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Abstract

In recent years, we have witnessed dramatic developments of mobile healthcare

robots, which enjoy many advantages over their human counterparts. Previous

communication networks for healthcare robots always suffer from high response

latency and/or time-consuming computing demands. Robust and high-speed

communications and swift processing are critical, sometimes vital in particular

in the case of healthcare robots, to the healthcare receivers. As a promising solu-

tion, offloading delay-sensitive and communicating-intensive tasks to the robot

is expected to improve the services and benefit users. In this paper, we review

several state-of-the-art technologies, such as the human-robot interface, environ-

ment and user status perceiving, navigation, robust communication and artificial

intelligence, of a mobile healthcare robot and discuss in details the customized

demands over offloading the computation and communication tasks. According

to the intrinsic demands of tasks over the network usage, we categorize abilities

of a typical healthcare robot into alternative classes: the edge functionalities

and the core functionalities. Many latency-sensitive tasks, such as user interac-

tion, or time-consuming tasks including health receiver status recognition and
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autonomous moving, can be processed by the robot without frequent commu-

nications with data centers. On the other hand, several fundamental abilities,

such as radio resource management, mobility management, service provision-

ing management, need to update the main body with the cutting-edge artificial

intelligence. Robustness and safety, in this case, are the primary goals in wire-

less communications that AI may provide ground-breaking solutions. Based

on this partition, this article refers to several state-of-the-art technologies of a

mobile healthcare robot and reviews some challenges to be met for its wireless

communications.

Keywords: healthcare robot, wireless communication, edge computing,

artificial intelligence.

1. Introduction

Edge computing is expected to be a key enabler of processes where a rapid

response to sensor input is necessary, such as wireless health monitoring, virtual

reality, and robotics. Providing such healthcare gets expensive on a daily basis,

especially for the elder population around the world. This is important in5

particular when dealing with chronic and psychological diseases. Nursing and

carereceiving often require long-term intensive human labor. Robotics, as a

promoting solution, has open a way to explore a constantly-accompanying and

automatic caregivers to help provide ”a mobile healthcare robot”.

A mobile healthcare robot enjoys enormous superiorities over human-labor10

in healthcare, including but not limited to the following. Under the support of

artificial intelligence, a robot can learn massive intelligence and experience from

human medical experts, or sometimes even outperforms their human counter-

parts. Such intelligent robots can provide more efficient diagnosis and treatment

than a human caregiver. Subsequently, a healthcare robot either autonomously15

moves or is incorporated into a mobile digital device. Mobility of the robot

means superior adherence anywhere at any time. For example, a psychologi-

cal therapy robot can be a table-top device connected with a smart phone [1].
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Afterwards, a robot is equipped with various sensors and enabled to capture

excessively more details of the care-receiver and the environment than a human20

care-giver. The captured information is vital for improving the health condition

of a care-receiver [2]. Finally, a robot is more adept at repetitive work and less

error-prone than humans. For instance, a robot can remind a care-receiver of

the medication schedule at any given time [3].

Efficient communications between robots and data centers are essential for25

improving customer services. However, the risk of potential high response la-

tency at the data center end is critical for healthcare robot, especially in the

case of emergency aid. In addition, many time-consuming tasks, such as human

understanding. Such tasks can be completed by the robot and only summarized

messages. Such messages as the category of behaviors, are communicated with30

the centers with very limited communication burden. A careful design of the

framework in balancing edge computing and centralized computing is important

for researchers from both robotics and communication communities [4][5][6][7].

The rapid development of Internet of Things (IoT) [8][9][10] is getting a wide

acceptance and a growing adoption in many aspects of our daily life. By applying35

IoT technologies to healthcare, it is expected to witness dramatic improvement

of healthcare and thus increase the service quality to humans [12][13][17]. To

release the heavy communication burden of healthcare robots, in particular

from their various equipment. It is preferred to pre-process the huge amount

of data by the robots, or the edge computing [11][18][19][20][14][15][16]. In this40

paper, we aim to introduce applications of edge computing scenarios of mobile

healthcare robots and give details on edge/centralized computing analysis in a

task-driven fashion. The main contribution of this paper are as follows:

• Investigate on the application and key technologies of mobile healthcare

robots.45

• Discuss and analyze several peripheral and core functionalities that the

robot development will require.

• Embracing edge computing and healthcare robots in image understanding,
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sensor and path planning technologies will speedup the progress toward

practice.50

The rest of this paper is organized as follows. Section 2 summarizes typi-

cal needs and functionalities of the robot. Section 3 points out the task-driven

demands of healthcare robots in edge computing. Section 4 analyzes the cen-

tralized case. Section 5 gives the conclusion and future work.

2. Typical Applications of A Mobile Healthcare Robots55

The result of edge computing can be rapid machine-to-machine communica-

tion or machine-to-human interaction. This paradigm takes localized processing

farther away from the network right down to the sensor by pushing the comput-

ing processes even closer to the data sources. The sensor can act as a dispatcher

that can send information to another edge device or to the cloud if need be. This60

allows each edge device to do its part in processing information instead of send-

ing all its data to a centralized server. Edge computing help improve patient

care as well as increase efficiency from a business perspective. By spreading out

the network, organizations can enhance productivity by concentrating resources

on certain tasks and making health IT systems more efficient by decentralizing65

IT infrastructure. Fig. 1 illustrates representative application scenarios and

functionalities of a mobile healthcare robot. We have listed several applications

that a mobile healthcare robot may fit in.

2.1. Elder and Chronic Patient Nursing

Seventy percent of U.S. citizens take at least one prescription medication70

and over fifty percent take at least two, according to FDA and CDC. Among

these patients, forty percent arises from elders. Failing to maintain medication

adherence is a dramatic barrier to pursue health for patients, in particular those

of elder people or chronic patients. A typical task consists of detection, commu-

nication with cloud, processing and returning message. A healthcare robot in75

this case is expected to be able to detect any abnormal actions, such as falling
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Figure 1: Needs on mobile healthcare robots

down, faint or asking for help. The robot then processes the raw detections

and uploads compressed information to the cloud by reliable wireless connec-

tions. Messages are sent back to the robot to act properly. Frequently missing

of medication doses, consequently and unfortunately, will likely lead to diseases80

aggravation.

2.2. Unhealthy Habit Recognition

Healthy lifestyle plays an important role in health maintenance. Harmful

habits may lead a person towards unhealthy conditions even if he/she is tem-

porarily healthy. However, a habit is an unconscious behavior. One usually fails85

to realize that a negative habit is doing harm. Professional suggestions, in this

case, are essential for early-preventing.

2.3. Mental Healthcare

Although psychological issues like depression are increasingly prevalent, many

people still face high barriers to access mental healthcare facilities. Some suffers90

do not realize the necessity of mental healthcare for fear of the social stigma

associated with receiving psychotherapy. Other suffers desire healthcare but are

impeded by high financial costs of mental health services.
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3. Edge-Computing-Friendly Functionalities

According to the tasks a healthcare robot may meet, many functionalities of95

a robot are edge-computing-friendly in nature. In this section, we list and ana-

lyze this kind of tasks and discuss the corresponding edge computing techniques.

In general, many user-orientated applications, such as user-friendly interfaces,

intelligent perceptions, automatic navigations and innovations, as shown in Fig.

2, can be computed and processed on the robot rather than uploading to the100

center.
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Figure 2: Key technologies of mobile healthcare robots in edge/centralized computing.

3.1. Interactivities

Typical interactivities between a robot and its users are commonly accom-

plished by the robot although several intelligent interfaces are more data-center-

orientated. Traditional reaction of a robot to a human behavior is often defined105

off line and fixed in operation. Very limited communications, always a pre-

defined message in describing user activities is sent to the center for services’

improvement. However, as the rapid growth of customized services with support

from the cutting-edge AI techniques, robot-human interactivity demands more

communications than before [21]. For example, Google Siri, a popular virtual110

assistant, employs the state-of-the-art AI and machine learning technologies to

recognize speech and answer questions and prefer to link to the data center for
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an accurate reaction. It is a common choice in using the combination of an

on-line and off-line interactive algorithms [29], in which in common scenes, the

well-trained off-line model is adapted for the purpose of efficiency and on-line115

is selected in some special applications. Human-robot interactivities are also

the main source of data stream in an edge computing environment, where the

state-of-the-art resource allocation [23] or computation offloading strategy [24]

can be applied.

3.2. Perception120

Perception is capable of capturing passive inputs and enhances the ability

of data collection. This edge function should preliminarily understand the per-

ceived data, which is the basis of further analysis on the cloud.

Mobile-phone-based method : A virtual agent installed in a smart phone can

directly collect incoming and outgoing text messages of all online-chatting APPs125

[1]. Thus, the virtual agent can simply perceive the user’s activities through text

messages. Obviously, this method is limited to text information and inevitably

omits a lot of user behaviors, which may be important, sometimes even fatal,

to healthcare-receivers. The virtual agent extends its perception capability by

capturing the user’s facial expressions using the front camera of a smart phone.130

Facial recognition: Under the support of facial recognition technology, a

tabletop healthcare robot can monitor each family member and his or her med-

ications [3]. The robot reminds patients in pursuing their medication schedule,

recognizes a patient’s health crisis and contacts a healthcare provider if nec-

essary. Moreover, such robot is enabled to connect to wireless networks and135

serves as interchanging communication medium between patients and healthcare

providers. State-of-the-art facial recognition technologies can further improve

recognition accuracy [27].

Special sensors: Human activity recognition is an essence to enable a robot

to identify the behavior of a specific care-receiver [28]. Rather than facial ex-140

pressions, an activity recognition can perceive behaviors of a care-receiver, who

may be an elder adult, a children or a chronic patient. By activity recognition,
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a robot tacks the care-receiver’s action and recognize human behaviors such

as anomalous activities and unhealthy habits. To ensure a robust and accu-

rate recognition, sensors like accelerometers and gyroscopes are important in145

autonomously detecting human behaviors under certain scenarios.

Although the equipment of special sensors may improve human activity

recognition performance, those sensors are still not user-friendly and, as a re-

sult, not welcome in industry [22]. Special sensors are typically not pressure-

free to the wearer, which means low comfort level or restriction of the care-150

receiver mobility. In addition, deployment and maintenance of such sensors

commonly induce heavy financial burden. Consequently, a more feasible ap-

proach is camera surveillance and image-classification-based human behavior

recognition. Nevertheless, recognizing human activities solely from images is

an extremely challenging task. Many challenges, such as background disarray,155

diversity of viewpoint, resemblance of distinct human behavior, may dramat-

ically depress classification performance. Thanks to the rapid development of

cutting edge machine learning schemes, promising solutions may arise from sev-

eral state-of-the-art deep learning algorithms, including Convolutional Neural

Network (CNN)[30], Generative Adversarial Network (GAN)[31].160

CNN and GAN models enable robots make informed decisions based on

the tasks they’re presented with. CNN-based framework is able of navigate

an endovascular surgery robot based on surgeons’ skill learning. CNN-based

method shows its capability of adapting to different situations and achieves

similar success rate and average operating time. Robotic operation performs165

similar operating trajectory and maintains similar level of operating force with

manual operation. The CNN-based method can be easily extended to many

other surgical robots. A semi-supervised learning approach with generative

adversarial networks GANs that enables a robot to learn from unlabeled tactile

sensory data from interactions with everyday objects. By leveraging unlabeled170

sensor data that are more abundant in unstructured environments, we mitigate

the need for massive labeled training sets.[52, 55]

The application of deep learning in robotics has also greatly improved the ac-
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curacy of the robot’s work. The robot’s understanding of complex environments

is the first step in intelligence. Vision-based scene recognition and understand-175

ing is important to the robot’s understanding of the surrounding environment

and improving its intelligence level. Obtaining real-time data in the current en-

vironment is of great importance for the robot to construct the current working

environment map. It is also necessary to consider the situation of the robot in

the room. It is necessary to realize the correlation between the indoor three-180

dimensional map and the semantic information, not only the aforementioned

ring needs to be considered. The map of the environment also needs to be

classified to identify the scene in the scene.

Feature extraction is a key step in scene recognition. In this step, we do

not use the traditional method of applying local features through human in-185

tervention, but apply the convolutional neural network model in deep learning

to the scene recognition of the robot so that it can automatically capture the

hidden in the original image. Number of feature information according to. In

the process of object recognition and large-scale natural scene image process-

ing, the convolutional neural network and superpixels can be combined with190

the depth Boltzmann machine respectively, wherein the large-scale scene image

is preprocessed by the convolutional neural network to obtain a volume. Af-

ter the product feature, the result is used as the depth visual layer input of

the Boltzmann machine, feature extraction, and then use the softmax classifier

implements the classification of the scene. In the indoor scene, it is necessary195

to realize the correlation between the three-dimensional map and the seman-

tic information in the room, and use the decentralized modular technology to

enable the robot to simultaneously perform scene object recognition and map

reconstruction, thereby realizing its indoor recognition function.

3.3. Navigation200

Navigation is a user-specific function and directly determines the behavior

of the robot. Consequently, navigation is an edge functionality. However, this

functionality may need support from the cloud.
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Some mobile healthcare robots need to autonomously move, especially when

they perform tasks like touring the care-receiver’s activity area or tumble pre-205

vention [32, 33]. Such robots usually need to find an optimal routine linking the

destination and avoid obstacles in a crowded environment like a living room.

Therefore, many research topics still need further investigation to achieve effi-

cient navigations. Among these topics, one vital problem is endowing a robot

with the ability to move through narrow spaces between two barriers and effec-210

tively avoid collision with them. Among numerous existing anti-collision meth-

ods, the artificial potential field method (PFM) enjoys the following promising

characteristics: being comparatively simple to implement, high efficiency, high

speed and accuracy in most application scenarios.

Despite the advantages, traditional PFM suffers from local minima in the215

potential field, which leads to a couple of restrictions: failing to pass a narrow

space between obstacles and oscillations in narrow passages. An improved PFM

in [34] is shown to ease the aforementioned burden and validated on a mobile-

robot-developing platform (Turtlebot 2). This robot captures visual information

via a RGB-D Kinect sensor and converts to 3D images using Point Cloud Library220

(PCL). Then, the barrier detection is completed based on the 3D images.

Traditional supporting techniques of robot navigation cannot handle dy-

namic environments, i.e., the obstacles or people are moving stochastically. Fur-

thermore, a perfect navigation system not only finds the right routine but also

enhances comfort of care-receivers. Such high-level demand base support of225

novel path planning methods.

3.4. Innovation

Similar to navigation, innovation is also tightly tied to user requirements.

This functionality furnishes an upgrading interface for the whole system. In the

literature, several work aimed to design an integrated information architecture230

that effectively facilitates a remotely teleoperated mobile health robot at home

[37, 48, 49, 50, 51, 53, 54]. This kind of work interprets the robot developing task

from the perspective of software engineering. Systematic technology renovation
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like teleoperated healthcare robot should consistently fit into the requirements

of healthcare delivery.235

The development of integrated information architecture, which may link with

health professionals or technical personnel, is necessary for healthcare robots.

The main challenge is prioritizing various possible functionalities of a robot and

handling the complexity of home physical environments. The main constraints

include limits on the structural, perceptual and processing technologies of the240

robot. A teleoperated robot is a realistic choice that leverages currently mature

technologies and depends on human operations to overpass existing limitations.

A mobile healthcare robot is a data-centric system. A usable and exten-

sible system supports all information flows and their integration fitting into a

consistently integrated, unitary and secure information system. In this manner,245

this architecture enables all stakeholders to felicitously access the system at any

proper moment.

4. Data-Center-Orientated Communications

Core functionalities rely on the support of artificial intelligence techniques,

including machine learning, semantic model, sentiment analysis and so on.250

These techniques put forwards high demands on hardware platform as well

as artificial intelligence abilities. To meet the extreme requirements for user

experience, efficiency, performance in wireless robot networking environments,

novel designs, configurations and optimizations for wireless communications and

networking are in great need to satisfying the service requirements. As a re-255

sult, the core functionalities run on the cloud and provide support to the edge

functionalities. Fig. 3 summarizes the core functionalities and representative

supporting technologies.

4.1. Uncertainty handling

Uncertainty handling is a critical issue especially when we refer to healthcare260

tasks, in which an unexpected operation may cause disastrous consequences.
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Figure 3: Core functionalities and representative supporting technologies
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As an example, Fig. 4 demonstrates sensor uncertainty in a mobile healthcare

robot system. Edge computing can solve the inefficiency of moving all data

to a centralized point by creating a network of smaller datacenters with dedi-

cated purposes and features that are tailored to meet specific demands. Digital265

projects that create or require data can be processed much faster when the com-

puting power is close to the device or person generating it. By spreading out

the network, organizations can enhance productivity by concentrating resources

on certain tasks and making health IT systems more efficient by decentralizing

IT infrastructure.270

Figure 4: Sensor uncertainty in a mobile healthcare robot system

Inevitability of sensor uncertainty : Sensors suggest a promising solution

to convey human’s physical, physiological or even psychological activities to

a robot. Internet of Things (IoT) integrates heterogeneous wearable or mobile

sensors and creates a huge amount of opportunities to recognize human activities

and collect human life logging data. With the support of IoT, physical activities275

can be remotely logged. Consequently, care-receivers are able to obtain more

opportunities to enjoy a personalized healthcare.

Nevertheless, leveraging IoT in healthcare systems is challenging due to the
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fact that various sensors (wearable devices) of IoT are generating massive high-

dimensional heterogeneous data all the time. Effectively validating such data280

becomes an essential task. Owing to advances in accelerometer technologies and

GPS, physical activities are generally well-observed. Life-logging physical activ-

ity data (LPD) exhibits remarkable uncertainty due to various reasons such as

diversity and alterations of personal living habits, sensor errors (battery deple-

tion, inaccurate outputs, etc.) and communication malfunction. Consequently,285

a mobile healthcare robot is required to make right decisions based on uncertain

inputs, i.e., incomplete and inaccurate sensor data. The next generation of com-

munication networks, such as the global centralized Software Defined Network

(SDN) [41][42], provide robust link for IoT connections. Other cutting-edge

technologies, such as cognitive radio sensor networks [35], may also improve the290

robustness and efficiency of a public network.

Knowledge-based and Data-driven Solutions: In order to recognize human

activities and handle sensor uncertainty, popular solutions always adopt data-

driven or knowledge-based methods. The primary superiority of data-driven

methods is their capability to deal with uncertainty. Knowledge-based meth-295

ods utilize prior knowledge to construct semantic activity models and perform

inference processes on input sensor data. Such methods enjoy superior interop-

erability and wide adaption to diversified application scenarios, which are vital

for a context-aware system. Additionally, knowledge-based methods leverage

formal data structures to denote sensor data and contexts under the support300

of semantic descriptions, which make sensor data and contexts comprehensible

to both developers and robots. Ontology-based activity recognition is a typ-

ical knowledge-based method and possesses advantages of expressiveness and

comprehensive reasoning mechanisms [39, 46, 47]. A barrier to its broad appli-

cation is the imperfect observations which may depress the activity recognition305

performance.

Data-driven and knowledge-based methods have shown their success in many

applications. Data-driven methods adopt supervised machine learning algo-

rithms to categorize sensor data into groups, each of which represents one kind
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of human activity. For instance, Hidden Markov Models (HMM) and Support310

Vector Machine (SVM) are two widely used classifiers. Despite the success of

data-driven methods, such methods fail to work efficiently with limited size of

training data because they require large volume of training data to guarantee

the classification accuracy. Moreover, it is difficult to acquire adequate train-

ing data because users may implement activities in various ways. In addition,315

gathering and manually labeling large volume of sensor data are known for their

tremendous time-consumption. Furthermore, data-driven methods are difficult

to process high-dimensional data.

In view of disadvantages of data-driven and knowledge-based methods, a

combination of both methods enjoys broad prospects. Some recent works de-320

sign hybrid models to recognize human activities. However, existing hybrid

models lack specialized solutions to uncertainty handling. A hybrid model

named AGACY Monitoring can cope with the inherent uncertainty of sensor

data. This model handles long-enduring activities and their uncertainty values

by adopting a new feature extraction method. Along with this model, a novel325

algorithm called AGACY infers activities by probing the collected uncertainty

values [38]. Currently, the primary drawback of this method is that it lacks the

ability to reuse existing upper ontology like DOLCE ontology.

A validation-rule based method can eliminate irregular uncertainty as well

as relieve the negative influence of regular uncertainty [2]. This kind of methods330

still faces some challenges despite its success in experiments. First, extensibility

should be enhanced to flexibly incorporate new validation rules. Second, a

formal rule of human-in-loop validation needs to be investigated so that the

method can more efficiently leverage user feedbacks to update validation rules.

Third, the flexibility of the method needs to be validated by more users.335

4.2. Social-aware Path Planning

A mobile healthcare robot may work in a crowd environment. The issue

of path planning thus extends far beyond a collision-free and shortest path if

a care-receiver requires high-quality user experiences. A robot needs to obey
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social conventions and avert collision with human, in particular in walking. Path340

planning in dynamic environment aims at human-robot mutual understanding,

i.e., social-aware path planning, with highlights such as comfort, naturalness

and sociability.

A social-aware path planning framework typically contains the following

components [40, 43, 44, 45]. First, a global planner provides to an robot the op-345

timal path linking to the destination. Similar to traditional path planning like

PFM, a global planner demands that a static map of the environment is at least

partially prior known. Second, a local planner takes in charge collision avoidance

with regards to moving obstacle. A typical method adopted by a local planner

is the dynamic window approach (DWA). DWA prunes non-reachable velocity350

values and thus shrinks the searching space. Afterwards, DWA minimizes an

objective function by choosing possible velocity values from the shrunk search-

ing space. Third, prediction model will forecast human movements and further

raise efficiency of path planning in a crowded dynamic environment. A simple

way to predict human movement is leveraging the linear model where human355

motion trajectories mostly constitute of straight lines. An efficient social-aware

path planning framework is required to properly unify all these components.

In terms of the three-component social-aware path planning framework,

there still exist open questions. First, response should be as fast as possible.

For example, the local planner should swiftly adjust the routine of a fast-moving360

robot when an obstacle abruptly blocks the way. Second, new patterns of human

motion may keep arising in the dynamic environment. Therefore, the local plan-

ner should be capable of updating collision avoidance models accordingly. This

capability means a lifelong ability that can update a learning model using data

collected. Third, it is a challenge to move in a crowded dynamic environment.365

In addition, it is even more complicated to plan the optimal paths for a swarm

of robots, a trend in robotics with promising performance. The primary topic,

in the case of swarm robotics, is fusing the latest refreshed collision avoidance

models of all robots into one. Subsequently, all robots abide the fused model

and achieve their globally optimal paths.370
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4.3. Psychotherapy

Although psychological issues like depression are increasingly prevalent, many

people still face high barrier to access mental healthcare. Mobile phone based

socially assistant robot provides a promising solution to depress the accessibility

barrier due to the ubiquity of mobile phone. A mobile mental therapeutic system375

consists of an active mobile phone and a tabletop robot connected by specific

APP(s). This kind of APP records all incoming and outgoing text messages

and capture the care-receiver’s facial expression through the front camera of a

mobile phone, and further analyzes messages and facial images for automatic

psychological analysis [1]. Thus, the system selects therapeutic interventions380

in pursuant to the analysis results. The system adopts State-Action-Reward-

State-Action (SARSA) algorithm to learn a customized intervention strategy

regarding a care-receiver. A robot can make the care-receiver more engaged

than a virtual agent thanks to physical presence of the robot.

Currently, the psychological status of users are usually inferred from text385

message or facial expressions, which restricts the effect of therapy. Improving

existing therapies demands novel perception interfaces as well as supporting

psychology analysis methods. Possible future works include leveraging various

devices to collect human data, such as heartbeat, blood pressure, and construct-

ing more powerful mental health intervention technologies. In summary, we list390

state-of-the-art supporting technologies in Fig. 5.

5. Conclusion and Open Research Issues

In this article, we investigated on the application and key technologies of

mobile healthcare robots. We also pointed out several peripheral and core func-

tionalities that the robot development will require. Fundamental development395

in communication, IoT, image understanding, sensor and path planning tech-

nologies will speedup the progress toward practical robots.

Open research issues include intelligent communications, ground-breaking

biosensors, cutting-edge AI and state-of-the-art deep learning algorithms. How-
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Figure 5: State-of-the-art supporting technologies of mobile healthcare robots

ever, each of the open issues still lacks advanced development, requiring further400

research and implementations. To this end, both academic and industrial re-

search and development activities are highly recommended to overcome the

limitations of the existing systems.
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