function of n, as follows:

TL =



bn
3
c if n ≤ 11

bn
4
c if 12 ≤ n ≤ 19

bn
5
c if 20 ≤ n ≤ 39

7 if 40 ≤ n ≤ 69
b n

10
c if 70 ≤ n ≤ 119

b n
12
c if n ≥ 120

Note that the parameter values used in Step 4, where the algorithm calls
the algorithm of Heuristic Approach 2, are the same as the ones described
in subsection 8.5.6. Note also that the following parameters are given as an
input separately for each instance: n, d,Xi, Yi, ai, bi, si, Di, Ck and Tk.

8.5.8 Experimental Results of Heuristic Approach 3

In this subsection we discuss the experimental results of Heuristic Approach 3
(HA3) for solving the SCD-VRPTW-3 (or SCD-VRPTW-MOO-3); i.e. the
variant of Problem 3 with 3 objectives, without assuming any preference
information about the objectives. This approach involves the Tabu Search
metaheuristic in an ECM framework, and was described in detail in section
8.4. For each one of the 37 instances that were constructed for Problem 3,
we present a separate table that contains all non-dominated solutions found
by implementing Heuristic Approach 3 in MATLAB. These tables of results
can be found in Appendix B.

Each table is split into two parts. The first part is composed of the first
two rows and contains the runtime in seconds, the lower bounds LBf1 and
LBf2 for the component objectives f1 and f2 respectively, and a reference
value for f3. This reference value shows the sum of arrival times at the
endpoint node in the original undisrupted VRPTW, and is the same for all
instances of the same class. The second part of each table spans from the
third row until the last row of the table, and contains all non-dominated
solutions found for the instance. Each non-dominated solution corresponds
to one row and records the solution’s serial number and the values of the three
component objectives f1, f2 and f3. Note that each entry of the component
objectives is followed by a percentage. Each percentage that follows a value

of f1, is calculated as
f1−fbest1

fworst1 −fbest1
· 100%, or equivalently as

f1−fmin1

fmax1 −fmin1
· 100%,
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where f best1 corresponds to the best result (i.e. the minimum value fmin1 )
for f1, and fworst1 to the worst result (i.e. the maximum value fmax1 ) for f1,
among all non-dominated solutions found. The percentages that follow the
values of f2 and f3 are calculated in a similar way.

Regarding the trade-offs between the three objectives f1, f2 and f3, we
can make the following observations from the tables:

• On the one hand, in instances 1, 2, 4-6, 8, 9, 11 and 12, a solution with
the minimum value of f1 gives the minimum value of f2. On the other
hand, in instances 3, 6, 25-28 and 37, a solution with the minimum
value of f1 gives the maximum value of f2.

• In instances 1, 5, 8, 13-17, 21 and 24, a solution with the maximum
value of f1 gives the maximum value of f2. However, in instance 3, a
solution with the maximum value of f1 gives the minimum value of f2.

• In instances 1-6, 8-12, 18, 22, 23, 25-28 and 33-36, a solution with
the minimum value of f1 gives the maximum value of f3. However, in
instances 3 and 6, a solution with the minimum value of f1 gives the
minimum value of f3.

• In instances 1, 4, 5, 8, 11, 13-17, 21, 24 and 33, a solution with the
maximum value of f1 gives the minimum value of f3. No instance
was found where a solution with the maximum value of f1 gives the
maximum value of f3.

• In instances 1, 2, 4-6, 8, 9, 11, 12, 16, 17, 20, 31 and 32, a solution with
the minimum value of f2 gives the maximum value of f3. No instance
was found where a solution with the minimum value of f2 gives the
minimum value of f3.

• In instances 1-3, 5, 6, 8 and 12-24, a solution with the maximum value
of f2 gives the minimum value of f3. However, in instances 25-28, a
solution with the maximum value of f2 gives the maximum value of f3.

There are no obvious conclusions that can be drawn from these obser-
vations, regarding the trade-offs between the objectives, since some of the
results are contradictory. Further investigation is needed, which is left open
for future research.

Caution may be needed when interpreting the above results for instances
3-6 and 8, where f1 only takes 2 different values in the set of non-dominated
solutions found, and therefore can be considered as degenerate cases. More-
over, instance 7 was not included in the above discussion about the trade-offs,
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because only 2 non-dominated solutions were reported for this instance, both
with the same value for f1; therefore this can also be considered a degenerate
case.

HA2 and HA3 both solve 3-objective variants of the problem; although
HA2 further assumes a lexicographic preference of the component objectives.
On the contrary, HA3 doesn’t make use of any preference information regard-
ing the objectives, but attempts to generate an approximate representation
of the Pareto front. These are our findings from the comparison of the run-
times of HA2 and HA3: For the 37 instances of the SCD-VRPTW, the ratio
runtime of HA3

runtime of HA2
ranges from 5.5 up to 31.4, with an average of 14.3 and a stan-

dard deviation of 6.3. Therefore, the runtime of HA3 is, on average, 14 times
as large as the runtime of HA2. More specifically, in 12 instances the above
ratio ranges between 5.5 and 10, in 21 other instances this figure lies between
10 and 20, whereas in the remaining 4 instances this ranges between 25 and
32.

In general, the runtime of each one of the three heuristics described in
this chapter, is greatly affected by the choice of certain parameters that
control the number of iterations performed; for example, parameters J1 and
J2 for HA1 and HA2. In HA3, in addition to J1 and J2, we have multiple
cycles of up to Φ×Θ outer iterations, although under certain conditions the
algorithm may skip some of these cycles, if found unnecessary. For example,
by reducing both values of Φ and Θ by 50%, we can expect a reduction of up
to 75% in the runtime (since we would then have to perform around 75% fewer
cycles of outer iterations7). Nevertheless, choosing different combinations of
values for the parameters J1, J2, Φ and Θ, can have a huge impact on the
runtime. Further experimentation may be needed to examine the effect of
changing each one of these parameters on the runtime, which is left for future
researchers.

In most instances (and specifically in 31 out of 37 instances), the solutions
found by HA3 include the solution found by HA2 for the same instance.
However, there are 6 instances out of the 37 tested where HA3 finds a solution
which dominates the solution found by HA2 (these are instances 9, 13b, 21,
24, 29 and 30). This is due to a different heuristic and stopping criterion
being used.

The results also show how the solutions relate to lower bounds or reference
values for the three different objectives.

7The figure of 75% refers to the case where the algorithm does not skip any cycles of
outer iterations.

212



8.6 Conclusions

To sum up, in this chapter we described three different heuristic methods
for different variants of the Single-Commodity Delayed VRPTW (problem
3). A set of instances was created and the three heuristic approaches (HA1,
HA2 and HA3), as well as exact approach 1 (EA1) that was described in the
previous chapter, were tested on these instances.

EA1 and HA1 both solve the same variant, the SCD-VRPTW-Lex5, which
is the 5-objective variant of the problem assuming a lexicographic preference
of the component objectives. It was shown that EA1 requires too much
computation time for instances involving higher numbers of customers. HA1
generally outperforms EA1, with the exception of a few small problems where
the reverse is true. However, even then, HA1 gives good results compared to
the exact method.

HA2 and HA3 both solve 3-objective variants of the problem; however,
HA2 assumes a lexicographic preference of the component objectives, whereas
HA3 makes no such an assumption. Instead, HA3 aims to find a represen-
tative subset of the set of non-dominated solutions for the SCD-VRPTW
with 3 objectives, rather than a single solution and so takes longer to run
than Heuristic Approach 2 which only aims to find a single non-dominated
solution for a particular set of weights. Comparison of runtimes for the same
instances shows that HA3 takes about 14 times as long as HA2 (for the spe-
cific choice of parameters used). In some circumstances, the runtime for HA3
may be too long in practice, though it could be stopped before a full set of
non-dominated solutions has been found, if one of those found is acceptable.
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Chapter 9

CONCLUSIONS

This chapter summarizes the main findings and contributions of this thesis,
and discusses possible directions for future research.

9.1 Research Summary & Scope for Further

Research

In this thesis we studied applications of disruption management in the area
of vehicle routing and scheduling for road freight transport. We considered
two types of disruption, namely vehicle breakdown and vehicle delay. We
identified three interesting problems resulting from such disruptions, and we
devoted two chapters to the study of each problem: one chapter for math-
ematical programming formulations and exact approaches, and one chapter
for heuristic methods and experimental results. Exact approaches were im-
plemented in AIMMS, whereas heuristic approaches were implemented in
MATLAB.

A dataset of instances was constructed for each problem, in order to
test the proposed solution methods. The mathematical programming for-
mulations and exact approaches proposed were successful in solving small
instances to optimality. However, because of the complexity of the three
problems under study, which are variants of the TSP and the VRP, there is
a limit in the size of problems that the exact approaches can solve within a
few minutes. Beyond a certain size of problems, either more sophisticated
exact approaches may be used, or heuristic methods, or combinations, e.g.
math-heuristics. Therefore, for each problem we also proposed at least one
heuristic algorithm, which can solve larger instances in real-time. Of course,
even in the case where a heuristic approach provides a superior solution
within a certain time limit, compared to an exact approach, the latter may
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still be important by providing a useful lower bound, and thus a way to cal-
culate a guaranteed bound on the optimality gap and assess the quality of
the heuristic.

9.1.1 Problem 1 - Summary

In chapter 3 we described the disrupted Vehicle Routing Problem with custo-
mer-specific orders and Vehicle Breakdown (problem 1) and presented an
exact approach (EA) and a MILP formulation. For small instances, or for
instances where only a few customers were originally assigned to the disabled
vehicle, the exact approach succeeded in finding the proven optimal solution
within a few minutes. Specifically, in 40 out of 101 instances considered (i.e.
in 39.6% of the cases), the exact approach succeeded in finding the proven
optimal solution within 5 minutes, whereas in 35 other instances (i.e. in
34.7% of the cases) this method reported a solution with an optimality gap
below 10%. In 99 out of 101 instances (i.e. in 98% of the cases) a feasible
solution was found within 5 minutes, and in all cases a lower bound was
reported. However, there is a size limit, beyond which the exact approach
fails to provide an acceptable solution within a few minutes. In such cases
a heuristic is more appropriate. The experimental results suggest that the
runtime of the EA highly depends on the number of customers assigned to
the broken-down vehicle. Also, we verified that the optimal solution may
sometimes involve multiple visits to the disabled vehicle, either by a single
active vehicle or by multiple ones.

In chapter 4 we described a heuristic algorithm based on Tabu Search,
as a second approach for solving problem 1. This method was also tested on
the 101 instances that were created for this problem. Although we did not
apply a cutoff time when performing experiments with this heuristic approach
(HA), in 97 out of 101 instances the algorithm terminated within 5 minutes,
and in the remaining 4 instances within 8 minutes; thus we can think of
the two methods (EA and HA) as being tested using similar or comparable
cutoff times. The solution found by the HA was feasible in all 101 cases, and
proven optimal in 35 instances (i.e. in 34.7% of the cases). Considering the
remaining 66 instances, the percentage gap between the solution found by
the HA and the lower bound found by AIMMS, was below 5% in 37 cases,
and below 22% in all 66 cases.

Comparing the results found by the two approaches, out of 101 instances,
the heuristic solution was better in 35 instances, exactly the same in 53 in-
stances, and worse than the exact approach in the remaining 13 instances.
For the latter category of those 13 cases, the percentage gap of the heuristic
solution was within 8.61% of the exact solution, with an average percentage
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gap of 2.02%. The results verify that the heuristic is capable of finding opti-
mal or near-optimal solutions within a few minutes, and that this approach
may be more promising for larger problems. In general, both methods are
important and useful. In practice, we recommend having both approaches
running simultaneously, and take the best solution found by either one of the
two methods within the available time. For larger instances, the heuristic
will be the only real choice.

In section 3.6, we described an extension of problem 1, the disrupted
VRPTW with Vehicle Breakdown (d-VRPTW-VB), under the assumptions
of a heterogeneous fleet and customer-specific orders. This problem refers
to the direct generalization of problem 1, where additionally each customer
was associated with a time window in the original plan. We described three
possible scenarios that may occur, and showed how the first two cases can be
treated using the methods and formulations that were proposed for solving
problem 1. Further investigation, precise definition and proper modeling of
the third and more general scenario, as well as performing experiments with
all three scenarios, are tasks which are left to be carried out by future re-
searchers. New models and formulations may be necessary for the third case,
for which a possible direction may be to combine the models and algorithms
that were described for problems 1 and 3.

9.1.2 Problem 2 - Summary

In chapter 5 we defined problem 2, the Delayed Traveling Salesman Prob-
lem with Time Windows (Delayed TSPTW), and presented formulations
and exact approaches. In its more general version, the Delayed-TSPTW-5
(or Delayed-TSPTW-MOO-5 ) was defined as a multi-objective optimization
problem with 5 component objectives, for which a general MOMILP formu-
lation was presented.

We then described exact approach 1 (EA1) for solving the Delayed-
TSPTW-Lex5, which refers to the variant of problem 2 which additionally
assumes a predefined lexicographic preference of the 5 component objectives.
This method aggregates the 5 component objectives into a single objective,
transforming the more general MOMILP into a single-objective MILP. This
MILP was implemented in AIMMS and tested on a set of 27 instances that
were created for the purpose (the respective experimental results were pre-
sented in chapter 6). Allowing a maximum runtime of 10 minutes, AIMMS
found a feasible solution in all instances, with an average optimality gap of
24.24% for the whole dataset. In 6 out of 27 instances, the proven optimal
solution was reported. Results showed that within 10 minutes, EA1 was un-
able to produce a solution with an optimality gap of less than 10% in any
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of the instances which involved more than 40 active customers. These re-
sults justify the need of a heuristic algorithm capable of reaching high-quality
solutions within reasonable time for larger instances.

Additionally, in chapter 5 we described exact approach 2 (EA2) for ad-
dressing the Delayed-TSPTW-MOO-5 using the weighted-sum method, whi-
ch can be viewed as a generalization of EA1, where the weights of the 5
component objectives are systematically changed, and a MILP is solved for
each different choice of weights, for the purpose of getting a representative
subset of the set of non-dominated solutions. However, because of the poor
performance of EA1 in solving instances with more than 40 customers, we
did not perform any experiments with EA2, which should be computation-
ally even harder than EA1. Instead, performing experiments with EA2, as
well as modeling and experimenting with other multi-objective optimization
methods that can be based on the formulations described in this chapter to
find the set of Pareto optimal solutions in an exact approach, are tasks left
open for further research.

In section 5.13 we introduced the disrupted VRPTW with customer-speci-
fic orders and vehicle delay, which is another generalization of problem 2
where, during the execution of the operational plan of a multi-commodity
VRPTW with a heterogeneous fleet, we have multiple vehicles experiencing
delays at various times. Because of the assumption of customer-specific or-
ders, solving one instance of the above problem is shown to be equivalent
to solving multiple independent instances of the Delayed TSPTW - one for
each affected route. Therefore, the study of this more general problem can
also be considered as completed.

In chapter 5 we also presented an extension of problem 2 that involves
customer priorities, as well as the 3-objective variant of the problem (the
Delayed-TSPTW-3 ). Moreover, we discussed other applications of problem
2 to handle other types of disruption, other variants, additional constraints
that can be included etc. Further investigation of other solution methods,
modeling and performing experiments with other problem variants that were
described or discussed in this chapter for which we did not provide complete
models or performed experiments, are left open for further research.

In chapter 6, we described three Tabu Search heuristics for solving vari-
ants of the Delayed TSPTW. Heuristic approaches 1 and 2 solve the problem
variants with 5 and 3 objectives, respectively, assuming a predefined lexi-
cographic ordering of the component objectives. We created a dataset of
27 instances for the Delayed TSPTW, based on benchmark instances taken
from Dumas et al. (1995) dataset, and used these to test our approaches.
The experimental results of exact approach 1 (EA1), heuristic approach 1
(HA1) and comparisons are included in chapter 6.
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These are the main findings derived from the comparison of HA1 and EA1
for solving the lexicographic variant of the Delayed TSPTW with 5 objectives
(Delayed-TSPTW-Lex5): Out of the 27 instances, HA1 outperformed EA1
in 20 cases (i.e. in 74.07% of the cases), with an average percentage gap of
21.45% for these 20 cases. In 4 other instances (i.e. in 14.81% of the cases) the
solutions provided by HA1 and EA1 were both optimal and hence equivalent.
For the remaining 3 instances (i.e. in 11.11% of the instances), HA1 was
outperformed by EA1, but in each one of these 3 cases the solution found by
HA1 was within 2% of the proven optimal, with an average optimality gap
of 0.87% for the 3 cases. In short, HA1 performs relatively well, generally
outperforming EA1 (although there were some exceptions when solving some
very small instances, where EA1 was able to find the proven optimal in real
time, whereas HA1 found a slightly worse solution). Also, in 70.37% of the
cases the lower bound found by HA1 was better than the one provided by
AIMMS in EA1. To sum up, both EA1 and HA1 are important methods and
therefore in practice we recommend running both approaches in parallel, and
use the best solution and the best lower bounds provided by either one of
the two methods in the available time. Of course, for larger instances EA1 is
expected to be impractical, therefore HA1 will be the only real choice among
these two options.

We also used HA1 to solve 9 standard TSPTW instances, both to test
the performance of HA1 and to verify that the Delayed TSPTW generalizes
the standard TSPTW.1

Moreover, in chapter 6 we described Heuristic Approach 3 (HA3), which
uses the framework of the Epsilon Constraint Method to solve heuristically
the MOO variant of the Delayed TSPTW with 3 objectives, and finds a
representative subset of the set of non-dominated solutions. The respective
experimental results can be found in Appendix A. HA3 gives an indication of
the Pareto front and potential trade-offs between the 3 component objectives
f1, f2 and f3, although it may be too slow to apply in practice.

9.1.3 Problem 3 - Summary

In chapter 7 we described problem 3, i.e. the Single-Commodity Delayed
Vehicle Routing Problem with Time Windows (SCD-VRPTW)2, and pre-
sented formulations and exact approaches. In its general version, the SCD-
VRPTW-MOO-5 (or simply the SCD-VRPTW-5 ) was defined as a multi-

1To be more precise, both the Delayed-TSPTW-5 and the Delayed-TSPTW-Lex5 gen-
eralize the TSPTW variant where the objective is to minimize the time of arrival at the
endpoint node.

2or the disrupted VRPTW with non-customer-specific orders and vehicle delay
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objective optimization problem with 5 component objectives, for which a
general MOMILP formulation was presented. It can be regarded as a gen-
eralization of the Delayed-TSPTW-5 with multiple vehicles of different ca-
pacities, delivering a single commodity. Exact approaches 1 and 2 were
presented, equivalent to those described for problem 2, as well as an ex-
tension of problem 3 involving customer priorities. We also presented some
additional assumptions to reduce the number of objectives from 5 down to
3 (as done in problem 2), differentiating between the following two variants
of problem 3: the SCD-VRPTW with 5 objectives (SCD-VRPTW-5) and
the SCD-VRPTW with 3 objectives (SCD-VRPTW-3). Other applications
of problem 3 to handle other types of disruption, as well as other variants
or extensions involving different sets of constraints and objectives were also
discussed. Further modeling and experimentation with other solution meth-
ods or with solving other variants suggested in this chapter, are left open for
further research.

In more detail, exact approach 1 (EA1) addresses the variant of problem
3 with 5 objectives of lexicographic preference (SCD-VRPTW-Lex5). This
approach aggregates the 5 component objectives into a single objective, de-
fined as the weighted sum of the 5 components, and uses appropriate weights
to impose a lexicographic preference of these objectives; thus transforming
the more general MOMILP formulation into a single-objective MILP formu-
lation (as in problem 2). We implemented the latter formulation in AIMMS
and used it to solve 37 instances that were created specifically for this prob-
lem. The results can be found in chapter 8. In short, EA1 failed to provide
an optimal, or even an acceptable solution within 5 minutes in all instances
that involved more than 54 customers (in fact, in some of those instances we
tried using larger cutoff times and still got unacceptable results). EA1 gave
optimal or acceptable solutions in instances of Class A that only involved 11
customers, although in some of those instances with 11 customers, AIMMS
was not able to prove that the final solutions were optimal within 10 minutes.
We did not perform any experiments with instances of sizes above 11 and
below 54 customers, and thus we did not precisely define the exact size of
problems that can be solved with EA1. This can be investigated by further
research, if necessary. However, our results were enough to show that EA1
cannot be used in practice for solving problems of more than 54 customers,
since for instances of 54 or more customers the solutions were of very poor
quality.

Chapter 7 also describes exact approach 2 for addressing the more gen-
eral SCD-VRPTW-MOO-5. This method is similar to EA1, but instead of
involving a single run with a single set of weights, it involves systematically
varying the weights of the 5 component objectives and solving one MILP for
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each set of weights. Therefore, this approach involves solving a large number
of MILPs, in order to get a large number of non-dominated solutions for this
MOO problem with 5 objectives, which will comprise a representation of the
Pareto front. Of course, as Branke et al. (2008) mentions, this method may
not always give a good representation of the Pareto front. Instead, for a
good representation of the Pareto front, other multi-objective optimization
methods may be more appropriate, such as the Epsilon-Constraint Method.
In any case, because of the poor performance of EA1, we decided not to
perform any experiments with the more general and computationally more
expensive EA2, nor with any other exact approaches or other multi-objective
optimization methods that are used in an exact framework. This is also left
open for further research.

In chapter 8 we described three heuristic approaches (HA1, HA2 and
HA3), all based on Tabu Search, for solving variants of problem 3. Specif-
ically, HA1 and HA2 solve the SCD-VRPTW with 5 and 3 objectives, re-
spectively, assuming a lexicographic preference of the component objectives.
HA3 uses the framework of the Epsilon Constraint Method to solve heuristi-
cally the SCD-VRPTW with 3 objectives, and finds a representative subset
of the set of non-dominated solutions. The different methods are tested on
a dataset of 37 instances that were created for the SCD-VRPTW. Chap-
ter 8 includes the experimental results of EA1, HA1 and HA2, whereas the
experimental results of HA3 can be found in Appendix B.

The stopping criterion of HA1 was to terminate after reaching a prede-
fined number of iterations without an improvement; therefore no cutoff time
was applied. However, the maximum runtime of HA1 for solving the 37
instances was around 7 minutes (422.9 seconds), with an average of 90.7 sec-
onds for the whole dataset. HA1 gave a feasible solution in all of the cases.
The average percentage gap between HA1 and the corresponding lower bound
derived by HA1, was 58.4%.

Comparing the solutions reported by HA1 and EA1 for solving the SCD-
VRPTW-Lex5, it was found that HA1 gave a better solution in 29 out of 37
cases, the same solution in 5 cases, and a worse solution in the remaining
3 cases, with a percentage deviation of HA1 from EA1 averaging at -60.8%.
Specifically, for the 3 instances where EA1 gave a better solution than HA1,
the three percentage gaps were 0.2%, 0.04% and 19.96%, with an average
percentage deviation of 6.73%. For these three instances (which are the
instances with serial number 1, 2 and 3 of Class A), the runtime of EA1
was between 400 and 900 seconds, whereas the runtime of HA1 was no more
than 2 seconds. Comparing the lower bounds found by HA1 and EA1, we
observed that the lower bound found by HA1 was better than the one found
by EA1 in 28 out of 37 cases, the same in 7 other cases and worse in just
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2 cases (which correspond to very small instances where AIMMS provided
the proven optimal solution, and thus the final lower bound was matching
the optimal solution). These results suggest that HA1 generally outperforms
EA1, and in many cases it provides a better lower bound than the one found
by AIMMS in EA1. However, as in problem 2, both EA1 and HA1 are
important, and therefore in practice we recommend running both approaches
in parallel and use the best lower bounds and the best solution reported in
the available time, by either one of the two methods. Of course, for large
instances, HA1 will almost certainly be the only practical choice among these
two approaches.

HA2 solves SCD-VRPTW-Lex3, i.e. the Lexicographic variant with 3
objectives, and can be considered to be a special case of HA1. Its results are
presented mainly to be used as reference values for HA3.

The last method, HA3, solves the SCD-VRPTW-3, i.e. the variant with
3 objectives, but without assuming a lexicographic preference of the 3 ob-
jectives. Therefore, HA3 is a more general multi-objective optimization ap-
proach that employs several nested loops, performing multiple Tabu Search
iterations with multiple restarts, within the framework of the Epsilon Con-
straint Method. Its purpose is to provide a representative subset of the set
of non-dominated solutions for the 3-objective variant. The results of HA3,
which can be found in Appendix B, give an indication of the Pareto front
and potential trade-offs between the 3 component objectives f1, f2 and f3.
Of course, HA3 is significantly slower than HA2 (and HA1).

9.1.4 Additional scope for further research

Below we list some of the potential problems or areas that can be further
investigated by future researchers, in addition to those discussed in the pre-
vious subsections of this chapter:

• For the problems described in this thesis, there were several solution
approaches, problem variations and extensions that were discussed or
described but not formulated, or that were formulated and thoroughly
described but not tested experimentally. Building appropriate models
and formulations for the cases that were discussed but not modeled,
as well as performing the relevant experiments, are tasks left open for
further research. Specifically, these include the following variations
and solution approaches for problems 2 and 3: (i) implementing ex-
act approach 2 for the solution of the 5-objective variants using the
weighted-sum approach and performing experiments, (ii) implement-
ing other MOO methods, such as the ECM, in an exact approach,
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for the 3-objective and/or for the 5-objective variants, (iii) perform-
ing experiments with the extensions of problems 2 and 3 that involve
customer priorities, (iv) performing experiments with the 3-objective
variants of problems 2 and 3 using exact approaches, (v) performing ex-
periments with HA2 for the 3-objective variant of problem 2 assuming
a lexicographic ordering of the component objectives, (vi) applications
of problems 2 and 3 to handle other types of disruption, other problem
variants, additional constraints etc.

• Regarding heuristic approaches 3 which employ the Epsilon-Constraint
Method to solve the MOO variants of problems 2 and 3 that involve 3
component objectives, further examination of possible correlations be-
tween the three component objectives f1, f2 and f3 may be performed,
by using appropriate statistical methods (e.g. hypothesis tests).

• When dealing with disruptions, it is crucial that the response time is
very short; ideally this should happen in real-time. We recognize that
some of the computational times reported in this thesis are prohibitively
high. This is especially true for the heuristics that were developed for
problems 2 and 3 and were based on the Epsilon Constraint Method.

Further experimentation with the heuristics proposed after making mi-
nor changes may lead to improvements in the performance of the al-
gorithms, in terms of both runtime and solution quality. Parameter
tuning and parameter optimization, may lead to such an improvement,
especially in terms of the runtime. In particular, fine-tuning the param-
eters that control the number of different restarts of each algorithm,
as well as the number of iterations without an improvement before the
algorithm terminates, can have a significant impact on the runtime.
Of course, we should keep in mind that there is a trade-off between
solution quality and computational time.

Parallelization is another option which can be trivially achieved in some
cases (e.g. in cases of multiple and independent restarts of the algo-
rithm) and can also have an impact on the runtime. Other stopping
criteria may be investigated. Another direction is a simultaneous use
of exact and heuristic approaches, where the two approaches interact
with each other and the search is guided by continuously comparing the
best solutions with the best lower bounds already found, in a branch-
and-bound framework.

• The formulations and exact approaches described for each one of the
three problems may be used in combination with more sophisticated ex-
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act frameworks, such as in conjunction with branch-and-bound, branch-
and-cut, branch-and-cut-and-price, etc.

• Other algorithms can be created, which may be based on other meta-
heuristics (such as Simulated Annealing, Variable Neighborhood Search
etc.), or math-heuristics that combine metaheuristics and mathemati-
cal programming techniques, possibly combining some of the features
proposed in this thesis, in order to create better or faster algorithms for
the three problems and improve on the results found for the instances
of our datasets.

• For the solution of the different problem variations, other multi-objecti-
ve optimization methods can also be used, apart from the lexicographic
approach, the weighting method and the epsilon-constraint method.

• The use of multi-objective optimization performance metrics, such as
the hyper-volume indicator, may be used to measure the quality of
approximation of the Pareto front, for heuristic approach 3 of problems
2 and 3.

• Regarding the travel times, in our models we are assuming that these
are constant over time. This assumption was adopted for the sake of
simplicity and convenience. We recognize that in reality, travel times
are usually dynamic, especially in urban areas. Extending our mod-
els to include dynamic travel times is something that may be further
investigated.

• There is a large number of other problem variants and extensions that
can arise from each one of the three problems studied in this thesis, by
considering alternative combinations of assumptions, constraints and
objectives.

For instance, regarding the assumptions, the following options may
be particularly important: (i) whether or not there are extra vehicles
and drivers available to use or hire in case of a disruption - and how
many, (ii) single-commodity or multi-commodity, whether or not orders
are customer-specific etc., (iii) whether it is possible to leave some
customers unserved, (iv) whether it is possible and practical for vehicles
to meet and exchange goods: special equipment may be needed to
load certain items, (v) when vehicles can be re-routed to respond to a
disruption.

When modeling a disruption in vehicle routing and scheduling, the ob-
jective will generally have two parts, which can be further subdivided

223



into more components. The first part will normally try and optimize
the objective of the original problem, while the second part will try and
minimize the negative impact of the disruption. The assumptions, ob-
jectives and constraints of the original problem will greatly affect and
determine to some extent the respective counterparts of the problem
after disruption. The original objective may have been to minimize
total travel time, total travel cost, carbon emissions, total monetary
cost, total distance traveled, sum of arrival times at the endpoint node
etc. This will usually compose the first part of the objective in the
resulting problem after disruption. The second part of the objective
that seeks to minimize the negative impact of the disruption may be
more complex, including functions that are associated with minimizing
the impact of the disruption on customers, minimizing the deviation
from the original plan for drivers, and minimizing the associated costs
of deviation from the original plan for the enterprise. There are several
ways to capture these deviations, and there is flexibility to leave out
some of these, if they are not particularly useful.3 Therefore, there is
a large number of possibilities regarding to the number and choice of
component objectives. For example, when modeling problems 2 and 3
in their more general versions, we used 5 component objectives, where
4 out of 5 components were seeking to minimize the negative impact
of the disruption, whereas the last one was related to the objective of
the original plan. We will normally have multiple conflicting objectives
and therefore the problem should be tackled using multi-objective op-
timization techniques. Even for a single choice of objectives, additional
variations may occur by considering the type of preference information
available (such as the classification or ordering of component objec-
tives). Of course, it may be possible to aggregate them all in a single
objective, such as the total monetary cost to be minimized, and use
classical single-objective optimization techniques.

In addition to the large number of combinations of objectives, there is
also a large number of possible combinations of constraints that may
be considered. For example, as was discussed in sections 5.15 and 7.14,
interesting variations of problems 2 and 3 can be derived by includ-
ing additional constraints in the current models, such as a maximum

3For example, in the case of the disrupted VRP with vehicle breakdown (problem 1),
we decided not to include a component for drivers in the objective, because this was not
particularly relevant. Alternative approaches may include an additional objective that
seeks to find solutions where the routes are as close to the original routes as possible, since
this may be slightly more convenient for drivers who may be more familiar with certain
routes.
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allowed deviation outside the promised time windows, or the use of
customer priorities. Non-linear constraints or objectives may also be
relevant to some applications, such as using a quadratic function to
penalize the objective when violating the time windows, instead of a
linear function (for problems 2 and 3).

All these possibilities can be further investigated by future researchers.
However, it seems that there is an endless number of variations that
may be created. Therefore, perhaps an application-specific approach
may be more appropriate; i.e. creating custom-based models for real
case-studies.

• Other types of disruption may also be studied, including combinations
of disruptions. All of the above can be guided by the pursuit of a
more ambitious goal of eventually creating a flexible, real-time decision
support system that can aid practitioners in addressing all usual types
of disruptions and combinations.

9.2 Contributions

These are the main contributions of this thesis:

1. The introduction of two new problems, namely problems 2 and 3, that
have never been studied before under the specific assumptions and from
a similar point of view. We believe that these problems model actual
situations that occur frequently in road freight transport, but we are
not aware of similar studies that proposed efficient methods to deal
with vehicle delays in real time.

2. We proposed mathematical programming formulations (MILPs and/or
MOMILPs) for each one of the three problems.

3. We constructed at least one heuristic for each problem.

4. We created a dataset of test instances for each problem.

5. We have performed experiments on these problem instances using at
least one exact and one heuristic method for each problem.

6. We have drawn some important conclusions from these experiments.
Specifically, we give some idea about the size of instances that may
be solved to optimality using the exact approaches. For smaller in-
stances, this provides a way to measure the quality of the heuristics.
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For larger instances, we used lower bounds provided either by the ex-
act approach (from the LP relaxation of the MILP formulations), or
problem-specific lower bounds that were found and included in the
heuristic approach. These lower bounds allow us to get proven opti-
mality gaps and to assess the quality of the heuristics. Furthermore,
by examining the experimental results we can draw some conclusions
about how the computational times depend on the instance size.

7. We provided two simple - yet powerful - techniques to speed-up the
Epsilon-Constraint Method.

8. Some helpful lower bounds were suggested for problems 2 and 3.

9. We suggested several variants and extensions of the problems, involving
different sets of objectives, constraints and assumptions. Some of the
models and solution methods proposed can also be used to cope with
other types of disruptions.
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(1993). A two-commodity flow formulation for the traveling salesman and
the makespan problems with time windows. Networks , 23 (7), 631–640.

232



Laporte, G., Ropke, S., & Vidal, T. (2014). Chapter 4: Heuristics for the
Vehicle Routing Problem. In Vehicle Routing: Problems, Methods, and
Applications, second edition (pp. 87–116). SIAM.

Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated
VRP. In The vehicle routing problem, P. Toth and D. Vigo (p. 109-128).
SIAM.

Letchford, A. N., Lysgaard, J., & Eglese, R. W. (2007). A branch-and-cut
algorithm for the capacitated open vehicle routing problem. Journal of the
Operational Research Society , 58 (12), 1642-1651.

Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: new
test problems, algorithms, and results. Computers & Operations Research,
32 (5), 1165–1179.

Li, J.-Q., Borenstein, D., & Mirchandani, P. B. (2007a). A decision sup-
port system for single-depot vehicle rescheduling problem. Computers &
Operations Research, 34 (4), 1008-1032.

Li, J.-Q., Borenstein, D., & Mirchandani, P. B. (2008a). Truck schedule
recovery for solid waste collection in Porto Alegre, Brazil. International
Transactions in Operational Research, 15 , 565-582.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2007b). Vehicle rescheduling
problem: Model and algorithms. Networks , 50 (3), 211-229.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2008b). Parallel auction
algorithm for bus rescheduling. In Computer-aided systems in public trans-
port (pp. 281–299). Springer.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2009a). Real-time vehicle
rerouting problems with time windows. European Journal of Operational
Research, 194 , 711-727.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2009b). A vehicle reschedul-
ing problem with real-time vehicle reassignments and trip cancellations.
Transportation Research Part E: Logistics and Transportation Review , 45 ,
419-433.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell
System Technical Journal , 44 (10), 2245–2269.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21 (2), 498–516.

233
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Appendix A

Experimental Results of
Heuristic Approach 3 for
Problem 2 (Delayed-TSPTW-3)

Table A.1: Experimental results for instance 1-A (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
88.7 5 167 281

Solution S/N f1 f2 f3
1 6 (0%) 743 (56.91%) 398 (90.53%)
2 6 (0%) 784 (63.73%) 387 (78.95%)
3 7 (14.29%) 645 (40.6%) 387 (78.95%)
4 7 (14.29%) 661 (43.26%) 381 (72.63%)
5 8 (28.57%) 596 (32.45%) 381 (72.63%)
6 9 (42.86%) 1002 (100%) 325 (13.68%)
7 10 (57.14%) 424 (3.83%) 399 (91.58%)
8 10 (57.14%) 466 (10.82%) 388 (80%)
9 10 (57.14%) 545 (23.96%) 381 (72.63%)
10 10 (57.14%) 877 (79.2%) 329 (17.89%)
11 11 (71.43%) 435 (5.66%) 387 (78.95%)
12 11 (71.43%) 867 (77.54%) 312 (0%)
13 12 (85.71%) 415 (2.33%) 407 (100%)
14 12 (85.71%) 516 (19.13%) 382 (73.68%)
15 12 (85.71%) 662 (43.43%) 332 (21.05%)
16 13 (100%) 401 (0%) 405 (97.89%)
17 13 (100%) 425 (3.99%) 385 (76.84%)
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Table A.2: Experimental results for instance 1-B (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
24.9 5 240 366

Solution S/N f1 f2 f3
1 5 (0%) 800 (93.49%) 451 (100%)
2 6 (25%) 536 (15.38%) 439 (78.57%)
3 6 (25%) 822 (100%) 437 (75%)
4 7 (50%) 492 (2.37%) 413 (32.14%)
5 8 (75%) 484 (0%) 416 (37.5%)
6 8 (75%) 621 (40.53%) 395 (0%)
7 9 (100%) 609 (36.98%) 402 (12.5%)

Table A.3: Experimental results for instance 1-C (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
5.5 4 180 409

Solution S/N f1 f2 f3
1 4 (0%) 344 (72.13%) 458 (100%)
2 5 (100%) 300 (0%) 439 (44.12%)
3 5 (100%) 361 (100%) 424 (0%)

Table A.4: Experimental results for instance 2-A (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
809.9 5 193 353

Solution S/N f1 f2 f3
1 7 (0%) 1255 (60.63%) 581 (100%)
2 8 (5.56%) 881 (32.53%) 540 (75.15%)
3 9 (11.11%) 856 (30.65%) 505 (53.94%)
4 9 (11.11%) 1130 (51.24%) 481 (39.39%)
5 10 (16.67%) 830 (28.7%) 533 (70.91%)
6 10 (16.67%) 834 (29%) 520 (63.03%)
7 10 (16.67%) 953 (37.94%) 480 (38.79%)
8 11 (22.22%) 834 (29%) 519 (62.42%)

Continued on the next page

241



Table A.4 – Continued from the previous page
Solution S/N f1 f2 f3
9 11 (22.22%) 937 (36.74%) 480 (38.79%)
10 11 (22.22%) 1089 (48.16%) 476 (36.36%)
11 11 (22.22%) 1466 (76.48%) 471 (33.33%)
12 12 (27.78%) 807 (26.97%) 523 (64.85%)
13 13 (33.33%) 697 (18.71%) 510 (56.97%)
14 14 (38.89%) 798 (26.3%) 466 (30.3%)
15 14 (38.89%) 1779 (100%) 417 (0.61%)
16 16 (50%) 785 (25.32%) 475 (35.76%)
17 17 (55.56%) 679 (17.36%) 512 (58.18%)
18 18 (61.11%) 493 (3.38%) 522 (64.24%)
19 18 (61.11%) 1398 (71.37%) 417 (0.61%)
20 19 (66.67%) 448 (0%) 528 (67.88%)
21 19 (66.67%) 701 (19.01%) 481 (39.39%)
22 20 (72.22%) 1265 (61.38%) 416 (0%)
23 21 (77.78%) 564 (8.72%) 455 (23.64%)
24 22 (83.33%) 532 (6.31%) 480 (38.79%)
25 22 (83.33%) 1005 (41.85%) 417 (0.61%)
26 25 (100%) 857 (30.73%) 417 (0.61%)

Table A.5: Experimental results for instance 2-B (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
225.4 14 934 465

Solution S/N f1 f2 f3
1 15 (0%) 2139 (20.91%) 564 (100%)
2 15 (0%) 2975 (100%) 553 (75.56%)
3 16 (20%) 1972 (5.11%) 540 (46.67%)
4 16 (20%) 2017 (9.37%) 519 (0%)
5 17 (40%) 1960 (3.97%) 526 (15.56%)
6 18 (60%) 1972 (5.11%) 523 (8.89%)
7 20 (100%) 1918 (0%) 543 (53.33%)
8 20 (100%) 1939 (1.99%) 520 (2.22%)
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Table A.6: Experimental results for instance 2-C (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
75.3 15 1904 554

Solution S/N f1 f2 f3
1 15 (0%) 3100 (81.05%) 595 (33.33%)
2 15 (0%) 3136 (86.47%) 592 (25%)
3 16 (33.33%) 3050 (73.53%) 619 (100%)
4 16 (33.33%) 3091 (79.7%) 604 (58.33%)
5 16 (33.33%) 3226 (100%) 589 (16.67%)
6 17 (66.67%) 2587 (3.91%) 583 (0%)
7 18 (100%) 2561 (0%) 593 (27.78%)

Table A.7: Experimental results for instance 3-A (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
685.7 7 162 330

Solution S/N f1 f2 f3
1 8 (0%) 473 (27.44%) 539 (95.61%)
2 9 (11.11%) 290 (0%) 544 (100%)
3 9 (11.11%) 447 (23.54%) 539 (95.61%)
4 9 (11.11%) 720 (64.47%) 533 (90.35%)
5 10 (22.22%) 532 (36.28%) 533 (90.35%)
6 11 (33.33%) 323 (4.95%) 519 (78.07%)
7 12 (44.44%) 872 (87.26%) 432 (1.75%)
8 13 (55.56%) 676 (57.87%) 432 (1.75%)
9 13 (55.56%) 723 (64.92%) 431 (0.88%)
10 15 (77.78%) 573 (42.43%) 432 (1.75%)
11 15 (77.78%) 957 (100%) 430 (0%)
12 17 (100%) 791 (75.11%) 430 (0%)
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Table A.8: Experimental results for instance 3-B (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
165.7 13* 617 460

Solution S/N f1 f2 f3
1 13 (0%) 2102 (90.6%) 596 (100%)
2 14 (20%) 1653 (43.19%) 558 (55.29%)
3 15 (40%) 1518 (28.93%) 546 (41.18%)
4 15 (40%) 2191 (100%) 532 (24.71%)
5 16 (60%) 1309 (6.86%) 569 (68.24%)
6 16 (60%) 1328 (8.87%) 561 (58.82%)
7 16 (60%) 1625 (40.23%) 511 (0%)
8 17 (80%) 1244 (0%) 555 (51.76%)
9 17 (80%) 1386 (14.99%) 532 (24.71%)
10 18 (100%) 1329 (8.98%) 529 (21.18%)

Table A.9: Experimental results for instance 3-C (Heuris-
tic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
64.3 15 2165 569

Solution S/N f1 f2 f3
1 15 (0%) 4075 (100%) 658 (100%)
2 16 (33.33%) 3097 (7.82%) 654 (93.65%)
3 16 (33.33%) 3605 (55.7%) 595 (0%)
4 17 (66.67%) 3060 (4.34%) 601 (9.52%)
5 18 (100%) 3014 (0%) 647 (82.54%)
6 18 (100%) 3029 (1.41%) 631 (57.14%)
7 18 (100%) 3044 (2.83%) 611 (25.4%)

Table A.10: Experimental results for instance 4-A
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
89.3 4 101 271

Solution S/N f1 f2 f3
1 4 (0%) 715 (85.99%) 400 (69.37%)
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Solution S/N f1 f2 f3
2 5 (20%) 693 (82.18%) 434 (100%)
3 5 (20%) 699 (83.22%) 401 (70.27%)
4 5 (20%) 796 (100%) 359 (32.43%)
5 6 (40%) 351 (23.01%) 424 (90.99%)
6 6 (40%) 777 (96.71%) 362 (35.14%)
7 7 (60%) 218 (0%) 411 (79.28%)
8 7 (60%) 474 (44.29%) 366 (38.74%)
9 8 (80%) 239 (3.63%) 377 (48.65%)
10 9 (100%) 451 (40.31%) 323 (0%)

Table A.11: Experimental results for instance 4-B
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
32.1 7* 327 359

Solution S/N f1 f2 f3
1 7 (0%) 479 (0%) 419 (100%)
2 7 (0%) 736 (100%) 402 (0%)
3 8 (100%) 490 (4.28%) 402 (0%)

Table A.12: Experimental results for instance 4-C
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
95.9 6 514 444

Solution S/N f1 f2 f3
1 6 (0%) 938 (100%) 445 (0%)
2 7 (100%) 653 (0%) 454 (100%)

Table A.13: Experimental results for instance 5-A
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
10581.4 15 580 471

Solution S/N f1 f2 f3
1 16 (0%) 2957 (55.9%) 705 (91.07%)
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Solution S/N f1 f2 f3
2 17 (4.17%) 2826 (51.57%) 715 (100%)
3 17 (4.17%) 2920 (54.68%) 702 (88.39%)
4 18 (8.33%) 2817 (51.27%) 704 (90.18%)
5 18 (8.33%) 2821 (51.4%) 703 (89.29%)
6 19 (12.5%) 2707 (47.64%) 704 (90.18%)
7 19 (12.5%) 2718 (48%) 702 (88.39%)
8 20 (16.67%) 2657 (45.98%) 688 (75.89%)
9 23 (29.17%) 2037 (25.49%) 692 (79.46%)
10 26 (41.67%) 1950 (22.61%) 696 (83.04%)
11 30 (58.33%) 1297 (1.02%) 711 (96.43%)
12 30 (58.33%) 1385 (3.93%) 702 (88.39%)
13 31 (62.5%) 1282 (0.53%) 690 (77.68%)
14 31 (62.5%) 4291 (100%) 612 (8.04%)
15 32 (66.67%) 2950 (55.67%) 609 (5.36%)
16 34 (75%) 1266 (0%) 689 (76.79%)
17 34 (75%) 3366 (69.42%) 603 (0%)
18 37 (87.5%) 1767 (16.56%) 612 (8.04%)
19 39 (95.83%) 1755 (16.17%) 612 (8.04%)
20 40 (100%) 1731 (15.37%) 612 (8.04%)

Table A.14: Experimental results for instance 5-B
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
2544.8 24 1878 591

Solution S/N f1 f2 f3
1 24 (0%) 6237 (100%) 716 (67.86%)
2 25 (5.56%) 6044 (92.69%) 710 (57.14%)
3 25 (5.56%) 6109 (95.15%) 693 (26.79%)
4 26 (11.11%) 6017 (91.67%) 725 (83.93%)
5 27 (16.67%) 5785 (82.89%) 694 (28.57%)
6 27 (16.67%) 6048 (92.84%) 692 (25%)
7 28 (22.22%) 5397 (68.19%) 692 (25%)
8 28 (22.22%) 5715 (80.23%) 690 (21.43%)
9 29 (27.78%) 5832 (84.66%) 678 (0%)
10 30 (33.33%) 4821 (46.38%) 729 (91.07%)
11 30 (33.33%) 5169 (59.56%) 697 (33.93%)
12 31 (38.89%) 4781 (44.87%) 734 (100%)
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Solution S/N f1 f2 f3
13 32 (44.44%) 4090 (18.71%) 698 (35.71%)
14 32 (44.44%) 4809 (45.93%) 697 (33.93%)
15 32 (44.44%) 4813 (46.08%) 693 (26.79%)
16 34 (55.56%) 5138 (58.39%) 692 (25%)
17 38 (77.78%) 3837 (9.13%) 717 (69.64%)
18 39 (83.33%) 3857 (9.88%) 696 (32.14%)
19 39 (83.33%) 3962 (13.86%) 694 (28.57%)
20 40 (88.89%) 3730 (5.07%) 714 (64.29%)
21 41 (94.44%) 3747 (5.72%) 693 (26.79%)
22 42 (100%) 3596 (0%) 725 (83.93%)

Table A.15: Experimental results for instance 5-C
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
446.9 27* 3678 725

Solution S/N f1 f2 f3
1 27 (0%) 6609 (100%) 796 (100%)
2 28 (33.33%) 6237 (53.38%) 783 (78.33%)
3 28 (33.33%) 6598 (98.62%) 749 (21.67%)
4 29 (66.67%) 5946 (16.92%) 786 (83.33%)
5 29 (66.67%) 5965 (19.3%) 771 (58.33%)
6 29 (66.67%) 6073 (32.83%) 761 (41.67%)
7 30 (100%) 5811 (0%) 736 (0%)

Table A.16: Experimental results for instance 6-A
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
10146.2 19* 894 495

Solution S/N f1 f2 f3
1 21 (0%) 8741 (100%) 809 (100%)
2 22 (3.23%) 7720 (83.84%) 766 (79.81%)
3 23 (6.45%) 6071 (57.75%) 736 (65.73%)
4 24 (9.68%) 5416 (47.38%) 733 (64.32%)
5 25 (12.9%) 5355 (46.42%) 740 (67.61%)
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Solution S/N f1 f2 f3
6 25 (12.9%) 5744 (52.57%) 719 (57.75%)
7 25 (12.9%) 6625 (66.51%) 695 (46.48%)
8 26 (16.13%) 5073 (41.95%) 740 (67.61%)
9 26 (16.13%) 5570 (49.82%) 716 (56.34%)
10 27 (19.35%) 4763 (37.05%) 731 (63.38%)
11 27 (19.35%) 5591 (50.15%) 705 (51.17%)
12 28 (22.58%) 4801 (37.65%) 729 (62.44%)
13 28 (22.58%) 5752 (52.7%) 704 (50.7%)
14 29 (25.81%) 4574 (34.06%) 729 (62.44%)
15 29 (25.81%) 5300 (45.55%) 704 (50.7%)
16 30 (29.03%) 4184 (27.88%) 729 (62.44%)
17 30 (29.03%) 5126 (42.79%) 701 (49.3%)
18 31 (32.26%) 4176 (27.76%) 729 (62.44%)
19 31 (32.26%) 5085 (42.14%) 702 (49.77%)
20 32 (35.48%) 4098 (26.52%) 725 (60.56%)
21 32 (35.48%) 5109 (42.52%) 690 (44.13%)
22 33 (38.71%) 3758 (21.14%) 725 (60.56%)
23 33 (38.71%) 4801 (37.65%) 702 (49.77%)
24 34 (41.94%) 3078 (10.38%) 729 (62.44%)
25 34 (41.94%) 4357 (30.62%) 696 (46.95%)
26 34 (41.94%) 5876 (54.66%) 598 (0.94%)
27 35 (45.16%) 2438 (0.25%) 729 (62.44%)
28 35 (45.16%) 4334 (30.26%) 691 (44.6%)
29 35 (45.16%) 5020 (41.11%) 596 (0%)
30 36 (48.39%) 3673 (19.8%) 691 (44.6%)
31 37 (51.61%) 2422 (0%) 729 (62.44%)
32 37 (51.61%) 3567 (18.12%) 726 (61.03%)
33 37 (51.61%) 4765 (37.08%) 599 (1.41%)
34 38 (54.84%) 3672 (19.78%) 725 (60.56%)
35 39 (58.06%) 3592 (18.52%) 691 (44.6%)
36 39 (58.06%) 4698 (36.02%) 600 (1.88%)
37 40 (61.29%) 3572 (18.2%) 690 (44.13%)
38 41 (64.52%) 3322 (14.24%) 691 (44.6%)
39 41 (64.52%) 4451 (32.11%) 600 (1.88%)
40 42 (67.74%) 3179 (11.98%) 704 (50.7%)
41 42 (67.74%) 3209 (12.45%) 703 (50.23%)
42 43 (70.97%) 3183 (12.04%) 703 (50.23%)
43 43 (70.97%) 3232 (12.82%) 700 (48.83%)
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Solution S/N f1 f2 f3
44 43 (70.97%) 4181 (27.84%) 600 (1.88%)
45 44 (74.19%) 3256 (13.2%) 696 (46.95%)
46 44 (74.19%) 4306 (29.81%) 599 (1.41%)
47 45 (77.42%) 3545 (17.77%) 600 (1.88%)
48 46 (80.65%) 3375 (15.08%) 600 (1.88%)
49 49 (90.32%) 3224 (12.69%) 600 (1.88%)
50 49 (90.32%) 3359 (14.83%) 599 (1.41%)
51 52 (100%) 2427 (0.08%) 702 (49.77%)

Table A.17: Experimental results for instance 6-B
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
1764.1 29 2606 629

Solution S/N f1 f2 f3
1 30 (0%) 7762 (100%) 792 (88.6%)
2 31 (6.25%) 7327 (84.18%) 805 (100%)
3 31 (6.25%) 7404 (86.98%) 788 (85.09%)
4 31 (6.25%) 7489 (90.07%) 776 (74.56%)
5 32 (12.5%) 6307 (47.07%) 793 (89.47%)
6 33 (18.75%) 6431 (51.58%) 786 (83.33%)
7 33 (18.75%) 6992 (71.99%) 748 (50%)
8 34 (25%) 6258 (45.29%) 782 (79.82%)
9 34 (25%) 6478 (53.29%) 734 (37.72%)
10 35 (31.25%) 5852 (30.52%) 750 (51.75%)
11 35 (31.25%) 6055 (37.9%) 733 (36.84%)
12 36 (37.5%) 5463 (16.37%) 730 (34.21%)
13 36 (37.5%) 5881 (31.58%) 717 (22.81%)
14 36 (37.5%) 6119 (40.23%) 707 (14.04%)
15 37 (43.75%) 5451 (15.93%) 734 (37.72%)
16 38 (50%) 5417 (14.7%) 729 (33.33%)
17 38 (50%) 5784 (28.05%) 709 (15.79%)
18 39 (56.25%) 5372 (13.06%) 725 (29.82%)
19 39 (56.25%) 5511 (18.12%) 708 (14.91%)
20 40 (62.5%) 5533 (18.92%) 691 (0%)
21 41 (68.75%) 5207 (7.06%) 740 (42.98%)
22 41 (68.75%) 5425 (14.99%) 718 (23.68%)
23 41 (68.75%) 5472 (16.7%) 711 (17.54%)
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Solution S/N f1 f2 f3
24 42 (75%) 5196 (6.66%) 751 (52.63%)
25 42 (75%) 5205 (6.98%) 725 (29.82%)
26 42 (75%) 5408 (14.37%) 714 (20.18%)
27 43 (81.25%) 5128 (4.18%) 725 (29.82%)
28 44 (87.5%) 5032 (0.69%) 749 (50.88%)
29 44 (87.5%) 5272 (9.42%) 712 (18.42%)
30 44 (87.5%) 5289 (10.04%) 711 (17.54%)
31 46 (100%) 5013 (0%) 755 (56.14%)
32 46 (100%) 5089 (2.76%) 715 (21.05%)

Table A.18: Experimental results for instance 6-C
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
243.8 29 5376 779

Solution S/N f1 f2 f3
1 29 (0%) 11050 (100%) 893 (86.21%)
2 30 (20%) 10503 (85.72%) 909 (100%)
3 30 (20%) 10557 (87.13%) 842 (42.24%)
4 31 (40%) 8278 (27.62%) 832 (33.62%)
5 32 (60%) 7595 (9.79%) 870 (66.38%)
6 32 (60%) 7798 (15.09%) 828 (30.17%)
7 33 (80%) 7471 (6.55%) 812 (16.38%)
8 34 (100%) 7220 (0%) 793 (0%)

Table A.19: Experimental results for instance 7-A
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
24296.1 27* 1340 565

Solution S/N f1 f2 f3
1 28 (0%) 12210 (100%) 886 (100%)
2 29 (2.38%) 9411 (69.05%) 868 (91.39%)
3 30 (4.76%) 9326 (68.11%) 868 (91.39%)
4 30 (4.76%) 11862 (96.15%) 860 (87.56%)
5 31 (7.14%) 8807 (62.37%) 839 (77.51%)
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Solution S/N f1 f2 f3
6 32 (9.52%) 8302 (56.78%) 868 (91.39%)
7 32 (9.52%) 8647 (60.6%) 850 (82.78%)
8 33 (11.9%) 7803 (51.27%) 832 (74.16%)
9 34 (14.29%) 6938 (41.7%) 860 (87.56%)
10 34 (14.29%) 9437 (69.34%) 784 (51.2%)
11 35 (16.67%) 7053 (42.97%) 847 (81.34%)
12 35 (16.67%) 7591 (48.92%) 832 (74.16%)
13 35 (16.67%) 8308 (56.85%) 787 (52.63%)
14 36 (19.05%) 6250 (34.09%) 831 (73.68%)
15 37 (21.43%) 6067 (32.07%) 832 (74.16%)
16 37 (21.43%) 6843 (40.65%) 785 (51.67%)
17 38 (23.81%) 5431 (25.04%) 832 (74.16%)
18 38 (23.81%) 5597 (26.87%) 831 (73.68%)
19 38 (23.81%) 6054 (31.93%) 827 (71.77%)
20 39 (26.19%) 5794 (29.05%) 830 (73.21%)
21 39 (26.19%) 6560 (37.52%) 789 (53.59%)
22 40 (28.57%) 4965 (19.88%) 831 (73.68%)
23 40 (28.57%) 5527 (26.1%) 784 (51.2%)
24 41 (30.95%) 4863 (18.75%) 780 (49.28%)
25 42 (33.33%) 4221 (11.66%) 831 (73.68%)
26 42 (33.33%) 5880 (30%) 754 (36.84%)
27 44 (38.1%) 4150 (10.87%) 828 (72.25%)
28 44 (38.1%) 4565 (15.46%) 787 (52.63%)
29 45 (40.48%) 3642 (5.25%) 827 (71.77%)
30 46 (42.86%) 4741 (17.41%) 786 (52.15%)
31 47 (45.24%) 4556 (15.36%) 789 (53.59%)
32 48 (47.62%) 3582 (4.59%) 827 (71.77%)
33 48 (47.62%) 3927 (8.4%) 784 (51.2%)
34 49 (50%) 3556 (4.3%) 827 (71.77%)
35 49 (50%) 3759 (6.55%) 789 (53.59%)
36 50 (52.38%) 3550 (4.24%) 827 (71.77%)
37 51 (54.76%) 3715 (6.06%) 789 (53.59%)
38 52 (57.14%) 3479 (3.45%) 829 (72.73%)
39 52 (57.14%) 3481 (3.47%) 827 (71.77%)
40 52 (57.14%) 3666 (5.52%) 789 (53.59%)
41 54 (61.9%) 5786 (28.96%) 677 (0%)
42 55 (64.29%) 3446 (3.09%) 827 (71.77%)
43 55 (64.29%) 3569 (4.45%) 789 (53.59%)
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Solution S/N f1 f2 f3
44 55 (64.29%) 3689 (5.77%) 783 (50.72%)
45 55 (64.29%) 3936 (8.5%) 779 (48.8%)
46 55 (64.29%) 5310 (23.7%) 677 (0%)
47 56 (66.67%) 3412 (2.71%) 827 (71.77%)
48 57 (69.05%) 3167 (0%) 827 (71.77%)
49 57 (69.05%) 3593 (4.71%) 788 (53.11%)
50 57 (69.05%) 5148 (21.91%) 677 (0%)
51 58 (71.43%) 4894 (19.1%) 677 (0%)
52 60 (76.19%) 3255 (0.97%) 789 (53.59%)
53 62 (80.95%) 4829 (18.38%) 677 (0%)
54 67 (92.86%) 4634 (16.22%) 677 (0%)
55 70 (100%) 4477 (14.49%) 677 (0%)

Table A.20: Experimental results for instance 7-B
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
5655.8 39 4170 744

Solution S/N f1 f2 f3
1 40 (0%) 13085 (97.89%) 905 (91.92%)
2 41 (4.76%) 13186 (100%) 900 (86.87%)
3 42 (9.52%) 12296 (81.37%) 887 (73.74%)
4 42 (9.52%) 12658 (88.95%) 882 (68.69%)
5 42 (9.52%) 12998 (96.06%) 856 (42.42%)
6 43 (14.29%) 12515 (85.95%) 835 (21.21%)
7 44 (19.05%) 11772 (70.4%) 814 (0%)
8 45 (23.81%) 11341 (61.38%) 913 (100%)
9 45 (23.81%) 11663 (68.12%) 834 (20.2%)
10 46 (28.57%) 10976 (53.74%) 913 (100%)
11 46 (28.57%) 11009 (54.43%) 863 (49.49%)
12 47 (33.33%) 11503 (64.77%) 841 (27.27%)
13 48 (38.1%) 11660 (68.06%) 832 (18.18%)
14 49 (42.86%) 10188 (37.24%) 834 (20.2%)
15 50 (47.62%) 11286 (60.23%) 829 (15.15%)
16 51 (52.38%) 9444 (21.67%) 841 (27.27%)
17 52 (57.14%) 10584 (45.53%) 828 (14.14%)
18 53 (61.9%) 9160 (15.72%) 855 (41.41%)
19 55 (71.43%) 9350 (19.7%) 844 (30.3%)

Continued on the next page

252



Table A.20 – Continued from the previous page
Solution S/N f1 f2 f3
20 55 (71.43%) 9528 (23.42%) 840 (26.26%)
21 56 (76.19%) 8603 (4.06%) 869 (55.56%)
22 56 (76.19%) 8886 (9.99%) 864 (50.51%)
23 57 (80.95%) 8476 (1.4%) 847 (33.33%)
24 57 (80.95%) 8534 (2.62%) 841 (27.27%)
25 59 (90.48%) 8455 (0.96%) 843 (29.29%)
26 60 (95.24%) 8810 (8.39%) 828 (14.14%)
27 61 (100%) 8409 (0%) 860 (46.46%)
28 61 (100%) 8727 (6.66%) 838 (24.24%)

Table A.21: Experimental results for instance 7-C
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
728.1 41 7160 906

Solution S/N f1 f2 f3
1 41 (0%) 12571 (100%) 992 (65.79%)
2 42 (16.67%) 11864 (68.49%) 968 (2.63%)
3 44 (50%) 10835 (22.64%) 999 (84.21%)
4 44 (50%) 11105 (34.67%) 986 (50%)
5 45 (66.67%) 10811 (21.57%) 1005 (100%)
6 45 (66.67%) 11665 (59.63%) 967 (0%)
7 46 (83.33%) 10327 (0%) 989 (57.89%)
8 46 (83.33%) 10404 (3.43%) 976 (23.68%)
9 46 (83.33%) 10407 (3.57%) 974 (18.42%)
10 47 (100%) 10343 (0.71%) 978 (28.95%)

Table A.22: Experimental results for instance 8-A
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
39275.9 21 864 535

Solution S/N f1 f2 f3
1 22 (0%) 3190 (60.87%) 824 (97.09%)
2 23 (3.85%) 2910 (46.45%) 824 (97.09%)
3 24 (7.69%) 2684 (34.81%) 826 (99.03%)

Continued on the next page

253



Table A.22 – Continued from the previous page
Solution S/N f1 f2 f3
4 26 (15.38%) 2437 (22.09%) 826 (99.03%)
5 26 (15.38%) 2496 (25.13%) 824 (97.09%)
6 27 (19.23%) 2432 (21.83%) 826 (99.03%)
7 28 (23.08%) 2298 (14.93%) 824 (97.09%)
8 28 (23.08%) 3652 (84.65%) 726 (1.94%)
9 29 (26.92%) 2274 (13.7%) 824 (97.09%)
10 29 (26.92%) 3950 (100%) 724 (0%)
11 30 (30.77%) 2268 (13.39%) 826 (99.03%)
12 30 (30.77%) 3031 (52.68%) 726 (1.94%)
13 31 (34.62%) 2735 (37.44%) 726 (1.94%)
14 32 (38.46%) 2719 (36.61%) 726 (1.94%)
15 33 (42.31%) 2119 (5.72%) 827 (100%)
16 34 (46.15%) 2113 (5.41%) 826 (99.03%)
17 34 (46.15%) 2604 (30.69%) 726 (1.94%)
18 36 (53.85%) 2575 (29.2%) 726 (1.94%)
19 38 (61.54%) 2059 (2.63%) 826 (99.03%)
20 38 (61.54%) 2066 (2.99%) 824 (97.09%)
21 41 (73.08%) 2008 (0%) 824 (97.09%)
22 42 (76.92%) 2464 (23.48%) 726 (1.94%)
23 44 (84.62%) 2358 (18.02%) 726 (1.94%)
24 48 (100%) 2337 (16.94%) 726 (1.94%)

Table A.23: Experimental results for instance 8-B
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
5159.9 26 2884 725

Solution S/N f1 f2 f3
1 30 (0%) 7188 (58.04%) 860 (94%)
2 31 (6.67%) 6793 (44.61%) 851 (76%)
3 32 (13.33%) 6499 (34.61%) 849 (72%)
4 32 (13.33%) 8422 (100%) 848 (70%)
5 33 (20%) 6307 (28.09%) 850 (74%)
6 33 (20%) 7359 (63.86%) 829 (32%)
7 34 (26.67%) 6184 (23.9%) 848 (70%)
8 34 (26.67%) 6206 (24.65%) 846 (66%)
9 34 (26.67%) 6300 (27.85%) 841 (56%)
10 34 (26.67%) 6931 (49.3%) 838 (50%)

Continued on the next page

254



Table A.23 – Continued from the previous page
Solution S/N f1 f2 f3
11 35 (33.33%) 6401 (31.28%) 836 (46%)
12 35 (33.33%) 6963 (50.39%) 814 (2%)
13 36 (40%) 6377 (30.47%) 827 (28%)
14 37 (46.67%) 6127 (21.97%) 824 (22%)
15 37 (46.67%) 6630 (39.07%) 816 (6%)
16 38 (53.33%) 5785 (10.34%) 837 (48%)
17 38 (53.33%) 5983 (17.07%) 813 (0%)
18 40 (66.67%) 5592 (3.77%) 856 (86%)
19 40 (66.67%) 5737 (8.7%) 831 (36%)
20 41 (73.33%) 5524 (1.46%) 845 (64%)
21 42 (80%) 5517 (1.22%) 814 (2%)
22 44 (93.33%) 5892 (13.97%) 813 (0%)
23 45 (100%) 5481 (0%) 863 (100%)

Table A.24: Experimental results for instance 8-C
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
450.54 34 5774 882

Solution S/N f1 f2 f3
1 34 (0%) 10883 (75.82%) 991 (100%)
2 34 (0%) 10914 (76.69%) 989 (97.59%)
3 34 (0%) 11744 (100%) 968 (72.29%)
4 35 (25%) 9019 (23.48%) 911 (3.61%)
5 35 (25%) 9026 (23.67%) 909 (1.2%)
6 36 (50%) 8455 (7.64%) 921 (15.66%)
7 36 (50%) 8478 (8.28%) 918 (12.05%)
8 36 (50%) 8484 (8.45%) 912 (4.82%)
9 37 (75%) 8336 (4.3%) 912 (4.82%)
10 37 (75%) 8469 (8.03%) 908 (0%)
11 38 (100%) 8183 (0%) 941 (39.76%)
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Table A.25: Experimental results for instance 9-A
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
3054.4 10 339 418

Solution S/N f1 f2 f3
1 11 (0%) 2282 (100%) 646 (100%)
2 12 (3.85%) 2016 (83.82%) 644 (98.62%)
3 12 (3.85%) 2090 (88.32%) 638 (94.48%)
4 13 (7.69%) 1822 (72.02%) 636 (93.1%)
5 14 (11.54%) 1655 (61.86%) 598 (66.9%)
6 15 (15.38%) 2096 (88.69%) 584 (57.24%)
7 16 (19.23%) 1552 (55.6%) 584 (57.24%)
8 17 (23.08%) 1243 (36.8%) 600 (68.28%)
9 17 (23.08%) 1274 (38.69%) 577 (52.41%)
10 19 (30.77%) 1059 (25.61%) 589 (60.69%)
11 19 (30.77%) 1217 (35.22%) 584 (57.24%)
12 20 (34.62%) 942 (18.49%) 602 (69.66%)
13 20 (34.62%) 1037 (24.27%) 586 (58.62%)
14 20 (34.62%) 1254 (37.47%) 580 (54.48%)
15 21 (38.46%) 904 (16.18%) 586 (58.62%)
16 21 (38.46%) 1818 (71.78%) 503 (1.38%)
17 22 (42.31%) 841 (12.35%) 586 (58.62%)
18 23 (46.15%) 839 (12.23%) 586 (58.62%)
19 23 (46.15%) 1209 (34.73%) 503 (1.38%)
20 24 (50%) 752 (6.93%) 586 (58.62%)
21 24 (50%) 1333 (42.27%) 502 (0.69%)
22 25 (53.85%) 973 (20.38%) 577 (52.41%)
23 25 (53.85%) 1279 (38.99%) 502 (0.69%)
24 26 (57.69%) 721 (5.05%) 589 (60.69%)
25 26 (57.69%) 746 (6.57%) 587 (59.31%)
26 27 (61.54%) 703 (3.95%) 589 (60.69%)
27 27 (61.54%) 1198 (34.06%) 503 (1.38%)
28 28 (65.38%) 1145 (30.84%) 502 (0.69%)
29 29 (69.23%) 638 (0%) 587 (59.31%)
30 32 (80.77%) 1022 (23.36%) 503 (1.38%)
31 35 (92.31%) 903 (16.12%) 503 (1.38%)
32 35 (92.31%) 914 (16.79%) 502 (0.69%)
33 37 (100%) 1574 (56.93%) 501 (0%)
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Table A.26: Experimental results for instance 9-B
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
1226.9 21 1643 530

Solution S/N f1 f2 f3
1 21 (0%) 6824 (100%) 727 (100%)
2 22 (6.25%) 6080 (77.58%) 694 (78%)
3 23 (12.5%) 5904 (72.27%) 681 (69.33%)
4 23 (12.5%) 6095 (78.03%) 676 (66%)
5 24 (18.75%) 5767 (68.14%) 683 (70.67%)
6 24 (18.75%) 5801 (69.17%) 678 (67.33%)
7 25 (25%) 5663 (65.01%) 649 (48%)
8 25 (25%) 5794 (68.96%) 624 (31.33%)
9 26 (31.25%) 4945 (43.37%) 642 (43.33%)
10 26 (31.25%) 5643 (64.41%) 599 (14.67%)
11 27 (37.5%) 4275 (23.18%) 646 (46%)
12 27 (37.5%) 4326 (24.71%) 645 (45.33%)
13 27 (37.5%) 5641 (64.35%) 598 (14%)
14 28 (43.75%) 4268 (22.97%) 635 (38.67%)
15 28 (43.75%) 4473 (29.14%) 585 (5.33%)
16 29 (50%) 4110 (18.2%) 635 (38.67%)
17 30 (56.25%) 4587 (32.58%) 580 (2%)
18 31 (62.5%) 4339 (25.11%) 595 (12%)
19 32 (68.75%) 3834 (9.89%) 645 (45.33%)
20 32 (68.75%) 3856 (10.55%) 635 (38.67%)
21 32 (68.75%) 4282 (23.39%) 599 (14.67%)
22 33 (75%) 3741 (7.08%) 618 (27.33%)
23 33 (75%) 3827 (9.67%) 591 (9.33%)
24 34 (81.25%) 3780 (8.26%) 615 (25.33%)
25 35 (87.5%) 3693 (5.64%) 577 (0%)
26 36 (93.75%) 3511 (0.15%) 618 (27.33%)
27 36 (93.75%) 3578 (2.17%) 589 (8%)
28 37 (100%) 3506 (0%) 632 (36.67%)
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Table A.27: Experimental results for instance 9-C
(Heuristic Approach 3 - Delayed-TSPTW-3)

Runtime (sec) LBf1 LBf2 Reference value for f3
193.65 25 3319 629

Solution S/N f1 f2 f3
1 25 (0%) 5459 (67.52%) 699 (100%)
2 25 (0%) 5543 (76.5%) 693 (86.36%)
3 25 (0%) 5763 (100%) 683 (63.64%)
4 26 (25%) 5257 (45.94%) 692 (84.09%)
5 26 (25%) 5398 (61%) 674 (43.18%)
6 27 (50%) 4859 (3.42%) 683 (63.64%)
7 27 (50%) 5013 (19.87%) 660 (11.36%)
8 27 (50%) 5017 (20.3%) 655 (0%)
9 28 (75%) 4827 (0%) 676 (47.73%)
10 29 (100%) 4831 (0.43%) 675 (45.45%)
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Appendix B

Experimental Results of
Heuristic Approach 3 for
Problem 3 (SCD-VRPTW-3)

Table B.1: Experimental results for instance 1 - rc201-A1
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
26.6 0 0 2609.92

Solution S/N f1 f2 f3
1 0 (0%) 0 (0%) 2565.82 (100%)
2 1 (20%) 53.96 (25.56%) 2560.49 (85.3%)
3 2 (40%) 77.89 (36.89%) 2546.16 (45.78%)
4 3 (60%) 151.75 (71.88%) 2533.65 (11.28%)
5 4 (80%) 198.6 (94.07%) 2532.8 (8.94%)
6 5 (100%) 211.12 (100%) 2529.56 (0%)

Table B.2: Experimental results for instance 2 - rc201-A2
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
26.2 0 0 2609.92

Solution S/N f1 f2 f3
1 0 (0%) 0 (0%) 2675.6 (100%)
2 1 (14.29%) 53.96 (25.29%) 2665.17 (83.09%)
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Solution S/N f1 f2 f3
3 1 (14.29%) 127.34 (59.69%) 2650.04 (58.55%)
4 2 (28.57%) 156.92 (73.55%) 2646.97 (53.58%)
5 3 (42.86%) 86.16 (40.38%) 2652.82 (63.06%)
6 3 (42.86%) 164.63 (77.16%) 2645.21 (50.72%)
7 3 (42.86%) 184.71 (86.58%) 2633.82 (32.25%)
8 4 (57.14%) 85 (39.84%) 2655.06 (66.69%)
9 4 (57.14%) 213.35 (100%) 2613.93 (0%)
10 5 (71.43%) 123.45 (57.86%) 2647.99 (55.23%)
11 6 (85.71%) 122.29 (57.32%) 2650.23 (58.86%)
12 6 (85.71%) 142.37 (66.73%) 2638.84 (40.39%)
13 6 (85.71%) 177.41 (83.15%) 2633.33 (31.46%)
14 6 (85.71%) 197.49 (92.57%) 2622.36 (13.67%)
15 7 (100%) 176.25 (82.61%) 2635.57 (35.09%)
16 7 (100%) 196.33 (92.02%) 2624.6 (17.3%)

Table B.3: Experimental results for instance 3 - rc201-A3
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
13.4 5 172.09 2609.92

Solution S/N f1 f2 f3
1 6 (0%) 307.2 (60.9%) 2896.97 (100%)
2 6 (0%) 319.74 (97.27%) 2874.41 (21.15%)
3 6 (0%) 320.68 (100%) 2868.36 (0%)
4 7 (100%) 286.2 (0%) 2893.7 (88.57%)
5 7 (100%) 298.74 (36.37%) 2871.14 (9.72%)

Table B.4: Experimental results for instance 4 - rc201-A4
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
12.5 7 396.17 2609.92

Solution S/N f1 f2 f3
1 8 (0%) 601.07 (0%) 3032.77 (100%)
2 8 (0%) 605.52 (81.65%) 2998.08 (21.89%)
3 8 (0%) 606.52 (100%) 2994.81 (14.52%)
4 9 (100%) 603.43 (43.3%) 2994.41 (13.62%)
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Solution S/N f1 f2 f3
5 9 (100%) 604.37 (60.55%) 2988.36 (0%)

Table B.5: Experimental results for instance 5 - rc201-A5
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
13.2 7 440.54 2609.92

Solution S/N f1 f2 f3
1 8 (0%) 651.27 (0%) 3037.61 (100%)
2 8 (0%) 661.07 (2.72%) 3032.77 (90.26%)
3 8 (0%) 710.88 (16.57%) 2994.41 (13.04%)
4 8 (0%) 711.88 (16.85%) 2991.14 (6.46%)
5 9 (100%) 703.45 (14.5%) 3016.97 (58.45%)
6 9 (100%) 704.45 (14.78%) 3013.7 (51.87%)
7 9 (100%) 1011.03 (100%) 2987.93 (0%)

Table B.6: Experimental results for instance 6 - rc201-A6
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
13.4 7 440.54 2609.92

Solution S/N f1 f2 f3
1 8 (0%) 651.27 (0%) 3037.61 (100%)
2 8 (0%) 661.07 (16.18%) 3032.77 (90.17%)
3 8 (0%) 710.88 (98.45%) 2994.41 (12.28%)
4 8 (0%) 711.82 (100%) 2988.36 (0%)
5 9 (100%) 703.45 (86.18%) 3016.97 (58.09%)
6 9 (100%) 704.45 (87.83%) 3013.7 (51.45%)

Table B.7: Experimental results for instance 7 - rc201-A7
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
10.5 7 440.54 2609.92

Solution S/N f1 f2 f3
1 8 (NaN%) 651.27 (0%) 3037.61 (100%)
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Solution S/N f1 f2 f3
2 8 (NaN%) 661.07 (100%) 3032.77 (0%)

Table B.8: Experimental results for instance 8 - rc201-A8
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
13 7 440.54 2609.92

Solution S/N f1 f2 f3
1 8 (0%) 651.27 (0%) 3037.61 (100%)
2 8 (0%) 661.07 (2.72%) 3032.77 (90.26%)
3 8 (0%) 710.88 (16.57%) 2994.41 (13.04%)
4 8 (0%) 711.88 (16.85%) 2991.14 (6.46%)
5 9 (100%) 703.45 (14.5%) 3016.97 (58.45%)
6 9 (100%) 704.45 (14.78%) 3013.7 (51.87%)
7 9 (100%) 1011.03 (100%) 2987.93 (0%)

Table B.9: Experimental results for instance 9 - rc201-B1
(Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
3747.3 0 0 3358.42

Solution S/N f1 f2 f3
1 0 (0%) 0 (0%) 3251.37 (100%)
2 2 (2.56%) 42.86 (0.22%) 3198.74 (95.71%)
3 3 (3.85%) 42.18 (0.22%) 3199.42 (95.76%)
4 4 (5.13%) 42.81 (0.22%) 3198.92 (95.72%)
5 17 (21.79%) 1307.03 (6.82%) 3005.07 (79.92%)
6 18 (23.08%) 1266.05 (6.61%) 3005.07 (79.92%)
7 18 (23.08%) 1328.1 (6.93%) 3004.2 (79.85%)
8 18 (23.08%) 1330.32 (6.94%) 3003.09 (79.75%)
9 18 (23.08%) 1857.29 (9.69%) 2999.58 (79.47%)
10 20 (25.64%) 1909.02 (9.96%) 2999.4 (79.45%)
11 21 (26.92%) 1035.44 (5.4%) 3114.66 (88.85%)
12 21 (26.92%) 1440.3 (7.52%) 2984.62 (78.25%)
13 22 (28.21%) 1131.97 (5.91%) 3002.68 (79.72%)
14 22 (28.21%) 1891.67 (9.87%) 2983.54 (78.16%)
15 23 (29.49%) 1479.44 (7.72%) 2984.44 (78.23%)
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Solution S/N f1 f2 f3
16 23 (29.49%) 1504.8 (7.85%) 2971.92 (77.21%)
17 23 (29.49%) 2041.28 (10.65%) 2971.78 (77.2%)
18 24 (30.77%) 4414.86 (23.04%) 2910.35 (72.19%)
19 25 (32.05%) 2820.71 (14.72%) 2913.13 (72.42%)
20 25 (32.05%) 4044.18 (21.1%) 2910.35 (72.19%)
21 25 (32.05%) 4418.31 (23.05%) 2910.24 (72.18%)
22 26 (33.33%) 1090.1 (5.69%) 2988.23 (78.54%)
23 26 (33.33%) 2887.17 (15.06%) 2908.37 (72.03%)
24 26 (33.33%) 2895.5 (15.11%) 2899.9 (71.34%)
25 26 (33.33%) 3935.9 (20.54%) 2898.37 (71.22%)
26 28 (35.9%) 3921.36 (20.46%) 2898.37 (71.22%)
27 29 (37.18%) 1380.54 (7.2%) 2865.26 (68.52%)
28 30 (38.46%) 1318.46 (6.88%) 2883.31 (69.99%)
29 30 (38.46%) 1366.2 (7.13%) 2867.87 (68.73%)
30 31 (39.74%) 1310.08 (6.84%) 2883.31 (69.99%)
31 31 (39.74%) 1377.16 (7.19%) 2859.46 (68.04%)
32 33 (42.31%) 1969.44 (10.28%) 2852.63 (67.49%)
33 35 (44.87%) 2608.63 (13.61%) 2847.71 (67.08%)
34 37 (47.44%) 2568.81 (13.4%) 2842.2 (66.64%)
35 39 (50%) 2336.98 (12.19%) 2842.2 (66.64%)
36 43 (55.13%) 4848.73 (25.3%) 2763.47 (60.22%)
37 47 (60.26%) 5859.01 (30.57%) 2744.83 (58.7%)
38 48 (61.54%) 6596.19 (34.42%) 2535.25 (41.61%)
39 49 (62.82%) 6537.3 (34.11%) 2534.42 (41.54%)
40 51 (65.38%) 6383.3 (33.31%) 2744.83 (58.7%)
41 51 (65.38%) 6524.1 (34.04%) 2536.34 (41.69%)
42 52 (66.67%) 6885.32 (35.93%) 2533.49 (41.46%)
43 53 (67.95%) 4896.58 (25.55%) 2728.67 (57.38%)
44 54 (69.23%) 5372.81 (28.03%) 2696.71 (54.77%)
45 54 (69.23%) 5752.42 (30.01%) 2692.08 (54.39%)
46 54 (69.23%) 7658 (39.96%) 2533.01 (41.42%)
47 55 (70.51%) 5012.43 (26.15%) 2719.82 (56.66%)
48 56 (71.79%) 5038.85 (26.29%) 2715.66 (56.32%)
49 56 (71.79%) 10078.38 (52.59%) 2459.45 (35.42%)
50 57 (73.08%) 10125.62 (52.83%) 2452.72 (34.88%)
51 58 (74.36%) 10228.62 (53.37%) 2452.2 (34.83%)
52 63 (80.77%) 16487.17 (86.03%) 2438.38 (33.71%)
53 64 (82.05%) 16703.16 (87.15%) 2423.82 (32.52%)
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54 66 (84.62%) 15950.46 (83.22%) 2319.51 (24.01%)
55 67 (85.9%) 16910.82 (88.24%) 2280.82 (20.86%)
56 67 (85.9%) 16946.52 (88.42%) 2279.68 (20.77%)
57 67 (85.9%) 16964.21 (88.51%) 2279.33 (20.74%)
58 68 (87.18%) 17109.24 (89.27%) 2278.08 (20.64%)
59 68 (87.18%) 17127.27 (89.37%) 2274.89 (20.38%)
60 68 (87.18%) 17190.65 (89.7%) 2196.41 (13.98%)
61 68 (87.18%) 18277.57 (95.37%) 2192.67 (13.67%)
62 69 (88.46%) 15127.89 (78.93%) 2401.03 (30.66%)
63 69 (88.46%) 16875.14 (88.05%) 2274.9 (20.38%)
64 69 (88.46%) 17080.13 (89.12%) 2274.46 (20.34%)
65 69 (88.46%) 17261.13 (90.06%) 2195.8 (13.93%)
66 69 (88.46%) 18258.13 (95.27%) 2192.66 (13.67%)
67 70 (89.74%) 14729.14 (76.85%) 2442.21 (34.02%)
68 70 (89.74%) 15769.93 (82.28%) 2222.26 (16.08%)
69 70 (89.74%) 15808.48 (82.48%) 2211.29 (15.19%)
70 70 (89.74%) 16984.29 (88.62%) 2127.57 (8.36%)
71 71 (91.03%) 15584.91 (81.32%) 2234.7 (17.1%)
72 71 (91.03%) 16908.15 (88.22%) 2127.57 (8.36%)
73 72 (92.31%) 16853.22 (87.94%) 2127.57 (8.36%)
74 73 (93.59%) 16578.76 (86.5%) 2130.74 (8.62%)
75 73 (93.59%) 16632.99 (86.79%) 2119.77 (7.73%)
76 73 (93.59%) 16808.08 (87.7%) 2118.71 (7.64%)
77 73 (93.59%) 16848.34 (87.91%) 2117.03 (7.5%)
78 73 (93.59%) 19165.47 (100%) 2028.06 (0.25%)
79 74 (94.87%) 18996.34 (99.12%) 2029.24 (0.34%)
80 75 (96.15%) 19099.63 (99.66%) 2025.02 (0%)
81 78 (100%) 18902.97 (98.63%) 2115.7 (7.39%)

Table B.10: Experimental results for instance 10 - rc201-
B2 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
3173.7 0 0 3358.42

Solution S/N f1 f2 f3
1 4 (0%) 504.6 (2.45%) 3315.79 (100%)
2 5 (1.54%) 337.98 (1.4%) 3312.94 (99.72%)
3 5 (1.54%) 462.23 (2.18%) 3305.53 (99.01%)
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4 6 (3.08%) 332.55 (1.37%) 3311.78 (99.61%)
5 6 (3.08%) 345.18 (1.45%) 3308.68 (99.31%)
6 6 (3.08%) 363.94 (1.57%) 3297.75 (98.26%)
7 6 (3.08%) 598.45 (3.03%) 3293.65 (97.86%)
8 6 (3.08%) 652.96 (3.38%) 3290.46 (97.55%)
9 8 (6.15%) 113.82 (0%) 3281.94 (96.73%)
10 10 (9.23%) 2227.91 (13.24%) 3235.2 (92.21%)
11 10 (9.23%) 2228.41 (13.24%) 3235.05 (92.19%)
12 10 (9.23%) 2246.24 (13.35%) 3230.44 (91.75%)
13 11 (10.77%) 1572.76 (9.14%) 3277.32 (96.28%)
14 11 (10.77%) 1613.34 (9.39%) 3274.03 (95.96%)
15 11 (10.77%) 1702.45 (9.95%) 3254.21 (94.05%)
16 11 (10.77%) 2352.43 (14.02%) 3228.98 (91.61%)
17 12 (12.31%) 2038 (12.05%) 3240.91 (92.76%)
18 12 (12.31%) 2431.32 (14.51%) 3226.21 (91.34%)
19 13 (13.85%) 1578.77 (9.17%) 3272.46 (95.81%)
20 13 (13.85%) 2426 (14.48%) 3226.3 (91.35%)
21 19 (23.08%) 1596.77 (9.29%) 3270.56 (95.63%)
22 25 (32.31%) 3852.64 (23.41%) 3181.79 (87.05%)
23 26 (33.85%) 3577.04 (21.69%) 3193.5 (88.18%)
24 26 (33.85%) 4088.65 (24.89%) 3177.78 (86.66%)
25 27 (35.38%) 4758.81 (29.09%) 3166.81 (85.6%)
26 28 (36.92%) 2787.65 (16.74%) 3165.82 (85.5%)
27 28 (36.92%) 2788 (16.75%) 3165.82 (85.5%)
28 29 (38.46%) 2953.46 (17.78%) 3085.89 (77.77%)
29 30 (40%) 2255.52 (13.41%) 3112.52 (80.35%)
30 30 (40%) 2795.23 (16.79%) 3095.15 (78.67%)
31 30 (40%) 2827.02 (16.99%) 3085.89 (77.77%)
32 31 (41.54%) 2318.1 (13.8%) 3111.84 (80.28%)
33 31 (41.54%) 2330.8 (13.88%) 3110.13 (80.12%)
34 31 (41.54%) 4641.08 (28.35%) 3079.48 (77.15%)
35 31 (41.54%) 4834.18 (29.56%) 3062.15 (75.48%)
36 31 (41.54%) 6033.06 (37.07%) 2959.53 (65.56%)
37 32 (43.08%) 2766.39 (16.61%) 3095.15 (78.67%)
38 32 (43.08%) 5648.6 (34.66%) 3046.81 (74%)
39 32 (43.08%) 6883.91 (42.4%) 2957.2 (65.33%)
40 33 (44.62%) 2254.04 (13.4%) 3112.52 (80.35%)
41 33 (44.62%) 5537.7 (33.97%) 3052.94 (74.59%)
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42 33 (44.62%) 6255.85 (38.46%) 2957.83 (65.39%)
43 33 (44.62%) 6893.42 (42.46%) 2955.68 (65.19%)
44 34 (46.15%) 6597.14 (40.6%) 2955.96 (65.21%)
45 46 (64.62%) 6469.8 (39.8%) 2703.15 (40.77%)
46 47 (66.15%) 6771.29 (41.69%) 2702.96 (40.76%)
47 48 (67.69%) 6545.16 (40.27%) 2691.26 (39.62%)
48 50 (70.77%) 6665.81 (41.03%) 2620.59 (32.79%)
49 50 (70.77%) 6678.82 (41.11%) 2607.58 (31.53%)
50 58 (83.08%) 15201.86 (94.48%) 2467.86 (18.03%)
51 59 (84.62%) 15317.32 (95.21%) 2466.94 (17.94%)
52 60 (86.15%) 15475.93 (96.2%) 2353.47 (6.97%)
53 61 (87.69%) 15291.96 (95.05%) 2455.68 (16.85%)
54 61 (87.69%) 15448.39 (96.03%) 2354.71 (7.09%)
55 62 (89.23%) 15556.63 (96.71%) 2344.56 (6.11%)
56 63 (90.77%) 11247.11 (69.72%) 2480.18 (19.22%)
57 63 (90.77%) 13517.6 (83.94%) 2360.21 (7.62%)
58 63 (90.77%) 13539.11 (84.07%) 2357.82 (7.39%)
59 64 (92.31%) 13265.59 (82.36%) 2364.77 (8.06%)
60 64 (92.31%) 13397.72 (83.19%) 2362.26 (7.82%)
61 64 (92.31%) 15938 (99.09%) 2309.79 (2.75%)
62 65 (93.85%) 12661.36 (78.58%) 2478.79 (19.08%)
63 65 (93.85%) 14509.78 (90.15%) 2351.32 (6.76%)
64 66 (95.38%) 14651.95 (91.04%) 2349.42 (6.58%)
65 66 (95.38%) 14921.01 (92.73%) 2342.24 (5.88%)
66 66 (95.38%) 16082.58 (100%) 2289.23 (0.76%)
67 67 (96.92%) 15331.82 (95.3%) 2338.58 (5.53%)
68 67 (96.92%) 15556.73 (96.71%) 2335.11 (5.19%)
69 67 (96.92%) 15560.73 (96.73%) 2334.31 (5.12%)
70 67 (96.92%) 15580.68 (96.86%) 2329.32 (4.63%)
71 67 (96.92%) 15591.75 (96.93%) 2328.66 (4.57%)
72 67 (96.92%) 15607.43 (97.02%) 2326.62 (4.37%)
73 67 (96.92%) 15614.33 (97.07%) 2326.12 (4.32%)
74 67 (96.92%) 15939.11 (99.1%) 2289.62 (0.8%)
75 67 (96.92%) 15968.73 (99.29%) 2281.39 (0%)
76 68 (98.46%) 15389.11 (95.66%) 2335.18 (5.2%)
77 68 (98.46%) 15622.46 (97.12%) 2321.03 (3.83%)
78 68 (98.46%) 15659.62 (97.35%) 2319.52 (3.69%)
79 68 (98.46%) 15778.68 (98.1%) 2316.95 (3.44%)
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80 68 (98.46%) 15878.85 (98.72%) 2311.34 (2.9%)
81 69 (100%) 13236.8 (82.18%) 2475.58 (18.77%)

Table B.11: Experimental results for instance 11 - rc201-
B3 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
3451.5 0 0 3358.42

Solution S/N f1 f2 f3
1 3 (0%) 39.8 (0%) 3285.71 (100%)
2 4 (1.35%) 156.72 (0.63%) 3274.52 (99.14%)
3 9 (8.11%) 1478.06 (7.81%) 3259.73 (98.01%)
4 10 (9.46%) 1741.47 (9.24%) 3195.37 (93.08%)
5 11 (10.81%) 463.52 (2.3%) 3192.17 (92.84%)
6 11 (10.81%) 1418.65 (7.49%) 3145.64 (89.28%)
7 12 (12.16%) 234.64 (1.06%) 3206.63 (93.95%)
8 12 (12.16%) 2215.36 (11.81%) 3144.24 (89.17%)
9 13 (13.51%) 243.09 (1.1%) 3179.35 (91.86%)
10 13 (13.51%) 243.19 (1.1%) 3179.25 (91.85%)
11 13 (13.51%) 245.56 (1.12%) 3179.1 (91.84%)
12 13 (13.51%) 279.82 (1.3%) 3160.52 (90.41%)
13 13 (13.51%) 280.38 (1.31%) 3159.96 (90.37%)
14 13 (13.51%) 281.43 (1.31%) 3158.91 (90.29%)
15 13 (13.51%) 281.77 (1.31%) 3158.57 (90.27%)
16 13 (13.51%) 2134.21 (11.37%) 3144.54 (89.19%)
17 14 (14.86%) 284.96 (1.33%) 3158.52 (90.26%)
18 25 (29.73%) 2759.93 (14.77%) 3124.62 (87.67%)
19 26 (31.08%) 2743.05 (14.68%) 3114.57 (86.9%)
20 32 (39.19%) 1266.97 (6.66%) 2993.7 (77.64%)
21 33 (40.54%) 1397.52 (7.37%) 2976.55 (76.33%)
22 33 (40.54%) 2913.71 (15.6%) 2794.97 (62.43%)
23 34 (41.89%) 1304.68 (6.87%) 2912.54 (71.43%)
24 34 (41.89%) 1324.1 (6.97%) 2897.87 (70.31%)
25 34 (41.89%) 2909.6 (15.58%) 2795.06 (62.43%)
26 34 (41.89%) 2912.63 (15.6%) 2794.73 (62.41%)
27 34 (41.89%) 2945.11 (15.78%) 2794.5 (62.39%)
28 34 (41.89%) 3592.39 (19.29%) 2792.78 (62.26%)
29 35 (43.24%) 1301.16 (6.85%) 2912.74 (71.44%)
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30 35 (43.24%) 1304.16 (6.87%) 2896.45 (70.2%)
31 35 (43.24%) 1323.8 (6.97%) 2895.51 (70.12%)
32 35 (43.24%) 2909.4 (15.58%) 2795.06 (62.43%)
33 35 (43.24%) 2939.46 (15.74%) 2793.75 (62.33%)
34 35 (43.24%) 6442.17 (34.76%) 2763.58 (60.02%)
35 36 (44.59%) 5891.29 (31.77%) 2757.28 (59.54%)
36 40 (50%) 2448.63 (13.08%) 2865.68 (67.84%)
37 41 (51.35%) 2527.88 (13.51%) 2863.07 (67.64%)
38 42 (52.7%) 2374.84 (12.68%) 2863.46 (67.67%)
39 46 (58.11%) 2133.47 (11.37%) 2772.38 (60.7%)
40 47 (59.46%) 1917.37 (10.19%) 2786.29 (61.76%)
41 47 (59.46%) 1929.32 (10.26%) 2785.3 (61.69%)
42 47 (59.46%) 1985.08 (10.56%) 2775.47 (60.93%)
43 47 (59.46%) 2042.1 (10.87%) 2774.9 (60.89%)
44 48 (60.81%) 2041.75 (10.87%) 2767.95 (60.36%)
45 48 (60.81%) 6109.45 (32.96%) 2656.9 (51.86%)
46 49 (62.16%) 2012.22 (10.71%) 2765.74 (60.19%)
47 49 (62.16%) 6140.15 (33.12%) 2550.6 (43.72%)
48 49 (62.16%) 6176.99 (33.32%) 2549.61 (43.64%)
49 49 (62.16%) 6183.73 (33.36%) 2549.48 (43.63%)
50 50 (63.51%) 2002.47 (10.66%) 2766.73 (60.26%)
51 50 (63.51%) 2031.22 (10.81%) 2764.75 (60.11%)
52 50 (63.51%) 2653.18 (14.19%) 2763.86 (60.04%)
53 50 (63.51%) 2720.03 (14.55%) 2755.17 (59.38%)
54 50 (63.51%) 6183.02 (33.36%) 2548.06 (43.52%)
55 51 (64.86%) 3069.76 (16.45%) 2716.89 (56.45%)
56 51 (64.86%) 6149.78 (33.18%) 2549.93 (43.67%)
57 51 (64.86%) 6150.74 (33.18%) 2549.45 (43.63%)
58 51 (64.86%) 6315.67 (34.08%) 2547.76 (43.5%)
59 51 (64.86%) 6566.76 (35.44%) 2545.74 (43.34%)
60 51 (64.86%) 6573.37 (35.48%) 2545.61 (43.33%)
61 51 (64.86%) 6682.53 (36.07%) 2533.19 (42.38%)
62 51 (64.86%) 6688.84 (36.1%) 2533.06 (42.37%)
63 51 (64.86%) 6815.43 (36.79%) 2531.58 (42.26%)
64 51 (64.86%) 6841.79 (36.93%) 2528.15 (42%)
65 52 (66.22%) 3728.43 (20.03%) 2674.48 (53.2%)
66 52 (66.22%) 8081.47 (43.66%) 2502.84 (40.06%)
67 52 (66.22%) 9577.41 (51.79%) 2446.1 (35.72%)
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68 53 (67.57%) 3904.55 (20.98%) 2652.52 (51.52%)
69 53 (67.57%) 4672.05 (25.15%) 2381.01 (30.73%)
70 54 (68.92%) 4169.08 (22.42%) 2422.45 (33.9%)
71 54 (68.92%) 4181.54 (22.49%) 2412.13 (33.11%)
72 55 (70.27%) 3955.56 (21.26%) 2503.03 (40.07%)
73 55 (70.27%) 4253.21 (22.88%) 2397.72 (32.01%)
74 55 (70.27%) 4310.86 (23.19%) 2392.28 (31.59%)
75 55 (70.27%) 4631.75 (24.93%) 2390.23 (31.44%)
76 56 (71.62%) 4135.96 (22.24%) 2409.82 (32.94%)
77 56 (71.62%) 4243.18 (22.82%) 2402.53 (32.38%)
78 56 (71.62%) 4248.37 (22.85%) 2397.72 (32.01%)
79 56 (71.62%) 5370.65 (28.95%) 2370.91 (29.96%)
80 56 (71.62%) 5781.26 (31.18%) 2359.29 (29.07%)
81 57 (72.97%) 4167.01 (22.41%) 2409.55 (32.92%)
82 57 (72.97%) 5265.93 (28.38%) 2379.71 (30.63%)
83 58 (74.32%) 4166.46 (22.41%) 2407.11 (32.73%)
84 58 (74.32%) 4190.53 (22.54%) 2406.84 (32.71%)
85 58 (74.32%) 4201.94 (22.6%) 2406.15 (32.66%)
86 58 (74.32%) 4667.88 (25.13%) 2387.24 (31.21%)
87 58 (74.32%) 5214.46 (28.1%) 2378.51 (30.54%)
88 59 (75.68%) 3845.53 (20.66%) 2378.94 (30.57%)
89 59 (75.68%) 4244.35 (22.83%) 2377.69 (30.48%)
90 59 (75.68%) 5166.58 (27.84%) 2369.47 (29.85%)
91 60 (77.03%) 3855.64 (20.72%) 2378.62 (30.55%)
92 61 (78.38%) 3843.74 (20.65%) 2380.57 (30.7%)
93 62 (79.73%) 4152.02 (22.33%) 2373.47 (30.15%)
94 62 (79.73%) 4379.59 (23.56%) 2362.29 (29.3%)
95 62 (79.73%) 4853.27 (26.14%) 2349.64 (28.33%)
96 62 (79.73%) 5057.08 (27.24%) 2337.77 (27.42%)
97 62 (79.73%) 5507.08 (29.69%) 2327.88 (26.66%)
98 63 (81.08%) 6306.98 (34.03%) 2318.95 (25.98%)
99 63 (81.08%) 6674.82 (36.03%) 2309.1 (25.23%)
100 63 (81.08%) 6884.48 (37.17%) 2308.59 (25.19%)
101 65 (83.78%) 3927.38 (21.11%) 2378.37 (30.53%)
102 66 (85.14%) 11569.08 (62.6%) 2224.65 (18.76%)
103 67 (86.49%) 10123.31 (54.75%) 2305.73 (24.97%)
104 67 (86.49%) 10131.33 (54.8%) 2265.55 (21.89%)
105 67 (86.49%) 11314.19 (61.22%) 2250.78 (20.76%)
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106 68 (87.84%) 9403.15 (50.84%) 2271.52 (22.35%)
107 68 (87.84%) 10965.69 (59.33%) 2258.62 (21.36%)
108 68 (87.84%) 12537 (67.86%) 2163.91 (14.11%)
109 69 (89.19%) 10058.38 (54.4%) 2268.65 (22.13%)
110 69 (89.19%) 11235.58 (60.79%) 2235.3 (19.58%)
111 69 (89.19%) 11359.54 (61.46%) 2201.11 (16.96%)
112 69 (89.19%) 14037.57 (76.01%) 2135.97 (11.97%)
113 70 (90.54%) 10069.9 (54.46%) 2254.49 (21.04%)
114 70 (90.54%) 10446.43 (56.51%) 2233.02 (19.4%)
115 70 (90.54%) 10570.15 (57.18%) 2202.77 (17.08%)
116 70 (90.54%) 13145.61 (71.16%) 2147.67 (12.87%)
117 70 (90.54%) 13156.37 (71.22%) 2146.04 (12.74%)
118 70 (90.54%) 13559.82 (73.41%) 2144.52 (12.62%)
119 70 (90.54%) 14469.01 (78.35%) 2131.09 (11.6%)
120 70 (90.54%) 15671.85 (84.88%) 2093.41 (8.71%)
121 71 (91.89%) 9990.67 (54.03%) 2254.49 (21.04%)
122 71 (91.89%) 15127.97 (81.93%) 2127.81 (11.35%)
123 71 (91.89%) 17234.89 (93.37%) 2068.23 (6.78%)
124 71 (91.89%) 17292.4 (93.68%) 2067.49 (6.73%)
125 72 (93.24%) 16063.35 (87.01%) 2088.81 (8.36%)
126 72 (93.24%) 17336.61 (93.92%) 2064.19 (6.47%)
127 72 (93.24%) 17463.43 (94.61%) 2063.16 (6.4%)
128 73 (94.59%) 16981.72 (91.99%) 2007.35 (2.12%)
129 74 (95.95%) 15218.49 (82.42%) 2049.73 (5.37%)
130 74 (95.95%) 15331.63 (83.03%) 2049.07 (5.32%)
131 75 (97.3%) 15107.47 (81.81%) 1996.61 (1.3%)
132 75 (97.3%) 15475.2 (83.81%) 1996.48 (1.29%)
133 75 (97.3%) 16044.7 (86.9%) 1993.24 (1.04%)
134 75 (97.3%) 16787.13 (90.94%) 1990.41 (0.83%)
135 76 (98.65%) 15018.27 (81.33%) 1997.92 (1.4%)
136 76 (98.65%) 15126.91 (81.92%) 1996.02 (1.25%)
137 76 (98.65%) 15140.29 (81.99%) 1995.76 (1.23%)
138 76 (98.65%) 15448.24 (83.67%) 1993.35 (1.05%)
139 76 (98.65%) 17761.95 (96.23%) 1990.16 (0.81%)
140 76 (98.65%) 18456.59 (100%) 1984.37 (0.36%)
141 77 (100%) 18398.14 (99.68%) 1979.63 (0%)

270
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B4 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2563 0 0 3358.42

Solution S/N f1 f2 f3
1 3 (0%) 40.42 (0%) 3708.07 (100%)
2 4 (1.27%) 244.96 (1.09%) 3312.11 (73.14%)
3 4 (1.27%) 1025 (5.23%) 3248.52 (68.82%)
4 5 (2.53%) 226.37 (0.99%) 3307.59 (72.83%)
5 6 (3.8%) 182.1 (0.75%) 3315.06 (73.34%)
6 6 (3.8%) 187.62 (0.78%) 3314.74 (73.31%)
7 6 (3.8%) 222.22 (0.97%) 3314.23 (73.28%)
8 6 (3.8%) 236.99 (1.04%) 3279.01 (70.89%)
9 6 (3.8%) 910.97 (4.63%) 3248.52 (68.82%)
10 7 (5.06%) 249.17 (1.11%) 3277.67 (70.8%)
11 7 (5.06%) 638.62 (3.18%) 3256.07 (69.33%)
12 8 (6.33%) 180.58 (0.74%) 3272.1 (70.42%)
13 8 (6.33%) 508.87 (2.49%) 3256.07 (69.33%)
14 9 (7.59%) 199.53 (0.85%) 3234.07 (67.84%)
15 15 (15.19%) 1197.75 (6.15%) 3160.36 (62.84%)
16 19 (20.25%) 1727.26 (8.96%) 3155.15 (62.49%)
17 24 (26.58%) 1374.56 (7.09%) 3026.19 (53.74%)
18 28 (31.65%) 5868.22 (30.97%) 2935.89 (47.61%)
19 29 (32.91%) 1583.62 (8.2%) 2941.99 (48.02%)
20 29 (32.91%) 1585.4 (8.21%) 2939.22 (47.84%)
21 30 (34.18%) 1638.55 (8.49%) 2935.15 (47.56%)
22 30 (34.18%) 5586.6 (29.47%) 2930.27 (47.23%)
23 30 (34.18%) 6025.94 (31.81%) 2924.76 (46.86%)
24 52 (62.03%) 6047.23 (31.92%) 2911.12 (45.93%)
25 53 (63.29%) 5674.4 (29.94%) 2846.92 (41.57%)
26 53 (63.29%) 6383.03 (33.71%) 2706.16 (32.02%)
27 54 (64.56%) 5625.88 (29.68%) 2846.92 (41.57%)
28 54 (64.56%) 6211.87 (32.8%) 2706.16 (32.02%)
29 55 (65.82%) 6088.53 (32.14%) 2706.16 (32.02%)
30 55 (65.82%) 10831.6 (57.35%) 2696.42 (31.36%)
31 55 (65.82%) 11879.47 (62.92%) 2695.96 (31.33%)
32 56 (67.09%) 5895.5 (31.12%) 2716.68 (32.74%)
33 56 (67.09%) 6110.23 (32.26%) 2704.63 (31.92%)
34 56 (67.09%) 10722.99 (56.77%) 2701.11 (31.68%)
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35 56 (67.09%) 10814.64 (57.26%) 2694.87 (31.26%)
36 56 (67.09%) 10836.26 (57.37%) 2694.48 (31.23%)
37 56 (67.09%) 11719.73 (62.07%) 2634.29 (27.15%)
38 57 (68.35%) 11659.82 (61.75%) 2635.03 (27.2%)
39 57 (68.35%) 11693.71 (61.93%) 2630.78 (26.91%)
40 58 (69.62%) 10176.01 (53.86%) 2703.43 (31.84%)
41 58 (69.62%) 10629.88 (56.28%) 2702.89 (31.8%)
42 67 (81.01%) 9388.86 (49.68%) 2696.37 (31.36%)
43 69 (83.54%) 10894.45 (57.68%) 2603.26 (25.04%)
44 70 (84.81%) 10478.37 (55.47%) 2609.07 (25.44%)
45 73 (88.61%) 13178.45 (69.82%) 2499.32 (17.99%)
46 73 (88.61%) 13280.31 (70.36%) 2484.76 (17%)
47 73 (88.61%) 15257.46 (80.87%) 2327.6 (6.34%)
48 73 (88.61%) 15520.96 (82.27%) 2313.01 (5.35%)
49 74 (89.87%) 9270.64 (49.05%) 2629.22 (26.8%)
50 74 (89.87%) 16466.58 (87.29%) 2305.57 (4.85%)
51 75 (91.14%) 9344.17 (49.44%) 2618.26 (26.06%)
52 75 (91.14%) 14134.07 (74.9%) 2418.72 (12.52%)
53 75 (91.14%) 15197.44 (80.55%) 2335.08 (6.85%)
54 75 (91.14%) 15615 (82.77%) 2300.73 (4.52%)
55 75 (91.14%) 16074.12 (85.21%) 2295.81 (4.18%)
56 76 (92.41%) 13877.45 (73.53%) 2457.97 (15.19%)
57 76 (92.41%) 14288.36 (75.72%) 2395.76 (10.97%)
58 77 (93.67%) 13473.52 (71.39%) 2453.31 (14.87%)
59 77 (93.67%) 13990.64 (74.14%) 2437.27 (13.78%)
60 77 (93.67%) 17461.02 (92.58%) 2274.61 (2.75%)
61 78 (94.94%) 15093.79 (80%) 2340.84 (7.24%)
62 79 (96.2%) 10065.62 (53.28%) 2617.13 (25.98%)
63 79 (96.2%) 11117.08 (58.87%) 2559.8 (22.09%)
64 80 (97.47%) 10690.56 (56.6%) 2536.41 (20.51%)
65 80 (97.47%) 10764.87 (56.99%) 2526.33 (19.82%)
66 80 (97.47%) 11168.77 (59.14%) 2525.78 (19.79%)
67 81 (98.73%) 11392.52 (60.33%) 2525.51 (19.77%)
68 81 (98.73%) 18857.43 (100%) 2234.14 (0%)
69 82 (100%) 10953.8 (58%) 2525.68 (19.78%)
70 82 (100%) 11682.15 (61.87%) 2521.94 (19.53%)
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Table B.13: Experimental results for instance 13 - rc201-
B5 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2978.3 0 0 3358.42

Solution S/N f1 f2 f3
1 16 (0%) 2593.31 (7.43%) 3361.7 (98.59%)
2 19 (4.48%) 2347.93 (5.72%) 3374.91 (100%)
3 19 (4.48%) 2567.05 (7.25%) 3352.21 (97.57%)
4 20 (5.97%) 2557.32 (7.18%) 3372.51 (99.74%)
5 21 (7.46%) 1795.87 (1.85%) 3348.92 (97.22%)
6 21 (7.46%) 1822 (2.04%) 3346.5 (96.96%)
7 21 (7.46%) 2082.66 (3.86%) 3327.89 (94.98%)
8 22 (8.96%) 2566.27 (7.24%) 3288.3 (90.75%)
9 22 (8.96%) 2590.42 (7.41%) 3267.55 (88.53%)
10 22 (8.96%) 2684.11 (8.07%) 3246.63 (86.29%)
11 22 (8.96%) 2885.4 (9.47%) 3244.23 (86.04%)
12 23 (10.45%) 1977.27 (3.12%) 3318.53 (93.98%)
13 24 (11.94%) 1554.42 (0.17%) 3347.28 (97.05%)
14 24 (11.94%) 1951.36 (2.94%) 3319.03 (94.03%)
15 24 (11.94%) 1963.58 (3.03%) 3318.53 (93.98%)
16 24 (11.94%) 2023.35 (3.45%) 3307.07 (92.75%)
17 25 (13.43%) 1530.69 (0%) 3327.14 (94.9%)
18 25 (13.43%) 1844.03 (2.19%) 3306.91 (92.73%)
19 25 (13.43%) 1904.82 (2.62%) 3215.39 (82.96%)
20 27 (16.42%) 2062.71 (3.72%) 3210.8 (82.47%)
21 28 (17.91%) 1906.97 (2.63%) 3213.98 (82.81%)
22 29 (19.4%) 1911.27 (2.66%) 3213.49 (82.75%)
23 29 (19.4%) 1978.02 (3.13%) 3198.59 (81.16%)
24 36 (29.85%) 4744.98 (22.48%) 3122.9 (73.07%)
25 37 (31.34%) 4667.44 (21.94%) 3087.06 (69.24%)
26 39 (34.33%) 3336.52 (12.63%) 3096.99 (70.31%)
27 40 (35.82%) 3011.45 (10.36%) 3007.92 (60.79%)
28 41 (37.31%) 3188.99 (11.6%) 2988.97 (58.76%)
29 56 (59.7%) 8915.04 (51.64%) 2984.1 (58.24%)
30 56 (59.7%) 9432.52 (55.26%) 2931.82 (52.66%)
31 56 (59.7%) 9856.3 (58.23%) 2920.16 (51.41%)
32 57 (61.19%) 9448.43 (55.37%) 2925.77 (52.01%)
33 57 (61.19%) 9487.01 (55.64%) 2909.9 (50.32%)
34 58 (62.69%) 8793.31 (50.79%) 2961.2 (55.8%)

Continued on the next page

273



Table B.13 – Continued from the previous page
Solution S/N f1 f2 f3
35 58 (62.69%) 8835.4 (51.09%) 2957.17 (55.37%)
36 58 (62.69%) 8970.37 (52.03%) 2943.23 (53.88%)
37 58 (62.69%) 11256.98 (68.02%) 2771.34 (35.51%)
38 59 (64.18%) 10864.39 (65.28%) 2773.53 (35.75%)
39 59 (64.18%) 11185.87 (67.52%) 2773.48 (35.74%)
40 60 (65.67%) 10800.8 (64.83%) 2773.53 (35.75%)
41 61 (67.16%) 9291.93 (54.28%) 2843.92 (43.27%)
42 61 (67.16%) 9801.34 (57.84%) 2757.77 (34.06%)
43 62 (68.66%) 9593.21 (56.39%) 2787.02 (37.19%)
44 62 (68.66%) 10085.9 (59.83%) 2756.47 (33.92%)
45 62 (68.66%) 10500.78 (62.73%) 2724.29 (30.48%)
46 62 (68.66%) 10930.21 (65.74%) 2720.97 (30.13%)
47 63 (70.15%) 9343.08 (54.64%) 2786.89 (37.17%)
48 63 (70.15%) 9343.82 (54.64%) 2786.52 (37.13%)
49 63 (70.15%) 9346.09 (54.66%) 2786.49 (37.13%)
50 63 (70.15%) 9417.17 (55.16%) 2785.1 (36.98%)
51 63 (70.15%) 11359.68 (68.74%) 2719.97 (30.02%)
52 63 (70.15%) 12053.19 (73.59%) 2717.81 (29.79%)
53 63 (70.15%) 12315.11 (75.42%) 2717.16 (29.72%)
54 63 (70.15%) 12987.6 (80.13%) 2714.08 (29.39%)
55 65 (73.13%) 12875.45 (79.34%) 2707.05 (28.64%)
56 66 (74.63%) 9532.91 (55.96%) 2784.27 (36.89%)
57 67 (76.12%) 8518.15 (48.87%) 2721.89 (30.23%)
58 68 (77.61%) 8076.59 (45.78%) 2748.47 (33.07%)
59 68 (77.61%) 8185.6 (46.54%) 2740.53 (32.22%)
60 68 (77.61%) 8310.1 (47.41%) 2721.89 (30.23%)
61 69 (79.1%) 7957.71 (44.95%) 2748.47 (33.07%)
62 70 (80.6%) 8131.09 (46.16%) 2739.61 (32.12%)
63 71 (82.09%) 7951.95 (44.91%) 2748.47 (33.07%)
64 71 (82.09%) 11474.13 (69.54%) 2670.23 (24.71%)
65 72 (83.58%) 8178.32 (46.49%) 2732.61 (31.37%)
66 72 (83.58%) 9070.1 (52.73%) 2707.73 (28.72%)
67 72 (83.58%) 10973.29 (66.04%) 2683.94 (26.17%)
68 73 (85.07%) 10671.81 (63.93%) 2683.58 (26.14%)
69 73 (85.07%) 11669.11 (70.9%) 2670.14 (24.7%)
70 73 (85.07%) 12977.61 (80.06%) 2545 (11.33%)
71 73 (85.07%) 13076.32 (80.75%) 2532.28 (9.97%)
72 74 (86.57%) 10080.47 (59.79%) 2671.28 (24.82%)
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73 74 (86.57%) 12220.93 (74.76%) 2606.18 (17.87%)
74 74 (86.57%) 12732.76 (78.34%) 2600.01 (17.21%)
75 75 (88.06%) 10441.13 (62.32%) 2670.96 (24.79%)
76 75 (88.06%) 12677.59 (77.96%) 2589.03 (16.03%)
77 75 (88.06%) 12882.99 (79.39%) 2563.96 (13.35%)
78 75 (88.06%) 14420.94 (90.15%) 2465.63 (2.85%)
79 76 (89.55%) 12808.46 (78.87%) 2577.26 (14.78%)
80 76 (89.55%) 14522.48 (90.86%) 2464.77 (2.76%)
81 76 (89.55%) 14568.34 (91.18%) 2460.42 (2.29%)
82 76 (89.55%) 14658.08 (91.81%) 2458.27 (2.06%)
83 77 (91.04%) 14484.74 (90.6%) 2457.58 (1.99%)
84 78 (92.54%) 14614.3 (91.5%) 2456.88 (1.91%)
85 79 (94.03%) 14738.71 (92.37%) 2454.8 (1.69%)
86 79 (94.03%) 14953.01 (93.87%) 2453.32 (1.53%)
87 79 (94.03%) 15049.32 (94.54%) 2444.66 (0.61%)
88 79 (94.03%) 15123.31 (95.06%) 2440.46 (0.16%)
89 79 (94.03%) 15335.96 (96.55%) 2440.17 (0.13%)
90 80 (95.52%) 15165.87 (95.36%) 2439.72 (0.08%)
91 80 (95.52%) 15378.52 (96.85%) 2439.43 (0.05%)
92 80 (95.52%) 15445.33 (97.31%) 2439.39 (0.04%)
93 81 (97.01%) 15613.01 (98.49%) 2439.3 (0.04%)
94 83 (100%) 15666.1 (98.86%) 2439.2 (0.02%)
95 83 (100%) 15829.38 (100%) 2438.97 (0%)

Table B.14: Experimental results for instance 14 - rc201-
B6 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2466.1 14 855.33 3358.42

Solution S/N f1 f2 f3
1 25 (0%) 4180.33 (9.58%) 3386.93 (97.93%)
2 26 (1.89%) 3540.19 (4.82%) 3396 (99.1%)
3 27 (3.77%) 3337.21 (3.31%) 3378.52 (96.85%)
4 28 (5.66%) 3183.46 (2.17%) 3353.81 (93.66%)
5 28 (5.66%) 3186.1 (2.19%) 3343.19 (92.29%)
6 31 (11.32%) 3130.62 (1.78%) 3357.73 (94.16%)
7 31 (11.32%) 3154.12 (1.95%) 3355.88 (93.93%)
8 31 (11.32%) 3183.91 (2.17%) 3342.49 (92.2%)
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9 31 (11.32%) 3403.04 (3.8%) 3291.14 (85.58%)
10 31 (11.32%) 3432.63 (4.02%) 3290.54 (85.5%)
11 31 (11.32%) 3446.81 (4.13%) 3269.86 (82.83%)
12 31 (11.32%) 3734.89 (6.27%) 3248.58 (80.09%)
13 31 (11.32%) 4007.05 (8.29%) 3238.36 (78.77%)
14 32 (13.21%) 3106.24 (1.6%) 3338.36 (91.67%)
15 32 (13.21%) 3177.32 (2.12%) 3330.88 (90.7%)
16 32 (13.21%) 4004.87 (8.28%) 3236.75 (78.56%)
17 33 (15.09%) 3993.91 (8.2%) 3244.32 (79.54%)
18 33 (15.09%) 4794.22 (14.15%) 3228.12 (77.45%)
19 34 (16.98%) 2951.03 (0.44%) 3402.98 (100%)
20 34 (16.98%) 3283.42 (2.91%) 3317.23 (88.94%)
21 34 (16.98%) 4837.49 (14.47%) 3228.04 (77.44%)
22 34 (16.98%) 5385.31 (18.54%) 3223.01 (76.79%)
23 35 (18.87%) 2913.12 (0.16%) 3360.92 (94.58%)
24 35 (18.87%) 4985.23 (15.57%) 3227.32 (77.35%)
25 35 (18.87%) 5222.97 (17.34%) 3226.22 (77.21%)
26 35 (18.87%) 5233.84 (17.42%) 3224.81 (77.02%)
27 35 (18.87%) 5381.52 (18.52%) 3223.01 (76.79%)
28 36 (20.75%) 2896.16 (0.03%) 3375.94 (96.51%)
29 36 (20.75%) 2900.07 (0.06%) 3331.04 (90.72%)
30 36 (20.75%) 5217.57 (17.3%) 3226.22 (77.21%)
31 37 (22.64%) 2891.58 (0%) 3358.76 (94.3%)
32 37 (22.64%) 3623.89 (5.45%) 3236.58 (78.54%)
33 37 (22.64%) 3633.89 (5.52%) 3236.24 (78.5%)
34 37 (22.64%) 3899.84 (7.5%) 3223.61 (76.87%)
35 38 (24.53%) 3339.17 (3.33%) 3232.21 (77.98%)
36 38 (24.53%) 3359.17 (3.48%) 3221.11 (76.55%)
37 39 (26.42%) 3259 (2.73%) 3301.58 (86.92%)
38 39 (26.42%) 3351.16 (3.42%) 3231.87 (77.93%)
39 39 (26.42%) 3604.19 (5.3%) 3217.87 (76.13%)
40 40 (28.3%) 3201.59 (2.31%) 3310.39 (88.06%)
41 40 (28.3%) 3242.63 (2.61%) 3288.2 (85.2%)
42 40 (28.3%) 3335.36 (3.3%) 3232.21 (77.98%)
43 40 (28.3%) 3345.36 (3.37%) 3231.87 (77.93%)
44 40 (28.3%) 3352.33 (3.43%) 3218.54 (76.22%)
45 41 (30.19%) 3208.79 (2.36%) 3308.97 (87.88%)
46 41 (30.19%) 3218.79 (2.43%) 3308.63 (87.83%)
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47 41 (30.19%) 3240.11 (2.59%) 3299.63 (86.67%)
48 41 (30.19%) 3326.53 (3.23%) 3230.6 (77.77%)
49 41 (30.19%) 3346.53 (3.38%) 3218.54 (76.22%)
50 42 (32.08%) 3223.33 (2.47%) 3299.97 (86.72%)
51 42 (32.08%) 3233.33 (2.54%) 3299.63 (86.67%)
52 42 (32.08%) 3242.03 (2.61%) 3295.63 (86.16%)
53 43 (33.96%) 3220.17 (2.44%) 3299.97 (86.72%)
54 43 (33.96%) 3341.92 (3.35%) 3230.26 (77.73%)
55 43 (33.96%) 3344.15 (3.37%) 3218.54 (76.22%)
56 44 (35.85%) 3228.39 (2.5%) 3294.67 (86.03%)
57 45 (37.74%) 3272.69 (2.83%) 3287.82 (85.15%)
58 47 (41.51%) 4810.23 (14.27%) 3094.8 (60.26%)
59 49 (45.28%) 4556.15 (12.38%) 3054.96 (55.12%)
60 49 (45.28%) 4559.45 (12.4%) 3054.09 (55.01%)
61 49 (45.28%) 4565.52 (12.45%) 3053.45 (54.93%)
62 50 (47.17%) 4569.59 (12.48%) 3053.06 (54.88%)
63 52 (50.94%) 4509.18 (12.03%) 3147.73 (67.08%)
64 54 (54.72%) 4539.58 (12.25%) 3086.95 (59.25%)
65 54 (54.72%) 4543.05 (12.28%) 3085.81 (59.1%)
66 55 (56.6%) 4531.25 (12.19%) 3086.95 (59.25%)
67 55 (56.6%) 4534.35 (12.22%) 3085.4 (59.05%)
68 55 (56.6%) 4679.01 (13.29%) 3043.87 (53.69%)
69 56 (58.49%) 4675.79 (13.27%) 3043.1 (53.59%)
70 56 (58.49%) 5204.34 (17.2%) 3018.01 (50.36%)
71 57 (60.38%) 4976.11 (15.5%) 3029.95 (51.9%)
72 58 (62.26%) 6143.31 (24.18%) 2927.69 (38.71%)
73 59 (64.15%) 5387.12 (18.56%) 2944.59 (40.89%)
74 59 (64.15%) 6854.08 (29.47%) 2912.51 (36.75%)
75 59 (64.15%) 7037.74 (30.83%) 2906.18 (35.93%)
76 60 (66.04%) 5885.49 (22.26%) 2934.2 (39.55%)
77 60 (66.04%) 7070.17 (31.07%) 2896.91 (34.74%)
78 61 (67.92%) 10135.05 (53.86%) 2772.88 (18.75%)
79 62 (69.81%) 7695.17 (35.72%) 2885.5 (33.27%)
80 62 (69.81%) 7706.75 (35.81%) 2880.54 (32.63%)
81 62 (69.81%) 9665.13 (50.37%) 2785.13 (20.32%)
82 62 (69.81%) 9698.01 (50.61%) 2784.94 (20.3%)
83 62 (69.81%) 9734.9 (50.89%) 2784.86 (20.29%)
84 62 (69.81%) 9804.97 (51.41%) 2784.25 (20.21%)
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85 62 (69.81%) 9829.62 (51.59%) 2783.98 (20.18%)
86 62 (69.81%) 9863.02 (51.84%) 2783.84 (20.16%)
87 62 (69.81%) 9926.12 (52.31%) 2773.65 (18.84%)
88 63 (71.7%) 6038.67 (23.4%) 2932.77 (39.36%)
89 63 (71.7%) 6353.06 (25.74%) 2898.23 (34.91%)
90 63 (71.7%) 6836.77 (29.34%) 2891.82 (34.08%)
91 63 (71.7%) 7403.56 (33.55%) 2888.16 (33.61%)
92 63 (71.7%) 8773.54 (43.74%) 2846.4 (28.23%)
93 63 (71.7%) 8906.2 (44.72%) 2785.2 (20.33%)
94 63 (71.7%) 9028.25 (45.63%) 2785.19 (20.33%)
95 64 (73.58%) 6095.44 (23.82%) 2931.42 (39.19%)
96 64 (73.58%) 6141.54 (24.17%) 2921.62 (37.93%)
97 64 (73.58%) 6835.59 (29.33%) 2895.74 (34.59%)
98 64 (73.58%) 7288.06 (32.69%) 2889.33 (33.76%)
99 64 (73.58%) 8896.18 (44.65%) 2785.02 (20.31%)
100 64 (73.58%) 8946.43 (45.02%) 2774.28 (18.93%)
101 64 (73.58%) 8960.79 (45.13%) 2774.12 (18.9%)
102 64 (73.58%) 11616.71 (64.88%) 2771.64 (18.59%)
103 65 (75.47%) 6177.13 (24.43%) 2920.27 (37.75%)
104 65 (75.47%) 8508.93 (41.77%) 2776.66 (19.23%)
105 65 (75.47%) 8715.39 (43.31%) 2776.09 (19.16%)
106 65 (75.47%) 11573.52 (64.56%) 2765.9 (17.84%)
107 66 (77.36%) 7562.86 (34.74%) 2882.73 (32.91%)
108 66 (77.36%) 8179.18 (39.32%) 2853.48 (29.14%)
109 66 (77.36%) 8260.77 (39.93%) 2835.11 (26.77%)
110 66 (77.36%) 8325.29 (40.41%) 2833.37 (26.55%)
111 66 (77.36%) 8334.49 (40.47%) 2833.15 (26.52%)
112 66 (77.36%) 8505.73 (41.75%) 2774.1 (18.9%)
113 66 (77.36%) 8996.82 (45.4%) 2773.15 (18.78%)
114 66 (77.36%) 9053.71 (45.82%) 2769.71 (18.34%)
115 67 (79.25%) 7490.43 (34.2%) 2876.3 (32.08%)
116 67 (79.25%) 11807.47 (66.3%) 2760.81 (17.19%)
117 68 (81.13%) 11545.01 (64.35%) 2768.92 (18.23%)
118 68 (81.13%) 12634.59 (72.45%) 2735.99 (13.99%)
119 69 (83.02%) 7912.06 (37.33%) 2855.73 (29.43%)
120 69 (83.02%) 12740.11 (73.23%) 2732.89 (13.59%)
121 69 (83.02%) 12824.44 (73.86%) 2726.25 (12.73%)
122 70 (84.91%) 8207.55 (39.53%) 2848.47 (28.49%)
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123 71 (86.79%) 14094.56 (83.31%) 2699.63 (9.3%)
124 71 (86.79%) 14329.69 (85.05%) 2698.14 (9.11%)
125 72 (88.68%) 13361.94 (77.86%) 2724.49 (12.5%)
126 72 (88.68%) 13842.65 (81.43%) 2711.84 (10.87%)
127 72 (88.68%) 13980.36 (82.46%) 2701.14 (9.49%)
128 72 (88.68%) 14755.75 (88.22%) 2695.85 (8.81%)
129 72 (88.68%) 14832.64 (88.79%) 2692.86 (8.43%)
130 72 (88.68%) 14926.24 (89.49%) 2691.68 (8.27%)
131 72 (88.68%) 14935.14 (89.56%) 2690.6 (8.13%)
132 73 (90.57%) 14862.93 (89.02%) 2687.99 (7.8%)
133 73 (90.57%) 15067.74 (90.54%) 2687.22 (7.7%)
134 73 (90.57%) 15919.65 (96.88%) 2646.84 (2.49%)
135 74 (92.45%) 13647.02 (79.98%) 2721.91 (12.17%)
136 74 (92.45%) 13742.43 (80.69%) 2720.39 (11.98%)
137 74 (92.45%) 14999.78 (90.04%) 2682.21 (7.05%)
138 74 (92.45%) 15010.88 (90.12%) 2681.7 (6.99%)
139 74 (92.45%) 15118.42 (90.92%) 2681.39 (6.95%)
140 75 (94.34%) 15170.87 (91.31%) 2681.14 (6.91%)
141 75 (94.34%) 15836.09 (96.26%) 2634.68 (0.92%)
142 77 (98.11%) 16020.3 (97.63%) 2634.31 (0.88%)
143 77 (98.11%) 16220.12 (99.11%) 2627.71 (0.02%)
144 78 (100%) 16122.67 (98.39%) 2627.68 (0.02%)
145 78 (100%) 16148.52 (98.58%) 2627.59 (0.01%)
146 78 (100%) 16339.69 (100%) 2627.52 (0%)

Table B.15: Experimental results for instance 15 - rc201-
B7 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
3381.8 0 0 3358.42

Solution S/N f1 f2 f3
1 13 (0%) 2595.75 (7.42%) 3314.19 (98.81%)
2 14 (1.47%) 1911.46 (3.4%) 3324.07 (99.97%)
3 15 (2.94%) 1722.75 (2.29%) 3324.37 (100%)
4 15 (2.94%) 2042.72 (4.17%) 3321.78 (99.7%)
5 16 (4.41%) 1454.86 (0.71%) 3323.88 (99.94%)
6 16 (4.41%) 1782.61 (2.64%) 3316.54 (99.09%)
7 17 (5.88%) 1334.11 (0%) 3298.14 (96.94%)

Continued on the next page

279



Table B.15 – Continued from the previous page
Solution S/N f1 f2 f3
8 22 (13.24%) 1375.01 (0.24%) 3296.02 (96.7%)
9 25 (17.65%) 1673.56 (2%) 3293.5 (96.4%)
10 25 (17.65%) 5431.8 (24.11%) 3252.4 (91.61%)
11 26 (19.12%) 2404.15 (6.3%) 3289.53 (95.94%)
12 26 (19.12%) 3287 (11.49%) 3215.15 (87.27%)
13 27 (20.59%) 2470.39 (6.69%) 3229.25 (88.92%)
14 27 (20.59%) 2489.14 (6.8%) 3228.06 (88.78%)
15 27 (20.59%) 2579.29 (7.33%) 3215.15 (87.27%)
16 27 (20.59%) 3432.58 (12.35%) 3211.65 (86.87%)
17 27 (20.59%) 3454.01 (12.47%) 3211.27 (86.82%)
18 27 (20.59%) 4993.45 (21.53%) 3206.16 (86.23%)
19 28 (22.06%) 2430.62 (6.45%) 3231.56 (89.19%)
20 28 (22.06%) 2466.79 (6.67%) 3229.25 (88.92%)
21 28 (22.06%) 2478.79 (6.74%) 3229.04 (88.89%)
22 28 (22.06%) 2488.58 (6.79%) 3228.06 (88.78%)
23 29 (23.53%) 3639.26 (13.56%) 3196.98 (85.16%)
24 31 (26.47%) 2403.64 (6.29%) 3239.79 (90.15%)
25 31 (26.47%) 2423.99 (6.41%) 3239.79 (90.15%)
26 31 (26.47%) 2426 (6.43%) 3229.77 (88.98%)
27 31 (26.47%) 2426.27 (6.43%) 3229.5 (88.95%)
28 32 (27.94%) 2416.62 (6.37%) 3239.79 (90.15%)
29 32 (27.94%) 2418.81 (6.38%) 3237.61 (89.89%)
30 32 (27.94%) 2425.81 (6.42%) 3229.5 (88.95%)
31 32 (27.94%) 2432.65 (6.46%) 3227.53 (88.72%)
32 51 (55.88%) 6410.24 (29.87%) 3054.25 (68.53%)
33 52 (57.35%) 6269.6 (29.04%) 3054.25 (68.53%)
34 53 (58.82%) 6337.99 (29.44%) 3038.05 (66.64%)
35 53 (58.82%) 7084.29 (33.84%) 3031.9 (65.92%)
36 53 (58.82%) 7493.07 (36.24%) 3016.08 (64.08%)
37 53 (58.82%) 7493.66 (36.25%) 2990.48 (61.1%)
38 53 (58.82%) 8910.35 (44.58%) 2965.38 (58.17%)
39 54 (60.29%) 7662.8 (37.24%) 2983.75 (60.31%)
40 54 (60.29%) 8244.34 (40.66%) 2955.38 (57.01%)
41 55 (61.76%) 8096.4 (39.79%) 2970.18 (58.73%)
42 56 (63.24%) 7944.54 (38.9%) 2965.94 (58.24%)
43 58 (66.18%) 7355.16 (35.43%) 3026.06 (65.24%)
44 58 (66.18%) 7601.96 (36.88%) 2958.56 (57.38%)
45 58 (66.18%) 7768.87 (37.86%) 2947 (56.03%)
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46 58 (66.18%) 8019.45 (39.34%) 2946.18 (55.94%)
47 58 (66.18%) 10101.48 (51.59%) 2788.07 (37.51%)
48 59 (67.65%) 7443.65 (35.95%) 2735.25 (31.36%)
49 60 (69.12%) 7399.21 (35.69%) 3000.6 (62.28%)
50 60 (69.12%) 7442.87 (35.95%) 2999.35 (62.13%)
51 61 (70.59%) 7272.39 (34.94%) 2724.74 (30.13%)
52 62 (72.06%) 6993.47 (33.3%) 2726.59 (30.35%)
53 62 (72.06%) 7007.18 (33.38%) 2725.93 (30.27%)
54 62 (72.06%) 7051.03 (33.64%) 2725.83 (30.26%)
55 62 (72.06%) 7083.81 (33.83%) 2724.51 (30.11%)
56 73 (88.24%) 16492.41 (89.2%) 2694.96 (26.66%)
57 74 (89.71%) 15013.65 (80.5%) 2694.25 (26.58%)
58 74 (89.71%) 15524.28 (83.5%) 2684.22 (25.41%)
59 75 (91.18%) 15189.45 (81.53%) 2689.34 (26.01%)
60 75 (91.18%) 15713.45 (84.61%) 2679.31 (24.84%)
61 81 (100%) 18328.23 (100%) 2466.11 (0%)

Table B.16: Experimental results for instance 16 - rc201-
B8 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
3126.8 0 0 3358.42

Solution S/N f1 f2 f3
1 2 (0%) 141.25 (0.66%) 3263.47 (79.03%)
2 4 (2.67%) 31.13 (0.01%) 3275.11 (79.9%)
3 6 (5.33%) 50.77 (0.13%) 3274.81 (79.88%)
4 6 (5.33%) 754.9 (4.25%) 3243.27 (77.52%)
5 7 (6.67%) 28.84 (0%) 3543.8 (100%)
6 7 (6.67%) 124.6 (0.56%) 3174.86 (72.4%)
7 10 (10.67%) 1009.99 (5.74%) 3143.43 (70.05%)
8 11 (12%) 1416.43 (8.12%) 3125.26 (68.69%)
9 14 (16%) 219.37 (1.12%) 3151 (70.62%)
10 16 (18.67%) 1700.28 (9.78%) 3084.3 (65.63%)
11 17 (20%) 2691.52 (15.58%) 3075.67 (64.98%)
12 18 (21.33%) 1905.68 (10.98%) 3074.17 (64.87%)
13 20 (24%) 3045.83 (17.66%) 3043.18 (62.55%)
14 21 (25.33%) 2199.57 (12.7%) 2937.07 (54.62%)
15 21 (25.33%) 2259.57 (13.06%) 2936.49 (54.57%)
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16 21 (25.33%) 2267.6 (13.1%) 2936.25 (54.56%)
17 21 (25.33%) 2270.02 (13.12%) 2927.08 (53.87%)
18 22 (26.67%) 2183.79 (12.61%) 2948.94 (55.51%)
19 22 (26.67%) 2245.4 (12.97%) 2936.76 (54.59%)
20 23 (28%) 1275.03 (7.29%) 2955.95 (56.03%)
21 23 (28%) 1279.13 (7.32%) 2953.9 (55.88%)
22 23 (28%) 1394.18 (7.99%) 2952.11 (55.74%)
23 23 (28%) 2192.72 (12.66%) 2937.34 (54.64%)
24 24 (29.33%) 1258.08 (7.19%) 2959.14 (56.27%)
25 24 (29.33%) 1259.6 (7.2%) 2958.38 (56.21%)
26 25 (30.67%) 1265.29 (7.24%) 2957.82 (56.17%)
27 28 (34.67%) 1160.93 (6.63%) 2952.84 (55.8%)
28 28 (34.67%) 3864.09 (22.45%) 2917.24 (53.13%)
29 29 (36%) 1066.45 (6.07%) 2942.87 (55.05%)
30 29 (36%) 3834.14 (22.27%) 2917.24 (53.13%)
31 30 (37.33%) 1060.9 (6.04%) 2942.87 (55.05%)
32 30 (37.33%) 1952.4 (11.26%) 2921.96 (53.49%)
33 30 (37.33%) 2017.98 (11.64%) 2910.66 (52.64%)
34 31 (38.67%) 1083.01 (6.17%) 2942.46 (55.02%)
35 32 (40%) 1959.17 (11.3%) 2920.76 (53.4%)
36 33 (41.33%) 1573.5 (9.04%) 2892.78 (51.31%)
37 40 (50.67%) 2426.24 (14.03%) 2879.64 (50.32%)
38 42 (53.33%) 2801.77 (16.23%) 2865.43 (49.26%)
39 45 (57.33%) 3489.6 (20.25%) 2852.18 (48.27%)
40 47 (60%) 4422.91 (25.72%) 2831.97 (46.76%)
41 49 (62.67%) 4935.35 (28.71%) 2808.18 (44.98%)
42 49 (62.67%) 7312.84 (42.63%) 2758.55 (41.27%)
43 50 (64%) 4183.34 (24.31%) 2828.39 (46.49%)
44 50 (64%) 5036.94 (29.31%) 2806.64 (44.86%)
45 50 (64%) 5770.76 (33.6%) 2800.23 (44.38%)
46 50 (64%) 6548.36 (38.15%) 2780.93 (42.94%)
47 51 (65.33%) 5234.62 (30.47%) 2798.69 (44.27%)
48 51 (65.33%) 5821.79 (33.9%) 2789.27 (43.56%)
49 51 (65.33%) 6349.99 (36.99%) 2771.46 (42.23%)
50 52 (66.67%) 5285.91 (30.77%) 2787.73 (43.45%)
51 53 (68%) 5750.07 (33.48%) 2781.73 (43%)
52 53 (68%) 6667.49 (38.85%) 2764.76 (41.73%)
53 53 (68%) 6842.6 (39.88%) 2746.03 (40.33%)
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54 53 (68%) 11056.46 (64.54%) 2643.02 (32.62%)
55 54 (69.33%) 5812.95 (33.85%) 2606.88 (29.92%)
56 54 (69.33%) 9951.49 (58.07%) 2603.39 (29.66%)
57 54 (69.33%) 9976.63 (58.22%) 2602.39 (29.58%)
58 54 (69.33%) 10018.44 (58.46%) 2565.64 (26.84%)
59 54 (69.33%) 10663.92 (62.24%) 2543.49 (25.18%)
60 54 (69.33%) 10860.14 (63.39%) 2520.99 (23.5%)
61 55 (70.67%) 5715.78 (33.28%) 2603.51 (29.67%)
62 55 (70.67%) 5730.05 (33.37%) 2602.9 (29.62%)
63 55 (70.67%) 5753.62 (33.5%) 2602.64 (29.6%)
64 55 (70.67%) 5772.98 (33.62%) 2602.31 (29.58%)
65 55 (70.67%) 9977.24 (58.22%) 2551.68 (25.79%)
66 55 (70.67%) 10748.68 (62.74%) 2531.8 (24.3%)
67 55 (70.67%) 10758.68 (62.8%) 2521.8 (23.56%)
68 55 (70.67%) 10782.7 (62.94%) 2520.52 (23.46%)
69 56 (72%) 5819.77 (33.89%) 2601.52 (29.52%)
70 58 (74.67%) 5708.53 (33.24%) 2677.59 (35.21%)
71 58 (74.67%) 6213.33 (36.19%) 2600.63 (29.45%)
72 60 (77.33%) 6890.94 (40.16%) 2519.67 (23.4%)
73 61 (78.67%) 7799.53 (45.48%) 2519.06 (23.35%)
74 61 (78.67%) 8934.84 (52.12%) 2510.54 (22.71%)
75 62 (80%) 7621.41 (44.43%) 2518.03 (23.27%)
76 62 (80%) 8342.13 (48.65%) 2510.1 (22.68%)
77 62 (80%) 8475.46 (49.43%) 2509.18 (22.61%)
78 66 (85.33%) 6609.33 (38.51%) 2593.91 (28.95%)
79 67 (86.67%) 6546.06 (38.14%) 2584.01 (28.21%)
80 67 (86.67%) 6557.54 (38.21%) 2583.66 (28.18%)
81 67 (86.67%) 6565.28 (38.25%) 2581.96 (28.06%)
82 70 (90.67%) 6983.32 (40.7%) 2516.26 (23.14%)
83 70 (90.67%) 7005.17 (40.83%) 2515.77 (23.11%)
84 72 (93.33%) 6794.24 (39.59%) 2515.86 (23.11%)
85 72 (93.33%) 7033.5 (40.99%) 2513.06 (22.9%)
86 74 (96%) 16581.69 (96.87%) 2223.43 (1.24%)
87 75 (97.33%) 16582.73 (96.88%) 2222.83 (1.19%)
88 75 (97.33%) 16596.59 (96.96%) 2221.79 (1.12%)
89 75 (97.33%) 16605.15 (97.01%) 2220.55 (1.02%)
90 75 (97.33%) 16724.88 (97.71%) 2219.83 (0.97%)
91 76 (98.67%) 16908.31 (98.79%) 2218.91 (0.9%)
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92 77 (100%) 17115.78 (100%) 2206.86 (0%)

Table B.17: Experimental results for instance 17 - rc202-
C1 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
877.9 1 54 2683.88

Solution S/N f1 f2 f3
1 4 (0%) 382.44 (0.16%) 2685.58 (99.43%)
2 5 (2.13%) 370.27 (0%) 2688.69 (100%)
3 6 (4.26%) 371.1 (0.01%) 2683.94 (99.13%)
4 7 (6.38%) 374.08 (0.05%) 2680.06 (98.42%)
5 7 (6.38%) 1533.45 (15.55%) 2667.93 (96.2%)
6 8 (8.51%) 385.53 (0.2%) 2669.95 (96.57%)
7 11 (14.89%) 1219.7 (11.36%) 2660.21 (94.79%)
8 12 (17.02%) 1345.79 (13.04%) 2650.63 (93.04%)
9 12 (17.02%) 2125.49 (23.46%) 2650.33 (92.99%)
10 13 (19.15%) 1325.56 (12.77%) 2614.89 (86.5%)
11 14 (21.28%) 972.29 (8.05%) 2594.99 (82.87%)
12 15 (23.4%) 975.5 (8.09%) 2578.77 (79.9%)
13 15 (23.4%) 988.16 (8.26%) 2577.51 (79.67%)
14 15 (23.4%) 995.39 (8.36%) 2570.28 (78.35%)
15 18 (29.79%) 3550.95 (42.52%) 2553.39 (75.26%)
16 18 (29.79%) 3974.33 (48.18%) 2541.35 (73.06%)
17 20 (34.04%) 1178.81 (10.81%) 2563.83 (77.17%)
18 20 (34.04%) 1707.61 (17.88%) 2549.25 (74.5%)
19 20 (34.04%) 2626.31 (30.16%) 2453.67 (57.02%)
20 20 (34.04%) 2629.76 (30.21%) 2452.52 (56.81%)
21 20 (34.04%) 2648.33 (30.45%) 2443.44 (55.15%)
22 20 (34.04%) 2679.99 (30.88%) 2441.56 (54.81%)
23 21 (36.17%) 2645.92 (30.42%) 2443.85 (55.23%)
24 21 (36.17%) 2646.75 (30.43%) 2443.44 (55.15%)
25 21 (36.17%) 2650.2 (30.48%) 2442.7 (55.02%)
26 21 (36.17%) 2662.92 (30.65%) 2440.8 (54.67%)
27 21 (36.17%) 2690.89 (31.02%) 2428.15 (52.36%)
28 21 (36.17%) 2713.61 (31.33%) 2427.42 (52.22%)
29 21 (36.17%) 2714.37 (31.34%) 2427.01 (52.15%)
30 22 (38.3%) 1577.47 (16.14%) 2547.53 (74.19%)
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31 22 (38.3%) 3271.73 (38.79%) 2413.21 (49.62%)
32 23 (40.43%) 1678.03 (17.48%) 2524.2 (69.92%)
33 23 (40.43%) 2139.01 (23.64%) 2521.83 (69.49%)
34 23 (40.43%) 3244.79 (38.43%) 2403.57 (47.86%)
35 24 (42.55%) 1988.09 (21.63%) 2514 (68.06%)
36 24 (42.55%) 2239.57 (24.99%) 2498.5 (65.22%)
37 24 (42.55%) 2353.65 (26.51%) 2423.85 (51.57%)
38 25 (44.68%) 2336.83 (26.29%) 2426.42 (52.04%)
39 25 (44.68%) 2347.64 (26.43%) 2425.91 (51.95%)
40 25 (44.68%) 2348.83 (26.45%) 2422.42 (51.31%)
41 25 (44.68%) 2358.84 (26.58%) 2421.91 (51.22%)
42 25 (44.68%) 2372.4 (26.76%) 2419.01 (50.68%)
43 27 (48.94%) 2903.8 (33.87%) 2413.97 (49.76%)
44 27 (48.94%) 2951.7 (34.51%) 2413.22 (49.63%)
45 27 (48.94%) 2951.91 (34.51%) 2413.01 (49.59%)
46 28 (51.06%) 2902.35 (33.85%) 2416.95 (50.31%)
47 28 (51.06%) 2905.46 (33.89%) 2413.84 (49.74%)
48 28 (51.06%) 2950.91 (34.5%) 2413.06 (49.6%)
49 28 (51.06%) 2951.75 (34.51%) 2412.64 (49.52%)
50 28 (51.06%) 2952.93 (34.53%) 2409.26 (48.9%)
51 31 (57.45%) 3638.18 (43.69%) 2392.38 (45.82%)
52 31 (57.45%) 3674.12 (44.17%) 2383.15 (44.13%)
53 31 (57.45%) 3865.33 (46.72%) 2379.76 (43.51%)
54 32 (59.57%) 4364.82 (53.4%) 2363.97 (40.62%)
55 33 (61.7%) 4280.95 (52.28%) 2379.7 (43.5%)
56 34 (63.83%) 4352.66 (53.24%) 2376.64 (42.94%)
57 35 (65.96%) 3387.61 (40.34%) 2370.63 (41.84%)
58 35 (65.96%) 4959.69 (61.35%) 2361.42 (40.15%)
59 35 (65.96%) 6821 (86.23%) 2276.33 (24.59%)
60 35 (65.96%) 6829.3 (86.35%) 2274.05 (24.18%)
61 36 (68.09%) 3362.03 (39.99%) 2373.5 (42.36%)
62 36 (68.09%) 3363.17 (40.01%) 2373.12 (42.29%)
63 36 (68.09%) 3387.53 (40.34%) 2372 (42.09%)
64 36 (68.09%) 3403.99 (40.56%) 2370.48 (41.81%)
65 36 (68.09%) 3416.21 (40.72%) 2369.95 (41.71%)
66 36 (68.09%) 5123.98 (63.55%) 2356.16 (39.19%)
67 36 (68.09%) 6842.79 (86.53%) 2272.09 (23.82%)
68 36 (68.09%) 6851.09 (86.64%) 2269.81 (23.4%)
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69 37 (70.21%) 7349.65 (93.3%) 2269.68 (23.38%)
70 38 (72.34%) 6394.63 (80.53%) 2289.42 (26.99%)
71 39 (74.47%) 6028.38 (75.64%) 2275.35 (24.41%)
72 40 (76.6%) 4108.48 (49.97%) 2309.24 (30.61%)
73 40 (76.6%) 7671.19 (97.6%) 2268.08 (23.08%)
74 41 (78.72%) 4469.35 (54.8%) 2275.45 (24.43%)
75 41 (78.72%) 4470.27 (54.81%) 2274.53 (24.26%)
76 41 (78.72%) 4537.71 (55.71%) 2272.5 (23.89%)
77 41 (78.72%) 6518.92 (82.2%) 2270.9 (23.6%)
78 42 (80.85%) 3856.95 (46.61%) 2318.27 (32.26%)
79 42 (80.85%) 3858.78 (46.63%) 2317.66 (32.15%)
80 42 (80.85%) 3872.99 (46.82%) 2316.3 (31.9%)
81 42 (80.85%) 4011.37 (48.67%) 2312.6 (31.23%)
82 42 (80.85%) 4515.66 (55.42%) 2256.4 (20.95%)
83 43 (82.98%) 3789.73 (45.71%) 2332.97 (34.95%)
84 43 (82.98%) 3802.68 (45.89%) 2320.02 (32.58%)
85 43 (82.98%) 3804.34 (45.91%) 2315.94 (31.84%)
86 43 (82.98%) 3817.29 (46.08%) 2302.99 (29.47%)
87 43 (82.98%) 3818.61 (46.1%) 2302.15 (29.32%)
88 43 (82.98%) 6810.59 (86.1%) 2250.99 (19.96%)
89 44 (85.11%) 3774.96 (45.51%) 2320.58 (32.69%)
90 44 (85.11%) 3810.52 (45.99%) 2314.6 (31.59%)
91 44 (85.11%) 3823.47 (46.16%) 2301.65 (29.22%)
92 44 (85.11%) 4418.25 (54.11%) 2260.06 (21.62%)
93 44 (85.11%) 4658.84 (57.33%) 2245.86 (19.02%)
94 45 (87.23%) 4619.51 (56.8%) 2252.99 (20.33%)
95 45 (87.23%) 5203.13 (64.61%) 2240.07 (17.96%)
96 46 (89.36%) 5854.4 (73.31%) 2172.08 (5.53%)
97 46 (89.36%) 6374.28 (80.26%) 2167.17 (4.63%)
98 46 (89.36%) 6550.19 (82.61%) 2161.47 (3.59%)
99 47 (91.49%) 5378.8 (66.95%) 2234.22 (16.89%)
100 47 (91.49%) 6587.29 (83.11%) 2157.23 (2.81%)
101 47 (91.49%) 7009.36 (88.75%) 2155.34 (2.47%)
102 47 (91.49%) 7042.94 (89.2%) 2154.63 (2.34%)
103 47 (91.49%) 7043.75 (89.21%) 2153.82 (2.19%)
104 48 (93.62%) 5733.81 (71.7%) 2229 (15.94%)
105 48 (93.62%) 5745.42 (71.86%) 2225.11 (15.23%)
106 48 (93.62%) 5770.58 (72.19%) 2175 (6.06%)
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107 48 (93.62%) 6953.93 (88.01%) 2156.13 (2.61%)
108 48 (93.62%) 7161.42 (90.79%) 2148.76 (1.27%)
109 50 (97.87%) 7561.54 (96.13%) 2142.13 (0.05%)
110 51 (100%) 7850.73 (100%) 2141.84 (0%)

Table B.18: Experimental results for instance 18 - rc202-
C2 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
914.8 1 54 2683.88

Solution S/N f1 f2 f3
1 6 (0%) 661.59 (2.35%) 2745.57 (100%)
2 6 (0%) 771.29 (3.66%) 2722.2 (95.98%)
3 7 (2.08%) 662.4 (2.36%) 2743.6 (99.66%)
4 8 (4.17%) 508.99 (0.53%) 2739.44 (98.95%)
5 9 (6.25%) 476.35 (0.15%) 2722.2 (95.98%)
6 10 (8.33%) 464.18 (0%) 2722.05 (95.96%)
7 11 (10.42%) 545.84 (0.97%) 2681.44 (88.98%)
8 13 (14.58%) 675.85 (2.52%) 2628.55 (79.88%)
9 14 (16.67%) 585.2 (1.44%) 2678.98 (88.55%)
10 14 (16.67%) 643.48 (2.14%) 2612.2 (77.07%)
11 14 (16.67%) 656.56 (2.29%) 2611.99 (77.04%)
12 15 (18.75%) 644.1 (2.14%) 2610.18 (76.73%)
13 15 (18.75%) 657.18 (2.3%) 2609.97 (76.69%)
14 15 (18.75%) 2187.58 (20.55%) 2609.59 (76.62%)
15 16 (20.83%) 649.23 (2.21%) 2609.13 (76.55%)
16 17 (22.92%) 659.49 (2.33%) 2607.35 (76.24%)
17 17 (22.92%) 683.46 (2.61%) 2606.18 (76.04%)
18 19 (27.08%) 814.09 (4.17%) 2594.82 (74.09%)
19 22 (33.33%) 1234.49 (9.18%) 2579.03 (71.37%)
20 22 (33.33%) 2315.27 (22.07%) 2556 (67.41%)
21 23 (35.42%) 1617.96 (13.76%) 2573.34 (70.39%)
22 23 (35.42%) 1687.96 (14.59%) 2559.73 (68.05%)
23 23 (35.42%) 1991.05 (18.2%) 2548.06 (66.05%)
24 27 (43.75%) 2490.41 (24.16%) 2546.3 (65.75%)
25 28 (45.83%) 3029.37 (30.58%) 2533.98 (63.63%)
26 28 (45.83%) 3046.94 (30.79%) 2533.66 (63.57%)
27 29 (47.92%) 2999.13 (30.22%) 2545.9 (65.68%)
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28 29 (47.92%) 3040.08 (30.71%) 2532.17 (63.32%)
29 30 (50%) 2318.66 (22.11%) 2546.75 (65.82%)
30 30 (50%) 2572.34 (25.13%) 2540.94 (64.82%)
31 30 (50%) 4010.11 (42.27%) 2462.25 (51.3%)
32 31 (52.08%) 2330.16 (22.25%) 2543.02 (65.18%)
33 31 (52.08%) 2354.06 (22.53%) 2538.31 (64.37%)
34 31 (52.08%) 3665.14 (38.16%) 2524.7 (62.03%)
35 31 (52.08%) 4893.78 (52.81%) 2461.55 (51.18%)
36 32 (54.17%) 2329.32 (22.24%) 2544.27 (65.4%)
37 32 (54.17%) 2329.37 (22.24%) 2544.22 (65.39%)
38 32 (54.17%) 2657.71 (26.15%) 2519.16 (61.08%)
39 32 (54.17%) 5113.83 (55.43%) 2459.24 (50.78%)
40 33 (56.25%) 2352.57 (22.51%) 2542.18 (65.04%)
41 33 (56.25%) 4689.71 (50.38%) 2405.8 (41.59%)
42 33 (56.25%) 4766.62 (51.29%) 2311.22 (25.33%)
43 34 (58.33%) 2747.01 (27.22%) 2507.43 (59.06%)
44 34 (58.33%) 3615.91 (37.57%) 2435.93 (46.77%)
45 34 (58.33%) 3689.75 (38.45%) 2426.33 (45.12%)
46 34 (58.33%) 4698.75 (50.48%) 2311.57 (25.39%)
47 34 (58.33%) 4706.13 (50.57%) 2309.42 (25.03%)
48 35 (60.42%) 3566.36 (36.98%) 2436.61 (46.89%)
49 35 (60.42%) 3590.98 (37.28%) 2423.81 (44.69%)
50 35 (60.42%) 3597.86 (37.36%) 2422.09 (44.39%)
51 35 (60.42%) 3786.7 (39.61%) 2417.09 (43.53%)
52 35 (60.42%) 4261.74 (45.27%) 2311.09 (25.31%)
53 35 (60.42%) 4300.32 (45.73%) 2310.85 (25.27%)
54 36 (62.5%) 3761.15 (39.31%) 2417.14 (43.54%)
55 36 (62.5%) 3766.87 (39.37%) 2415.71 (43.3%)
56 36 (62.5%) 4070.54 (42.99%) 2308.63 (24.89%)
57 36 (62.5%) 4406.25 (47%) 2305.18 (24.3%)
58 38 (66.67%) 3810.51 (39.89%) 2372.75 (35.91%)
59 38 (66.67%) 3862.51 (40.51%) 2362.23 (34.1%)
60 38 (66.67%) 3922.06 (41.22%) 2350.44 (32.08%)
61 38 (66.67%) 3923.86 (41.25%) 2349.52 (31.92%)
62 39 (68.75%) 3799.79 (39.77%) 2377.67 (36.76%)
63 39 (68.75%) 3851.79 (40.39%) 2367.15 (34.95%)
64 40 (70.83%) 4893.02 (52.8%) 2304.12 (24.11%)
65 48 (87.5%) 6288.39 (69.43%) 2255.21 (15.71%)
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66 49 (89.58%) 6243.85 (68.9%) 2253.11 (15.35%)
67 50 (91.67%) 6209.03 (68.49%) 2251.18 (15.01%)
68 50 (91.67%) 6598.35 (73.13%) 2249.86 (14.79%)
69 50 (91.67%) 7264.96 (81.08%) 2248.82 (14.61%)
70 50 (91.67%) 7285.68 (81.32%) 2248.5 (14.55%)
71 50 (91.67%) 8852.23 (100%) 2163.84 (0%)
72 51 (93.75%) 6963.86 (77.49%) 2248.76 (14.6%)
73 51 (93.75%) 6984.9 (77.74%) 2248.44 (14.54%)
74 51 (93.75%) 7121.73 (79.37%) 2248.34 (14.53%)
75 51 (93.75%) 7151.73 (79.73%) 2248.25 (14.51%)
76 51 (93.75%) 7368.19 (82.31%) 2239.72 (13.04%)
77 51 (93.75%) 8416.41 (94.8%) 2211.22 (8.14%)
78 52 (95.83%) 7928.7 (88.99%) 2238.58 (12.85%)
79 52 (95.83%) 8334.78 (93.83%) 2214.81 (8.76%)
80 52 (95.83%) 8405.02 (94.67%) 2210 (7.93%)
81 53 (97.92%) 7695.27 (86.21%) 2213.99 (8.62%)
82 53 (97.92%) 8267.73 (93.03%) 2209.33 (7.82%)
83 54 (100%) 8052.66 (90.47%) 2212.67 (8.39%)
84 54 (100%) 8263.1 (92.98%) 2211.77 (8.24%)

Table B.19: Experimental results for instance 19 - rc202-
C3 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
987.2 1 100 2683.88

Solution S/N f1 f2 f3
1 7 (0%) 1017.41 (5.2%) 2751.51 (91.39%)
2 9 (4.65%) 864.81 (3.33%) 2751.51 (91.39%)
3 11 (9.3%) 774.29 (2.22%) 2753.64 (91.76%)
4 11 (9.3%) 919.42 (4%) 2704.25 (83.21%)
5 12 (11.63%) 771.4 (2.18%) 2747.96 (90.78%)
6 12 (11.63%) 810.03 (2.66%) 2737.33 (88.94%)
7 12 (11.63%) 850.81 (3.16%) 2735.52 (88.62%)
8 12 (11.63%) 883.84 (3.56%) 2692.52 (81.17%)
9 12 (11.63%) 889.92 (3.64%) 2690.29 (80.79%)
10 13 (13.95%) 800.39 (2.54%) 2734.75 (88.49%)
11 13 (13.95%) 872.92 (3.43%) 2689.93 (80.73%)
12 13 (13.95%) 896.9 (3.72%) 2683.28 (79.57%)
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13 14 (16.28%) 674 (0.99%) 2751.51 (91.39%)
14 14 (16.28%) 809.12 (2.64%) 2717.55 (85.51%)
15 15 (18.6%) 655.73 (0.76%) 2801.19 (100%)
16 15 (18.6%) 871.51 (3.41%) 2683.38 (79.59%)
17 16 (20.93%) 593.54 (0%) 2731.42 (87.91%)
18 17 (23.26%) 650.53 (0.7%) 2690.05 (80.75%)
19 18 (25.58%) 652.75 (0.73%) 2685.56 (79.97%)
20 19 (27.91%) 667.24 (0.9%) 2684.92 (79.86%)
21 20 (30.23%) 793.12 (2.45%) 2676.27 (78.36%)
22 22 (34.88%) 1305.66 (8.73%) 2669.96 (77.27%)
23 22 (34.88%) 2176.48 (19.42%) 2667.74 (76.88%)
24 23 (37.21%) 1668.7 (13.19%) 2659.85 (75.51%)
25 25 (41.86%) 1573.64 (12.02%) 2665.65 (76.52%)
26 25 (41.86%) 1583.06 (12.14%) 2664.73 (76.36%)
27 25 (41.86%) 2461.43 (22.91%) 2643.56 (72.69%)
28 26 (44.19%) 1630.42 (12.72%) 2655.64 (74.79%)
29 26 (44.19%) 3140.39 (31.24%) 2533.59 (53.64%)
30 27 (46.51%) 1613.35 (12.51%) 2657.02 (75.02%)
31 28 (48.84%) 1625.83 (12.66%) 2656.91 (75.01%)
32 28 (48.84%) 1878.25 (15.76%) 2528.78 (52.81%)
33 28 (48.84%) 1882.18 (15.81%) 2526.39 (52.39%)
34 28 (48.84%) 1892.25 (15.93%) 2526.17 (52.36%)
35 28 (48.84%) 1909.04 (16.14%) 2525.6 (52.26%)
36 29 (51.16%) 1858.88 (15.52%) 2526.44 (52.4%)
37 30 (53.49%) 1931.56 (16.41%) 2525.41 (52.22%)
38 30 (53.49%) 1944.72 (16.57%) 2524.13 (52%)
39 31 (55.81%) 6069.46 (67.17%) 2363.35 (24.15%)
40 31 (55.81%) 6531.87 (72.84%) 2362.85 (24.06%)
41 32 (58.14%) 1952.06 (16.66%) 2523.26 (51.85%)
42 32 (58.14%) 2354.33 (21.6%) 2516.2 (50.63%)
43 32 (58.14%) 5329.4 (58.09%) 2363.28 (24.14%)
44 32 (58.14%) 5653.11 (62.06%) 2358.62 (23.33%)
45 32 (58.14%) 6081.46 (67.32%) 2358.45 (23.3%)
46 33 (60.47%) 5265.07 (57.3%) 2361.81 (23.88%)
47 33 (60.47%) 5286.55 (57.57%) 2361.18 (23.77%)
48 47 (93.02%) 7187.2 (80.88%) 2247.71 (4.12%)
49 48 (95.35%) 7210.75 (81.17%) 2246.65 (3.93%)
50 48 (95.35%) 8714.43 (99.61%) 2224.11 (0.03%)
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51 48 (95.35%) 8746.07 (100%) 2223.95 (0%)
52 49 (97.67%) 7489.8 (84.59%) 2241.98 (3.12%)
53 49 (97.67%) 7796.89 (88.36%) 2241.13 (2.98%)
54 49 (97.67%) 7982.26 (90.63%) 2239.53 (2.7%)
55 49 (97.67%) 8719.46 (99.67%) 2223.99 (0.01%)
56 50 (100%) 7395.52 (83.43%) 2242.07 (3.14%)
57 50 (100%) 7416.56 (83.69%) 2241.75 (3.08%)
58 50 (100%) 7448.04 (84.08%) 2241.59 (3.06%)

Table B.20: Experimental results for instance 20 - rc202-
C4 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
993.3 3 177.95 2683.88

Solution S/N f1 f2 f3
1 13 (0%) 1393.46 (6.79%) 2806.78 (90.22%)
2 15 (5.41%) 1477.67 (8.06%) 2800.07 (89.06%)
3 16 (8.11%) 1452.43 (7.68%) 2801.43 (89.29%)
4 17 (10.81%) 1150.82 (3.14%) 2794.83 (88.15%)
5 18 (13.51%) 1139.7 (2.97%) 2713.89 (74.17%)
6 18 (13.51%) 1746.02 (12.1%) 2685.59 (69.29%)
7 19 (16.22%) 1131.58 (2.85%) 2709.89 (73.48%)
8 19 (16.22%) 1153 (3.17%) 2706.16 (72.84%)
9 19 (16.22%) 1171.72 (3.46%) 2696.98 (71.25%)
10 20 (18.92%) 998.57 (0.85%) 2829.52 (94.14%)
11 20 (18.92%) 1111.74 (2.55%) 2798.54 (88.79%)
12 21 (21.62%) 989.99 (0.72%) 2786.52 (86.72%)
13 21 (21.62%) 4202.16 (49.04%) 2667.63 (66.19%)
14 22 (24.32%) 941.94 (0%) 2863.43 (100%)
15 22 (24.32%) 1113.6 (2.58%) 2714.27 (74.24%)
16 22 (24.32%) 1114.82 (2.6%) 2712.6 (73.95%)
17 22 (24.32%) 1123.78 (2.74%) 2712.5 (73.93%)
18 22 (24.32%) 1129.63 (2.82%) 2707.81 (73.12%)
19 22 (24.32%) 1148.35 (3.1%) 2701.09 (71.96%)
20 23 (27.03%) 1112.21 (2.56%) 2712.16 (73.88%)
21 23 (27.03%) 1118.36 (2.65%) 2711.72 (73.8%)
22 23 (27.03%) 1118.78 (2.66%) 2707.88 (73.14%)
23 23 (27.03%) 1125.05 (2.75%) 2705.25 (72.68%)
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24 24 (29.73%) 1115.5 (2.61%) 2710.54 (73.6%)
25 24 (29.73%) 1116.73 (2.63%) 2709.98 (73.5%)
26 26 (35.14%) 2563.01 (24.38%) 2576.35 (50.42%)
27 28 (40.54%) 1878.81 (14.09%) 2683.1 (68.86%)
28 28 (40.54%) 2339.73 (21.03%) 2654.08 (63.85%)
29 28 (40.54%) 2555.11 (24.27%) 2587.08 (52.27%)
30 29 (43.24%) 2605.99 (25.03%) 2574.73 (50.14%)
31 30 (45.95%) 2693.54 (26.35%) 2566.94 (48.8%)
32 30 (45.95%) 5556.32 (69.41%) 2562.81 (48.08%)
33 31 (48.65%) 5015.53 (61.28%) 2559.73 (47.55%)
34 33 (54.05%) 5452.35 (67.85%) 2556.29 (46.96%)
35 33 (54.05%) 5544.08 (69.23%) 2555.3 (46.79%)
36 38 (67.57%) 4519.15 (53.81%) 2552.02 (46.22%)
37 39 (70.27%) 4354.44 (51.33%) 2552.2 (46.25%)
38 39 (70.27%) 4781.54 (57.76%) 2550.31 (45.92%)
39 39 (70.27%) 6988.76 (90.96%) 2411.94 (22.03%)
40 40 (72.97%) 4259.14 (49.9%) 2533.65 (43.05%)
41 40 (72.97%) 4276.99 (50.17%) 2532.61 (42.87%)
42 40 (72.97%) 4330.43 (50.97%) 2527.53 (41.99%)
43 40 (72.97%) 4343.23 (51.16%) 2523.18 (41.24%)
44 40 (72.97%) 5898.28 (74.55%) 2413.33 (22.27%)
45 40 (72.97%) 5898.64 (74.56%) 2413.15 (22.24%)
46 40 (72.97%) 5904.3 (74.64%) 2410.32 (21.75%)
47 40 (72.97%) 5996.15 (76.03%) 2407.96 (21.34%)
48 41 (75.68%) 4246.76 (49.71%) 2537.65 (43.74%)
49 41 (75.68%) 4247.21 (49.72%) 2537.5 (43.71%)
50 41 (75.68%) 4323.12 (50.86%) 2523.41 (41.28%)
51 41 (75.68%) 5006.47 (61.14%) 2496.87 (36.7%)
52 41 (75.68%) 5881.48 (74.3%) 2413.3 (22.26%)
53 42 (78.38%) 4750.27 (57.29%) 2497.39 (36.79%)
54 42 (78.38%) 7270.8 (95.2%) 2406.71 (21.12%)
55 43 (81.08%) 4569.86 (54.57%) 2521.42 (40.93%)
56 43 (81.08%) 6157.12 (78.45%) 2406.99 (21.17%)
57 43 (81.08%) 6517.88 (83.87%) 2405.59 (20.93%)
58 44 (83.78%) 5148.63 (63.28%) 2401.42 (20.21%)
59 45 (86.49%) 5458.07 (67.93%) 2375.26 (15.69%)
60 45 (86.49%) 5709.95 (71.72%) 2370.42 (14.86%)
61 45 (86.49%) 6049.18 (76.82%) 2366.88 (14.25%)

Continued on the next page

292



Table B.20 – Continued from the previous page
Solution S/N f1 f2 f3
62 45 (86.49%) 7406.1 (97.24%) 2301.72 (2.99%)
63 45 (86.49%) 7437.93 (97.71%) 2301.19 (2.9%)
64 46 (89.19%) 6713.94 (86.82%) 2360.32 (13.11%)
65 46 (89.19%) 7437.28 (97.7%) 2301.06 (2.88%)
66 46 (89.19%) 7447.4 (97.86%) 2300.97 (2.86%)
67 46 (89.19%) 7558.36 (99.53%) 2284.55 (0.03%)
68 47 (91.89%) 6550.33 (84.36%) 2363.41 (13.65%)
69 47 (91.89%) 6954.5 (90.44%) 2353.26 (11.89%)
70 47 (91.89%) 7589.89 (100%) 2284.39 (0%)
71 48 (94.59%) 6873.55 (89.22%) 2350.08 (11.34%)
72 48 (94.59%) 7364.11 (96.6%) 2316.28 (5.51%)
73 49 (97.3%) 7164.7 (93.6%) 2347.29 (10.86%)
74 49 (97.3%) 7204.5 (94.2%) 2344.87 (10.44%)
75 50 (100%) 7267.01 (95.14%) 2343.1 (10.14%)
76 50 (100%) 7310.48 (95.8%) 2318.72 (5.93%)
77 50 (100%) 7332.59 (96.13%) 2318.09 (5.82%)

Table B.21: Experimental results for instance 21 - rc202-
C5 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
893.7 8 387.28 2683.88

Solution S/N f1 f2 f3
1 25 (0%) 3054.04 (19.39%) 2880.8 (94.75%)
2 25 (0%) 3067.65 (19.62%) 2876.97 (94.06%)
3 25 (0%) 3083.39 (19.89%) 2794.52 (79.21%)
4 25 (0%) 3123.71 (20.58%) 2779.57 (76.52%)
5 25 (0%) 3168.25 (21.34%) 2778.68 (76.36%)
6 25 (0%) 3271.09 (23.09%) 2771.01 (74.98%)
7 27 (7.14%) 2654.76 (12.57%) 2794.51 (79.21%)
8 27 (7.14%) 2706.6 (13.45%) 2783.66 (77.26%)
9 27 (7.14%) 2994.01 (18.36%) 2764.26 (73.76%)
10 29 (14.29%) 1990.84 (1.23%) 2798.95 (80.01%)
11 30 (17.86%) 2136.47 (3.71%) 2795.78 (79.44%)
12 30 (17.86%) 2326.82 (6.96%) 2780.93 (76.77%)
13 30 (17.86%) 2408.82 (8.37%) 2773.19 (75.37%)
14 30 (17.86%) 2436.35 (8.84%) 2754.15 (71.94%)
15 30 (17.86%) 2518.35 (10.24%) 2750.77 (71.34%)

Continued on the next page

293



Table B.21 – Continued from the previous page
Solution S/N f1 f2 f3
16 31 (21.43%) 1995.96 (1.31%) 2798.2 (79.88%)
17 31 (21.43%) 2036.7 (2.01%) 2795.69 (79.42%)
18 31 (21.43%) 2107.78 (3.22%) 2787.1 (77.88%)
19 31 (21.43%) 2938.32 (17.41%) 2733.32 (68.19%)
20 32 (25%) 1957.06 (0.65%) 2891.44 (96.67%)
21 32 (25%) 1958.82 (0.68%) 2889.55 (96.33%)
22 32 (25%) 1971.83 (0.9%) 2883.88 (95.31%)
23 32 (25%) 2024.88 (1.81%) 2798.11 (79.86%)
24 33 (28.57%) 1945.86 (0.46%) 2895.83 (97.46%)
25 33 (28.57%) 2594.73 (11.54%) 2685.08 (59.51%)
26 33 (28.57%) 2632.78 (12.19%) 2676.89 (58.03%)
27 33 (28.57%) 2633.27 (12.2%) 2655.93 (54.26%)
28 33 (28.57%) 4079.06 (36.89%) 2650.62 (53.3%)
29 33 (28.57%) 4177.51 (38.57%) 2647.65 (52.76%)
30 34 (32.14%) 1931.84 (0.22%) 2909.94 (100%)
31 34 (32.14%) 2585.46 (11.38%) 2672.3 (57.2%)
32 34 (32.14%) 2659.48 (12.65%) 2651.63 (53.48%)
33 34 (32.14%) 2667.42 (12.78%) 2649.19 (53.04%)
34 35 (35.71%) 2584.48 (11.37%) 2720.82 (65.94%)
35 35 (35.71%) 2611.03 (11.82%) 2667.49 (56.34%)
36 35 (35.71%) 2629.73 (12.14%) 2650.8 (53.33%)
37 37 (42.86%) 1919.03 (0%) 2899.34 (98.09%)
38 37 (42.86%) 3022.17 (18.84%) 2614.74 (46.84%)
39 37 (42.86%) 3364.87 (24.69%) 2604.52 (45%)
40 38 (46.43%) 4242.03 (39.68%) 2598.13 (43.85%)
41 40 (53.57%) 4392.53 (42.25%) 2597.62 (43.75%)
42 41 (57.14%) 4053.1 (36.45%) 2592.91 (42.91%)
43 41 (57.14%) 4292.42 (40.54%) 2585.9 (41.64%)
44 41 (57.14%) 6008.38 (69.84%) 2497.31 (25.69%)
45 42 (60.71%) 4968.95 (52.09%) 2502.33 (26.59%)
46 42 (60.71%) 4969.38 (52.1%) 2501.9 (26.52%)
47 42 (60.71%) 5070.71 (53.83%) 2498.93 (25.98%)
48 43 (64.29%) 4908.48 (51.06%) 2501.05 (26.36%)
49 43 (64.29%) 4908.61 (51.06%) 2500.92 (26.34%)
50 43 (64.29%) 4919.62 (51.25%) 2500.53 (26.27%)
51 43 (64.29%) 4998.51 (52.6%) 2499.41 (26.07%)
52 43 (64.29%) 5070.97 (53.83%) 2498.27 (25.86%)
53 43 (64.29%) 5266.68 (57.18%) 2495.59 (25.38%)
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54 43 (64.29%) 5549.64 (62.01%) 2492.43 (24.81%)
55 44 (67.86%) 4819.28 (49.53%) 2502.3 (26.59%)
56 44 (67.86%) 4828.92 (49.7%) 2501.03 (26.36%)
57 45 (71.43%) 4882.4 (50.61%) 2498.05 (25.82%)
58 45 (71.43%) 6191.24 (72.97%) 2473.06 (21.32%)
59 46 (75%) 5214.29 (56.28%) 2497.79 (25.78%)
60 46 (75%) 5233.49 (56.61%) 2490.87 (24.53%)
61 48 (82.14%) 5401.04 (59.47%) 2481.02 (22.76%)
62 49 (85.71%) 5667.59 (64.02%) 2472.98 (21.31%)
63 49 (85.71%) 6302.72 (74.87%) 2456.71 (18.38%)
64 50 (89.29%) 5914.39 (68.24%) 2466.11 (20.07%)
65 50 (89.29%) 6046 (70.49%) 2460.81 (19.12%)
66 50 (89.29%) 6357.05 (75.8%) 2452.82 (17.68%)
67 50 (89.29%) 6470.06 (77.73%) 2402.71 (8.65%)
68 50 (89.29%) 6620.93 (80.31%) 2401.37 (8.41%)
69 50 (89.29%) 6665.23 (81.06%) 2400.07 (8.18%)
70 50 (89.29%) 6687.84 (81.45%) 2398.94 (7.97%)
71 50 (89.29%) 6762.5 (82.72%) 2397.98 (7.8%)
72 53 (100%) 7774.03 (100%) 2354.66 (0%)

Table B.22: Experimental results for instance 22 - rc202-
C6 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
1103 9 555.06 2683.88

Solution S/N f1 f2 f3
1 26 (0%) 3787.1 (16.38%) 2912.69 (100%)
2 28 (8%) 3623.93 (13.64%) 2906.9 (98.65%)
3 28 (8%) 3627.02 (13.7%) 2892.52 (95.28%)
4 28 (8%) 3646.13 (14.02%) 2886.36 (93.84%)
5 28 (8%) 3656.32 (14.19%) 2866.12 (89.11%)
6 29 (12%) 3232.56 (7.08%) 2853 (86.04%)
7 29 (12%) 4171.67 (22.83%) 2844.12 (83.97%)
8 30 (16%) 3099.21 (4.84%) 2897.72 (96.5%)
9 30 (16%) 3220.62 (6.88%) 2880.16 (92.39%)
10 30 (16%) 3222.96 (6.92%) 2809.36 (75.84%)
11 30 (16%) 3231.24 (7.06%) 2807.45 (75.39%)
12 30 (16%) 3232.98 (7.08%) 2806.22 (75.1%)
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13 30 (16%) 3246.48 (7.31%) 2802.69 (74.28%)
14 31 (20%) 2990.1 (3.01%) 2880.29 (92.42%)
15 31 (20%) 3028.06 (3.65%) 2880.25 (92.41%)
16 31 (20%) 3243.47 (7.26%) 2802.99 (74.35%)
17 32 (24%) 2950.77 (2.35%) 2897.49 (96.45%)
18 32 (24%) 2960.96 (2.52%) 2877.25 (91.71%)
19 32 (24%) 3129.45 (5.35%) 2864.61 (88.76%)
20 32 (24%) 3625.63 (13.67%) 2798.22 (73.23%)
21 33 (28%) 2950.17 (2.34%) 2892.39 (95.25%)
22 33 (28%) 3006.55 (3.29%) 2861.4 (88.01%)
23 33 (28%) 3200.06 (6.53%) 2835.02 (81.84%)
24 33 (28%) 3777.86 (16.23%) 2796.32 (72.79%)
25 33 (28%) 3936.24 (18.88%) 2781.91 (69.42%)
26 33 (28%) 4081.57 (21.32%) 2750.28 (62.02%)
27 33 (28%) 4408.63 (26.81%) 2743.27 (60.38%)
28 33 (28%) 4837.95 (34.01%) 2706.57 (51.8%)
29 34 (32%) 2954.76 (2.42%) 2890.03 (94.7%)
30 34 (32%) 3186.3 (6.3%) 2846.37 (84.49%)
31 34 (32%) 3858.41 (17.58%) 2783.92 (69.89%)
32 34 (32%) 4005.72 (20.05%) 2761.16 (64.57%)
33 34 (32%) 4385.9 (26.43%) 2739.04 (59.39%)
34 34 (32%) 4537.63 (28.97%) 2732.92 (57.96%)
35 34 (32%) 4639.64 (30.68%) 2707.64 (52.05%)
36 34 (32%) 4654.29 (30.93%) 2705.73 (51.61%)
37 34 (32%) 4695.66 (31.62%) 2700.23 (50.32%)
38 34 (32%) 5131.76 (38.94%) 2699.99 (50.26%)
39 35 (36%) 2947.15 (2.29%) 2911.57 (99.74%)
40 35 (36%) 4332.65 (25.53%) 2742.13 (60.12%)
41 36 (40%) 2810.7 (0%) 2900.24 (97.09%)
42 36 (40%) 4641.09 (30.71%) 2707.21 (51.95%)
43 36 (40%) 4649.72 (30.85%) 2707.2 (51.95%)
44 36 (40%) 4657.65 (30.99%) 2705.3 (51.5%)
45 36 (40%) 4660.04 (31.03%) 2704.72 (51.37%)
46 38 (48%) 4671.69 (31.22%) 2701.34 (50.58%)
47 38 (48%) 4685.07 (31.45%) 2700.47 (50.38%)
48 38 (48%) 5761.24 (49.5%) 2671.87 (43.69%)
49 38 (48%) 5777.34 (49.77%) 2671.08 (43.5%)
50 39 (52%) 5759.43 (49.47%) 2685.32 (46.83%)
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51 40 (56%) 4635.34 (30.61%) 2710.68 (52.76%)
52 40 (56%) 5217.01 (40.37%) 2698.28 (49.86%)
53 40 (56%) 5949.46 (52.66%) 2667.66 (42.7%)
54 40 (56%) 6303.38 (58.6%) 2601.87 (27.32%)
55 40 (56%) 6542.75 (62.61%) 2598.84 (26.61%)
56 41 (60%) 4615.19 (30.27%) 2717.04 (54.25%)
57 41 (60%) 4634.84 (30.6%) 2710.68 (52.76%)
58 41 (60%) 5129.31 (38.9%) 2693.05 (48.64%)
59 41 (60%) 6013.51 (53.73%) 2625.83 (32.92%)
60 42 (64%) 5972.37 (53.04%) 2654.33 (39.59%)
61 43 (68%) 5760.92 (49.5%) 2669.64 (43.17%)
62 43 (68%) 5778.6 (49.79%) 2668.85 (42.98%)
63 43 (68%) 6138.58 (55.83%) 2613.79 (30.11%)
64 43 (68%) 6236.15 (57.47%) 2604.61 (27.96%)
65 44 (72%) 5459.96 (44.45%) 2650.44 (38.68%)
66 44 (72%) 6114.35 (55.43%) 2603.16 (27.62%)
67 44 (72%) 6117.7 (55.48%) 2602.86 (27.55%)
68 44 (72%) 6182.26 (56.56%) 2600.5 (27%)
69 44 (72%) 6470.3 (61.4%) 2586.25 (23.67%)
70 44 (72%) 6498.25 (61.87%) 2573.19 (20.61%)
71 44 (72%) 6630.04 (64.08%) 2502.22 (4.02%)
72 44 (72%) 6653.74 (64.47%) 2501.82 (3.92%)
73 44 (72%) 6676.39 (64.85%) 2495.16 (2.37%)
74 44 (72%) 7182.83 (73.35%) 2492.22 (1.68%)
75 45 (76%) 5759.45 (49.47%) 2643.43 (37.04%)
76 45 (76%) 5937.75 (52.46%) 2642.16 (36.74%)
77 46 (80%) 6300.79 (58.55%) 2587.74 (24.01%)
78 47 (84%) 5914.82 (52.08%) 2631.94 (34.35%)
79 47 (84%) 5955.81 (52.77%) 2631.57 (34.26%)
80 47 (84%) 5970.3 (53.01%) 2623.6 (32.4%)
81 47 (84%) 6078.26 (54.82%) 2618.08 (31.11%)
82 48 (88%) 5905.45 (51.92%) 2630.58 (34.03%)
83 48 (88%) 5923.13 (52.22%) 2629.79 (33.85%)
84 48 (88%) 6341.55 (59.24%) 2587.13 (23.87%)
85 48 (88%) 6428.47 (60.7%) 2582.9 (22.88%)
86 48 (88%) 8771.26 (100%) 2485.04 (0%)
87 49 (92%) 5899.53 (51.82%) 2642.48 (36.82%)
88 49 (92%) 6290.31 (58.38%) 2567.17 (19.2%)
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89 49 (92%) 8070.82 (88.25%) 2488.37 (0.78%)
90 50 (96%) 6212.5 (57.07%) 2600.27 (26.94%)
91 51 (100%) 6584.35 (63.31%) 2555.63 (16.51%)

Table B.23: Experimental results for instance 23 - rc202-
C7 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
920.1 3 203.27 2683.88

Solution S/N f1 f2 f3
1 27 (0%) 5038.14 (21.69%) 2922.35 (100%)
2 30 (9.38%) 4875.36 (19.19%) 2902.53 (95.26%)
3 31 (12.5%) 4428.91 (12.33%) 2898.93 (94.4%)
4 31 (12.5%) 4443 (12.55%) 2891.81 (92.7%)
5 31 (12.5%) 4456.95 (12.77%) 2890.78 (92.45%)
6 32 (15.63%) 4411.14 (12.06%) 2907.87 (96.54%)
7 32 (15.63%) 4589.1 (14.79%) 2883.38 (90.68%)
8 32 (15.63%) 4655.9 (15.82%) 2862.67 (85.73%)
9 33 (18.75%) 5177.72 (23.83%) 2859.66 (85.01%)
10 34 (21.88%) 4070.11 (6.83%) 2886.39 (91.4%)
11 34 (21.88%) 4937.79 (20.15%) 2851.61 (83.08%)
12 34 (21.88%) 5163.16 (23.61%) 2848.58 (82.36%)
13 34 (21.88%) 5666.66 (31.34%) 2817.29 (74.87%)
14 35 (25%) 4461.98 (12.84%) 2816.56 (74.7%)
15 35 (25%) 5720.61 (32.17%) 2816.28 (74.63%)
16 35 (25%) 6004.64 (36.53%) 2815.9 (74.54%)
17 36 (28.13%) 3761.61 (2.09%) 2915.43 (98.34%)
18 36 (28.13%) 3957.28 (5.09%) 2897.27 (94%)
19 36 (28.13%) 4478.2 (13.09%) 2812.65 (73.76%)
20 36 (28.13%) 4920.65 (19.88%) 2811.15 (73.4%)
21 37 (31.25%) 3779 (2.36%) 2911.8 (97.48%)
22 38 (34.38%) 3778.66 (2.35%) 2914.92 (98.22%)
23 38 (34.38%) 5842.14 (34.03%) 2808.18 (72.69%)
24 39 (37.5%) 3625.48 (0%) 2918.25 (99.02%)
25 40 (40.63%) 5399.03 (27.23%) 2740.19 (56.43%)
26 40 (40.63%) 5418.35 (27.52%) 2739.26 (56.21%)
27 42 (46.88%) 5411 (27.41%) 2739.7 (56.32%)
28 42 (46.88%) 5432.42 (27.74%) 2729.67 (53.92%)
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29 42 (46.88%) 5452.42 (28.05%) 2727.36 (53.36%)
30 44 (53.13%) 6647.34 (46.39%) 2714.99 (50.41%)
31 44 (53.13%) 7164.4 (54.33%) 2714.89 (50.38%)
32 45 (56.25%) 7230.86 (55.35%) 2712.39 (49.78%)
33 46 (59.38%) 6759.11 (48.11%) 2712.14 (49.72%)
34 46 (59.38%) 7083.15 (53.08%) 2708.75 (48.91%)
35 47 (62.5%) 6965.22 (51.27%) 2710.32 (49.29%)
36 49 (68.75%) 8149.31 (69.45%) 2708.54 (48.86%)
37 50 (71.88%) 7291.85 (56.29%) 2666.02 (38.69%)
38 51 (75%) 7319.14 (56.71%) 2660.07 (37.27%)
39 52 (78.13%) 7820.4 (64.4%) 2656.21 (36.35%)
40 52 (78.13%) 9324.48 (87.49%) 2522.03 (4.25%)
41 53 (81.25%) 7266.34 (55.9%) 2608.54 (24.95%)
42 53 (81.25%) 7317.66 (56.68%) 2606.36 (24.42%)
43 53 (81.25%) 9271.55 (86.68%) 2522.1 (4.27%)
44 53 (81.25%) 9304.59 (87.19%) 2521.72 (4.18%)
45 53 (81.25%) 9718.76 (93.55%) 2521.56 (4.14%)
46 54 (84.38%) 7266.01 (55.89%) 2608.95 (25.04%)
47 54 (84.38%) 7457.73 (58.83%) 2586.74 (19.73%)
48 54 (84.38%) 7521.72 (59.82%) 2575.43 (17.03%)
49 54 (84.38%) 7562.64 (60.44%) 2568.39 (15.34%)
50 54 (84.38%) 9270.17 (86.66%) 2521.47 (4.12%)
51 54 (84.38%) 9310.69 (87.28%) 2521.3 (4.08%)
52 54 (84.38%) 9616.46 (91.98%) 2506.73 (0.6%)
53 55 (87.5%) 9582.4 (91.45%) 2506.89 (0.63%)
54 55 (87.5%) 9595.82 (91.66%) 2506.45 (0.53%)
55 56 (90.63%) 8380.34 (73%) 2545.16 (9.79%)
56 56 (90.63%) 8407.75 (73.42%) 2542.65 (9.19%)
57 56 (90.63%) 9535.59 (90.73%) 2506.78 (0.61%)
58 56 (90.63%) 9561.6 (91.13%) 2506.61 (0.57%)
59 56 (90.63%) 10139.14 (100%) 2504.24 (0%)
60 57 (93.75%) 7764.81 (63.55%) 2567.29 (15.08%)
61 57 (93.75%) 7775.04 (63.71%) 2560.25 (13.4%)
62 57 (93.75%) 8035.15 (67.7%) 2554.13 (11.93%)
63 57 (93.75%) 8115.96 (68.94%) 2549.11 (10.73%)
64 57 (93.75%) 8739.76 (78.52%) 2532.19 (6.68%)
65 57 (93.75%) 9493.65 (90.09%) 2506.57 (0.56%)
66 57 (93.75%) 9506.31 (90.28%) 2505.94 (0.41%)
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67 57 (93.75%) 9521.09 (90.51%) 2505.72 (0.35%)
68 57 (93.75%) 9642.09 (92.37%) 2505.49 (0.3%)
69 57 (93.75%) 9663.58 (92.7%) 2505.48 (0.3%)
70 57 (93.75%) 9667.93 (92.77%) 2505.32 (0.26%)
71 58 (96.88%) 8618.74 (76.66%) 2540.89 (8.77%)
72 58 (96.88%) 8646.15 (77.08%) 2538.38 (8.17%)
73 58 (96.88%) 8680.27 (77.6%) 2536.77 (7.78%)
74 58 (96.88%) 8690.47 (77.76%) 2535.19 (7.4%)
75 58 (96.88%) 8709.75 (78.06%) 2532.56 (6.77%)
76 58 (96.88%) 9233.6 (86.1%) 2531.95 (6.63%)
77 58 (96.88%) 9493.08 (90.08%) 2506.79 (0.61%)
78 58 (96.88%) 9517.57 (90.46%) 2505.85 (0.39%)
79 58 (96.88%) 9532.35 (90.68%) 2505.63 (0.33%)
80 58 (96.88%) 10116.02 (99.65%) 2504.31 (0.02%)
81 59 (100%) 9640.46 (92.34%) 2505.55 (0.31%)

Table B.24: Experimental results for instance 24 - c203-
D1 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
243.5 4 665.36 9601.72

Solution S/N f1 f2 f3
1 4 (0%) 1632.95 (12.05%) 10125.36 (97.2%)
2 5 (5.56%) 1324.48 (2.69%) 10127.92 (100%)
3 5 (5.56%) 1838.71 (18.29%) 10106.54 (76.65%)
4 5 (5.56%) 2119.9 (26.81%) 10105.27 (75.26%)
5 6 (11.11%) 1235.63 (0%) 10121.69 (93.19%)
6 6 (11.11%) 1730.37 (15%) 10104.79 (74.74%)
7 7 (16.67%) 1550.79 (9.56%) 10111.23 (81.77%)
8 7 (16.67%) 1640.96 (12.29%) 10104.23 (74.12%)
9 7 (16.67%) 1829.02 (17.99%) 10101.48 (71.12%)
10 8 (22.22%) 1453.46 (6.61%) 10097.11 (66.35%)
11 8 (22.22%) 1872.81 (19.32%) 10093.05 (61.91%)
12 8 (22.22%) 2878.21 (49.81%) 10073.09 (40.11%)
13 9 (27.78%) 1989.91 (22.87%) 10073.07 (40.09%)
14 9 (27.78%) 1990.98 (22.9%) 10071.92 (38.83%)
15 9 (27.78%) 2265.55 (31.23%) 10067.62 (34.13%)
16 9 (27.78%) 2481.59 (37.78%) 10052.43 (17.54%)
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17 9 (27.78%) 2726.11 (45.2%) 10047.22 (11.85%)
18 10 (33.33%) 1762.95 (15.99%) 10086.01 (54.22%)
19 10 (33.33%) 2006.23 (23.37%) 10071.28 (38.13%)
20 10 (33.33%) 2006.44 (23.37%) 10071.03 (37.86%)
21 10 (33.33%) 3022.76 (54.19%) 10042.69 (6.9%)
22 11 (38.89%) 2179 (28.61%) 10069.17 (35.83%)
23 11 (38.89%) 3038.01 (54.65%) 10040.01 (3.98%)
24 13 (50%) 3540.15 (69.88%) 10039.8 (3.75%)
25 15 (61.11%) 4241.53 (91.15%) 10039.4 (3.31%)
26 19 (83.33%) 3819.6 (78.35%) 10037.82 (1.58%)
27 20 (88.89%) 3739.94 (75.94%) 10036.81 (0.48%)
28 20 (88.89%) 3832.11 (78.73%) 10036.77 (0.44%)
29 22 (100%) 4533.49 (100%) 10036.37 (0%)

Table B.25: Experimental results for instance 25 - c203-
D2 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
207.5 4 665.36 9601.72

Solution S/N f1 f2 f3
1 4 (0%) 4282.22 (100%) 10397.65 (100%)
2 5 (6.25%) 2747 (47.74%) 10327.33 (67.2%)
3 5 (6.25%) 2748.23 (47.78%) 10326.42 (66.78%)
4 6 (12.5%) 2641.43 (44.14%) 10301.82 (55.31%)
5 6 (12.5%) 2650.44 (44.45%) 10277.57 (44%)
6 7 (18.75%) 1439.85 (3.24%) 10282.56 (46.32%)
7 8 (25%) 1344.77 (0%) 10276.33 (43.42%)
8 13 (56.25%) 1740.7 (13.48%) 10237.45 (25.28%)
9 13 (56.25%) 1807.31 (15.75%) 10235.23 (24.25%)
10 13 (56.25%) 2521.85 (40.07%) 10230.48 (22.03%)
11 14 (62.5%) 1761.87 (14.2%) 10231.26 (22.4%)
12 14 (62.5%) 1838.15 (16.8%) 10231.23 (22.38%)
13 14 (62.5%) 2293.67 (32.3%) 10217.24 (15.86%)
14 15 (68.75%) 3631.39 (77.84%) 10187.24 (1.87%)
15 16 (75%) 1683.67 (11.54%) 10239.96 (26.45%)
16 16 (75%) 1745.98 (13.66%) 10236.26 (24.73%)
17 16 (75%) 2915.32 (53.47%) 10187.67 (2.07%)
18 16 (75%) 2919.77 (53.62%) 10186.88 (1.7%)
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19 16 (75%) 3794.78 (83.41%) 10183.95 (0.33%)
20 17 (81.25%) 1689.74 (11.74%) 10235.41 (24.33%)
21 17 (81.25%) 2071.54 (24.74%) 10222.5 (18.31%)
22 17 (81.25%) 2200.89 (29.15%) 10207.94 (11.52%)
23 17 (81.25%) 2368 (34.83%) 10200.21 (7.91%)
24 17 (81.25%) 2803.32 (49.65%) 10195 (5.48%)
25 17 (81.25%) 2931.85 (54.03%) 10185.63 (1.11%)
26 17 (81.25%) 3547.16 (74.98%) 10184.19 (0.44%)
27 18 (87.5%) 2392.32 (35.66%) 10199.14 (7.42%)
28 18 (87.5%) 4131.44 (94.87%) 10183.24 (0%)
29 19 (93.75%) 3092.16 (59.49%) 10184.44 (0.56%)
30 20 (100%) 2564.89 (41.54%) 10191.41 (3.81%)

Table B.26: Experimental results for instance 26 - c203-
D3 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
216.4 4 665.36 9601.72

Solution S/N f1 f2 f3
1 5 (0%) 7813.69 (100%) 10561.84 (100%)
2 7 (10.53%) 4478.03 (46.63%) 10441.59 (54.48%)
3 8 (15.79%) 3279.45 (27.45%) 10416.84 (45.12%)
4 10 (26.32%) 1779.95 (3.46%) 10410.86 (42.85%)
5 12 (36.84%) 1564 (0%) 10393.16 (36.15%)
6 13 (42.11%) 3956.54 (38.28%) 10365.14 (25.55%)
7 13 (42.11%) 4048.88 (39.76%) 10364.12 (25.16%)
8 13 (42.11%) 4899.92 (53.38%) 10359.86 (23.55%)
9 14 (47.37%) 2999.24 (22.96%) 10366.18 (25.94%)
10 15 (52.63%) 2393.66 (13.28%) 10364.81 (25.42%)
11 15 (52.63%) 3021.93 (23.33%) 10356.56 (22.3%)
12 15 (52.63%) 3872.62 (36.94%) 10356.21 (22.17%)
13 16 (57.89%) 1959.22 (6.32%) 10364.67 (25.37%)
14 17 (63.16%) 2816.25 (20.04%) 10353.15 (21.01%)
15 18 (68.42%) 1837.06 (4.37%) 10361.62 (24.21%)
16 18 (68.42%) 4712.28 (50.37%) 10304.24 (2.49%)
17 18 (68.42%) 4776.28 (51.4%) 10297.65 (0%)
18 19 (73.68%) 2224.93 (10.58%) 10344.16 (17.6%)
19 19 (73.68%) 2349.45 (12.57%) 10329.6 (12.09%)
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20 19 (73.68%) 2516.56 (15.24%) 10321.87 (9.17%)
21 19 (73.68%) 3187.22 (25.97%) 10302.9 (1.99%)
22 19 (73.68%) 3358.36 (28.71%) 10301.86 (1.59%)
23 20 (78.95%) 3134.55 (25.13%) 10304.5 (2.59%)
24 20 (78.95%) 3139 (25.2%) 10303.71 (2.29%)
25 21 (84.21%) 1908.97 (5.52%) 10352.24 (20.66%)
26 21 (84.21%) 2058.58 (7.91%) 10336.18 (14.58%)
27 21 (84.21%) 3244.39 (26.89%) 10299.97 (0.88%)
28 22 (89.47%) 2430.74 (13.87%) 10320.22 (8.54%)
29 22 (89.47%) 2597.85 (16.54%) 10312.49 (5.62%)
30 22 (89.47%) 2946.23 (22.12%) 10304.68 (2.66%)
31 22 (89.47%) 2954.33 (22.25%) 10304.62 (2.64%)
32 22 (89.47%) 3189 (26%) 10299.12 (0.56%)
33 23 (94.74%) 3577.81 (32.22%) 10298.49 (0.32%)
34 24 (100%) 2784.12 (19.52%) 10308.24 (4.01%)
35 24 (100%) 2977.99 (22.62%) 10304.45 (2.57%)
36 24 (100%) 3146.87 (25.33%) 10301.93 (1.62%)

Table B.27: Experimental results for instance 27 - c203-
D4 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
395.6 5 1304.36 9601.72

Solution S/N f1 f2 f3
1 6 (0%) 9529.03 (100%) 10658.95 (100%)
2 7 (5%) 8009.26 (77.46%) 10657.89 (99.5%)
3 7 (5%) 8055.53 (78.15%) 10632.76 (87.58%)
4 8 (10%) 7083.56 (63.73%) 10638.84 (90.46%)
5 9 (15%) 5477.41 (39.91%) 10622.68 (82.8%)
6 9 (15%) 5481.61 (39.98%) 10604.52 (74.18%)
7 9 (15%) 5511.49 (40.42%) 10598.03 (71.1%)
8 9 (15%) 5511.75 (40.42%) 10597.64 (70.92%)
9 10 (20%) 5315.88 (37.52%) 10567.27 (56.51%)
10 11 (25%) 3874.89 (16.15%) 10545.29 (46.09%)
11 11 (25%) 4028.1 (18.42%) 10540.65 (43.89%)
12 12 (30%) 3034.17 (3.68%) 10644.73 (93.25%)
13 13 (35%) 2999.35 (3.16%) 10629.47 (86.02%)
14 13 (35%) 2999.56 (3.17%) 10629.24 (85.91%)
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15 13 (35%) 3027.9 (3.59%) 10619.73 (81.4%)
16 13 (35%) 3661.82 (12.99%) 10554.34 (50.38%)
17 13 (35%) 6666.67 (57.55%) 10502.57 (25.82%)
18 14 (40%) 2843.16 (0.85%) 10605.54 (74.67%)
19 14 (40%) 2849.08 (0.93%) 10605.49 (74.64%)
20 14 (40%) 3499.49 (10.58%) 10549.34 (48.01%)
21 14 (40%) 3580.24 (11.78%) 10544.15 (45.55%)
22 14 (40%) 4626.58 (27.3%) 10503.6 (26.31%)
23 15 (45%) 6617.65 (56.82%) 10502.27 (25.68%)
24 15 (45%) 6737.66 (58.6%) 10501.28 (25.21%)
25 16 (50%) 2849.81 (0.95%) 10554.27 (50.35%)
26 16 (50%) 3011.52 (3.34%) 10550.14 (48.39%)
27 16 (50%) 3021.82 (3.5%) 10548.55 (47.63%)
28 16 (50%) 5970.82 (47.23%) 10502.29 (25.69%)
29 16 (50%) 6822.89 (59.87%) 10499.73 (24.48%)
30 17 (55%) 2786.05 (0%) 10563.26 (54.61%)
31 17 (55%) 4266.9 (21.96%) 10507.58 (28.2%)
32 17 (55%) 6158.49 (50.01%) 10458.08 (4.72%)
33 17 (55%) 6720.32 (58.35%) 10457.12 (4.26%)
34 18 (60%) 4063.02 (18.94%) 10507.65 (28.23%)
35 18 (60%) 4064.74 (18.96%) 10507.19 (28.01%)
36 18 (60%) 4072.98 (19.09%) 10505.53 (27.23%)
37 18 (60%) 4202.23 (21%) 10494.65 (22.07%)
38 18 (60%) 4268.32 (21.98%) 10484.56 (17.28%)
39 18 (60%) 4526.07 (25.8%) 10468.41 (9.62%)
40 18 (60%) 6106.36 (49.24%) 10457.32 (4.36%)
41 18 (60%) 6193.73 (50.54%) 10454.68 (3.11%)
42 19 (65%) 4027.2 (18.41%) 10507.42 (28.12%)
43 19 (65%) 4632.54 (27.38%) 10466.37 (8.65%)
44 19 (65%) 4748.7 (29.11%) 10452.45 (2.05%)
45 19 (65%) 6726.58 (58.44%) 10451.37 (1.54%)
46 20 (70%) 3696.83 (13.51%) 10507.83 (28.32%)
47 20 (70%) 3705.07 (13.63%) 10506.17 (27.53%)
48 20 (70%) 3773.04 (14.64%) 10497.74 (23.53%)
49 20 (70%) 4040.91 (18.61%) 10481.59 (15.87%)
50 20 (70%) 4281.19 (22.17%) 10472.05 (11.35%)
51 20 (70%) 4358.89 (23.33%) 10456.46 (3.95%)
52 20 (70%) 4435.17 (24.46%) 10456.43 (3.94%)
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53 20 (70%) 4558.24 (26.28%) 10455.07 (3.29%)
54 20 (70%) 4613.55 (27.1%) 10448.13 (0%)
55 22 (80%) 3405.07 (9.18%) 10507.34 (28.09%)
56 22 (80%) 3413.31 (9.3%) 10505.68 (27.3%)
57 22 (80%) 3418.79 (9.38%) 10505.5 (27.21%)
58 22 (80%) 3497.43 (10.55%) 10497.25 (23.3%)
59 22 (80%) 3781.45 (14.76%) 10481.1 (15.64%)
60 22 (80%) 4020.68 (18.31%) 10471.35 (11.01%)
61 22 (80%) 4172.33 (20.56%) 10463.62 (7.35%)
62 22 (80%) 4310.26 (22.6%) 10456.24 (3.85%)
63 22 (80%) 4571.2 (26.47%) 10454.25 (2.9%)
64 24 (90%) 3448.76 (9.83%) 10501.96 (25.53%)
65 25 (95%) 3170.26 (5.7%) 10521.55 (34.83%)
66 26 (100%) 3701.75 (13.58%) 10495.61 (22.52%)

Table B.28: Experimental results for instance 28 - c203-
D5 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
234 4 665.36 9601.72

Solution S/N f1 f2 f3
1 5 (0%) 8141.03 (100%) 10712.68 (100%)
2 6 (6.25%) 4619.62 (45.98%) 10543.8 (56.36%)
3 7 (12.5%) 3095.95 (22.61%) 10485.46 (41.28%)
4 8 (18.75%) 2882.88 (19.34%) 10416.33 (23.42%)
5 8 (18.75%) 2915.97 (19.84%) 10397.95 (18.67%)
6 8 (18.75%) 3004.73 (21.21%) 10396.26 (18.23%)
7 9 (25%) 2065.56 (6.8%) 10417.28 (23.67%)
8 10 (31.25%) 1717.72 (1.46%) 10448.85 (31.82%)
9 10 (31.25%) 1736.06 (1.74%) 10411.8 (22.25%)
10 11 (37.5%) 1622.39 (0%) 10442.71 (30.24%)
11 11 (37.5%) 1622.64 (0%) 10442.62 (30.21%)
12 11 (37.5%) 1669.33 (0.72%) 10424.31 (25.48%)
13 11 (37.5%) 2108.22 (7.45%) 10395.84 (18.12%)
14 11 (37.5%) 2275.33 (10.02%) 10388.11 (16.13%)
15 12 (43.75%) 2041.49 (6.43%) 10408.35 (21.36%)
16 12 (43.75%) 2495.9 (13.4%) 10380.56 (14.18%)
17 12 (43.75%) 2931.22 (20.08%) 10375.35 (12.83%)
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18 12 (43.75%) 3093.25 (22.56%) 10367.9 (10.9%)
19 12 (43.75%) 3231.03 (24.68%) 10355.86 (7.79%)
20 13 (50%) 3447.19 (27.99%) 10351.9 (6.77%)
21 14 (56.25%) 3631.59 (30.82%) 10341.98 (4.21%)
22 15 (62.5%) 3641.4 (30.97%) 10337.94 (3.16%)
23 16 (68.75%) 3846.08 (34.11%) 10336.33 (2.75%)
24 16 (68.75%) 4013.24 (36.68%) 10334.26 (2.21%)
25 17 (75%) 3770.22 (32.95%) 10333.29 (1.96%)
26 17 (75%) 4028.49 (36.91%) 10331.58 (1.52%)
27 18 (81.25%) 4361.25 (42.02%) 10331.01 (1.37%)
28 18 (81.25%) 5062.74 (52.78%) 10330.72 (1.3%)
29 20 (93.75%) 4094.25 (37.92%) 10330.37 (1.21%)
30 20 (93.75%) 4730.98 (47.69%) 10325.7 (0%)
31 21 (100%) 3903.82 (35%) 10332.02 (1.63%)

Table B.29: Experimental results for instance 29 - c203-
D6 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
555.4 8 2978.6 9601.72

Solution S/N f1 f2 f3
1 14 (0%) 14993.44 (97.95%) 11386.08 (76.64%)
2 14 (0%) 14993.73 (97.95%) 11385.37 (76.38%)
3 14 (0%) 15074.91 (99.01%) 11379.16 (74.1%)
4 14 (0%) 15075.2 (99.01%) 11378.45 (73.84%)
5 14 (0%) 15086.76 (99.17%) 11373.46 (72.01%)
6 15 (4%) 13703.3 (81.08%) 11381.88 (75.1%)
7 15 (4%) 13703.59 (81.08%) 11381.17 (74.84%)
8 15 (4%) 14890.58 (96.6%) 11379.03 (74.05%)
9 16 (8%) 13573.09 (79.38%) 11393.82 (79.49%)
10 16 (8%) 13573.38 (79.38%) 11393.11 (79.22%)
11 16 (8%) 13617.1 (79.95%) 11374.46 (72.37%)
12 16 (8%) 13617.39 (79.96%) 11373.75 (72.11%)
13 16 (8%) 14508.86 (91.61%) 11350.12 (63.43%)
14 16 (8%) 14780.31 (95.16%) 11335.41 (58.03%)
15 17 (12%) 12692.93 (67.87%) 11394.42 (79.71%)
16 17 (12%) 14639.98 (93.33%) 11325.84 (54.51%)
17 17 (12%) 14980.8 (97.78%) 11318.42 (51.79%)
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18 17 (12%) 15150.59 (100%) 11312.5 (49.61%)
19 18 (16%) 11463.36 (51.8%) 11411.83 (86.1%)
20 18 (16%) 11466.21 (51.84%) 11411.76 (86.08%)
21 18 (16%) 11536.76 (52.76%) 11402.04 (82.51%)
22 18 (16%) 11548.91 (52.92%) 11396.82 (80.59%)
23 18 (16%) 12512.53 (65.51%) 11380.25 (74.5%)
24 18 (16%) 12512.76 (65.52%) 11372.5 (71.65%)
25 18 (16%) 12605.75 (66.73%) 11314.98 (50.52%)
26 18 (16%) 12617.43 (66.89%) 11314.86 (50.48%)
27 18 (16%) 12633.99 (67.1%) 11313.41 (49.94%)
28 18 (16%) 12647.81 (67.28%) 11310.87 (49.01%)
29 18 (16%) 13021.17 (72.16%) 11307.59 (47.81%)
30 19 (20%) 9953.15 (32.06%) 11445.78 (98.57%)
31 19 (20%) 10401.91 (37.92%) 11378.17 (73.74%)
32 19 (20%) 10414.09 (38.08%) 11377.19 (73.38%)
33 19 (20%) 10458.48 (38.66%) 11368.18 (70.07%)
34 19 (20%) 11228.16 (48.73%) 11342.52 (60.64%)
35 19 (20%) 11503.02 (52.32%) 11327.81 (55.24%)
36 19 (20%) 11710.91 (55.04%) 11314.89 (50.49%)
37 19 (20%) 11712.99 (55.06%) 11314.28 (50.26%)
38 19 (20%) 11782.69 (55.97%) 11313.3 (49.9%)
39 19 (20%) 11987.53 (58.65%) 11313.22 (49.88%)
40 19 (20%) 12309.94 (62.87%) 11310.52 (48.88%)
41 19 (20%) 12601.32 (66.68%) 11310.12 (48.74%)
42 19 (20%) 12663.4 (67.49%) 11306.69 (47.48%)
43 20 (24%) 9468.31 (25.72%) 11424.3 (90.68%)
44 20 (24%) 9495.27 (26.07%) 11424.01 (90.58%)
45 20 (24%) 9510.93 (26.28%) 11421.92 (89.81%)
46 20 (24%) 10990.53 (45.62%) 11312.06 (49.45%)
47 20 (24%) 11009.63 (45.87%) 11311.25 (49.15%)
48 20 (24%) 11039.03 (46.25%) 11310.66 (48.93%)
49 20 (24%) 11932.86 (57.94%) 11272.75 (35.01%)
50 20 (24%) 12150.93 (60.79%) 11266.52 (32.72%)
51 20 (24%) 13017.47 (72.12%) 11259.64 (30.19%)
52 21 (28%) 9060.81 (20.39%) 11431.42 (93.3%)
53 21 (28%) 9984.87 (32.47%) 11313.63 (50.03%)
54 21 (28%) 10875.16 (44.11%) 11295.7 (43.44%)
55 21 (28%) 10991.2 (45.63%) 11288.54 (40.81%)
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56 21 (28%) 11395.38 (50.91%) 11281.78 (38.32%)
57 21 (28%) 11613.45 (53.76%) 11275.55 (36.04%)
58 21 (28%) 13830.16 (82.74%) 11246.62 (25.41%)
59 22 (32%) 7695.97 (2.55%) 11449.66 (100%)
60 22 (32%) 7813.85 (4.09%) 11415.43 (87.42%)
61 22 (32%) 8166.49 (8.7%) 11380.54 (74.61%)
62 22 (32%) 8167.92 (8.72%) 11379.17 (74.1%)
63 22 (32%) 8170.15 (8.75%) 11377.14 (73.36%)
64 22 (32%) 8202.72 (9.18%) 11375.16 (72.63%)
65 22 (32%) 8264.24 (9.98%) 11372.28 (71.57%)
66 22 (32%) 8310.31 (10.58%) 11361.45 (67.59%)
67 22 (32%) 8697.12 (15.64%) 11343.88 (61.14%)
68 22 (32%) 9262.15 (23.03%) 11330.68 (56.29%)
69 22 (32%) 9714.19 (28.93%) 11313.27 (49.89%)
70 22 (32%) 9722.43 (29.04%) 11311.61 (49.28%)
71 22 (32%) 9760.86 (29.54%) 11304.52 (46.68%)
72 22 (32%) 11398.65 (50.95%) 11246.7 (25.44%)
73 22 (32%) 11401 (50.98%) 11245.88 (25.14%)
74 22 (32%) 11402.82 (51.01%) 11242.87 (24.03%)
75 22 (32%) 11637.75 (54.08%) 11240.42 (23.13%)
76 22 (32%) 12819.65 (69.53%) 11237.21 (21.95%)
77 23 (36%) 7715.28 (2.8%) 11424.95 (90.92%)
78 23 (36%) 7727.35 (2.96%) 11418.17 (88.43%)
79 23 (36%) 7731.08 (3.01%) 11416.25 (87.73%)
80 23 (36%) 8438.04 (12.25%) 11359.55 (66.9%)
81 23 (36%) 8461.47 (12.56%) 11354.82 (65.16%)
82 23 (36%) 9114.1 (21.09%) 11313.7 (50.05%)
83 23 (36%) 9121.31 (21.18%) 11304.53 (46.68%)
84 23 (36%) 9372.13 (24.46%) 11289.64 (41.21%)
85 23 (36%) 9590.2 (27.31%) 11283.41 (38.92%)
86 23 (36%) 10456.74 (38.64%) 11276.53 (36.4%)
87 23 (36%) 14084.49 (86.06%) 11235.96 (21.49%)
88 24 (40%) 7729.19 (2.99%) 11352.94 (64.47%)
89 24 (40%) 7730.62 (3%) 11351.57 (63.96%)
90 24 (40%) 7732.85 (3.03%) 11349.54 (63.22%)
91 24 (40%) 7757.04 (3.35%) 11340.43 (59.87%)
92 24 (40%) 11009.13 (45.86%) 11244.25 (24.54%)
93 24 (40%) 11231.26 (48.77%) 11239.65 (22.85%)
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94 24 (40%) 12097.8 (60.09%) 11232.77 (20.32%)
95 26 (48%) 10512.21 (39.37%) 11267.49 (33.07%)
96 26 (48%) 10730.28 (42.22%) 11261.26 (30.79%)
97 27 (52%) 8805.08 (17.05%) 11312.51 (49.61%)
98 27 (52%) 9914.28 (31.55%) 11273.47 (35.27%)
99 27 (52%) 10150.19 (34.63%) 11247.65 (25.79%)
100 27 (52%) 10365.51 (37.45%) 11245.96 (25.17%)
101 27 (52%) 10368.26 (37.48%) 11241.42 (23.5%)
102 27 (52%) 10952.1 (45.12%) 11239.58 (22.82%)
103 28 (56%) 7699.84 (2.6%) 11404.14 (83.28%)
104 28 (56%) 7715.33 (2.8%) 11403.11 (82.9%)
105 28 (56%) 7715.46 (2.81%) 11400.81 (82.05%)
106 28 (56%) 8614.99 (14.57%) 11312.89 (49.75%)
107 28 (56%) 8639.53 (14.89%) 11302.06 (45.78%)
108 28 (56%) 8889.55 (18.15%) 11286.38 (40.01%)
109 28 (56%) 9107.62 (21.01%) 11280.15 (37.73%)
110 28 (56%) 9974.16 (32.33%) 11273.27 (35.2%)
111 28 (56%) 10082.38 (33.75%) 11245.97 (25.17%)
112 28 (56%) 10085.33 (33.79%) 11245.59 (25.03%)
113 28 (56%) 10308.79 (36.71%) 11245.06 (24.83%)
114 29 (60%) 7742.67 (3.16%) 11323.84 (53.78%)
115 29 (60%) 7766.53 (3.47%) 11313.01 (49.8%)
116 29 (60%) 7767.96 (3.49%) 11311.64 (49.29%)
117 29 (60%) 7954.1 (5.93%) 11311.56 (49.27%)
118 29 (60%) 7955.53 (5.94%) 11310.19 (48.76%)
119 29 (60%) 8027.48 (6.89%) 11297.31 (44.03%)
120 29 (60%) 8985.58 (19.41%) 11279.55 (37.51%)
121 29 (60%) 9212.62 (22.38%) 11263.4 (31.57%)
122 29 (60%) 9431.01 (25.23%) 11255.11 (28.53%)
123 29 (60%) 9649.08 (28.08%) 11248.88 (26.24%)
124 29 (60%) 10003.35 (32.71%) 11244.46 (24.61%)
125 29 (60%) 10270.47 (36.21%) 11244.44 (24.61%)
126 30 (64%) 9681.94 (28.51%) 11247 (25.55%)
127 30 (64%) 9772.89 (29.7%) 11246.39 (25.32%)
128 30 (64%) 9893.58 (31.28%) 11243.71 (24.34%)
129 30 (64%) 9905.09 (31.43%) 11242.09 (23.74%)
130 30 (64%) 10505.79 (39.28%) 11237.04 (21.89%)
131 31 (68%) 8785.46 (16.79%) 11288.95 (40.96%)
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132 31 (68%) 8996.88 (19.56%) 11272.8 (35.03%)
133 31 (68%) 9049.75 (20.25%) 11260.29 (30.43%)
134 31 (68%) 9592.1 (27.34%) 11247.37 (25.68%)
135 31 (68%) 9834.5 (30.51%) 11236.57 (21.72%)
136 31 (68%) 10701.04 (41.83%) 11229.69 (19.19%)
137 31 (68%) 10914.3 (44.62%) 11224.48 (17.27%)
138 32 (72%) 9614.27 (27.63%) 11245.76 (25.09%)
139 32 (72%) 11132.71 (47.48%) 11221.07 (16.02%)
140 33 (76%) 11314.66 (49.86%) 11211.51 (12.51%)
141 33 (76%) 11841.3 (56.74%) 11208.11 (11.26%)
142 33 (76%) 12371.74 (63.67%) 11204.55 (9.95%)
143 33 (76%) 13872.73 (83.3%) 11186.06 (3.16%)
144 33 (76%) 14299.11 (88.87%) 11180.55 (1.14%)
145 34 (80%) 9643.48 (28.01%) 11244.39 (24.59%)
146 34 (80%) 12579.72 (66.39%) 11202.56 (9.22%)
147 34 (80%) 13712.37 (81.2%) 11182.47 (1.84%)
148 34 (80%) 13715.53 (81.24%) 11181.46 (1.47%)
149 34 (80%) 13800.32 (82.35%) 11179.25 (0.66%)
150 35 (84%) 12725.36 (68.3%) 11193.3 (5.82%)
151 35 (84%) 13633.36 (80.17%) 11181.94 (1.65%)
152 35 (84%) 14255.39 (88.3%) 11177.86 (0.15%)
153 35 (84%) 14369.47 (89.79%) 11177.46 (0%)
154 36 (88%) 12919.01 (70.83%) 11191.32 (5.09%)
155 36 (88%) 13016.9 (72.11%) 11188.71 (4.13%)
156 37 (92%) 7500.76 (0%) 11431.4 (93.29%)
157 37 (92%) 7503.18 (0.03%) 11424.37 (90.71%)
158 37 (92%) 7508.55 (0.1%) 11417.4 (88.15%)
159 37 (92%) 9646.75 (28.05%) 11244.29 (24.55%)
160 37 (92%) 10840.01 (43.65%) 11228.93 (18.91%)
161 37 (92%) 12836.09 (69.74%) 11188.33 (3.99%)
162 37 (92%) 12994.01 (71.81%) 11186.21 (3.21%)
163 39 (100%) 7557.13 (0.74%) 11374.67 (72.45%)
164 39 (100%) 7557.51 (0.74%) 11368.83 (70.3%)
165 39 (100%) 7559.93 (0.77%) 11368.13 (70.05%)
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Table B.30: Experimental results for instance 30 - c203-
D7 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
549.5 4 665.36 9601.72

Solution S/N f1 f2 f3
1 13 (0%) 11108.69 (83.9%) 11182.01 (73.96%)
2 14 (5.26%) 9711.48 (65.88%) 11181.3 (73.67%)
3 14 (5.26%) 9722.44 (66.03%) 11170.01 (69.08%)
4 14 (5.26%) 9939.38 (68.82%) 11166.5 (67.66%)
5 15 (10.53%) 8602.74 (51.59%) 11194.28 (78.94%)
6 15 (10.53%) 8618.75 (51.8%) 11184 (74.77%)
7 15 (10.53%) 8640.3 (52.07%) 11181.07 (73.58%)
8 15 (10.53%) 8651.26 (52.22%) 11169.78 (68.99%)
9 15 (10.53%) 9647.99 (65.07%) 11150.31 (61.08%)
10 15 (10.53%) 10904.13 (81.26%) 11146.07 (59.36%)
11 15 (10.53%) 10910.57 (81.34%) 11145.58 (59.16%)
12 15 (10.53%) 12357.63 (100%) 11145.28 (59.04%)
13 16 (15.79%) 8127.98 (45.47%) 11140.38 (57.05%)
14 17 (21.05%) 7787.2 (41.08%) 11141.56 (57.53%)
15 17 (21.05%) 7787.3 (41.08%) 11140.88 (57.25%)
16 17 (21.05%) 7802.36 (41.27%) 11140.38 (57.05%)
17 17 (21.05%) 7804.2 (41.3%) 11139.94 (56.87%)
18 17 (21.05%) 7824.76 (41.56%) 11128.35 (52.17%)
19 17 (21.05%) 8821.49 (54.41%) 11108.88 (44.26%)
20 18 (26.32%) 6852.67 (29.03%) 11143.21 (58.2%)
21 18 (26.32%) 6852.77 (29.03%) 11142.53 (57.92%)
22 18 (26.32%) 6890.23 (29.51%) 11130 (52.84%)
23 18 (26.32%) 8493.42 (50.18%) 11119.99 (48.77%)
24 18 (26.32%) 8599.94 (51.55%) 11112.82 (45.86%)
25 18 (26.32%) 8716.56 (53.06%) 11104.24 (42.38%)
26 18 (26.32%) 9089.54 (57.87%) 11096.42 (39.2%)
27 18 (26.32%) 10332.74 (73.89%) 11081.96 (33.33%)
28 18 (26.32%) 10332.84 (73.9%) 11081.28 (33.05%)
29 18 (26.32%) 10452.41 (75.44%) 11081.21 (33.02%)
30 19 (31.58%) 5967.05 (17.61%) 11246.14 (100%)
31 19 (31.58%) 5970.93 (17.66%) 11203.26 (82.59%)
32 19 (31.58%) 7558.89 (38.13%) 11121.64 (49.44%)
33 19 (31.58%) 7665.41 (39.51%) 11114.47 (46.53%)
34 19 (31.58%) 8495.01 (50.2%) 11108.18 (43.98%)
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35 19 (31.58%) 8984.61 (56.51%) 11091.78 (37.32%)
36 19 (31.58%) 10446.19 (75.36%) 11076.97 (31.3%)
37 20 (36.84%) 9233.76 (59.73%) 11090.64 (36.85%)
38 20 (36.84%) 10896.48 (81.16%) 11073.91 (30.06%)
39 21 (42.11%) 5950.44 (17.4%) 11237.59 (96.53%)
40 21 (42.11%) 5954.32 (17.45%) 11194.71 (79.11%)
41 21 (42.11%) 6845.64 (28.94%) 11149.01 (60.56%)
42 21 (42.11%) 6889.75 (29.51%) 11137.11 (55.72%)
43 21 (42.11%) 8057.98 (44.57%) 11113.96 (46.32%)
44 21 (42.11%) 8080.16 (44.85%) 11083.19 (33.83%)
45 21 (42.11%) 9514.08 (63.34%) 11082.23 (33.44%)
46 21 (42.11%) 10217.13 (72.4%) 11079.57 (32.36%)
47 21 (42.11%) 10815.48 (80.12%) 11076.07 (30.94%)
48 22 (47.37%) 4601.15 (0%) 11208.47 (84.7%)
49 22 (47.37%) 4606.44 (0.07%) 11206.33 (83.83%)
50 22 (47.37%) 5792.88 (15.36%) 11148.86 (60.5%)
51 22 (47.37%) 5830.44 (15.85%) 11135.65 (55.13%)
52 22 (47.37%) 6261.81 (21.41%) 11127.49 (51.82%)
53 23 (52.63%) 6930.47 (30.03%) 11119.13 (48.42%)
54 23 (52.63%) 6990.47 (30.8%) 11117.58 (47.79%)
55 23 (52.63%) 7036.99 (31.4%) 11111.96 (45.51%)
56 23 (52.63%) 7843.87 (41.81%) 11105.23 (42.78%)
57 23 (52.63%) 9508.68 (63.27%) 11083.1 (33.79%)
58 24 (57.89%) 6768.92 (27.95%) 11121.52 (49.39%)
59 24 (57.89%) 7258.52 (34.26%) 11105.12 (42.73%)
60 24 (57.89%) 7713.43 (40.12%) 11100.12 (40.7%)
61 24 (57.89%) 9402.14 (61.9%) 11082.56 (33.57%)
62 24 (57.89%) 9560.67 (63.94%) 11080.38 (32.69%)
63 25 (63.16%) 4695.56 (1.22%) 11145.68 (59.2%)
64 25 (63.16%) 4795.47 (2.51%) 11144.1 (58.56%)
65 25 (63.16%) 5728.83 (14.54%) 11136.5 (55.48%)
66 25 (63.16%) 8751.9 (53.51%) 11067.89 (27.61%)
67 25 (63.16%) 8758.13 (53.59%) 11064.55 (26.26%)
68 25 (63.16%) 8947.53 (56.04%) 11041.68 (16.97%)
69 26 (68.42%) 6723.92 (27.37%) 11127.07 (51.65%)
70 26 (68.42%) 7419.91 (36.34%) 11084.53 (34.37%)
71 26 (68.42%) 8308.26 (47.79%) 11071.45 (29.06%)
72 26 (68.42%) 9247.97 (59.91%) 11039.3 (16%)
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73 27 (73.68%) 4632.86 (0.41%) 11186.35 (75.72%)
74 27 (73.68%) 4636.74 (0.46%) 11184.21 (74.85%)
75 27 (73.68%) 4649.96 (0.63%) 11145.65 (59.19%)
76 27 (73.68%) 5035.01 (5.59%) 11129.09 (52.47%)
77 27 (73.68%) 5130.92 (6.83%) 11129.06 (52.45%)
78 27 (73.68%) 5168.48 (7.31%) 11115.85 (47.09%)
79 27 (73.68%) 6165.21 (20.16%) 11096.38 (39.18%)
80 27 (73.68%) 7458.56 (36.84%) 11084.05 (34.18%)
81 27 (73.68%) 7530.87 (37.77%) 11081.35 (33.08%)
82 27 (73.68%) 7532.01 (37.79%) 11080.34 (32.67%)
83 27 (73.68%) 7785.54 (41.05%) 11074.85 (30.44%)
84 27 (73.68%) 8462.94 (49.79%) 11018.74 (7.65%)
85 27 (73.68%) 8853.99 (54.83%) 11008.61 (3.54%)
86 28 (78.95%) 5837.14 (15.93%) 11107.49 (43.7%)
87 28 (78.95%) 5943.66 (17.31%) 11100.32 (40.78%)
88 28 (78.95%) 6433.26 (23.62%) 11083.92 (34.12%)
89 28 (78.95%) 7080.92 (31.97%) 11083.09 (33.79%)
90 28 (78.95%) 8192.87 (46.31%) 11019.28 (7.87%)
91 28 (78.95%) 8205.15 (46.46%) 11018.52 (7.57%)
92 28 (78.95%) 8418.48 (49.21%) 11012.17 (4.99%)
93 29 (84.21%) 4664.99 (0.82%) 11141.81 (57.63%)
94 29 (84.21%) 5068.06 (6.02%) 11119.2 (48.45%)
95 29 (84.21%) 5202.16 (7.75%) 11111.41 (45.29%)
96 29 (84.21%) 7294.42 (34.72%) 11081.38 (33.09%)
97 29 (84.21%) 7902.69 (42.56%) 11014.56 (5.96%)
98 29 (84.21%) 10123.02 (71.19%) 10999.89 (0%)
99 30 (89.47%) 5870.82 (16.37%) 11103.05 (41.89%)
100 30 (89.47%) 5977.34 (17.74%) 11095.88 (38.98%)
101 30 (89.47%) 6350.79 (22.56%) 11088.84 (36.12%)
102 30 (89.47%) 6945.46 (30.22%) 11083.15 (33.81%)
103 30 (89.47%) 7021.87 (31.21%) 11082.57 (33.58%)
104 30 (89.47%) 7025.55 (31.26%) 11082.21 (33.43%)
105 30 (89.47%) 7102.1 (32.24%) 11080.69 (32.81%)
106 30 (89.47%) 7125.88 (32.55%) 11044.42 (18.08%)
107 30 (89.47%) 7370.4 (35.7%) 11039.21 (15.97%)
108 30 (89.47%) 7549.74 (38.01%) 11018.75 (7.66%)
109 31 (94.74%) 6129.24 (19.7%) 11092.78 (37.72%)
110 31 (94.74%) 6328.06 (22.26%) 11088.34 (35.92%)
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111 31 (94.74%) 7574.11 (38.33%) 11018.58 (7.59%)
112 31 (94.74%) 7764.08 (40.78%) 11017.97 (7.34%)
113 32 (100%) 6975.84 (30.62%) 11082.94 (33.73%)
114 32 (100%) 7057.9 (31.67%) 11080.22 (32.62%)
115 32 (100%) 7098.97 (32.2%) 11080.1 (32.57%)
116 32 (100%) 7569.07 (38.26%) 11015.03 (6.15%)

Table B.31: Experimental results for instance 31 - c203-
D8 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
342.1 4 959.31 9601.72

Solution S/N f1 f2 f3
1 15 (0%) 16514.86 (59.6%) 11543.81 (55.4%)
2 16 (5%) 15535.87 (50.37%) 11534.83 (53.2%)
3 18 (15%) 15208.37 (47.28%) 11470.38 (37.4%)
4 19 (20%) 14322.25 (38.92%) 11468.14 (36.85%)
5 20 (25%) 13544.51 (31.58%) 11466.99 (36.57%)
6 21 (30%) 15153.16 (46.76%) 11432.63 (28.15%)
7 21 (30%) 15153.33 (46.76%) 11432.29 (28.07%)
8 22 (35%) 13251.13 (28.81%) 11482.58 (40.39%)
9 22 (35%) 14834.41 (43.75%) 11429.71 (27.44%)
10 22 (35%) 15286.78 (48.02%) 11429.35 (27.35%)
11 23 (40%) 12374.81 (20.54%) 11498.6 (44.32%)
12 23 (40%) 13345.37 (29.7%) 11467.07 (36.59%)
13 23 (40%) 13479.99 (30.97%) 11455.69 (33.8%)
14 23 (40%) 13879.6 (34.74%) 11428.91 (27.24%)
15 23 (40%) 14081.25 (36.64%) 11428.02 (27.02%)
16 23 (40%) 14660.32 (42.11%) 11428 (27.02%)
17 23 (40%) 15028.71 (45.58%) 11422.34 (25.63%)
18 24 (45%) 11554.4 (12.8%) 11494.9 (43.41%)
19 24 (45%) 12469.05 (21.43%) 11483.09 (40.52%)
20 24 (45%) 12603.67 (22.7%) 11471.71 (37.73%)
21 24 (45%) 13474.97 (30.92%) 11430.15 (27.54%)
22 24 (45%) 13546.62 (31.6%) 11429.83 (27.46%)
23 24 (45%) 18970.05 (82.77%) 11348.08 (7.43%)
24 24 (45%) 20524.34 (97.44%) 11342.06 (5.95%)
25 24 (45%) 20610.89 (98.25%) 11341.38 (5.78%)
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26 25 (50%) 11648.64 (13.69%) 11479.39 (39.61%)
27 25 (50%) 11783.26 (14.96%) 11468.01 (36.82%)
28 25 (50%) 12744.65 (24.03%) 11462.54 (35.48%)
29 25 (50%) 12845.01 (24.98%) 11437.48 (29.34%)
30 25 (50%) 13857.26 (34.53%) 11426.89 (26.74%)
31 25 (50%) 13922.08 (35.14%) 11424.31 (26.11%)
32 25 (50%) 18811.04 (81.27%) 11349.77 (7.84%)
33 25 (50%) 18966.36 (82.73%) 11346.95 (7.15%)
34 25 (50%) 19289.99 (85.79%) 11339.44 (5.31%)
35 25 (50%) 20796.15 (100%) 11338.43 (5.06%)
36 26 (55%) 11904.11 (16.1%) 11458.84 (34.58%)
37 26 (55%) 12238.89 (19.26%) 11443.97 (30.93%)
38 26 (55%) 15004.06 (45.35%) 11397.63 (19.57%)
39 26 (55%) 15473.58 (49.78%) 11393.76 (18.62%)
40 26 (55%) 16532.17 (59.77%) 11386.61 (16.87%)
41 26 (55%) 16912.47 (63.36%) 11334.66 (4.14%)
42 26 (55%) 16999.64 (64.18%) 11334.48 (4.09%)
43 26 (55%) 17014.18 (64.32%) 11333.9 (3.95%)
44 27 (60%) 11059.62 (8.13%) 11524.67 (50.71%)
45 27 (60%) 12215.75 (19.04%) 11429.92 (27.49%)
46 27 (60%) 12226.91 (19.14%) 11426.22 (26.58%)
47 27 (60%) 12338.15 (20.19%) 11420.25 (25.12%)
48 27 (60%) 12790 (24.46%) 11415.12 (23.86%)
49 27 (60%) 13423.85 (30.44%) 11407.08 (21.89%)
50 27 (60%) 14955 (44.89%) 11401.04 (20.41%)
51 27 (60%) 16750.68 (61.83%) 11335.39 (4.32%)
52 27 (60%) 16754.36 (61.86%) 11335.03 (4.23%)
53 27 (60%) 16754.78 (61.87%) 11334.81 (4.17%)
54 27 (60%) 16767.92 (61.99%) 11333.98 (3.97%)
55 27 (60%) 16770.68 (62.02%) 11333.53 (3.86%)
56 28 (65%) 10197.92 (0%) 11725.76 (100%)
57 28 (65%) 10759.21 (5.3%) 11484.67 (40.91%)
58 28 (65%) 11219.47 (9.64%) 11471.74 (37.74%)
59 28 (65%) 11575.4 (13%) 11431.18 (27.8%)
60 28 (65%) 11575.46 (13%) 11429.81 (27.46%)
61 28 (65%) 11576.47 (13.01%) 11428.59 (27.16%)
62 28 (65%) 14656.27 (42.07%) 11360.71 (10.52%)
63 28 (65%) 15125.79 (46.5%) 11356.84 (9.57%)
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64 28 (65%) 16184.38 (56.49%) 11349.69 (7.82%)
65 28 (65%) 17446.29 (68.39%) 11317.78 (0%)
66 29 (70%) 10664.67 (4.4%) 11500.18 (44.71%)
67 29 (70%) 10666.1 (4.42%) 11498.81 (44.37%)
68 29 (70%) 10668.33 (4.44%) 11496.78 (43.87%)
69 29 (70%) 12809.24 (24.64%) 11414.69 (23.75%)
70 29 (70%) 13123.58 (27.61%) 11407.24 (21.93%)
71 29 (70%) 13433.56 (30.53%) 11401.29 (20.47%)
72 29 (70%) 13521.51 (31.36%) 11377.29 (14.59%)
73 29 (70%) 13973.36 (35.62%) 11372.16 (13.33%)
74 29 (70%) 14607.21 (41.6%) 11364.12 (11.36%)
75 29 (70%) 15080.14 (46.07%) 11360.25 (10.41%)
76 29 (70%) 16992.83 (64.11%) 11332.78 (3.68%)
77 30 (75%) 11899.82 (16.06%) 11424.71 (26.21%)
78 30 (75%) 13320.04 (29.46%) 11387.41 (17.07%)
79 30 (75%) 16217.81 (56.8%) 11334.81 (4.17%)
80 30 (75%) 16220.27 (56.82%) 11331.63 (3.39%)
81 30 (75%) 16232.18 (56.94%) 11329.87 (2.96%)
82 30 (75%) 16533.99 (59.78%) 11325.63 (1.92%)
83 35 (100%) 10199.84 (0.02%) 11658.35 (83.48%)
84 35 (100%) 10201.27 (0.03%) 11656.98 (83.14%)

Table B.32: Experimental results for instance 32 - c101-
E1 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
1981.6 2 215.06 9828.93

Solution S/N f1 f2 f3
1 6 (0%) 4061.46 (84.15%) 10487.53 (84.38%)
2 6 (0%) 4158.63 (91.22%) 10455.03 (62.09%)
3 6 (0%) 4167.43 (91.86%) 10454.38 (61.65%)
4 6 (0%) 4277.78 (99.89%) 10419.92 (38.02%)
5 7 (2.86%) 4151.35 (90.69%) 10461.85 (66.77%)
6 8 (5.71%) 3993.93 (79.24%) 10473.35 (74.65%)
7 8 (5.71%) 4066.01 (84.49%) 10447.18 (56.71%)
8 8 (5.71%) 4188.51 (93.4%) 10415.06 (34.69%)
9 10 (11.43%) 3924.41 (74.19%) 10473.22 (74.56%)
10 10 (11.43%) 4135.87 (89.57%) 10424.12 (40.9%)
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11 11 (14.29%) 3788.04 (64.27%) 10482.08 (80.64%)
12 11 (14.29%) 3892.73 (71.88%) 10474.87 (75.7%)
13 11 (14.29%) 3990 (78.96%) 10448.77 (57.8%)
14 11 (14.29%) 4002.54 (79.87%) 10440.37 (52.04%)
15 11 (14.29%) 4075.15 (85.15%) 10424.09 (40.88%)
16 12 (17.14%) 4130.58 (89.18%) 10394.2 (20.39%)
17 12 (17.14%) 4134.3 (89.45%) 10393.72 (20.06%)
18 13 (20%) 3946.04 (75.76%) 10432.84 (46.88%)
19 13 (20%) 4062.2 (84.21%) 10390.68 (17.98%)
20 13 (20%) 4269.35 (99.28%) 10389.81 (17.38%)
21 13 (20%) 4279.3 (100%) 10385.98 (14.75%)
22 15 (25.71%) 3925.01 (74.23%) 10432.3 (46.51%)
23 15 (25.71%) 3925.87 (74.29%) 10427.23 (43.03%)
24 16 (28.57%) 3768.4 (62.84%) 10464.15 (68.35%)
25 16 (28.57%) 3785.09 (64.05%) 10391.11 (18.27%)
26 16 (28.57%) 3975.91 (77.93%) 10391.07 (18.24%)
27 16 (28.57%) 3978.93 (78.15%) 10387.86 (16.04%)
28 17 (31.43%) 3711.23 (58.68%) 10457.08 (63.5%)
29 18 (34.29%) 3572.26 (48.57%) 10479.99 (79.21%)
30 18 (34.29%) 3673.67 (55.95%) 10452.69 (60.49%)
31 18 (34.29%) 4070.48 (84.81%) 10383.03 (12.73%)
32 19 (37.14%) 3642.2 (53.66%) 10464.54 (68.61%)
33 19 (37.14%) 3691.16 (57.22%) 10391.91 (18.82%)
34 19 (37.14%) 3800.89 (65.2%) 10390.62 (17.94%)
35 19 (37.14%) 3816.64 (66.35%) 10389.64 (17.26%)
36 19 (37.14%) 3818.3 (66.47%) 10386.47 (15.09%)
37 19 (37.14%) 3995.95 (79.39%) 10378.13 (9.37%)
38 20 (40%) 3628.37 (52.65%) 10467.85 (70.88%)
39 20 (40%) 3639.61 (53.47%) 10393.44 (19.87%)
40 20 (40%) 3653.45 (54.48%) 10390.47 (17.83%)
41 21 (42.86%) 3581.1 (49.21%) 10391.54 (18.57%)
42 21 (42.86%) 3582.76 (49.33%) 10388.75 (16.65%)
43 23 (48.57%) 3456.85 (40.18%) 10456.19 (62.89%)
44 23 (48.57%) 3678.12 (56.27%) 10384.88 (14%)
45 24 (51.43%) 3421.2 (37.58%) 10477.94 (77.8%)
46 24 (51.43%) 3425.93 (37.93%) 10456.4 (63.03%)
47 24 (51.43%) 3428.61 (38.12%) 10455.57 (62.46%)
48 24 (51.43%) 3508.58 (43.94%) 10394.39 (20.52%)
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49 24 (51.43%) 3636.34 (53.23%) 10382.49 (12.36%)
50 24 (51.43%) 3638.89 (53.42%) 10382.15 (12.13%)
51 25 (54.29%) 3474.24 (41.44%) 10394.39 (20.52%)
52 26 (57.14%) 3376.16 (34.31%) 10386.51 (15.12%)
53 27 (60%) 3311.9 (29.63%) 10461.02 (66.2%)
54 27 (60%) 3317.06 (30.01%) 10459.64 (65.25%)
55 27 (60%) 3339.82 (31.66%) 10389.36 (17.07%)
56 27 (60%) 3496.61 (43.07%) 10385.68 (14.55%)
57 27 (60%) 3547.3 (46.75%) 10364.46 (0%)
58 28 (62.86%) 3515.62 (44.45%) 10366.11 (1.13%)
59 29 (65.71%) 3261.56 (25.97%) 10461.03 (66.21%)
60 29 (65.71%) 3479.28 (41.81%) 10368.96 (3.09%)
61 31 (71.43%) 3169.59 (19.28%) 10482.22 (80.73%)
62 32 (74.29%) 3137.91 (16.98%) 10483.87 (81.87%)
63 32 (74.29%) 3148.68 (17.76%) 10457.2 (63.58%)
64 32 (74.29%) 3168.36 (19.19%) 10455.93 (62.71%)
65 32 (74.29%) 3282.12 (27.47%) 10444.57 (54.92%)
66 32 (74.29%) 3370.4 (33.89%) 10384.85 (13.98%)
67 33 (77.14%) 3077.25 (12.56%) 10429.21 (44.39%)
68 34 (80%) 3034.29 (9.44%) 10426.44 (42.49%)
69 34 (80%) 3188.35 (20.64%) 10416.1 (35.4%)
70 35 (82.86%) 2998.36 (6.83%) 10419.9 (38.01%)
71 35 (82.86%) 3006.79 (7.44%) 10418.7 (37.19%)
72 35 (82.86%) 3286.7 (27.8%) 10384.33 (13.62%)
73 35 (82.86%) 3295.13 (28.41%) 10383.13 (12.8%)
74 36 (85.71%) 3275.12 (26.96%) 10395.29 (21.14%)
75 36 (85.71%) 3289.92 (28.03%) 10372.43 (5.46%)
76 36 (85.71%) 3397.76 (35.88%) 10367.25 (1.91%)
77 37 (88.57%) 2979.88 (5.48%) 10448.76 (57.8%)
78 37 (88.57%) 3099.06 (14.15%) 10394.74 (20.76%)
79 37 (88.57%) 3286.25 (27.77%) 10393.77 (20.09%)
80 38 (91.43%) 2920.02 (1.13%) 10463.06 (67.6%)
81 38 (91.43%) 2920.53 (1.16%) 10414.42 (34.25%)
82 38 (91.43%) 3001.59 (7.06%) 10386.44 (15.07%)
83 39 (94.29%) 2904.53 (0%) 10510.32 (100%)
84 39 (94.29%) 2910.54 (0.44%) 10481.52 (80.26%)
85 39 (94.29%) 2931.66 (1.97%) 10410.12 (31.3%)
86 41 (100%) 3199.28 (21.44%) 10367.78 (2.28%)
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E2 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2098.2 2 215.06 9828.93

Solution S/N f1 f2 f3
1 8 (0%) 5209.53 (81.24%) 10647.11 (100%)
2 8 (0%) 5250.97 (83.41%) 10628.37 (82.33%)
3 8 (0%) 5318.43 (86.95%) 10622.32 (76.62%)
4 8 (0%) 5387.8 (90.6%) 10610.94 (65.89%)
5 8 (0%) 5459.26 (94.35%) 10606.83 (62.01%)
6 9 (2.22%) 5154.43 (78.34%) 10625.67 (79.78%)
7 10 (4.44%) 5130.52 (77.09%) 10633.87 (87.51%)
8 10 (4.44%) 5191.67 (80.3%) 10615.44 (70.13%)
9 10 (4.44%) 5566.9 (100%) 10589.34 (45.52%)
10 11 (6.67%) 5070.96 (73.96%) 10635.03 (88.61%)
11 11 (6.67%) 5079.76 (74.42%) 10634.38 (87.99%)
12 11 (6.67%) 5089.53 (74.93%) 10633.09 (86.78%)
13 11 (6.67%) 5123.31 (76.71%) 10617.25 (71.84%)
14 11 (6.67%) 5132.11 (77.17%) 10616.6 (71.23%)
15 11 (6.67%) 5139.96 (77.58%) 10607.61 (62.75%)
16 11 (6.67%) 5506.18 (96.81%) 10589.31 (45.49%)
17 11 (6.67%) 5548.18 (99.02%) 10583.99 (40.47%)
18 12 (8.89%) 5065.35 (73.67%) 10639.79 (93.1%)
19 12 (8.89%) 5200.12 (80.74%) 10589.11 (45.3%)
20 12 (8.89%) 5360.23 (89.15%) 10589.04 (45.23%)
21 12 (8.89%) 5477.58 (95.31%) 10588.51 (44.73%)
22 13 (11.11%) 4936.11 (66.88%) 10641.66 (94.86%)
23 13 (11.11%) 5025.11 (71.55%) 10640.43 (93.7%)
24 13 (11.11%) 5126.19 (76.86%) 10614.19 (68.95%)
25 13 (11.11%) 5443.26 (93.51%) 10584.13 (40.6%)
26 14 (13.33%) 4951.07 (67.66%) 10636.34 (89.84%)
27 14 (13.33%) 4970.39 (68.68%) 10635.82 (89.35%)
28 14 (13.33%) 5004.97 (70.49%) 10632.12 (85.86%)
29 14 (13.33%) 5018.78 (71.22%) 10615.61 (70.29%)
30 14 (13.33%) 5070.88 (73.96%) 10612.51 (67.37%)
31 14 (13.33%) 5119.78 (76.52%) 10579.59 (36.32%)
32 15 (15.56%) 5095.87 (75.27%) 10587.79 (44.05%)
33 16 (17.78%) 4944.63 (67.33%) 10624.99 (79.14%)
34 16 (17.78%) 5036.31 (72.14%) 10588.95 (45.15%)
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35 17 (20%) 4904.06 (65.2%) 10628.48 (82.43%)
36 17 (20%) 4925.1 (66.3%) 10616.68 (71.3%)
37 17 (20%) 4954.38 (67.84%) 10613.6 (68.4%)
38 18 (22.22%) 4830.35 (61.33%) 10621.54 (75.88%)
39 18 (22.22%) 4855.26 (62.63%) 10612.27 (67.14%)
40 18 (22.22%) 4860.17 (62.89%) 10611.26 (66.19%)
41 18 (22.22%) 4876.38 (63.74%) 10611.07 (66.01%)
42 18 (22.22%) 4882.7 (64.07%) 10603.76 (59.12%)
43 18 (22.22%) 4887.61 (64.33%) 10602.75 (58.16%)
44 18 (22.22%) 4915.81 (65.81%) 10598.66 (54.31%)
45 18 (22.22%) 4950.16 (67.62%) 10597.71 (53.41%)
46 18 (22.22%) 5006.88 (70.6%) 10582.77 (39.32%)
47 18 (22.22%) 5192.01 (80.32%) 10578.93 (35.7%)
48 19 (24.44%) 4747.25 (56.96%) 10617.48 (72.06%)
49 19 (24.44%) 4986.24 (69.51%) 10583.76 (40.25%)
50 20 (26.67%) 4742.19 (56.7%) 10613.29 (68.1%)
51 20 (26.67%) 4840.96 (61.88%) 10606.72 (61.91%)
52 20 (26.67%) 4874.69 (63.65%) 10584.9 (41.33%)
53 21 (28.89%) 4695.69 (54.26%) 10617.54 (72.11%)
54 21 (28.89%) 4704.89 (54.74%) 10611.66 (66.57%)
55 21 (28.89%) 4709.8 (55%) 10610.65 (65.61%)
56 21 (28.89%) 4753.04 (57.27%) 10588.51 (44.73%)
57 21 (28.89%) 4835.99 (61.62%) 10582.04 (38.63%)
58 21 (28.89%) 4925.71 (66.33%) 10581.68 (38.29%)
59 22 (31.11%) 4722.51 (55.66%) 10588.21 (44.45%)
60 23 (33.33%) 4628.1 (50.71%) 10634.14 (87.77%)
61 23 (33.33%) 4768.26 (58.07%) 10583.97 (40.45%)
62 24 (35.56%) 4547.52 (46.48%) 10611.19 (66.12%)
63 24 (35.56%) 4611.41 (49.83%) 10598.35 (54.01%)
64 24 (35.56%) 4912.79 (65.65%) 10557.96 (15.92%)
65 24 (35.56%) 4969.94 (68.66%) 10555.8 (13.88%)
66 25 (37.78%) 4502 (44.09%) 10603.34 (58.72%)
67 25 (37.78%) 4554.35 (46.83%) 10585.56 (41.95%)
68 25 (37.78%) 4621.81 (50.38%) 10579.51 (36.24%)
69 25 (37.78%) 4626.82 (50.64%) 10571.76 (28.94%)
70 25 (37.78%) 4739.65 (56.56%) 10561.59 (19.34%)
71 25 (37.78%) 4875.49 (63.7%) 10556.33 (14.38%)
72 25 (37.78%) 4878.04 (63.83%) 10555.99 (14.06%)
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73 25 (37.78%) 4885.5 (64.22%) 10555.16 (13.28%)
74 25 (37.78%) 4885.89 (64.24%) 10553.8 (12%)
75 26 (40%) 4531.66 (45.64%) 10599.43 (55.03%)
76 27 (42.22%) 4551.02 (46.66%) 10577.5 (34.35%)
77 28 (44.44%) 4477.01 (42.77%) 10615.26 (69.96%)
78 28 (44.44%) 4486.64 (43.28%) 10577.09 (33.96%)
79 28 (44.44%) 4486.82 (43.29%) 10576.3 (33.22%)
80 28 (44.44%) 4489.36 (43.42%) 10574.84 (31.84%)
81 28 (44.44%) 4720.31 (55.55%) 10559.98 (17.83%)
82 28 (44.44%) 4782.18 (58.8%) 10556.53 (14.57%)
83 28 (44.44%) 4784.72 (58.93%) 10555.07 (13.19%)
84 28 (44.44%) 4785.16 (58.95%) 10552.16 (10.45%)
85 29 (46.67%) 4439.45 (40.8%) 10610.87 (65.82%)
86 29 (46.67%) 4465.62 (42.18%) 10588.51 (44.73%)
87 29 (46.67%) 4559.97 (47.13%) 10558.58 (16.5%)
88 30 (48.89%) 4428.32 (40.22%) 10586.88 (43.2%)
89 30 (48.89%) 4467.35 (42.27%) 10557.26 (15.26%)
90 31 (51.11%) 4381 (37.73%) 10644.75 (97.77%)
91 31 (51.11%) 4396.64 (38.55%) 10588.53 (44.75%)
92 31 (51.11%) 4403.15 (38.9%) 10571.09 (28.3%)
93 32 (53.33%) 4296.84 (33.31%) 10584.87 (41.3%)
94 32 (53.33%) 4353.74 (36.3%) 10583.75 (40.24%)
95 32 (53.33%) 4354.62 (36.35%) 10569.31 (26.62%)
96 32 (53.33%) 4403.19 (38.9%) 10558.94 (16.84%)
97 32 (53.33%) 4578.96 (48.13%) 10553.06 (11.3%)
98 33 (55.56%) 4393.49 (38.39%) 10559.64 (17.5%)
99 33 (55.56%) 4566.44 (47.47%) 10553.31 (11.53%)
100 34 (57.78%) 4353.73 (36.3%) 10556.15 (14.21%)
101 34 (57.78%) 4428.63 (40.23%) 10555.98 (14.05%)
102 35 (60%) 4293.56 (33.14%) 10587.19 (43.49%)
103 35 (60%) 4295.54 (33.24%) 10586.1 (42.46%)
104 35 (60%) 4320.47 (34.55%) 10558.61 (16.53%)
105 35 (60%) 4322.83 (34.68%) 10555.37 (13.48%)
106 35 (60%) 4557.53 (47%) 10553.65 (11.86%)
107 37 (64.44%) 4258.75 (31.31%) 10631.04 (84.84%)
108 38 (66.67%) 4193.5 (27.89%) 10585.69 (42.07%)
109 38 (66.67%) 4195.48 (27.99%) 10583.6 (40.1%)
110 38 (66.67%) 4258.35 (31.29%) 10577.87 (34.7%)
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111 38 (66.67%) 4353.03 (36.26%) 10555.35 (13.46%)
112 38 (66.67%) 4374.6 (37.4%) 10554.85 (12.99%)
113 38 (66.67%) 4405.21 (39%) 10548.54 (7.04%)
114 41 (73.33%) 4008.37 (18.17%) 10615.65 (70.33%)
115 41 (73.33%) 4023.11 (18.94%) 10573.84 (30.9%)
116 41 (73.33%) 4079.09 (21.88%) 10565.78 (23.3%)
117 42 (75.56%) 3968.13 (16.05%) 10614.74 (69.47%)
118 42 (75.56%) 3975.11 (16.42%) 10613.75 (68.54%)
119 42 (75.56%) 3978.87 (16.62%) 10577.46 (34.31%)
120 42 (75.56%) 4043.72 (20.02%) 10569.64 (26.94%)
121 45 (82.22%) 3899.24 (12.44%) 10581.38 (38.01%)
122 45 (82.22%) 3964.09 (15.84%) 10573.56 (30.63%)
123 45 (82.22%) 4135.42 (24.84%) 10560.16 (17.99%)
124 45 (82.22%) 4199.49 (28.2%) 10552.34 (10.62%)
125 46 (84.44%) 4071.34 (21.47%) 10559.57 (17.44%)
126 47 (86.67%) 3881.84 (11.52%) 10625.97 (80.06%)
127 47 (86.67%) 4034.73 (19.55%) 10559.81 (17.66%)
128 48 (88.89%) 3813.48 (7.93%) 10573.69 (30.76%)
129 48 (88.89%) 4000.39 (17.75%) 10559.81 (17.66%)
130 49 (91.11%) 3762.63 (5.26%) 10615.93 (70.59%)
131 49 (91.11%) 3784.09 (6.39%) 10573.69 (30.76%)
132 49 (91.11%) 3961.71 (15.72%) 10556.47 (14.51%)
133 50 (93.33%) 3783.03 (6.33%) 10589.19 (45.37%)
134 51 (95.56%) 3712.39 (2.63%) 10619.42 (73.88%)
135 51 (95.56%) 3723.53 (3.21%) 10569.3 (26.62%)
136 51 (95.56%) 3914.28 (13.23%) 10558.83 (16.74%)
137 51 (95.56%) 3915.92 (13.31%) 10554.2 (12.37%)
138 52 (97.78%) 3662.39 (0%) 10610.76 (65.72%)
139 52 (97.78%) 3677.34 (0.78%) 10602.28 (57.72%)
140 52 (97.78%) 3871.76 (10.99%) 10552.08 (10.37%)
141 52 (97.78%) 3906 (12.79%) 10550.57 (8.95%)
142 53 (100%) 3862.99 (10.53%) 10548.9 (7.38%)
143 53 (100%) 3927.06 (13.9%) 10541.08 (0%)

322



Table B.34: Experimental results for instance 34 - c101-
E3 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2040.9 2 215.06 9828.93

Solution S/N f1 f2 f3
1 8 (0%) 5377.42 (67.2%) 10660.57 (100%)
2 8 (0%) 5439.73 (71.46%) 10638.31 (71.02%)
3 8 (0%) 5492.08 (75.04%) 10628.7 (58.5%)
4 8 (0%) 5562.15 (79.82%) 10622.55 (50.49%)
5 9 (2.86%) 5297.06 (61.71%) 10649.76 (85.92%)
6 9 (2.86%) 5857.38 (100%) 10605.34 (28.09%)
7 10 (5.71%) 5270.64 (59.9%) 10652.5 (89.49%)
8 10 (5.71%) 5277.17 (60.35%) 10642.28 (76.18%)
9 10 (5.71%) 5320.82 (63.33%) 10632.45 (63.39%)
10 10 (5.71%) 5397.03 (68.54%) 10617.68 (44.15%)
11 10 (5.71%) 5498.36 (75.47%) 10606.04 (29%)
12 10 (5.71%) 5499.84 (75.57%) 10604.84 (27.43%)
13 10 (5.71%) 5576.05 (80.77%) 10590.07 (8.2%)
14 11 (8.57%) 5270.35 (59.88%) 10650.13 (86.41%)
15 12 (11.43%) 5182.44 (53.88%) 10633.73 (65.05%)
16 12 (11.43%) 5182.76 (53.9%) 10633.44 (64.67%)
17 12 (11.43%) 5258.65 (59.08%) 10618.96 (45.82%)
18 12 (11.43%) 5258.97 (59.11%) 10618.67 (45.44%)
19 13 (14.29%) 5132.53 (50.47%) 10635.3 (67.1%)
20 13 (14.29%) 5234.33 (57.42%) 10612.73 (37.71%)
21 14 (17.14%) 5127.6 (50.13%) 10650.04 (86.29%)
22 15 (20%) 5071.45 (46.29%) 10643.86 (78.24%)
23 15 (20%) 5073.47 (46.43%) 10641.4 (75.04%)
24 15 (20%) 5079.92 (46.87%) 10633.5 (64.75%)
25 15 (20%) 5084.4 (47.18%) 10631.04 (61.55%)
26 15 (20%) 5152.63 (51.84%) 10630.66 (61.05%)
27 15 (20%) 5164.69 (52.66%) 10618.73 (45.52%)
28 15 (20%) 5165.04 (52.69%) 10615.41 (41.2%)
29 16 (22.86%) 5015.45 (42.46%) 10646.4 (81.55%)
30 17 (25.71%) 4954.11 (38.27%) 10660.18 (99.49%)
31 17 (25.71%) 4963.31 (38.9%) 10641.05 (74.58%)
32 17 (25.71%) 4973.01 (39.56%) 10640.92 (74.41%)
33 17 (25.71%) 4988.17 (40.6%) 10633.26 (64.44%)
34 17 (25.71%) 5009.65 (42.07%) 10631.36 (61.97%)
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35 17 (25.71%) 5037.25 (43.95%) 10629.86 (60.01%)
36 17 (25.71%) 5049.92 (44.82%) 10628.4 (58.11%)
37 17 (25.71%) 5079.02 (46.81%) 10616.25 (42.29%)
38 18 (28.57%) 4924.87 (36.27%) 10636.62 (68.82%)
39 18 (28.57%) 4998.81 (41.33%) 10625.43 (54.24%)
40 19 (31.43%) 4875.35 (32.89%) 10654.84 (92.54%)
41 19 (31.43%) 4888.53 (33.79%) 10639.47 (72.53%)
42 19 (31.43%) 4889.7 (33.87%) 10626.64 (55.82%)
43 19 (31.43%) 4963.64 (38.92%) 10615.45 (41.25%)
44 19 (31.43%) 4993.88 (40.99%) 10614.1 (39.49%)
45 19 (31.43%) 5015.36 (42.46%) 10612.2 (37.02%)
46 20 (34.29%) 4850.4 (31.18%) 10650.47 (86.85%)
47 20 (34.29%) 5151.11 (51.73%) 10604.79 (27.37%)
48 21 (37.14%) 4809.01 (28.36%) 10642.47 (76.43%)
49 21 (37.14%) 4822.19 (29.26%) 10627.1 (56.42%)
50 21 (37.14%) 4826.04 (29.52%) 10622.59 (50.55%)
51 21 (37.14%) 4896.13 (34.31%) 10615.91 (41.85%)
52 21 (37.14%) 5052.83 (45.02%) 10606.19 (29.19%)
53 21 (37.14%) 5120.28 (49.63%) 10604.79 (27.37%)
54 22 (40%) 4772.67 (25.87%) 10645.32 (80.14%)
55 22 (40%) 4789.7 (27.04%) 10625.44 (54.26%)
56 22 (40%) 4831.51 (29.89%) 10618.9 (45.74%)
57 22 (40%) 4863.64 (32.09%) 10614.25 (39.69%)
58 22 (40%) 4905.45 (34.95%) 10607.71 (31.17%)
59 22 (40%) 5009.77 (42.08%) 10605.91 (28.83%)
60 22 (40%) 5015.23 (42.45%) 10605.05 (27.71%)
61 22 (40%) 5056.97 (45.3%) 10599.18 (20.07%)
62 22 (40%) 5097.38 (48.06%) 10594.43 (13.88%)
63 22 (40%) 5098.64 (48.15%) 10593.12 (12.17%)
64 22 (40%) 5140.37 (51%) 10592.28 (11.08%)
65 23 (42.86%) 4762.29 (25.16%) 10639.82 (72.98%)
66 23 (42.86%) 5020.63 (42.82%) 10602.03 (23.78%)
67 23 (42.86%) 5098.56 (48.14%) 10594.31 (13.72%)
68 24 (45.71%) 4731.46 (23.06%) 10639.82 (72.98%)
69 24 (45.71%) 4767.76 (25.54%) 10636.13 (68.18%)
70 24 (45.71%) 4985.2 (40.4%) 10605.83 (28.72%)
71 24 (45.71%) 4989.8 (40.71%) 10602.03 (23.78%)
72 24 (45.71%) 5066.07 (45.92%) 10592.65 (11.56%)
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73 25 (48.57%) 4707.86 (21.44%) 10638.4 (71.13%)
74 25 (48.57%) 4971.81 (39.48%) 10605.97 (28.91%)
75 25 (48.57%) 4978.99 (39.97%) 10605.88 (28.79%)
76 26 (51.43%) 4674.68 (19.18%) 10640.21 (73.49%)
77 26 (51.43%) 4677.81 (19.39%) 10634.57 (66.15%)
78 26 (51.43%) 4746.33 (24.07%) 10633.08 (64.21%)
79 26 (51.43%) 4771.23 (25.77%) 10630.19 (60.44%)
80 26 (51.43%) 4776.26 (26.12%) 10630.1 (60.33%)
81 26 (51.43%) 4791.39 (27.15%) 10618.2 (44.83%)
82 26 (51.43%) 4838.18 (30.35%) 10605.92 (28.84%)
83 26 (51.43%) 4978.29 (39.92%) 10604.19 (26.59%)
84 27 (54.29%) 4843.65 (30.72%) 10601.56 (23.16%)
85 28 (57.14%) 4755.38 (24.69%) 10617.03 (43.31%)
86 28 (57.14%) 4807.31 (28.24%) 10604.41 (26.87%)
87 29 (60%) 4617.91 (15.3%) 10640.71 (74.14%)
88 29 (60%) 4650.66 (17.53%) 10636.28 (68.37%)
89 29 (60%) 4725.85 (22.67%) 10620.19 (47.42%)
90 29 (60%) 4782.09 (26.52%) 10604.06 (26.42%)
91 29 (60%) 4794.65 (27.37%) 10603.49 (25.68%)
92 30 (62.86%) 4676.54 (19.3%) 10632.69 (63.7%)
93 30 (62.86%) 4706.84 (21.37%) 10614.3 (39.75%)
94 30 (62.86%) 4758.31 (24.89%) 10606.34 (29.39%)
95 30 (62.86%) 4766.02 (25.42%) 10605.89 (28.8%)
96 31 (65.71%) 4607.1 (14.56%) 10634.93 (66.61%)
97 31 (65.71%) 4631.08 (16.2%) 10624.96 (53.63%)
98 31 (65.71%) 4681.7 (19.66%) 10617.18 (43.5%)
99 31 (65.71%) 4684.18 (19.83%) 10605.33 (28.07%)
100 31 (65.71%) 4724.99 (22.61%) 10605.01 (27.66%)
101 31 (65.71%) 4760.94 (25.07%) 10594.59 (14.09%)
102 32 (68.57%) 4646.26 (17.23%) 10610.67 (35.03%)
103 32 (68.57%) 4704.3 (21.2%) 10601.08 (22.54%)
104 32 (68.57%) 4728.61 (22.86%) 10600.17 (21.35%)
105 32 (68.57%) 4778.24 (26.25%) 10589.89 (7.97%)
106 33 (71.43%) 4546.54 (10.42%) 10630.54 (60.9%)
107 33 (71.43%) 4627.26 (15.94%) 10616.46 (42.57%)
108 33 (71.43%) 4651.73 (17.61%) 10594.27 (13.67%)
109 33 (71.43%) 4734.08 (23.24%) 10583.77 (0%)
110 34 (74.29%) 4571.97 (12.16%) 10625.82 (54.75%)
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111 35 (77.14%) 4554.41 (10.96%) 10628.9 (58.76%)
112 35 (77.14%) 4643.76 (17.06%) 10614.26 (39.7%)
113 36 (80%) 4500.34 (7.26%) 10658.91 (97.84%)
114 36 (80%) 4520.34 (8.63%) 10647.89 (83.49%)
115 36 (80%) 4521.72 (8.72%) 10633.62 (64.91%)
116 36 (80%) 4523.67 (8.86%) 10633.15 (64.3%)
117 36 (80%) 4537.24 (9.78%) 10633.12 (64.26%)
118 36 (80%) 4597.93 (13.93%) 10611.58 (36.21%)
119 37 (82.86%) 4511.68 (8.04%) 10629.56 (59.62%)
120 38 (85.71%) 4460.45 (4.54%) 10631.15 (61.69%)
121 38 (85.71%) 4531.48 (9.39%) 10629.28 (59.26%)
122 40 (91.43%) 4445.27 (3.5%) 10633.94 (65.33%)
123 40 (91.43%) 4476.89 (5.66%) 10624.8 (53.42%)
124 41 (94.29%) 4394.07 (0%) 10651.21 (87.81%)
125 41 (94.29%) 4414.08 (1.37%) 10624.01 (52.4%)
126 41 (94.29%) 4597.74 (13.92%) 10614.24 (39.67%)
127 41 (94.29%) 4613.35 (14.99%) 10610.45 (34.74%)
128 42 (97.14%) 4556.89 (11.13%) 10619.13 (46.04%)
129 42 (97.14%) 4582.46 (12.87%) 10615.22 (40.95%)
130 43 (100%) 4545.58 (10.35%) 10619.01 (45.89%)

Table B.35: Experimental results for instance 35 - c101-
E4 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2186.1 10 867.18 9828.93

Solution S/N f1 f2 f3
1 17 (0%) 10863.57 (86.73%) 11485.55 (100%)
2 17 (0%) 11000.54 (92.97%) 11478.51 (95.24%)
3 18 (1.69%) 10800.76 (83.86%) 11485.31 (99.84%)
4 19 (3.39%) 10726.05 (80.46%) 11478.83 (95.46%)
5 19 (3.39%) 11051.26 (95.28%) 11450.31 (76.17%)
6 20 (5.08%) 10820.26 (84.75%) 11473.26 (91.69%)
7 20 (5.08%) 10826.53 (85.04%) 11449.99 (75.96%)
8 21 (6.78%) 10571.83 (73.43%) 11471.5 (90.5%)
9 21 (6.78%) 10578.61 (73.74%) 11470.48 (89.81%)
10 21 (6.78%) 10593.49 (74.41%) 11463.46 (85.06%)
11 21 (6.78%) 10733.19 (80.78%) 11451.83 (77.2%)
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12 21 (6.78%) 10738.96 (81.05%) 11445.09 (72.64%)
13 21 (6.78%) 10761.02 (82.05%) 11441.73 (70.37%)
14 22 (8.47%) 10544.55 (72.18%) 11465.74 (86.61%)
15 22 (8.47%) 10651.81 (77.07%) 11453.75 (78.5%)
16 22 (8.47%) 10679.64 (78.34%) 11443.65 (71.67%)
17 24 (11.86%) 10479.99 (69.24%) 11485.3 (99.83%)
18 24 (11.86%) 10497.67 (70.05%) 11481.62 (97.34%)
19 25 (13.56%) 10393.61 (65.3%) 11476.55 (93.91%)
20 25 (13.56%) 10423.84 (66.68%) 11474.63 (92.62%)
21 25 (13.56%) 10450.01 (67.87%) 11465.85 (86.68%)
22 25 (13.56%) 10612.5 (75.28%) 11449.87 (75.88%)
23 25 (13.56%) 10627.46 (75.96%) 11449.52 (75.64%)
24 25 (13.56%) 10634.56 (76.29%) 11446.51 (73.6%)
25 25 (13.56%) 10639.65 (76.52%) 11441.86 (70.46%)
26 26 (15.25%) 10584.5 (74%) 11422.84 (57.6%)
27 27 (16.95%) 10303.28 (61.18%) 11458.03 (81.39%)
28 28 (18.64%) 10348.6 (63.25%) 11450.09 (76.02%)
29 29 (20.34%) 10274.21 (59.86%) 11447.23 (74.09%)
30 29 (20.34%) 10275.28 (59.91%) 11446.26 (73.43%)
31 29 (20.34%) 10330.61 (62.43%) 11436.53 (66.86%)
32 29 (20.34%) 11153.77 (99.96%) 11414.78 (52.15%)
33 29 (20.34%) 11154.69 (100%) 11413.25 (51.12%)
34 30 (22.03%) 10458.04 (68.24%) 11427.62 (60.83%)
35 32 (25.42%) 10101.56 (51.99%) 11443.3 (71.43%)
36 33 (27.12%) 10955.26 (90.91%) 11399.29 (41.68%)
37 36 (32.2%) 10829.8 (85.19%) 11389.41 (35%)
38 37 (33.9%) 10055.99 (49.91%) 11431.67 (63.57%)
39 37 (33.9%) 10059.86 (50.09%) 11430.08 (62.49%)
40 40 (38.98%) 9932.99 (44.3%) 11434.82 (65.7%)
41 40 (38.98%) 10104.66 (52.13%) 11381.47 (29.63%)
42 40 (38.98%) 10324.4 (62.15%) 11378.01 (27.29%)
43 40 (38.98%) 10386.29 (64.97%) 11377.08 (26.66%)
44 41 (40.68%) 10038.48 (49.11%) 11380.78 (29.16%)
45 41 (40.68%) 10039.96 (49.18%) 11379.58 (28.35%)
46 41 (40.68%) 10045.65 (49.44%) 11375.89 (25.86%)
47 41 (40.68%) 10110.1 (52.38%) 11375.19 (25.38%)
48 41 (40.68%) 10266.52 (59.51%) 11367.44 (20.14%)
49 41 (40.68%) 10511.26 (70.67%) 11362.2 (16.6%)
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50 44 (45.76%) 9777.83 (37.23%) 11439.27 (68.71%)
51 45 (47.46%) 9884.74 (42.1%) 11437.8 (67.71%)
52 46 (49.15%) 9832.55 (39.72%) 11432.67 (64.25%)
53 49 (54.24%) 9643.4 (31.1%) 11450.13 (76.05%)
54 50 (55.93%) 9597.66 (29.01%) 11447.32 (74.15%)
55 50 (55.93%) 9601.61 (29.19%) 11447.09 (74%)
56 50 (55.93%) 9605.74 (29.38%) 11445.87 (73.17%)
57 50 (55.93%) 9610.25 (29.59%) 11445.03 (72.6%)
58 50 (55.93%) 10017.81 (48.17%) 11377.93 (27.23%)
59 50 (55.93%) 10032.05 (48.82%) 11375.74 (25.75%)
60 52 (59.32%) 9644.43 (31.15%) 11442.15 (70.66%)
61 53 (61.02%) 9541.14 (26.44%) 11437.96 (67.82%)
62 53 (61.02%) 9619.24 (30%) 11416.61 (53.39%)
63 53 (61.02%) 9907.22 (43.13%) 11362.11 (16.54%)
64 54 (62.71%) 9486.73 (23.96%) 11434.63 (65.57%)
65 54 (62.71%) 9490.86 (24.15%) 11433.41 (64.75%)
66 54 (62.71%) 9539.75 (26.37%) 11405.93 (46.17%)
67 54 (62.71%) 9540.03 (26.39%) 11404.23 (45.02%)
68 54 (62.71%) 9548.2 (26.76%) 11402.62 (43.93%)
69 58 (69.49%) 9385.4 (19.34%) 11444.34 (72.14%)
70 58 (69.49%) 9391.14 (19.6%) 11442.02 (70.57%)
71 58 (69.49%) 9395.77 (19.81%) 11441.47 (70.2%)
72 58 (69.49%) 9490.02 (24.11%) 11378.14 (27.38%)
73 58 (69.49%) 9490.3 (24.12%) 11376.44 (26.23%)
74 58 (69.49%) 9497.25 (24.44%) 11375.67 (25.71%)
75 58 (69.49%) 9517.13 (25.34%) 11375.11 (25.33%)
76 58 (69.49%) 9521.6 (25.55%) 11374.61 (24.99%)
77 58 (69.49%) 9567.49 (27.64%) 11374.48 (24.9%)
78 61 (74.58%) 9245.67 (12.97%) 11431.74 (63.62%)
79 62 (76.27%) 9202.13 (10.98%) 11423.14 (57.8%)
80 62 (76.27%) 9226.17 (12.08%) 11412.85 (50.85%)
81 62 (76.27%) 9239.68 (12.69%) 11412.11 (50.34%)
82 62 (76.27%) 9265.45 (13.87%) 11409.47 (48.56%)
83 62 (76.27%) 9269.46 (14.05%) 11383.31 (30.87%)
84 65 (81.36%) 9129.92 (7.69%) 11414.75 (52.13%)
85 65 (81.36%) 9132.49 (7.81%) 11413.77 (51.47%)
86 65 (81.36%) 9226.08 (12.07%) 11380.8 (29.18%)
87 65 (81.36%) 9300.4 (15.46%) 11378.75 (27.79%)
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88 66 (83.05%) 9104.53 (6.53%) 11412.57 (50.66%)
89 66 (83.05%) 9114.38 (6.98%) 11411.64 (50.03%)
90 66 (83.05%) 9115.88 (7.05%) 11410.78 (49.45%)
91 66 (83.05%) 9118.46 (7.17%) 11410.37 (49.17%)
92 66 (83.05%) 9138.47 (8.08%) 11410.15 (49.02%)
93 66 (83.05%) 9205.55 (11.14%) 11368.22 (20.67%)
94 66 (83.05%) 9208.07 (11.25%) 11367.51 (20.19%)
95 66 (83.05%) 10130.69 (53.32%) 11347.07 (6.37%)
96 69 (88.14%) 9062.28 (4.61%) 11408.72 (48.05%)
97 70 (89.83%) 9033.63 (3.3%) 11412.79 (50.8%)
98 70 (89.83%) 9039.42 (3.56%) 11411.57 (49.98%)
99 70 (89.83%) 9050.28 (4.06%) 11410.42 (49.2%)
100 70 (89.83%) 9056.07 (4.32%) 11409.2 (48.38%)
101 70 (89.83%) 9121.19 (7.29%) 11340.96 (2.24%)
102 70 (89.83%) 9126.48 (7.53%) 11340.56 (1.97%)
103 70 (89.83%) 9272.17 (14.18%) 11337.65 (0%)
104 73 (94.92%) 8976.12 (0.68%) 11404.74 (45.36%)
105 74 (96.61%) 8961.96 (0.03%) 11407.35 (47.13%)
106 74 (96.61%) 8969.04 (0.36%) 11405.22 (45.69%)
107 74 (96.61%) 8971.73 (0.48%) 11398.24 (40.97%)
108 74 (96.61%) 9016.2 (2.51%) 11361.78 (16.32%)
109 75 (98.31%) 8961.24 (0%) 11407.46 (47.2%)
110 75 (98.31%) 8965.37 (0.19%) 11406.24 (46.38%)
111 75 (98.31%) 8970.74 (0.43%) 11404.06 (44.9%)
112 75 (98.31%) 8980.57 (0.88%) 11395.55 (39.15%)
113 75 (98.31%) 9000.56 (1.79%) 11364.6 (18.22%)
114 75 (98.31%) 9006.35 (2.06%) 11363.38 (17.4%)
115 75 (98.31%) 9011.72 (2.3%) 11361.2 (15.92%)
116 75 (98.31%) 9089.14 (5.83%) 11346.95 (6.29%)
117 75 (98.31%) 9089.92 (5.87%) 11346.6 (6.05%)
118 75 (98.31%) 9090.44 (5.89%) 11346.51 (5.99%)
119 75 (98.31%) 9093.27 (6.02%) 11345.73 (5.46%)
120 75 (98.31%) 9095.81 (6.14%) 11344.33 (4.52%)
121 76 (100%) 8991.53 (1.38%) 11379.15 (28.06%)
122 76 (100%) 8999.95 (1.76%) 11364.71 (18.3%)
123 76 (100%) 9091.01 (5.92%) 11345.35 (5.21%)
124 76 (100%) 9092.58 (5.99%) 11344.44 (4.59%)
125 76 (100%) 9095.14 (6.1%) 11344.13 (4.38%)
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126 76 (100%) 9100.51 (6.35%) 11341.95 (2.91%)
127 76 (100%) 9128.92 (7.64%) 11340.08 (1.64%)

Table B.36: Experimental results for instance 36 - c101-
E5 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
1613.2 2 215.06 9828.93

Solution S/N f1 f2 f3
1 17 (0%) 7517.24 (96.04%) 11100.82 (100%)
2 19 (6.06%) 7327.59 (83.77%) 10997.36 (49.98%)
3 19 (6.06%) 7349.13 (85.16%) 10995.98 (49.32%)
4 19 (6.06%) 7356.25 (85.62%) 10992.65 (47.71%)
5 20 (9.09%) 7085.38 (68.09%) 11031.96 (66.71%)
6 21 (12.12%) 7047.1 (65.61%) 11030.47 (65.99%)
7 22 (15.15%) 6986.44 (61.69%) 11028.25 (64.92%)
8 22 (15.15%) 7094.86 (68.7%) 10957.96 (30.94%)
9 23 (18.18%) 6936.53 (58.46%) 11027.57 (64.59%)
10 24 (21.21%) 6907.83 (56.6%) 11005.55 (53.94%)
11 25 (24.24%) 6893.7 (55.69%) 11017.35 (59.65%)
12 27 (30.3%) 6809.71 (50.25%) 11005.25 (53.8%)
13 27 (30.3%) 6818.49 (50.82%) 10949.46 (26.83%)
14 27 (30.3%) 6848.49 (52.76%) 10910.73 (8.1%)
15 27 (30.3%) 6970.03 (60.63%) 10897.14 (1.53%)
16 27 (30.3%) 7159.42 (72.88%) 10896.52 (1.23%)
17 27 (30.3%) 7578.45 (100%) 10896.25 (1.1%)
18 28 (33.33%) 6769.15 (47.63%) 11043.82 (72.44%)
19 29 (36.36%) 6748.76 (46.31%) 11028.88 (65.22%)
20 29 (36.36%) 6771.98 (47.81%) 11023.62 (62.68%)
21 31 (42.42%) 6624.77 (38.28%) 10941.17 (22.82%)
22 31 (42.42%) 6825.74 (51.29%) 10905.23 (5.44%)
23 32 (45.45%) 6609.64 (37.3%) 10950.35 (27.26%)
24 32 (45.45%) 6610.8 (37.38%) 10906.51 (6.06%)
25 32 (45.45%) 6643.32 (39.48%) 10906.31 (5.97%)
26 32 (45.45%) 6788.12 (48.85%) 10894.54 (0.28%)
27 33 (48.48%) 6588.32 (35.92%) 10946.96 (25.62%)
28 34 (51.52%) 6556.73 (33.88%) 10942.96 (23.68%)
29 35 (54.55%) 6529.01 (32.08%) 10941.37 (22.92%)
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30 36 (57.58%) 6425.8 (25.41%) 10934.3 (19.5%)
31 36 (57.58%) 6706.53 (43.57%) 10904.7 (5.19%)
32 37 (60.61%) 6397.14 (23.55%) 10936.23 (20.43%)
33 37 (60.61%) 6406.86 (24.18%) 10935.5 (20.08%)
34 37 (60.61%) 6499.06 (30.15%) 10908.21 (6.88%)
35 37 (60.61%) 6501.19 (30.28%) 10907.39 (6.49%)
36 37 (60.61%) 6649.2 (39.86%) 10903.2 (4.46%)
37 37 (60.61%) 6654.19 (40.19%) 10902.84 (4.29%)
38 38 (63.64%) 6392.96 (23.28%) 10909.3 (7.41%)
39 38 (63.64%) 6414.09 (24.65%) 10906.9 (6.25%)
40 39 (66.67%) 6338.54 (19.76%) 10931.73 (18.25%)
41 39 (66.67%) 6345.17 (20.19%) 10931.63 (18.21%)
42 39 (66.67%) 6373.63 (22.03%) 10898.01 (1.95%)
43 39 (66.67%) 6375.32 (22.14%) 10897.19 (1.56%)
44 41 (72.73%) 6325.82 (18.94%) 11020.77 (61.3%)
45 41 (72.73%) 6349.53 (20.47%) 10910.88 (8.18%)
46 42 (75.76%) 6212.28 (11.59%) 10922.73 (13.9%)
47 42 (75.76%) 6304.54 (17.56%) 10893.97 (0%)
48 46 (87.88%) 6187.78 (10%) 10972.78 (38.1%)
49 47 (90.91%) 6174.35 (9.13%) 10969.96 (36.74%)
50 47 (90.91%) 6182.69 (9.67%) 10942.93 (23.67%)
51 47 (90.91%) 6185.62 (9.86%) 10942.91 (23.66%)
52 48 (93.94%) 6033.23 (0%) 10925.95 (15.46%)
53 50 (100%) 6257.27 (14.5%) 10902.01 (3.89%)

Table B.37: Experimental results for instance 37 - c101-
E6 (Heuristic Approach 3 for the SCD-VRPTW-3)

Runtime (sec) LB′1 for f1 LB′2 for f2 Reference value for f3
2714.9 8 834.31 9828.93

Solution S/N f1 f2 f3
1 25 (0%) 14804.14 (84.18%) 12048.27 (99.58%)
2 25 (0%) 15315.92 (100%) 12032.76 (94.52%)
3 27 (5.13%) 14305.78 (68.78%) 12049.08 (99.85%)
4 28 (7.69%) 14036.46 (60.45%) 12049.55 (100%)
5 28 (7.69%) 14273.54 (67.78%) 12047.45 (99.31%)
6 28 (7.69%) 14275.42 (67.84%) 12046.21 (98.91%)
7 28 (7.69%) 14289.92 (68.29%) 12042.75 (97.78%)
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8 28 (7.69%) 14323.82 (69.33%) 12039.39 (96.68%)
9 29 (10.26%) 14233.1 (66.53%) 12047.81 (99.43%)
10 30 (12.82%) 14014.66 (59.78%) 12040.86 (97.16%)
11 30 (12.82%) 14170.71 (64.6%) 12037.81 (96.17%)
12 31 (15.38%) 13913.12 (56.64%) 12043.49 (98.02%)
13 31 (15.38%) 13931.97 (57.22%) 12028.09 (92.99%)
14 31 (15.38%) 14196.33 (65.39%) 11973.98 (75.32%)
15 32 (17.95%) 13853.08 (54.78%) 12040.27 (96.97%)
16 32 (17.95%) 13856.15 (54.88%) 12040.26 (96.97%)
17 32 (17.95%) 13859.96 (54.99%) 12026.06 (92.33%)
18 32 (17.95%) 13863.05 (55.09%) 12025.91 (92.28%)
19 32 (17.95%) 13871.47 (55.35%) 12025.49 (92.14%)
20 33 (20.51%) 13732.99 (51.07%) 12046.66 (99.06%)
21 34 (23.08%) 13823.19 (53.86%) 12041.1 (97.24%)
22 35 (25.64%) 13594.55 (46.79%) 11937.04 (63.26%)
23 35 (25.64%) 13598.99 (46.93%) 11936.29 (63.01%)
24 35 (25.64%) 13693.67 (49.85%) 11928.84 (60.58%)
25 37 (30.77%) 13561.11 (45.76%) 12048.24 (99.57%)
26 37 (30.77%) 13677.77 (49.36%) 11892.53 (48.72%)
27 37 (30.77%) 13693.34 (49.84%) 11888.56 (47.43%)
28 37 (30.77%) 13697.78 (49.98%) 11887.81 (47.18%)
29 41 (41.03%) 13501.23 (43.91%) 11878.53 (44.15%)
30 42 (43.59%) 13354.27 (39.36%) 11947.54 (66.69%)
31 42 (43.59%) 13362.35 (39.61%) 11946.28 (66.28%)
32 42 (43.59%) 13363.51 (39.65%) 11940.04 (64.24%)
33 42 (43.59%) 13380.13 (40.16%) 11936.85 (63.2%)
34 42 (43.59%) 13408.82 (41.05%) 11898.31 (50.61%)
35 42 (43.59%) 13410.3 (41.09%) 11897.11 (50.22%)
36 42 (43.59%) 13413.42 (41.19%) 11896.36 (49.98%)
37 42 (43.59%) 13420.02 (41.4%) 11896.3 (49.96%)
38 42 (43.59%) 13435.59 (41.88%) 11878.14 (44.03%)
39 43 (46.15%) 13406.11 (40.97%) 11874.13 (42.72%)
40 45 (51.28%) 13241.25 (35.87%) 11885.76 (46.51%)
41 45 (51.28%) 13249.33 (36.12%) 11884.5 (46.1%)
42 46 (53.85%) 13212.84 (34.99%) 11934.21 (62.34%)
43 46 (53.85%) 13508.22 (44.12%) 11859.73 (38.01%)
44 47 (56.41%) 13093.45 (31.3%) 11925.82 (59.6%)
45 47 (56.41%) 13094.21 (31.32%) 11925.44 (59.47%)
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46 47 (56.41%) 13094.99 (31.35%) 11925.09 (59.36%)
47 47 (56.41%) 13154.27 (33.18%) 11897.35 (50.3%)
48 48 (58.97%) 13072.51 (30.65%) 11921.9 (58.32%)
49 48 (58.97%) 13228.89 (35.49%) 11820.89 (25.33%)
50 49 (61.54%) 13034.53 (29.48%) 11920.14 (57.74%)
51 49 (61.54%) 13035.29 (29.5%) 11919.76 (57.62%)
52 49 (61.54%) 13036.07 (29.53%) 11919.41 (57.5%)
53 49 (61.54%) 13084.43 (31.02%) 11895.11 (49.57%)
54 49 (61.54%) 13085.19 (31.05%) 11894.73 (49.44%)
55 49 (61.54%) 13085.97 (31.07%) 11894.38 (49.33%)
56 49 (61.54%) 13117.16 (32.03%) 11821.68 (25.59%)
57 49 (61.54%) 13117.89 (32.06%) 11821.44 (25.51%)
58 49 (61.54%) 13120.33 (32.13%) 11821.09 (25.4%)
59 49 (61.54%) 13127.14 (32.34%) 11820.79 (25.3%)
60 49 (61.54%) 13212.96 (34.99%) 11815.05 (23.42%)
61 50 (64.1%) 13005.24 (28.57%) 12045.6 (98.71%)
62 51 (66.67%) 13502.51 (43.95%) 11809.73 (21.69%)
63 52 (69.23%) 12506.18 (13.15%) 11886.29 (46.69%)
64 52 (69.23%) 12506.4 (13.15%) 11884.69 (46.16%)
65 52 (69.23%) 12507.8 (13.2%) 11883.4 (45.74%)
66 52 (69.23%) 12587.9 (15.67%) 11883.36 (45.73%)
67 52 (69.23%) 12781.85 (21.67%) 11882.55 (45.47%)
68 52 (69.23%) 12818.82 (22.81%) 11881.03 (44.97%)
69 52 (69.23%) 12914.62 (25.77%) 11874.4 (42.8%)
70 54 (74.36%) 13256.09 (36.33%) 11814.7 (23.31%)
71 55 (76.92%) 13841.06 (54.41%) 11748.54 (1.7%)
72 56 (79.49%) 12887.47 (24.93%) 11822.63 (25.9%)
73 57 (82.05%) 12814.95 (22.69%) 11821.12 (25.41%)
74 57 (82.05%) 12815.23 (22.7%) 11819.42 (24.85%)
75 57 (82.05%) 13003.29 (28.51%) 11818.17 (24.44%)
76 58 (84.62%) 12516.04 (13.45%) 11822.66 (25.91%)
77 59 (87.18%) 12248.23 (5.17%) 11878 (43.98%)
78 59 (87.18%) 12249.01 (5.2%) 11877.65 (43.87%)
79 59 (87.18%) 12256.01 (5.41%) 11877.46 (43.8%)
80 59 (87.18%) 12445.08 (11.26%) 11822.79 (25.95%)
81 59 (87.18%) 12445.86 (11.28%) 11822.44 (25.84%)
82 59 (87.18%) 12445.86 (11.28%) 11821.24 (25.44%)
83 59 (87.18%) 12451.23 (11.45%) 11821.22 (25.44%)
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84 59 (87.18%) 12638.75 (17.25%) 11799.5 (18.35%)
85 61 (92.31%) 12110.9 (0.93%) 11870.63 (41.57%)
86 61 (92.31%) 12147.25 (2.05%) 11863.95 (39.39%)
87 61 (92.31%) 12209.56 (3.98%) 11842.68 (32.45%)
88 61 (92.31%) 12219.56 (4.29%) 11837.94 (30.9%)
89 61 (92.31%) 12219.8 (4.3%) 11835.06 (29.96%)
90 61 (92.31%) 12235.21 (4.77%) 11833.77 (29.54%)
91 61 (92.31%) 12242.9 (5.01%) 11831.71 (28.86%)
92 62 (94.87%) 12080.85 (0%) 11890.81 (48.16%)
93 62 (94.87%) 12081.34 (0.02%) 11888.91 (47.54%)
94 62 (94.87%) 12083.94 (0.1%) 11888.76 (47.49%)
95 62 (94.87%) 12090.11 (0.29%) 11888.67 (47.46%)
96 62 (94.87%) 12335.39 (7.87%) 11815.07 (23.43%)
97 62 (94.87%) 13117.25 (32.04%) 11746.63 (1.08%)
98 62 (94.87%) 13118.23 (32.07%) 11743.32 (0%)
99 63 (97.44%) 12318.02 (7.33%) 11813.75 (23%)
100 64 (100%) 12586.31 (15.62%) 11787.72 (14.5%)
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